Science.gov

Sample records for restriction endonuclease implications

  1. Problem-Solving Test: Restriction Endonuclease Mapping

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    The term "restriction endonuclease mapping" covers a number of related techniques used to identify specific restriction enzyme recognition sites on small DNA molecules. A method for restriction endonuclease mapping of a 1,000-basepair (bp)-long DNA molecule is described in the fictitious experiment of this test. The most important fact needed to…

  2. Problem-Solving Test: Restriction Endonuclease Mapping

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    The term "restriction endonuclease mapping" covers a number of related techniques used to identify specific restriction enzyme recognition sites on small DNA molecules. A method for restriction endonuclease mapping of a 1,000-basepair (bp)-long DNA molecule is described in the fictitious experiment of this test. The most important fact needed to…

  3. Type I restriction endonucleases are true catalytic enzymes.

    PubMed

    Bianco, Piero R; Xu, Cuiling; Chi, Min

    2009-06-01

    Type I restriction endonucleases are intriguing, multifunctional complexes that restrict DNA randomly, at sites distant from the target sequence. Restriction at distant sites is facilitated by ATP hydrolysis-dependent, translocation of double-stranded DNA towards the stationary enzyme bound at the recognition sequence. Following restriction, the enzymes are thought to remain associated with the DNA at the target site, hydrolyzing copious amounts of ATP. As a result, for the past 35 years type I restriction endonucleases could only be loosely classified as enzymes since they functioned stoichiometrically relative to DNA. To further understand enzyme mechanism, a detailed analysis of DNA cleavage by the EcoR124I holoenzyme was done. We demonstrate for the first time that type I restriction endonucleases are not stoichiometric but are instead catalytic with respect to DNA. Further, the mechanism involves formation of a dimer of holoenzymes, with each monomer bound to a target sequence and, following cleavage, each dissociates in an intact form to bind and restrict subsequent DNA molecules. Therefore, type I restriction endonucleases, like their type II counterparts, are true enzymes. The conclusion that type I restriction enzymes are catalytic relative to DNA has important implications for the in vivo function of these previously enigmatic enzymes.

  4. Type II restriction endonucleases: structure and mechanism.

    PubMed

    Pingoud, A; Fuxreiter, M; Pingoud, V; Wende, W

    2005-03-01

    Type II restriction endonucleases are components of restriction modification systems that protect bacteria and archaea against invading foreign DNA. Most are homodimeric or tetrameric enzymes that cleave DNA at defined sites of 4-8 bp in length and require Mg2+ ions for catalysis. They differ in the details of the recognition process and the mode of cleavage, indicators that these enzymes are more diverse than originally thought. Still, most of them have a similar structural core and seem to share a common mechanism of DNA cleavage, suggesting that they evolved from a common ancestor. Only a few restriction endonucleases discovered thus far do not belong to the PD...D/ExK family of enzymes, but rather have active sites typical of other endonuclease families. The present review deals with new developments in the field of Type II restriction endonucleases. One of the more interesting aspects is the increasing awareness of the diversity of Type II restriction enzymes. Nevertheless, structural studies summarized herein deal with the more common subtypes. A major emphasis of this review will be on target site location and the mechanism of catalysis, two problems currently being addressed in the literature.

  5. The EcoR V restriction endonuclease.

    PubMed

    Luke, P A; McCallum, S A; Halford, S E

    1987-01-01

    Type II restriction endonucleases have attracted attention for two main reasons: firstly, their many applications in the dissection of DNA and in the construction of novel DNA molecules; secondly, as systems for studying the interactions of proteins with specific DNA sequences. With respect to the latter, the EcoR I restriction endonuclease has been examined in greater depth than any other type II enzyme [1-3]. However, the EcoR I enzyme has a major disadvantage as a system for studying DNA-protein interactions: the protein has a remarkably low solubility. The solutions in which EcoR I shows maximal activity, and also affinity for its recognition site, are saturated at less than 0.5 microM of this protein [4]. Consequently, many techniques that have been developed to study protein-ligand interactions but which require high concentrations of the protein in solution, such as NMR spectroscopy, cannot be used on EcoR I. But this drawback does not apply to all type II restriction enzymes. A different enzyme, the EcoR V restriction endonuclease [5-7], has special advantages as a system for studying DNA-protein interactions. In particular, this is the only type II restriction enzyme (apart from EcoR I [3]) for which crystals of the protein have been reported [7].

  6. Restriction endonucleases: classification, properties, and applications.

    PubMed

    Williams, Raymond J

    2003-03-01

    Restriction endonucleases have become a fundamental tool of molecular biology with many commercial vendors and extensive product lines. While a significant amount has been learned about restriction enzyme diversity, genomic organization, and mechanism, these continue to be active areas of research and assist in classification efforts. More recently, one focus has been their exquisite specificity for the proper recognition sequence and the lack of homology among enzymes recognizing the same DNA sequence. Some questions also remain regarding in vivo function. Site-directed mutagenesis and fusion proteins based on known endonucleases show promise for custom-designed cleavage. An understanding of the enzymes and their properties can improve their productive application by maintaining critical digest parameters and enhancing or avoiding alternative activities.

  7. RNA aptamer inhibitors of a restriction endonuclease.

    PubMed

    Mondragón, Estefanía; Maher, L James

    2015-09-03

    Restriction endonucleases (REases) recognize and cleave short palindromic DNA sequences, protecting bacterial cells against bacteriophage infection by attacking foreign DNA. We are interested in the potential of folded RNA to mimic DNA, a concept that might be applied to inhibition of DNA-binding proteins. As a model system, we sought RNA aptamers against the REases BamHI, PacI and KpnI using systematic evolution of ligands by exponential enrichment (SELEX). After 20 rounds of selection under different stringent conditions, we identified the 10 most enriched RNA aptamers for each REase. Aptamers were screened for binding and specificity, and assayed for REase inhibition. We obtained eight high-affinity (Kd ∼12-30 nM) selective competitive inhibitors (IC50 ∼20-150 nM) for KpnI. Predicted RNA secondary structures were confirmed by in-line attack assay and a 38-nt derivative of the best anti-KpnI aptamer was sufficient for inhibition. These competitive inhibitors presumably act as KpnI binding site analogs, but lack the primary consensus KpnI cleavage sequence and are not cleaved by KpnI, making their potential mode of DNA mimicry fascinating. Anti-REase RNA aptamers could have value in studies of REase mechanism and may give clues to a code for designing RNAs that competitively inhibit DNA binding proteins including transcription factors. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. The SalGI restriction endonuclease. Purification and properties

    PubMed Central

    Maxwell, Anthony; Halford, Stephen E.

    1982-01-01

    The type II restriction endonuclease SalGI has been purified to near homogeneity. At least 80% of the protein remaining after the final stage of the preparation is SalGI restriction endonuclease; no contaminating nucleases remain detectable. The principal form of the protein under both native and denaturing conditions is a monomer of Mr about 29000. The optimal conditions for both enzyme stability and enzyme activity have been determined. ImagesFig. 1. PMID:6285898

  9. Two unique restriction endonucleases from Neisseria lactamica.

    PubMed

    Qiang, B Q; Schildkraut, I

    1986-03-11

    Two new site-specific endonucleases, N1a III and N1a IV, have been isolated from Neisseria lactamica. N1a III recognizes the sequence, CATG, and cleaves 3' of the sequence to produce a four base 3' extension. N1a IV recognizes the sequence, GGNNCC, and cleaves between the two N's to produce blunt ended fragments.

  10. Mechanistic insight into Type I restriction endonucleases.

    PubMed

    Youell, James; Firman, Keith

    2012-06-01

    Restriction and modification are two opposing activities that are used to protect bacteria from cellular invasion by DNA (e.g. bacteriophage infection). Restriction activity involves cleavage of the DNA; while modification activity is the mechanism used to "mark" host DNA and involves DNA methylation. The study of Type I restriction enzymes has often been seen as an esoteric exercise and this reflects some of their more unusual properties - non-stoichiometric (non-catalytic) cleavage of the DNA substrate, random cleavage of DNA, a massive ATPase activity, and the ability to both cleave DNA and methylate DNA. Yet these enzymes have been found in many bacteria and are very efficient as a means of protecting bacteria against bacteriophage infection, indicating they are successful enzymes. In this review, we summarise recent work on the mechanisms of action, describe switching of function and review their mechanism of action. We also discuss structural rearrangements and cellular localisation, which provide powerful mechanisms for controlling the enzyme activity. Finally, we speculate as to their involvement in recombination and discuss their relationship to helicase enzymes.

  11. Recognition sequences of restriction endonucleases and methylases--a review.

    PubMed

    Kessler, C; Neumaier, P S; Wolf, W

    1985-01-01

    The properties and sources of all known endonucleases and methylases acting site-specifically on DNA are listed. The enzymes are crossindexed (Table I), classified according to homologies within their recognition sequences (Table II), and characterized within Table II by the cleavage and methylation positions, the number of recognition sites on the DNA of the bacteriophages lambda, phi X174 and M13mp7, the viruses Ad2 and SV40, the plasmids pBR322 and pBR328 and the microorganisms from which they originate. Other tabulated properties of the restriction endonucleases include relaxed specificities (Table III), the structure of the restriction fragment ends (Table IV), and the sensitivity to different kinds of DNA methylation (Table V). Table VI classifies the methylases according to the nature of the methylated base(s) within their recognition sequences. This table also comprises those restriction endonucleases, which are known to be inhibited by the modified nucleotides. Furthermore, this review includes a restriction map of bacteriophage lambda DNA based on sequence data. Table VII lists the exact nucleotide positions of the cleavage sites, the length of the generated fragments ordered according to size, and the effects of the Escherichia coli dam- and dcmI-coded methylases M X Eco dam and M X Eco dcmI on the particular recognition sites.

  12. Word-processor macro for restriction endonuclease analysis.

    PubMed

    Cabrera León, N

    1999-12-01

    This paper describes a Microsoft Word 97 macro designed for restriction endonuclease analysis. Selected DNA fragments in the active Word document can be analyzed through a dynamic dialog box that formats the enzyme restriction lists for further analysis. The results can be obtained in a new Word document with the name of the enzymes, number of cuts and positions. This macro has several advantages: the results can be printed in a format suitable for record keeping, no additional programs are required and it is simple to use.

  13. The Fidelity Index provides a systematic quantitation of star activity of DNA restriction endonucleases

    PubMed Central

    Wei, Hua; Therrien, Caitlin; Blanchard, Aine; Guan, Shengxi; Zhu, Zhenyu

    2008-01-01

    Restriction endonucleases are the basic tools of molecular biology. Many restriction endonucleases show relaxed sequence recognition, called star activity, as an inherent property under various digestion conditions including the optimal ones. To quantify this property we propose the concept of the Fidelity Index (FI), which is defined as the ratio of the maximum enzyme amount showing no star activity to the minimum amount needed for complete digestion at the cognate recognition site for any particular restriction endonuclease. Fidelity indices for a large number of restriction endonucleases are reported here. The effects of reaction vessel, reaction volume, incubation mode, substrate differences, reaction time, reaction temperature and additional glycerol, DMSO, ethanol and Mn2+ on the FI are also investigated. The FI provides a practical guideline for the use of restriction endonucleases and defines a fundamental property by which restriction endonucleases can be characterized. PMID:18413342

  14. Interdomain communication in the endonuclease/motor subunit of type I restriction-modification enzyme EcoR124I.

    PubMed

    Sinha, Dhiraj; Shamayeva, Katsiaryna; Ramasubramani, Vyas; Řeha, David; Bialevich, Vitali; Khabiri, Morteza; Guzanová, Alena; Milbar, Niv; Weiserová, Marie; Csefalvay, Eva; Carey, Jannette; Ettrich, Rüdiger

    2014-07-01

    Restriction-modification systems protect bacteria from foreign DNA. Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA-cleavage and ATP-dependent DNA translocation activities located on endonuclease/motor subunit HsdR. The recent structure of the first intact motor subunit of the type I restriction enzyme from plasmid EcoR124I suggested a mechanism by which stalled translocation triggers DNA cleavage via a lysine residue on the endonuclease domain that contacts ATP bound between the two helicase domains. In the present work, molecular dynamics simulations are used to explore this proposal. Molecular dynamics simulations suggest that the Lys-ATP contact alternates with a contact with a nearby loop housing the conserved QxxxY motif that had been implicated in DNA cleavage. This model is tested here using in vivo and in vitro experiments. The results indicate how local interactions are transduced to domain motions within the endonuclease/motor subunit.

  15. Quantitative determination of effective nibbling activities contaminating restriction endonuclease preparations.

    PubMed

    Hashimoto-Gotoh, T

    1995-10-10

    A simple and sensitive procedure with which to detect residual exonucleolytic nibbling activities contaminating restriction endonuclease preparations is described. The procedure uses the kyosei-plasmid, pKF4, which confers kanamycin resistance and enforces streptomycin sensitivity encoded by the trp promoter/operator-driven rpsL+amber(PO(trp)-rpsL+4(am)) gene onto Escherichia coli streptomycin-resistant, amber-suppressive, trp repressor-negative strains such as TH5. When TH5 cells transformed by pKF4 were selected on agar medium containing kanamycin plus streptomycin, the efficiency of transformation plating was substantially lower than that on agar containing kanamycin alone. However, when pKF4 DNA was digested by restriction enzymes that cut once per molecule within PO(trp)-rpsL+4(am) and relegated, the plating efficiency increased depending on the degree of contamination of exonucleolytic nibbling activities in the enzyme preparations, due to deletion mutation at the ligand junction. Plating efficiency was converted to "effective nibbling activity" corresponding to Bal31 nuclease-equivalent units. Using this procedure, effective nibbling activities were detected in 17 of 34 commercial samples of restriction enzymes tested. The method is simple and more sensitive than the procedures used by the commercial suppliers and it is applicable to the quality control testing of more than 100 restriction enzymes.

  16. Cofactor Requirement of HpyAV Restriction Endonuclease

    PubMed Central

    Chan, Siu-Hong; Opitz, Lars; Higgins, Lauren; O'loane, Diana; Xu, Shuang-yong

    2010-01-01

    Background Helicobacter pylori is the etiologic agent of common gastritis and a risk factor for gastric cancer. It is also one of the richest sources of Type II restriction-modification (R-M) systems in microorganisms. Principal Findings We have cloned, expressed and purified a new restriction endonuclease HpyAV from H. pylori strain 26695. We determined the HpyAV DNA recognition sequence and cleavage site as CCTTC 6/5. In addition, we found that HpyAV has a unique metal ion requirement: its cleavage activity is higher with transition metal ions than in Mg++. The special metal ion requirement of HpyAV can be attributed to the presence of a HNH catalytic site similar to ColE9 nuclease instead of the canonical PD-X-D/EXK catalytic site found in many other REases. Site-directed mutagenesis was carried out to verify the catalytic residues of HpyAV. Mutation of the conserved metal-binding Asn311 and His320 to alanine eliminated cleavage activity. HpyAV variant H295A displayed approximately 1% of wt activity. Conclusions/Significance Some HNH-type endonucleases have unique metal ion cofactor requirement for optimal activities. Homology modeling and site-directed mutagenesis confirmed that HpyAV is a member of the HNH nuclease family. The identification of catalytic residues in HpyAV paved the way for further engineering of the metal binding site. A survey of sequenced microbial genomes uncovered 10 putative R-M systems that show high sequence similarity to the HpyAV system, suggesting lateral transfer of a prototypic HpyAV-like R-M system among these microorganisms. PMID:20140205

  17. Creating highly specific nucleases by fusion of active restriction endonucleases and catalytically inactive homing endonucleases

    PubMed Central

    Fonfara, Ines; Curth, Ute; Pingoud, Alfred; Wende, Wolfgang

    2012-01-01

    Zinc-finger nucleases and TALE nucleases are produced by combining a specific DNA-binding module and a non-specific DNA-cleavage module, resulting in nucleases able to cleave DNA at a unique sequence. Here a new approach for creating highly specific nucleases was pursued by fusing a catalytically inactive variant of the homing endonuclease I-SceI, as DNA binding-module, to the type IIP restriction enzyme PvuII, as cleavage module. The fusion enzymes were designed to recognize a composite site comprising the recognition site of PvuII flanked by the recognition site of I-SceI. In order to reduce activity on PvuII sites lacking the flanking I-SceI sites, the enzymes were optimized so that the binding of I-SceI to its sites positions PvuII for cleavage of the composite site. This was achieved by optimization of the linker and by introducing amino acid substitutions in PvuII which decrease its activity or disturb its dimer interface. The most specific variant showed a more than 1000-fold preference for the addressed composite site over an unaddressed PvuII site. These results indicate that using a specific restriction enzyme, such as PvuII, as cleavage module, offers an alternative to the otherwise often used catalytic domain of FokI, which by itself does not contribute to the specificity of the engineered nuclease. PMID:21965534

  18. Selective microbial genomic DNA isolation using restriction endonucleases.

    PubMed

    Barnes, Helen E; Liu, Guohong; Weston, Christopher Q; King, Paula; Pham, Long K; Waltz, Shannon; Helzer, Kimberly T; Day, Laura; Sphar, Dan; Yamamoto, Robert T; Forsyth, R Allyn

    2014-01-01

    To improve the metagenomic analysis of complex microbiomes, we have repurposed restriction endonucleases as methyl specific DNA binding proteins. As an example, we use DpnI immobilized on magnetic beads. The ten minute extraction technique allows specific binding of genomes containing the DpnI Gm6ATC motif common in the genomic DNA of many bacteria including γ-proteobacteria. Using synthetic genome mixtures, we demonstrate 80% recovery of Escherichia coli genomic DNA even when only femtogram quantities are spiked into 10 µg of human DNA background. Binding is very specific with less than 0.5% of human DNA bound. Next Generation Sequencing of input and enriched synthetic mixtures results in over 100-fold enrichment of target genomes relative to human and plant DNA. We also show comparable enrichment when sequencing complex microbiomes such as those from creek water and human saliva. The technique can be broadened to other restriction enzymes allowing for the selective enrichment of trace and unculturable organisms from complex microbiomes and the stratification of organisms according to restriction enzyme enrichment.

  19. Peculiarities of Crystallization of the Restriction Endonuclease EcoRII

    NASA Technical Reports Server (NTRS)

    Karpove, Elizaveta; Pusey, M.arc L.

    1998-01-01

    Nucleases interfere with most standard molecular biology procedures. We have purified and crystallized the restriction endonuclease EcoRII, which belongs to the type II of restriction- modification enzyme, to study the protein crystallization process using a "non standard" macromolecule. A procedure for the purification of EcoRII was developed and 99% pure protein as determined by SDS PAGE electrophoresis obtained. Light scattering experiments were performed to assist in screening protein suitable crystallization conditions. The second virial coefficient was determined as a function of precipitating salt concentration, using sodium chloride, ammonium sulfate, and sodium sulfate. Small (maximum size approximately 0.2 mm) well shaped crystals have been obtained. Larger poorly formed crystals (ca 0.5 mm) have also been obtained, but we have been unable to mount them for diff-raction analysis due to their extreme fragility. Crystallization experiments with PEG have shown that using this precipitant, the best crystals are obtained from slightly over-saturated solutions. Use of higher precipitant concentration leads to dendritic crystal formation. EcoRII is difficult to solubilize and meticulous attention must be paid to the presence of reducing agents.

  20. Peculiarities of Crystallization of the Restriction Endonuclease EcoRII

    NASA Technical Reports Server (NTRS)

    Karpove, Elizaveta; Pusey, M.arc L.

    1998-01-01

    Nucleases interfere with most standard molecular biology procedures. We have purified and crystallized the restriction endonuclease EcoRII, which belongs to the type II of restriction- modification enzyme, to study the protein crystallization process using a "non standard" macromolecule. A procedure for the purification of EcoRII was developed and 99% pure protein as determined by SDS PAGE electrophoresis obtained. Light scattering experiments were performed to assist in screening protein suitable crystallization conditions. The second virial coefficient was determined as a function of precipitating salt concentration, using sodium chloride, ammonium sulfate, and sodium sulfate. Small (maximum size approximately 0.2 mm) well shaped crystals have been obtained. Larger poorly formed crystals (ca 0.5 mm) have also been obtained, but we have been unable to mount them for diff-raction analysis due to their extreme fragility. Crystallization experiments with PEG have shown that using this precipitant, the best crystals are obtained from slightly over-saturated solutions. Use of higher precipitant concentration leads to dendritic crystal formation. EcoRII is difficult to solubilize and meticulous attention must be paid to the presence of reducing agents.

  1. Type II restriction endonucleases--a historical perspective and more.

    PubMed

    Pingoud, Alfred; Wilson, Geoffrey G; Wende, Wolfgang

    2014-07-01

    This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.

  2. An exocytoplasmic endonuclease with restriction function in Streptomyces antibioticus.

    PubMed Central

    de los Reyes-Gavilan, C G; Aparicio, J F; Barbes, C; Hardisson, C; Sanchez, J

    1988-01-01

    Streptomyces antibioticus produces a strong endo-DNase which is located between the cytoplasmic membrane and the cell wall. All DNA substrates assayed, including the chromosomal DNA of this species and several bacteriophage DNAs, were completely degraded in vitro by the enzyme. The rate of synthesis of the nuclease depended on the growth medium. In NBG medium, in which the enzyme is not produced, the size of lytic plaques of several actinophages was larger than that in GYM or GAE medium, in which synthesis of the nuclease takes place late in growth. In addition, one of the phages assayed, phi A6, showed a diminution of its efficiency of plating in GYM medium with respect to that in NBG medium; another phage, phi A9, grew in NBG medium but not in the other two media. It is postulated that the presence of the host nuclease, together with the capability of the particular phage to absorb on S. antibioticus of different growth phases, determines the efficiency of growth and the plaque size of the phages on productive media. This hypothesis was confirmed when the growth of phi A6 and phi A9 in a mutant of S. antibioticus lacking the endonuclease activity was analyzed. It is concluded that the enzyme can assume, under some circumstances, a role in in vivo restriction. Images PMID:2830237

  3. Structure and function of type II restriction endonucleases.

    PubMed

    Pingoud, A; Jeltsch, A

    2001-09-15

    More than 3000 type II restriction endonucleases have been discovered. They recognize short, usually palindromic, sequences of 4-8 bp and, in the presence of Mg(2+), cleave the DNA within or in close proximity to the recognition sequence. The orthodox type II enzymes are homodimers which recognize palindromic sites. Depending on particular features subtypes are classified. All structures of restriction enzymes show a common structural core comprising four beta-strands and one alpha-helix. Furthermore, two families of enzymes can be distinguished which are structurally very similar (EcoRI-like enzymes and EcoRV-like enzymes). Like other DNA binding proteins, restriction enzymes are capable of non-specific DNA binding, which is the prerequisite for efficient target site location by facilitated diffusion. Non-specific binding usually does not involve interactions with the bases but only with the DNA backbone. In contrast, specific binding is characterized by an intimate interplay between direct (interaction with the bases) and indirect (interaction with the backbone) readout. Typically approximately 15-20 hydrogen bonds are formed between a dimeric restriction enzyme and the bases of the recognition sequence, in addition to numerous van der Waals contacts to the bases and hydrogen bonds to the backbone, which may also be water mediated. The recognition process triggers large conformational changes of the enzyme and the DNA, which lead to the activation of the catalytic centers. In many restriction enzymes the catalytic centers, one in each subunit, are represented by the PD. D/EXK motif, in which the two carboxylates are responsible for Mg(2+) binding, the essential cofactor for the great majority of enzymes. The precise mechanism of cleavage has not yet been established for any enzyme, the main uncertainty concerns the number of Mg(2+) ions directly involved in cleavage. Cleavage in the two strands usually occurs in a concerted fashion and leads to inversion of

  4. Identification of a new restriction endonuclease R.NciII, from Neisseria cinerea.

    PubMed

    Piekarowicz, A

    1994-01-01

    Site-specific restriction endonuclease R. Nci II has been purified from Neisseria cinerea strain 32615. The enzyme recognizes the sequence 5' GATC 3' and its activity is inhibited by the presence of methylated adenine residue within the recognition sequence.

  5. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases.

    PubMed Central

    McClelland, M; Nelson, M; Raschke, E

    1994-01-01

    Restriction endonucleases have site-specific interactions with DNA that can often be inhibited by site-specific DNA methylation and other site-specific DNA modifications. However, such inhibition cannot generally be predicted. The empirically acquired data on these effects are tabulated for over 320 restriction endonucleases. In addition, a table of known site-specific DNA modification methyltransferases and their specificities is presented along with EMBL database accession numbers for cloned genes. PMID:7937074

  6. Unambiguous typing of canine adenovirus isolates by deoxyribonucleic acid restriction-endonuclease analysis.

    PubMed Central

    Assaf, R; Marsolais, G; Yelle, J; Hamelin, C

    1983-01-01

    Viral deoxyribonucleic acid extracted from a limited number of cells infected with canine adenovirus type 1 or type 2 was cleaved with several restriction endonucleases. Agarose gel electrophoresis of the limit digests showed stable differences between the canine adenovirus type 1 and type 2 cleavage patterns. Rapid and accurate typing of large numbers of clinical isolates may thus be done by deoxyribonucleic acid restriction-endonuclease analysis. Images Fig. 1. Fig. 2. PMID:6321002

  7. Investigating the nature of chromatid breaks produced by restriction endonucleases.

    PubMed

    Harvey, A N; Savage, J R

    1997-01-01

    It is a basic assumption of the breakage-and-reunion theory that the majority of open chromatid breaks seen at metaphase are the residue of unrejoined primary breaks that have neither restituted nor rejoined illegitimately to form exchange aberrations. If Chinese hamster chromosomes with BrdU sister-chromatid differentiation are irradiated, and chromatid aberrations scored from G2 cells, some 15-20% of open breaks show a colour-jump at the point of discontinuity, indicating a two-lesion intrachange origin. Since we see complete forms of several intrachanges whose incomplete forms will also look like breaks, but devoid of a colour-jump, it appears that a substantial proportion of observed breaks are intrachange derived. Experiments to date show that the colour-jump proportion is constant, irrespective of radiation dose, radiation quality, BrdU concentration and hamster cell origin. It is the same for the very low "spontaneous' breaks found in control samples. Restriction endonucleases (RE) can be introduced into cells by various poration methods, and are highly efficient at producing all types of aberrations. This is taken as strong evidence that DNA dsb are significant lesions triggering aberrations. One might anticipate, therefore, that observed breaks will be predominantly unrejoined dsb, and the proportion of colour-jump break correspondingly low. We tested this supposition using three RE; Alu 1, a blunt-end cutter, Sau3A 1, a cohesive-end cutter, both with a short life-time in vivo, and Mbo 1, an isoschizomer of Sau3A 1, which has a long cutting life-time in vivo. Although there were differences in absolute yields of breaks, and of relative frequencies of aberration types recovered, the proportion of colour-jump breaks was as high as that in a parallel X-ray experiment, and fell well within the range encountered in all our previous experiments. It is difficult to reconcile this universal constancy of colour-jump breaks with the expectations of breakage

  8. A genetic system for isolation and characterization of TaqI restriction endonuclease mutants.

    PubMed

    Barany, F

    1987-01-01

    The gene encoding TaqI restriction endonuclease has been subcloned downstream from an inducible phoA promoter. Certain strains of Escherichia coli remain viable when endonuclease is expressed, even in the absence of (protective) methylation. Infecting lambda phage DNA is not restricted in vivo. One E. coli strain, MM294, exhibited a temperature-sensitive phenotype when TaqI endonuclease was induced. This allowed for design of an in vivo plate assay for identification of specially constructed two-codon insertion mutants in the endonuclease gene. These mutants exhibited a wide range of in vitro activities, including wild-type activity, greater activity in low-salt buffer, and sequence-specific nicking activity.

  9. Comparison of genomes of malignant catarrhal fever-associated herpesviruses by restriction endonuclease analysis.

    PubMed

    Shih, L M; Zee, Y C; Castro, A E

    1989-01-01

    The restriction endonuclease DNA cleavage patterns of eight isolates of malignant catarrhal fever-associated herpesviruses were examined using the restriction endonucleases HindIII and EcoRI. The eight viruses could be assigned to two distinct groups. Virus isolates from a blue wildebeest, a sika deer and an ibex had restriction endonuclease DNA cleavage patterns that were in general similar to each other. The restriction pattern of these three viruses was distinct from the other five. Of these five, four were isolated from a greater kudu, a white tailed wildebeest, a white bearded wildebeest, and a cape hartebeest. The fifth isolate C500, was isolated from a domestic cow with malignant catarrhal fever. These five viruses had similar DNA cleavage patterns.

  10. Genomic representations using concatenates of Type IIB restriction endonuclease digestion fragments

    PubMed Central

    Tengs, Torstein; LaFramboise, Thomas; Den, Robert B.; Hayes, David N.; Zhang, Jianhua; DebRoy, Saikat; Gentleman, Robert C.; O'Neill, Keith; Birren, Bruce; Meyerson, Matthew

    2004-01-01

    We have developed a method for genomic representation using Type IIB restriction endonucleases. Representation by concatenation of restriction digests, or RECORD, is an approach to sample the fragments generated by cleavage with these enzymes. Here, we show that the RECORD libraries may be used for digital karyotyping and for pathogen identification by computational subtraction. PMID:15329383

  11. Structural and functional analysis of the symmetrical Type I restriction endonuclease R.EcoR124I(NT).

    PubMed

    Taylor, James E; Swiderska, Anna; Artero, Jean-Baptiste; Callow, Philip; Kneale, Geoff

    2012-01-01

    Type I restriction-modification (RM) systems are comprised of two multi-subunit enzymes, the methyltransferase (∼160 kDa), responsible for methylation of DNA, and the restriction endonuclease (∼400 kDa), responsible for DNA cleavage. Both enzymes share a number of subunits. An engineered RM system, EcoR124I(NT), based on the N-terminal domain of the specificity subunit of EcoR124I was constructed that recognises the symmetrical sequence GAAN(7)TTC and is active as a methyltransferase. Here, we investigate the restriction endonuclease activity of R. EcoR124I(NT)in vitro and the subunit assembly of the multi-subunit enzyme. Finally, using small-angle neutron scattering and selective deuteration, we present a low-resolution structural model of the endonuclease and locate the motor subunits within the multi-subunit enzyme. We show that the covalent linkage between the two target recognition domains of the specificity subunit is not required for subunit assembly or enzyme activity, and discuss the implications for the evolution of Type I enzymes.

  12. Restriction endonuclease analysis and plasmid profiling of Actinobacillus pleuropneumoniae serotype 7 strains.

    PubMed

    Wards, B J; Joyce, M A; Carman, M; Hilbink, F; deLisle, G W

    1998-01-16

    Seventeen serotype 7 Actinobacillus pleuropneumoniae strains isolated in New Zealand and A. pleuropneumoniae serotypes 1-12 reference strains were typed by restriction endonuclease analysis of chromosomal DNA and plasmid profiling. All serotype 7 strains produced similar DNA cleavage patterns and were significantly different to other reference serotype strains. Minor differences in the cleavage patterns enabled the 17 serotype 7 strains to be grouped into seven profiles. Plasmids were identified in all but three strains but the banding patterns did not account for the differences in the chromosomal profiles. The study showed that restriction endonuclease analysis and plasmid profiling are useful in epidemiological studies of porcine pleuropneumonia.

  13. Comparison of avian Chlamydia psittaci isolates by restriction endonuclease analysis and serovar-specific monoclonal antibodies.

    PubMed Central

    Andersen, A A

    1991-01-01

    Avian Chlamydia psittaci isolates were examined by restriction endonuclease analysis and serovar-specific monoclonal antibodies and compared with ovine abortion and polyarthritis isolates. The avian isolates were divided into four serovars (turkey, psittacine, pigeon, and duck) based on their reactivity to the monoclonal antibodies. The DNA digest patterns were similar across the four avian serovars; most bands were identical when the isolates were tested with PstI, BamHI, and EcoRI restriction endonuclease enzymes. The turkey group restriction endonuclease analysis patterns were distinguished from those of the other avian strains by three to four band differences with all enzymes. The duck and pigeon isolates showed only minor DNA pattern differences when compared with the psittacine isolates. Four psittacine isolates from various locations in Texas had an extra band with the EcoRI restriction enzyme, suggesting that they were from a common source; however, they were indistinguishable from the other psittacine isolates when examined with the monoclonal antibodies. The avian isolates were distinctly different from either abortion or polyarthritis isolates by both restriction endonuclease analysis and monoclonal antibody analysis. The data demonstrate that the avian isolates form a distinct group or separate biovar with at least four serovars. Images PMID:1848867

  14. Protein NCRII-18: the role of gene fusion in the molecular evolution of restriction endonucleases.

    PubMed

    Ibryashkina, Elena M; Solonin, Alexander S; Zakharova, Marina V

    2017-06-01

    This work first constructed the fusion protein NCRII-18 by fusing the restriction endonuclease Ecl18kI gene and part of the gene coding for the N-terminal domain of the endonuclease EcoRII. The fusion of the EcoRII N-terminal domain leads to a change in the properties of the recombinant protein. Unlike Ecl18kI, which made the basis of NCRII-18, the fusion protein predominantly recognizes the CCWGG sites, having lost the capability of interacting with the CCSGG sites. Experimental data support the hypothesis of a close evolutionary relationship between type IIE and IIP restriction endonucleases via a recombination between domains with active site structure and elements for recognition with domains responsible for recognition of DNA sequences. © 2017 Federation of European Biochemical Societies.

  15. BspRI restriction endonuclease: cloning, expression in Escherichia coli and sequential cleavage mechanism.

    PubMed

    Raskó, Tamás; Dér, András; Klement, Eva; Slaska-Kiss, Krystyna; Pósfai, Eszter; Medzihradszky, Katalin F; Marshak, Daniel R; Roberts, Richard J; Kiss, Antal

    2010-11-01

    The GGCC-specific restriction endonuclease BspRI is one of the few Type IIP restriction endonucleases, which were suggested to be a monomer. Amino acid sequence information obtained by Edman sequencing and mass spectrometry analysis was used to clone the gene encoding BspRI. The bspRIR gene is located adjacently to the gene of the cognate modification methyltransferase and encodes a 304 aa protein. Expression of the bspRIR gene in Escherichia coli was dependent on the replacement of the native TTG initiation codon with an ATG codon, explaining previous failures in cloning the gene using functional selection. A plasmid containing a single BspRI recognition site was used to analyze kinetically nicking and second-strand cleavage under steady-state conditions. Cleavage of the supercoiled plasmid went through a relaxed intermediate indicating sequential hydrolysis of the two strands. Results of the kinetic analysis of the first- and second-strand cleavage are consistent with cutting the double-stranded substrate site in two independent binding events. A database search identified eight putative restriction-modification systems in which the predicted endonucleases as well as the methyltransferases share high sequence similarity with the corresponding protein of the BspRI system. BspRI and the related putative restriction endonucleases belong to the PD-(D/E)XK nuclease superfamily.

  16. Recognition and cleavage of DNA by type-II restriction endonucleases.

    PubMed

    Pingoud, A; Jeltsch, A

    1997-05-15

    Restriction endonucleases are enzymes which recognize short DNA sequences and cleave the DNA in both strands. Depending on the enzymological properties different types are distinguished. Type II restriction endonucleases are homodimers which recognize short palindromic sequences 4-8 bp in length and, in the presence of Mg2+, cleave the DNA within or next to the recognition site. They are capable of non-specific binding to DNA and make use of linear diffusion to locate their target site. Binding and recognition of the specific site involves contacts to the bases of the recognition sequence and the phosphodiester backbone over approximately 10-12 bp. In general, recognition is highly redundant which explains the extreme specificity of these enzymes. Specific binding is accompanied by conformational changes over both the protein and the DNA. This mutual induced fit leads to the activation of the catalytic centers. The precise mechanism of cleavage has not yet been established for any restriction endonuclease. Currently two models are discussed: the substrate-assisted catalysis mechanism and the two-metal-ion mechanism. Structural similarities identified between EcoRI, EcoRV, BamHI, PvuII and Cfr10I suggest that many type II restriction endonucleases are not only functionally but also evolutionarily related.

  17. Problem-solving test: digestion of a plasmid with restriction endonucleases.

    PubMed

    Szeberényi, József

    2013-01-01

    Terms to be familiar with before you start to solve the test: plasmid, restriction endonuclease, agarose gel electrophoresis, ethidium bromide staining, autoradiography, Coomassie staining, Southern blotting, linear and circular DNA, superhelical DNA, exonuclease, modification methylase, palindrome, sticky and blunt ends, nicked circular DNA. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  18. Interactions between carbon nanotubes and DNA polymerase and restriction endonucleases

    NASA Astrophysics Data System (ADS)

    Yi, Changqing; Fong, Chi-Chun; Chen, Weiwei; Qi, Suijian; Tzang, Chi-Hung; Lee, Shuit-Tong; Yang, Mengsu

    2007-01-01

    Effects of multi-walled carbon nanotubes (MWCNT) and single-walled carbon nanotubes (SWCNT) functionalized with and without carboxylic groups on polymerase chain reaction (PCR) and restriction digestion reaction were investigated. The results showed that CNT can reduce and even inhibit PCR and restriction digestion reaction, possibly due to the decrease of respective enzyme activity. The inhibition effect on double restriction digestion reaction and PCR was increased in the order of CNT-COOH > pristine CNT and SWCNT> MWCNT. This study demonstrated that CNT may significantly affect the efficiency of biochemical reactions through different action mechanisms, which is critical for understanding how nanomaterials impact biological systems.

  19. Identification of genomic clonal types of Actinobacillus actinomycetemcomitans by restriction endonuclease analysis.

    PubMed Central

    Han, N; Hoover, C I; Winkler, J R; Ng, C Y; Armitage, G C

    1991-01-01

    To evaluate its utility in discriminating different strains, restriction endonuclease analysis was applied to 12 strains of Actinobacillus actinomycetemcomitans (3 serotype a, 5 serotype b, and 4 serotype c strains). DNA isolated from each strain was digested by 12 different restriction endonucleases, and the electrophoretic banding patterns of the resulting DNA fragments were compared. The DNA fragment patterns produced by SalI, XhoI, and XbaI for the 12 A. actinomycetemcomitans strains were simple (less than 30 bands) and allowed us to recognize easily 10 distinct genomic clonal types. The three serotype a strains exhibited distinctly different clonal types from one another, the five serotype b strains exhibited an additional four distinct clonal types, and the four serotype c strains showed another three different clonal types. The other endonucleases tested were less useful in typing A. actinomycetemcomitans. We conclude that restriction endonuclease analysis is a powerful tool for typing and discerning genetic heterogeneity and homogeneity among A. actinomycetemcomitans strains. It should, therefore, be very useful for epidemiologic studies. Images PMID:1761677

  20. Identification of Egyptian Fasciola species by PCR and restriction endonucleases digestion of the nuclear small subunit ribosomal RNA gene.

    PubMed

    El-Gozamy, Bothina R; Shoukry, Nahla M

    2009-08-01

    Fascioliasis is one of the familiar zoonotic health problems of worldwide distribution including Egypt. In this study, a simple and rapid polymerase chain reaction/restriction fragment length polymorphisms (PCR/RFLPs) assay, using the common restriction endonucleases Aval, EcoRI, Eael, Sac11 and Avail was applied to differentiate between both Fasciola gigantica and F. hepatica. The five restriction endonucleases were used to differentiate between the two species of Fasciola based on -1950 bp long sequence of the 18S nuclear small subunit ribosomal RNA gene. Aval and EcoRI restriction endonucleases failed to differentiate between the two Fasciola species when each restriction enzyme gave the same restriction patterns in both of them. However, F. gigantica and F. hepatica were well-differentiated when their small subunit ribosomal DNA were digested with Eael and Sac 11 restriction endonucleases.

  1. Rational engineering of type II restriction endonuclease DNA binding and cleavage specificity.

    PubMed

    Morgan, Richard D; Luyten, Yvette A

    2009-08-01

    The type II restriction endonucleases are indispensible tools for molecular biology. Although enzymes recognizing nearly 300 unique sequences are known, the ability to engineer enzymes to recognize any sequence of choice would be valuable. However, previous attempts to engineer new recognition specificity have met limited success. Here we report the rational engineering of multiple new type II specificities. We recently identified a family of MmeI-like type II endonucleases that have highly similar protein sequences but different recognition specificity. We identified the amino-acid positions within these enzymes that determine position specific DNA base recognition at three positions within their recognition sequences through correlations between their aligned amino-acid residues and aligned recognition sequences. We then altered the amino acids at the identified positions to those correlated with recognition of a desired new base to create enzymes that recognize and cut at predictable new DNA sequences. The enzymes so altered have similar levels of endonuclease activity compared to the wild-type enzymes. Using simple and predictable mutagenesis in this family it is now possible to create hundreds of unique new type II restriction endonuclease specificities. The findings suggest a simple mechanism for the evolution of new DNA specificity in Nature.

  2. Identification of a single HNH active site in type IIS restriction endonuclease Eco31I.

    PubMed

    Jakubauskas, Arturas; Giedriene, Jolanta; Bujnicki, Janusz M; Janulaitis, Arvydas

    2007-06-29

    Type IIS restriction endonuclease Eco31I is a "short-distance cutter", which cleaves DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). Previously, it has been proposed that related endonucleases recognizing a common sequence core GTCTC possess two active sites for cleavage of both strands in the DNA substrate. Here, we present bioinformatic identification and experimental evidence for a single nuclease active site. We identified a short region of homology between Eco31I and HNH nucleases, constructed a three-dimensional model of the putative catalytic domain and validated our predictions by random and site-specific mutagenesis. The restriction mechanism of Eco31I is suggested by analogy to the mechanisms of phage T4 endonuclease VII and homing endonuclease I-PpoI. We propose that residues D311 and N334 coordinate the cofactor. H312 acts as a general base-activating water molecule for the nucleophilic attack. K337 together with R340 and D345 are located in close proximity to the active center and are essential for correct folding of catalytic motif, while D345 together with R264 and D273 could be directly involved in DNA binding. We also predict that the Eco31I catalytic domain contains a putative Zn-binding site, which is essential for its structural integrity. Our results suggest that the HNH-like active site is involved in the cleavage of both strands in the DNA substrate. On the other hand, analysis of site-specific mutants in the region, previously suggested to harbor the second active site, revealed its irrelevance to the nuclease activity. Thus, our data argue against the earlier prediction and indicate the presence of a single conserved active site in type IIS restriction endonucleases that recognize common sequence core GTCTC.

  3. Restriction endonuclease AgeI is a monomer which dimerizes to cleave DNA.

    PubMed

    Tamulaitiene, Giedre; Jovaisaite, Virginija; Tamulaitis, Gintautas; Songailiene, Inga; Manakova, Elena; Zaremba, Mindaugas; Grazulis, Saulius; Xu, Shuang-Yong; Siksnys, Virginijus

    2017-04-07

    Although all Type II restriction endonucleases catalyze phosphodiester bond hydrolysis within or close to their DNA target sites, they form different oligomeric assemblies ranging from monomers, dimers, tetramers to higher order oligomers to generate a double strand break in DNA. Type IIP restriction endonuclease AgeI recognizes a palindromic sequence 5΄-A/CCGGT-3΄ and cuts it ('/' denotes the cleavage site) producing staggered DNA ends. Here, we present crystal structures of AgeI in apo and DNA-bound forms. The structure of AgeI is similar to the restriction enzymes that share in their target sites a conserved CCGG tetranucleotide and a cleavage pattern. Structure analysis and biochemical data indicate, that AgeI is a monomer in the apo-form both in the crystal and in solution, however, it binds and cleaves the palindromic target site as a dimer. DNA cleavage mechanism of AgeI is novel among Type IIP restriction endonucleases. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Relaxed circular SV40 DNA as cleavage intermediate of two restriction endonucleases.

    PubMed Central

    Ruben, G; Spielman, P; Tu, C D; Jay, E; Siegel, B; Wu, R

    1977-01-01

    We have determined the mode of cleavage of superhelical SV40 DNA (Form I) by restriction endonucleases EcoRI and HpaII at 37 degrees C. By analysis with agarose gel electrophoresis and direct examination with dark field electron microscopy, we found that a large amount of the single-nicked circular DNA (Form II) was produced before the linear SV40 DNA (Form III) appeared. Thus, both restriction enzymes cleave only one strand of the superhelical DNA first. The second cleavage on the complementary strand occurred after a lag period. The first order rate constant for the second cleavage by EcoRI endonuclease was determined and a kinetic reaction scheme for both enzymes is proposed. Images PMID:197493

  5. Role of the reactive cysteine residue in restriction endonuclease Cfr9I.

    PubMed

    Siksnys, V; Pleckaityte, M

    1992-11-20

    Chemical modification studies were performed to elucidate the role of Cys-residues in the catalysis/binding of restriction endonuclease Cfr9I. Incubation of restriction endonuclease Cfr9I with N-ethylmaleimide (NEM), iodoacetate, 5,5'-dithiobis (2-nitrobenzoic acid) at pH 7.5 led to a complete loss of the catalytic activity. However, no enzyme inactivation was detectable after modification of the enzyme with iodoacetamide and methyl methanethiosulfonate. Complete protection of the enzyme against inactivation by NEM was observed in the presence of substrate implying that Cys-residues may be located at or in the vicinity of the active site of enzyme. Direct substrate-binding studies of native and modified restriction endonuclease Cfr9I using a gel-mobility shift assay indicated that the modification of the enzyme by NEM was hindered by substrate binding. A single Cys-residue was modified during the titration of the enzyme with DTNB with concomitant loss of the catalytic activity. The pH-dependence of inactivation of Cfr9I by NEM revealed the modification of the residue with the pKa value of 8.9 +/- 0.2. The dependence of the reaction rate of substrate hydrolysis by Cfr9I versus pH revealed two essential residues with pKa values of 6.3 +/- 0.15 and 8.7 +/- 0.15, respectively. The evidence presented suggests that the restriction endonuclease Cfr9I contains a reactive sulfhydryl residue which is non-essential for catalysis, but is located at or near the substrate binding site.

  6. A thermostable, sequence-specific restriction endonuclease from Bacillus stearothermophilus: BstPI.

    PubMed Central

    Pugatsch, T; Weber, H

    1979-01-01

    A restriction endonuclease, BstPI, was purified from a strain of B. stearothermophilus, and its cleavage specificity was determined. The enzyme cleaves at palindromic sites of the general structure: (Formula: see text) where N.N' can be any base pair. It produces phosphorylated 5'-termini which are single stranded over a length of 5 nucleotides. Ends generated by cleavage with BstPI can be rejoined by DNA ligase. Images PMID:503858

  7. Characterization of the Type III restriction endonuclease PstII from Providencia stuartii.

    PubMed

    Sears, Alice; Peakman, Luke J; Wilson, Geoffrey G; Szczelkun, Mark D

    2005-01-01

    A new Type III restriction endonuclease designated PstII has been purified from Providencia stuartii. PstII recognizes the hexanucleotide sequence 5'-CTGATG(N)(25-26/27-28)-3'. Endonuclease activity requires a substrate with two copies of the recognition site in head-to-head repeat and is dependent on a low level of ATP hydrolysis ( approximately 40 ATP/site/min). Cleavage occurs at just one of the two sites and results in a staggered cut 25-26 nt downstream of the top strand sequence to generate a two base 5'-protruding end. Methylation of the site occurs on one strand only at the first adenine of 5'-CATCAG-3'. Therefore, PstII has characteristic Type III restriction enzyme activity as exemplified by EcoPI or EcoP15I. Moreover, sequence asymmetry of the PstII recognition site in the T7 genome acts as an historical imprint of Type III restriction activity in vivo. In contrast to other Type I and III enzymes, PstII has a more relaxed nucleotide specificity and can cut DNA with GTP and CTP (but not UTP). We also demonstrate that PstII and EcoP15I cannot interact and cleave a DNA substrate suggesting that Type III enzymes must make specific protein-protein contacts to activate endonuclease activity.

  8. Structure and mutagenesis of the DNA modification-dependent restriction endonuclease AspBHI.

    PubMed

    Horton, John R; Nugent, Rebecca L; Li, Andrew; Mabuchi, Megumu Yamada; Fomenkov, Alexey; Cohen-Karni, Devora; Griggs, Rose M; Zhang, Xing; Wilson, Geoffrey G; Zheng, Yu; Xu, Shuang-yong; Cheng, Xiaodong

    2014-03-07

    The modification-dependent restriction endonuclease AspBHI recognizes 5-methylcytosine (5mC) in the double-strand DNA sequence context of (C/T)(C/G)(5mC)N(C/G) (N = any nucleotide) and cleaves the two strands a fixed distance (N12/N16) 3' to the modified cytosine. We determined the crystal structure of the homo-tetrameric AspBHI. Each subunit of the protein comprises two domains: an N-terminal DNA-recognition domain and a C-terminal DNA cleavage domain. The N-terminal domain is structurally similar to the eukaryotic SET and RING-associated (SRA) domain, which is known to bind to a hemi-methylated CpG dinucleotide. The C-terminal domain is structurally similar to classic Type II restriction enzymes and contains the endonuclease catalytic-site motif of DX20EAK. To understand how specific amino acids affect AspBHI recognition preference, we generated a homology model of the AspBHI-DNA complex, and probed the importance of individual amino acids by mutagenesis. Ser41 and Arg42 are predicted to be located in the DNA minor groove 5' to the modified cytosine. Substitution of Ser41 with alanine (S41A) and cysteine (S41C) resulted in mutants with altered cleavage activity. All 19 Arg42 variants resulted in loss of endonuclease activity.

  9. On the role of steric clashes in methylation control of restriction endonuclease activity

    PubMed Central

    Mierzejewska, Karolina; Bochtler, Matthias; Czapinska, Honorata

    2016-01-01

    Restriction-modification systems digest non-methylated invading DNA, while protecting host DNA against the endonuclease activity by methylation. It is widely believed that the methylated DNA would not ‘fit’ into the binding site of the endonuclease in the productive orientation, and thus steric clashes should account for most of the protection. We test this concept statistically by grafting methyl groups in silico onto non-methylated DNA in co-crystal structures with restriction endonucleases. Clash scores are significantly higher for protective than non-protective methylation (P < 0.05% according to the Wilcoxon rank sum test). Structural data alone are sufficient to distinguish between protective and non-protective DNA methylation with 90% confidence and decision thresholds of 1.1 Å and 48 Å3 for the most severe distance-based and cumulative volume-based clash with the protein, respectively (0.1 Å was deducted from each interatomic distance to allow for coordinate errors). The most severe clashes are more pronounced for protective methyl groups attached to the nitrogen atoms (N6-methyladenines and N4-methylcytosines) than for C5-methyl groups on cytosines. Cumulative clashes are comparable for all three types of protective methylation. PMID:26635397

  10. DNA electrochemical sensor for detection of PRSS1 point mutation based on restriction endonuclease technique.

    PubMed

    Qicai, Liu; Qiang, Yi; Wennan, Wu; Yu, Wang; Liqing, Lin; Chengfei, Zhao; Xinhua, Lin

    2015-01-01

    To construct a restriction endonuclease based biosensor technology for PRSS1 genotyping. We designed a thiol-modified hairpin probe where the neck has EcoRI endonuclease recognition sites according to the PRSS1 gene c.410 C>T (p.T137 M) mutation and it was fixed on the gold electrode. Different charge generated by the binding of MB to phosphate groups of DNA before and after hybridization was used for distinguishing the different genotypes and quantity. This showed that the novel sensor can better distinguish the complementary sequence, single-base mismatches, and completely noncomplementary sequences, and the linear range for the logarithm was Y=-0.0242 X+0.1574, R=0.9912(Y=current, X=log target DNA concentration); the detection limit for DNA detection is estimated to be 50 fM.

  11. Purification of Restriction Endonuclease EcoRII and its Co-Crystallization

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Chen, L.; Meehan, E.; Pusey, M.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Restriction endonuclease EcoRII (EcoRII) is a homodimeric DNA-binding protein. It belongs to the type II family of restriction-modification enzymes (subclass IIe). EcoRII recognizes the nucleotide sequence 5'-CCWGG (W=A or T) and cleaves the phosphodiester bond preceding the first cytosine. Methylation at C5 of the second cytosine inhibits cleavage. The enzyme has a unique ability to search for the presence of two substrate sites before cleavage. To the best of our knowledge no other subclass IIe restriction endonuclease has been crystallized yet, without or with a DNA-substrate. We have recently grown and characterized the crystals of this enzyme (1) Here we report on the result of co-crystallization experiments of EcoRII with an 11 b.p. oligonucleotide substrate. The dissociation constant (Kd) EcoRII: 11 b.p. was determined earlier (unpublished results). The needle-like crystals of oligonucleotide-EcoRII protein complex were obtained with this substrate by the technique of vapor diffusion hanging drops. The crystals obtained were washed and dissolved in an aliquot of 10 mM Tris-HCl buffer, pH=7.5. Running a portion of this solution on the SDS-get indicated the presence of endonuclease in the solution. A UV-spectrophotometric test of a second portion confirmed the presence of DNA. We are now working on improvement of the DNA-EcoRII protein crystals. Results obtained from these and ongoing efforts will be reported.

  12. Metal ion dependence of DNA cleavage by SepMI and EhoI restriction endonucleases.

    PubMed

    Belkebir, Abdelkarim; Azeddoug, Houssine

    2013-02-22

    Most of type II restriction endonucleases show an absolute requirement for divalent metal ions as cofactors for DNA cleavage. While Mg(2+) is the natural cofactor other metal ions can substitute it and mediate the catalysis, however Ca(2+) (alone) only supports DNA binding. To investigate the role of Mg(2+) in DNA cleavage by restriction endonucleases, we have studied the Mg(2+) and Mn(2+) concentration dependence of DNA cleavage by SepMI and EhoI. Digestion reactions were carried out at different Mg(2+) and Mn(2+) concentrations at constant ionic strength. These enzymes showed different behavior regarding the ions requirement, SepMI reached near maximal level of activity between 10 and 20mM while no activity was detected in the presence of Mn(2+) and in the presence of Ca(2+) cleavage activity was significantly decreased. However, EhoI was more highly active in the presence of Mn(2+) than in the presence of Mg(2+) and can be activated by Ca(2+). Our results propose the two-metal ion mechanism for EhoI and the one-metal ion mechanism for SepMI restriction endonuclease. The analysis of the kinetic parameters under steady state conditions showed that SepMI had a K(m) value for pTrcHisB DNA of 6.15 nM and a V(max) of 1.79×10(-2)nM min(-1), while EhoI had a K(m) for pUC19 plasmid of 8.66 nM and a V(max) of 2×10(-2)nM min(-1). Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. [Hepatitis c virus genotype research by ABC programs of 5'-NCR restriction endonuclease digestion].

    PubMed

    Qiu, Guo-hua; Du, Shao-cai; Sun, Nan-xiong; You, Peng; Fan, Xiao-feng; Zhang, Yong-xiang; Wei, Lai

    2004-04-01

    In order to fully understand hepatitis c virus (HCV) genotype 3b, 1a, 2b and 6a infection in China, We built HCV 5'-noncoding region (5'-NCR) of different genotypes and subtypes. The classification HCV into variable genotypes (subtypes) was carried on by programs A, B and C A. Using a combination of three restriction endonuclease BHH' (BsrB I, Hae II, Hinf I) digestions at the same time. The distinct genotypes were classified into 5 groups: genotype 1 (1a, 1b), 6a, 2 (2a, 2b), genotype 3 (3a, 3b), genotype4 (4a). B. With regard to genotype 1, we could distinguish subtype 1a from 1b using BstU I digestion. C. Using restriction endonuclease Hae III, genotype 2a, 2b, 3b, 4a, 6a are differentiated respectively. (1) HCV genotype 1a, 1b, 2a, 2b, 3a, 3b, 4a, 6a are fully discriminated by comparison with the genotypes regular samples. (2) Of the 93 patients, HCV genotype distribution in China was 66.67% for 1b, 18.28% for 2a, 3.23% for 1b/2b, 3b, 2b respectively. 2.15% for 2a/2b, 1b/2a respectively. 1.08% for 1a. This research indicated that adoption of HCV 5'-NCR A B C restriction endonuclease digestions techniques, might be sensitive and efficient to detect HCV and discriminate HCV genotype (subtypes) 1a to 6a.

  14. Restriction endonuclease analysis of a porcine isolate of bovine herpesvirus type 1.

    PubMed Central

    Várady, E; Tuboly, T; Derbyshire, J B

    1994-01-01

    Deoxyribonucleic acid (DNA) was extracted from bovine herpesvirus type 1 (BHV-1) isolated from a stillborn porcine fetus, from the Cooper reference strain of BHV-1, and from an Ontario bovine respiratory isolate. Each DNA was digested with the restriction endonucleases HindIII, EcoRI, HpaI and BamHI. Except for very minor differences in the patterns produced after digestion with EcoRI and HindIII, the DNA of the porcine isolate reacted in a similar manner to the bovine viruses, and it was concluded that the porcine virus is genetically similar to bovine isolates of BHV-1. Images Fig. 1. PMID:8143256

  15. Protection of particular cleavage sites of restriction endonucleases by distamycin A and actinomycin D.

    PubMed Central

    Nosikov, V V; Braga, E A; Karlishev, A V; Zhuze, A L; Polyanovsky, O L

    1976-01-01

    It is shown here that distamycin A and actinomycin D can protect the recognition sites of endo R.EcoRI, EcoRII, HindII, HindIII, HpaI and HpaII from the attack of these restriction endonucleases. At proper distamycin concentrations only two endo R.EcoRI sites of phage lambda DNA are available for the restriction enzyme--sRI1 and sRI4. This phenomenon results in the appearance of larger DNA fragments comprising several consecutive fragments of endo R.EcoRI complete cleavage. The distamycin fragments isolated from the agarose gels can be subsequently cleaved by endo R.EcoRI with the yield of the fragments of complete digestion. We have compared the effect of distamycin A and actinomycin D on a number of restriction endonucleases having different nucleotide sequences in the recognition sites and established that antibiotic action depends on the nucleotide sequences of the recognition sites and their closest environment Images PMID:967694

  16. Restriction of a bacteriophage of Streptomyces albus G involving endonuclease SalI.

    PubMed Central

    Chater, K F; Wilde, L C

    1976-01-01

    The bacteriophage Pa16, isolated from soil on Streptomyces albus G, was restricted when transferred from an alternative host back to S. albus G. Extracted unmodified Pa16 deoxyribonucleic acid was cleaved at a single site by a cell-free extract of S. albus G. Fractions cleaving Pal6 deoxyribonucleic acid contained the endonuclease SalI first described by J. Arrand, P. Myers, and R. J. Roberts (unpublished data). A mutant of S. albus G was isolated which was defective in both restriction and modification of Pal6. This mutant lacked SalI activity. It is concluded that SalI is the agent of restriction of Pal6 by S. albus G. Images PMID:977549

  17. Naturally-occurring, dually-functional fusions between restriction endonucleases and regulatory proteins.

    PubMed

    Liang, Jixiao; Blumenthal, Robert M

    2013-10-02

    Restriction-modification (RM) systems appear to play key roles in modulating gene flow among bacteria and archaea. Because the restriction endonuclease (REase) is potentially lethal to unmethylated new host cells, regulation to ensure pre-expression of the protective DNA methyltransferase (MTase) is essential to the spread of RM genes. This is particularly true for Type IIP RM systems, in which the REase and MTase are separate, independently-active proteins. A substantial subset of Type IIP RM systems are controlled by an activator-repressor called C protein. In these systems, C controls the promoter for its own gene, and for the downstream REase gene that lacks its own promoter. Thus MTase is expressed immediately after the RM genes enter a new cell, while expression of REase is delayed until sufficient C protein accumulates. To study the variation in and evolution of this regulatory mechanism, we searched for RM systems closely related to the well-studied C protein-dependent PvuII RM system. Unexpectedly, among those found were several in which the C protein and REase genes were fused. The gene for CR.NsoJS138I fusion protein (nsoJS138ICR, from the bacterium Niabella soli) was cloned, and the fusion protein produced and partially purified. Western blots provided no evidence that, under the conditions tested, anything other than full-length fusion protein is produced. This protein had REase activity in vitro and, as expected from the sequence similarity, its specificity was indistinguishable from that for PvuII REase, though the optimal reaction conditions were different. Furthermore, the fusion was active as a C protein, as revealed by in vivo activation of a lacZ reporter fusion to the promoter region for the nsoJS138ICR gene. Fusions between C proteins and REases have not previously been characterized, though other fusions have (such as between REases and MTases). These results reinforce the evidence for impressive modularity among RM system proteins, and raise

  18. Domain organization and functional analysis of type IIS restriction endonuclease Eco31I.

    PubMed

    Jakubauskas, Arturas; Sasnauskas, Giedrius; Giedriene, Jolanta; Janulaitis, Arvydas

    2008-08-19

    Type IIS restriction endonuclease Eco31I harbors a single HNH active site and cleaves both DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). A two-domain organization of Eco31I was determined by limited proteolysis. Analysis of proteolytic fragments revealed that the N-terminal domain of Eco31I is responsible for the specific DNA binding, while the C-terminal domain contains the HNH nuclease-like active site. Gel-shift and gel-filtration experiments revealed that a monomer of the N-terminal domain of Eco31I is able to bind a single copy of cognate DNA. However, in contrast to other studied type IIS enzymes, the isolated catalytic domain of Eco31I was inactive. Steady-state and transient kinetic analysis of Eco31I reactions was inconsistent with dimerization of Eco31I on DNA. Thus, we propose that Eco31I interacts with individual copies of its recognition sequence in its monomeric form and presumably remains a monomer as it cleaves both strands of double-stranded DNA. The domain organization and reaction mechanism established for Eco31I should be common for a group of evolutionary related type IIS restriction endonucleases Alw26I, BsaI, BsmAI, BsmBI and Esp3I that recognize DNA sequences bearing the common pentanucleotide 5'-GTCTC.

  19. Reactions of BglI and other type II restriction endonucleases with discontinuous recognition sites.

    PubMed

    Gormley, N A; Bath, A J; Halford, S E

    2000-03-10

    Type II restriction enzymes generally recognize continuous sequences of 4-8 consecutive base pairs on DNA, but some recognize discontinuous sites where the specified sequence is interrupted by a defined length of nonspecific DNA. To date, a mechanism has been established for only one type II endonuclease with a discontinuous site, SfiI at GGCCNNNNNGGCC (where N is any base). In contrast to orthodox enzymes such as EcoRV, dimeric proteins that act at a single site, SfiI is a tetramer that interacts with two sites before cleaving DNA. BglI has a similar recognition sequence (GCCNNNNNGGC) to SfiI but a crystal structure like EcoRV. BglI and several other endonucleases with discontinuous sites were examined to see if they need two sites for their DNA cleavage reactions. The enzymes included some with sites containing lengthy segments of nonspecific DNA, such as XcmI (CCANNNNNNNNNTGG). In all cases, they acted at individual sites. Elongated recognition sites do not necessitate unusual reaction mechanisms. Other experiments on BglI showed that it bound to and cleaved DNA in the same manner as EcoRV, thus further delineating a distinct group of restriction enzymes with similar structures and a common reaction mechanism.

  20. Unusual target site disruption by the rare-cutting HNH restriction endonuclease PacI.

    PubMed

    Shen, Betty W; Heiter, Daniel F; Chan, Siu-Hong; Wang, Hua; Xu, Shuang-Yong; Morgan, Richard D; Wilson, Geoffrey G; Stoddard, Barry L

    2010-06-09

    The crystal structure of the rare-cutting HNH restriction endonuclease PacI in complex with its eight-base-pair target recognition sequence 5'-TTAATTAA-3' has been determined to 1.9 A resolution. The enzyme forms an extended homodimer, with each subunit containing two zinc-bound motifs surrounding a betabetaalpha-metal catalytic site. The latter is unusual in that a tyrosine residue likely initiates strand cleavage. PacI dramatically distorts its target sequence from Watson-Crick duplex DNA base pairing, with every base separated from its original partner. Two bases on each strand are unpaired, four are engaged in noncanonical A:A and T:T base pairs, and the remaining two bases are matched with new Watson-Crick partners. This represents a highly unusual DNA binding mechanism for a restriction endonuclease, and implies that initial recognition of the target site might involve significantly different contacts from those visualized in the DNA-bound cocrystal structures.

  1. Atypical myxomatosis--virus isolation, experimental infection of rabbits and restriction endonuclease analysis of the isolate.

    PubMed

    Psikal, I; Smíd, B; Rodák, L; Valícek, L; Bendová, J

    2003-08-01

    Atypical form of myxomatosis, which caused non-lethal and clinically mild disease in domestic rabbits 1 month after immunization with a commercially available vaccine MXT, is described. The isolated myxoma virus designated as Litovel 2 (Li-2) did not induce systemic disease following subcutaneous and intradermal applications in susceptible experimental rabbits but led to the immune response demonstrated by ELISA. No severe disease was induced in those Li-2 inoculated rabbits by challenge with the virulent strains Lausanne (Lu) or Sanar (SA), while the control animals showed nodular form of myxomatosis with lethal course of the illness. Restriction fragment length polymorphism (RFLP) of genomic DNA with KpnI and BamHI endonucleases was used for genetic characterization of the Li-2 isolate, the vaccine strain MXT and both virulent strains Lu and SA, respectively. In general, RFLP analysis has shown to be informative for inferring genetic relatedness between myxoma viruses. Based on restriction endonuclease DNA fragment size distribution, it was evident that the pathogenic strain SA is genetically related to the reference strain Lu and the isolate Li-2 is more related, but not identical, to the vaccination strain MXT.

  2. Two new restriction endonucleases DraII and DraIII from Deinococcus radiophilus.

    PubMed Central

    Grosskopf, R; Wolf, W; Kessler, C

    1985-01-01

    In addition to recently characterized DraI (1), two new Type II restriction endonucleases, DraII and DraIII, with novel site-specificities were isolated and purified from Deinococcus radiophilus ATCC 27603. DraII and DraIII recognize the hepta- and nonanucleotide sequences (sequence in text) The cleavage sites within both strands are indicated by arrows. The recognition sequences were established by mapping of the cleavage sites on pBR322 (DraII) and fd109 RF DNA (DraIII). The sequence specifities were confirmed by computer-assisted restriction analyses of the generated fragment patterns of the sequenced DNA's of the bacteriophages lambda, phi X174 RF, M13mp8 RF and fd109 RF, the viruses Adeno2 and SV40, and the plasmids pBR322 and pBR328. The cleavage positions within the recognition sequences were determined by sequencing experiments. Images PMID:2987827

  3. Structure of the cauliflower mosaic virus genome. III. Restriction endonuclease mapping of thirty-three isolates.

    PubMed

    Hull, R

    1980-01-15

    The sites of various restriction endonucleases were mapped on the DNA of cauliflower mosaic virus isolate Cabb B-JI.FspAI,HgiAI,HhaI, andXhoI each cut at one site,PstI andPvuII each at two sites,BglII at five sites, andHindIII at nine sites;SacP,SmaI, andXbaI did not cut this DNA. These sites and those ofBamHI,EcoRI, andSalGI were compared with the sites of these enzymes on the DNAs of 32 other CaMV isolates. Considerable variations were found both in numbers and map positions of the sites of the restriction enzymes. The significance of this variation is discussed.

  4. Purification, crystallization, X-ray diffraction analysis and phasing of an engineered single-chain PvuII restriction endonuclease

    SciTech Connect

    Meramveliotaki, Chrysi; Kotsifaki, Dina; Androulaki, Maria; Hountas, Athanasios; Eliopoulos, Elias; Kokkinidis, Michael

    2007-10-01

    PvuII is the first type II restriction endonuclease to be converted from its wild-type homodimeric form into an enzymatically active single-chain variant. The enzyme was crystallized and phasing was successfully performed by molecular replacement. The restriction endonuclease PvuII from Proteus vulgaris has been converted from its wild-type homodimeric form into the enzymatically active single-chain variant scPvuII by tandemly joining the two subunits through the peptide linker Gly-Ser-Gly-Gly. scPvuII, which is suitable for the development of programmed restriction endonucleases for highly specific DNA cleavage, was purified and crystallized. The crystals diffract to a resolution of 2.35 Å and belong to space group P4{sub 2}, with unit-cell parameters a = b = 101.92, c = 100.28 Å and two molecules per asymmetric unit. Phasing was successfully performed by molecular replacement.

  5. Affinity partitioning of restriction endonucleases. Application to the purification of EcoR I and EcoR V.

    PubMed

    Vlatakis, G; Bouriotis, V

    1991-02-01

    Partitioning of restriction endonucleases between two liquid aqueous phases can be strongly influenced by group-specific ligands included in the two-phase system. Three restriction endonucleases, namely EcoR I, EcoR V and BamH I, were partitioned within an aqueous dextran-polyethylene glycol (PEG) system. The enzymes could be extracted into the upper PEG phase by using either triazine dyes or herring DNA as affinity ligands. The influence of the endogenous bacterial nucleic acids, concentration of polymerbound dye and concentration of sodium chloride on the system were examined. A partial purification of EcoR I (up to 52-fold) and EcoR V (up to 37-fold) was achieved using a combination of affinity partitioning and ion-exchange chromatography, providing an extremely fast and economical method for the isolation of restriction endonucleases free from contaminating nuclease activities.

  6. Probing the two-metal ion mechanism in the restriction endonuclease BamHI.

    PubMed

    Mones, Letif; Kulhánek, Petr; Florián, Jan; Simon, István; Fuxreiter, Monika

    2007-12-18

    The choreography of restriction endonuclease catalysis is a long-standing paradigm in molecular biology. Bivalent metal ions are required almost for all PD..D/ExK type enzymes, but the number of cofactors essential for the DNA backbone scission remained ambiguous. On the basis of crystal structures and biochemical data for various restriction enzymes, three models have been developed that assign critical roles for one, two, or three metal ions during the phosphodiester hydrolysis. To resolve this apparent controversy, we investigated the mechanism of BamHI catalysis using quantum mechanical/molecular mechanical simulation techniques and determined the activation barriers of three possible pathways that involve a Glu-113 or a neighboring water molecule as a general base or an external nucleophile that penetrated from bulk solution. The extrinsic mechanism was found to be the most favorable with an activation free energy of 23.4 kcal/mol, in reasonable agreement with the experimental data. On the basis of the effect of the individual metal ions on the activation barrier, metal ion A was concluded to be pivotal for the reaction, while the enzyme lacking metal ion B still has moderate efficiency. Thus, we propose that the catalytic scheme of BamHI does not involve a general base for nucleophile generation and requires one obligatory metal ion for catalysis that stabilizes the attacking nucleophile and coordinates it throughout the nucleophilic attack. Such a model may also explain the variation in the number of metal ions in the crystal structures and thus could serve as a framework for a unified catalytic scheme of type II restriction endonucleases.

  7. Use of low-frequency-cleavage restriction endonucleases for DNA analysis in epidemiological investigations of nosocomial bacterial infections.

    PubMed

    Allardet-Servent, A; Bouziges, N; Carles-Nurit, M J; Bourg, G; Gouby, A; Ramuz, M

    1989-09-01

    Epidemiological investigations of bacterial infections are generally based on multiple phenotypic markers that are often difficult to verify. A more general and reliable method is genomic DNA analysis by restriction endonucleases. However, the commonly used endonucleases produce too many fragments for correct separation by agarose electrophoresis. In contrast, simple electrophoretic patterns are obtained after genomic DNA digestion by low-frequency-cleavage restriction endonucleases and pulsed-field gel electrophoresis, making it easier to compare numerous strains from the same species. This technique was used to investigate an Acinetobacter calcoaceticus outbreak in a urologic department and bronchial colonization of artificially ventilated patients by Pseudomonas aeruginosa in an intensive care unit. The method allowed a clear distinction between epidemic and self-contaminating strains in these different epidemiological situations.

  8. Cleavage of DNA containing 5-fluorocytosine or 5-fluorouracil by type II restriction endonucleases.

    PubMed

    Olszewska, Agata; Dadová, Jitka; Mačková, Michaela; Hocek, Michal

    2015-11-01

    A systematic study of the cleavage of DNA sequences containing 5-fluorocytosine or 5-fluorouracil by type II restriction endonucleases (REs) was performed and the results compared with the same sequences containing natural pyrimidine bases, uracil or 5-methylcytosine. The results show that some REs recognize fluorine as a hydrogen on cytosine and cleave the corresponding sequences where the presence of m5dC leads to blocking of the cleavage. However, on uracil, the same REs recognize the F as a methyl surrogate and cleave the sequences which are not cleaved if uracil is incorporated instead of thymine. These results are interesting for understanding the recognition of DNA sequences by REs and for manipulation of the specific DNA cutting.

  9. Restriction endonuclease SsoII with photoregulated activity--a "molecular gate" approach.

    PubMed

    Hien, Le Thi; Zatsepin, Timofei S; Schierling, Benno; Volkov, Eugene M; Wende, Wolfgang; Pingoud, Alfred; Kubareva, Elena A; Oretskaya, Tatiana S

    2011-07-20

    A novel method for regulating the activity of homodimeric proteins--"molecular gate" approach--was proposed and its usefulness illustrated for the type II restriction endonuclease SsoII (R.SsoII) as a model. The "molecular gate" approach is based on the modification of R.SsoII with azobenzene derivatives, which allows regulating DNA binding and cleavage via illumination with light. R.SsoII variants with single cysteine residues introduced at selected positions were obtained and modified with maleimidoazobenzene derivatives. A twofold change in the enzymatic activity after illumination with light of wavelengths of 365 and 470 nm, respectively, was demonstrated when one or two molecules of azobenzene derivatives were attached to the R.SsoII at the entrance of or within the DNA-binding site.

  10. Study of the fine structure of adeno-associated virus DNA with bacterial restriction endonucleases.

    PubMed Central

    Berns, K I; Kort, J; Fife, K H; Grogan, E W; Spear, I

    1975-01-01

    A physical map of the adeno-associated virus type 2 genome has been constructed on the basis of the five fragments produced by the restriction endonucleases HindII + III from Hemophilus influenzae. There are three endo R-HindII cleavage sites and one endo R-HindIII site. Evidence has been obtained to support the existence of two nucleotide sequence permutations in adeno-associated virus DNA, the start points of which have been estimated to be separated by 1% of the genome. The three cleavage fragments produced by endo R-Eco RI have been ordered and oriented with respect to the endo R-HindII + III cleavage map. Images PMID:1159899

  11. Structures of restriction endonuclease HindIII in complex with its cognate DNA and divalent cations.

    PubMed

    Watanabe, Nobuhisa; Takasaki, Yozo; Sato, Chika; Ando, Shoji; Tanaka, Isao

    2009-12-01

    The three-dimensional crystal structures of HindIII bound to its cognate DNA with and without divalent cations were solved at 2.17 and 2.00 A resolution, respectively. HindIII forms a dimer. The structures showed that HindIII belongs to the EcoRI-like (alpha-class) subfamily of type II restriction endonucleases. The cognate DNA-complex structures revealed the specific DNA-recognition mechanism of HindIII by which it recognizes the palindromic sequence A/AGCTT. In the Mg(2+) ion-soaked structure the DNA was cleaved and two ions were bound at each active site, corresponding to the two-metal-ion mechanism.

  12. Structural, functional, and evolutionary relationships between lambda-exonuclease and the type II restriction endonucleases.

    PubMed

    Kovall, R A; Matthews, B W

    1998-07-07

    lambda-exonuclease participates in DNA recombination and repair. It binds a free end of double-stranded DNA and degrades one strand in the 5' to 3' direction. The primary sequence does not appear to be related to any other protein, but the crystal structure shows part of lambda-exonuclease to be similar to the type II restriction endonucleases PvuII and EcoRV. There is also a weaker correspondence with EcoRI, BamHI, and Cfr10I. The structure comparisons not only suggest that these enzymes all share a similar catalytic mechanism and a common structural ancestor but also provide strong evidence that the toroidal structure of lambda-exonuclease encircles its DNA substrate during hydrolysis.

  13. Restriction endonuclease fingerprinting of genomic DNA of Staphylococcus species of bovine origin.

    PubMed Central

    Matthews, K. R.; Jayarao, B. M.; Oliver, S. P.

    1992-01-01

    Fifty-one staphylococcal isolates from mammary secretions of cows with subclinical mastitis were examined by antibiograms and DNA restriction endonuclease fingerprinting (REF). DNA REF differentiated closely related strains of each species isolated from mammary secretions of different mammary glands of the same cow and from the same mammary gland at different periods of the lactation cycle. In addition, REF analysis provided evidence concerning persistence of infection in the same or different mammary gland over different periods of the lactation cycle, and occurrence of infection with similar and dissimilar strains of each Staphylococcus species. Antibiograms were of limited value in differentiating closely related strains. The ease by which REF analysis can be performed together with the reproducibility and clarity of REF patterns suggest that this technique is useful for differentiating closely related and unrelated strains of Staphylococcus species isolated from bovine mammary secretions. Images Fig. 1 PMID:1499673

  14. A quantitative study of optical mapping surfaces by atomic force microscopy and restriction endonuclease digestion assays.

    PubMed

    Reed, J; Singer, E; Kresbach, G; Schwartz, D C

    1998-05-15

    Many new techniques in biomolecular chemistry and genomic analysis require the immobilization of molecular reagents on specially prepared surfaces. However, the process of molecular fixation often interferes with or precludes the use of standard in vitro biochemical assays. Optical mapping is an emergent technology for genomic analysis which relies on the biochemical activity of DNA fixed to silanized glass surfaces. Optical mapping surfaces have been shown to be compatible with restriction endonucleases and a variety of DNA polymerases. The essential properties of biochemically active surfaces are poorly understood in most of the current technologies which utilize molecular fixation, including optical mapping. The purpose of this study is to use the powerful technique of atomic force microscopy, in combination with informative enzymatic assays, to correlate biochemical activity with microscopic surface structure. The results presented provide meaningful insight into the effect of surface preparation on the biochemical accessibility of surface-bound molecules. Novel analysis which may facilitate the automation of optical mapping is presented.

  15. CgII cleaves DNA using a mechanism distinct from other ATP-dependent restriction endonucleases.

    PubMed

    Toliusis, Paulius; Zaremba, Mindaugas; Silanskas, Arunas; Szczelkun, Mark D; Siksnys, Virginijus

    2017-08-21

    The restriction endonuclease CglI from Corynebacterium glutamicum recognizes an asymmetric 5'-GCCGC-3' site and cleaves the DNA 7 and 6/7 nucleotides downstream on the top and bottom DNA strands, respectively, in an NTP-hydrolysis dependent reaction. CglI is composed of two different proteins: an endonuclease (R.CglI) and a DEAD-family helicase-like ATPase (H.CglI). These subunits form a heterotetrameric complex with R2H2 stoichiometry. However, the R2H2·CglI complex has only one nuclease active site sufficient to cut one DNA strand suggesting that two complexes are required to introduce a double strand break. Here, we report studies to evaluate the DNA cleavage mechanism of CglI. Using one- and two-site circular DNA substrates we show that CglI does not require two sites on the same DNA for optimal catalytic activity. However, one-site linear DNA is a poor substrate, supporting a mechanism where CglI complexes must communicate along the one-dimensional DNA contour before cleavage is activated. Based on experimental data, we propose that adenosine triphosphate (ATP) hydrolysis by CglI produces translocation on DNA preferentially in a downstream direction from the target, although upstream translocation is also possible. Our results are consistent with a mechanism of CglI action that is distinct from that of other ATP-dependent restriction-modification enzymes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Enzymatic Cleavage of Type II Restriction Endonucleases on the 2′-O-Methyl Nucleotide and Phosphorothioate Substituted DNA

    PubMed Central

    Zhao, Guojie; Li, Jun; Tong, Zhaoxue; Zhao, Bin; Mu, Runqing; Guan, Yifu

    2013-01-01

    The effects of nucleotide analogue substitution on the cleavage efficiencies of type II restriction endonucleases have been investigated. Six restriction endonucleases (EcoRV, SpeI, XbaI, XhoI, PstI and SphI) were investigated respectively regarding their cleavage when substrates were substituted by 2′-O-methyl nucleotide (2′-OMeN) and phosphorothioate (PS). Substitutions were made in the recognition sequence and the two nucleotides flanking the recognition sequence for each endonuclease. The endonuclease cleavage efficiencies were determined using FRET-based assay. Results demonstrated a position-dependent inhibitory effect of substitution on the cleavage efficiency for all the six endonucleases. In general, the 2′-OMeN substitutions had greater impact than the PS substitutions on the enzymatic activities. Nucleotides of optimal substitutions for protection against RE cleavage were identified. Experimental results and conclusions in this study facilitate our insight into the DNA-protein interactions and the enzymatic cleavage mechanism, particularly for those whose detailed structure information is not available. In addition, the information could benefit the development of bioengineering and synthetic biology. PMID:24260216

  17. Enzymatic cleavage of type II restriction endonucleases on the 2'-O-methyl nucleotide and phosphorothioate substituted DNA.

    PubMed

    Zhao, Guojie; Li, Jun; Tong, Zhaoxue; Zhao, Bin; Mu, Runqing; Guan, Yifu

    2013-01-01

    The effects of nucleotide analogue substitution on the cleavage efficiencies of type II restriction endonucleases have been investigated. Six restriction endonucleases (EcoRV, SpeI, XbaI, XhoI, PstI and SphI) were investigated respectively regarding their cleavage when substrates were substituted by 2'-O-methyl nucleotide (2'-OMeN) and phosphorothioate (PS). Substitutions were made in the recognition sequence and the two nucleotides flanking the recognition sequence for each endonuclease. The endonuclease cleavage efficiencies were determined using FRET-based assay. Results demonstrated a position-dependent inhibitory effect of substitution on the cleavage efficiency for all the six endonucleases. In general, the 2'-OMeN substitutions had greater impact than the PS substitutions on the enzymatic activities. Nucleotides of optimal substitutions for protection against RE cleavage were identified. Experimental results and conclusions in this study facilitate our insight into the DNA-protein interactions and the enzymatic cleavage mechanism, particularly for those whose detailed structure information is not available. In addition, the information could benefit the development of bioengineering and synthetic biology.

  18. An electrochemical DNA biosensor based on the "Y" junction structure and restriction endonuclease-aided target recycling strategy.

    PubMed

    Wang, Qing; Yang, Lijuan; Yang, Xiaohai; Wang, Kemin; He, Leiliang; Zhu, Jinqing; Su, Tianyuan

    2012-03-21

    Based on the "Y" junction structure and restriction endonuclease-aided target recycling strategy, an electrochemical biosensor for DNA detection was developed. This universal biosensor was suitable for detecting different sequences of target DNA by changing the sequence of capture and assistant strands.

  19. Three new restriction endonucleases MaeI, MaeII and MaeIII from Methanococcus aeolicus.

    PubMed Central

    Schmid, K; Thomm, M; Laminet, A; Laue, F G; Kessler, C; Stetter, K O; Schmitt, R

    1984-01-01

    Three type II restriction endonucleases, MaeI, MaeII and MaeIII, with novel site specificities have been isolated and purified from the archaebacterium Methanococcus aeolicus PL-15/H. The recognition sequences of these enzymes are (formula: see text) with the sites of cleavage as indicated by the arrows. The sequences were confirmed by restriction and computer analyses on sequenced DNA's of plasmid pBR322, bacteriophages lambda and phi X174 and virus SV40. Images PMID:6324124

  20. The cleavage sites and localization of genes encoding the restriction endonucleases Eco1831I and EcoHI.

    PubMed

    Kravetz, A N; Zakharova, M V; Beletskaya, I V; Sineva, E V; Denjmuchametov, M M; Petrov, S I; Glatman, L I; Solonin, A S

    1993-07-15

    The restriction endonucleases Eco1831I and EcoHI cleave before the first 5'-cytosine in the recognition sequence 5'-decreases CCSGG--3'/3'--GGSCC increases-5' (where S = G or C), generate 5-base 5' cohesive ends, and are encoded by homologous plasmids that are restricted in McrA+ hosts. Thus, they differ in their cleavage specificity from that of the BcnI isoschizomer, which cleaves after the second 5' cytosine.

  1. Distinct facilitated diffusion mechanisms by E. coli Type II restriction endonucleases.

    PubMed

    Pollak, Adam J; Chin, Aaron T; Reich, Norbert O

    2014-11-18

    The passive search by proteins for particular DNA sequences involving nonspecific DNA is essential for gene regulation, DNA repair, phage defense, and diverse epigenetic processes. Distinct mechanisms contribute to these searches, and it remains unresolved as to which mechanism or blend of mechanisms best suits a particular protein and, more importantly, its biological role. To address this, we compare the translocation properties of two well-studied bacterial restriction endonucleases (ENases), EcoRI and EcoRV. These dimeric, magnesium-dependent enzymes hydrolyze related sites (EcoRI ENase, 5'-GAATTC-3'; EcoRV ENase, 5'-GATATC-3'), leaving overhangs and blunt DNA segments, respectively. Here, we demonstrate that the extensive sliding by EcoRI ENase, involving sliding up to ∼600 bp prior to dissociating from the DNA, contrasts with a larger reliance on hopping mechanism(s) by EcoRV ENase. The mechanism displayed by EcoRI ENase results in a highly thorough search of DNA, whereas the EcoRV ENase mechanism results in an extended, yet less rigorous, interrogation of DNA sequence space. We describe how these mechanistic distinctions are complemented by other aspects of these endonucleases, such as the 10-fold higher in vivo concentrations of EcoRI ENase compared to that of EcoRV ENase. Further, we hypothesize that the highly diverse enzyme arsenal that bacteria employ against foreign DNA involves seemingly similar enzymes that rely on distinct but complementary search mechanisms. Our comparative approach reveals how different proteins utilize distinct site-locating strategies.

  2. High pressure activation of the Mrr restriction endonuclease in Escherichia coli involves tetramer dissociation.

    PubMed

    Bourges, Anaïs C; Torres Montaguth, Oscar E; Ghosh, Anirban; Tadesse, Wubishet M; Declerck, Nathalie; Aertsen, Abram; Royer, Catherine A

    2017-05-19

    A sub-lethal hydrostatic pressure (HP) shock of ∼100 MPa elicits a RecA-dependent DNA damage (SOS) response in Escherichia coli K-12, despite the fact that pressure cannot compromise the covalent integrity of DNA. Prior screens for HP resistance identified Mrr (Methylated adenine Recognition and Restriction), a Type IV restriction endonuclease (REase), as instigator for this enigmatic HP-induced SOS response. Type IV REases tend to target modified DNA sites, and E. coli Mrr activity was previously shown to be elicited by expression of the foreign M.HhaII Type II methytransferase (MTase), as well. Here we measured the concentration and stoichiometry of a functional GFP-Mrr fusion protein using in vivo fluorescence fluctuation microscopy. Our results demonstrate that Mrr is a tetramer in unstressed cells, but shifts to a dimer after HP shock or co-expression with M.HhaII. Based on the differences in reversibility of tetramer dissociation observed for wild-type GFP-Mrr and a catalytic mutant upon HP shock compared to M.HhaII expression, we propose a model by which (i) HP triggers Mrr activity by directly pushing inactive Mrr tetramers to dissociate into active Mrr dimers, while (ii) M.HhaII triggers Mrr activity by creating high affinity target sites on the chromosome, which pull the equilibrium from inactive tetrameric Mrr toward active dimer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. High pressure activation of the Mrr restriction endonuclease in Escherichia coli involves tetramer dissociation

    PubMed Central

    Bourges, Anaïs C.; Torres Montaguth, Oscar E.; Ghosh, Anirban; Tadesse, Wubishet M.; Declerck, Nathalie

    2017-01-01

    Abstract A sub-lethal hydrostatic pressure (HP) shock of ∼100 MPa elicits a RecA-dependent DNA damage (SOS) response in Escherichia coli K-12, despite the fact that pressure cannot compromise the covalent integrity of DNA. Prior screens for HP resistance identified Mrr (Methylated adenine Recognition and Restriction), a Type IV restriction endonuclease (REase), as instigator for this enigmatic HP-induced SOS response. Type IV REases tend to target modified DNA sites, and E. coli Mrr activity was previously shown to be elicited by expression of the foreign M.HhaII Type II methytransferase (MTase), as well. Here we measured the concentration and stoichiometry of a functional GFP-Mrr fusion protein using in vivo fluorescence fluctuation microscopy. Our results demonstrate that Mrr is a tetramer in unstressed cells, but shifts to a dimer after HP shock or co-expression with M.HhaII. Based on the differences in reversibility of tetramer dissociation observed for wild-type GFP-Mrr and a catalytic mutant upon HP shock compared to M.HhaII expression, we propose a model by which (i) HP triggers Mrr activity by directly pushing inactive Mrr tetramers to dissociate into active Mrr dimers, while (ii) M.HhaII triggers Mrr activity by creating high affinity target sites on the chromosome, which pull the equilibrium from inactive tetrameric Mrr toward active dimer. PMID:28369499

  4. Screening for catalytically active Type II restriction endonucleases using segregation-induced methylation deficiency

    PubMed Central

    Ukanis, Mindaugas; Sapranauskas, Rimantas; Lubys, Arvydas

    2012-01-01

    Type II restriction endonucleases (REases) are one of the basic tools of recombinant DNA technology. They also serve as models for elucidation of mechanisms for both site-specific DNA recognition and cleavage by proteins. However, isolation of catalytically active mutants from their libraries is challenging due to the toxicity of REases in the absence of protecting methylation, and techniques explored so far had limited success. Here, we present an improved SOS induction-based approach for in vivo screening of active REases, which we used to isolate a set of active variants of the catalytic mutant, Cfr10IE204Q. Detailed characterization of plasmids from 64 colonies screened from the library of ∼200 000 transformants revealed 29 variants of cfr10IR gene at the level of nucleotide sequence and 15 variants at the level of amino acid sequence, all of which were able to induce SOS response. Specific activity measurements of affinity-purified mutants revealed >200-fold variance among them, ranging from 100% (wild-type isolates) to 0.5% (S188C mutant), suggesting that the technique is equally suited for screening of mutants possessing high or low activity and confirming that it may be applied for identification of residues playing a role in catalysis. PMID:22753027

  5. Restriction endonuclease MvaI is a monomer that recognizes its target sequence asymmetrically

    PubMed Central

    Kaus-Drobek, Magdalena; Czapinska, Honorata; Sokołowska, Monika; Tamulaitis, Gintautas; Szczepanowski, Roman H.; Urbanke, Claus; Bochtler, Matthias

    2007-01-01

    Restriction endonuclease MvaI recognizes the sequence CC/WGG (W stands for A or T, ‘/’ designates the cleavage site) and generates products with single nucleotide 5′-overhangs. The enzyme has been noted for its tolerance towards DNA modifications. Here, we report a biochemical characterization and crystal structures of MvaI in an apo-form and in a complex with target DNA at 1.5 Å resolution. Our results show that MvaI is a monomer and recognizes its pseudosymmetric target sequence asymmetrically. The enzyme consists of two lobes. The catalytic lobe anchors the active site residues Glu36, Asp50, Glu55 and Lys57 and contacts the bases from the minor grove side. The recognition lobe mediates all major grove interactions with the bases. The enzyme in the crystal is bound to the strand with T at the center of the recognition sequence. The crystal structure with calcium ions and DNA mimics the prereactive state. MvaI shows structural similarities to BcnI, which cleaves the related sequence CC/SGG and to MutH enzyme, which is a component of the DNA repair machinery, and nicks one DNA strand instead of making a double-strand break. PMID:17344322

  6. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    PubMed

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Restriction endonuclease DNA analysis of Leptospira interrogans serovars icterohaemorrhagiae and hebdomadis.

    PubMed Central

    Marshall, R B; Winter, P J; Yanagawa, R

    1984-01-01

    Antigenic variants of Leptospira interrogans serovars copenhageni and hebdomadis were examined by bacterial restriction endonuclease DNA analysis with EcoRI, XhoI, SalI, BstEII, and HindIII as the digesting enzymes. The antigenic variants were stable cloned strains which had been cultivated in media containing homologous immune serum. One of the strains examined has been reported elsewhere (R. Yanagawa and J. Takashima, Infect. Immun. 10:1439-1442) as having an antigenic makeup which more closely resembles serovar kremastos than the serovar hebdomadis parent. The closely antigenically related but naturally occurring serovars icterhaemorrhagiae strain RGA and copenhageni strain M20 were examined in parallel. No differences could be shown between the hebdomadis parent and any of its mutants. Serovars copenhageni and icterohaemorrhagiae produced patterns which differed in the high-molecular-weight bands only. The Shibaura parent strain did not differ from copenhageni M20, but the Shibaura M1 strain differed from the other mutants and from icterohaemorrhagiae RGA in its high-molecular-weight bands. Images PMID:6092434

  8. A complex family of class-II restriction endonucleases, DsaI-VI, in Dactylococcopsis salina.

    PubMed

    Laue, F; Evans, L R; Jarsch, M; Brown, N L; Kessler, C

    1991-01-02

    A series of class-II restriction endonucleases (ENases) was discovered in the halophilic, phototrophic, gas-vacuolated cyanobacterium Dactylococcopsis salina sp. nov. The six novel enzymes are characterized by the following recognition sequences and cut positions: 5'-C decreases CRYGG-3' (DsaI); 5'-GG decreases CC-3' (DsaII); 5'-R decreases GATCY-3' (DsaIII); 5'-G decreases GWCC-3' (DsaIV); 5'-decreases CCNGG-3' (DsaV); and 5'-GTMKAC-3' (DsaVI), where W = A or T, M = A or C, K = G or T, and N = A, G, C or T. In addition, traces of further possible activity were detected. DsaI has a novel sequence specificity and DsaV is an isoschizomer of ScrFI, but with a novel cut specificity. A purification procedure was established to separate all six ENases, resulting in their isolation free of contaminating nuclease activities. DsaI cleavage is influenced by N6-methyladenine residues [derived from the Escherichia coli-encoded DNA methyltransferase (MTase) M.Eco damI] within the overlapping sequence, 5'-CCRYMGGATC-3'; DsaV hydrolysis is inhibited by a C-5-methylcytosine residue in its recognition sequence (5'-CMCNGG-3'), generated in some DsaV sites by the E. coli-encoded MTase, M.Eco dcmI.

  9. Plasmid and restriction endonuclease patterns in Pasteurella multocida isolated from a swine pyramid.

    PubMed

    Rúbies, Xavier; Casal, Jordi; Pijoan, Carlos

    2002-01-03

    Restriction endonuclease analysis (REA) and plasmid profile were used to study the epidemiology of Pasteurella multocida in a swine pyramid structure. The studied pyramid was comprised of a group of 12 swine farrow-to-finish farms related by unidirectional animal movement. P. multocida isolates were obtained from the lungs of 275 slaughtered pigs. Serotyping was performed by hyaluronidase sensitivity test and toxicity was investigated by the ELISA test. HpaII was used to cleave the P. multocida extracted DNA. REA patterns relationships were studied using the Sokal-Michener coefficients, and the dendrogram was built using the UPGMA system. The 218 P. multocida isolates obtained were distributed in 17 REA patterns. In 9 of the 12 farms studied only 2-3 REA patterns were detected, with one clearly predominant pattern. The 81 strains with plasmids were assigned to six plasmid profiles. REA and plasmid profiles proved to be good epidemiological tools for identifying different strains of P. multocida with the same phenotype.

  10. Cellular localization and dynamics of the Mrr type IV restriction endonuclease of Escherichia coli

    PubMed Central

    Ghosh, Anirban; Passaris, Ioannis; Tesfazgi Mebrhatu, Mehari; Rocha, Susana; Vanoirbeek, Kristof; Hofkens, Johan; Aertsen, Abram

    2014-01-01

    In this study, we examined the intracellular whereabouts of Mrr, a cryptic type IV restriction endonuclease of Escherichia coli K12, in response to different conditions. In absence of stimuli triggering its activity, Mrr was found to be strongly associated with the nucleoid as a number of discrete foci, suggesting the presence of Mrr hotspots on the chromosome. Previously established elicitors of Mrr activity, such as exposure to high (hydrostatic) pressure (HP) or expression of the HhaII methyltransferase, both caused nucleoid condensation and an unexpected coalescence of Mrr foci. However, although the resulting Mrr/nucleoid complex was stable when triggered with HhaII, it tended to be only short-lived when elicited with HP. Moreover, HP-mediated activation of Mrr typically led to cellular blebbing, suggesting a link between chromosome and cellular integrity. Interestingly, Mrr variants could be isolated that were specifically compromised in either HhaII- or HP-dependent activation, underscoring a mechanistic difference in the way both triggers activate Mrr. In general, our results reveal that Mrr can take part in complex spatial distributions on the nucleoid and can be engaged in distinct modes of activity. PMID:24423871

  11. Crystallization and preliminary X-ray diffraction analysis of restriction endonuclease EcoRII

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Meehan, E.; Pusey, M. L.; Chen, L.

    1999-01-01

    Crystals of the restriction endonuclease EcoRII have been obtained by the vapor-diffusion technique in the presence of ammonium sulfate or polyethylene glycol. The best crystals were grown with ammonium sulfate as a precipitant. Crystals with dimensions of up to 0.6 x 0. 6 x 0.6 mm have been observed. The crystals diffract to about 4.0 A resolution at a cryo-temperature of 100 K using a rotating-anode X-ray source and a Rigaku R-AXIS IV imaging-plate detector. The space group has been determined to be either I23 or I2(1)3, with unit-cell parameters a = b = c = 160.3 A, alpha = beta = gamma = 90 degrees. The crystal asymmetric unit contains two protein molecules, and self-rotation function analysis shows a pseudo-twofold symmetry relating the two monomers. Attempts to improve the resolution of crystal diffraction and to search for heavy-atom derivatives are under way.

  12. Natural C-independent expression of restriction endonuclease in a C protein-associated restriction-modification system

    PubMed Central

    Rezulak, Monika; Borsuk, Izabela; Mruk, Iwona

    2016-01-01

    Restriction–modification (R-M) systems are highly prevalent among bacteria and archaea, and appear to play crucial roles in modulating horizontal gene transfer and protection against phage. There is much to learn about these diverse enzymes systems, especially their regulation. Type II R-M systems specify two independent enzymes: a restriction endonuclease (REase) and protective DNA methyltransferase (MTase). Their activities need to be finely balanced in vivo. Some R-M systems rely on specialized transcription factors called C (controller) proteins. These proteins play a vital role in the temporal regulation of R-M gene expression, and function to indirectly modulate the horizontal transfer of their genes across the species. We report novel regulation of a C-responsive R-M system that involves a C protein of a poorly-studied structural class - C.Csp231I. Here, the C and REase genes share a bicistronic transcript, and some of the transcriptional auto-control features seen in other C-regulated R-M systems are conserved. However, separate tandem promoters drive most transcription of the REase gene, a distinctive property not seen in other tested C-linked R-M systems. Further, C protein only partially controls REase expression, yet plays a role in system stability and propagation. Consequently, high REase activity was observed after deletion of the entire C gene, and cells bearing the ΔC R-M system were outcompeted in mixed culture assays by those with the WT R-M system. Overall, our data reveal unexpected regulatory variation among R-M systems. PMID:26656489

  13. Rational engineering of sequence specificity in R.MwoI restriction endonuclease

    PubMed Central

    Skowronek, Krzysztof; Boniecki, Michal J.; Kluge, Boguslaw

    2012-01-01

    R.MwoI is a Type II restriction endonucleases enzyme (REase), which specifically recognizes a palindromic interrupted DNA sequence 5′-GCNNNNNNNGC-3′ (where N indicates any nucleotide), and hydrolyzes the phosphodiester bond in the DNA between the 7th and 8th base in both strands. R.MwoI exhibits remote sequence similarity to R.BglI, a REase with known structure, which recognizes an interrupted palindromic target 5′-GCCNNNNNGGC-3′. A homology model of R.MwoI in complex with DNA was constructed and used to predict functionally important amino acid residues that were subsequently targeted by mutagenesis. The model, together with the supporting experimental data, revealed regions important for recognition of the common bases in DNA sequences recognized by R.BglI and R.MwoI. Based on the bioinformatics analysis, we designed substitutions of the S310 residue in R.MwoI to arginine or glutamic acid, which led to enzyme variants with altered sequence selectivity compared with the wild-type enzyme. The S310R variant of R.MwoI preferred the 5′-GCCNNNNNGGC-3′ sequence as a target, similarly to R.BglI, whereas the S310E variant preferentially cleaved a subset of the MwoI sites, depending on the identity of the 3rd and 9th nucleotide residues. Our results represent a case study of a REase sequence specificity alteration by a single amino acid substitution, based on a theoretical model in the absence of a crystal structure. PMID:22735699

  14. Frequent occurrence of recognition site-like sequences in the restriction endonucleases.

    PubMed

    Biro, Jan C; Biro, Josephine M K

    2004-03-16

    There are two different theories about the development of the genetic code. Woese suggested that it was developed in connection with the amino acid repertoire, while Crick argued that any connection between codons and amino acids is only the result of an "accident". This question is fundamental to understand the nature of specific protein-nucleic acid interactions. The nature of specific protein-nucleic acid interaction between restriction endonucleases (RE) and their recognition sequences (RS) was studied by bioinformatics methods. It was found that the frequency of 5-6 residue long RS-like oligonucleotides is unexpectedly high in the nucleic acid sequence of the corresponding RE (p < 0.05 and p < 0.001 respectively, n = 7). There is an extensive conservation of these RS-like sequences in RE isoschizomers. A review of the seven available crystallographic studies showed that the amino acids coded by codons that are subsets of recognition sequences were often closely located to the RS itself and they were in many cases directly adjacent to the codon-like triplets in the RS.Fifty-five examples of this codon-amino acid co-localization are found and analyzed, which represents 41.5% of total 132 amino acids which are localized within 8 A distance to the C1' atoms in the DNA. The average distance between the closest atoms in the codons and amino acids is 5.5 +/- 0.2 A (mean +/- S.E.M, n = 55), while the distance between the nitrogen and oxygen atoms of the co-localized molecules is significantly shorter, (3.4 +/- 0.2 A, p < 0.001, n = 15), when positively charged amino acids are involved. This is indicating that an interaction between the nucleic- and amino acids might occur. We interpret these results in favor of Woese and suggest that the genetic code is "rational" and there is a stereospecific relationship between the codes and the amino acids.

  15. Analysis of cytomegalovirus genomes with restriction endonucleases Hin D III and EcoR-1.

    PubMed

    Kilpatrick, B A; Huang, E S; Pagano, J S

    1976-06-01

    Cleavage of genomes of eleven human, one simian, and one simian-related cytomegalovirus (CMV) isolate by the restriction endonucleases HinD III and EcoR-1 generated reproducible DNA fragments. The size range of CMV DNA fragments as estimated by contour length measurements in comparison with simian virus 40 form II DNA and by coelectrophoresis with EcoR-1 fragments of herpes simplex virus DNA varied between 15 X 10(6) and 0.5 X 10(6) daltons. Comparison of the cleavage products of each isolate in 1% agarose slab gels showed extensive comigration of fragments among the human CMV isolates. In the HinD III digests, three fragment bands comigrated among all human CMV isolates, and six fragments comigrated among most, but not all, human CMV isolates. In the EcoR-1 digests, nine fragment bands comigrated among all human CMV isolates, and five bands comigrated among most, but not all human isolates. Each isolate had a distinctive electrophoretic profile with either HinD III or EcoR-1 digests. No two isolates had identical HinD III or EcoR-1 patterns although some isolates did share more general pattern similarities than others. No clear-cut subgrouping of isolates based on cleavage pattern characteristics could be discerned. Comparison of HinD III and EcoR-1 patterns showed that human isolates differ greatly from nonhuman CMV isolates. HinD III and EcoR-1 digests of each isolate contained both major and minor molar classes of DNA fragments that ranged from about 1 and multiples of 1 M down to about 0.25 M; however, the summed molecular weights for major molar fragments resulting from HinD III or EcoR-1 digests of several isolates closely approximated the molecular weight of 10(8) of the intact genome.

  16. Quantum Entanglement in the Genome? The Role of Quantum Effects in Catalytic Synchronization of Type II Restriction Endonucleases

    NASA Astrophysics Data System (ADS)

    Kurian, P.

    Several living systems have been examined for their exhibition of macroscopic quantum effects, showcasing biology's apparent optimization of structure and function for quantum behavior. Prevalent in lower organisms with analogues in eukaryotes, type II restriction endonucleases are the largest class of restriction enzymes. Orthodox type II endonucleases recognize four-to-eight base pair sequences of palindromic DNA, cut both strands symmetrically, and act without an external metabolite such as ATP. While it is known that these enzymes induce strand breaks by nucleophilic attack on opposing phosphodiester bonds of the DNA helix, what remains unclear is the mechanism by which cutting occurs in concert at the catalytic centers. Previous studies indicate the primacy of intimate DNA contacts made by the specifically bound enzyme in coordinating the two synchronized cuts. We propose that collective electronic behavior in the DNA helix generates coherent oscillations---quantized through boundary conditions imposed by the endonuclease---that provide the energy required to break two phosphodiester bonds. Such quanta may be preserved in the presence of thermal noise and electromagnetic interference through the specific complex's exclusion of water and ions surrounding the helix, with the enzyme serving as a decoherence shield. Clamping energy imparted by the decoherence shield is comparable with zero-point modes of the dipole-dipole oscillations in the DNA recognition sequence. The palindromic mirror symmetry of this sequence should conserve parity during the process. Experimental data corroborate that symmetric bond-breaking ceases when the symmetry of the endonuclease complex is violated, or when environmental parameters are perturbed far from biological optima. Persistent correlation between states in DNA sequence across spatial separations of any length---a characteristic signature of quantum entanglement---may be explained by such a physical mechanism.

  17. A model of EcoRII restriction endonuclease action: the active complex is most likely formed by one protein subunit and one DNA recognition site

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Kubareva, E. A.; Shabarova, Z. A.

    1999-01-01

    To elucidate the mechanism of interaction of restriction endonuclease EcoRII with DNA, we studied by native gel electrophoresis the binding of this endonuclease to a set of synthetic DNA-duplexes containing the modified or canonical recognition sequence 5'-d(CCA/TGG)-3'. All binding substrate or substrate analogues tested could be divided into two major groups: (i) duplexes that, at the interaction with endonuclease EcoRII, form two types of stable complexes on native gel in the absence of Mg2+ cofactor; (ii) duplexes that form only one type of complex, observed both in the presence and absence of Mg2+. Unlike the latter, duplexes under the first group can be hydrolyzed by endonuclease. Data obtained suggest that the active complex is most likely formed by one protein subunit and one DNA recognition sequence. A model of EcoRII endonuclease action is presented.

  18. A model of EcoRII restriction endonuclease action: the active complex is most likely formed by one protein subunit and one DNA recognition site

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Kubareva, E. A.; Shabarova, Z. A.

    1999-01-01

    To elucidate the mechanism of interaction of restriction endonuclease EcoRII with DNA, we studied by native gel electrophoresis the binding of this endonuclease to a set of synthetic DNA-duplexes containing the modified or canonical recognition sequence 5'-d(CCA/TGG)-3'. All binding substrate or substrate analogues tested could be divided into two major groups: (i) duplexes that, at the interaction with endonuclease EcoRII, form two types of stable complexes on native gel in the absence of Mg2+ cofactor; (ii) duplexes that form only one type of complex, observed both in the presence and absence of Mg2+. Unlike the latter, duplexes under the first group can be hydrolyzed by endonuclease. Data obtained suggest that the active complex is most likely formed by one protein subunit and one DNA recognition sequence. A model of EcoRII endonuclease action is presented.

  19. Impact of cytosine 5-halogens on the interaction of DNA with restriction endonucleases and methyltransferase.

    PubMed

    Valinluck, Victoria; Wu, Winnie; Liu, Pingfang; Neidigh, Jonathan W; Sowers, Lawrence C

    2006-04-01

    Growing evidence from both prokaryotes and eukaryotes indicates that pyrimidine 5-methyl groups can have profound biological consequences that are mediated by the affinity of DNA-protein interactions. The presence of the 5-methyl group could potentially create a steric block preventing the binding of some proteins whereas the affinity of many other proteins is substantially increased by pyrimidine methylation. In this paper, we have constructed a series of oligonucleotides containing cytosine and a series of 5-substituted cytosine analogues including all halogens. This set of oligonucleotides has been used to probe the relationship between the size of the substituent and its capacity to modulate cleavage by the methylation-sensitive restriction endonucleases MspI and HpaII. Additionally, we have examined the impact of the halogen substitution on the corresponding bacterial methyltransferase (M.HpaII). We observed that MspI cleavage is only subtly affected by substituted cytosine analogues at the inner position of the CCGG recognition site. In contrast, HpaII cleaves cytosine-containing oligonucleotides completely whereas 5-fluorocytosine-containing oligonucleotides are cleaved at a reduced rate. The presence of the larger halogens Cl, Br, or I as well as a methyl group completely prevents cleavage by HpaII. These data suggest that the steric wall is encountered by HpaII slightly beyond the fluorine substituent, at about 2.65 A from the pyrimidine C5-position. It is known that 5-fluorocytosine in an oligonucleotide can form a covalent irreversible suicide complex with either prokaryotic or eukaryotic methyltransferases. Kinetic data reported here suggest that the 5-fluorocytosine-containing oligonucleotide can also inhibit M.HpaII by formation of a reversible, noncovalent complex. Our results indicate that although a 5-Cl substituent has electronic properties similar to 5-F, 5-chlorocytosine duplexes neither form a complex with M.HpaII nor inhibit enzymatic

  20. Restriction-endonuclease-induced DNA double-strand breaks and chromosomal aberrations in mammalian cells.

    PubMed

    Bryant, P E; Johnston, P J

    1993-05-01

    Restriction endonucleases (RE) can be used to mimic and model the clastogenic effects of ionising radiation. With the development of improved techniques for cell poration: electroporation and recently streptolysin O (SLO), it has become possible more confidently to study the relationships between DNA double-strand breaks (dsb) of various types (e.g. blunt or cohesive-ended) and the frequencies of induced metaphase chromosomal aberrations or micronuclei in cytokinesis-blocked cells. Although RE-induced dsb do not mimic the chemical end-structure of radiation-induced dsb (i.e. the 'dirty' ends of radiation-induced dsb), it has become clear that cohesive-ended dsb, which are thought to be the major type of dsb induced by radiation, are much less clastogenic than blunt-ended dsb. It has also been possible, with the aid of electroporation or SLO to measure the kinetics of dsb in cells as a function of time after treatment. These experiments have shown that some RE (e.g. Pvu II) are extremely stable inside CHO cells and at high concentrations persist and induce dsb over a period of many hours following treatment. Cutting of DNA by RE is thought to be at specific recognition sequences (as in free DNA) although the frequencies of sites in native chromatin available to RE is not yet known. DNA condensation and methylation are both factors limiting the numbers of available cutting sites. Relatively little is known about the kinetics of incision or repair of RE-induced dsb in cells. Direct ligation may be a method used by cells to rejoin the bulk of RE-induced dsb, since inhibitors such as araA, araC and aphidicolin appear not prevent rejoining, although these inhibitors have been found to lead to enhanced frequencies of chromosomal aberrations. 3-Aminobenzimide, the poly-ADP ribose polymerase inhibitor is the only agent that has so far been shown to inhibit rejoining of RE-induced dsb. Data from the radiosensitive xrs5 cell line, where chromosomal aberration frequencies are

  1. Ligation-mediated PCR amplification of specific fragments from a class-II restriction endonuclease total digest.

    PubMed Central

    Guilfoyle, R A; Leeck, C L; Kroening, K D; Smith, L M; Guo, Z

    1997-01-01

    A method is described which permits the ligation- mediated PCR amplification of specific fragments from a Class-II restriction endonuclease total digest. Feasibility was tested using Bcl I and phage lambda DNA as a model enzyme and amplicon system, respectively. Bcl I is one of many widely used restriction enzymes which cleave at palindromic recognition sequences and leave 5'-protruding ends of defined sequence. Using a single pair of universal primers, a given fragment can be specifically amplified after joining the fragments to adaptors consisting of a duplex primer region and a 9-nucleotide protruding single-stranded 5'-end containing the sequence complementary to the cleaved restriction site and a 4-nucleotide 'indexing sequence.' The protruding strand anneals to a restriction fragment by displacing its corresponding strand in the same fragment-specific indexing sequence located juxtaposed to the restriction site. The adaptor is covalently linked to the restriction fragment by T4 DNA ligase, and amplification is carried out under conditions for long-distance PCR using the M13 forward and reverse primers. The technique discriminated robustly between mismatches and perfect matches for the 16 indexing sequences tested to allow individual lambda Bcl I fragments to be amplified from their respective adaptor pairs. A strategy is proposed enabling a non-cloning approach to the accession, physical mapping and sequencing of genomic DNA. The method could also have application in high-throughput genetic mapping and fingerprinting and should expand the enzyme base for ligation- mediated indexing technology which has previously been limited to the Class-IIS and IP restriction endonucleases. PMID:9108171

  2. Crystal structure of the ββα-Me type II restriction endonuclease Hpy99I with target DNA

    PubMed Central

    Sokolowska, Monika; Czapinska, Honorata; Bochtler, Matthias

    2009-01-01

    The ββα-Me restriction endonuclease (REase) Hpy99I recognizes the CGWCG target sequence and cleaves it with unusual stagger (five nucleotide 5′-recessed ends). Here we present the crystal structure of the specific complex of the dimeric enzyme with DNA. The Hpy99I protomer consists of an antiparallel β-barrel and two β4α2 repeats. Each repeat coordinates a structural zinc ion with four cysteine thiolates in two CXXC motifs. The ββα-Me region of the second β4α2 repeat holds the catalytic metal ion (or its sodium surrogate) via Asp148 and Asn165 and activates a water molecule with the general base His149. In the specific complex, Hpy99I forms a ring-like structure around the DNA that contacts DNA bases on the major and minor groove sides via the first and second β4α2 repeats, respectively. Hpy99I interacts with the central base pair of the recognition sequence only on the minor groove side, where A:T resembles T:A and G:C is similar to C:G. The Hpy99I–DNA co-crystal structure provides the first detailed illustration of the ββα-Me site in REases and complements structural information on the use of this active site motif in other groups of endonucleases such as homing endonucleases (e.g. I-PpoI) and Holliday junction resolvases (e.g. T4 endonuclease VII). PMID:19380375

  3. Effect of tetrahydropyrimidine derivatives on protein-nucleic acids interaction. Type II restriction endonucleases as a model system.

    PubMed

    Malin, G; Iakobashvili, R; Lapidot, A

    1999-03-12

    2-Methyl-4-carboxy,5-hydroxy-3,4,5,6-tetrahydropyri- midine (THP(A) or hydroxyectoine) and 2-methyl,4-carboxy-3,4,5, 6-tetrahydropyrimidine (THP(B) or ectoine) are now recognized as ubiquitous bacterial osmoprotectants. To evaluate the impact of tetrahydropyrimidine derivatives (THPs) on protein-DNA interaction and on restriction-modification systems, we have examined their effect on the cleavage of plasmid DNA by 10 type II restriction endonucleases. THP(A) completely arrested the cleavage of plasmid and bacteriophage lambda DNA by EcoRI endonuclease at 0.4 mM and the oligonucleotide (d(CGCGAATTCGCG))2 at about 4.0 mM. THP(B) was 10-fold less effective than THP(A), whereas for betaine and proline, a notable inhibition was observed only at 100 mM. Similar effects of THP(A) were observed for all tested restriction endonucleases, except for SmaI and PvuII, which were inhibited only partially at 50 mM THP(A). No effect of THP(A) on the activity of DNase I, RNase A, and Taq DNA polymerase was noticed. Gel-shift assays showed that THP(A) inhibited the EcoRI-(d(CGCGAATTCGCG))2 complex formation, whereas facilitated diffusion of EcoRI along the DNA was not affected. Methylation of the carboxy group significantly decreased the activity of THPs, suggesting that their zwitterionic character is essential for the inhibition effect. Possible mechanisms of inhibition, the role of THPs in the modulation of the protein-DNA interaction, and the in vivo relevance of the observed phenomena are discussed.

  4. The accessibility of thiophosphorylated groups in DNA fragments to the enzymatic activity of ligases and restriction endonuclease Bbs I.

    PubMed

    Schenk, J A; Heymann, S; Micheel, B

    1995-08-01

    The aim of this paper was to test the possibility to ligate and hydrolyse DNA sequences containing thiomodified ends and bonds. T4 DNA ligase was shown to ligate DNA fragments regardless of whether it contains phosphorylated or thiophosphorylated 5'-end. But the cleavage of an internally thiomodified phosphodiester bond was found to be totally inhibited when using the non-palindromic restrictase Bbs I. The special properties of this restriction endonuclease should allow the development of an oriented cloning strategy when combined with T4 ligase and a thiophosphorylation of DNA fragments.

  5. Functional significance of protein assemblies predicted by the crystal structure of the restriction endonuclease BsaWI.

    PubMed

    Tamulaitis, Gintautas; Rutkauskas, Marius; Zaremba, Mindaugas; Grazulis, Saulius; Tamulaitiene, Giedre; Siksnys, Virginijus

    2015-09-18

    Type II restriction endonuclease BsaWI recognizes a degenerated sequence 5'-W/CCGGW-3' (W stands for A or T, '/' denotes the cleavage site). It belongs to a large family of restriction enzymes that contain a conserved CCGG tetranucleotide in their target sites. These enzymes are arranged as dimers or tetramers, and require binding of one, two or three DNA targets for their optimal catalytic activity. Here, we present a crystal structure and biochemical characterization of the restriction endonuclease BsaWI. BsaWI is arranged as an 'open' configuration dimer and binds a single DNA copy through a minor groove contacts. In the crystal primary BsaWI dimers form an indefinite linear chain via the C-terminal domain contacts implying possible higher order aggregates. We show that in solution BsaWI protein exists in a dimer-tetramer-oligomer equilibrium, but in the presence of specific DNA forms a tetramer bound to two target sites. Site-directed mutagenesis and kinetic experiments show that BsaWI is active as a tetramer and requires two target sites for optimal activity. We propose BsaWI mechanism that shares common features both with dimeric Ecl18kI/SgrAI and bona fide tetrameric NgoMIV/SfiI enzymes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Evaluation of restriction endonuclease analysis of BRO beta-lactamases in clinical and carrier isolates of Moraxella catarrhalis.

    PubMed

    Köseoglu, Ozgen; Ergin, Alper; Hascelik, Gülsen

    2004-01-01

    A rapid increase in the prevalance of beta-lactamase producing M. catarrhalis isolates has highlighted its pathogenic potential. In this study, we aimed to detect the BRO beta-lactamases of our clinical (n = 32) and carrier (n =32) strains of Moraxella catarrhalis and compare the relationship of the enzyme type in assesment of MIC results of the antibiotics tested. BRO beta-lactamases were differentiated by restriction endonuclease analysis. Antibiotic susceptibility was performed by the agar dilution method recommended by NCCLS (M7A5). The clinical isolates produced 96.9%, whereas the carrier strains produced 90.6% beta-lactamase positivity by the restriction enzyme analysis. BRO-1 was isolated as 90.6% (n =29) while the BRO-2 and non-beta-lactamase producers (NBLP) were isolated as 6.3% (n =2) and 3.1% (n =1) respectively among clinical isolates. The rate of BRO-1 in the carrier strains was 75.0% (n =24), BRO-2 was 15.6% (n =5) and NBLP was 9.4%, (n =3). The beta-lactamase production with nitrocefin test was 96.9% (31/32) in clinical isolates and 90.6% (29/32) in carrier strains. M. catarrhalis needs a continous monitoring of antibiotic susceptibility; in this era restriction endonuclease analysis could be useful to screen BRO beta-lactamase genes.

  7. Strand specific cleavage of phosphorothioate-containing DNA by reaction with restriction endonucleases in the presence of ethidium bromide.

    PubMed Central

    Sayers, J R; Schmidt, W; Wendler, A; Eckstein, F

    1988-01-01

    A method for achieving strand specific nicking of DNA has been developed. Phosphorothioate groups were incorporated enzymatically into the (-)strand of M13 RF IV DNA. When such DNA is reacted with restriction endonucleases in the presence of ethidium bromide nicked DNA (RF II) is produced. All of the restriction enzymes tested linearised phosphorothioate-containing DNA in the absence of this dye. The strand specificity of the reaction was investigated by employing the ethidium bromide mediated nicking reaction in the phosphorothioate-based oligonucleotide-directed mutagenesis method. The mutational efficiencies obtained were in the region of 64-89%, indicating that these restriction enzymes hydrolyse the phosphodiester bond at the cleavage site of the unsubstituted (+)strand. Images PMID:2830594

  8. Type II DNA restriction-modification system and an endonuclease from the ruminal bacterium Fibrobacter succinogenes S85.

    PubMed Central

    Lee, S F; Forsberg, C W; Gibbins, A M

    1992-01-01

    Fibrobacter succinogenes is an important cellulolytic bacterium found in the rumen and cecum of herbivores. Numerous attempts to introduce foreign DNA into F. succinogenes S85 have failed, suggesting the presence of genetic barriers in this organism. Results from this study clearly demonstrate that F. succinogenes S85 possesses a type II restriction endonuclease, FsuI, which recognizes the sequence 5'-GG(A/T)CC-3'. Analysis of the restriction products on sequencing gels showed that FsuI cleaves between the two deoxyguanosine residues, yielding a 3-base 5' protruding end. These data demonstrate that FsuI is an isoschizomer of AvaII. A methyltransferase activity has been identified in the cell extract of F. succinogenes S85. This activity modified DNA in vitro and protected the DNA from the restriction by FsuI and AvaII. DNA modified in vivo by a cloned methylase gene, which codes for M.Eco47II, also protected the DNA from restriction by FsuI, suggesting that FsuI is inhibited by methylation at one or both deoxycytosine residues of the recognition sequence. The methyltransferase activity in F. succinogenes S85 is likely modifying the same deoxycytosine residues, but the exact site(s) is unknown. A highly active DNase (DNase A) was also isolated from the cell extract of this organism. DNase A is an endonuclease which showed high activity on all forms of DNA (single stranded, double-stranded, linear, and circular) but no activity on RNA. In vitro, the DNase A hydrolyzed F. succinogenes S85 DNA extensively, indicating the lack of protection against hydrolysis by this enzyme. In the presence of Mg2+, DNA was hydrolyzed to fragments of 8 to 10 nucleotides in length. The presence of DNase A and the type II restriction-modification system of F. succinogenes S85 may be the barriers preventing the introduction of foreign DNA into this bacterium. Images PMID:1644754

  9. Categoric prediction of metal ion mechanisms in the active sites of 17 select type II restriction endonucleases.

    PubMed

    Advani, Sonia; Mishra, Puneet; Dubey, Shraddha; Thakur, Samridhi

    2010-11-12

    Recently determined crystal structures of type II restriction endonucleases have produced a plethora of information on the basis for target site sequence selectivity. The positioning and role of metal ions in DNA recognition sites might reflect important properties of protein-DNA interaction. Although acidic and basic groups in the active sites can be identified, and in some cases divalent-metal binding sites delineated, a convincing picture clarifying the way in which the attacking hydroxide ion is generated, and the leaving group stabilized, has not been elucidated for any of the enzymes. We have examined the interatomic distances between metal ions and proposed key catalytic residues in the binding sites of seventeen type II restriction endonucleases whose crystal structures are documented in literature. The summary and critical evaluation of structural assignments and predictions made earlier have been useful to group these enzymes. All the enzymes used for this study have been categorized on the basis of the number of metal ions identified in their crystal structures. Among 17 experimentally characterized (not putative) type II REases, whose apparently full-length sequences are available in REBASE, we predict 8 (47%) to follow the single metal ion mechanism, 5 to follow the two metal ion mechanism, 2, the three metal ion mechanism, 1, the four metal ion mechanism and 1 the six metal ion mechanism. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Crystal structures of type II restriction endonuclease EcoO109I and its complex with cognate DNA.

    PubMed

    Hashimoto, Hiroshi; Shimizu, Toshiyuki; Imasaki, Tsuyoshi; Kato, Matsuri; Shichijo, Naoki; Kita, Keiko; Sato, Mamoru

    2005-02-18

    EcoO109I is a type II restriction endonuclease that recognizes the DNA sequence of RGGNCCY. Here we describe the crystal structures of EcoO109I and its complex with DNA. A comparison of the two structures shows that the catalytic domain moves drastically to capture the DNA. One metal ion and two water molecules are observed near the active site of the DNA complex. The metal ion is a Lewis acid that stabilizes the pentavalent phosphorus atom in the transition state. One water molecule, activated by Lys-126, attacks the phosphorus atom in an S(N)2 mechanism, whereas the other water interacts with the 3'-leaving oxygen to donate a proton to the oxygen. EcoO109I is similar to EcoRI family enzymes in terms of its DNA cleavage pattern and folding topology of the common motif in the catalytic domain, but it differs in the manner of DNA recognition. Our findings propose a novel classification of the type II restriction endonucleases and lead to the suggestion that EcoO109I represents a new subclass of the EcoRI family.

  11. Restriction endonuclease TseI cleaves A:A and T:T mismatches in CAG and CTG repeats.

    PubMed

    Ma, Long; Chen, Kai; Clarke, David J; Nortcliffe, Christopher P; Wilson, Geoffrey G; Edwardson, J Michael; Morton, A Jennifer; Jones, Anita C; Dryden, David T F

    2013-05-01

    The type II restriction endonuclease TseI recognizes the DNA target sequence 5'-G^CWGC-3' (where W = A or T) and cleaves after the first G to produce fragments with three-base 5'-overhangs. We have determined that it is a dimeric protein capable of cleaving not only its target sequence but also one containing A:A or T:T mismatches at the central base pair in the target sequence. The cleavage of targets containing these mismatches is as efficient as cleavage of the correct target sequence containing a central A:T base pair. The cleavage mechanism does not apparently use a base flipping mechanism as found for some other type II restriction endonuclease recognizing similarly degenerate target sequences. The ability of TseI to cleave targets with mismatches means that it can cleave the unusual DNA hairpin structures containing A:A or T:T mismatches formed by the repetitive DNA sequences associated with Huntington's disease (CAG repeats) and myotonic dystrophy type 1 (CTG repeats).

  12. Restriction Endonucleases from Invasive Neisseria gonorrhoeae Cause Double-Strand Breaks and Distort Mitosis in Epithelial Cells during Infection

    PubMed Central

    Weyler, Linda; Engelbrecht, Mattias; Mata Forsberg, Manuel; Brehwens, Karl; Vare, Daniel; Vielfort, Katarina; Wojcik, Andrzej; Aro, Helena

    2014-01-01

    The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies. PMID:25460012

  13. Peculiarities of the interaction of the restriction endonuclease BspD6I with DNA containing its recognition site.

    PubMed

    Abrosimova, Liudmila A; Kubareva, Elena A; Migur, Anzhela Yu; Gavshina, Aleksandra V; Ryazanova, Aleksandra Yu; Norkin, Maxim V; Perevyazova, Tatiana A; Wende, Wolfgang; Hianik, Tibor; Zheleznaya, Liudmila A; Oretskaya, Tatiana S

    2016-09-01

    Nicking endonucleases are enzymes that recognize specific sites in double-stranded DNA and cleave only one strand at a predetermined position. These enzymes are involved in DNA replication and repair; they can also function as subunits of bacterial heterodimeric restriction endonucleases. One example of such a proteins is the restriction endonuclease BspD6I (R.BspD6I) from Bacillus species strain D6, which consists of the large subunit - nicking endonuclease BspD6I (Nt.BspD6I), and the small subunit (ss.BspD6I). Nt.BspD6I can function independently. Similar enzymes are now widely used in numerous biotechnological applications. The aim of this study was to investigate the fundamental properties of two subunits of R.BspD6I and their interdependence in the course of R.BspD6I activity. The binding and hydrolysis of DNA duplexes by R.BspD6I are primary analyzed by gel electrophoresis. To elucidate the difference between Nt.BspD6I interaction with the substrate and product of hydrolysis, the thickness shear mode acoustic method is used. The thermodynamic and kinetic parameters of the Nt.BspD6I interaction with DNA are determined. For the first time we demonstrated that Nt.BspD6I bends the DNA during complex formation. Nt.BspD6I is able to form complexes with the product nicked in the top strand and ss.BspD6I cleaves the bottom strand of the DNA consecutively. Furthermore, the influence of dA methylation in the R.BspD6I recognition site on ss.BspD6I activity is analyzed. The obtained results provide evidence that Nt.BspD6I coordinates the activity of R.BspD6I by strictly coupling of the bottom strand cleavage by ss.BspD6I to the top strand cleavage. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Optical mapping of site-directed cleavages on single DNA molecules by the RecA-assisted restriction endonuclease technique.

    PubMed Central

    Wang, Y K; Huff, E J; Schwartz, D C

    1995-01-01

    Fluorescence in situ hybridization (FISH) resolution has advanced because newer techniques use increasingly decondensed chromatin. FISH cannot analyze restriction enzyme cutting sites due to limitations of the hybridization and detection technologies. The RecA-assisted restriction endonuclease (RARE) technique cleaves chromosomal DNA at a single EcoRI site within a given gene or selected sequence. We recently described a mapping technique, optical mapping, which uses fluorescence microscopy to produce high-resolution restriction maps rapidly by directly imaging restriction digestion cleavage events occurring on single deproteinized DNA molecules. Ordered maps are then constructed by noting fragment order and size, using several optically based techniques. Since we also wanted to map arbitrary sequences and gene locations, we combined RARE with optical mapping to produce site-specific visible EcoRI restriction cleavage sites on single DNA molecules. Here we describe this combined method, named optical RARE, and its initial application to mapping gene locations on yeast chromosomes. Images Fig. 2 Fig. 3 PMID:7816810

  15. Restriction endonuclease analysis of mitochondrial DNA from grande and genetically characterized cytoplasmic petite clones of Saccharomyces cerevisiae.

    PubMed

    Morimoto, R; Lewin, A; Hsu, H J; Rabinowitz, M; Fukuhara, H

    1975-10-01

    Digestion of grande mitochondrial DNA (mtDNA) BY EcoRI restriction endonuclease gives rise to nine fragments with a total molecular weight of 51.8 x 10(6). HindIII digestion yields six fragments with a similar total molecular weight. Specific restriction fragments can be detected despite the fact that yeast mtDNA consists of a heterogeneous distribution of randomly broken molecules. Digestion patterns of 10 genetically characterized petite clones containing various combinations of five antiobiotic resistance markers indicate that the petite mtDNA predominantly represents deletion of the grande genome. The petite mtDNAs contained up to seven EcoRI restriction fragments which comigrate with grande restriction fragments, and at least one fragment that did not correspond to any in the grande. Some strains contained multiple fragments with mobility different from that of grande; these fragments were usually present in less than molar concentrations. The genetic markers were associated with individual sets of restriction fragments. However, several internal inconsistencies prevent the construction of a definitive genetic fragment map. These anomalies, together with the digestion patterns, provide strong evidence that, in addition to single contiguous deletion, other changes such as multiple deletion and heterogeneity of mtDNA populations are present in some of the petite mtDNAs.

  16. Partial purification and characterization of RalF40I, a class II restriction endonuclease from Ruminococcus albus F-40, which recognizes and cleaves 5'-/GATC-3'.

    PubMed

    Miyagi, T; Javorský, P; Pristas, P; Karita, S; Sakka, K; Ohmiya, K

    1998-07-01

    Restriction endonuclease RalF40I was purified from cell-free extracts of the rumen cellulolytic bacterium Ruminococcus albus F-40 heparin-Sepharose chromatography. The preparation was active only on DNA substrates that were not Dammethylated. RalF401 recognizes the 4-bp palindrome, 5'-/GATC-3', and cleaves DNA at the 5' side of G in the sequence, producing 5' tetranucleotide protruding ends. RalF40I is a class II restriction endonuclease and an isoschizomer of MboI and DpnII.

  17. Restriction endonuclease fingerprinting by SSCP (REF), an efficient method of screening for mutations in long contiguous segments of DNA

    SciTech Connect

    Liu, O.; Sommer, S.S.

    1994-09-01

    Dideoxy fingerprinting is an efficient method of screening for the presence of mutations in short exons ({le}250 bp). Long contiguous segments can be screened by sequential ddF reactions. To screen long contiguous segments in a more rapid manner, REF has been developed. REF will be described in the context of a model system in exon H of the factor IX gene. A 1 kb segment is PCR amplified and digested with each of five groups of restriction endonucleases. The endonucleases are chosen such that, in each group, the average size of the fragments is about 150 bp. After digestion, the products are mixed, 5{prime} end-labeled with T4 polynucleotide kinase, boiled, and electrophoresed under nondenaturing conditions. Each lane screens 1 kb and contains 70 segments (7 fragments per digestion x 5 digestions x 2 strands). The matrices tested were 5.6% polyacrylamide (PA) and 7.5% GeneAmp{sup {trademark}} (GA) at temperatures of either 23{degrees}C (RT) or 8{degrees}C (LT). Point mutations resulted in the gain or loss of a restriction site in 21% of 24 test mutations. In addition, mutations could be detected if any of 5 restriction fragments with the same mutation (producing 10 denatured segments) displayed abnormal mobility (SSCP component). The average sensitivity per segment of the SSCP component for the 24 point mutations ranged from 49% for PA at RT to 68% with GA at LT. REF detected 96% of the mutations with PA at RT and 100% with GA at RT or LT. These latter two conditions detected 100% of a subsequent blinded sample that contained normal controls and 27 different mutations. A blinded analysis is in progress to determine the sensitivity of REF when the segment size is 2 kb.

  18. Ultrasensitive electrochemical biosensing for DNA using quantum dots combined with restriction endonuclease.

    PubMed

    Zhang, Can; Lou, Jing; Tu, Wenwen; Bao, Jianchun; Dai, Zhihui

    2015-01-21

    A universal and sensitive electrochemical biosensing platform for the detection and identification of DNA using CdSe quantum dots (CdSe QDs) as signal markers was designed. The detection mechanism was based on the specific recognition of MspI endonuclease combined with the signal amplification of gold nanoparticles (AuNPs). MspI endonuclease could recognize its specific sequence in the double-strand DNA (dsDNA) and cleave the dsDNA fragments linked with CdSe QDs from the electrode. The remaining attached CdSe QDs can be easily read out by square-wave voltammetry using an electrodeposited bismuth (Bi) film-modified glass carbon electrode. The concentrations of target DNA could be simultaneously detected by the signal of metal markers. Using mycobacterium tuberculosis (Mtb) DNA as a model, under the optimal conditions, the proposed biosensor could detect Mtb DNA down to 8.7 × 10(-15) M with a linear range of 5 orders of magnitude (from 1.0 × 10(-14) to 1.0 × 10(-9) M) and discriminate mismatched DNA with high selectivity. This strategy presented a universal and convenient biosensing platform for DNA assay, and its satisfactory performances make it a potential candidate for the early diagnosis of gene-related diseases.

  19. Specificity changes in the evolution of type II restriction endonucleases: a biochemical and bioinformatic analysis of restriction enzymes that recognize unrelated sequences.

    PubMed

    Pingoud, Vera; Sudina, Anna; Geyer, Hildegard; Bujnicki, Janusz M; Lurz, Rudi; Lüder, Gerhild; Morgan, Richard; Kubareva, Elena; Pingoud, Alfred

    2005-02-11

    How restriction enzymes with their different specificities and mode of cleavage evolved has been a long standing question in evolutionary biology. We have recently shown that several Type II restriction endonucleases, namely SsoII (downward arrow CCNGG), PspGI (downward arrow CCWGG), Eco-RII (downward arrow CCWGG), NgoMIV (G downward arrow CCGGC), and Cfr10I (R downward arrow CCGGY), which recognize similar DNA sequences (as indicated, where the downward arrows denote cleavage position), share limited sequence similarity over an interrupted stretch of approximately 70 amino acid residues with MboI, a Type II restriction endonuclease from Moraxella bovis (Pingoud, V., Conzelmann, C., Kinzebach, S., Sudina, A., Metelev, V., Kubareva, E., Bujnicki, J. M., Lurz, R., Luder, G., Xu, S. Y., and Pingoud, A. (2003) J. Mol. Biol. 329, 913-929). Nevertheless, MboI has a dissimilar DNA specificity (downward arrow GATC) compared with these enzymes. In this study, we characterize MboI in detail to determine whether it utilizes a mechanism of DNA recognition similar to SsoII, PspGI, EcoRII, NgoMIV, and Cfr10I. Mutational analyses and photocross-linking experiments demonstrate that MboI exploits the stretch of approximately 70 amino acids for DNA recognition and cleavage. It is therefore likely that MboI shares a common evolutionary origin with SsoII, PspGI, EcoRII, NgoMIV, and Cfr10I. This is the first example of a relatively close evolutionary link between Type II restriction enzymes of widely different specificities.

  20. Introduction and expression of the bacterial PaeR7 restriction endonuclease gene in mouse cells containing the PaeR7 methylase.

    PubMed Central

    Kwoh, T J; Obermiller, P S; McCue, A W; Kwoh, D Y; Sullivan, S A; Gingeras, T R

    1988-01-01

    To study the factors essential for a functional restriction system, the PaeR7 restriction-modification system has been introduced and expressed in murine cells. Transfer of this system was accomplished in two steps. First, cells containing sufficient PaeR7 methylase to completely methylate the mouse genome were constructed. In the second step, the mouse metallothionein promoter-regulated, endonuclease expression vector linked to the hygromycin B resistance selection marker was used to transfect the high methylase-expressing cells. Sixty percent of the clones isolated contained PaeR7 endonuclease enzymatic activity. Transfected cells expressing both methylase and endonuclease were incapable of blocking infection by DNA viruses, and possible explanations are discussed. Images PMID:2850539

  1. Study on detection of mutation DNA fragment in gastric cancer by restriction endonuclease fingerprinting with capillary electrophoresis.

    PubMed

    Wang, Rong; Xie, Hua; Xu, Yue-Bing; Jia, Zheng-Ping; Meng, Xian-Dong; Zhang, Juan-Hong; Ma, Jun; Wang, Juan; Wang, Xian-Hua

    2012-03-01

    The DNA fragment detection focusing technique has further enhanced the sensitivity and information of DNA targets. The DNA fragment detection method was established by capillary electrophoresis with laser-induced fluorescence detection and restriction endonuclease chromatographic fingerprinting (CE-LIF-REF) in our experiment. The silica capillary column was coated with short linear polyarclarylamide (SLPA) using nongel sieving technology. The excision product of various restricted enzymes of DNA fragments was obtained by REF with the molecular biology software Primer Premier 5. The PBR322/BsuRI DNA marker was used to establish the optimization method. The markers were focused electrophoretically and detected by CE-LIF. The results demonstrate that the CE-LIF-REF with SLPA can improve separation, sensitivity and speed of analysis. This technique may be applied to analysis of the excision product of various restricted enzymes of prokaryotic plasmid (pIRES2), eukaryote plasmid (pcDNA3.1) and the PCR product of codon 248 region of gastric cancer tissue. The results suggest that this method could very sensitively separate the excision products of various restricted enzymes at a much better resolution than the traditional agarose electrophoresis. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Restriction endonuclease analysis and ribotyping differentiate Pasteurella haemolytica serotype A1 isolates from cattle within a feedlot.

    PubMed Central

    Murphy, G L; Robinson, L C; Burrows, G E

    1993-01-01

    Pasteurella haemolytica serotype A1 isolates were collected from cattle within a feedlot during an outbreak of bovine respiratory disease. Genetic heterogeneity among the isolates was examined by restriction endonuclease analysis (REA), ribotyping, and analysis of plasmid content. The susceptibilities of isolates to several antibiotics were also examined. Five different REA patterns and three different ribotypes were observed among the isolates. Fifty percent of the isolates had an identical REA type, ribotype, and plasmid profile. Examination of the plasmid content of the isolates revealed that most (73%) carry a single plasmid which encodes beta-lactamase, 13.5% carry two plasmids, and 13.5% carry no plasmid. The data reveal the presence of genetic differences among isolates of P. haemolytica A1, associated with shipping fever pneumonia within a closed feedlot, and suggest that a combination of REA, ribotyping, plasmid analysis, and antibiotic susceptibility determination will be useful in analyzing the molecular epidemiology of this disease. Images PMID:7691872

  3. The amino acidic substitution of cysteine 167 by serine (C167S) in BstVI restriction endonuclease of Bacillus stearothermophilus V affects its conformation and thermostability.

    PubMed

    Loyola, C; Saavedra, C; Gómez, I; Vásquez, C

    1999-03-01

    The restriction endonuclease BstVI from Bacillus stearothermophilus V contains three cysteine residues at positions 134, 167 and 180. Titration of Cys residues with DTNB showed that none of them are involved in disulphide bond formation. Cysteine triplets 134 and 167 were modified by recombinant PCR to introduce a serine residue in each case. The mutated genes were cloned into pGEM-T vector and transformed into E. coli JM109. Even though pGEM-T is not designed for expression, the mutant proteins were efficiently expressed in E. coli. The endonuclease carrying the mutation C134S was purified to homogeneity but appeared to be very unstable. In contrast, the C167S mutant enzyme was stable when pure and was studied biochemically. This mutant enzyme was as stable and resistant to protein-denaturing agents as the wild type enzyme. The activity of both enzymes was not affected by preincubations of 2 h at 80 degrees C. A short preincubation at 95 degrees C caused a complete inactivation of the mutant enzyme while the wild type endonuclease retained 30% of its activity. Moreover, the C167S BstVI was more susceptible to be hydrolyzed by proteinase K and trypsine compared to the wild type endonuclease. These results show that the substitution Cys --> Ser at position 167 affects the configuration and thermostability of BstVI restriction endonuclease.

  4. AbeI, a restriction endonuclease from Azotobacter beijerinckii, which recognizes the asymmetric heptanucleotide sequence 5'-CCTCAGC-3'(-5/-2).

    PubMed Central

    Vitkute, J; Maneliene, Z; Janulaitis, A

    1998-01-01

    A new restriction endonuclease Abe I has beenisolated from Azotobacter beijerinckii. This enzymerecognizes the asymmetric heptanucleotide sequence 5'-CCTCAGC-3' and cleaves within it symmetrically at positions -5/-2 in the opposing strands, producing three base protruding 5'-ends. PMID:9776753

  5. PspGI, a type II restriction endonuclease from the extreme thermophile Pyrococcus sp.: structural and functional studies to investigate an evolutionary relationship with several mesophilic restriction enzymes.

    PubMed

    Pingoud, Vera; Conzelmann, Charlotte; Kinzebach, Steffen; Sudina, Anna; Metelev, Valeri; Kubareva, Elena; Bujnicki, Janusz M; Lurz, Rudi; Lüder, Gerhild; Xu, Shuang-Yong; Pingoud, Alfred

    2003-06-20

    We present here the first detailed biochemical analysis of an archaeal restriction enzyme. PspGI shows sequence similarity to SsoII, EcoRII, NgoMIV and Cfr10I, which recognize related DNA sequences. We demonstrate here that PspGI, like SsoII and unlike EcoRII or NgoMIV and Cfr10I, interacts with and cleaves DNA as a homodimer and is not stimulated by simultaneous binding to two recognition sites. PspGI and SsoII differ in their basic biochemical properties, viz. stability against chemical denaturation and proteolytic digestion, DNA binding and the pH, MgCl(2) and salt-dependence of their DNA cleavage activity. In contrast, the results of mutational analyses and cross-link experiments show that PspGI and SsoII have a very similar DNA binding site and catalytic center as NgoMIV and Cfr10I (whose crystal structures are known), and presumably also as EcoRII, in spite of the fact that these enzymes, which all recognize variants of the sequence -/CC-GG- (/ denotes the site of cleavage), are representatives of different subgroups of type II restriction endonucleases. A sequence comparison of all known restriction endonuclease sequences, furthermore, suggests that several enzymes recognizing other DNA sequences also share amino acid sequence similarities with PspGI, SsoII and EcoRII in the region of the presumptive active site. These results are discussed in an evolutionary context.

  6. Protein-protein and protein-DNA interactions in the type I restriction endonuclease R.EcoR124I.

    PubMed

    Mernagh, D R; Janscak, P; Firman, K; Kneale, G G

    1998-01-01

    The type I restriction-modification system EcoR124I recognizes and binds to the split DNA recognition sequence 5'-GAAN(6)RTCG-3'. The methyltransferase, consisting of HsdM and HsdS subunits with the composition M2S, can interact with one or more subunits of the HsdR subunit to form the endonuclease. The interaction of the methyltransferase with HsdR has been investigated by surface plasmon resonance, showing that there are two non-equivalent binding sites for HsdR which differ in binding affinity by at least two orders of magnitude. DNA footprinting experiments using Exonuclease III suggest that the addition of HsdR to the methyltransferase (at a stoichiometry of either 1:1 or 2:1) increases the stability of the resulting DNA-protein complex but does not increase the size of the footprint. More extensive in situ footprinting experiments using copper-phenanthroline on the DNA-protein complexes formed by M2S, R1M2S and R2M2S also show no difference in the detailed cleavage pattern, with approximately 18 nucleotides protected on both strands in each complex. Thus the HsdR subunit(s) of the endonuclease stabilise the interaction of the M2S complex with DNA, but do not directly contribute to DNA binding. In addition, the thymidine nucleotide in the tetranucleotide recognition sequence GTCG is hyper-reactive to cleavage in each case, suggesting that the DNA structure in this region is altered in these complexes.

  7. Computerized restriction endonuclease analysis compared with O-serotype and phage type in the epidemiologic fingerprinting of Pseudomonas aeruginosa strains.

    PubMed

    Garaizar, Javier; Latorre, Mikel; López-Molina, Nuria; Laconcha, Idoia; Alberdi, Leire; Rementeria, Aitor; Audicana, Ana; Uliarte, Rosario; Cisterna, Ramón

    1997-04-01

    OBJECTIVE: To assess restriction endonuclease analysis (REA) of chromosomal DNA using SalI enzyme, low-concentration (0.4%) agarose gels and digitalized data management of the REA patterns obtained for the typing of clinical Pseudomonas aeruginosa isolates. METHODS: A group of 67 clinical unrelated isolates from 10 Spanish hospitals was used to study the discriminatory power, reproducibility and typeability of REA typing. RESULTS: A SalI REA pattern consisted of a variety (1--10) of restriction bands in the range between 12.2 and 48.5 kb and an unresolvable smear of low-molecular-weight bands. Forty different SalI REA patterns with an index of discrimination of 0.979 were obtained. Low typeability (91.04%) was the major limitation of REA typing. Analysis of blinded subcultures of eight Pseudomonas aeruginosa strains showed the reproducibility of REA typing to be 87.5%. Combined phenotypic typing (O-serotyping and phage typing) performed on the same group of strains showed comparable discrimination but much lower reproducibility. Isolates selected from five clusters of nosocomial infections in hospitals in the UK were typed by REA typing, and the results show high agreement when compared with conventional phenotypic typing methods in distinguishing between strains. CONCLUSIONS: These data underline the usefulness of REA typing enhanced with digitalized data management for the epidemiologic subtyping of clinical Pseudomonas aeruginosa isolates.

  8. Simultaneous binding of three recognition sites is necessary for a concerted plasmid DNA cleavage by EcoRII restriction endonuclease.

    PubMed

    Tamulaitis, Gintautas; Sasnauskas, Giedrius; Mucke, Merlind; Siksnys, Virginijus

    2006-04-28

    According to the current paradigm type IIE restriction endonucleases are homodimeric proteins that simultaneously bind to two recognition sites but cleave DNA at only one site per turnover: the other site acts as an allosteric locus, activating the enzyme to cleave DNA at the first. Structural and biochemical analysis of the archetypal type IIE restriction enzyme EcoRII suggests that it has three possible DNA binding interfaces enabling simultaneous binding of three recognition sites. To test if putative synapsis of three binding sites has any functional significance, we have studied EcoRII cleavage of plasmids containing a single, two and three recognition sites under both single turnover and steady state conditions. EcoRII displays distinct reaction patterns on different substrates: (i) it shows virtually no activity on a single site plasmid; (ii) it yields open-circular DNA form nicked at one strand as an obligatory intermediate acting on a two-site plasmid; (iii) it cleaves concertedly both DNA strands at a single site during a single turnover on a three site plasmid to yield linear DNA. Cognate oligonucleotide added in trans increases the reaction velocity and changes the reaction pattern for the EcoRII cleavage of one and two-site plasmids but has little effect on the three-site plasmid. Taken together the data indicate that EcoRII requires simultaneous binding of three rather than two recognition sites in cis to achieve concerted DNA cleavage at a single site. We show that the orthodox type IIP enzyme PspGI which is an isoschisomer of EcoRII, cleaves different plasmid substrates with equal rates. Data provided here indicate that type IIE restriction enzymes EcoRII and NaeI follow different mechanisms. We propose that other type IIE restriction enzymes may employ the mechanism suggested here for EcoRII.

  9. Demonstration of the Principles of Restriction Endonuclease Cleavage Reactions Using Thermostable Bfl I from "Anoxybacillus Flavithermus"

    ERIC Educational Resources Information Center

    Sharma, Prince; D'Souza, David R.; Bhandari, Deepali; Parashar, Vijay; Capalash, Neena

    2003-01-01

    Restriction enzymes are basic tools in recombinant DNA technology. To shape the molecular biology experiments, the students must know how to work with these molecular scissors. Here, we describe an integrated set of experiments, introduced in the "Advances in Molecular Biology and Biotechnology" postgraduate course, which covers the important…

  10. Demonstration of the Principles of Restriction Endonuclease Cleavage Reactions Using Thermostable Bfl I from "Anoxybacillus Flavithermus"

    ERIC Educational Resources Information Center

    Sharma, Prince; D'Souza, David R.; Bhandari, Deepali; Parashar, Vijay; Capalash, Neena

    2003-01-01

    Restriction enzymes are basic tools in recombinant DNA technology. To shape the molecular biology experiments, the students must know how to work with these molecular scissors. Here, we describe an integrated set of experiments, introduced in the "Advances in Molecular Biology and Biotechnology" postgraduate course, which covers the important…

  11. Two-step polymerase chain reactions and restriction endonuclease analyses detect and differentiate ompA DNA of Chlamydia spp.

    PubMed Central

    Kaltenboeck, B; Kousoulas, K G; Storz, J

    1992-01-01

    Specific and sensitive amplification of major outer membrane protein (MOMP) gene (ompA) DNA sequences of Chlamydia species with various MOMP genotypes was achieved by a two-step polymerase chain reaction (PCR). Degenerate, inosine-containing oligonucleotide primers homologous to the 5' and 3' ends of the translated regions of all chlamydial MOMP genes were used in a PCR to amplify a DNA fragment of approximately 1,120 bp. A portion of this DNA fragment was amplified in a second genus-specific reaction that yielded a DNA fragment of approximately 930 bp. A pair of degenerate oligonucleotide primers homologous to internal sequences of the primary DNA fragment was used in this PCR. This method detected three cognate chlamydial genomes in a background of 1 microgram of unrelated DNA. MOMP genes of 13 representative chlamydial MOMP genotypes of the species C. trachomatis, C. pneumoniae, and C. psittaci were amplified. In a secondary PCR, group-specific detection was achieved by the simultaneous use of one genus-specific primer and three primers derived from different fingerprint regions of three major groups of chlamydiae. This multiplex PCR differentiated the groups by the length of the amplified DNA fragments and detected the simultaneous presence of DNA sequences of the Chlamydia spp. with different MOMP genotypes. Further differentiation as ompA restriction fragment length polymorphism types among all chlamydial strains with the various MOMP genotypes analyzed here was achieved by restriction endonuclease analysis of the secondary PCR products. DNA sequences corresponding to the ompA restriction fragment length polymorphism type B577 of C. psittaci were detected in two of seven milk samples from cases of bovine mastitis. Images PMID:1349899

  12. Formation of carcinogenic chromosomal rearrangements in human thyroid cells after induction of double-strand DNA breaks by restriction endonucleases.

    PubMed

    Evdokimova, Viktoria; Gandhi, Manoj; Rayapureddi, Jayanagendra; Stringer, James R; Nikiforov, Yuri E

    2012-06-01

    Ionizing radiation (IR) exposure increases the risk of thyroid cancer and other cancer types. Chromosomal rearrangements, such as RET/PTC, are characteristic features of radiation-associated thyroid cancer and can be induced by radiation in vitro. IR causes double-strand breaks (DSBs), suggesting that such damage leads to RET/PTC, but the rearrangement mechanism has not been established. To study the mechanism, we explored the possibility of inducing RET/PTC by electroporation of restriction endonucleases (REs) into HTori-3 human thyroid cells. We used five REs, which induced DSB in a dose-dependent manner similar to that seen with IR. Although all but one RE caused DSB in one or more of the three genes involved in RET/PTC, rearrangement was detected only in cells electroporated with either PvuII (25 and 100  U) or StuI (100 and 250  U). The predominant rearrangement type was RET/PTC3, which is characteristic of human thyroid cancer arising early after Chernobyl-related radioactive iodine exposure. Both enzymes that produced RET/PTC had restriction sites only in one of the two fusion partner genes. Moreover, the two enzymes that produced RET/PTC had restriction sites present in clusters, which was not the case for RE that failed to induce RET/PTC. In summary, we establish a model of DSB induction by RE and report for the first time the formation of carcinogenic chromosomal rearrangements, predominantly RET/PTC3, as a result of DSB produced by RE. Our data also raise a possibility that RET/PTC rearrangement can be initiated by a complex DSB that is induced in one of the fusion partner genes.

  13. Type III restriction endonucleases are heterotrimeric: comprising one helicase-nuclease subunit and a dimeric methyltransferase that binds only one specific DNA.

    PubMed

    Butterer, Annika; Pernstich, Christian; Smith, Rachel M; Sobott, Frank; Szczelkun, Mark D; Tóth, Júlia

    2014-04-01

    Fundamental aspects of the biochemistry of Type III restriction endonucleases remain unresolved despite being characterized by numerous research groups in the past decades. One such feature is the subunit stoichiometry of these hetero-oligomeric enzyme complexes, which has important implications for the reaction mechanism. In this study, we present a series of results obtained by native mass spectrometry and size exclusion chromatography with multi-angle light scattering consistent with a 1:2 ratio of Res to Mod subunits in the EcoP15I, EcoPI and PstII complexes as the main holoenzyme species and a 1:1 stoichiometry of specific DNA (sDNA) binding by EcoP15I and EcoPI. Our data are also consistent with a model where ATP hydrolysis activated by recognition site binding leads to release of the enzyme from the site, dissociation from the substrate via a free DNA end and cleavage of the DNA. These results are discussed critically in the light of the published literature, aiming to resolve controversies and discuss consequences in terms of the reaction mechanism.

  14. Type III restriction endonucleases are heterotrimeric: comprising one helicase–nuclease subunit and a dimeric methyltransferase that binds only one specific DNA

    PubMed Central

    Butterer, Annika; Pernstich, Christian; Smith, Rachel M.; Sobott, Frank; Szczelkun, Mark D.; Tóth, Júlia

    2014-01-01

    Fundamental aspects of the biochemistry of Type III restriction endonucleases remain unresolved despite being characterized by numerous research groups in the past decades. One such feature is the subunit stoichiometry of these hetero-oligomeric enzyme complexes, which has important implications for the reaction mechanism. In this study, we present a series of results obtained by native mass spectrometry and size exclusion chromatography with multi-angle light scattering consistent with a 1:2 ratio of Res to Mod subunits in the EcoP15I, EcoPI and PstII complexes as the main holoenzyme species and a 1:1 stoichiometry of specific DNA (sDNA) binding by EcoP15I and EcoPI. Our data are also consistent with a model where ATP hydrolysis activated by recognition site binding leads to release of the enzyme from the site, dissociation from the substrate via a free DNA end and cleavage of the DNA. These results are discussed critically in the light of the published literature, aiming to resolve controversies and discuss consequences in terms of the reaction mechanism. PMID:24510100

  15. Qualitative analysis of sequence specific binding of flavones to DNA using restriction endonuclease activity assays.

    PubMed

    Duran, Elizabeth; Ramsauer, Victoria P; Ballester, Maria; Torrenegra, Ruben D; Rodriguez, Oscar E; Winkle, Stephen A

    2013-08-01

    Flavones, found in nature as secondary plant metabolites, have shown efficacy as anti-cancer agents. We have examined the binding of two flavones, 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-chromen-4-one (5,7-dihydroxy-3,6,8-trimethoxy flavone; FlavA) and 3,5-dihydroxy-6,7,8-trimethoxy-2-phenyl-4H-chromen-4-one (3,5-dihydroxy-6,7,8-trimethoxy flavone; FlavB), to phiX174 RF DNA using restriction enzyme activity assays employing the restriction enzymes Alw44, AvaII, BssHII, DraI, MluI, NarI, NciI, NruI, PstI, and XhoI. These enzymes possess differing target and flanking sequences allowing for observation of sequence specificity analysis. Using restriction enzymes that cleave once with a mixture of supercoiled and relaxed DNA substrates provides for observation of topological effects on binding. FlavA and FlavB show differing sequence specificities in their respective binding to phiX. For example, with relaxed DNA, FlavA shows inhibition of cleavage with DraI (reaction site (5') TTTAAA) but not BssHII ((5') GCGCGC) while FlavB shows the opposite results. Evidence for tolological specificity is also observed, Molecular modeling and conformational analysis of the flavones suggests that the phenyl ring of FlavB is coplanar with the flavonoid ring while the phenyl ring of FlavA is at an angle relative to the flavonoid ring. This may account for aspects of the observed sequence and topological specificities in the effects on restriction enzyme activity.

  16. Polyphosphate present in DNA preparations from fungal species of Collectotrichum inhibits restriction endonucleases and other enzymes

    USGS Publications Warehouse

    Rodriguez, R.J.

    1993-01-01

    During the development of a procedure for the isolation of total genomic DNA from filamentous fungi (Rodriguez, R. J., and Yoder, 0. C., Exp. Mycol. 15, 232-242, 1991) a cell fraction was isolated which inhibited the digestion of DNA by restriction enzymes. After elimination of DNA, RNA, proteins, and lipids, the active compound was purified by gel filtration to yield a single fraction capable of complete inhibition of restriction enzyme activity. The inhibitor did not absorb uv light above 220 nm, and was resistant to alkali and acid at 25°C and to temperatures as high as 100°C. More extensive analyses demonstrated that the inhibitor was also capable of inhibiting T4 DNA ligase and TaqI DNA polymerase, but not DNase or RNase. Chemical analyses indicated that the inhibitor was devoid of carbohydrates, proteins, lipids, and nucleic acids but rich in phosphorus. A combination of nuclear magnetic resonance, metachromatic shift of toluidine blue, and gel filtration indicated that the inhibitor was a polyphosphate (polyP) containing approximately 60 phosphate molecules. The mechanism of inhibition appeared to involve complexing of polyP to the enzymatic proteins. All species of Colletotrichum analyzed produced polyP equivalent in chain length and concentration. A modification to the original DNA extraction procedure is described which eliminates polyP and reduces the time necessary to obtain DNA of sufficient purity for restriction enzyme digestion and TaqI polymerase amplification.

  17. Restriction endonuclease-mediated selective polymerase chain reaction: a novel assay for the detection of K-ras mutations in clinical samples.

    PubMed

    Ward, R; Hawkins, N; O'Grady, R; Sheehan, C; O'Connor, T; Impey, H; Roberts, N; Fuery, C; Todd, A

    1998-08-01

    The enriched polymerase chain reaction (PCR) assay has been used extensively in the detection of ras gene mutations in many types of human malignancies. Although it is very sensitive, it has a number of features that limit its use in the routine diagnostic laboratory. The aim of this study was to develop a novel enriched PCR strategy, in which the concurrent activity of the restriction enzyme BstNI and Taq polymerase allowed the amplification of mutant K-ras while inhibiting the formation of wild-type product. This restriction endonuclease-mediated selective PCR assay uses three sets of primers, together with BstNI, in the reaction mix, and the amplification products are analyzed by gel electrophoresis. The reliability of the restriction endonuclease-mediated selective PCR assay to detect activated K-ras was determined in a variety of clinical samples, including 139 fresh colorectal carcinomas and 113 paraffin-embedded blocks from 80 separate tumors of the colon and rectum, pancreas, breast, or kidney. Codon 12 mutations of the K-ras oncogene were identified in DNA from both fresh and paraffin-embedded tumors in a rapid, sensitive, and reproducible manner. Mutations were detected in 33 (24%) of the fresh colorectal cancers and 16 (20%) of the paraffin-embedded tumors. These results were 97% concordant in cases in which paraffin blocks and fresh specimens from the same tumor were available for analysis. We conclude that restriction endonuclease-mediated selective PCR is a sensitive, rapid, and robust assay for the detection of point mutations in a variety of clinical samples. Importantly, there is no need for manipulation of the sample once the PCR has been set up, and therefore, the chance of contamination is significantly reduced. In contrast to previous assays, restriction endonuclease-mediated selective PCR is not labor intensive, and its format is suitable for use in routine diagnostic laboratory.

  18. Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a ‘differential multiple cleavage-site’ model

    PubMed Central

    Bacman, SR; Williams, SL; Hernandez, D; Moraes, CT

    2009-01-01

    The ability to manipulate mitochondrial DNA (mtDNA) heteroplasmy would provide a powerful tool to treat mitochondrial diseases. Recent studies showed that mitochondria-targeted restriction endonucleases can modify mtDNA heteroplasmy in a predictable and efficient manner if it recognizes a single site in the mutant mtDNA. However, the applicability of such model is limited to mutations that create a novel cleavage site, not present in the wild-type mtDNA. We attempted to extend this approach to a ‘differential multiple cleavage site’ model, where an mtDNA mutation creates an extra restriction site to the ones normally present in the wild-type mtDNA. Taking advantage of a heteroplasmic mouse model harboring two haplotypes of mtDNA (NZB/BALB) and using adenovirus as a gene vector, we delivered a mitochondria-targeted Scal restriction endonuclease to different mouse tissues. Scal recognizes five sites in the NZB mtDNA but only three in BALB mtDNA. Our results showed that changes in mtDNA heteroplasmy were obtained by the expression of mitochondria-targeted ScaI in both liver, after intravenous injection, and in skeletal muscle, after intramuscular injection. Although mtDNA depletion was an undesirable side effect, our data suggest that under a regulated expression system, mtDNA depletion could be minimized and restriction endonucleases recognizing multiple sites could have a potential for therapeutic use. PMID:17597792

  19. Thermo-switchable activity of the restriction endonuclease SsoII achieved by site-directed enzyme modification.

    PubMed

    Abrosimova, Liudmila A; Monakhova, Mayya V; Migur, Anzhela Yu; Wolfgang, Wende; Pingoud, Alfred; Kubareva, Elena A; Oretskaya, Tatiana S

    2013-12-01

    In this work, the possibility of constructing a thermo-switchable enzyme according to the "molecular gate" strategy is demonstrated. The approach is based on the covalent attachment of oligodeoxyribonucleotides to cysteine residues of an enzyme adjacent to its active center to form a temporal barrier for enzyme-substrate complex formation. The activity of the modified enzyme that had been studied here-the restriction endonuclease SsoII (R.SsoII)-was diminished by a factor of 180 at 25 °С that almost abolished the enzymatic activity when compared with the unmodified enzyme. However, heating of the modified enzyme to 45 °С resulted in a 30-fold increase of activity. The activity of unmodified R.SsoII also increased on heating from 25 to 45 °; however, the difference did not exceed a factor of 3-4. The changes in enzymatic activity observed were shown to be reversible for both the unmodified and the modified R.SsoII. Variation of the length and the sequence of the attached oligodeoxyribonucleotides might allow greater modulation of the activity of DNA-protein conjugates. © 2013 International Union of Biochemistry and Molecular Biology.

  20. The elastic network model reveals a consistent picture on intrinsic functional dynamics of type II restriction endonucleases

    NASA Astrophysics Data System (ADS)

    Uyar, A.; Kurkcuoglu, O.; Nilsson, L.; Doruker, P.

    2011-10-01

    The vibrational dynamics of various type II restriction endonucleases, in complex with cognate/non-cognate DNA and in the apo form, are investigated with the elastic network model in order to reveal common functional mechanisms in this enzyme family. Scissor-like and tong-like motions observed in the slowest modes of all enzymes and their complexes point to common DNA recognition and cleavage mechanisms. Normal mode analysis further points out that the scissor-like motion has an important role in differentiating between cognate and non-cognate sequences at the recognition site, thus implying its catalytic relevance. Flexible regions observed around the DNA-binding site of the enzyme usually concentrate on the highly conserved β-strands, especially after DNA binding. These β-strands may have a structurally stabilizing role in functional dynamics for target site recognition and cleavage. In addition, hot spot residues based on high-frequency modes reveal possible communication pathways between the two distant cleavage sites in the enzyme family. Some of these hot spots also exist on the shortest path between the catalytic sites and are highly conserved.

  1. A fluorescence method for detection of DNA and DNA methylation based on graphene oxide and restriction endonuclease HpaII.

    PubMed

    Wei, Wei; Gao, Chunyan; Xiong, Yanxiang; Zhang, Yuanjian; Liu, Songqin; Pu, Yuepu

    2015-01-01

    DNA methylation plays an important role in many biological events and is associated with various diseases. Most traditional methods for detection of DNA methylation are based on the complex and expensive bisulfite method. In this paper, we report a novel fluorescence method to detect DNA and DNA methylation based on graphene oxide (GO) and restriction endonuclease HpaII. The skillfully designed probe DNA labeled with 5-carboxyfluorescein (FAM) and optimized GO concentration keep the probe/target DNA still adsorbed on the GO. After the cleavage action of HpaII the labeled FAM is released from the GO surface and its fluorescence recovers, which could be used to detect DNA in the linear range of 50 pM-50 nM with a detection limit of 43 pM. DNA methylation induced by transmethylase (Mtase) or other chemical reagents prevents HpaII from recognizing and cleaving the specific site; as a result, fluorescence cannot recover. The fluorescence recovery efficiency is closely related to the DNA methylation level, which can be used to detect DNA methylation by comparing it with the fluorescence in the presence of intact target DNA. The method for detection of DNA and DNA methylation is simple, reliable and accurate. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Characterization of a new aberration of the human Y chromosome by banding methods and DNA restriction endonuclease analysis.

    PubMed

    Schmid, M; Gall, H; Schempp, W; Weber, L; Schmidtke, J

    1981-01-01

    Comparative cytogenetic analyses were performed with ten different banding methods on a previously undescribed, inherited structural aberration of a Y chromosome, and the results compared with those of normal Y chromosomes occurring in the same family. The value of the individual staining techniques in investigations of Y chromosomal aberrations is emphasized. The aberrant Y chromosome analyzed can be formally derived from an isodicentric Y chromosome for the short arm with a very terminal long-arm breakpoint, in which the centromere, an entire short arm, and the proximal region on one long arm was lost. This interpretation was confirmed by determining the amount of the two Y-specific DNA sequences (2.1 and 3.4 kb in length) by means of Hae III restriction endonuclease analysis. The karyotype-phenotype correlations in the men with this aberrant Y chromosome, especially the fertility dysfunctions (oligoasthenoteratozoospermia, cryptozoospermia), are discussed. The possibility of the existence of fertility factors involved in the control of spermatogenesis within the quinacrine-bright heterochromatic region of the Y long arm is presented.

  3. Restriction endonuclease analysis of clinical Pseudomonas aeruginosa strains: useful epidemiologic data from a simple and rapid method.

    PubMed Central

    Maher, W E; Kobe, M; Fass, R J

    1993-01-01

    Newer genetic techniques have replaced phenotypic methods of subtyping Pseudomonas aeruginosa strains. Widespread application of newer methodologies, however, may be limited by technologic complexity and the cost of equipment. We conducted restriction endonuclease analysis (REA) of sheared genomic DNAs from 48 clinical P. aeruginosa strains using the enzyme SalI and electrophoresis in horizontal, low-concentration (0.3 to 0.6%) agarose gels. Each REA profile consisted of a smear of lower-molecular-mass bands as well as a countable number of well-resolved bands in the 8.3- to 48.5-kbp range which could easily be compared when isolates were run side-by-side on the same gel. In general, the REA patterns of strains recovered from different patients differed by at least seven bands, and those of serial isolates from individual patients were identical or differed by, at most, two bands over this 8.3- to 48.5-kbp range. REA of strains already subtyped by field inversion gel electrophoresis revealed that the two techniques generally paralleled each other. Overall, some unrelated strains had similar REA profiles, but the relative simplicity and low cost of the approach coupled with the ability to demonstrate differences between most unrelated strains should make this type of REA an attractive first step in the investigation of institutional P. aeruginosa problems. Images PMID:8391021

  4. An investigation of enzootic Glasser's disease in a specific-pathogen-free grower-finisher facility using restriction endonuclease analysis.

    PubMed

    Smart, N L; Hurnik, D; Macinnes, J I

    1993-08-01

    Enzootic Glassers's disease was investigated to study the epidemiology of the disease strains on a farm where it presented a problem. Restriction endonuclease fingerprinting (REF) analysis technique was used, as all strains of Haemophilus parasuis are biochemically similar and many strains are biochemically untypable. After young weaned pigs were moved from farm A to farm B, Glasser's disease routinely occurred despite the use of antibiotics and a commercial bacterin. Isolates were taken from the nasal passages and from carcasses of clinically affected cases and subjected to REF analysis. Haemophilus parasuis was not isolated from any of the pigs on farm A, but it was isolated from 7/10 and 5/10 nasal swabs taken from farm B. Two H. parasuis strains isolated from clinical cases of Glasser's disease from farm B had an identical REF pattern, but were different from the nasal swabs and the H. parasuis strain contained in the bacterin. The subsequent use of a custom autogenous bacterin made from a clinical isolate of H. parasuis reduced the mortality rate on farm B. This investigation indicates that nasal isolates of H. parasuis are different than those causing clinical disease, and not all bacterin strains are cross protective for other strains.

  5. Modification-dependent restriction endonuclease, MspJI, flips 5-methylcytosine out of the DNA helix

    SciTech Connect

    Horton, J. R.; Wang, H.; Mabuchi, M. Y.; Zhang, X.; Roberts, R. J.; Zheng, Y.; Wilson, G. G.; Cheng, X.

    2014-09-27

    MspJI belongs to a family of restriction enzymes that cleave DNA containing 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC). MspJI is specific for the sequence 5(h)mC-N-N-G or A and cleaves with some variability 9/13 nucleotides downstream. Earlier, we reported the crystal structure of MspJI without DNA and proposed how it might recognize this sequence and catalyze cleavage. Here we report its co-crystal structure with a 27-base pair oligonucleotide containing 5mC. This structure confirms that MspJI acts as a homotetramer and that the modified cytosine is flipped from the DNA helix into an SRA-like-binding pocket. We expected the structure to reveal two DNA molecules bound specifically to the tetramer and engaged with the enzyme's two DNA-cleavage sites. A coincidence of crystal packing precluded this organization, however. We found that each DNA molecule interacted with two adjacent tetramers, binding one specifically and the other non-specifically. The latter interaction, which prevented cleavage-site engagement, also involved base flipping and might represent the sequence-interrogation phase that precedes specific recognition. MspJI is unusual in that DNA molecules are recognized and cleaved by different subunits. Such interchange of function might explain how other complex multimeric restriction enzymes act.

  6. Modification-dependent restriction endonuclease, MspJI, flips 5-methylcytosine out of the DNA helix

    DOE PAGES

    Horton, J. R.; Wang, H.; Mabuchi, M. Y.; ...

    2014-09-27

    MspJI belongs to a family of restriction enzymes that cleave DNA containing 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC). MspJI is specific for the sequence 5(h)mC-N-N-G or A and cleaves with some variability 9/13 nucleotides downstream. Earlier, we reported the crystal structure of MspJI without DNA and proposed how it might recognize this sequence and catalyze cleavage. Here we report its co-crystal structure with a 27-base pair oligonucleotide containing 5mC. This structure confirms that MspJI acts as a homotetramer and that the modified cytosine is flipped from the DNA helix into an SRA-like-binding pocket. We expected the structure to reveal two DNAmore » molecules bound specifically to the tetramer and engaged with the enzyme's two DNA-cleavage sites. A coincidence of crystal packing precluded this organization, however. We found that each DNA molecule interacted with two adjacent tetramers, binding one specifically and the other non-specifically. The latter interaction, which prevented cleavage-site engagement, also involved base flipping and might represent the sequence-interrogation phase that precedes specific recognition. MspJI is unusual in that DNA molecules are recognized and cleaved by different subunits. Such interchange of function might explain how other complex multimeric restriction enzymes act.« less

  7. Bme585 I [5'-CCCGC(4/6)-3'], a new isoschizomer of restriction endonuclease Fau I, isolated from a strain of Bacillus mesentericus.

    PubMed

    Davalieva, Katarina; Ziberovski, Jugoslav; Efremov, Georgi D

    2004-01-01

    Bme585 I is a new member of the restriction endonuclease type IIS family. It was partially purified from the heterothrophic, mesophilic bacterial strain Bacillus mesentericus 585 by ammonium sulphate precipitation and phosphocellulose column chromatography. Bme585 I is a monomeric protein with a molecular mass of 62 kD. The enzyme is active over a broad pH range from 7.0 to 8.8, has a temperature optimum of 37 degrees C and tolerance of NaCl in reaction buffer from 0 to 400 mM. Bme585 I recognizes the asymmetric sequence 5'-CCCGC(4/6)-3' and is therefore an isoschizomer of restriction endonuclease Fau I.

  8. Crystal structure of type IIE restriction endonuclease EcoRII reveals an autoinhibition mechanism by a novel effector-binding fold.

    PubMed

    Zhou, Xiaoyin E; Wang, Yujun; Reuter, Monika; Mücke, Merlind; Krüger, Detlev H; Meehan, Edward J; Chen, Liqing

    2004-01-02

    EcoRII is a type IIE restriction endonuclease that interacts with two copies of the DNA recognition sequence 5'CCWGG, one being the actual target of cleavage, the other serving as the allosteric effector. The mode of enzyme activation by effector binding is unknown. To investigate the molecular basis of activation and cleavage mechanisms by EcoRII, the crystal structure of EcoRII mutant R88A has been solved at 2.1A resolution. The EcoRII monomer has two domains linked through a hinge loop. The N-terminal effector-binding domain has a novel DNA recognition fold with a prominent cleft. The C-terminal catalytic domain has a restriction endonuclease-like fold. Structure-based sequence alignment identified the putative catalytic site of EcoRII that is spatially blocked by the N-terminal domain. The structure together with the earlier characterized EcoRII enzyme activity enhancement in the absence of its N-terminal domain reveal an autoinhibition/activation mechanism of enzyme activity mediated by a novel effector-binding fold. This is the first case of autoinhibition, a mechanism described for many transcription factors and signal transducing proteins, of a restriction endonuclease.

  9. A general fluorescent sensor design strategy for "turn-on" activity detection of exonucleases and restriction endonucleases based on graphene oxide.

    PubMed

    Zhang, Qi; Kong, De-Ming

    2013-11-07

    Using graphene oxide (GO) as a nanoquencher, a universal sensor design strategy was developed on the basis of significantly different binding affinities of GO to single-stranded DNAs (ss-DNAs) with different lengths. The proposed sensors could be used for the activity detection of both exonucleases and restriction endonucleases. To achieve this, a single-labeled fluorescent oligonucleotide probe, which had a single-stranded structure or a hairpin structure with a long single-stranded loop, was used. Such a probe could be efficiently absorbed on the surface of GO, resulting in the quenching of the fluorescent signal. Excision of the single-stranded probe by exonucleases or site-specific cleavage at the double-stranded stem of the hairpin probe by restriction endonuclease released fluorophore-labeled nucleotide, which could not be efficiently absorbed by GO, thus leading to increase in fluorescence of the corresponding sensing system. As examples, three sensors, which were used for activity detection of the exonuclease Exo 1 and the restriction endonucleases EcoR I and Hind III, were developed. These three sensors could specifically and sensitively detect the activities of Exo 1, EcoR I and Hind III with detection limits of 0.03 U mL(-1), 0.06 U mL(-1) and 0.04 U mL(-1), respectively. Visual detection was also possible.

  10. Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification.

    PubMed

    Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun

    2016-01-01

    We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5' end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5' end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5' end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  11. Structure of the EndoMS-DNA Complex as Mismatch Restriction Endonuclease.

    PubMed

    Nakae, Setsu; Hijikata, Atsushi; Tsuji, Toshiyuki; Yonezawa, Kouki; Kouyama, Ken-Ichi; Mayanagi, Kouta; Ishino, Sonoko; Ishino, Yoshizumi; Shirai, Tsuyoshi

    2016-11-01

    Archaeal NucS nuclease was thought to degrade the single-stranded region of branched DNA, which contains flapped and splayed DNA. However, recent findings indicated that EndoMS, the orthologous enzyme of NucS, specifically cleaves double-stranded DNA (dsDNA) containing mismatched bases. In this study, we determined the structure of the EndoMS-DNA complex. The complex structure of the EndoMS dimer with dsDNA unexpectedly revealed that the mismatched bases were flipped out into binding sites, and the overall architecture most resembled that of restriction enzymes. The structure of the apo form was similar to the reported structure of Pyrococcus abyssi NucS, indicating that movement of the C-terminal domain from the resting state was required for activity. In addition, a model of the EndoMS-PCNA-DNA complex was preliminarily verified with electron microscopy. The structures strongly support the idea that EndoMS acts in a mismatch repair pathway.

  12. Tenebrio obscurus satellite DNA is resistant to cleavage by restriction endonucleases in situ.

    PubMed

    Ugarković, D; Plohl, M; Petitpierre, E; Lucijanić-Justić, V; Juan, C

    1994-05-01

    Satellite DNA from the mealworm beetle, Tenebrio obscurus, is composed of 344 bp long monomers of high AT content (68%), and represents 15% of the total DNA. In situ hybridization reveals the positions of the satellite on the pericentromeric heterochromatin of all T. obscurus chromosomes. To compare restriction enzyme (RE) effects with those on naked DNA, fixed chromosomes were digested with REs having recognition sites in most of the satellite monomers, and also with enzymes having target sites present only partially, or very rarely in the satellite units. All enzymes produce similar C-like banding patterns showing heterochromatin resistance to digestion regardless of the enzyme used. In situ nick translation suggests the inability of REs to cleave satellite DNA rather than the inefficient extraction of DNA fragments. DNA in heterochromatin was only extensively digested when the chromosomes were preincubated with proteinase K, indicating that accessibility of REs to DNA is increased by the removal of chromosomal proteins. This is in contrast to recently obtained results in Tenebrio molitor, where cleavage of satellite DNA is equally efficient in both fixed chromosomes and in naked DNA. The satellite DNAs of the two congeneric species differ in their AT content, and their primary and higher order structure, which could influence both heterochromatin structure and the accessibility of REs to satellite DNA.

  13. Tension-dependent DNA cleavage by restriction endonucleases: two-site enzymes are "switched off" at low force.

    PubMed

    Gemmen, Gregory J; Millin, Rachel; Smith, Douglas E

    2006-08-01

    DNA looping occurs in many important protein-DNA interactions, including those regulating replication, transcription, and recombination. Recent theoretical studies predict that tension of only a few piconewtons acting on DNA would almost completely inhibit DNA looping. Here, we study restriction endonucleases that require interaction at two separated sites for efficient cleavage. Using optical tweezers we measured the dependence of cleavage activity on DNA tension with 15 known or suspected two-site enzymes (BfiI, BpmI, BsgI, BspMI, Cfr9I, Cfr10I, Eco57I, EcoRII, FokI, HpaII, MboII, NarI, SacII, Sau3AI, and SgrAI) and six one-site enzymes (BamHI, EcoRI, EcoRV, HaeIII, HindIII, and DNaseI). All of the one-site enzymes were virtually unaffected by 5 pN of tension, whereas all of the two-site enzymes were completely inhibited. These enzymes thus constitute a remarkable example of a tension sensing "molecular switch." A detailed study of one enzyme, Sau3AI, indicated that the activity decreased exponentially with tension and the decrease was approximately 10-fold at 0.7 pN. At higher forces (approximately 20-40 pN) cleavage by the one-site enzymes EcoRV and HaeIII was partly inhibited and cleavage by HindIII was enhanced, whereas BamHI, EcoRI, and DNaseI were largely unaffected. These findings correlate with structural data showing that EcoRV bends DNA sharply, whereas BamHI, EcoRI, and DNaseI do not. Thus, DNA-directed enzyme activity involving either DNA looping or bending can be modulated by tension, a mechanism that could facilitate mechanosensory transduction in vivo.

  14. Engineered selective plant male sterility through pollen-specific expression of the EcoRI restriction endonuclease.

    PubMed

    Millwood, Reginald J; Moon, Hong S; Poovaiah, Charleson R; Muthukumar, Balasubramaniam; Rice, John Hollis; Abercrombie, Jason M; Abercrombie, Laura L; Green, William Derek; Stewart, Charles Neal

    2016-05-01

    Unintended gene flow from transgenic plants via pollen, seed and vegetative propagation is a regulatory concern because of potential admixture in food and crop systems, as well as hybridization and introgression to wild and weedy relatives. Bioconfinement of transgenic pollen would help address some of these concerns and enable transgenic plant production for several crops where gene flow is an issue. Here, we demonstrate the expression of the restriction endonuclease EcoRI under the control of the tomato pollen-specific LAT52 promoter is an effective method for generating selective male sterility in Nicotiana tabacum (tobacco). Of nine transgenic events recovered, four events had very high bioconfinement with tightly controlled EcoRI expression in pollen and negligible-to-no expression other plant tissues. Transgenic plants had normal morphology wherein vegetative growth and reproductivity were similar to nontransgenic controls. In glasshouse experiments, transgenic lines were hand-crossed to both male-sterile and emasculated nontransgenic tobacco varieties. Progeny analysis of 16 000-40 000 seeds per transgenic line demonstrated five lines approached (>99.7%) or attained 100% bioconfinement for one or more generations. Bioconfinement was again demonstrated at or near 100% under field conditions where four transgenic lines were grown in close proximity to male-sterile tobacco, and 900-2100 seeds per male-sterile line were analysed for transgenes. Based upon these results, we conclude EcoRI-driven selective male sterility holds practical potential as a safe and reliable transgene bioconfinement strategy. Given the mechanism of male sterility, this method could be applicable to any plant species. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Restriction endonuclease mapping of ribosomal RNA genes: sequence divergence and the origin of the tetraploid treefrog Hyla versicolor.

    PubMed

    Romano, P R; Vaughn, J C

    1986-06-01

    Hyla chrysoscelis (2n = 24) and H. versicolor (2n = 48) are a diploid-tetraploid species pair of treefrogs. Restriction endonuclease mapping of ribosomal RNA (rRNA) gene repeat units of diploids collected from eastern and western populations reveals no differences within rRNA gene coding regions but distinctive differences within the nontranscribed spacers. A minimum of two physical maps is required to construct an rRNA gene map for the tetraploid, whose repeat units appear to be a composite, with about 50% of the elements resembling the "western" diploid population and about 50% resembling the "eastern" population. These results imply that this population of the tetraploid species may have arisen from a genetically hybrid diploid. Alternatively, the dual level of sequence heterogeneity in H. versicolor may reflect some type of gene flow between the two species. The coding region of the rRNA genes in the tetraploid differs from that in either diploid in about 20% of all repeat units, as exemplified by a BamHI site located near the 5' terminus of the 28 S rRNA gene. If the 20% variant class of 28 S rRNA gene coding sequences is expressed, then there must be two structural classes of ribosomes; if only the 80% sequence class is expressed, then a genetic control mechanism must be capable of distinguishing between the two different sequence variants. It is postulated that the 20% variant sequence class may be correlated with a partial functional diploidization of rRNA genes in the tetraploid species.

  16. Heterogeneity of genetic loci in chickens: analysis of endogenous viral and nonviral genes by cleavage of DNA with restriction endonucleases.

    PubMed

    Hughes, S H; Payvar, F; Spector, D; Schimke, R T; Robinson, H L; Payne, G S; Bishop, J M; Varmus, H E

    1979-10-01

    Restriction endonucleases can be used to define the structure and position of genetic loci for which specific molecular hybridization reagents are available. We have used this approach to compare 18 chicken embryos with respect to several cellular genes; endogenous viral DNA related to the replicative genes of avian sarcoma virus (ASV) or to RAV-O, an endogenous virus of chickens; and sequences related to the transforming (src) gene of ASV. Each cellular gene eas remarkably homogeneous within our test population. We found little or no variation in globin and ovomucoid genes; ovalbumin and transferrin (with one exception) showed variation which is probably allelic in nature. The endogenous viral DNA which has homology with RAV-O was found at several different positions in host DNA and its structure resembled that of proviruses acquired by experimental infection, with sequences from both ends of viral RNA repeated near both ends of viral DNA. Within the population of 18 chickens, one endogenous provirus was always present, whereas the several other proviruses were each found in only a few members of this group. However, screening of additional chickens identified individuals lacking the provirus common to the initial 18 animals surveyed; in at least one embryo no RAV-O-related DNA was detected. These findings suggest that the endogenous RAV-O-related sequences have entered the germ line by relatively recent infection and are still segregating in several contemporary chicken flocks. The sequences in the chicken genome which have homology with the src gene of ASV are invariant from bird to bird and in this sense resemble a cellular gene rather than a viral sequence.

  17. Genetic discrimination for three gynogenetic clones of silver carp Hypophthalmichthys molitrix, based on restriction endonuclease analysis of Nd5-Nd6 region of mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Zhou, Jianfeng; Ye, Yuzhen; Wu, Qingjiang

    2005-03-01

    Three artificial gynogenetic clones of silver carp were produced for the analysis of restriction enzyme digestion patterns of ND5-ND6 region from mtDNA of the clones. It is revealed that all intraclonal individuals shared completely the same digestion patterns but among interclonal individuals did not. The three clones were mixed and cultured in a pond together for two years, and restriction endonuclease digestion patterns of ND5 ND6 were used as genetic markers to assess the growth performance of each clone.

  18. Physical mapping of the restriction fragments obtained from bacteriophage T4 dC-DNA with the restriction endonucleases SmaI, KpnI and BglII.

    PubMed

    Kiko, H; Niggemann, E; Rüger, W

    1979-01-01

    The cytosine-containing DNA of a mutant of bacteriophage T4 was digested with restriction endonucleases SmaI, KpnI and BglII producing 5, 7 and 13 fragments respectively. Complete physical maps of the T4 genome were constructed with the enzymes SmaI and KpnI and an almost complete map with the enzyme BglII.

  19. Characterization of Temperate Bacteriophages of Bacillus subtilis by the Restriction Endonuclease EcoRI: Evidence for Three Different Temperate Bacteriophages

    PubMed Central

    Wilson, G. A.; Williams, M. T.; Baney, H. W.; Young, F. E.

    1974-01-01

    Temperate bacteriophages of Bacillus subtilis were characterized according to host range and digestion of the bacteriophage genome by endonuclease EcoRI. The three bacteriophages, φ3T, SPO2, and φ105, were all heteroimmune, and the DNA digests showed dissimilar patterns by agarose-ethidium bromide gel electrophoresis. Images PMID:4213607

  20. Metal-binding sites at the active site of restriction endonuclease BamHI can conform to a one-ion mechanism.

    PubMed

    Mones, Letif; Simon, István; Fuxreiter, Monika

    2007-01-01

    The number of metal ions required for phosphoryl transfer in restriction endonucleases is still an unresolved question in molecular biology. The two Ca(2+) and Mn(2+) ions observed in the pre- and post-reactive complexes of BamHI conform to the classical two-metal ion choreography. We probed the Mg(2+) cofactor positions at the active site of BamHI by molecular dynamics simulations with one and two metal ions present and identified several catalytically relevant sites. These can mark the pathway of a single ion during catalysis, suggesting its critical role, while a regulatory function is proposed for a possible second ion.

  1. Chromosomal aberrations induced by the restriction endonucleases EcoR I, Pst I, Sal I and Bam HI in CHO cells.

    PubMed

    Zhang, S Z; Dong, W F

    1987-09-01

    4 widely used cohesive end-producing restriction endonucleases (REs), EcoR I, Pst I, Sal I and Bam HI were tested in CHO cells for their aberration-inducing effects. It was demonstrated that all these REs significantly increased the frequencies of aberrant cells, the aberration frequencies per cell and the aberration frequencies per chromosome. The effects of REs on chromosomal aberrations are similar to ionizing radiation, but more minutes and interchange figures are observed. Polyploid cells are more susceptible to RE treatment, an interesting finding which may be explained by the mechanisms leading to the formation of polyploid cells.

  2. Degenerate sequence recognition by the monomeric restriction enzyme: single mutation converts BcnI into a strand-specific nicking endonuclease

    PubMed Central

    Kostiuk, Georgij; Sasnauskas, Giedrius; Tamulaitiene, Giedre; Siksnys, Virginijus

    2011-01-01

    Unlike orthodox Type II restriction endonucleases that are homodimers and interact with the palindromic 4–8-bp DNA sequences, BcnI is a monomer which has a single active site but cuts both DNA strands within the 5′-CC↓CGG-3′/3′-GGG↓CC-5′ target site (‘↓’ designates the cleavage position). Therefore, after cutting the first strand, the BcnI monomer must re-bind to the target site in the opposite orientation; but in this case, it runs into a different central base because of the broken symmetry of the recognition site. Crystal-structure analysis shows that to accept both the C:G and G:C base pairs at the center of its target site, BcnI employs two symmetrically positioned histidines H77 and H219 that presumably change their protonation state depending on the binding mode. We show here that a single mutation of BcnI H77 or H219 residues restricts the cleavage activity of the enzyme to either the 5′-CCCGG-3′ or the 5′-CCGGG-3′ strand, thereby converting BcnI into a strand-specific nicking endonuclease. This is a novel approach for engineering of monomeric restriction enzymes into strand-specific nucleases. PMID:21227928

  3. Physical Map of the Channel Catfish Virus Genome: Location of Sites for Restriction Endonucleases EcoRI, HindIII, HpaI, and XbaI

    PubMed Central

    Chousterman, Suzanne; Lacasa, Michel; Sheldrick, Peter

    1979-01-01

    The overall arrangement of nucleotide sequences in the DNA of channel catfish virus has been studied by cleavage with four restriction endonucleases. Physical maps have been developed for the location of sites for EcoRI, HindIII, HpaI, and XbaI. The sum of the molecular weights of fragments generated by each restriction enzyme indicates a molecular weight of approximately 86 × 106 for the channel catfish virus genome. Fragments corresponding to the molecular ends of channel catfish virus DNA have been identified by their sensitivity to exonuclease treatment. The distribution of restriction sites in the genome shows that sequences included in a 12 × 106-molecular weight region at one end are repeated with direct polarity at the other end, and that the overall genomic sequence order is nonpermuted. Images PMID:16789182

  4. Restriction endonuclease analysis as a taxonomic tool in the study of pig isolates belonging to the Australis serogroup of Leptospira interrogans.

    PubMed Central

    Ellis, W A; Montgomery, J M; Thiermann, A B

    1991-01-01

    Restriction endonuclease analysis was performed on DNAs from the type strains of the Australis serogroup of Leptospira interrogans by using 20 restriction enzymes, and the electrophoretic patterns obtained were compared with patterns obtained from 162 Australis serogroup isolates from pigs. It proved to be a quick and reliable method for typing such strains. All of the pig isolates were identified as either serovar bratislava or muenchen. It also showed differences at the subserovar level which may be important in (i) understanding the epidemiology of the Australis serogroup, (ii) the development of suitable vaccines, and (iii) pathogenesis and pathogenicity studies. Two genotypes (B2b and M2) accounted for 92% of isolates from aborted or stillborn piglets, while a third genotype (B2a) was the only one recovered from the brains of piglets with meningitis. Images PMID:1647408

  5. Restriction endonuclease analysis as a taxonomic tool in the study of pig isolates belonging to the Australis serogroup of Leptospira interrogans.

    PubMed

    Ellis, W A; Montgomery, J M; Thiermann, A B

    1991-05-01

    Restriction endonuclease analysis was performed on DNAs from the type strains of the Australis serogroup of Leptospira interrogans by using 20 restriction enzymes, and the electrophoretic patterns obtained were compared with patterns obtained from 162 Australis serogroup isolates from pigs. It proved to be a quick and reliable method for typing such strains. All of the pig isolates were identified as either serovar bratislava or muenchen. It also showed differences at the subserovar level which may be important in (i) understanding the epidemiology of the Australis serogroup, (ii) the development of suitable vaccines, and (iii) pathogenesis and pathogenicity studies. Two genotypes (B2b and M2) accounted for 92% of isolates from aborted or stillborn piglets, while a third genotype (B2a) was the only one recovered from the brains of piglets with meningitis.

  6. Cloning and analysis of a bifunctional methyltransferase/restriction endonuclease TspGWI, the prototype of a Thermus sp. enzyme family

    PubMed Central

    Zylicz-Stachula, Agnieszka; Bujnicki, Janusz M; Skowron, Piotr M

    2009-01-01

    Background Restriction-modification systems are a diverse class of enzymes. They are classified into four major types: I, II, III and IV. We have previously proposed the existence of a Thermus sp. enzyme family, which belongs to type II restriction endonucleases (REases), however, it features also some characteristics of types I and III. Members include related thermophilic endonucleases: TspGWI, TaqII, TspDTI, and Tth111II. Results Here we describe cloning, mutagenesis and analysis of the prototype TspGWI enzyme that recognises the 5'-ACGGA-3' site and cleaves 11/9 nt downstream. We cloned, expressed, and mutagenised the tspgwi gene and investigated the properties of its product, the bifunctional TspGWI restriction/modification enzyme. Since TspGWI does not cleave DNA completely, a cloning method was devised, based on amino acid sequencing of internal proteolytic fragments. The deduced amino acid sequence of the enzyme shares significant sequence similarity with another representative of the Thermus sp. family – TaqII. Interestingly, these enzymes recognise similar, yet different sequences in the DNA. Both enzymes cleave DNA at the same distance, but differ in their ability to cleave single sites and in the requirement of S-adenosylmethionine as an allosteric activator for cleavage. Both the restriction endonuclease (REase) and methyltransferase (MTase) activities of wild type (wt) TspGWI (either recombinant or isolated from Thermus sp.) are dependent on the presence of divalent cations. Conclusion TspGWI is a bifunctional protein comprising a tandem arrangement of Type I-like domains; particularly noticeable is the central HsdM-like module comprising a helical domain and a highly conserved S-adenosylmethionine-binding/catalytic MTase domain, containing DPAVGTG and NPPY motifs. TspGWI also possesses an N-terminal PD-(D/E)XK nuclease domain related to the corresponding domains in HsdR subunits, but lacks the ATP-dependent translocase module of the HsdR subunit

  7. Control of the endonuclease activity of type I restriction-modification systems is required to maintain chromosome integrity following homologous recombination.

    PubMed

    Blakely, Garry W; Murray, Noreen E

    2006-05-01

    A type I restriction-modification enzyme will bind to an unmethylated target sequence in DNA and, while still bound to the target, translocate DNA through the protein complex in both directions. DNA breakage occurs when two translocating complexes collide. However, if type I restriction-modification systems bind to unmodified target sequences within the resident bacterial chromosome, as opposed to incoming 'foreign' DNA, their activity is curtailed; a process known as restriction alleviation (RA). We have identified two genes in Escherichia coli, rnhA and recG, mutations in which lead to the alleviation of restriction. Induction of RA in response to these mutations is consistent with the production of unmodified target sequences following DNA synthesis associated with both homologous recombination and R-loop formation. This implies that a normal function of RA is to protect the bacterial chromosome when recombination generates unmodified products. For EcoKI, our experiments demonstrate the contribution of two pathways that serve to protect unmodified DNA in the bacterial chromosome: the primary pathway in which ClpXP degrades the restriction endonuclease and a mechanism dependent on the lar gene within Rac, a resident, defective prophage of E. coli K-12. Previously, the potential of the second pathway has only been demonstrated when expression of lar has been elevated. Our data identify the effect of lar from the repressed prophage.

  8. Protein engineering of BamHI restriction endonuclease: replacement of Cys54 by Ala enhances catalytic activity.

    PubMed

    Mukhopadhyay, P; Roy, K B

    1998-10-01

    Chemical modification studies of BamHI endonuclease indicated the importance of the cysteine residue in catalysis [Nath, K. (1981) Arch. Biochem. Biophys, 212, 611-617]. Of the three cysteine residues at positions 34, 54 and 64 in the BamHI endonuclease Cys54 and Cys64 are at the DNA-protein interface. The co-crystal structure of the BamHI-DNA complex, however, does not indicate any role of cysteines either in binding or catalysis. In the context of strong biochemical evidence, Cys54 in BamHI was changed to Ala54 to investigate its role in catalysis. The mutation was carried out by PCR overlap extension, the mutant gene was cloned and characterized by sequencing. The mutant BamHI was expressed and purified to homogeneity and the kinetic parameters (K(M) and kcat) of the wild type and the C54A mutant were determined. The mutation results in up to approximately 40% enhancement of kcat and some increase in K(M). These in vitro results were also supported by in vivo SOS induction assays: the C54A mutant gene under the T7 promoter caused complete lysis in JH139 in absence of T7 RNA polymerase whereas the wild-type gene gave deep blue colonies under the same conditions. The results suggest no direct role of Cys54 in catalysis, but it can influence the catalytic activity through Val57 backbone contact seen in the co-crystal structure.

  9. How to proteins move along DNA? Lessons from type-I and type-III restriction endonucleases.

    PubMed

    Szczelkun, M D

    2000-01-01

    Protein-mediated communications on DNA are universally important. The translocation of DNA driven by a high-energy phosphoryl potential allows long stretches of DNA to be traversed without dissociation. Type-I and type-III enzymes both use a common DNA-tracking mechanism to move along DNA, dependent on the hydrolysis of ATP. Type-I enzymes cleave DNA at distant DNA sites (and in some cases close to the site), due to a stall in enzyme motion. This can be due to collision with another translocating type-I enzyme or, on circular DNA, due to an increased topological load. ATP hydrolysis is considerable, and continues after DNA cleavage. Type-III enzymes only cleave DNA proximal to their sites due to collision between two endonucleases tracking with defined polarity. ATP hydrolysis is less than with the type-I enzymes. Homology to DNA helicases has been found within the HsdR and Res subunits. Mutagenesis of the DEAD-box motifs affects both ATP hydrolysis and DNA cleavage. This demonstrates a tight link between ATPase and endonuclease activities. A strand-separation mechanism akin to the DNA helicases is a possibility. The DNA-based motor proteins are mechanistically ill-defined. Further study using some of the techniques pioneered with classical motor proteins will be needed to reveal more detail.

  10. A New Restriction Endonuclease-Based Method for Highly-Specific Detection of DNA Targets from Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Smith, Maria W.; Ghindilis, Andrei L.; Seoudi, Ihab A.; Smith, Kenneth; Billharz, Rosalind; Simon, Holly M.

    2014-01-01

    PCR multiplexing has proven to be challenging, and thus has provided limited means for pathogen genotyping. We developed a new approach for analysis of PCR amplicons based on restriction endonuclease digestion. The first stage of the restriction enzyme assay is hybridization of a target DNA to immobilized complementary oligonucleotide probes that carry a molecular marker, horseradish peroxidase (HRP). At the second stage, a target-specific restriction enzyme is added, cleaving the target-probe duplex at the corresponding restriction site and releasing the HRP marker into solution, where it is quantified colorimetrically. The assay was tested for detection of the methicillin-resistant Staphylococcus aureus (MRSA) pathogen, using the mecA gene as a target. Calibration curves indicated that the limit of detection for both target oligonucleotide and PCR amplicon was approximately 1 nM. Sequences of target oligonucleotides were altered to demonstrate that (i) any mutation of the restriction site reduced the signal to zero; (ii) double and triple point mutations of sequences flanking the restriction site reduced restriction to 50–80% of the positive control; and (iii) a minimum of a 16-bp target-probe dsDNA hybrid was required for significant cleavage. Further experiments showed that the assay could detect the mecA amplicon from an unpurified PCR mixture with detection limits similar to those with standard fluorescence-based qPCR. Furthermore, addition of a large excess of heterologous genomic DNA did not affect amplicon detection. Specificity of the assay is very high because it involves two biorecognition steps. The proposed assay is low-cost and can be completed in less than 1 hour. Thus, we have demonstrated an efficient new approach for pathogen detection and amplicon genotyping in conjunction with various end-point and qPCR applications. The restriction enzyme assay may also be used for parallel analysis of multiple different amplicons from the same unpurified

  11. Novel subtype of type IIs restriction enzymes. BfiI endonuclease exhibits similarities to the EDTA-resistant nuclease Nuc of Salmonella typhimurium.

    PubMed

    Sapranauskas, R; Sasnauskas, G; Lagunavicius, A; Vilkaitis, G; Lubys, A; Siksnys, V

    2000-10-06

    The type IIs restriction enzyme BfiI recognizes the non-palindromic nucleotide sequence 5'-ACTGGG-3' and cleaves complementary DNA strands 5/4 nucleotides downstream of the recognition sequence. The genes coding for the BfiI restriction-modification (R-M) system were cloned/sequenced and biochemical characterization of BfiI restriction enzyme was performed. The BfiI R-M system contained three proteins: two N4-methylcytosine methyltransferases and a restriction enzyme. Sequencing of bisulfite-treated methylated DNA indicated that each methyltransferase modifies cytosines on opposite strands of the recognition sequence. The N-terminal part of the BfiI restriction enzyme amino acid sequence revealed intriguing similarities to an EDTA-resistant nuclease of Salmonella typhimurium. Biochemical analyses demonstrated that BfiI, like the nuclease of S. typhimurium, cleaves DNA in the absence of Mg(2+) ions and hydrolyzes an artificial substrate bis(p-nitrophenyl) phosphate. However, unlike the nonspecific S. typhimurium nuclease, BfiI restriction enzyme cleaves DNA specifically. We propose that the DNA-binding specificity of BfiI stems from the C-terminal part of the protein. The catalytic N-terminal subdomain of BfiI radically differs from that of type II restriction enzymes and is presumably similar to the EDTA-resistant nonspecific nuclease of S. typhimurium; therefore, BfiI did not require metal ions for catalysis. We suggest that BfiI represents a novel subclass of type IIs restriction enzymes that differs from the archetypal FokI endonuclease by the fold of its cleavage domain, the domain location, and reaction mechanism.

  12. Restriction endonuclease analysis of total deoxyribonucleic acid of Mycobacterium tuberculosis H37RV (ATCC 27294) and of M. bovis (ATCC 19210).

    PubMed

    Labidi, A

    1988-01-01

    Total DNA from two slowly-growing pathogenic mycobacterial species propagated in vitro was isolated, digested with each of 34 restriction endonucleases and analyzed by agarose gel electrophoresis. The most distinct profiles for M. tuberculosis (ATCC 27294) and for M. bovis (ATCC 19210) were obtained respectively using (BamHI, DraI, ClaI, EcoRI, EcoRV, HindIII, HpaI, SalI, SmaI, XbaI, and XmaI). The patterns produced for these strains were reproducible and distinguishable from each other. However, with several enzymes the patterns for M. tuberculosis and M. bovis were similar. Evidence was obtained for the presence of dam and dcmI methylations in the DNA of each mycobacterial species.

  13. N-termini of EcoRI restriction endonuclease dimer are in close proximity on the protein surface.

    PubMed

    Liu, W; Chen, Y; Watrob, H; Bartlett, S G; Jen-Jacobson, L; Barkley, M D

    1998-11-03

    The N-terminal region of EcoRI endonuclease is essential for cleavage yet is invisible in the 2.5 A crystal structure of endonuclease-DNA complex [Kim, Y., Grable, J. C., Love, R., Greene, P. J., Rosenberg, J. M. (1990) Science 249, 1307-1309]. We used site-directed fluorescence spectroscopy and chemical cross-linking to locate the N-terminal region and assess its flexibility in the absence and presence of DNA substrate. The second amino acid in each subunit of the homodimer was replaced with cysteine and labeled with pyrene or reacted with bifunctional cross-linkers. The broad absorption spectra and characteristic excimer emission bands of pyrene-labeled muteins indicated stacking of the two pyrene rings in the homodimer. Proximity of N-terminal cysteines was confirmed by disulfide bond formation and chemical cross-linking. The dynamics of the N-terminal region were determined from time-resolved emission anisotropy measurements. The anisotropy decay had two components: a fast component with rotational correlation time of 0.3-3 ns representing probe internal motions and a slow component with 50-100 ns correlation time representing overall tumbling of the protein conjugate. We conclude that the N-termini are close together at the dimer interface with limited flexibility. Binding of Mg2+ cofactor or DNA substrate did not affect the location or flexibility of the N-terminal region as sensed by pyrene fluorescence and cross-linking, indicating that substrate binding is not accompanied by folding or unfolding of the N-terminus.

  14. Type III restriction endonucleases translocate DNA in a reaction driven by recognition site-specific ATP hydrolysis.

    PubMed

    Meisel, A; Mackeldanz, P; Bickle, T A; Krüger, D H; Schroeder, C

    1995-06-15

    Type III restriction/modification systems recognize short non-palindromic sequences, only one strand of which can be methylated. Replication of type III-modified DNA produces completely unmethylated recognition sites which, according to classical mechanisms of restriction, should be signals for restriction. We have shown previously that suicidal restriction by the type III enzyme EcoP15I is prevented if all the unmodified sites are in the same orientation: restriction by EcoP15I requires a pair of unmethylated, inversely oriented recognition sites. We have now addressed the molecular mechanism of site orientation-specific DNA restriction. EcoP15I is demonstrated to possess an intrinsic ATPase activity, the potential driving force of DNA translocation. The ATPase activity is uniquely recognition site-specific, but EcoP15I-modified sites also support the reaction. EcoP15I DNA restriction patterns are shown to be predetermined by the enzyme-to-site ratio, in that site-saturating enzyme levels elicit cleavage exclusively between the closest pair of head-to-head oriented sites. DNA restriction is blocked by Lac repressor bound in the intervening sequence between the two EcoP15I sites. These results rule out DNA looping and strongly suggest that cleavage is triggered by the close proximity of two convergently tracking EcoP15I-DNA complexes.

  15. Repercussions of DNA tracking by the type IC restriction endonuclease EcoR124I on linear, circular and catenated substrates.

    PubMed

    Szczelkun, M D; Dillingham, M S; Janscak, P; Firman, K; Halford, S E

    1996-11-15

    Type I restriction endonucleases such as EcoR124I cleave DNA at undefined loci, distant from their recognition sequences, by a mechanism that involves the enzyme tracking along the DNA between recognition and cleavage sites. This mechanism was examined on plasmids that carried recognition sites for EcoR124I and recombination sites for resolvase, the latter to create DNA catenanes. Supercoiled substrates with either one or two restriction sites were linearized by EcoR124I at similar rates, although the two-site molecule underwent further cleavage more readily than the one-site DNA. The catenane from the plasmid with one EcoR124I site, carrying the site on the smaller of the two rings, was cleaved by EcoR124I exclusively in the small ring, and this underwent multiple cleavage akin to the two-site plasmid. Linear substrates derived from the plasmids were cleaved by EcoR124I at very slow rates. The communication between recognition and cleavage sites therefore cannot stem from random looping. Instead, it must follow the DNA contour between the sites. On a circular DNA, the translocation of non-specific DNA past the specifically bound protein should increase negative supercoiling in one domain and decrease it in the other. The ensuing topological barrier may be the trigger for DNA cleavage.

  16. The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops : 7. Restriction endonuclease analysis of mitochondrial DNAs from polyploid wheats and their ancestral species.

    PubMed

    Terachi, T; Ogihara, Y; Tsunewaki, K

    1990-09-01

    Many related species and strains of common wheat were compared by matching differences among their mitochondrial genomes with their "parent" nuclear genomes. We examined three species of Aegilops, section Sitopsis (Ae. bicornis, Ae. sharonensis, and Ae. speltoides), emmer wheat (Triticum dicoccoides, T. dicoccum, and T. durum), common wheat (T. spelta, T. aestivum, and T. compaction), and timopheevi wheat (T. araraticum, T. timopheevi, and T. zhukovskyi). A single source of the cytoplasm was used in all the species, except Ae. speltoides (two sources), T. araraticum (two), and T. aestivum (three). Following restriction endonuclease analyses, the mitochondrial genomes were found to comprise seven types, and a dendrogram showing their genetic relatedness was constructed, based upon the percentage of common restriction fragments. MtDNAs from T. dicoccum, T. durum, T. aestivum, and T. compactum yielded identical restriction fragment patterns; these differed from T. dicoccoides and T. spelta mtDNAs in only 2.3% of their fragments. The fragment patterns of T. timopheevi and T. zhukovskyi were identical, and these differed from T. araraticum mtDNA by only one fragment. In both the emmer-dinkel and timopheevi groups, mitochondrial genome differentiation is evident, suggesting a diphyletic origin of each group. MtDNAs from four accessions of the Sitopsis species of Aegilops differ greatly from one another, but those of Ae. bicornis, Ae. sharonensis, and Ae. searsii, belonging to the same subsection Emarginata, are relatively similar. MtDNAs of timopheevi species are identical, or nearly so, to those of Ae. speltoides accession (09), suggesting that the latter was the cytoplasm donor to the former, polyploid group. The origin of this polyploid group seems to be rather recent in that the diploid and polyploid species possess nearly identical mitochondrial genomes. We cannot determine, with precision, the cytoplasm donor to the emmer-dinkel group. However, our results do

  17. An inexpensive, simple protocol for DNA isolation from blood for high-throughput genotyping by polymerase chain reaction or restriction endonuclease digestion.

    PubMed

    Bailes, S M; Devers, J J; Kirby, J D; Rhoads, D D

    2007-01-01

    We describe simple, inexpensive, and reliable methods for isolating DNA from avian blood, semen, or feather pulp. The procedures are readily applicable to high-throughput 96-well plate isolation for genotype analysis of chicken DNA based on restriction endonuclease digestion or PCR. Isolation cost is primarily the cost of a deep-well assay block and a few pipet tips; current price is less than 0.10 dollar per sample, providing a significant cost advantage over commercial kits. The procedure employs inexpensive, nonhazardous reagents and yields intact, double-stranded DNA from as little as 2 to 10 microL of avian blood, suitable for RFLP analysis or hundreds of PCR amplifications. We compared our method to published procedures for alkaline extraction from feather pulp and found our method to be more reliable with the advantage of isolating intact DNA sequences that can be easily quantified. With minor modifications, the method can isolate DNA for PCR genotyping from mammalian whole blood.

  18. Restriction Endonuclease and nif Homology Patterns of Bradyrhizobium japonicum USDA 110 Derivatives With and Without Nitrogen Fixation Competence †

    PubMed Central

    Mathis, James N.; Kuykendall, L. David; Elkan, Gerald H.

    1986-01-01

    DNAs from Bradyrhizobium japonicum USDA 110 derivatives that differ in nitrogen-fixing ability produced similar electrophoretic patterns with five different restriction enzymes. Our data support the hypothesis of common ancestry for these derivatives. Derivatives I-110 and L1-110 differed as much as 100-fold in acetylene reduction activity when they were tested with several soybean cultivars in both greenhouse and field experiments. While possessing nodulating ability, derivative L1-110 is deficient in symbiotic nitrogen-fixing ability, whereas derivative I-110 is symbiotically competent. Hybridization of nifDK and nifH probes from B. japonicum to Southern blots of restricted DNAs from strain USDA 110 derivatives produced similar patterns. This finding indicates similar structural gene organization for both derivative I-110 and derivative L1-110 and implies that the difference in symbiotic nitrogen fixation is probably not due to structural gene rearrangements. However, our hybridization data do not rule out the possibility of differences in expression of structural nif genes or alterations in the structure or expression of other genes required for symbiotic nitrogen fixation. Images PMID:16347007

  19. Restriction endonuclease analysis of the lactose plasmid in Streptococcus lactis ML3 and two recombinant lactose plasmids.

    PubMed

    Walsh, P M; McKay, L L

    1982-05-01

    We investigated the molecular relationship between the 60-megadalton (Mdal) recombinant lactose plasmids in ML 3 x LM2301 lactose-positive (Lac+) transconjugants and the genetic material of Streptococcus lactis ML3. Lactose metabolism is linked to the 33-Mdal plasmid pSK08 in ML3, and the recipient LM2301 is cured of plasmid DNA. The plasmids were analyzed with a series of restriction enzymes. We found that the 60-Mdal plasmids of Lac+ transconjugants contained pSK08 DNA, but were not simply dimers of pSK08. The 60-Mdal plasmids contained a segment of DNA not apparent in pSK08. The restriction patterns of the 60-Mdal plasmid in a Lac+ nonclumping transconjugant and that in a Lac+ clumping transconjugant were different. This suggested that there was a molecular differences between these two recombinant plasmids. We conclude that the segment of DNA in the 60-Mdal plasmids that was not present in pSK08 was the proposed transfer factor responsible for cell aggregation and high-frequency conjugation.

  20. Rapid identification of clinically significant species and taxa of aerobic actinomycetes, including Actinomadura, Gordona, Nocardia, Rhodococcus, Streptomyces, and Tsukamurella isolates, by DNA amplification and restriction endonuclease analysis.

    PubMed Central

    Steingrube, V A; Wilson, R W; Brown, B A; Jost, K C; Blacklock, Z; Gibson, J L; Wallace, R J

    1997-01-01

    A previously described PCR-restriction fragment length polymorphism (RFLP) identification schema for Nocardia that used an amplified 439-bp segment (amplicon) of the 65-kDa heat shock protein gene was evaluated for potential use with isolates of all clinically significant aerobic actinomycetes. The study included 28 reference (American Type Culture Collection) strains and 198 clinical isolates belonging to 20 taxonomic groups. Of these 198 isolates, 188 could be differentiated by this PCR-RFLP method. Amplicons from all aerobic actinomycete isolates lacked BstEII recognition sites, thereby distinguishing them from those of mycobacteria that contain one or more such sites. Of 29 restriction endonucleases, MspI plus HinfI produced RFLP patterns that differentiated 16 of the 20 taxa. A single RFLP pattern was observed for 15 of 20 taxa that included 65% of phenotypically clustered isolates. Multiple patterns were seen with Gordona bronchialis, Nocardia asteroides complex type VI, Nocardia otitidiscaviarum, Nocardia transvalensis, and Streptomyces spp. Streptomyces RFLP patterns were the most heterogeneous (five patterns among 19 isolates), but exhibited a unique HinfI fragment of > 320 bp. RFLP patterns that matched those from type strains of Streptomyces albus, Streptomyces griseus, or Streptomyces somaliensis were obtained from 14 of 19 Streptomyces isolates. Only 10 of 28 isolates of N. otitidiscaviarum failed to yield satisfactory amplicons, while only 6 of 188 (3.2%) clinical isolates exhibited patterns that failed to match one of the 21 defined RFLP patterns. These studies extended the feasibility of using PCR-RFLP analysis as a rapid method for the identification of all clinically significant species and taxa of aerobic actinomycetes. PMID:9157134

  1. Rapid identification of clinically significant species and taxa of aerobic actinomycetes, including Actinomadura, Gordona, Nocardia, Rhodococcus, Streptomyces, and Tsukamurella isolates, by DNA amplification and restriction endonuclease analysis.

    PubMed

    Steingrube, V A; Wilson, R W; Brown, B A; Jost, K C; Blacklock, Z; Gibson, J L; Wallace, R J

    1997-04-01

    A previously described PCR-restriction fragment length polymorphism (RFLP) identification schema for Nocardia that used an amplified 439-bp segment (amplicon) of the 65-kDa heat shock protein gene was evaluated for potential use with isolates of all clinically significant aerobic actinomycetes. The study included 28 reference (American Type Culture Collection) strains and 198 clinical isolates belonging to 20 taxonomic groups. Of these 198 isolates, 188 could be differentiated by this PCR-RFLP method. Amplicons from all aerobic actinomycete isolates lacked BstEII recognition sites, thereby distinguishing them from those of mycobacteria that contain one or more such sites. Of 29 restriction endonucleases, MspI plus HinfI produced RFLP patterns that differentiated 16 of the 20 taxa. A single RFLP pattern was observed for 15 of 20 taxa that included 65% of phenotypically clustered isolates. Multiple patterns were seen with Gordona bronchialis, Nocardia asteroides complex type VI, Nocardia otitidiscaviarum, Nocardia transvalensis, and Streptomyces spp. Streptomyces RFLP patterns were the most heterogeneous (five patterns among 19 isolates), but exhibited a unique HinfI fragment of > 320 bp. RFLP patterns that matched those from type strains of Streptomyces albus, Streptomyces griseus, or Streptomyces somaliensis were obtained from 14 of 19 Streptomyces isolates. Only 10 of 28 isolates of N. otitidiscaviarum failed to yield satisfactory amplicons, while only 6 of 188 (3.2%) clinical isolates exhibited patterns that failed to match one of the 21 defined RFLP patterns. These studies extended the feasibility of using PCR-RFLP analysis as a rapid method for the identification of all clinically significant species and taxa of aerobic actinomycetes.

  2. Endonuclease Restriction-Mediated Real-Time Polymerase Chain Reaction: A Novel Technique for Rapid, Sensitive and Quantitative Detection of Nucleic-Acid Sequence

    PubMed Central

    Wang, Yi; Wang, Yan; Zhang, Lu; Li, Machao; Luo, Lijuan; Liu, Dongxin; Li, Hua; Cao, Xiaolong; Hu, Shoukui; Jin, Dong; Xu, Jianguo; Ye, Changyun

    2016-01-01

    The article reported a novel methodology for real-time PCR analysis of nucleic acids, termed endonuclease restriction-mediated real-time polymerase chain reaction (ET-PCR). Just like PCR, ET-PCR only required one pair of primers. A short sequence, which was recognized by restriction enzyme BstUI, was attached to the 5′ end of the forward (F) or reverse (R) PCR primer, and the new F or R primer was named EF or ER. EF/ER was labeled at the 5′ end with a reporter dye and in the middle with a quenching dye. BstUI cleaves the newly synthesized double-stranded terminal sequences (5′ end recognition sequences and their complementary sequences) during the extension phase, which separates the reporter molecule from the quenching dye, leading to a gain of fluorescence signal. This process is repeated in each amplification cycle and unaffected the exponential synthesis of the PCR amplification. ET-PCR allowed real-time analysis of single or multiple targets in a single vessel, and provided the reproducible quantitation of nucleic acids. The analytical sensitivity and specificity of ET-PCR were successfully evaluated, detecting down to 250 fg of genomic DNA per tube of target pathogen DNA examined, and the positive results were generated in a relatively short period. Moreover, the practical application of ET-PCR for simultaneous detection of multiple target pathogens was also demonstrated in artificially contaminated blood samples. In conclusion, due to the technique’s simplicity of design, reproducible data and low contamination risk, ET-PCR assay is an appealing alternative to conventional approaches currently used for real-time nucleic acid analysis. PMID:27468284

  3. Endonuclease Restriction-Mediated Real-Time Polymerase Chain Reaction: A Novel Technique for Rapid, Sensitive and Quantitative Detection of Nucleic-Acid Sequence.

    PubMed

    Wang, Yi; Wang, Yan; Zhang, Lu; Li, Machao; Luo, Lijuan; Liu, Dongxin; Li, Hua; Cao, Xiaolong; Hu, Shoukui; Jin, Dong; Xu, Jianguo; Ye, Changyun

    2016-01-01

    The article reported a novel methodology for real-time PCR analysis of nucleic acids, termed endonuclease restriction-mediated real-time polymerase chain reaction (ET-PCR). Just like PCR, ET-PCR only required one pair of primers. A short sequence, which was recognized by restriction enzyme BstUI, was attached to the 5' end of the forward (F) or reverse (R) PCR primer, and the new F or R primer was named EF or ER. EF/ER was labeled at the 5' end with a reporter dye and in the middle with a quenching dye. BstUI cleaves the newly synthesized double-stranded terminal sequences (5' end recognition sequences and their complementary sequences) during the extension phase, which separates the reporter molecule from the quenching dye, leading to a gain of fluorescence signal. This process is repeated in each amplification cycle and unaffected the exponential synthesis of the PCR amplification. ET-PCR allowed real-time analysis of single or multiple targets in a single vessel, and provided the reproducible quantitation of nucleic acids. The analytical sensitivity and specificity of ET-PCR were successfully evaluated, detecting down to 250 fg of genomic DNA per tube of target pathogen DNA examined, and the positive results were generated in a relatively short period. Moreover, the practical application of ET-PCR for simultaneous detection of multiple target pathogens was also demonstrated in artificially contaminated blood samples. In conclusion, due to the technique's simplicity of design, reproducible data and low contamination risk, ET-PCR assay is an appealing alternative to conventional approaches currently used for real-time nucleic acid analysis.

  4. A spectroscopic method to determine the activity of the restriction endonuclease EcoRV that involves a single reaction.

    PubMed

    Huang, Qing; Quiñones, Edwin

    2016-03-15

    A one-step protocol is presented to determine the activity of EcoRV as a model of restriction enzymes. The protocol involved a molecular beacon as DNA substrate, with the target sequence recognized by EcoRV in the stem. EcoRV cleaved the stem forming two fragments, one of which contained the fluorophore and quencher, initially bound by 3 bp. This shorter fragment rapidly dissociated at 37 °C, causing an increase of fluorescence intensity that was used to gauge the reaction kinetics. The reaction can be described using the Michaelis-Menten mechanism, and the kinetic parameters obtained were compared with literature values involving other protocols. Copyright © 2008 Elsevier Inc. All rights reserved.

  5. Crystallization and preliminary X-ray analysis of the type IV restriction endonuclease ScoMcrA from Streptomyces coelicolor, which cleaves both Dcm-methylated DNA and phosphorothioated DNA.

    PubMed

    Liu, Guang; Zhang, Zhenyi; Zhao, Gong; Deng, Zixin; Wu, Geng; He, Xinyi

    2015-01-01

    ScoMcrA is a type IV modification-dependent restriction endonuclease found in the model strain Streptomyces coelicolor. Unlike type I, II and III restriction endonucleases, which cleave unmodified DNA, type IV restriction endonucleases cleave modified DNA, including methylated, hydroxymethylated, glucosyl-hydroxymethylated and phosphorothioated DNA. ScoMcrA targets both Dcm-methylated DNA and phosphorothioated DNA, and makes double-strand breaks 16-28 nt away from the modified nucleotides or the phosphorothioate links. However, the mechanism by which ScoMcrA recognizes these two entirely different types of modification remains unclear. In this study, the ScoMcrA protein was overexpressed, purified and crystallized. The crystals diffracted to 3.35 Å resolution and belonged to space group P2(1)2(1)2(1). The unit-cell parameters were determined to be a=130.19, b=139.36, c=281.01 Å, α=β=γ=90°. These results will facilitate the detailed structural analysis of ScoMcrA and further elucidation of its biochemical mechanism.

  6. Design implications of extremely restricted patterning

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Kaushik; Liu, Renzhi; Liebmann, Lars; Lai, Kafai; Strojwas, Andzrej J.; Pileggi, Larry

    2014-07-01

    Escalating manufacturing cost and complexity is challenging the premise of affordable scaling. With lithography accounting for a large fraction of wafer costs, researchers are actively exploring several cost-effective alternative lithographic techniques, such as directed self-assembly, self-aligned multiple patterning, etc. However, most of the alternative lithographic techniques are restrictive, and it is important to understand the impact of such pattering restrictions on system-on-chip (SoC) design. To this end, we artificially restricted all layers in a 14 nm process to be pure gratings and observed that the pure gratings approach results in an inefficient SoC design with several process integration concerns. To come up with a technology definition that is mindful of designer requirements, it is essential to undertake a holistic design technology co-optimization (DTCO) considering several SoC design elements, such as standard cell logic, static random access memory bitcells, analog blocks, and physical synthesis. Our DTCO on the IBM 14 nm process with additional 10- and 7-nm node-like pattern restrictions leads us to converge on a set of critical pattern constructs that are required for an efficient and affordable SoC design.

  7. Caloric restriction, caloric restriction mimetics, and healthy aging in Okinawa: controversies and clinical implications.

    PubMed

    Willcox, Bradley J; Willcox, Donald C

    2014-01-01

    To examine the role of two nutritional factors implicated in the healthy aging of the Okinawans: caloric restriction; and traditional foods with potential caloric restriction-mimetic properties. Caloric restriction is a research priority for the US National Institute on Aging. However, little is known regarding health effects in humans. Some caloric restriction-related outcomes, such as cause-specific mortality and lifespan, are not practical for human clinical trials. Therefore, epidemiological data on older Okinawans, who experienced a caloric restriction-like diet for close to half their lives, are of special interest. The nutritional data support mild caloric restriction (10-15%) and high consumption of foods that may mimic the biological effects of caloric restriction, including sweet potatoes, marine-based carotenoid-rich foods, and turmeric. Phenotypic evidence is consistent with caloric restriction (including short stature, low body weight, and lean BMI), less age-related chronic disease (including cardiovascular diseases, cancer, and dementia), and longer lifespan (mean and maximum). Both caloric restriction and traditional Okinawan functional foods with caloric restriction-mimetic properties likely had roles in the extended healthspan and lifespan of the Okinawans. More research is needed on health consequences of caloric restriction and foods with caloric restriction-mimetic properties to identify possible nutritional interventions for healthy aging.

  8. Chemical display of pyrimidine bases flipped out by modification-dependent restriction endonucleases of MspJI and PvuRts1I families.

    PubMed

    Zagorskaitė, Evelina; Sasnauskas, Giedrius

    2014-01-01

    The epigenetic DNA modifications 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in eukaryotes are recognized either in the context of double-stranded DNA (e.g., by the methyl-CpG binding domain of MeCP2), or in the flipped-out state (e.g., by the SRA domain of UHRF1). The SRA-like domains and the base-flipping mechanism for 5(h)mC recognition are also shared by the recently discovered prokaryotic modification-dependent endonucleases of the MspJI and PvuRts1I families. Since the mechanism of modified cytosine recognition by many potential eukaryotic and prokaryotic 5(h)mC "readers" is still unknown, a fast solution based method for the detection of extrahelical 5(h)mC would be very useful. In the present study we tested base-flipping by MspJI- and PvuRts1I-like restriction enzymes using several solution-based methods, including fluorescence measurements of the cytosine analog pyrrolocytosine and chemical modification of extrahelical pyrimidines with chloroacetaldehyde and KMnO4. We find that only KMnO4 proved an efficient probe for the positive display of flipped out pyrimidines, albeit the method required either non-physiological pH (4.3) or a substitution of the target cytosine with thymine. Our results imply that DNA recognition mechanism of 5(h)mC binding proteins should be tested using a combination of all available methods, as the lack of a positive signal in some assays does not exclude the base flipping mechanism.

  9. Catalytic domain of plasmid pAD1 relaxase TraX defines a group of relaxases related to restriction endonucleases.

    PubMed

    Francia, María Victoria; Clewell, Don B; de la Cruz, Fernando; Moncalián, Gabriel

    2013-08-13

    Plasmid pAD1 is a 60-kb conjugative element commonly found in clinical isolates of Enterococcus faecalis. The relaxase TraX and the primary origin of transfer oriT2 are located close to each other and have been shown to be essential for conjugation. The oriT2 site contains a large inverted repeat (where the nic site is located) adjacent to a series of short direct repeats. TraX does not show any of the typical relaxase sequence motifs but is the prototype of a unique family of relaxases (MOBC). The present study focuses on the genetic, biochemical, and structural analysis of TraX, whose 3D structure could be predicted by protein threading. The structure consists of two domains: (i) an N-terminal domain sharing the topology of the DNA binding domain of the MarR family of transcriptional regulators and (ii) a C-terminal catalytic domain related to the PD-(D/E)XK family of restriction endonucleases. Alignment of MOBC relaxase amino acid sequences pointed to several conserved polar amino acid residues (E28, D152, E170, E172, K176, R180, Y181, and Y203) that were mutated to alanine. Functional analysis of these mutants (in vivo DNA transfer and cleavage assays) revealed the importance of these residues for relaxase activity and suggests Y181 as a potential catalytic residue similarly to His-hydrophobe-His relaxases. We also show that TraX binds specifically to dsDNA containing the oriT2 direct repeat sequences, confirming their role in transfer specificity. The results provide insights into the catalytic mechanism of MOBC relaxases, which differs radically from that of His-hydrophobe-His relaxases.

  10. Catalytic domain of plasmid pAD1 relaxase TraX defines a group of relaxases related to restriction endonucleases

    PubMed Central

    Francia, María Victoria; Clewell, Don B.; de la Cruz, Fernando; Moncalián, Gabriel

    2013-01-01

    Plasmid pAD1 is a 60-kb conjugative element commonly found in clinical isolates of Enterococcus faecalis. The relaxase TraX and the primary origin of transfer oriT2 are located close to each other and have been shown to be essential for conjugation. The oriT2 site contains a large inverted repeat (where the nic site is located) adjacent to a series of short direct repeats. TraX does not show any of the typical relaxase sequence motifs but is the prototype of a unique family of relaxases (MOBC). The present study focuses on the genetic, biochemical, and structural analysis of TraX, whose 3D structure could be predicted by protein threading. The structure consists of two domains: (i) an N-terminal domain sharing the topology of the DNA binding domain of the MarR family of transcriptional regulators and (ii) a C-terminal catalytic domain related to the PD-(D/E)XK family of restriction endonucleases. Alignment of MOBC relaxase amino acid sequences pointed to several conserved polar amino acid residues (E28, D152, E170, E172, K176, R180, Y181, and Y203) that were mutated to alanine. Functional analysis of these mutants (in vivo DNA transfer and cleavage assays) revealed the importance of these residues for relaxase activity and suggests Y181 as a potential catalytic residue similarly to His-hydrophobe-His relaxases. We also show that TraX binds specifically to dsDNA containing the oriT2 direct repeat sequences, confirming their role in transfer specificity. The results provide insights into the catalytic mechanism of MOBC relaxases, which differs radically from that of His-hydrophobe-His relaxases. PMID:23904483

  11. Rapid and Sensitive Detection of Shigella spp. and Salmonella spp. by Multiple Endonuclease Restriction Real-Time Loop-Mediated Isothermal Amplification Technique

    PubMed Central

    Wang, Yi; Wang, Yan; Luo, Lijuan; Liu, Dongxin; Luo, Xia; Xu, Yanmei; Hu, Shoukui; Niu, Lina; Xu, Jianguo; Ye, Changyun

    2015-01-01

    Shigella and Salmonella are frequently isolated from various food samples and can cause human gastroenteritis. Here, a novel multiple endonuclease restriction real-time loop-mediated isothermal amplification technology (MERT-LAMP) were successfully established and validated for simultaneous detection of Shigella strains and Salmonella strains in only a single reaction. Two sets of MERT-LAMP primers for 2 kinds of pathogens were designed from ipaH gene of Shigella spp. and invA gene of Salmonella spp., respectively. Under the constant condition at 63°C, the positive results were yielded in as short as 12 min with the genomic DNA extracted from the 19 Shigella strains and 14 Salmonella strains, and the target pathogens present in a sample could be simultaneously identified based on distinct fluorescence curves in real-time format. Accordingly, the multiplex detection assay significantly reduced effort, materials and reagents used, and amplification and differentiation were conducted at the same time, obviating the use of postdetection procedures. The analytical sensitivity of MERT-LAMP was found to be 62.5 and 125 fg DNA/reaction with genomic templates of Shigella strains and Salmonella strains, which was consist with normal LAMP assay, and at least 10- and 100-fold more sensitive than that of qPCR and conventional PCR approaches. The limit of detection of MERT-LAMP for Shigella strains and Salmonella strains detection in artificially contaminated milk samples was 5.8 and 6.4 CFU per vessel. In conclusion, the MERT-LAMP methodology described here demonstrated a potential and valuable means for simultaneous screening of Shigella and Salmonella in a wide variety of samples. PMID:26697000

  12. The Helicobacter pylori HpyAXII restriction–modification system limits exogenous DNA uptake by targeting GTAC sites but shows asymmetric conservation of the DNA methyltransferase and restriction endonuclease components

    PubMed Central

    Humbert, Olivier; Salama, Nina R.

    2008-01-01

    The naturally competent organism Helicobacter pylori encodes a large number of restriction–modification (R–M) systems that consist of a restriction endonuclease and a DNA methyltransferase. R–M systems are not only believed to limit DNA exchange among bacteria but may also have other cellular functions. We report a previously uncharacterized H. pylori type II R–M system, M.HpyAXII/R.HpyAXII. We show that this system targets GTAC sites, which are rare in the H. pylori chromosome but numerous in ribosomal RNA genes. As predicted, this type II R–M system showed attributes of a selfish element. Deletion of the methyltransferase M.HpyAXII is lethal when associated with an active endonuclease R.HpyAXII unless compensated by adaptive mutation or gene amplification. R.HpyAXII effectively restricted both unmethylated plasmid and chromosomal DNA during natural transformation and was predicted to belong to the novel ‘half pipe’ structural family of endonucleases. Analysis of a panel of clinical isolates revealed that R.HpyAXII was functional in a small number of H. pylori strains (18.9%, n = 37), whereas the activity of M.HpyAXII was highly conserved (92%, n = 50), suggesting that GTAC methylation confers a selective advantage to H. pylori. However, M.HpyAXII activity did not enhance H. pylori fitness during stomach colonization of a mouse infection model. PMID:18978016

  13. Type II restriction endonuclease R.Hpy188I belongs to the GIY-YIG nuclease superfamily, but exhibits an unusual active site

    PubMed Central

    Kaminska, Katarzyna H; Kawai, Mikihiko; Boniecki, Michal; Kobayashi, Ichizo; Bujnicki, Janusz M

    2008-01-01

    Background Catalytic domains of Type II restriction endonucleases (REases) belong to a few unrelated three-dimensional folds. While the PD-(D/E)XK fold is most common among these enzymes, crystal structures have been also determined for single representatives of two other folds: PLD (R.BfiI) and half-pipe (R.PabI). Bioinformatics analyses supported by mutagenesis experiments suggested that some REases belong to the HNH fold (e.g. R.KpnI), and that a small group represented by R.Eco29kI belongs to the GIY-YIG fold. However, for a large fraction of REases with known sequences, the three-dimensional fold and the architecture of the active site remain unknown, mostly due to extreme sequence divergence that hampers detection of homology to enzymes with known folds. Results R.Hpy188I is a Type II REase with unknown structure. PSI-BLAST searches of the non-redundant protein sequence database reveal only 1 homolog (R.HpyF17I, with nearly identical amino acid sequence and the same DNA sequence specificity). Standard application of state-of-the-art protein fold-recognition methods failed to predict the relationship of R.Hpy188I to proteins with known structure or to other protein families. In order to increase the amount of evolutionary information in the multiple sequence alignment, we have expanded our sequence database searches to include sequences from metagenomics projects. This search resulted in identification of 23 further members of R.Hpy188I family, both from metagenomics and the non-redundant database. Moreover, fold-recognition analysis of the extended R.Hpy188I family revealed its relationship to the GIY-YIG domain and allowed for computational modeling of the R.Hpy188I structure. Analysis of the R.Hpy188I model in the light of sequence conservation among its homologs revealed an unusual variant of the active site, in which the typical Tyr residue of the YIG half-motif had been substituted by a Lys residue. Moreover, some of its homologs have the otherwise

  14. A new method for determining the stereochemistry of DNA cleavage reactions: application to the SfiI and HpaII restriction endonucleases and to the MuA transposase.

    PubMed

    Mizuuchi, K; Nobbs, T J; Halford, S E; Adzuma, K; Qin, J

    1999-04-06

    A new method was developed for tracking the stereochemical path of enzymatic cleavage of DNA. DNA with a phosphorothioate of known chirality at the scissile bond is cleaved by the enzyme in H218O. The cleavage produces a DNA molecule with the 5'-[16O,18O, S]-thiophosphoryl group, whose chirality depends on whether the cleavage reaction proceeds by a single-step hydrolysis mechanism or by a two-step mechanism involving a protein-DNA covalent intermediate. To determine this chirality, the cleaved DNA is joined to an oligonucleotide by DNA ligase. Given the strict stereochemistry of the DNA ligase reaction, determined here, the original chirality of the phosphorothioate dictates whether the 18O is retained or lost in the ligation product, which can be determined by mass spectrometry. This method has advantages over previous methods in that it is not restricted to particular DNA sequences, requires substantially less material, and avoids purification of the products at intermediate stages in the procedure. The method was validated by confirming that DNA cleavage by the EcoRI restriction endonuclease causes inversion of configuration at the scissile phosphate. It was then applied to the reactions of the SfiI and HpaII endonucleases and the MuA transposase. In all three cases, DNA cleavage proceeded with inversion of configuration, indicating direct hydrolysis of the phosphodiester bond by water as opposed to a reaction involving a covalent enzyme-DNA intermediate.

  15. Discovery of a novel restriction endonuclease by genome comparison and application of a wheat-germ-based cell-free translation assay: PabI (5'-GTA/C) from the hyperthermophilic archaeon Pyrococcus abyssi.

    PubMed

    Ishikawa, Ken; Watanabe, Miki; Kuroita, Toshihiro; Uchiyama, Ikuo; Bujnicki, Janusz M; Kawakami, Bunsei; Tanokura, Masaru; Kobayashi, Ichizo

    2005-07-21

    To search for restriction endonucleases, we used a novel plant-based cell-free translation procedure that bypasses the toxicity of these enzymes. To identify candidate genes, the related genomes of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii were compared. In line with the selfish mobile gene hypothesis for restriction-modification systems, apparent genome rearrangement around putative restriction genes served as a selecting criterion. Several candidate restriction genes were identified and then amplified in such a way that they were removed from their own translation signal. During their cloning into a plasmid, the genes became connected with a plant translation signal. After in vitro transcription by T7 RNA polymerase, the mRNAs were separated from the template DNA and translated in a wheat-germ-based cell-free protein synthesis system. The resulting solution could be directly assayed for restriction activity. We identified two deoxyribonucleases. The novel enzyme was denoted as PabI, purified and found to recognize 5'-GTAC and leave a 3'-TA overhang (5'-GTA/C), a novel restriction enzyme-generated terminus. PabI is active up to 90 degrees C and optimally active at a pH of around 6 and in NaCl concentrations ranging from 100 to 200 mM. We predict that it has a novel 3D structure.

  16. Implications of Sleep Restriction and Recovery on Metabolic Outcomes

    PubMed Central

    Killick, Roo; Banks, Siobhan

    2012-01-01

    Context: Alongside the growing epidemics of obesity and diabetes mellitus, chronic partial sleep restriction is also increasingly common in modern society, and the metabolic implications of this have not been fully illustrated as yet. Whether recovery sleep is sufficient to offset these detriments is an area of ongoing research. Objective: This review seeks to summarize the relevant epidemiological and experimental data in the areas of altered metabolic consequences of both shortened sleep and subsequent recovery sleep. Data Acquisition: The medical literature from 1970 to March 2012 was reviewed for key articles. Data Synthesis: Epidemiological studies suggest associations between shortened sleep and future obesity and diabetes. Experimental data thus far show a probable link between shortened sleep and altered glucose metabolism as well as appetite dysregulation. Conclusion: Sleep often seems undervalued in modern society, but this may have widespread metabolic consequences as described in this review. Acute sleep loss is often unavoidable, but chronic sleep restriction ideally should not be. Understanding the implications of both sleep restriction and recovery on metabolic outcomes will guide public health policy and allow clinical recommendations to be prescribed. PMID:22996147

  17. Conserved Endonuclease Function of Hantavirus L Polymerase.

    PubMed

    Rothenberger, Sylvia; Torriani, Giulia; Johansson, Maria U; Kunz, Stefan; Engler, Olivier

    2016-05-02

    Hantaviruses are important emerging pathogens belonging to the Bunyaviridae family. Like other segmented negative strand RNA viruses, the RNA-dependent RNA polymerase (RdRp) also known as L protein of hantaviruses lacks an intrinsic "capping activity". Hantaviruses therefore employ a "cap snatching" strategy acquiring short 5' RNA sequences bearing 5'cap structures by endonucleolytic cleavage from host cell transcripts. The viral endonuclease activity implicated in cap snatching of hantaviruses has been mapped to the N-terminal domain of the L protein. Using a combination of molecular modeling and structure-function analysis we confirm and extend these findings providing evidence for high conservation of the L endonuclease between Old and New World hantaviruses. Recombinant hantavirus L endonuclease showed catalytic activity and a defined cation preference shared by other viral endonucleases. Based on the previously reported remarkably high activity of hantavirus L endonuclease, we established a cell-based assay for the hantavirus endonuclase function. The robustness of the assay and its high-throughput compatible format makes it suitable for small molecule drug screens to identify novel inhibitors of hantavirus endonuclease. Based on the high degree of similarity to RdRp endonucleases, some candidate inhibitors may be broadly active against hantaviruses and other emerging human pathogenic Bunyaviruses.

  18. Conserved Endonuclease Function of Hantavirus L Polymerase

    PubMed Central

    Rothenberger, Sylvia; Torriani, Giulia; Johansson, Maria U.; Kunz, Stefan; Engler, Olivier

    2016-01-01

    Hantaviruses are important emerging pathogens belonging to the Bunyaviridae family. Like other segmented negative strand RNA viruses, the RNA-dependent RNA polymerase (RdRp) also known as L protein of hantaviruses lacks an intrinsic “capping activity”. Hantaviruses therefore employ a “cap snatching” strategy acquiring short 5′ RNA sequences bearing 5′cap structures by endonucleolytic cleavage from host cell transcripts. The viral endonuclease activity implicated in cap snatching of hantaviruses has been mapped to the N-terminal domain of the L protein. Using a combination of molecular modeling and structure–function analysis we confirm and extend these findings providing evidence for high conservation of the L endonuclease between Old and New World hantaviruses. Recombinant hantavirus L endonuclease showed catalytic activity and a defined cation preference shared by other viral endonucleases. Based on the previously reported remarkably high activity of hantavirus L endonuclease, we established a cell-based assay for the hantavirus endonuclase function. The robustness of the assay and its high-throughput compatible format makes it suitable for small molecule drug screens to identify novel inhibitors of hantavirus endonuclease. Based on the high degree of similarity to RdRp endonucleases, some candidate inhibitors may be broadly active against hantaviruses and other emerging human pathogenic Bunyaviruses. PMID:27144576

  19. Map of restriction sites on bacteriophage T4 cytosine-containing DNA for endonucleases bamHI, BglII, KpnI, PvuI, SalI, and XbaI.

    PubMed Central

    Marsh, R C; Hepburn, M L

    1981-01-01

    A complete map of the cleavage sites of restriction endonucleases BamHI, BglII, KpnI, PvuI, SalI, and XbaI was determined for the cytosine-containing DNA of a bacteriophage T4 alc mutant. The 56 sequence-specific sites were assigned map coordinates based on a least-squares analysis of measured fragment lengths. Altogether, the lengths of 118 fragments from single and double enzyme digestions were measured by electrophoresis of the fragments in agarose gels. DNA fragments of known sequence or DNA fragments calibrated with fragments of known sequence were used as standards. The greatest deviation between an experimentally measured fragment length and its computed map coordinates was 3.0%; the average deviation was 0.8%. The total length of the wild-type T4 genome was calculated to be 166,200 base pairs. Images PMID:6264096

  20. Characterization of MspNI (G/GWCC) and MspNII (R/GATCY), novel thermostable Type II restriction endonucleases from Meiothermus sp., isoschizomers of AvaII and BstYI.

    PubMed

    Gupta, Richa; Xu, Shuang-Yong; Sharma, Prince; Capalash, Neena

    2012-05-01

    MspNI and MspNII, isoschizomers of prototype Type II restriction endonucleases AvaII and BstYI, were extracted from an extreme thermophile bacterium belonging to the genus Meiothermus, isolated from the hot sulphur springs in north Himalayan region of India where temperature and pH ranged from 60 to 80°C and 7.5 to 8.5, respectively. The two enzymes were purified to homogeneity using Cibacron-Blue 3GA Agarose, Q-Sepharose and SP-Sepharose chromatography and were homodimers with subunit molecular weights of 27 and 45 kDa, respectively. Restriction mapping and run-off sequencing of MspNI and MspNII cleaved pBR322 DNA showed that they recognized and cleaved 5'-G/GWCC-3' and 5'-R/GATCY-3' sites, respectively. MspNI and MspNII worked optimally at 60 and 70°C, 6 and 5 mM MgCl(2), respectively and showed no star activity in organic solvents. Both were resistant to sequence methylation and were stable up to 25 PCR cycles.

  1. RNA-splicing endonuclease structure and function.

    PubMed

    Calvin, K; Li, H

    2008-04-01

    The RNA-splicing endonuclease is an evolutionarily conserved enzyme responsible for the excision of introns from nuclear transfer RNA (tRNA) and all archaeal RNAs. Since its first identification from yeast in the late 1970s, significant progress has been made toward understanding the biochemical mechanisms of this enzyme. Four families of the splicing endonucleases possessing the same active sites and overall architecture but with different subunit compositions have been identified. Two related consensus structures of the precursor RNA splice sites and the critical elements required for intron excision have been established. More recently, a glimpse was obtained of the structural mechanism by which the endonuclease recognizes the consensus RNA structures and cleaves at the splice sites. This review summarizes these findings and discusses their implications in the evolution of intron removal processes.

  2. Crystal structure and mechanism of action of the N6-methyladenine-dependent type IIM restriction endonuclease R.DpnI.

    PubMed

    Siwek, Wojciech; Czapinska, Honorata; Bochtler, Matthias; Bujnicki, Janusz M; Skowronek, Krzysztof

    2012-08-01

    DNA methylation-dependent restriction enzymes have many applications in genetic engineering and in the analysis of the epigenetic state of eukaryotic genomes. Nevertheless, high-resolution structures have not yet been reported, and therefore mechanisms of DNA methylation-dependent cleavage are not understood. Here, we present a biochemical analysis and high-resolution DNA co-crystal structure of the N(6)-methyladenine (m6A)-dependent restriction enzyme R.DpnI. Our data show that R.DpnI consists of an N-terminal catalytic PD-(D/E)XK domain and a C-terminal winged helix (wH) domain. Surprisingly, both domains bind DNA in a sequence- and methylation-sensitive manner. The crystal contains R.DpnI with fully methylated target DNA bound to the wH domain, but distant from the catalytic domain. Independent readout of DNA sequence and methylation by the two domains might contribute to R.DpnI specificity or could help the monomeric enzyme to cut the second strand after introducing a nick.

  3. Disruption of the gene encoding restriction endonuclease SuaI and development of a host-vector system for the thermoacidophilic archaeon Sulfolobus acidocaldarius.

    PubMed

    Suzuki, Shoji; Kurosawa, Norio

    2016-03-01

    Sulfolobus acidocaldarius is a useful model organism for the genetic study of thermophilic archaea due to its ease of cultivation. Here we describe the development of a host-vector system for S. acidocaldarius consisting of SuaI restriction system-deficient strain SK-1 and shuttle vector pSAV2. The new host strain SK-1 was constructed by pop-out recombination based on the pyrE marker gene. Plasmid pSAV2 was constructed from the S. islandicus native plasmid pRN1, in which selectable markers and functional genes were inserted in suitable locations and orientations followed by the deletion of non-essential open reading frames. SK-1 allowed direct transformation without N(4)-methylation at SuaI restriction sites, so unmethylated vector pSAV2 could be introduced directly into SK-1 by electroporation. The transformants were selected by pyrEF complementation on xyrose-tryptone solid medium without prior liquid culturing. The transformation efficiency was approximately 1.0 × 10(3)/μg DNA. After replication in S. acidocaldarius, pSAV2 was successfully recovered from transformant cultures by the standard alkaline lysis method. Plasmid yield was approximately 40-50 ng/ml from late-log through stationary phase cultures. In addition, pSAV2 was maintained stably and at relatively high copy number in S. acidocaldarius.

  4. Reversal of Fv-1 host range by in vitro restriction endonuclease fragment exchange between molecular clones of N-tropic and B-tropic murine leukemia virus genomes

    SciTech Connect

    Boone, L.R.; Myer, F.E.; Yang, D.M.; Ou, C.Y.; Koh, C.K.; Roberson, L.E.; Tennant, R.W.; Yang, W.K.

    1983-10-01

    Unintegrated viral DNA of the BALB/c endogenous N-tropic and B-tropic murine leukemia retroviruses and invitro passaged N-tropic Gross (passage A) murine leukemia retroviruses were molecularly cloned. Recombinant genomes were constructed in vitro by exchanging homologous restriction enzyme fragments from N- or B-tropic parents and subsequent recloning. Infectious virus was recovered after transfection of these recombinant genomes into NIH-3T3 cells and cocultivation with the Fv-1 nonrestrictive SC-1 cells. XC plaque assays of recombinant virus progeny on Fv-1/sup n/ and Fv-1/sup b/ cells indicated the the Fv-1 host range was determined by sequences located between the BamHI site in the p30 region of the gag gene (1.6 kilobase pairs from the left end of the map) and the HindIII site located in the pol gene (2.9 kilobase pairs from the left end of the map.

  5. Reversal of Fv-1 host range by in vitro restriction endonuclease fragment exchange between molecular clones of N-tropic and B-tropic murine leukemia virus genomes

    SciTech Connect

    Boone, L.R.; Myer, F.E.; Yang, D.M.; Ou, C.Y.; Koh, C.K.; Roberson, L.E.; Tennant, R.W.; Yang, W.K.

    1983-10-01

    The authors molecularly cloned unintegrated viral DNA of the BALB/c endogenous N-tropic and B-tropic murine leukemia retroviruses and in vitro passage N-tropic Gross (passage A) murine leukemia retroviruses. Recombinant genomes were constructed in vitro by exchanging homologous restriction enzyme fragments from N- or B-tropic parents and subsequent recloning. Infectious virus was recovered after transfection of these recombinant genomes into NIH-3T3 cells and cocultivation with the Fv-1 nonrestrictive SC-1 cells. XC plaque assays of recombinant virus progeny on Fv-1/sup n/ and Fv-1/sup b/ cells indicated that the Fv-1 host range was determined by sequences located between the BamHI site in the p30 region of the gag gene (1.6 kilobase pairs from the left end of the map) and the HindIII site located in pol gene (2.9 kilobase pairs from the left end of the map).

  6. The organization of classical satellite DNAs in human chromosomes: an approach using AluI and TaqI restriction endonucleases.

    PubMed

    Nieddu, M; Pichiri, G; Diaz, G; Mezzanotte, R

    2003-01-01

    Human classical satellite DNAs were used as probes to investigate the molecular mechanism(s) of AluI/TaqI attack in situ on specific centromeric areas. The biochemical results obtained show that the majority of such highly repetitive DNAs are not solubilized from chromosomes, in spite of a cleavage pattern identical to that shown in naked genomic DNA digested with the same enzymes. Moreover, when digestion in situ with restriction enzymes precedes in situ hybridization, it is possible to observe an increased signal in the centromeres of some chromosomes as compared to that shown in standard undigested chromosomes and, on the other hand, hybridization labelling in centromeres which are difficult to detect by in situ hybridization using standard undigested chromosomes. Lastly, our results show that centromeric heterochromatin is not a homogeneous class in regard to organizational structure.

  7. Novel Diagnostic Algorithm for Identification of Mycobacteria Using Genus-Specific Amplification of the 16S-23S rRNA Gene Spacer and Restriction Endonucleases

    PubMed Central

    Roth, Andreas; Reischl, Udo; Streubel, Anna; Naumann, Ludmila; Kroppenstedt, Reiner M.; Habicht, Marion; Fischer, Marga; Mauch, Harald

    2000-01-01

    A novel genus-specific PCR for mycobacteria with simple identification to the species level by restriction fragment length polymorphism (RFLP) was established using the 16S-23S ribosomal RNA gene (rDNA) spacer as a target. Panspecificity of primers was demonstrated on the genus level by testing 811 bacterial strains (122 species in 37 genera from 286 reference strains and 525 clinical isolates). All mycobacterial isolates (678 strains among 48 defined species and 5 indeterminate taxons) were amplified by the new primers. Among nonmycobacterial isolates, only Gordonia terrae was amplified. The RFLP scheme devised involves estimation of variable PCR product sizes together with HaeIII and CfoI restriction analysis. It yielded 58 HaeIII patterns, of which 49 (84%) were unique on the species level. Hence, HaeIII digestion together with CfoI results was sufficient for correct identification of 39 of 54 mycobacterial taxons and one of three or four of seven RFLP genotypes found in Mycobacterium intracellulare and Mycobacterium kansasii, respectively. Following a clearly laid out diagnostic algorithm, the remaining unidentified organisms fell into five clusters of closely related species (i.e., the Mycobacterium avium complex or Mycobacterium chelonae-Mycobacterium abscessus) that were successfully separated using additional enzymes (TaqI, MspI, DdeI, or AvaII). Thus, next to slowly growing mycobacteria, all rapidly growing species studied, including M. abscessus, M. chelonae, Mycobacterium farcinogenes, Mycobacterium fortuitum, Mycobacterium peregrinum, and Mycobacterium senegalense (with a very high 16S rDNA sequence similarity) were correctly identified. A high intraspecies sequence stability and the good discriminative power of patterns indicate that this method is very suitable for rapid and cost-effective identification of a wide variety of mycobacterial species without the need for sequencing. Phylogenetically, spacer sequence data stand in good agreement with 16S r

  8. Creation of a data base for sequences of ribosomal nucleic acids and detection of conserved restriction endonucleases sites through computerized processing.

    PubMed Central

    Patarca, R; Dorta, B; Ramirez, J L

    1982-01-01

    As part of a project pertaining the organization of ribosomal genes in Kinetoplastidae, we have created a data base for published sequences of ribosomal nucleic acids, with information in Spanish. As a first step in their processing, we have written a computer program which introduces the new feature of determining the length of the fragments produced after single or multiple digestion with any of the known restriction enzymes. With this information we have detected conserved SAU 3A sites: (i) at the 5' end of the 5.8S rRNA and at the 3' end of the small subunit rRNA, both included in similar larger sequences; (ii) in the 5.8S rRNA of vertebrates (a second one), which is not present in lower eukaryotes, showing a clear evolutive divergence; and, (iii) at the 5' terminal of the small subunit rRNA, included in a larger conserved sequence. The possible biological importance of these sequences is discussed. PMID:6278402

  9. A switch in the mechanism of communication between the two DNA-binding sites in the SfiI restriction endonuclease.

    PubMed

    Bellamy, Stuart R W; Milsom, Susan E; Kovacheva, Yana S; Sessions, Richard B; Halford, Stephen E

    2007-11-09

    While many Type II restriction enzymes are dimers with a single DNA-binding cleft between the subunits, SfiI is a tetramer of identical subunits. Two of its subunits (a dimeric unit) create one DNA-binding cleft, and the other two create a second cleft on the opposite side of the protein. The two clefts bind specific DNA cooperatively to give a complex of SfiI with two recognition sites. This complex is responsible for essentially all of the DNA-cleavage reactions by SfiI: virtually none is due to the complex with one site. The communication between the DNA-binding clefts was examined by disrupting one of the very few polar interactions in the otherwise hydrophobic interface between the dimeric units: a tyrosine hydroxyl was removed by mutation to phenylalanine. The mutant protein remained tetrameric in solution and could bind two DNA sites. But instead of being activated by binding two sites, like wild-type SfiI, it showed maximal activity when bound to a single site and had a lower activity when bound to two sites. This interaction across the dimer interface thus enforces in wild-type SfiI a cooperative transition between inactive and active states in both dimers, but without this interaction as in the mutant protein, a single dimer can undergo the transition to give a stable intermediate with one inactive dimer and one active dimer.

  10. Identification of restriction endonuclease with potential ability to cleave the HSV-2 genome: Inherent potential for biosynthetic versus live recombinant microbicides

    PubMed Central

    Wayengera, Misaki; Kajumbula, Henry; Byarugaba, Wilson

    2008-01-01

    Background Herpes Simplex virus types 1 and 2 are enveloped viruses with a linear dsDNA genome of ~120–200 kb. Genital infection with HSV-2 has been denoted as a major risk factor for acquisition and transmission of HIV-1. Developing biomedical strategies for HSV-2 prevention is thus a central strategy in reducing global HIV-1 prevalence. This paper details the protocol for the isolation of restriction endunucleases (REases) with potent activity against the HSV-2 genome and models two biomedical interventions for preventing HSV-2. Methods and Results Using the whole genome of HSV-2, 289 REases and the bioinformatics software Webcutter2; we searched for potential recognition sites by way of genome wide palindromics. REase application in HSV-2 biomedical therapy was modeled concomitantly. Of the 289 enzymes analyzed; 77(26.6%) had potential to cleave the HSV-2 genome in > 100 but < 400 sites; 69(23.9%) in > 400 but < 700 sites; and the 9(3.1%) enzymes: BmyI, Bsp1286I, Bst2UI, BstNI, BstOI, EcoRII, HgaI, MvaI, and SduI cleaved in more than 700 sites. But for the 4: PacI, PmeI, SmiI, SwaI that had no sign of activity on HSV-2 genomic DNA, all 130(45%) other enzymes cleaved < 100 times. In silico palindromics has a PPV of 99.5% for in situ REase activity (2) Two models detailing how the REase EcoRII may be applied in developing interventions against HSV-2 are presented: a nanoparticle for microbicide development and a "recombinant lactobacillus" expressing cell wall anchored receptor (truncated nectin-1) for HSV-2 plus EcoRII. Conclusion Viral genome slicing by way of these bacterially- derived R-M enzymatic peptides may have therapeutic potential in HSV-2 infection; a cofactor for HIV-1 acquisition and transmission. PMID:18687114

  11. A Cladistic Analysis of Phenotypic Associations with Haplotypes Inferred from Restriction Endonuclease Mapping. IV. Nested Analyses with Cladogram Uncertainty and Recombination

    PubMed Central

    Templeton, A. R.; Sing, C. F.

    1993-01-01

    We previously developed an analytical strategy based on cladistic theory to identify subsets of haplotypes that are associated with significant phenotypic deviations. Our initial approach was limited to segments of DNA in which little recombination occurs. In such cases, a cladogram can be constructed from the restriction site data to estimate the evolutionary steps that interrelate the observed haplotypes to one another. The cladogram is then used to define a nested statistical design for identifying mutational steps associated with significant phenotypic deviations. The central assumption behind this strategy is that a mutation responsible for a particular phenotypic effect is embedded within the evolutionary history that is represented by the cladogram. The power of this approach depends on the accuracy of the cladogram in portraying the evolutionary history of the DNA region. This accuracy can be diminished both by recombination and by uncertainty in the estimated cladogram topology. In a previous paper, we presented an algorithm for estimating the set of likely cladograms and recombination events. In this paper we present an algorithm for defining a nested statistical design under cladogram uncertainty and recombination. Given the nested design, phenotypic associations can be examined using either a nested analysis of variance (for haploids or homozygous strains) or permutation testing (for outcrossed, diploid gene regions). In this paper we also extend this analytical strategy to include categorical phenotypes in addition to quantitative phenotypes. Some worked examples are presented using Drosophila data sets. These examples illustrate that having some recombination may actually enhance the biological inferences that may derived from a cladistic analysis. In particular, recombination can be used to assign a physical localization to a given subregion for mutations responsible for significant phenotypic effects. PMID:8100789

  12. Inference of relationships in the ‘twilight zone’ of homology using a combination of bioinformatics and site-directed mutagenesis: a case study of restriction endonucleases Bsp6I and PvuII

    PubMed Central

    Pawlak, Sebastian D.; Radlinska, Monika; Chmiel, Agnieszka A.; Bujnicki, Janusz M.; Skowronek, Krzysztof J.

    2005-01-01

    Thus far, identification of functionally important residues in Type II restriction endonucleases (REases) has been difficult using conventional methods. Even though known REase structures share a fold and marginally recognizable active site, the overall sequence similarities are statistically insignificant, unless compared among proteins that recognize identical or very similar sequences. Bsp6I is a Type II REase, which recognizes the palindromic DNA sequence 5′GCNGC and cleaves between the cytosine and the unspecified nucleotide in both strands, generating a double-strand break with 5′-protruding single nucleotides. There are no solved structures of REases that recognize similar DNA targets or generate cleavage products with similar characteristics. In straightforward comparisons, the Bsp6I sequence shows no significant similarity to REases with known structures. However, using a fold-recognition approach, we have identified a remote relationship between Bsp6I and the structure of PvuII. Starting from the sequence–structure alignment between Bsp6I and PvuII, we constructed a homology model of Bsp6I and used it to predict functionally significant regions in Bsp6I. The homology model was supported by site-directed mutagenesis of residues predicted to be important for dimerization, DNA binding and catalysis. Completing the picture of sequence–structure–function relationships in protein superfamilies becomes an essential task in the age of structural genomics and our study may serve as a paradigm for future analyses of superfamilies comprising strongly diverged members with little or no sequence similarity. PMID:15684412

  13. An extraordinary retrotransposon family encoding dual endonucleases

    PubMed Central

    Kojima, Kenji K.; Fujiwara, Haruhiko

    2005-01-01

    Retrotransposons commonly encode a reverse transcriptase (RT), but other functional domains are variable. The acquisition of new domains is the dominant evolutionary force that brings structural variety to retrotransposons. Non-long-terminal-repeat (non-LTR) retrotransposons are classified into two groups by their structure. Early branched non-LTR retrotransposons encode a restriction-like endonuclease (RLE), and recently branched non-LTR retrotransposons encode an apurinic/apyrimidinic endonuclease-like endonuclease (APE). In this study, we report a novel non-LTR retrotransposon family Dualen, identified from the Chlamydomonas reinhardtii genome. Dualen encodes two endonucleases, RLE and APE, with RT, ribonuclease H, and cysteine protease. Phylogenetic analyses of the RT domains revealed that Dualen is positioned at the midpoint between the early-branched and the recently branched groups. In the APE tree, Dualen was branched earlier than the I group and the Jockey group. The ribonuclease H domains among the Dualen family and other non-LTR retrotransposons are monophyletic. Phylogenies of three domains revealed the monophyly of the Dualen family members. The domain structure and the phylogeny of each domain imply that Dualen is a retrotransposon conserving the domain structure just after the acquisition of APE. From these observations, we discuss the evolution of domain structure of non-LTR retrotransposons. PMID:16077010

  14. Evolutionary and biogeographical implications of degraded LAGLIDADG endonuclease functionality and group I intron occurrence in stony corals (Scleractinia) and mushroom corals (Corallimorpharia).

    PubMed

    Celis, Juan Sebastián; Edgell, David R; Stelbrink, Björn; Wibberg, Daniel; Hauffe, Torsten; Blom, Jochen; Kalinowski, Jörn; Wilke, Thomas

    2017-01-01

    Group I introns and homing endonuclease genes (HEGs) are mobile genetic elements, capable of invading target sequences in intron-less genomes. LAGLIDADG HEGs are the largest family of endonucleases, playing a key role in the mobility of group I introns in a process known as 'homing'. Group I introns and HEGs are rare in metazoans, and can be mainly found inserted in the COXI gene of some sponges and cnidarians, including stony corals (Scleractinia) and mushroom corals (Corallimorpharia). Vertical and horizontal intron transfer mechanisms have been proposed as explanations for intron occurrence in cnidarians. However, the central role of LAGLIDADG motifs in intron mobility mechanisms remains poorly understood. To resolve questions regarding the evolutionary origin and distribution of group I introns and HEGs in Scleractinia and Corallimorpharia, we examined intron/HEGs sequences within a comprehensive phylogenetic framework. Analyses of LAGLIDADG motif conservation showed a high degree of degradation in complex Scleractinia and Corallimorpharia. Moreover, the two motifs lack the respective acidic residues necessary for metal-ion binding and catalysis, potentially impairing horizontal intron mobility. In contrast, both motifs are highly conserved within robust Scleractinia, indicating a fully functional endonuclease capable of promoting horizontal intron transference. A higher rate of non-synonymous substitutions (Ka) detected in the HEGs of complex Scleractinia and Corallimorpharia suggests degradation of the HEG, whereas lower Ka rates in robust Scleractinia are consistent with a scenario of purifying selection. Molecular-clock analyses and ancestral inference of intron type indicated an earlier intron insertion in complex Scleractinia and Corallimorpharia in comparison to robust Scleractinia. These findings suggest that the lack of horizontal intron transfers in the former two groups is related to an age-dependent degradation of the endonuclease activity. Moreover

  15. Evolutionary and biogeographical implications of degraded LAGLIDADG endonuclease functionality and group I intron occurrence in stony corals (Scleractinia) and mushroom corals (Corallimorpharia)

    PubMed Central

    Edgell, David R.; Stelbrink, Björn; Wibberg, Daniel; Hauffe, Torsten; Blom, Jochen; Kalinowski, Jörn; Wilke, Thomas

    2017-01-01

    Group I introns and homing endonuclease genes (HEGs) are mobile genetic elements, capable of invading target sequences in intron-less genomes. LAGLIDADG HEGs are the largest family of endonucleases, playing a key role in the mobility of group I introns in a process known as ‘homing’. Group I introns and HEGs are rare in metazoans, and can be mainly found inserted in the COXI gene of some sponges and cnidarians, including stony corals (Scleractinia) and mushroom corals (Corallimorpharia). Vertical and horizontal intron transfer mechanisms have been proposed as explanations for intron occurrence in cnidarians. However, the central role of LAGLIDADG motifs in intron mobility mechanisms remains poorly understood. To resolve questions regarding the evolutionary origin and distribution of group I introns and HEGs in Scleractinia and Corallimorpharia, we examined intron/HEGs sequences within a comprehensive phylogenetic framework. Analyses of LAGLIDADG motif conservation showed a high degree of degradation in complex Scleractinia and Corallimorpharia. Moreover, the two motifs lack the respective acidic residues necessary for metal-ion binding and catalysis, potentially impairing horizontal intron mobility. In contrast, both motifs are highly conserved within robust Scleractinia, indicating a fully functional endonuclease capable of promoting horizontal intron transference. A higher rate of non-synonymous substitutions (Ka) detected in the HEGs of complex Scleractinia and Corallimorpharia suggests degradation of the HEG, whereas lower Ka rates in robust Scleractinia are consistent with a scenario of purifying selection. Molecular-clock analyses and ancestral inference of intron type indicated an earlier intron insertion in complex Scleractinia and Corallimorpharia in comparison to robust Scleractinia. These findings suggest that the lack of horizontal intron transfers in the former two groups is related to an age-dependent degradation of the endonuclease activity

  16. Modified 16S-23S rRNA intergenic region restriction endonuclease analysis for species identification of Enterococcus strains isolated from pigs, compared with identification using classical methods and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Trościańczyk, Aleksandra; Banach, Tomasz; Kowalski, Cezary

    2015-03-01

    Fast and reliable identification of bacteria to at least the species level is currently the basis for correct diagnosis and appropriate treatment of infections. This is particularly important in the case of bacteria of the genus Enterococcus, whose resistance profile is often correlated with their species (e.g. resistance to vancomycin). In this study, we evaluated restriction endonuclease analysis of the 16S-23S rRNA gene intergenic transcribed spacer (ITS) region for species identification of Enterococcus. The utility of the method was compared with that of phenotypic methods [biochemical profile evaluation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)]. Identification was based on 21 Enterococcus reference strains, of the species E. faecalis, E. faecium, E. hirae, E. durans, E. casseliflavus, E. gallinarum, E. avium, E. cecorum and E. columbae, and 47 Enterococcus field strains isolated from pigs. Restriction endonuclease analysis of the ITS-PCR product using HinfI, RsaI and MboI, in the order specified, enabled species differentiation of the Enterococcus reference and field strains, and in the case of the latter, the results of species identification were identical (47/47) to those obtained by MALDI-TOF MS. Moreover, as a result of digestion with MboI, a unique restriction profile was also obtained for the strains (3/3) identified by MALDI-TOF MS as E. thailandicus. In our opinion, restriction endonuclease analysis of the 16S-23S rRNA gene ITS region of Enterococcus may be a simple and relatively fast (less than 4 h) alternative method for identifying the species occurring most frequently in humans and animals. © 2015 The Authors.

  17. Homing endonucleases: from basics to therapeutic applications.

    PubMed

    Marcaida, Maria J; Muñoz, Inés G; Blanco, Francisco J; Prieto, Jesús; Montoya, Guillermo

    2010-03-01

    Homing endonucleases (HE) are double-stranded DNAses that target large recognition sites (12-40 bp). HE-encoding sequences are usually embedded in either introns or inteins. Their recognition sites are extremely rare, with none or only a few of these sites present in a mammalian-sized genome. However, these enzymes, unlike standard restriction endonucleases, tolerate some sequence degeneracy within their recognition sequence. Several members of this enzyme family have been used as templates to engineer tools to cleave DNA sequences that differ from their original wild-type targets. These custom HEs can be used to stimulate double-strand break homologous recombination in cells, to induce the repair of defective genes with very low toxicity levels. The use of tailored HEs opens up new possibilities for gene therapy in patients with monogenic diseases that can be treated ex vivo. This review provides an overview of recent advances in this field.

  18. Resveratrol as a calorie restriction mimetic: therapeutic implications

    PubMed Central

    Chung, Jay H.; Manganiello, Vincent; Dyck, Jason R.B.

    2012-01-01

    It is widely believed that calorie restriction (CR) can extend the lifespan of model organisms and protect against aging-related diseases. A potential CR mimetic is resveratrol, which may have beneficial effects against numerous diseases such as type 2 diabetes, cardiovascular diseases, and cancer in tissue culture and animal models. However, resveratrol in its current form is not ideal as therapy, because even at very high doses it has modest efficacy and many downstream effects. Identifying the cellular targets responsible for the effects of resveratrol and developing target-specific therapies will be helpful in increasing the efficacy of this drug without increasing its potential adverse effects. A recent discovery suggests that the metabolic effects of resveratrol may be mediated by inhibiting cAMP phosphodiesterases (PDEs), particularly PDE4. Here, we review the current literature on the metabolic and cardiovascular effects of resveratrol and attempt to shed light on the controversies surrounding its action. PMID:22885100

  19. Endonuclease domain of non-LTR retrotransposons: loss-of-function mutants and modeling of the R2Bm endonuclease

    PubMed Central

    Govindaraju, Aruna; Cortez, Jeremy D.; Reveal, Brad; Christensen, Shawn M.

    2016-01-01

    Non-LTR retrotransposons are an important class of mobile elements that insert into host DNA by target-primed reverse transcription (TPRT). Non-LTR retrotransposons must bind to their mRNA, recognize and cleave their target DNA, and perform TPRT at the site of DNA cleavage. As DNA binding and cleavage are such central parts of the integration reaction, a better understanding of the endonuclease encoded by non-LTR retrotransposons is needed. This paper explores the R2 endonuclease domain from Bombyx mori using in vitro studies and in silico modeling. Mutations in conserved sequences located across the putative PD-(D/E)XK endonuclease domain reduced DNA cleavage, DNA binding and TPRT. A mutation at the beginning of the first α-helix of the modeled endonuclease obliterated DNA cleavage and greatly reduced DNA binding. It also reduced TPRT when tested on pre-cleaved DNA substrates. The catalytic K was located to a non-canonical position within the second α-helix. A mutation located after the fourth β-strand reduced DNA binding and cleavage. The motifs that showed impaired activity form an extensive basic region. The R2 biochemical and structural data are compared and contrasted with that of two other well characterized PD-(D/E)XK endonucleases, restriction endonucleases and archaeal Holliday junction resolvases. PMID:26961309

  20. Endonucleases induced TRAIL-insensitive apoptosis in ovarian carcinoma cells

    SciTech Connect

    Geel, Tessa M.; Meiss, Gregor; Gun, Bernardina T. van der; Kroesen, Bart Jan; Leij, Lou F. de; Zaremba, Mindaugas; Silanskas, Arunas; Kokkinidis, Michael; Ruiters, Marcel H.; McLaughlin, Pamela M.; Rots, Marianne G.

    2009-09-10

    TRAIL induced apoptosis of tumor cells is currently entering phase II clinical settings, despite the fact that not all tumor types are sensitive to TRAIL. TRAIL resistance in ovarian carcinomas can be caused by a blockade upstream of the caspase 3 signaling cascade. We explored the ability of restriction endonucleases to directly digest DNA in vivo, thereby circumventing the caspase cascade. For this purpose, we delivered enzymatically active endonucleases via the cationic amphiphilic lipid SAINT-18{sup Registered-Sign }:DOPE to both TRAIL-sensitive and insensitive ovarian carcinoma cells (OVCAR and SKOV-3, respectively). Functional nuclear localization after delivery of various endonucleases (BfiI, PvuII and NucA) was indicated by confocal microscopy and genomic cleavage analysis. For PvuII, analysis of mitochondrial damage demonstrated extensive apoptosis both in SKOV-3 and OVCAR. This study clearly demonstrates that cellular delivery of restriction endonucleases holds promise to serve as a novel therapeutic tool for the treatment of resistant ovarian carcinomas.

  1. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    SciTech Connect

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  2. Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements

    PubMed Central

    Gogarten, J Peter; Hilario, Elena

    2006-01-01

    Self splicing introns and inteins that rely on a homing endonuclease for propagation are parasitic genetic elements. Their life-cycle and evolutionary fate has been described through the homing cycle. According to this model the homing endonuclease is selected for function only during the spreading phase of the parasite. This phase ends when the parasitic element is fixed in the population. Upon fixation the homing endonuclease is no longer under selection, and its activity is lost through random processes. Recent analyses of these parasitic elements with functional homing endonucleases suggest that this model in its most simple form is not always applicable. Apparently, functioning homing endonuclease can persist over long evolutionary times in populations and species that are thought to be asexual or nearly asexual. Here we review these recent findings and discuss their implications. Reasons for the long-term persistence of a functional homing endonuclease include: More recombination (sexual and as a result of gene transfer) than previously assumed for these organisms; complex population structures that prevent the element from being fixed; a balance between active spreading of the homing endonuclease and a decrease in fitness caused by the parasite in the host organism; or a function of the homing endonuclease that increases the fitness of the host organism and results in purifying selection for the homing endonuclease activity, even after fixation in a local population. In the future, more detailed studies of the population dynamics of the activity and regulation of homing endonucleases are needed to decide between these possibilities, and to determine their relative contributions to the long term survival of parasitic genes within a population. Two outstanding publications on the amoeba Naegleria group I intron (Wikmark et al. BMC Evol Biol 2006, 6:39) and the PRP8 inteins in ascomycetes (Butler et al.BMC Evol Biol 2006, 6:42) provide important stepping stones

  3. Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements.

    PubMed

    Gogarten, J Peter; Hilario, Elena

    2006-11-13

    Self splicing introns and inteins that rely on a homing endonuclease for propagation are parasitic genetic elements. Their life-cycle and evolutionary fate has been described through the homing cycle. According to this model the homing endonuclease is selected for function only during the spreading phase of the parasite. This phase ends when the parasitic element is fixed in the population. Upon fixation the homing endonuclease is no longer under selection, and its activity is lost through random processes. Recent analyses of these parasitic elements with functional homing endonucleases suggest that this model in its most simple form is not always applicable. Apparently, functioning homing endonuclease can persist over long evolutionary times in populations and species that are thought to be asexual or nearly asexual. Here we review these recent findings and discuss their implications. Reasons for the long-term persistence of a functional homing endonuclease include: More recombination (sexual and as a result of gene transfer) than previously assumed for these organisms; complex population structures that prevent the element from being fixed; a balance between active spreading of the homing endonuclease and a decrease in fitness caused by the parasite in the host organism; or a function of the homing endonuclease that increases the fitness of the host organism and results in purifying selection for the homing endonuclease activity, even after fixation in a local population. In the future, more detailed studies of the population dynamics of the activity and regulation of homing endonucleases are needed to decide between these possibilities, and to determine their relative contributions to the long term survival of parasitic genes within a population. Two outstanding publications on the amoeba Naegleria group I intron (Wikmark et al. BMC Evol Biol 2006, 6:39) and the PRP8 inteins in ascomycetes (Butler et al.BMC Evol Biol 2006, 6:42) provide important stepping stones

  4. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit.

    PubMed

    Dias, Alexandre; Bouvier, Denis; Crépin, Thibaut; McCarthy, Andrew A; Hart, Darren J; Baudin, Florence; Cusack, Stephen; Ruigrok, Rob W H

    2009-04-16

    The influenza virus polymerase, a heterotrimer composed of three subunits, PA, PB1 and PB2, is responsible for replication and transcription of the eight separate segments of the viral RNA genome in the nuclei of infected cells. The polymerase synthesizes viral messenger RNAs using short capped primers derived from cellular transcripts by a unique 'cap-snatching' mechanism. The PB2 subunit binds the 5' cap of host pre-mRNAs, which are subsequently cleaved after 10-13 nucleotides by the viral endonuclease, hitherto thought to reside in the PB2 (ref. 5) or PB1 (ref. 2) subunits. Here we describe biochemical and structural studies showing that the amino-terminal 209 residues of the PA subunit contain the endonuclease active site. We show that this domain has intrinsic RNA and DNA endonuclease activity that is strongly activated by manganese ions, matching observations reported for the endonuclease activity of the intact trimeric polymerase. Furthermore, this activity is inhibited by 2,4-dioxo-4-phenylbutanoic acid, a known inhibitor of the influenza endonuclease. The crystal structure of the domain reveals a structural core closely resembling resolvases and type II restriction endonucleases. The active site comprises a histidine and a cluster of three acidic residues, conserved in all influenza viruses, which bind two manganese ions in a configuration similar to other two-metal-dependent endonucleases. Two active site residues have previously been shown to specifically eliminate the polymerase endonuclease activity when mutated. These results will facilitate the optimisation of endonuclease inhibitors as potential new anti-influenza drugs.

  5. Sequence specificity of DNA cleavage by Micrococcus luteus. gamma. endonuclease

    SciTech Connect

    Hentosh, P.; Henner, W.D.; Reynolds, R.J.

    1985-04-01

    DNA fragments of defined sequence have been used to determine the sites of cleavage by ..gamma..-endonuclease activity in extracts prepared from Micrococcus luteus. End-labeled DNA restriction fragments of pBR322 DNA that had been irradiated under nitrogen in the presence of potassium iodide or t-butanol were treated with M. luteus ..gamma.. endonuclease and analyzed on irradiated DNA preferentially at the positions of cytosines and thymines. DNA cleavage occurred immediately to the 3' side of pyrimidines in irradiated DNA and resulted in fragments that terminate in a 5'-phosphoryl group. These studies indicate that both altered cytosines and thymines may be important DNA lesions requiring repair after exposure to ..gamma.. radiation.

  6. Cost and workforce implications of subjecting all physicians to aviation industry work-hour restrictions.

    PubMed

    Payette, Michael; Chatterjee, Abhishek; Weeks, William B

    2009-06-01

    Efforts to improve patient safety have attempted to incorporate aviation industry safety standards. We sought to evaluate the cost and workforce implications of applying aviation duty-hour restrictions to the entire practicing physician workforce. The work hours and personnel deficit for United States residents and practicing physicians that would be created by the adoption of aviation standards were calculated. Application of aviation standards to the resident workforce creates an estimated annual cost of $6.5 billion, requiring a 174% increase in the number of residents to meet the deficit. Its application to practicing physicians creates an additional annual cost of $80.4 billion, requiring a 71% increase in the physician workforce. Adding in the aviation industry's mandatory retirement age (65 years) increases annual costs by $10.5 billion. The cost per life-year saved would be $1,035,227. Application of aviation duty-hour restrictions to the United States health care system would be prohibitively costly. Alternate approaches for improving patient safety are warranted.

  7. Capsid-binding retrovirus restriction factors: discovery, restriction specificity and implications for the development of novel therapeutics.

    PubMed

    Sanz-Ramos, Marta; Stoye, Jonathan P

    2013-12-01

    The development of drugs against human immunodeficiency virus type 1 infection has been highly successful, and numerous combinational treatments are currently available. However, the risk of the emergence of resistance and the toxic effects associated with prolonged use of antiretroviral therapies have emphasized the need to consider alternative approaches. One possible area of investigation is provided by the properties of restriction factors, cellular proteins that protect organisms against retroviral infection. Many show potent viral inhibition. Here, we describe the discovery, properties and possible therapeutic uses of the group of restriction factors known to interact with the capsid core of incoming retroviruses. This group comprises Fv1, TRIM5α and TRIMCypA: proteins that all act shortly after virus entry into the target cell and block virus replication at different stages prior to integration of viral DNA into the host chromosome. They have different origins and specificities, but share general structural features required for restriction, with an N-terminal multimerization domain and a C-terminal capsid-binding domain. Their overall efficacy makes it reasonable to ask whether they might provide a framework for developing novel antiretroviral strategies.

  8. Caloric Restriction, CR Mimetics, and Healthy Aging in Okinawa: Controversies and Clinical Implications

    PubMed Central

    Willcox, Bradley J.; Willcox, Donald Craig

    2014-01-01

    Purpose of Review To examine the role of two nutritional factors implicated in the healthy aging of the Okinawans: caloric restriction (CR); and traditional foods with potential CR-mimetic properties. Recent Findings CR is a research priority for the U.S. National Institute on Aging. However, little is known regarding health effects in humans. Some CR-related outcomes, such as cause-specific mortality and lifespan, are not practical for human clinical trials. Therefore, epidemiological data on older Okinawans, who experienced a CR-like diet for close to half their lives, are of special interest. The nutritional data support mild CR (10–15%) and high consumption of foods that may mimic the biological effects of CR, including sweet potatoes, marine-based carotenoid-rich foods, and turmeric. Phenotypic evidence is consistent with CR (including short stature, low body weight, lean BMI), less age-related chronic disease (including cardiovascular diseases, cancer, and dementia) and longer lifespan (mean and maximum). Summary Both CR and traditional Okinawan functional foods with CR-mimetic properties likely had roles in the extended healthspan and lifespan of the Okinawans. More research is needed on health consequences of CR and foods with CR-mimetic properties to identify possible nutritional interventions for healthy aging. PMID:24316687

  9. Highly restricted deletion of the SNORD116 region is implicated in Prader–Willi Syndrome

    PubMed Central

    Bieth, Eric; Eddiry, Sanaa; Gaston, Véronique; Lorenzini, Françoise; Buffet, Alexandre; Conte Auriol, Françoise; Molinas, Catherine; Cailley, Dorothée; Rooryck, Caroline; Arveiler, Benoit; Cavaillé, Jérome; Salles, Jean Pierre; Tauber, Maïthé

    2015-01-01

    The SNORD116 locus lies in the 15q11-13 region of paternally expressed genes implicated in Prader–Willi Syndrome (PWS), a complex disease accompanied by obesity and severe neurobehavioural disturbances. Cases of PWS patients with a deletion encompassing the SNORD116 gene cluster, but preserving the expression of flanking genes, have been described. We report a 23-year-old woman who presented clinical criteria of PWS, including the behavioural and nutritional features, obesity, developmental delay and endocrine dysfunctions with hyperghrelinemia. We found a paternally transmitted highly restricted deletion of the SNORD116 gene cluster, the shortest described to date (118 kb). This deletion was also present in the father. This finding in a human case strongly supports the current hypothesis that lack of the paternal SNORD116 gene cluster has a determinant role in the pathogenesis of PWS. Moreover, targeted analysis of the SNORD116 gene cluster, complementary to SNRPN methylation analysis, should be carried out in subjects with a phenotype suggestive of PWS. PMID:24916642

  10. Sir-2.1 modulates 'calorie-restriction-mediated' prevention of neurodegeneration in Caenorhabditis elegans: implications for Parkinson's disease.

    PubMed

    Jadiya, Pooja; Chatterjee, Manavi; Sammi, Shreesh Raj; Kaur, Supinder; Palit, Gautam; Nazir, Aamir

    2011-09-23

    The phenomenon of aging is known to modulate many disease conditions including neurodegenerative ailments like Parkinson's disease (PD) which is characterized by selective loss of dopaminergic neurons. Recent studies have reported on such effects, as calorie restriction, in modulating aging in living systems. We reason that PD, being an age-associated neurodegenerative disease might be modulated by interventions like calorie restriction. In the present study we employed the transgenic Caenorhabditis elegans model (P(dat-1)::GFP) expressing green fluorescence protein (GFP) specifically in eight dopaminergic (DA) neurons. Selective degeneration of dopaminergic neurons was induced by treatment of worms with 6-hydroxy dopamine (6-OHDA), a selective catecholaminergic neurotoxin, followed by studies on effect of calorie restriction on the neurodegeneration. Employing confocal microscopy of the dopaminergic neurons and HPLC analysis of dopamine levels in the nematodes, we found that calorie restriction has a preventive effect on dopaminergic neurodegeneration in the worm model. We further studied the role of sirtuin, sir-2.1, in modulating such an effect. Studies employing RNAi induced gene silencing of nematode sir-2.1, revealed that presence of Sir-2.1 is necessary for achieving the protective effect of calorie restriction on dopaminergic neurodegeneration. Our studies provide evidence that calorie restriction affords, an sir-2.1 mediated, protection against the dopaminergic neurodegeneration, that might have implications for neurodegenerative Parkinson's disease.

  11. Crystal structure of PvuII endonuclease reveals extensive structural homologies to EcoRV.

    PubMed

    Athanasiadis, A; Vlassi, M; Kotsifaki, D; Tucker, P A; Wilson, K S; Kokkinidis, M

    1994-07-01

    The crystal structure of the dimeric PvuII restriction endonuclease (R.PvuII) has been determined at a resolution of 2.4A. The protein has a mixed alpha/beta architecture and consists of two subdomains. Despite a lack of sequence homology, extensive structural similarities exist between one R.PvuII subdomain and the DNA-binding subdomain of EcoRV endonuclease (R.EcoRV); the dimerization subdomains are unrelated. Within the similar domains, flexible segments of R.PvuII are topologically equivalent to the DNA-binding turns of R.EcoRV; potential catalytic residues can be deduced from the structural similarities to R.EcoRV. Conformational flexibility is important for the interaction with DNA. A possible classification of endonuclease structures on the basis of the positions of the scissile phosphates is discussed.

  12. Bacterial persistence by RNA endonucleases

    PubMed Central

    Maisonneuve, Etienne; Shakespeare, Lana J.; Jørgensen, Mikkel Girke; Gerdes, Kenn

    2011-01-01

    Bacteria form persisters, individual cells that are highly tolerant to different types of antibiotics. Persister cells are genetically identical to nontolerant kin but have entered a dormant state in which they are recalcitrant to the killing activity of the antibiotics. The molecular mechanisms underlying bacterial persistence are unknown. Here, we show that the ubiquitous Lon (Long Form Filament) protease and mRNA endonucleases (mRNases) encoded by toxin-antitoxin (TA) loci are required for persistence in Escherichia coli. Successive deletion of the 10 mRNase-encoding TA loci of E. coli progressively reduced the level of persisters, showing that persistence is a phenotype common to TA loci. In all cases tested, the antitoxins, which control the activities of the mRNases, are Lon substrates. Consistently, cells lacking lon generated a highly reduced level of persisters. Moreover, Lon overproduction dramatically increased the levels of persisters in wild-type cells but not in cells lacking the 10 mRNases. These results support a simple model according to which mRNases encoded by TA loci are activated in a small fraction of growing cells by Lon-mediated degradation of the antitoxins. Activation of the mRNases, in turn, inhibits global cellular translation, and thereby induces dormancy and persistence. Many pathogenic bacteria known to enter dormant states have a plethora of TA genes. Therefore, in the future, the discoveries described here may lead to a mechanistic understanding of the persistence phenomenon in pathogenic bacteria. PMID:21788497

  13. The structural basis of damaged DNA recognition and endonucleolytic cleavage for very short patch repair endonuclease

    PubMed Central

    Tsutakawa, Susan E.; Morikawa, Kosuke

    2001-01-01

    Endonucleases in DNA repair must be able to recognize damaged DNA as well as cleave the phosphodiester backbone. These functional prerequisites are manifested in very short patch repair (Vsr) endonuclease through a common endonuclease topology that has been tailored for recognition of TG mismatches. Structural and biochemical comparison with type II restriction enzymes illustrates how Vsr resembles these endonucleases in overall topology but also how Vsr diverges in terms of the detailed catalytic mechanism. A histidine and two metal–water clusters catalyze the phosphodiester cleavage. The mode of DNA damage recognition is also unique to Vsr. All other structurally characterized DNA damage-binding enzymes employ a nucleotide flipping mechanism for substrate recognition and for catalysis. Vsr, on the other hand, recognizes the TG mismatch as a wobble base pair and penetrates the DNA with three aromatic residues on one side of the mismatch. Thus, Vsr endonuclease provides important counterpoints in our understanding of endonucleolytic mechanisms and of damaged DNA recognition. PMID:11557809

  14. A novel exocytoplasmic endonuclease from Streptomyces antibioticus.

    PubMed Central

    Cal, S; Aparicio, J F; de los Reyes-Gavilan, C G; Nicieza, R G; Sanchez, J

    1995-01-01

    A new exocytoplasmic, nutritionally controlled endodeoxyribonuclease (EC 3.1.21.-) was purified to homogeneity from Streptomyces antibioticus. The enzyme showed an apparent molecular mass of 29 kDa (being active in the monomeric form) and a pI of approximately 7.8. The nuclease hydrolysed endonucleolytically double-stranded circular and linear DNA. The enzyme makes nicks in one strand of the DNA in G-rich regions, leaving either 5' or 3' short, single-stranded overhangs with 3'-hydroxy and 5'-phosphate termini. Breaks in the DNA occur when two nicks in opposite strands are close together. The enzyme had an optimum pH of 7.5 and an absolute requirement for bivalent cations and > or = 100 mM NaCl in the reaction buffer. Activity was greatly diminished in the presence of phosphate, Hg2+ or iodoacetate and was stimulated by dimethyl sulphoxide. Single-stranded DNA was a much poorer substrate than double-stranded DNA. The nuclease hydrolyses sequences of three or preferably more (dG).(dC) tracts in the DNA. The initial specificity shifts to other sequences (including sequences shorter than those initially hydrolysed) during the course of the reaction, giving the changing pattern of bands observed in agarose gels. 5-Methylcytosine-hemimethylated DNA is not hydrolysed by the nuclease. The properties of this novel enzyme suggest a relationship with class II restriction endonucleases and also with some eukaryotic nucleases. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7864833

  15. Dietary sodium restriction alters postprandial ghrelin: implications for race differences in obesity.

    PubMed

    Brownley, Kimberly A; Light, Kathleen C; Grewen, Karen M; Hinderliter, Alan L; West, Sheila G

    2006-01-01

    To examine the effect of sodium restriction on the appetite-stimulating hormone, ghrelin, as a function of race, salt sensitivity, and obesity. PARTICIPANTS completed two 4-day outpatient dietary interventions (moderate vs low sodium), and blood samples were drawn two hours after a controlled test meal under both conditions. A university research laboratory and affiliated General Clinical Research Center. 37 women (18 Black, 19 White) and 18 men (9 Black, 9 White), aged 36-63 years. Cardiovascular function (blood pressure, heart rate, impedance-derived indices of cardiac output and peripheral resistance) was measured after a 20-minute rest before each test meal. Blood was drawn by intravenous forearm catheter two hours after each test meal and later assayed for ghrelin, leptin, and norepinephrine. After four days of sodium restriction, postprandial ghrelin increased in White men and women and Black men but decreased in Black women. Salt sensitivity, but not obesity, was also related to ghrelin response during sodium restriction; postprandial ghrelin tended to increase among salt-sensitive subjects during salt restriction but decrease among salt-resistant subjects during salt restriction. Satiety hormone dysregulation may play a role in: 1) the heightened obesity-related morbidity among Black women, in particular; 2) adherence to sodium-restricted diets; and 3) race differences in behavioral weight-loss interventions that include sodium restriction.

  16. Characterization of Vsr endonucleases from Neisseria meningitidis.

    PubMed

    Bażlekowa, Milena; Adamczyk-Popławska, Monika; Kwiatek, Agnieszka

    2017-07-01

    DNA methylation is a common modification occurring in all living organisms. 5-methylcytosine, which is produced in a reaction catalysed by C5-methyltransferases, can spontaneously undergo deamination to thymine, leading to the formation of T:G mismatches and C→T transitions. In Escherichia coli K-12, such mismatches are corrected by the Very Short Patch (VSP) repair system, with Vsr endonuclease as the key enzyme. Neisseria meningitidis possesses genes that encode DNA methyltransferases, including C5-methyltransferases. We report on the mutagenic potential of the meningococcal C5-methyltransferases M.NmeDI and M.NmeAI resulting from deamination of 5-methylcytosine. N. meningitidis strains also possess genes encoding potential Vsr endonucleases. Phylogenetic analysis of meningococcal Vsr endonucleases indicates that they belong to two phylogenetically distinct groups (type I or type II Vsr endonucleases). N. meningitidis serogroup C (FAM18) is a representative of meningococcal strains that carry two Vsr endonuclease genes (V.Nme18IIP and V.Nme18VIP). The V.Nme18VIP (type II) endonuclease cut DNA containing T:G mismatches in all tested nucleotide contexts. V.Nme18IIP (type I) is not active in vitro, but the change of Tyr69 to His69 in the amino acid sequence of the protein restores its endonucleolytic activity. The presence of tyrosine in position 69 is a characteristic feature of type I meningococcal Vsr proteins, while type II Vsr endonucleases possess His69. In addition to the T:G mismatches, V.Nme18VIP and V.Nme18IIPY69H recognize and digest DNA with T:T or U:G mispairs. Thus, for the first time, we demonstrate that the VSP repair system may have a wider significance and broader substrate specificity than DNA lesions that only result from 5-methylcytosine deamination.

  17. Endonuclease IV (nfo) mutant of Escherichia coli.

    PubMed Central

    Cunningham, R P; Saporito, S M; Spitzer, S G; Weiss, B

    1986-01-01

    A cloned gene, designated nfo, caused overproduction of an EDTA-resistant endonuclease specific for apurinic-apyrimidinic sites in DNA. The sedimentation coefficient of the enzyme was similar to that of endonuclease IV. An insertion mutation was constructed in vitro and transferred from a plasmid to the Escherichia coli chromosome. nfo mutants had an increased sensitivity to the alkylating agents methyl methanesulfonate and mitomycin C and to the oxidants tert-butyl hydroperoxide and bleomycin. The nfo mutation enhanced the killing of xth (exonuclease III) mutants by methyl methanesulfonate, H2O2, tert-butyl hydroperoxide, and gamma rays, and it enhanced their mutability by methyl methanesulfonate. It also increased the temperature sensitivity of an xth dut (dUTPase) mutant that is defective in the repair of uracil-containing DNA. These results are consistent with earlier findings that endonuclease IV and exonuclease III both cleave DNA 5' to an apurinic-apyrimidinic site and that exonuclease III is more active. However, nfo mutants were more sensitive to tert-butyl hydroperoxide and to bleomycin than were xth mutants, suggesting that endonuclease IV might recognize some lesions that exonuclease III does not. The mutants displayed no marked increase in sensitivity to 254-nm UV radiation, and the addition of an nth (endonuclease III) mutation to nfo or nfo xth mutants did not significantly increase their sensitivity to any of the agents tested. Images PMID:2430946

  18. Restrictions on undocumented immigrants' access to health services: the public health implications of welfare reform.

    PubMed

    Kullgren, Jeffrey T

    2003-10-01

    The Personal Responsibility and Work Opportunity Reconciliation Act of 1996 greatly restricts the provision of many federal, state, and local public services to undocumented immigrants. These restrictions have prompted intense debates about the provision of free and discounted primary and preventive health care-services and have placed significant burdens on institutions that serve large undocumented immigrant populations. Intended to serve as a tool for reducing illegal immigration and protecting public resources, federal restrictions on undocumented immigrants' access to publicly financed health services unduly burden health care providers and threaten the public's health. These deleterious effects warrant the public health community's support of strategies designed to sustain provision of health services irrespective of immigration status.

  19. Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics.

    PubMed

    Albin, John S; Harris, Reuben S

    2010-01-22

    Restriction factors are natural cellular proteins that defend individual cells from viral infection. These factors include the APOBEC3 family of DNA cytidine deaminases, which restrict the infectivity of HIV-1 by hypermutating viral cDNA and inhibiting reverse transcription and integration. HIV-1 thwarts this restriction activity through its accessory protein virion infectivity factor (Vif), which uses multiple mechanisms to prevent APOBEC3 proteins such as APOBEC3G and APOBEC3F from entering viral particles. Here, we review the basic biology of the interactions between human APOBEC3 proteins and HIV-1 Vif. We also summarise, for the first time, current clinical data on the in vivo effects of APOBEC3 proteins, and survey strategies and progress towards developing therapeutics aimed at the APOBEC3-Vif axis.

  20. Substrate generation for endonucleases of CRISPR/cas systems.

    PubMed

    Zoephel, Judith; Dwarakanath, Srivatsa; Richter, Hagen; Plagens, André; Randau, Lennart

    2012-09-08

    The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1) (1-3). Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems (4). The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster (5). The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs (6-8). These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence (9). A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity(10). Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA (11,12) . These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases (4). Here, we present methods to generate crRNAs and precursor-cRNAs for

  1. Substrate Generation for Endonucleases of CRISPR/Cas Systems

    PubMed Central

    Zoephel, Judith; Dwarakanath, Srivatsa; Richter, Hagen; Plagens, André; Randau, Lennart

    2012-01-01

    The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1) 1-3. Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems 4. The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster 5. The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs 6-8. These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence 9. A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity10. Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA 11,12 . These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases 4. Here, we present methods to generate crRNAs and precursor-cRNAs for the study of

  2. Factor Structure of the Restricted Academic Situation Scale: Implications for ADHD

    ERIC Educational Resources Information Center

    Karama, Sherif; Amor, Leila Ben; Grizenko, Natalie; Ciampi, Antonio; Mbekou, Valentin; Ter-Stepanian, Marina; Lageix, Philippe; Baron, Chantal; Schwartz, George; Joober, Ridha

    2009-01-01

    Background: To study the factor structure of the Restricted Academic Situation Scale (RASS), a psychometric tool used to assess behavior in children with ADHD, 117 boys and 21 girls meeting "Diagnostic and Statistical Manual of Mental Disorders" (4th ed.; "DSM-IV") criteria for ADHD and aged between 6 and 12 years were recruited. Assessments were…

  3. The Developmental Implications of Restrictive and Supportive Parenting across Neighborhoods and Ethnicities: Exceptions Are the Rule

    ERIC Educational Resources Information Center

    Dearing, Eric

    2004-01-01

    The moderating effect of neighborhood crime and income on associations between parenting and child outcomes was estimated longitudinally for African-American (n=50), European-American (n= 59), and Latino-American (n=52) elementary school-age children. On average, restrictive parenting values were negatively associated with academic performance and…

  4. Factor Structure of the Restricted Academic Situation Scale: Implications for ADHD

    ERIC Educational Resources Information Center

    Karama, Sherif; Amor, Leila Ben; Grizenko, Natalie; Ciampi, Antonio; Mbekou, Valentin; Ter-Stepanian, Marina; Lageix, Philippe; Baron, Chantal; Schwartz, George; Joober, Ridha

    2009-01-01

    Background: To study the factor structure of the Restricted Academic Situation Scale (RASS), a psychometric tool used to assess behavior in children with ADHD, 117 boys and 21 girls meeting "Diagnostic and Statistical Manual of Mental Disorders" (4th ed.; "DSM-IV") criteria for ADHD and aged between 6 and 12 years were recruited. Assessments were…

  5. Medicare Part D Roulette: Potential Implications of Random Assignment and Plan Restrictions

    PubMed Central

    Patel, Rajul A.; Walberg, Mark P.; Woelfel, Joseph A.; Amaral, Michelle M.; Varu, Paresh

    2013-01-01

    Background Dual-eligible (Medicare/Medicaid) beneficiaries are randomly assigned to a benchmark plan, which provides prescription drug coverage under the Part D benefit without consideration of their prescription drug profile. To date, the potential for beneficiary assignment to a plan with poor formulary coverage has been minimally studied and the resultant financial impact to beneficiaries unknown. Objective We sought to determine cost variability and drug use restrictions under each available 2010 California benchmark plan. Methods Dual-eligible beneficiaries were provided Part D plan assistance during the 2010 annual election period. The Medicare Web site was used to determine benchmark plan costs and prescription utilization restrictions for each of the six California benchmark plans available for random assignment in 2010. A standardized survey was used to record all de-identified beneficiary demographic and plan specific data. For each low-income subsidy-recipient (n = 113), cost, rank, number of non-formulary medications, and prescription utilization restrictions were recorded for each available 2010 California benchmark plan. Formulary matching rates (percent of beneficiary's medications on plan formulary) were calculated for each benchmark plan. Results Auto-assigned beneficiaries had only a 34% chance of being assigned to the lowest cost plan; the remainder faced potentially significant avoidable out-of-pocket costs. Wide variations between benchmark plans were observed for plan cost, formulary coverage, formulary matching rates, and prescription utilization restrictions. Conclusions Beneficiaries had a 66% chance of being assigned to a sub-optimal plan; thereby, they faced significant avoidable out-of-pocket costs. Alternative methods of beneficiary assignment could decrease beneficiary and Medicare costs while also reducing medication non-compliance. PMID:24753963

  6. Medicare Part D roulette: potential implications of random assignment and plan restrictions.

    PubMed

    Patel, Rajul A; Walberg, Mark P; Woelfel, Joseph A; Amaral, Michelle M; Varu, Paresh

    2013-01-01

    Dual-eligible (Medicare/Medicaid) beneficiaries are randomly assigned to a benchmark plan, which provides prescription drug coverage under the Part D benefit without consideration of their prescription drug profile. To date, the potential for beneficiary assignment to a plan with poor formulary coverage has been minimally studied and the resultant financial impact to beneficiaries unknown. We sought to determine cost variability and drug use restrictions under each available 2010 California benchmark plan. Dual-eligible beneficiaries were provided Part D plan assistance during the 2010 annual election period. The Medicare Web site was used to determine benchmark plan costs and prescription utilization restrictions for each of the six California benchmark plans available for random assignment in 2010. A standardized survey was used to record all de-identified beneficiary demographic and plan specific data. For each low-income subsidy-recipient (n = 113), cost, rank, number of non-formulary medications, and prescription utilization restrictions were recorded for each available 2010 California benchmark plan. Formulary matching rates (percent of beneficiary's medications on plan formulary) were calculated for each benchmark plan. Auto-assigned beneficiaries had only a 34% chance of being assigned to the lowest cost plan; the remainder faced potentially significant avoidable out-of-pocket costs. Wide variations between benchmark plans were observed for plan cost, formulary coverage, formulary matching rates, and prescription utilization restrictions. Beneficiaries had a 66% chance of being assigned to a sub-optimal plan; thereby, they faced significant avoidable out-of-pocket costs. Alternative methods of beneficiary assignment could decrease beneficiary and Medicare costs while also reducing medication non-compliance.

  7. T4 endonuclease V: Perspectives on catalysis

    SciTech Connect

    Latham, K.A. |; Lloyd, R.S.

    1994-12-31

    Bacteriophage T4 displays enhanced ultraviolet light (UV) resistance over other T-even bacteriophages. This enhanced resistance was initially ascribed to the v gene, now known as denV. The product of the denV gene, endonuclease V, has been shown to be responsible for initiating the removal of pyrimidine dimers from DNA. Initial characterization of purified endonuclease V revealed that the enzyme produces single-strand breaks in DNA at the site of UV-induced pyrimidine dimers, yet shows no activity towards unirradiated or heat-denatured DNA. The enzyme seems almost completely specific for cis-syn cyclobutane pyrimidine dimers, although recently it has been demonstrated to react with trans-syn dimers at approximately 1/100th the rate of the cis-syn dimer. DenV has been cloned and sequenced, allowing for expression of endonuclease V within Escherichia coli. The gene encodes a 138-amino acid protein with a predicted molecular mass of 16 kDa. Extensive biochemical and genetic studies have shown endonuclease V to possess four distinct activities: (1) a salt-dependent scanning or looping mechanism allowing for nontarget double-stranded DNA interactions; (2) a pyrimidine dimer-specific binding activity; (3) a pyrimidine dimer-specific DNA glycosylase activity; and (4) an apurinic/apyrimidinic (AP) lyase activity.

  8. Adult hearing-aid users with cochlear dead regions restricted to high frequencies: Implications for amplification.

    PubMed

    Pepler, Anna; Lewis, Kathryn; Munro, Kevin J

    2016-01-01

    Cochlear dead regions (DR) are common in adult hearing-aid users, but are usually restricted to high frequencies. The aim was to determine the benefit of high-frequency amplification for ears with and without high-frequency DRs. Participants were fitted with the study hearing aid and tested under four conditions: unfiltered (NAL-NL2 prescription), and low-pass filtered at 1.5, 2, and 3 kHz. VCV stimuli were presented at 65 dB (A) in quiet and in 20-talker babble at a signal-to-babble ratio of 0 dB. Experienced adult hearing-aid users: one group of 18 with a DR edge frequency above 1.5 kHz, and a group of 18 matched controls. Overall performance was best in the unfiltered condition. There was no significant difference in mean performance between the two groups when tested in quiet. However, the DR group obtained less benefit from high-frequency amplification when tested in babble: the mean difference between the unfiltered and 3-kHz filtered condition was 6% and 13% for the DR group and controls, respectively. In adults with a moderate hearing loss and a restricted DR, speech recognition was always best in the unfiltered condition, although mean performance in babble was lower for the DR group.

  9. Molecular phylogenetics of geographically restricted Acropora species: implications for threatened species conservation.

    PubMed

    Richards, Z T; Miller, D J; Wallace, C C

    2013-12-01

    To better understand the underlying causes of rarity and extinction risk in Acropora (staghorn coral), we contrast the minimum divergence ages and nucleotide diversity of an array of species with different range sizes and levels of threat. Time-calibrated Bayesian analyses based upon concatenated nuclear and mitochondrial sequence data implied contemporary range size and vulnerability are linked to species age. However, contrary to previous hypotheses that suggest geographically restricted Acropora species evolved in the Plio-Pleistocene, the molecular phylogeny depicts some Indo-Australian species have greater antiquity, diverging in the Miocene. Species age is not related to range size as a simple positive linear function and interpreting the precise tempo of evolution in this genus is greatly complicated by morphological homoplasy and a sparse fossil record. Our phylogenetic reconstructions provide new examples of how morphology conceals cryptic evolutionary relationships in this keystone genus, and offers limited support for the species groupings currently used in Acropora systematics. We hypothesize that in addition to age, other mechanisms (such as a reticulate ancestry) delimit the contemporary range of some Acropora species, as evidenced by the complex patterns of allele sharing and paraphyly we uncover. Overall, both new and ancient evolutionary information may be lost if geographically restricted and threatened Acropora species are forced to extinction. In order to protect coral biodiversity and resolve the evolutionary history of staghorn coral, further analyses based on comprehensive and heterogeneous morphological and molecular data utilizing reticulate models of evolution are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. The cognitive implications of virtual locomotion with a restricted field of view

    NASA Astrophysics Data System (ADS)

    Marsh, William E.; Kelly, Jonathan W.; Dark, Veronica J.; Oliver, James H.

    2012-03-01

    A study was conducted to examine the impact, in terms of cognitive demands, of a restricted field of view (FOV) on semi-natural locomotion in virtual reality (VR). Participants were divided into two groups: high-FOV and low-FOV. They were asked to perform basic movements using a locomotion interface while simultaneously performing one of two memory tasks (spatial or verbal) or no memory task. The memory tasks were intended to simulate the competing demands when a user has primary tasks to perform while using an unnatural interface to move through the virtual world. Results show that participants remembered fewer spatial or verbal items when performing locomotion movements with a low FOV than with a high FOV. This equivalent verbal and spatial detriment may indicate that locomotion movements with a restricted FOV require additional general cognitive resources as opposed to spatial or verbal resource pools. This also emphasizes the importance of this research, as users of a system may allow primary task performance to suffer when performing locomotion. Movement start and completion times were also measured to examine resource requirements of specific aspects of movements. Understanding specific performance problems resulting from concurrent tasks can inform the design of systems.

  11. Food cravings discriminate between anorexia and bulimia nervosa. Implications for "success" versus "failure" in dietary restriction.

    PubMed

    Moreno, Silvia; Warren, Cortney S; Rodríguez, Sonia; Fernández, M Carmen; Cepeda-Benito, Antonio

    2009-06-01

    Food cravings are subjective, motivational states thought to induce binge eating among eating disorder patients. This study compared food cravings across eating disorders. Women (N=135) diagnosed with anorexia nervosa, restrictive (ANR) or binge-purging (ANBP) types, or bulimia nervosa, non-purging (BNNP) or purging (BNP) types completed measures of food cravings. Discriminant analysis yielded two statistically significant functions. The first function differentiated between all the four group pairs except ANBP and BNNP, with levels of various food-craving dimensions successively increasing for ANR, ANBP, BNNP, and BNP participants. The second function differentiated between ANBP and BNNP participants. Overall, the functions improved classification accuracy above chance level (44% fewer errors). The findings suggest that cravings are more strongly associated with loss of control over eating than with dietary restraint tendencies.

  12. Restricted N-glycan Conformational Space in the PDB and Its Implication in Glycan Structure Modeling

    PubMed Central

    Jo, Sunhwan; Lee, Hui Sun; Skolnick, Jeffrey; Im, Wonpil

    2013-01-01

    Understanding glycan structure and dynamics is central to understanding protein-carbohydrate recognition and its role in protein-protein interactions. Given the difficulties in obtaining the glycan's crystal structure in glycoconjugates due to its flexibility and heterogeneity, computational modeling could play an important role in providing glycosylated protein structure models. To address if glycan structures available in the PDB can be used as templates or fragments for glycan modeling, we present a survey of the N-glycan structures of 35 different sequences in the PDB. Our statistical analysis shows that the N-glycan structures found on homologous glycoproteins are significantly conserved compared to the random background, suggesting that N-glycan chains can be confidently modeled with template glycan structures whose parent glycoproteins share sequence similarity. On the other hand, N-glycan structures found on non-homologous glycoproteins do not show significant global structural similarity. Nonetheless, the internal substructures of these N-glycans, particularly, the substructures that are closer to the protein, show significantly similar structures, suggesting that such substructures can be used as fragments in glycan modeling. Increased interactions with protein might be responsible for the restricted conformational space of N-glycan chains. Our results suggest that structure prediction/modeling of N-glycans of glycoconjugates using structure database could be effective and different modeling approaches would be needed depending on the availability of template structures. PMID:23516343

  13. Democracies restricting democratic rights: some classical sources and implications for ethics of biometrics.

    PubMed

    Leavitt, Frank J

    2011-03-01

    Ancient Greek and 17th century English philosophy are not usually discussed along with the ethics of biometrics and data sharing. Academic ethics today, however, suffers from a lack of background in classical texts. We may discuss whether biometrics and data sharing are consistent with democracy, but if we do not know what democracy is, then we cannot know what actions are consistent with it. I shall discuss how and why democracies have restricted the rights of their citizens. I will give the most attention to two paradigms that have most influenced modern democratic thinking: 17th century English democracy and ancient Athens. I do not accept the dogma that the Athenians were obviously wrong to try and then to condemn Socrates. His death-loving doctrine could not but have weakened the will of the youth to work and fight for the good of Athens. I will try to understand the Athenians' point of view and their need to defend their security. At the end, I will apply these lessons to biometrics and data sharing for security reasons.

  14. Effects of laryngeal restriction on pharyngeal peristalsis and biomechanics: Clinical implications.

    PubMed

    Shaker, Reza; Sanvanson, Patrick; Balasubramanian, Gokulakrishnan; Kern, Mark; Wuerl, Ashley; Hyngstrom, Allison

    2016-06-01

    To date, rehabilitative exercises aimed at strengthening the pharyngeal muscles have not been developed due to the inability to successfully overload and fatigue these muscles during their contraction, a necessary requirement for strength training. The purpose of this study was to test the hypothesis that applying resistance against anterosuperior movement of the hyolaryngeal complex will overload the pharyngeal muscles and by repetitive swallowing will result in their fatigue manifested by a reduction in pharyngeal peristaltic amplitude. Studies were done in two groups. In group 1 studies 15 healthy subjects (age: 42 ± 14 yr, 11 females) were studied to determine whether imposing resistance to swallowing using a handmade device can affect the swallow-induced hyolaryngeal excursion and related upper esophageal sphincter (UES) opening. In group 2, an additional 15 healthy subjects (age 56 ± 25 yr, 7 females) were studied to determine whether imposing resistance to the anterosuperior excursion of the hyolaryngeal complex induces fatigue manifested as reduction in pharyngeal contractile pressure during repeated swallowing. Analysis of the video recordings showed significant decrease in maximum deglutitive superior laryngeal excursion and UES opening diameter (P < 0.01) due to resistive load. Consecutive swallows against the resistive load showed significant decrease in pharyngeal contractile integral (PhCI) values (P < 0.01). Correlation analysis showed a significant negative correlation between PhCI and successive swallows, suggesting "fatigue" (P < 0.001). In conclusion, repeated swallows against a resistive load induced by restricting the anterosuperior excursion of the larynx safely induces fatigue in pharyngeal peristalsis and thus has the potential to strengthen the pharyngeal contractile function.

  15. Stimulation of intrachromosomal homologous recombination in human cells by electroporation with site-specific endonucleases.

    PubMed Central

    Brenneman, M; Gimble, F S; Wilson, J H

    1996-01-01

    In somatic mammalian cells, homologous recombination is a rare event. To study the effects of chromosomal breaks on frequency of homologous recombination, site-specific endonucleases were introduced into human cells by electroporation. Cell lines with a partial duplication within the HPRT (hypoxanthine phosphoribosyltransferase) gene were created through gene targeting. Homologous intrachromosomal recombination between the repeated regions of the gene can reconstruct a functioning, wild-type gene. Treatment of these cells with the restriction endonuclease Xba I, which has a recognition site within the repeated region of HPRT homology, increased the frequency or homologous recombination bv more than 10-fold. Recombination frequency was similarly increased by treatment with the rare-cutting yeast endonuclease PI-Sce I when a cleavage site was placed within the repeated region of HPRT. In contrast, four restriction enzymes that cut at positions either outside of the repeated regions or between them produced no change in recombination frequency. The results suggest that homologous recombination between intrachromosomal repeats can be specifically initiated by a double-strand break occurring within regions of homology, consistent with the predictions of a model. PMID:8622983

  16. Structural, functional and evolutionary relationships between homing endonucleases and proteins from their host organisms

    PubMed Central

    Taylor, Gregory K.; Stoddard, Barry L.

    2012-01-01

    Homing endonucleases (HEs) are highly specific DNA-cleaving enzymes that are encoded by invasive DNA elements (usually mobile introns or inteins) within the genomes of phage, bacteria, archea, protista and eukaryotic organelles. Six unique structural HE families, that collectively span four distinct nuclease catalytic motifs, have been characterized to date. Members of each family display structural homology and functional relationships to a wide variety of proteins from various organisms. The biological functions of those proteins are highly disparate and include non-specific DNA-degradation enzymes, restriction endonucleases, DNA-repair enzymes, resolvases, intron splicing factors and transcription factors. These relationships suggest that modern day HEs share common ancestors with proteins involved in genome fidelity, maintenance and gene expression. This review summarizes the results of structural studies of HEs and corresponding proteins from host organisms that have illustrated the manner in which these factors are related. PMID:22406833

  17. Role of the Nfo and ExoA apurinic/apyrimidinic endonucleases in radiation resistance and radiation-induced mutagenesis of Bacillus subtilis spores.

    PubMed

    Moeller, Ralf; Setlow, Peter; Pedraza-Reyes, Mario; Okayasu, Ryuichi; Reitz, Günther; Nicholson, Wayne L

    2011-06-01

    The roles of DNA repair by apurinic/apyrimidinic (AP) endonucleases alone, and together with DNA protection by α/β-type small acid-soluble spore proteins (SASP), in Bacillus subtilis spore resistance to different types of radiation have been studied. Spores lacking both AP endonucleases (Nfo and ExoA) and major SASP were significantly more sensitive to 254-nm UV-C, environmental UV (>280 nm), X-ray exposure, and high-energy charged (HZE)-particle bombardment and had elevated mutation frequencies compared to those of wild-type spores and spores lacking only one or both AP endonucleases or major SASP. These findings further implicate AP endonucleases and α/β-type SASP in repair and protection, respectively, of spore DNA against effects of UV and ionizing radiation.

  18. The fragment structure of a putative HsdR subunit of a type I restriction enzyme from Vibrio vulnificus YJ016: implications for DNA restriction and translocation activity

    PubMed Central

    Uyen, Nguyen To; Park, Suk-Youl; Choi, Ji-Woo; Lee, Hyun-Ju; Nishi, Kosuke; Kim, Jeong-Sun

    2009-01-01

    Among four types of bacterial restriction enzymes that cleave a foreign DNA depending on its methylation status, type I enzymes composed of three subunits are interesting because of their unique DNA cleavage and translocation mechanisms performed by the restriction subunit (HsdR). The elucidated N-terminal fragment structure of a putative HsdR subunit from Vibrio vulnificus YJ016 reveals three globular domains. The nucleolytic core within an N-terminal nuclease domain (NTD) is composed of one basic and three acidic residues, which include a metal-binding site. An ATP hydrolase (ATPase) site at the interface of two RecA-like domains (RDs) is located close to the probable DNA-binding site for translocation, which is far from the NTD nucleolytic core. Comparison of relative domain arrangements with other functionally related ATP and/or DNA complex structures suggests a possible translocation and restriction mechanism of the HsdR subunit. Furthermore, careful analysis of its sequence and structure implies that a linker helix connecting two RDs and an extended region within the nuclease domain may play a central role in switching the DNA translocation into the restriction activity. PMID:19625490

  19. The fragment structure of a putative HsdR subunit of a type I restriction enzyme from Vibrio vulnificus YJ016: implications for DNA restriction and translocation activity.

    PubMed

    Uyen, Nguyen To; Park, Suk-Youl; Choi, Ji-Woo; Lee, Hyun-Ju; Nishi, Kosuke; Kim, Jeong-Sun

    2009-11-01

    Among four types of bacterial restriction enzymes that cleave a foreign DNA depending on its methylation status, type I enzymes composed of three subunits are interesting because of their unique DNA cleavage and translocation mechanisms performed by the restriction subunit (HsdR). The elucidated N-terminal fragment structure of a putative HsdR subunit from Vibrio vulnificus YJ016 reveals three globular domains. The nucleolytic core within an N-terminal nuclease domain (NTD) is composed of one basic and three acidic residues, which include a metal-binding site. An ATP hydrolase (ATPase) site at the interface of two RecA-like domains (RDs) is located close to the probable DNA-binding site for translocation, which is far from the NTD nucleolytic core. Comparison of relative domain arrangements with other functionally related ATP and/or DNA complex structures suggests a possible translocation and restriction mechanism of the HsdR subunit. Furthermore, careful analysis of its sequence and structure implies that a linker helix connecting two RDs and an extended region within the nuclease domain may play a central role in switching the DNA translocation into the restriction activity.

  20. Price restrictions and other restrictions on alcohol availability in Denmark and Sweden: a historical perspective with implications for the current debate.

    PubMed

    Lindström, Martin

    2005-01-01

    Current political debate in Sweden is mainly centred on lowering taxes on alcohol in order to "harmonize" prices with those in neighbouring countries, although the evidence of a negative association between prices and alcohol consumption is more than convincing. Total per capita consumption figures for twentieth-century Denmark and Sweden are utilized to illustrate the astonishing effects on consumption patterns of active government policies to restrict availability.

  1. Monitoring DNA recombination initiated by HO endonuclease.

    PubMed

    Sugawara, Neal; Haber, James E

    2012-01-01

    DNA double-strand breaks (DSBs) have proven to be very potent initiators of recombination in yeast and other organisms. A single, site-specific DSB initiates homologous DNA repair events such as gene conversion, break-induced replication, and single-strand annealing, as well as nonhomologous end joining, microhomology-mediated end joining, and new telomere addition. When repair is either delayed or prevented, a single DSB can trigger checkpoint-mediated cell cycle arrest. In budding yeast, expressing the HO endonuclease under the control of a galactose-inducible promoter has been instrumental in the study of these processes by providing us a way to synchronously induce a DSB at a unique site in vivo. We describe how the HO endonuclease has been used to study the recombination events in mating-type (MAT) switching. Southern blots provide an overview of the process by allowing one to examine the formation of the DSB, DNA degradation at the break, and formation of the product. Denaturing gels and slot blots as well as PCR have provided important tools to follow the progression of resection in wild-type and mutant cells. PCR has also been important in allowing us to follow the kinetics of certain recombination intermediates such as the initiation of repair DNA synthesis or the removal of nonhomologous Y sequences during MAT switching. Finally chromatin immunoprecipitation has been used to follow the recruitment of key proteins to the DSB and in subsequent steps in DSB repair.

  2. DNA binding and cleavage selectivity of the Escherichia coli DNA G:T-mismatch endonuclease (vsr protein).

    PubMed

    Gonzalez-Nicieza, R; Turner, D P; Connolly, B A

    2001-07-13

    The Escherichia coli vsr endonuclease recognises T:G base-pair mismatches in double-stranded DNA and initiates a repair pathway by hydrolysing the phosphate group 5' to the incorrectly paired T. The gene encoding the vsr endonuclease is next to the gene specifying the E. coli dcm DNA-methyltransferase; an enzyme that adds CH3 groups to the first dC within its target sequence CC[A/T]GG, giving C5MeC[A/T]GG. Deamination of the d5MeC results in CT[A/T]GG in which the first T is mis-paired with dG and it is believed that the endonuclease preferentially recognises T:G mismatches within the dcm recognition site. Here, the preference of the vsr endonuclease for bases surrounding the T:G mismatch has been evaluated. Determination of specificity constant (kst/KD; kst = rate constant for single turnover, KD = equilibrium dissociation constant) confirms vsr's preference for a T:G mismatch within a dcm sequence i.e. CT[A/T]GG (the underlined T being mis-paired with dG) is the best substrate. However, the enzyme is capable of binding and hydrolysing sequences that differ from the dcm target site by a single base-pair (dcm star sites). Individual alteration of any of the four bases surrounding the mismatched T gives a substrate, albeit with reduced binding affinity and slowed turnover rates. The vsr endonuclease has a much lower selectivity for the dcm sequence than type II restriction endonucleases have for their target sites. The results are discussed in the light of the known crystal structure of the vsr protein and its possible physiological role. Copyright 2001 Academic Press.

  3. Homing endonucleases: from genetic anomalies to programmable genomic clippers.

    PubMed

    Belfort, Marlene; Bonocora, Richard P

    2014-01-01

    Homing endonucleases are strong drivers of genetic exchange and horizontal transfer of both their own genes and their local genetic environment. The mechanisms that govern the function and evolution of these genetic oddities have been well documented over the past few decades at the genetic, biochemical, and structural levels. This wealth of information has led to the manipulation and reprogramming of the endonucleases and to their exploitation in genome editing for use as therapeutic agents, for insect vector control and in agriculture. In this chapter we summarize the molecular properties of homing endonucleases and discuss their strengths and weaknesses in genome editing as compared to other site-specific nucleases such as zinc finger endonucleases, TALEN, and CRISPR-derived endonucleases.

  4. Homing Endonucleases: From Genetic Anomalies to Programmable Genomic Clippers

    PubMed Central

    Belfort, Marlene

    2015-01-01

    Homing endonucleases are strong drivers of genetic exchange and horizontal transfer of both their own genes and their local genetic environment. The mechanisms that govern the function and evolution of these genetic oddities have been well documented over the past few decades at the genetic, biochemical, and structural levels. This wealth of information has led to the manipulation and reprogramming of the endonucleases and to their exploitation in genome editing for use as therapeutic agents, for insect vector control and in agriculture. In this chapter we summarize the molecular properties of homing endonucleases and discuss their strengths and weaknesses in genome editing as compared to other site-specific nucleases such as zinc finger endonucleases, TALEN, and CRISPR-derived endonucleases. PMID:24510256

  5. Natural and engineered nicking endonucleases--from cleavage mechanism to engineering of strand-specificity.

    PubMed

    Chan, Siu-Hong; Stoddard, Barry L; Xu, Shuang-Yong

    2011-01-01

    Restriction endonucleases (REases) are highly specific DNA scissors that have facilitated the development of modern molecular biology. Intensive studies of double strand (ds) cleavage activity of Type IIP REases, which recognize 4-8 bp palindromic sequences, have revealed a variety of mechanisms of molecular recognition and catalysis. Less well-studied are REases which cleave only one of the strands of dsDNA, creating a nick instead of a ds break. Naturally occurring nicking endonucleases (NEases) range from frequent cutters such as Nt.CviPII (^CCD; ^ denotes the cleavage site) to rare-cutting homing endonucleases (HEases) such as I-HmuI. In addition to these bona fida NEases, individual subunits of some heterodimeric Type IIS REases have recently been shown to be natural NEases. The discovery and characterization of more REases that recognize asymmetric sequences, particularly Types IIS and IIA REases, has revealed recognition and cleavage mechanisms drastically different from the canonical Type IIP mechanisms, and has allowed researchers to engineer highly strand-specific NEases. Monomeric LAGLIDADG HEases use two separate catalytic sites for cleavage. Exploitation of this characteristic has also resulted in useful nicking HEases. This review aims at providing an overview of the cleavage mechanisms of Types IIS and IIA REases and LAGLIDADG HEases, the engineering of their nicking variants, and the applications of NEases and nicking HEases.

  6. Phenotypic variation amongst genotypically homogeneous Legionella pneumophila serogroup 1 isolates: implications for the investigation of outbreaks of Legionnaires' disease.

    PubMed Central

    Harrison, T. G.; Saunders, N. A.; Haththotuwa, A.; Hallas, G.; Birtles, R. J.; Taylor, A. G.

    1990-01-01

    One hundred and seventy-nine isolates of Legionella pneumophila serogroup 1, obtained from a site associated with an outbreak of Legionnaires' disease, were examined by monoclonal antibody subgrouping, restriction fragment length polymorphism typing, restriction endonuclease analysis and plasmid content. Nine distinct phenotypes were detected but at the genotypic level all strains were closely related. The data presented indicate that phenotypic variation of a single parent strain can occur within an environmental site. The implications of these findings are discussed in relation to the investigation of outbreaks of Legionnaires' disease. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1969803

  7. Ca2+, Mg2+-dependent endonuclease and ADP-ribosylation.

    PubMed

    Yoshihara, K; Tanaka, Y; Kamiya, T

    1983-01-01

    The molecular mechanism of the inhibition of Ca2+, Mg2+-dependent endonuclease by ADP-ribosylation was studied by using purified bull seminal plasma Ca2+, Mg2+-dependent endonuclease, endonuclease-stimulating proteins, and poly-(ADP-ribose) polymerase. The activity of an essentially homogeneous preparation of the endonuclease was markedly suppressed by its preincubation with NAD+, poly-(ADP-ribose) polymerase, DNA, and Mg2+. These four components of the incubation mixture were all essential for the suppression of the activity. Analyses of the initial and the chased reaction product by Sephadex G-100 column chromatography and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis revealed that Ca2+, Mg2+-dependent endonuclease was ADP-ribosylated during the incubation and its activity was markedly inhibited by the elongation of the ADP-ribose polymer covalently attached to the endonuclease. When the suppressed enzymes were mildly treated with an alkaline pH of 10.0, the activity was restored almost to the level of the unmodified control sample. These facts indicate that the linkage between the enzyme and poly(ADP-ribose) is hydrolyzed at this pH, and that the liberated polymer itself does not appreciably affect the endonuclease activity. These results also suggest that an electric repulsion between negative charges on DNA and poly(ADP-ribose) attached to Ca2+, Mg2+-dependent endonuclease is the basis for the observed suppression of the enzyme by ADP-ribosylation. Though histone H2B and H1 are shown to be as good endonuclease-stimulators (1) as they are good acceptors of ADP-ribose in poly(ADP-ribose) polymerase reaction (2), ADP-ribosylation of these two proteins did not affect their endonuclease-stimulating ability appreciably, at least under the conditions used.

  8. Tear lipocalin is the major endonuclease in tears.

    PubMed

    Yusifov, Taleh N; Abduragimov, Adil R; Narsinh, Kiran; Gasymov, Oktay K; Glasgow, Ben J

    2008-01-29

    Human endonucleases are integral to apoptosis in which unwanted or potentially harmful cells are eliminated. The rapid turnover of ocular surface epithelium and microbial colonization of the eyelids are continual sources of DNA in tears. Here, we determine the principal sources of endonuclease activity in tears. Endonucleases in human tears were identified after Sephadex G100 gel filtration. DNA hydrolyzing activity was measured by the conversion pUC19 plasmid DNA to its circular form in agarose gels. Fractions with endonuclease activity were further isolated using a combination ConA-Sepharose DNA, oligo (dT) cellulose, and anion exchange chromatographies. The molecular weights of the DNA hydrolyzing proteins were estimated in zymograms and by calibration of size exclusion chromatography. DNase activities were characterized for activity at a variety of pH and ion concentrations as well as in the presence of inhibitors including NiCl(2), ZnCl(2), G-actin, and aurintricarboxylic acid (ATA). To determine the mode of hydrolysis, the cleaved ends of the DNA digested by tear DNases were analyzed by 3' and 5' end labeling using either terminal deoxynucleotidyl transferase or polynucleotide kinase with or without pretreatment with alkaline phosphatase. Tear lipocalin (TL) accounts for over 75% of the DNA catalytic activity in tears while a second endonuclease, approximately 34 kDa, is responsible for less than 24% of the activity. Both are Mg(2+) dependent enzyme endonucleases that are enhanced by Ca(2+), active at physiologic pH, inhibited by aurintricarboxylic acid, and catalyze hydrolysis of DNA to produce 3'-OH/5'P ends. However, the two enzymes can be distinguished by the inhibitory effect of NiCl(2) and the sizes of the cleaved DNA fragments. Two magnesium dependent extracellular endonucleases were identified in tears that are different from other major human extracellular nucleases. TL is the principal endonuclease in human tear fluid. Tear endonucleases have unique

  9. Site specific endonucleases for human genome mapping. Final report, April 1, 1992--March 31, 1994

    SciTech Connect

    Knoche, K.; Selman, S.; Hung, L.

    1994-06-01

    Current large scale genome mapping methodology suffers from a lack of tools for generating specific DNA fragments in the megabase size range. While technology such as pulsed field gel electrophoresis can resolve DNA fragments greater than 10 megabases in size, current methods for cleaving mammalian DNA using bacterial restriction enzymes are incapable of producing such fragments. Though several multidimensional approaches are underway to overcome this limitation, there currently is no single step procedure to generate specific DNA fragments in the 2-100 megabase size range. In order to overcome these limitations, we proposed to develop a family of site-specific endonucleases capable of generating DNA fragments in the 2-100 megabase size range in a single step. Additionally, we proposed to accomplish this by relaxing the specificity of a very-rare cutting intron-encoded endonucleases, I-Ppo I, and potentially using the process as a model for development of other enzymes. Our research has uncovered a great deal of information about intron-encoded endonucleases. We have found that I-Ppo I has a remarkable ability to tolerate degeneracy within its recognition sequence, and we have shown that the recognition sequence is larger than 15 base pairs. These findings suggest that a detailed study of the mechanism by which intron-encoded endonucleases recognize their target sequences should provide new sights into DNA-protein interactions; this had led to a continuation of the study of I-Ppo I in Dr. Raines` laboratory and we expect a more detailed understanding of the mechanism of I-Ppo I action to result.

  10. Functional coupling of duplex translocation to DNA cleavage in a type I restriction enzyme.

    PubMed

    Csefalvay, Eva; Lapkouski, Mikalai; Guzanova, Alena; Csefalvay, Ladislav; Baikova, Tatsiana; Shevelev, Igor; Bialevich, Vitali; Shamayeva, Katsiaryna; Janscak, Pavel; Kuta Smatanova, Ivana; Panjikar, Santosh; Carey, Jannette; Weiserova, Marie; Ettrich, Rüdiger

    2015-01-01

    Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on motor subunit HsdR. Functional coupling of DNA cleavage and translocation is a hallmark of the Type I restriction systems that is consistent with their proposed role in horizontal gene transfer. DNA cleavage occurs at nonspecific sites distant from the cognate recognition sequence, apparently triggered by stalled translocation. The X-ray crystal structure of the complete HsdR subunit from E. coli plasmid R124 suggested that the triggering mechanism involves interdomain contacts mediated by ATP. In the present work, in vivo and in vitro activity assays and crystal structures of three mutants of EcoR124I HsdR designed to probe this mechanism are reported. The results indicate that interdomain engagement via ATP is indeed responsible for signal transmission between the endonuclease and helicase domains of the motor subunit. A previously identified sequence motif that is shared by the RecB nucleases and some Type I endonucleases is implicated in signaling.

  11. Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks*

    PubMed Central

    Kim, Hyun-Suk; Nickoloff, Jac A.; Wu, Yuehan; Williamson, Elizabeth A.; Sidhu, Gurjit Singh; Reinert, Brian L.; Jaiswal, Aruna S.; Srinivasan, Gayathri; Patel, Bhavita; Kong, Kimi; Burma, Sandeep; Lee, Suk-Hee; Hromas, Robert A.

    2017-01-01

    Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5′ end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5′-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5′ end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5′-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5′ end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks. PMID:28049724

  12. In vivo cleavage specificity of Trypanosoma brucei editosome endonucleases

    PubMed Central

    Carnes, Jason; McDermott, Suzanne; Anupama, Atashi; Oliver, Brian G.; Sather, D. Noah

    2017-01-01

    Abstract RNA editing is an essential post-transcriptional process that creates functional mitochondrial mRNAs in Kinetoplastids. Multiprotein editosomes catalyze pre-mRNA cleavage, uridine (U) insertion or deletion, and ligation as specified by guide RNAs. Three functionally and compositionally distinct editosomes differ by the mutually exclusive presence of the KREN1, KREN2 or KREN3 endonuclease and their associated partner proteins. Because endonuclease cleavage is a likely point of regulation for RNA editing, we elucidated endonuclease specificity in vivo. We used a mutant gamma ATP synthase allele (MGA) to circumvent the normal essentiality of the editing endonucleases, and created cell lines in which both alleles of one, two or all three of the endonucleases were deleted. Cells lacking multiple endonucleases had altered editosome sedimentation on glycerol gradients and substantial defects in overall editing. Deep sequencing analysis of RNAs from such cells revealed clear discrimination by editosomes between sites of deletion versus insertion editing and preferential but overlapping specificity for sites of insertion editing. Thus, endonuclease specificities in vivo are distinct but with some functional overlap. The overlapping specificities likely accommodate the more numerous sites of insertion versus deletion editing as editosomes collaborate to accurately edit thousands of distinct editing sites in vivo. PMID:28334821

  13. Mechanism of action of Micrococcus luteus. gamma. -endonuclease

    SciTech Connect

    Jorgensen, T.J.; Kow, Y.W.; Wallace, S.S.; Henner, W.D.

    1987-10-06

    Micrococcus luteus extracts contain ..gamma..-endonuclease, a Mg/sup 2 +/-independent endonuclease that cleaves ..gamma..-irradiated DNA. This enzyme has been purified approximately 1000-fold, and the purified enzyme was used to study its substrate specificity and mechanism of action. ..gamma..-Endonuclease cleaves DNA containing either thymine glycols, urea residues, or apurinic sites but not undamaged DNA or DNA containing reduced apurinic sites. The enzyme has both N-glycosylase activity that releases thymine glycol residues from OsO/sub 4/-treated DNA and an associated apurinic endonuclease activity. The location and nature of the cleavage site produced has been determined with DNA sequencing techniques. ..gamma..-Endonuclease cleaves DNA containing thymine glycols or apurinic sites immediately 3' to the damaged or missing base. Cleavage results in a 5'-phosphate terminus and a 3' baseless sugar residue. Cleavage sites can be converted to primers for DNA polymerase I by subsequent treatment with Escherichia coli exonuclease III. The mechanism of action of ..gamma..-endonuclease and its substrate specificity are very similar to those identified for E. coli endonuclease III.

  14. Mechanisms of endonuclease-mediated mRNA decay

    PubMed Central

    Schoenberg, Daniel R.

    2012-01-01

    Endonuclease cleavage was one of the first identified mechanisms of mRNA decay but until recently it was thought to play a minor role to the better-known processes of deadenylation, decapping and exonuclease-catalyzed decay. Most of the early examples of endonuclease decay came from studies of a particular mRNA whose turnover changed in response to hormone, cytokine, developmental or nutritional stimuli. Only a few of these examples of endonuclease-mediated mRNA decay progressed to the point where the enzyme responsible for the initiating event was identified and studied in any detail. The discovery of microRNAs and RISC-catalyzed endonuclease cleavage followed by the identification of PIN (pilT N-terminal) domains that impart endonuclease activity to a number of the proteins involved in mRNA decay has led to a resurgence of interest in endonuclease-mediated mRNA decay. PIN domains show no substrate selectivity, and their involvement in a number of decay pathways highlights a recurring theme that the context in which an endonuclease functions is a primary factor in determining whether any given mRNA will be targeted for decay by this or the default exonuclease-mediated decay processes. PMID:21957046

  15. The homing endonuclease I-CreI uses three metals, one of which is shared between the two active sites.

    PubMed

    Chevalier, B S; Monnat, R J; Stoddard, B L

    2001-04-01

    Homing endonucleases, like restriction enzymes, cleave double-stranded DNA at specific target sites. The cleavage mechanism(s) utilized by LAGLIDADG endonucleases have been difficult to elucidate; their active sites are divergent, and only one low resolution cocrystal structure has been determined. Here we report two high resolution structures of the dimeric I-CreI homing endonuclease bound to DNA: a substrate complex with calcium and a product complex with magnesium. The bound metals in both complexes are verified by manganese anomalous difference maps. The active sites are positioned close together to facilitate cleavage across the DNA minor groove; each contains one metal ion bound between a conserved aspartate (Asp 20) and a single scissile phosphate. A third metal ion bridges the two active sites. This divalent cation is bound between aspartate residues from the active site of each subunit and is in simultaneous contact with the scissile phosphates of both DNA strands. A metal-bound water molecule acts as the nucleophile and is part of an extensive network of ordered water molecules that are positioned by enzyme side chains. These structures illustrate a unique variant of a two-metal endonuclease mechanism is employed by the highly divergent LAGLIDADG enzyme family.

  16. Overproduction of the EcoR V endonuclease and methylase.

    PubMed

    Bougueleret, L; Tenchini, M L; Botterman, J; Zabeau, M

    1985-06-11

    Strains overproducing the EcoR V endonuclease and methylase have been obtained by inserting each of the two genes in expression vectors containing the lambda PL promoter. The methylase is overproduced to a level reaching 5-10% of the total cellular proteins, which represents a 50-100 fold increase. A 30 fold overproduction of endonuclease was achieved by randomly positioning the EndRV gene downstream of the lambda PL promoter. The situation in the endonuclease overproducing clone resembles that encountered in maxi-cells. The strains described here allowed a quick purification of both enzymes in sufficient amounts for crystallisation attempts.

  17. PCR-based bioprospecting for homing endonucleases in fungal mitochondrial rRNA genes.

    PubMed

    Hafez, Mohamed; Guha, Tuhin Kumar; Shen, Chen; Sethuraman, Jyothi; Hausner, Georg

    2014-01-01

    Fungal mitochondrial genomes act as "reservoirs" for homing endonucleases. These enzymes with their DNA site-specific cleavage activities are attractive tools for genome editing and gene therapy applications. Bioprospecting and characterization of naturally occurring homing endonucleases offers an alternative to synthesizing artificial endonucleases. Here, we describe methods for PCR-based screening of fungal mitochondrial rRNA genes for homing endonuclease encoding sequences, and we also provide protocols for the purification and biochemical characterization of putative native homing endonucleases.

  18. Apurinic/apyrimidinic endonucleases in repair of pyrimidine dimers and other lesions in DNA.

    PubMed Central

    Warner, H R; Demple, B F; Deutsch, W A; Kane, C M; Linn, S

    1980-01-01

    The characteristics of the nicks (single-strand breaks) introduced into damaged DNA by Escherichia coli endonucleases III, IV, and VI and by phage T4 UV endonuclease have been investigated with E. coli DNA polymerase I (DNA nucleotidyltransferase). Nicks introduced into depurinated DNA by endonuclease IV or VI provide good primer termini for the polymerase, whereas nicks introduced into depurinated DNA by endonuclease III or into irradiated DNA by T4 UV endonuclease do not. This result suggests that endonuclease IV nicks depurinated DNA on the 5' side of the apurinic site, as does endonuclease VI, whereas endonuclease III has a different incision mechanism. T4 UV endonuclease also possesses apurinic endonuclease activity that generates nicks in depurinated DNA with low priming activity for the polymerase. The priming activity of DNA nicked with endonuclease III or T4 UV endonuclease can be enhanced by an additional incubation with endonuclease VI and, to a lesser extent, by incubation with endonuclease IV. These results indicate that endonuclease III and T4 UV endonuclease (acting upon depurinated and irradiated DNA, respectively) generate nicks containing apurinic/apyrimidinic sites at their 3' termini and that such sites are not rapidly excised by the 3' leads to 5' activity of DNA polymerase I. However, endonuclease IV or VI apparently can remove such terminal apurinic/apyrimidinic sites as well as cleave on the 5' side of the unnicked sites. These results suggest roles for endonucleases III, IV, and VI in the repair of apurinic/apyrimidinic sites as well as pyrimidine dimer sites in DNA. Our results with T4 UV endonuclease suggest that the incision of irradiated DNA by T4 UV endonuclease involves both cleavage of the glycosylic bond at the 5' half of the pyrimidine dimer and cleavage of the phosphodiester bond originally linking the two nucleotides of the dimer. They also imply that the glycosylic bond is cleaved before the phosphodiester bond. PMID:6254032

  19. A new specific DNA endonuclease activity in yeast mitochondria.

    PubMed

    Sargueil, B; Delahodde, A; Hatat, D; Tian, G L; Lazowska, J; Jacq, C

    1991-02-01

    Two group I intron-encoded proteins from the yeast mitochondrial genome have already been shown to have a specific DNA endonuclease activity. This activity mediates intron insertion by cleaving the DNA sequence corresponding to the splice junction of an intronless strain. We have discovered in mitochondrial extracts from the yeast strain 777-3A a new DNA endonuclease activity which cleaves the fused exon A3-exon A4 junction sequence of the CO XI gene.

  20. Ethical Concerns in Tobacco Control Nonsmoker and “Nonnicotine” Hiring Policies: The Implications of Employment Restrictions for Tobacco Control

    PubMed Central

    2012-01-01

    Smoking has been restricted in workplaces for some time. A number of organizations with health promotion or tobacco control goals have taken the further step of implementing employment restrictions. These restrictions apply to smokers and, in some cases, to anyone testing positive on cotinine tests, which also capture users of nicotine-replacement therapy and those exposed to secondhand smoke. Such policies are defended as closely related to broader antismoking goals: first, only nonsmokers can be role models and advocates for tobacco control; second, nonsmoker and “nonnicotine” hiring policies help denormalize tobacco use, thus advancing a central aspect of tobacco control. However, these arguments are problematic: not only can hiring restrictions come into conflict with broader antismoking goals, but they also raise significant problems of their own. PMID:22994176

  1. Nuclease escape elements protect messenger RNA against cleavage by multiple viral endonucleases

    PubMed Central

    Muller, Mandy

    2017-01-01

    During lytic Kaposi’s sarcoma-associated herpesvirus (KSHV) infection, the viral endonu- clease SOX promotes widespread degradation of cytoplasmic messenger RNA (mRNA). However, select mRNAs, including the transcript encoding interleukin-6 (IL-6), escape SOX-induced cleavage. IL-6 escape is mediated through a 3’ UTR RNA regulatory element that overrides the SOX targeting mechanism. Here, we reveal that this protective RNA element functions to broadly restrict cleavage by a range of homologous and non-homologous viral endonucleases. However, it does not impede cleavage by cellular endonucleases. The IL-6 protective sequence may be representative of a larger class of nuclease escape elements, as we identified a similar protective element in the GADD45B mRNA. The IL-6 and GADD45B-derived elements display similarities in their sequence, putative structure, and several associated RNA binding proteins. However, the overall composition of their ribonucleoprotein complexes appears distinct, leading to differences in the breadth of nucleases restricted. These findings highlight how RNA elements can selectively control transcript abundance in the background of widespread virus-induced mRNA degradation. PMID:28841715

  2. Lesion Recognition and Cleavage by Endonuclease V

    PubMed Central

    Lin, Jun; Gao, Honghai; Schallhorn, Kathryn A.; Harris, Rebecca M.; Cao, Weiguo; Ke, Pu Chun

    2008-01-01

    Endonuclease V (endo V) recognizes and cleaves deoxyinosine in deaminated DNA. These enzymatic activities are precursors of DNA repair and are fueled by metal ions such as Ca2+ and Mg2+, with the former being associated with protein binding and the latter with DNA cleavage. Using the technique of fluorescence resonance energy transfer (FRET) we determined the single-molecule kinetics of endo V in a catalytic cycle using a substrate of deoxyinosine-containing single-stranded DNA (ssDNA). The ssDNA was labeled with TAMRA, a fluorescence donor, while the endo V was labeled with Cy5, a fluorescence acceptor. The time lapses of FRET, resulting from the sequential association, recognition, and dissociation of the deoxyinosine by the endo V, were determined at 5.9 s, 14.5 s, and 9.1 s, respectively, in the presence of Mg2+. In contrast, the process of deoxyinosine recognition appeared little affected by the metal type. The prolonged association and dissociation events in the presence of the Ca2+-Mg2+ combination, as compared to that of Mg2+ alone, support the hypothesis that endo V has two metal binding sites to regulate its enzymatic activities. PMID:17521169

  3. Host-controlled Restriction of T-even Bacteriophages: Relation of Four Bacterial Deoxyribonucleases to Restriction

    PubMed Central

    Eigner, Joseph; Block, Stephen

    1968-01-01

    Escherichia coli strains B and K-12, which restrict growth of nonglucosylated T- even phage (T* phage), and nonrestricting strains (Shigella sonnei and mutants of E. coli B) were tested for levels of endonuclease I and exonucleases I, II, and III, by means of in vitro assyas. Cell-free extracts freed from deoxyribonucleic acid (DNA) were examined with three substrates: E. coli DNA, T*2 DNA, and T2 DNA. Both restricting and nonrestricting strains had comparable levels of the four nuclease activities and had similar patterns of preference for the three substrates. In addition, mutants of E. coli B and K-12 that lack endonuclease I were as effective as their respective wild types in restricting T* phage. PMID:4911846

  4. Catalytic and non-catalytic roles of the CtIP endonuclease in double-strand break end resection

    PubMed Central

    Makharashvili, Nodar; Tubbs, Anthony T.; Yang, Soo-Hyun; Wang, Hailong; Barton, Olivia; Zhou, Yi; Deshpande, Rajashree A.; Lee, Ji-Hoon; Lobrich, Markus; Sleckman, Barry P.; Wu, Xiaohua; Paull, Tanya T.

    2014-01-01

    Summary The CtIP protein is known to function in 5′ strand resection during homologous recombination similar to the budding yeast Sae2 protein, although its role in this process is unclear. Here we characterize recombinant human CtIP and find that it exhibits 5′ flap endonuclease activity on branched DNA structures, independent of the MRN complex. Phosphorylation of CtIP at known ATM-dependent sites and other sites is essential for its catalytic activity, although the S327 and T847 phosphorylation sites are dispensable. A catalytic mutant of CtIP that is deficient in endonuclease activity exhibits wild-type levels of homologous recombination at restriction enzyme-generated breaks but is deficient in processing topoisomerase adducts and radiation-induced breaks in human cells, suggesting that the nuclease activity of CtIP is specifically required for the removal of DNA adducts at sites of DNA breaks. PMID:24837676

  5. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain.

    PubMed Central

    Kim, Y G; Cha, J; Chandrasegaran, S

    1996-01-01

    A long-term goal in the field of restriction-modification enzymes has been to generate restriction endonucleases with novel sequence specificities by mutating or engineering existing enzymes. This will avoid the increasingly arduous task of extensive screening of bacteria and other microorganisms for new enzymes. Here, we report the deliberate creation of novel site-specific endonucleases by linking two different zinc finger proteins to the cleavage domain of Fok I endonuclease. Both fusion proteins are active and under optimal conditions cleave DNA in a sequence-specific manner. Thus, the modular structure of Fok I endonuclease and the zinc finger motifs makes it possible to create "artificial" nucleases that will cut DNA near a predetermined site. This opens the way to generate many new enzymes with tailor-made sequence specificities desirable for various applications. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8577732

  6. Human Apurinic/Apyrimidinic Endonuclease 1

    PubMed Central

    Li, Mengxia

    2014-01-01

    Abstract Significance: Human apurinic/apyrimidinic endonuclease 1 (APE1, also known as REF-1) was isolated based on its ability to cleave at AP sites in DNA or activate the DNA binding activity of certain transcription factors. We review herein topics related to this multi-functional DNA repair and stress-response protein. Recent Advances: APE1 displays homology to Escherichia coli exonuclease III and is a member of the divalent metal-dependent α/β fold-containing phosphoesterase superfamily of enzymes. APE1 has acquired distinct active site and loop elements that dictate substrate selectivity, and a unique N-terminus which at minimum imparts nuclear targeting and interaction specificity. Additional activities ascribed to APE1 include 3′–5′ exonuclease, 3′-repair diesterase, nucleotide incision repair, damaged or site-specific RNA cleavage, and multiple transcription regulatory roles. Critical Issues: APE1 is essential for mouse embryogenesis and contributes to cell viability in a genetic background-dependent manner. Haploinsufficient APE1+/− mice exhibit reduced survival, increased cancer formation, and cellular/tissue hyper-sensitivity to oxidative stress, supporting the notion that impaired APE1 function associates with disease susceptibility. Although abnormal APE1 expression/localization has been seen in cancer and neuropathologies, and impaired-function variants have been described, a causal link between an APE1 defect and human disease remains elusive. Future Directions: Ongoing efforts aim at delineating the biological role(s) of the different APE1 activities, as well as the regulatory mechanisms for its intra-cellular distribution and participation in diverse molecular pathways. The determination of whether APE1 defects contribute to human disease, particularly pathologies that involve oxidative stress, and whether APE1 small-molecule regulators have clinical utility, is central to future investigations. Antioxid. Redox Signal. 20, 678–707

  7. A response-restriction analysis of stereotypy in adolescents with mental retardation: implications for applied behavior analysis.

    PubMed Central

    McEntee, J E; Saunders, R R

    1997-01-01

    The behavior of 4 adolescents with severe or profound mental retardation was evaluated in the presence of four sets of materials during periods of unstructured leisure activity. Functional engagement with the materials, stereotypic engagement with the materials, stereotypy without interaction with the materials, and other aberrant behaviors were recorded. Across a series of experimental conditions, the number of sets of materials was reduced from four to one by eliminating the set most frequently manipulated in each preceeding condition. In the final condition, four sets of materials were again made available for manipulation. The procedures replicated Green and Striefel's (1988) response-restriction analysis of the activity preferences and play behaviors of children with autism. In general, the results of the present experiment replicate those of Green and Striefel in that reallocation of responding was idiosyncratic and unpredictable as sets of materials were removed. Nevertheless, the results provided insight into how responding might be reallocated if it were restricted through behavioral interventions rather than by restriction of access. Thus, the results are discussed with respect to how response-restriction analyses may be useful in identifying topographies of behavior that could be included in differential reinforcement contigencies that are designed to affect stereotypic behavior and in the selection and arrangement of environmental stimuli to minimize the presence of evokers of stereotypy. PMID:9316261

  8. Identification of Specific Effects of Title VI Restrictions on Selected Hospitals and Implications for Health Manpower. Executive Summary.

    ERIC Educational Resources Information Center

    Cohodes, Donald R.; And Others

    The effects of Title VI provisions of the Health Professions Educational Assistance Act of 1976 on patient care services in hospitals were investigated. The law restricts the supply of foreign medical grduates in the United States. Interviews were conducted with representatives of the administrative, medical, and teaching staffs of 24 hospitals to…

  9. In vivo disruption of latent HSV by designer endonuclease therapy.

    PubMed

    Aubert, Martine; Madden, Emily A; Loprieno, Michelle; DeSilva Feelixge, Harshana S; Stensland, Laurence; Huang, Meei-Li; Greninger, Alexander L; Roychoudhury, Pavitra; Niyonzima, Nixon; Nguyen, Thuy; Magaret, Amalia; Galleto, Roman; Stone, Daniel; Jerome, Keith R

    2016-09-08

    A large portion of the global population carries latent herpes simplex virus (HSV), which can periodically reactivate, resulting in asymptomatic shedding or formation of ulcerative lesions. Current anti-HSV drugs do not eliminate latent virus from sensory neurons where HSV resides, and therefore do not eliminate the risk of transmission or recurrent disease. Here, we report the ability of HSV-specific endonucleases to induce mutations of essential HSV genes both in cultured neurons and in latently infected mice. In neurons, viral genomes are susceptible to endonuclease-mediated mutagenesis, regardless of the time of treatment after HSV infection, suggesting that both HSV lytic and latent forms can be targeted. Mutagenesis frequency after endonuclease exposure can be increased nearly 2-fold by treatment with a histone deacetylase (HDAC) inhibitor. Using a mouse model of latent HSV infection, we demonstrate that a targeted endonuclease can be delivered to viral latency sites via an adeno-associated virus (AAV) vector, where it is able to induce mutation of latent HSV genomes. These data provide the first proof-of-principle to our knowledge for the use of a targeted endonuclease as an antiviral agent to treat an established latent viral infection in vivo.

  10. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea

    PubMed Central

    Ishino, Sonoko; Nishi, Yuki; Oda, Soichiro; Uemori, Takashi; Sagara, Takehiro; Takatsu, Nariaki; Yamagami, Takeshi; Shirai, Tsuyoshi; Ishino, Yoshizumi

    2016-01-01

    The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeon Pyrococcus furiosus. The corresponding gene revealed that the activity originates from PF0012, and we named this enzyme Endonuclease MS (EndoMS) as the mismatch-specific Endonuclease. The sequence similarity suggested that EndoMS is the ortholog of NucS isolated from Pyrococcus abyssi, published previously. Biochemical characterizations of the EndoMS homolog from Thermococcus kodakarensis clearly showed that EndoMS specifically cleaves both strands of double-stranded DNA into 5′-protruding forms, with the mismatched base pair in the central position. EndoMS cleaves G/T, G/G, T/T, T/C and A/G mismatches, with a more preference for G/T, G/G and T/T, but has very little or no effect on C/C, A/C and A/A mismatches. The discovery of this endonuclease suggests the existence of a novel mismatch repair process, initiated by the double-strand break generated by the EndoMS endonuclease, in Archaea and some Bacteria. PMID:27001046

  11. Endonuclease IV of Escherichia coli is induced by paraquat

    SciTech Connect

    Chan, E.; Weiss, B.

    1987-05-01

    The addition of paraquat (methyl viologen) to a growing culture of Escherichia coli K-12 led within 1 hr to a 10- to 20-fold increase in the level of endonuclease IV, a DNase for apurinic/apyrimidinic sites. The induction was blocked by chloramphenicol. Increases of 3-fold or more were also seen with plumbagin, menadione, and phenazine methosulfate. H/sub 2/O/sub 2/ produced no more than a 2-fold increase in endonuclease IV activity. The following agents had no significant effect: streptonigrin, nitrofurantoin, tert-butyl hydroperoxide, ..gamma.. rays, 260-nm UV radiation, methyl methanesulfonate, mitomycin C, and ascorbate. Paraquat, plumbagin, menadione, and phenazine methosulfate are known to generate superoxide radical anions via redox cycling in vivo. A mutant lacking superoxide dismutase was unusually sensitive to induction by paraquat. In addition, endonuclease IV could be induced by merely growing the mutant in pure O/sub 2/. The levels of endonuclease IV in uninduced or paraquat-treated cells were unaffected by mutations of oxyR, a H/sub 2/O/sub 2/-inducible gene that governs an oxidative-stress regulon. The results indicate that endonuclease IV is an inducible DNA-repair enzyme and that its induction can be mediated via the production of superoxide radicals.

  12. In vivo disruption of latent HSV by designer endonuclease therapy

    PubMed Central

    Madden, Emily A.; Loprieno, Michelle; Feelixge, Harshana S. DeSilva; Stensland, Laurence; Huang, Meei-Li; Greninger, Alexander L.; Nguyen, Thuy; Magaret, Amalia; Galleto, Roman

    2016-01-01

    A large portion of the global population carries latent herpes simplex virus (HSV), which can periodically reactivate, resulting in asymptomatic shedding or formation of ulcerative lesions. Current anti-HSV drugs do not eliminate latent virus from sensory neurons where HSV resides, and therefore do not eliminate the risk of transmission or recurrent disease. Here, we report the ability of HSV-specific endonucleases to induce mutations of essential HSV genes both in cultured neurons and in latently infected mice. In neurons, viral genomes are susceptible to endonuclease-mediated mutagenesis, regardless of the time of treatment after HSV infection, suggesting that both HSV lytic and latent forms can be targeted. Mutagenesis frequency after endonuclease exposure can be increased nearly 2-fold by treatment with a histone deacetylase (HDAC) inhibitor. Using a mouse model of latent HSV infection, we demonstrate that a targeted endonuclease can be delivered to viral latency sites via an adeno-associated virus (AAV) vector, where it is able to induce mutation of latent HSV genomes. These data provide the first proof-of-principle to our knowledge for the use of a targeted endonuclease as an antiviral agent to treat an established latent viral infection in vivo. PMID:27642635

  13. The monomeric GIY-YIG homing endonuclease I-BmoI uses a molecular anchor and a flexible tether to sequentially nick DNA.

    PubMed

    Kleinstiver, Benjamin P; Wolfs, Jason M; Edgell, David R

    2013-05-01

    The GIY-YIG nuclease domain is found within protein scaffolds that participate in diverse cellular pathways and contains a single active site that hydrolyzes DNA by a one-metal ion mechanism. GIY-YIG homing endonucleases (GIY-HEs) are two-domain proteins with N-terminal GIY-YIG nuclease domains connected to C-terminal DNA-binding and they are thought to function as monomers. Using I-BmoI as a model GIY-HE, we test mechanisms by which the single active site is used to generate a double-strand break. We show that I-BmoI is partially disordered in the absence of substrate, and that the GIY-YIG domain alone has weak affinity for DNA. Significantly, we show that I-BmoI functions as a monomer at all steps of the reaction pathway and does not transiently dimerize or use sequential transesterification reactions to cleave substrate. Our results are consistent with the I-BmoI DNA-binding domain acting as a molecular anchor to tether the GIY-YIG domain to substrate, permitting rotation of the GIY-YIG domain to sequentially nick each DNA strand. These data highlight the mechanistic differences between monomeric GIY-HEs and dimeric or tetrameric GIY-YIG restriction enzymes, and they have implications for the use of the GIY-YIG domain in genome-editing applications.

  14. Complex restriction enzymes: NTP-driven molecular motors.

    PubMed

    Bourniquel, Aude A; Bickle, Thomas A

    2002-11-01

    Survival is assuredly the prime directive for all living organisms either as individuals or as a species. One of the main challenges encountered by bacterial populations is the danger of bacteriophage attacks, since infection of a single bacterium may rapidly propagate, decimating the entire population. In order to protect themselves against this acute threat, bacteria have developed an array of defence mechanisms, which range from preventing the infection itself via interference with bacteriophage adsorption to the cell surface and prevention of phage DNA injection, to degradation of the injected phage DNA. This last defence mechanism is catalysed by the bacterial restriction-modification (R-M) systems, and in particular, by nucleoside 5'-triphosphate (NTP)-dependent restriction enzymes, e.g. type I and type III R-M systems or the modification-dependent endonucleases. Type I and type III restriction systems have dual properties. They may either act as methylases and protect the host's own DNA against restriction by methylating specific residues, or they catalyse ATP-dependent endonuclease activity so that invading foreign DNA lacking the host-specific methylation is degraded. These defence mechanism systems are further complemented by the presence of methylation-dependent, GTP-dependent endonucleases, that restricts specifically methylated DNA. Although all three types of endonucleases are structurally very different, they share a common functional mechanism. They recognise and bind to specific DNA sequences but do not cleave DNA within those target sites. They belong to the general class of DNA motor proteins, which use the free energy associated with nucleoside 5'-triphosphate hydrolysis to translocate DNA so that the subsequent DNA cleavage event occurs at a distance from the endonuclease recognition site. Moreover, DNA cleavage appears to be a random process triggered upon stalling of the DNA translocation process and requiring dimerisation of the bound

  15. PPR-SMR protein SOT1 has RNA endonuclease activity.

    PubMed

    Zhou, Wen; Lu, Qingtao; Li, Qingwei; Wang, Lei; Ding, Shunhua; Zhang, Aihong; Wen, Xiaogang; Zhang, Lixin; Lu, Congming

    2017-02-21

    Numerous attempts have been made to identify and engineer sequence-specific RNA endonucleases, as these would allow for efficient RNA manipulation. However, no natural RNA endonuclease that recognizes RNA in a sequence-specific manner has been described to date. Here, we report that SUPPRESSOR OF THYLAKOID FORMATION 1 (SOT1), an Arabidopsis pentatricopeptide repeat (PPR) protein with a small MutS-related (SMR) domain, has RNA endonuclease activity. We show that the SMR moiety of SOT1 performs the endonucleolytic maturation of 23S and 4.5S rRNA through the PPR domain, specifically recognizing a 13-nucleotide RNA sequence in the 5' end of the chloroplast 23S-4.5S rRNA precursor. In addition, we successfully engineered the SOT1 protein with altered PPR motifs to recognize and cleave a predicted RNA substrate. Our findings point to SOT1 as an exciting tool for RNA manipulation.

  16. Endonucleases involved in repair and recombination of DNA

    SciTech Connect

    Linn, S.M.

    1988-01-01

    When our DOE support began as a contract in 1970, from the AEC, it was our intent to begin to understand how several enzymes which we had detected in E. coli might be involved in DNA recombination and repair. These studies led to our characterization of the recBC DNase (exonuclease 5) as well as endonucleases 3 and 5. As research supported by that contract progressed, we expanded our interests to include mammalian enzymes involved in base excision repair, most notably AP endonucleases, DNA glycosylases and DNA purine insertase. A logical next step involved the inclusion of DNA polymerases into our studies of repair. Current progress includes research on: isolation of xeroderma pigmentosum correction factors; isolation of ultraviolet (UV) endonucleases; mitochondrial repair enzymes; alkylation damage repair; comparisons of repair in normal diploid, transformed, and non-mitotic cells; and repair reactions by DNA polymerases.

  17. Endonuclease active site plasticity allows DNA cleavage with diverse alkaline Earth and transition metal ions.

    PubMed

    Vasu, Kommireddy; Saravanan, Matheshwaran; Nagaraja, Valakunja

    2011-09-16

    A majority of enzymes show a high degree of specificity toward a particular metal ion in their catalytic reaction. However, Type II restriction endonuclease (REase) R.KpnI, which is the first member of the HNH superfamily of REases, exhibits extraordinary diversity in metal ion dependent DNA cleavage. Several alkaline earth and transition group metal ions induce high fidelity and promiscuous cleavage or inhibition depending upon their concentration. The metal ions having different ionic radii and co-ordination geometries readily replace each other from the enzyme's active site, revealing its plasticity. Ability of R.KpnI to cleave DNA with both alkaline earth and transition group metal ions having varied ionic radii could imply utilization of different catalytic site(s). However, mutation of the invariant His residue of the HNH motif caused abolition of the enzyme activity with all of the cofactors, indicating that the enzyme follows a single metal ion catalytic mechanism for DNA cleavage. Indispensability of His in nucleophile activation together with broad cofactor tolerance of the enzyme indicates electrostatic stabilization function of metal ions during catalysis. Nevertheless, a second metal ion is recruited at higher concentrations to either induce promiscuity or inhibit the DNA cleavage. Regulation of the endonuclease activity and fidelity by a second metal ion binding is a unique feature of R.KpnI among REases and HNH nucleases. The active site plasticity of R.KpnI opens up avenues for redesigning cofactor specificities and generation of mutants specific to a particular metal ion.

  18. Avoidant/Restrictive Food Intake Disorder: a Three-Dimensional Model of Neurobiology with Implications for Etiology and Treatment.

    PubMed

    Thomas, Jennifer J; Lawson, Elizabeth A; Micali, Nadia; Misra, Madhusmita; Deckersbach, Thilo; Eddy, Kamryn T

    2017-08-01

    DSM-5 defined avoidant/restrictive food intake disorder (ARFID) as a failure to meet nutritional needs leading to low weight, nutritional deficiency, dependence on supplemental feedings, and/or psychosocial impairment. We summarize what is known about ARFID and introduce a three-dimensional model to inform research. Because ARFID prevalence, risk factors, and maintaining mechanisms are not known, prevailing treatment approaches are based on clinical experience rather than data. Furthermore, most ARFID research has focused on children, rather than adolescents or adults. We hypothesize a three-dimensional model wherein neurobiological abnormalities in sensory perception, homeostatic appetite, and negative valence systems underlie the three primary ARFID presentations of sensory sensitivity, lack of interest in eating, and fear of aversive consequences, respectively. Now that ARFID has been defined, studies investigating risk factors, prevalence, and pathophysiology are needed. Our model suggests testable hypotheses about etiology and highlights cognitive-behavioral therapy as one possible treatment.

  19. ENDONUCLEASE II OF E. coli, I. ISOLATION AND PURIFICATION*

    PubMed Central

    Friedberg, Errol C.; Goldthwait, David A.

    1969-01-01

    The isolation and purification of a new endonuclease of E. coli is described. This enzyme degrades alkylated DNA as assayed by a technique that requires double-strand scission. The enzyme also makes a limited number of single-strand breaks in native nonalkylated DNA. PMID:4895219

  20. Coevolution of a homing endonuclease and its host target sequence

    PubMed Central

    Scalley-Kim, Michelle; McConnell-Smith, Audrey; Stoddard, Barry L.

    2007-01-01

    We have determined the specificity profile of the homing endonuclease I-AniI and compared it to the conservation of its host gene. Homing endonucleases are encoded within intervening sequences such as group I introns. They initiate the transfer of such elements by cleaving cognate alleles lacking the intron, leading to their transfer via homologous recombination. Each structural homing endonuclease family has arrived at an appropriate balance of specificity and fidelity that avoids toxicity while maximizing target recognition and invasiveness. I-AniI recognizes a strongly conserved target sequence in a host gene encoding apocytochrome b, and has fine-tuned its specificity to correlate with wobble vs. non-wobble positions across that sequence, and to the amount of degeneracy inherent within individual codons. The physiological target site in the host gene is not the optimal substrate for recognition and cleavage: at least one target variant identified during the screen is bound more tightly and cleaved more rapidly. This is a result of the periodic cycle of intron homing, which at any time can present nonoptimal combinations of endonuclease specificity and insertion site sequences in a biological host. PMID:17720189

  1. A review: dietary restrictions on hunter-gatherer women and the implications for fertility and infant mortality.

    PubMed

    Spielmann, K A

    1989-09-01

    In many hunter gatherer societies, food taboos dictate the diets of females. These taboos often happen during their most critical reproductive times in their life, e.g., pregnancy. Among some subarctic Athapaskan societies, females at menarche cannot eat fresh meat. They, like other hunter gatherer societies, also restrict fresh meat consumption for menstruating women. Young women of the Aranda society in Australia cannot eat protein rich foods, e.g., lizards, until they have a child. Australian aboriginal societies restrict protein and fat foods for pregnant and lactating women. Even though the literature shows that the undernourished are inclined to reach menarche at a later age than those who eat a well balanced diet, it does not clearly establish whether differences in age at menarche significantly affect overall fertility. Research done on many different under or marginally nourished populations indicates that maternal nutritional health influences birth spacing significantly. Specifically, undernutrition causes longer postpartum amenorrhea. Therefore, lower fertility rates follow longer birth intervals. Research shows that poor maternal nutritional health does not prevent the fetus from surviving and growing. Yet mothers who do not consume many calories often have low birth weight infants. These infants are at high risk of dying because they have little to no fat reserves and they consume inadequate amounts of nutrition since the mothers cannot make insufficient amounts of milk. Since contemporary research shows that maternal nutritional health does effect fertility and infant mortality, food taboos do have the ability to influence population size. More research is needed to understand the factors that influenced the reproductive rates of past hunter-gatherer societies, so anthropologists can identify the demographically significant changes which sedentism and agriculture caused 10,000 years ago.

  2. T4 endonuclease V: review and application to dermatology.

    PubMed

    Cafardi, Jennifer A; Elmets, Craig A

    2008-06-01

    T4 endonuclease V was originally isolated from Escherichia coli infected with T4 bacteriophage. It has been shown to repair ultraviolet (UV)-induced cyclobutane pyrimidine dimers in DNA, which, when unrepaired, contribute to mutations that result in actinic keratoses and non-melanoma skin cancers (NMSC). This is a particular concern in patients with genetic defects in their DNA repair systems, especially those with xeroderma pigmentosum (XP). When packaged in liposomes and applied topically, T4 endonuclease V can traverse the stratum corneum and become incorporated within the cytoplasm and nucleus of epidermal keratinocytes and Langerhans cells. To review all major studies evaluating the efficacy of T4 endonuclease V in animals and humans, the toxicity and safety profile of the topical medication and its potential clinical uses. A literature search was performed through PubMed/Medline, using the keywords 'T4N5', 'T4 endonuclease V' and 'dimericine'. Papers found in the bibliographies of those identified in the initial search and deemed relevant were also included. This enzyme increases the repair of UV-damaged DNA and produces other beneficial effects on UV-damaged cells. In clinical trials in XP patients, topical application of liposome-encapsulated T4 endonuclease V reduced the incidence of basal cell carcinomas by 30% and of actinic keratoses by > 68%. Adverse effects were minimal, and there was no evidence of allergic or irritant contact dermatitis. Although the photoprotective effect of T4N5 has been investigated only in XP patients, the possibility exists that it may benefit others likely to develop premalignant keratoses and NMSC, such as organ transplant recipients receiving immunosuppressive therapy and individuals who have had numerous psoralen plus UVA photochemotherapy treatments. It may be also be effective for normal individuals.

  3. Anticonvulsant Effect of Time-Restricted Feeding in a Pilocarpine-Induced Seizure Model: Metabolic and Epigenetic Implications

    PubMed Central

    Landgrave-Gómez, Jorge; Mercado-Gómez, Octavio Fabián; Vázquez-García, Mario; Rodríguez-Molina, Víctor; Córdova-Dávalos, Laura; Arriaga-Ávila, Virginia; Miranda-Martínez, Alfredo; Guevara-Guzmán, Rosalinda

    2016-01-01

    A new generation of antiepileptic drugs has emerged; however, one-third of epilepsy patients do not properly respond to pharmacological treatments. The purpose of the present study was to investigate whether time-restricted feeding (TRF) has an anticonvulsant effect and whether this restrictive diet promotes changes in energy metabolism and epigenetic modifications in a pilocarpine-induced seizure model. To resolve our hypothesis, one group of rats had free access to food and water ad libitum (AL) and a second group underwent a TRF schedule. We used the lithium-pilocarpine model to induce status epilepticus (SE), and behavioral seizure monitoring was analyzed. Additionally, an electroencephalography (EEG) recording was performed to verify the effect of TRF on cortical electrical activity after a pilocarpine injection. For biochemical analysis, animals were sacrificed 24 h after SE and hippocampal homogenates were used to evaluate the proteins related to metabolism and chromatin structure. Our results showed that TRF had an anticonvulsant effect as measured by the prolonged latency of forelimb clonus seizure, a decrease in the seizure severity score and fewer animals reaching SE. Additionally, the power of the late phase EEG recordings in the AL group was significantly higher than the TRF group. Moreover, we found that TRF is capable of inducing alterations in signaling pathways that regulate energy metabolism, including an increase in the phosphorylation of AMP dependent kinase (AMPK) and a decrease in the phosphorylation of Akt kinase. Furthermore, we found that TRF was able to significantly increase the beta hydroxybutyrate (β-HB) concentration, an endogenous inhibitor of histone deacetylases (HDACs). Finally, we found a significant decrease in HDAC activity as well as an increase in acetylation on histone 3 (H3) in hippocampal homogenates from the TRF group. These findings suggest that alterations in energy metabolism and the increase in β-HB mediated by TRF

  4. Sleep Restriction Therapy for Insomnia is Associated with Reduced Objective Total Sleep Time, Increased Daytime Somnolence, and Objectively Impaired Vigilance: Implications for the Clinical Management of Insomnia Disorder

    PubMed Central

    Kyle, Simon D.; Miller, Christopher B.; Rogers, Zoe; Siriwardena, A. Niroshan; MacMahon, Kenneth M.; Espie, Colin A.

    2014-01-01

    objective performance impairment. Our data have important implications for implementation guidelines around the safe and effective delivery of cognitive behavioral therapy for insomnia. Citation: Kyle SD; Miller CB; Rogers Z; Siriwardena AN; MacMahon KM; Espie CA. Sleep restriction therapy for insomnia is associated with reduced objective total sleep time, increased daytime somnolence, and objectively impaired vigilance: implications for the clinical management of insomnia disorder. SLEEP 2014;37(2):229-237. PMID:24497651

  5. Deep sequencing identifies circulating mouse miRNAs that are functionally implicated in manifestations of aging and responsive to calorie restriction.

    PubMed

    Dhahbi, Joseph M; Spindler, Stephen R; Atamna, Hani; Yamakawa, Amy; Guerrero, Noel; Boffelli, Dario; Mote, Patricia; Martin, David I K

    2013-02-01

    MicroRNAs (miRNAs) function to modulate gene expression, and through this property they regulate a broad spectrum of cellular processes. They can circulate in blood and thereby mediate cell-to-cell communication. Aging involves changes in many cellular processes that are potentially regulated by miRNAs, and some evidence has implicated circulating miRNAs in the aging process. In order to initiate a comprehensive assessment of the role of circulating miRNAs in aging, we have used deep sequencing to characterize circulating miRNAs in the serum of young mice, old mice, and old mice maintained on calorie restriction (CR). Deep sequencing identifies a set of novel miRNAs, and also accurately measures all known miRNAs present in serum. This analysis demonstrates that the levels of many miRNAs circulating in the mouse are increased with age, and that the increases can be antagonized by CR. The genes targeted by this set of age-modulated miRNAs are predicted to regulate biological processes directly relevant to the manifestations of aging including metabolic changes, and the miRNAs themselves have been linked to diseases associated with old age. This finding implicates circulating miRNAs in the aging process, raising questions about their tissues of origin, their cellular targets, and their functional role in metabolic changes that occur with aging.

  6. T cells detect intracellular DNA but fail to induce type I IFN responses: implications for restriction of HIV replication.

    PubMed

    Berg, Randi K; Rahbek, Stine H; Kofod-Olsen, Emil; Holm, Christian K; Melchjorsen, Jesper; Jensen, David G; Hansen, Anne Louise; Jørgensen, Louise B; Ostergaard, Lars; Tolstrup, Martin; Larsen, Carsten S; Paludan, Søren R; Jakobsen, Martin R; Mogensen, Trine H

    2014-01-01

    HIV infects key cell types of the immune system, most notably macrophages and CD4+ T cells. Whereas macrophages represent an important viral reservoir, activated CD4+ T cells are the most permissive cell types supporting high levels of viral replication. In recent years, it has been appreciated that the innate immune system plays an important role in controlling HIV replication, e.g. via interferon (IFN)-inducible restriction factors. Moreover, innate immune responses are involved in driving chronic immune activation and the pathogenesis of progressive immunodeficiency. Several pattern recognition receptors detecting HIV have been reported, including Toll-like receptor 7 and Retinoic-inducible gene-I, which detects viral RNA. Here we report that human primary T cells fail to induce strong IFN responses, despite the fact that this cell type does express key molecules involved in DNA signaling pathways. We demonstrate that the DNA sensor IFI16 migrates to sites of foreign DNA localization in the cytoplasm and recruits the signaling molecules stimulator of IFN genes and Tank-binding kinase, but this does not result in expression of IFN and IFN-stimulated genes. Importantly, we show that cytosolic DNA fails to affect HIV replication. However, exogenous treatment of activated T cells with type I IFN has the capacity to induce expression of IFN-stimulated genes and suppress HIV replication. Our data suggest the existence of an impaired DNA signaling machinery in T cells, which may prevent this cell type from activating cell-autonomous anti-HIV responses. This phenomenon could contribute to the high permissiveness of CD4+ T cells for HIV-1.

  7. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation.

    PubMed

    Jinek, Martin; Jiang, Fuguo; Taylor, David W; Sternberg, Samuel H; Kaya, Emine; Ma, Enbo; Anders, Carolin; Hauer, Michael; Zhou, Kaihong; Lin, Steven; Kaplan, Matias; Iavarone, Anthony T; Charpentier, Emmanuelle; Nogales, Eva; Doudna, Jennifer A

    2014-03-14

    Type II CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. We report 2.6 and 2.2 angstrom resolution crystal structures of two major Cas9 enzyme subtypes, revealing the structural core shared by all Cas9 family members. The architectures of Cas9 enzymes define nucleic acid binding clefts, and single-particle electron microscopy reconstructions show that the two structural lobes harboring these clefts undergo guide RNA-induced reorientation to form a central channel where DNA substrates are bound. The observation that extensive structural rearrangements occur before target DNA duplex binding implicates guide RNA loading as a key step in Cas9 activation.

  8. Restrictive cardiomyopathy

    MedlinePlus

    Cardiomyopathy - restrictive; Infiltrative cardiomyopathy; Idiopathic myocardial fibrosis ... In a case of restrictive cardiomyopathy, the heart muscle is of normal size or slightly enlarged. Most of the time, it also pumps normally. However, it does ...

  9. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification.

    PubMed

    Huang, Juan; Li, Xiao-Yu; Du, Yi-Chen; Zhang, Li-Na; Liu, Ke-Ke; Zhu, Li-Na; Kong, De-Ming

    2017-05-15

    Sensitive and reliable detection of DNA methyltransferase (MTase) is of great significance for both early tumor diagnosis and therapy. In this study, a simple, label-free and sensitive DNA MTase-sensing method was developed on the basis of a nicking endonuclease-mediated multiple primers-like rolling circle amplification (RCA) strategy. In this method, a dumbbell RCA template was prepared by blunt-end ligation of two molecules of hairpin DNA. In addition to the primer-binding sequence, the dumbbell template contained another three important parts: 5'-CCGG-3' sequences in double-stranded stems, nicking endonuclease recognition sites and C-rich sequences in single-stranded loops. The introduction of 5'-CCGG-3' sequences allows the dumbbell template to be destroyed by the restriction endonuclease, HpaII, but is not destroyed in the presence of the target MTase-M.SssI MTase. The introduction of nicking endonuclease recognition sites makes the M.SssI MTase-protected dumbbell template-mediated RCA proceed in a multiple primers-like exponential mode, thus providing the RCA with high amplification efficiency. The introduction of C-rich sequences may promote the folding of amplification products into a G-quadruplex structure, which is specifically recognized by the commercially available fluorescent probe thioflavin T. Improved RCA amplification efficiency and specific fluorescent recognition of RCA products provide the M.SssI MTase-sensing platform with high sensitivity. When a dumbbell template containing four nicking endonuclease sites is used, highly specific M.SssI MTase activity detection can be achieved in the range of 0.008-50U/mL with a detection limit as low as 0.0011U/mL. Simple experimental operation and mix-and-detection fluorescent sensing mode ensures that M.SssI MTase quantitation works well in a real-time RCA mode, thus further simplifying the sensing performance and making high throughput detection possible. The proposed MTase-sensing strategy was also

  10. Salient Features of Endonuclease Platforms for Therapeutic Genome Editing.

    PubMed

    Certo, Michael T; Morgan, Richard A

    2016-03-01

    Emerging gene-editing technologies are nearing a revolutionary phase in genetic medicine: precisely modifying or repairing causal genetic defects. This may include any number of DNA sequence manipulations, such as knocking out a deleterious gene, introducing a particular mutation, or directly repairing a defective sequence by site-specific recombination. All of these edits can currently be achieved via programmable rare-cutting endonucleases to create targeted DNA breaks that can engage and exploit endogenous DNA repair pathways to impart site-specific genetic changes. Over the past decade, several distinct technologies for introducing site-specific DNA breaks have been developed, yet the different biological origins of these gene-editing technologies bring along inherent differences in parameters that impact clinical implementation. This review aims to provide an accessible overview of the various endonuclease-based gene-editing platforms, highlighting the strengths and weakness of each with respect to therapeutic applications.

  11. Improvement in HLA-DQB typing by PCR-RFLP: introduction of a constant restriction site in one of the primers for digestion control.

    PubMed

    Mercier, B; Ferec, C; Dufosse, F; Huart, J J

    1992-08-01

    The PCR-RFLP method previously reported by Inoko is a powerful technique for HLA class II typing. The reliability of RFLP interpretation depends on complete digestion by restriction endonucleases using a modified primer with restriction sites as an internal digestion control. The use of restriction enzymes which recognize specific HLA DQB allelic variations makes HLA DQB genotyping possible.

  12. Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003

    PubMed Central

    O'Connell Motherway, Mary; O'Driscoll, Jonathan; Fitzgerald, Gerald F.; Van Sinderen, Douwe

    2009-01-01

    Summary In silico analysis of the Bifidobacterium breve UCC2003 genome predicted two distinct loci, which encode three different restriction/modification systems, each comprising a modification methylase and a restriction endonuclease. Based on sequence homology and observed protection against restriction we conclude that the first restriction endonuclease, designated BbrI, is an isoschizomer of BbeI, the second, BbrII, is a neoschizomer of SalI, while the third, BbrIII, is an isoschizomer of PstI. Expression of each of the B. breve UCC2003 methylase‐encoding genes in B. breve JCM 7017 established that BbrII and BbrIII are active and restrict incoming DNA. By exploiting knowledge on restriction/modification in B. breve UCC2003 we successfully increased the transformation efficiency to a level that allows the reliable generation of mutants by homologous recombination using a non‐replicative plasmid. PMID:21261927

  13. Purification and characterization of the x-ray endonuclease of Escherichia coli

    SciTech Connect

    Katcher, H.L.

    1984-01-01

    This work concerns the purification and characterization of the x-ray endonuclease of E. coli. The x-ray endonuclease was purified by chromatography on DNA-agarose, Sephadex gel filtration, hydroxylapatite chromatography, and phosphocellulose chromatography. Parallel assays on modified DNA and oligonucleotide substances established that the x-ray endonuclease was active on DNA contain in apurinic and apyrimidinic sites, thymine glycol and urea residues, and undefined lesions produced by UV and X radiation. Characterization of the x-ray endonuclease by gel filtration gave a molecular weight of about 25,000 dalton while SDS-polyacrylamide gel electrophoresis of the most purified preparations showed a single band corresponding to a molecular weight of about 13,000 daltons. Analysis of DNA substrates following x-ray endonuclease treatment showed that the x-ray endonuclease nicked at the 3{prime} side of a base lesion to yield 3{prime}OH and 5{prime}PO termini. Analysis of the acid/alcohol soluble products of the digestion of specifically modified synthetic poly dT:dA by the x-ray endonuclease showed this enzyme to have DNA glycosylase activities that released both thymine glycol and urea residues from DNA. Inhibitor studies showed the thymine-glycol endonuclease activity was inhibited by NEM while the AP endonuclease was not. NEM was also shown to inhibit endonuclease activity on UV-irradiated DNA, X-irradiated DNA, and urea-containing DNA.

  14. Computational redesign of endonuclease DNA binding and cleavage specificity

    NASA Astrophysics Data System (ADS)

    Ashworth, Justin; Havranek, James J.; Duarte, Carlos M.; Sussman, Django; Monnat, Raymond J.; Stoddard, Barry L.; Baker, David

    2006-06-01

    The reprogramming of DNA-binding specificity is an important challenge for computational protein design that tests current understanding of protein-DNA recognition, and has considerable practical relevance for biotechnology and medicine. Here we describe the computational redesign of the cleavage specificity of the intron-encoded homing endonuclease I-MsoI using a physically realistic atomic-level forcefield. Using an in silico screen, we identified single base-pair substitutions predicted to disrupt binding by the wild-type enzyme, and then optimized the identities and conformations of clusters of amino acids around each of these unfavourable substitutions using Monte Carlo sampling. A redesigned enzyme that was predicted to display altered target site specificity, while maintaining wild-type binding affinity, was experimentally characterized. The redesigned enzyme binds and cleaves the redesigned recognition site ~10,000 times more effectively than does the wild-type enzyme, with a level of target discrimination comparable to the original endonuclease. Determination of the structure of the redesigned nuclease-recognition site complex by X-ray crystallography confirms the accuracy of the computationally predicted interface. These results suggest that computational protein design methods can have an important role in the creation of novel highly specific endonucleases for gene therapy and other applications.

  15. Gene editing using ssODNs with engineered endonucleases.

    PubMed

    Chen, Fuqiang; Pruett-Miller, Shondra M; Davis, Gregory D

    2015-01-01

    Gene editing using engineered endonucleases, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nucleases, requires the creation of a targeted, chromosomal DNA double-stranded break (DSB). In mammalian cells, these DSBs are typically repaired by one of the two major DNA repair pathways: nonhomologous end joining (NHEJ) or homology-directed repair (HDR). NHEJ is an error-prone repair process that can result in a wide range of end-joining events that leads to somewhat random mutations at the site of DSB. HDR is a precise repair pathway that can utilize either an endogenous or exogenous piece of homologous DNA as a template or "donor" for repair. Traditional gene editing via HDR has relied on the co-delivery of a targeted, engineered endonuclease and a circular plasmid donor construct. More recently, it has been shown that single-stranded oligodeoxynucleotides (ssODNs) can also serve as DNA donors and thus obviate the more laborious and time-consuming plasmid vector construction process. Here we describe the use of ssODNs for making defined genome modifications in combination with engineered endonucleases.

  16. Human repair endonuclease incises DNA at cytosine photoproducts

    SciTech Connect

    Gallagher, P.E.; Weiss, R.B.; Brent, T.P.; Duker, N.J.

    1987-05-01

    The nature of DNA damage by uvB and uvC irradiation was investigated using a defined sequence of human DNA. A UV-irradiated, 3'-end-labeled, 92 base pair sequence from the human alphoid segment was incubated with a purified human lymphoblast endonuclease that incises DNA at non-dimer photoproducts. Analysis by polyacrylamide gel electrophoresis identified all sites of endonucleolytic incision as cytosines. These were found in regions of the DNA sequence lacking adjacent pyrimidines and therefore are neither cyclobutane pyrimidine dimers nor 6-4'-pyrimidines. Incision at cytosine photoproducts was not detected at loci corresponding to alkali-labile sites in either control or irradiated substrates. This demonstrates that the bands detected after the enzymic reactions were not the result of DNA strand breaks, base loss sites or ring-opened cytosines. The optimal wavelengths for formation of cytosine photoproducts are 270-295 nm, similar to those associated with maximal tumor yields in animal ultraviolet carcinogenesis studies. Irradiation by monochromatic 254 nm light resulted in reduced cytosine photoproduct formation. This human UV endonuclease has an apparently identical substrate specificity to E. coli endonuclease III. Both the human and bacterial enzymes incise cytosine moieties in UV irradiated DNA and modified thymines in oxidized DNA.

  17. The recent transfer of a homing endonuclease gene

    PubMed Central

    Haugen, Peik; Wikmark, Odd-Gunnar; Vader, Anna; Coucheron, Dag H.; Sjøttem, Eva; Johansen, Steinar D.

    2005-01-01

    The myxomycete Didymium iridis (isolate Panama 2) contains a mobile group I intron named Dir.S956-1 after position 956 in the nuclear small subunit (SSU) rRNA gene. The intron is efficiently spread through homing by the intron-encoded homing endonuclease I-DirI. Homing endonuclease genes (HEGs) usually spread with their associated introns as a unit, but infrequently also spread independent of introns (or inteins). Clear examples of HEG mobility are however sparse. Here, we provide evidence for the transfer of a HEG into a group I intron named Dir.S956-2 that is inserted into the SSU rDNA of the Costa Rica 8 isolate of D.iridis. Similarities between intron sequences that flank the HEG and rDNA sequences that flank the intron (the homing endonuclease recognition sequence) suggest that the HEG invaded the intron during the recent evolution in a homing-like event. Dir.S956-2 is inserted into the same SSU site as Dir.S956-1. Remarkably, the two group I introns encode distantly related splicing ribozymes with phylogenetically related HEGs inserted on the opposite strands of different peripheral loop regions. The HEGs are both interrupted by small spliceosomal introns that must be removed during RNA maturation. PMID:15891115

  18. Genetic localization and characterization of a pKM101-coded endonuclease.

    PubMed Central

    Winans, S C; Walker, G C

    1983-01-01

    The genetic and biochemical properties of an endonuclease mediated by the mutagenesis-enhancing plasmid pKM101 have been investigated. Taking advantage of the observation that this endonuclease, unlike host-coded DNases, is active in the presence of EDTA, we have developed an assay with nondenaturing acrylamide gels containing DNA. We have localized the plasmid DNA sufficient for nuclease expression to a 0.8-kilobase sequence that is near regions of DNA necessary for conjugal transfer, and we have determined that this gene is transcribed clockwise on the pKM101 map. The pKM101 gene mediating this activity codes for a 16,000-dalton protein, which is the same molecular mass as the nuclease monomer, leading us to conclude that this gene codes for the nuclease itself rather than for an activator of some host-coded enzyme. Cellular fractionation experiments have shown that the enzyme is localized in the periplasm. We have not been able to demonstrate any physiological role for the enzyme, but we have ruled out a direct involvement of the nuclease in any of the following known plasmid-associated phenotypes: (i) mutagenesis enhancement, (ii) conjugal transfer, (iii) entry exclusion, (iv) fertility inhibition of coresident P-group plasmids, (v) killing of Klebsiella pneumoniae used as conjugal recipients, and (vi) plasmid curing induced by treatment of cells with fluorodeoxyuridine. In addition, we have shown that the enzyme does not restrict bacteriophage or affect the ability of the host to utilize DNA as a source of thymine. Finally, we have shown that 11 of the 26 other plasmids tested also elaborated EDTA-resistant DNases. Images PMID:6222033

  19. Theory for planetary exospheres: III. Radiation pressure effect on the Circular Restricted Three Body Problem and its implication on planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I.; Mazelle, C.

    2016-12-01

    The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the stellar radiation pressure on planetary exospheres. In a series of papers, we present with a Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain [1989] Icarus, 81, 145-163. In this third paper, we investigate the effect of the stellar radiation pressure on the Circular Restricted Three Body Problem (CR3BP), called also the photogravitational CR3BP, and its implication on the escape and the stability of planetary exospheres, especially for hot Jupiters. In particular, we describe the transformation of the equipotentials and the location of the Lagrange points, and we provide a modified equation for the Hill sphere radius that includes the influence of the radiation pressure. Finally, an application to the hot Jupiter HD 209458b and hot Neptune GJ 436b reveals the existence of a blow-off escape regime induced by the stellar radiation pressure.

  20. Biochemical characterization of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2.

    PubMed

    Zhang, Likui; Huang, Yanchao; Xu, Dandan; Yang, Lixiang; Qian, Kaicheng; Chang, Guozhu; Gong, Yong; Zhou, Xiaojian; Ma, Kesen

    2016-09-01

    His-Asn-His (HNH) proteins are a very common family of small nucleic acid-binding proteins that are generally associated with endonuclease activity and are found in all kingdoms of life. Although HNH endonucleases from mesophiles have been widely investigated, the biochemical functions of HNH endonucleases from thermophilic bacteriophages remain unknown. Here, we characterized the biochemical properties of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2. The recombinant GVE2 HNH endonuclease exhibited non-specific cleavage activity at high temperature. The optimal temperature of the GVE2 HNH endonuclease for cleaving DNA was 60-65 °C, and the enzyme retained its DNA cleavage activity even after heating at 100 °C for 30 min, suggesting the enzyme is a thermostable endonuclease. The GVE2 HNH endonuclease cleaved DNA over a wide pH spectrum, ranging from 5.5 to 9.0, and the optimal pH for the enzyme activity was 8.0-9.0. Furthermore, the GVE2 HNH endonuclease activity was dependent on a divalent metal ion. While the enzyme is inactive in the presence of Cu(2+), the GVE2 HNH endonuclease displayed cleavage activity of varied efficiency with Mn(2+), Mg(2+), Ca(2+), Fe(2+), Co(2+), Zn(2+), and Ni(2+). The GVE2 HNH endonuclease activity was inhibited by NaCl. This study provides the basis for determining the role of this endonuclease in life cycle of the bacteriophage GVE2 and suggests the potential application of the enzyme in molecular biology and biotechnology.

  1. Cloning DNA restriction endonuclease fragments with protruding single-stranded ends.

    PubMed

    Wartell, R M; Reznikoff, W S

    1980-05-01

    A new method of in vitro recombination was employed to construct plasmids containing lac promoter fragments 64 bp and 144 bp long. The 64 bp HpaII-HhaI fragment contains the binding site for the catabolite activator protein (CAP). The HpaII-HaeIII 144 bp fragment includes the binding sites for RNA polymerase, the lac repressor and CAP. The method utilizes the ability of T4 DNA polymerase to make flush-ended DNA either by filling in a recessed 3'-end or by exonucleolytic removal of a protruding 3'-end. The treated fragments were then blunt-end ligated to the filled-in EcoRI cloning sites of the plasmids pVH51 and pBR322 using T4 ligase. In this process, the EcoRI sites were regenerated on the fragment ends thus facilitating the subsequent isolation of the fragments from their cloning vectors.

  2. Inhibition of PA endonuclease activity of influenza virus RNA polymerase by Kampo medicines.

    PubMed

    Shirayama, Riku; Shoji, Masaki; Sriwilaijaroen, Nongluk; Hiramatsu, Hiroaki; Suzuki, Yasuo; Kuzuhara, Takashi

    To find a novel influenza inhibitor targeting the endonuclease activity of influenza A virus polymerase acidic protein (PA), which is essential for the acquisition of primers for viral mRNA transcription, seven Kampo extracts were tested in vitro for their ability to inhibit endonuclease activity of the recombinant PA protein that was expressed and purified from Escherichia coli. The Kampo medicines Kakkonto, Shosaikoto, Saikokeishito, Keishito, Maobushisaishinto, and Maoto, but not Chikujountanto, inhibited PA endonuclease activity in a dose-dependent manner. Our results indicate that Kampo medicines are good sources providing a structural lead for optimization of an influenza endonuclease inhibitor.

  3. Three structure-selective endonucleases are essential in the absence of BLM helicase in Drosophila.

    PubMed

    Andersen, Sabrina L; Kuo, H Kenny; Savukoski, Daniel; Brodsky, Michael H; Sekelsky, Jeff

    2011-10-01

    DNA repair mechanisms in mitotically proliferating cells avoid generating crossovers, which can contribute to genome instability. Most models for the production of crossovers involve an intermediate with one or more four-stranded Holliday junctions (HJs), which are resolved into duplex molecules through cleavage by specialized endonucleases. In vitro studies have implicated three nuclear enzymes in HJ resolution: MUS81-EME1/Mms4, GEN1/Yen1, and SLX4-SLX1. The Bloom syndrome helicase, BLM, plays key roles in preventing mitotic crossover, either by blocking the formation of HJ intermediates or by removing HJs without cleavage. Saccharomyces cerevisiae mutants that lack Sgs1 (the BLM ortholog) and either Mus81-Mms4 or Slx4-Slx1 are inviable, but mutants that lack Sgs1 and Yen1 are viable. The current view is that Yen1 serves primarily as a backup to Mus81-Mms4. Previous studies with Drosophila melanogaster showed that, as in yeast, loss of both DmBLM and MUS81 or MUS312 (the ortholog of SLX4) is lethal. We have now recovered and analyzed mutations in Drosophila Gen. As in yeast, there is some redundancy between Gen and mus81; however, in contrast to the case in yeast, GEN plays a more predominant role in responding to DNA damage than MUS81-MMS4. Furthermore, loss of DmBLM and GEN leads to lethality early in development. We present a comparison of phenotypes occurring in double mutants that lack DmBLM and either MUS81, GEN, or MUS312, including chromosome instability and deficiencies in cell proliferation. Our studies of synthetic lethality provide insights into the multiple functions of DmBLM and how various endonucleases may function when DmBLM is absent.

  4. Structural comparison of AP endonucleases from the exonuclease III family reveals new amino acid residues in human AP endonuclease 1 that are involved in incision of damaged DNA.

    PubMed

    Redrejo-Rodríguez, Modesto; Vigouroux, Armelle; Mursalimov, Aibek; Grin, Inga; Alili, Doria; Koshenov, Zhanat; Akishev, Zhiger; Maksimenko, Andrei; Bissenbaev, Amangeldy K; Matkarimov, Bakhyt T; Saparbaev, Murat; Ishchenko, Alexander A; Moréra, Solange

    2016-01-01

    Oxidatively damaged DNA bases are substrates for two overlapping repair pathways: DNA glycosylase-initiated base excision repair (BER) and apurinic/apyrimidinic (AP) endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, an AP endonuclease cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in the NIR pathway, the same AP endonuclease incises DNA 5' to an oxidized base. The majority of characterized AP endonucleases possess classic BER activities, and approximately a half of them can also have a NIR activity. At present, the molecular mechanism underlying DNA substrate specificity of AP endonucleases remains unclear mainly due to the absence of a published structure of the enzyme in complex with a damaged base. To identify critical residues involved in the NIR function, we performed biochemical and structural characterization of Bacillus subtilis AP endonuclease ExoA and compared its crystal structure with the structures of other AP endonucleases: Escherichia coli exonuclease III (Xth), human APE1, and archaeal Mth212. We found conserved amino acid residues in the NIR-specific enzymes APE1, Mth212, and ExoA. Four of these positions were studied by means of point mutations in APE1: we applied substitution with the corresponding residue found in NIR-deficient E. coli Xth (Y128H, N174Q, G231S, and T268D). The APE1-T268D mutant showed a drastically decreased NIR activity and an inverted Mg(2+) dependence of the AP site cleavage activity, which is in line with the presence of an aspartic residue at the equivalent position among other known NIR-deficient AP endonucleases. Taken together, these data show that NIR is an evolutionarily conserved function in the Xth family of AP endonucleases.

  5. Sleep restriction therapy for insomnia is associated with reduced objective total sleep time, increased daytime somnolence, and objectively impaired vigilance: implications for the clinical management of insomnia disorder.

    PubMed

    Kyle, Simon D; Miller, Christopher B; Rogers, Zoe; Siriwardena, A Niroshan; Macmahon, Kenneth M; Espie, Colin A

    2014-02-01

    To investigate whether sleep restriction therapy (SRT) is associated with reduced objective total sleep time (TST), increased daytime somnolence, and impaired vigilance. Within-subject, noncontrolled treatment investigation. Sleep research laboratory. Sixteen patients [10 female, mean age = 47.1 (10.8) y] with well-defined psychophysiological insomnia (PI), reporting TST ≤ 6 h. Patients were treated with single-component SRT over a 4-w protocol, sleeping in the laboratory for 2 nights prior to treatment initiation and for 3 nights (SRT night 1, 8, 22) during the acute interventional phase. The psychomotor vigilance task (PVT) was completed at seven defined time points [day 0 (baseline), day 1,7,8,21,22 (acute treatment) and day 84 (3 mo)]. The Epworth Sleepiness Scale (ESS) was completed at baseline, w 1-4, and 3 mo. Subjective sleep outcomes and global insomnia severity significantly improved before and after SRT. There was, however, a robust decrease in PSG-defined TST during acute implementation of SRT, by an average of 91 min on night 1, 78 min on night 8, and 69 min on night 22, relative to baseline (P < 0.001; effect size range = 1.60-1.80). During SRT, PVT lapses were significantly increased from baseline (at three of five assessment points, all P < 0.05; effect size range = 0.69-0.78), returning to baseline levels by 3 mo (P = 0.43). A similar pattern was observed for RT, with RTs slowing during acute treatment (at four of five assessment points, all P < 0.05; effect size range = 0.57-0.89) and returning to pretreatment levels at 3 mo (P = 0.78). ESS scores were increased at w 1, 2, and 3 (relative to baseline; all P < 0.05); by 3 mo, sleepiness had returned to baseline (normative) levels (P = 0.65). For the first time we show that acute sleep restriction therapy is associated with reduced objective total sleep time, increased daytime sleepiness, and objective performance impairment. Our data have important implications for implementation guidelines

  6. Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro.

    PubMed

    Hinz, John M; Laughery, Marian F; Wyrick, John J

    2015-12-08

    During Cas9 genome editing in eukaryotic cells, the bacterial Cas9 enzyme cleaves DNA targets within chromatin. To understand how chromatin affects Cas9 targeting, we characterized Cas9 activity on nucleosome substrates in vitro. We find that Cas9 endonuclease activity is strongly inhibited when its target site is located within the nucleosome core. In contrast, the nucleosome structure does not affect Cas9 activity at a target site within the adjacent linker DNA. Analysis of target sites that partially overlap with the nucleosome edge indicates that the accessibility of the protospacer-adjacent motif (PAM) is the critical determinant of Cas9 activity on a nucleosome.

  7. Inquiry-Based Experiments for Large-Scale Introduction to PCR and Restriction Enzyme Digests

    ERIC Educational Resources Information Center

    Johanson, Kelly E.; Watt, Terry J.

    2015-01-01

    Polymerase chain reaction and restriction endonuclease digest are important techniques that should be included in all Biochemistry and Molecular Biology laboratory curriculums. These techniques are frequently taught at an advanced level, requiring many hours of student and faculty time. Here we present two inquiry-based experiments that are…

  8. Inquiry-Based Experiments for Large-Scale Introduction to PCR and Restriction Enzyme Digests

    ERIC Educational Resources Information Center

    Johanson, Kelly E.; Watt, Terry J.

    2015-01-01

    Polymerase chain reaction and restriction endonuclease digest are important techniques that should be included in all Biochemistry and Molecular Biology laboratory curriculums. These techniques are frequently taught at an advanced level, requiring many hours of student and faculty time. Here we present two inquiry-based experiments that are…

  9. [A comparative structure-function analysis and molecular mechanism of action of endonucleases from Serratia marcescens and Physarum polycephalum].

    PubMed

    Shliapnikov, S V; Lunin, V V; Blagova, E V; Abaturov, L V; Perbandt, M; Betzel, C; Mikhaĭlov, A M

    2002-01-01

    Structural and functional characteristics were compared for wild-type nuclease from Serratia marcescens, which belongs to the family of DNA/RNA nonspecific endonucleases, its mutational forms, and the nuclease I-PpoI from Physarum polycephalum, which is a representative of the Cys-His box-containing subgroup of the superfamily of extremely specific intron-encoded homing DNases. Despite the lack of sequence homology and the overall different topology of the Serratia marcescens and I-PpoI nucleases, their active sites have a remarkable structural similarity. Both of them have a unique magnesium atom in the active site, which is a part of the coordinatively bonded water-magnesium complex involved in their catalytic acts. In the enzyme-substrate complexes, the Mg2+ ion is chelated by an Asp residue, coordinates two oxygen atoms of DNA, and stabilizes the transition state of the phosphate anion and 3'-OH group of the leaving nucleotide. A new mechanism of the phosphodiester bond cleavage, which is common for the Serratia marcescens and I-PpoI nucleases and differs from the known functioning mechanism of the restriction and homing endonucleases, was proposed. It presumes a His residue as a general base for the activation of a non-cluster water molecule at the nucleophilic in line displacement of the 3'-leaving group. A strained metalloenzyme-substrate complex is formed during hydrolysis and relaxes to the initial state after the reaction. The English version of the paper.

  10. Caloric Restriction

    PubMed Central

    Bales, Connie W.; Kraus, William E.

    2013-01-01

    PURPOSE While the impact of caloric restriction on human health is not fully understood, there is strong evidence to support further studies of its influence on cardiovascular health. The purpose of this review is to update the state of the science by examining the relevant literature regarding calorie restriction effects on aging and cardiovascular health and to discuss the possible role(s) of calorie restriction in preserving cardiovascular function in humans. METHODS For purpose of this review, we have defined calorie restriction as a reduction in energy intake well below the amount of calories that would be consumed ad libitum (≥ 10% in humans, ≥20% in animals). We examined the relevant literature on calorie restriction effects on longevity and cardiovascular health, with an emphasis on the state of the science regarding calorie restriction in humans. We have emphasized the importance of the preliminary and expected findings from the Comprehensive Assessment of the Long-term Effect of Reducing Intake of Energy (CALERIE) trial. RESULTS Evidence from animal studies and a limited number of human trials indicates that calorie restriction has the potential to both delay cardiac aging and help prevent atherosclerotic cardiovascular disease via beneficial effects on blood pressure, lipids, inflammatory processes, and potentially other mechanisms. CONCLUSIONS Based upon its known benefits to cardiometabolic health, including modest calorie restriction in a combined lifestyle program is likely to improve heart health and prevent subsequent cardiovascular events in overweight and obese individuals. Additional study is needed to further illuminate its long-term applicability for older adults and for those with significant comorbidities such as heart failure. PMID:23748374

  11. Structural stability and endonuclease activity of a PI-SceI GFP-fusion protein.

    PubMed

    Senejani, Alireza G; Gogarten, J Peter

    2007-02-16

    Homing endonucleases are site-specific and rare cutting endonucleases often encoded by intron or intein containing genes. They lead to the rapid spread of the genetic element that hosts them by a process termed 'homing'; and ultimately the allele containing the element will be fixed in the population. PI-SceI, an endonuclease encoded as a protein insert or intein within the yeast V-ATPase catalytic subunit encoding gene (vma1), is among the best characterized homing endonucleases. The structures of the Sce VMA1 intein and of the intein bound to its target site are known. Extensive biochemical studies performed on the PI-SceI enzyme provide information useful to recognize critical amino acids involved in self-splicing and endonuclease functions of the protein. Here we describe an insertion of the Green Fluorescence Protein (GFP) into a loop which is located between the endonuclease and splicing domains of the Sce VMA1 intein. The GFP is functional and the additional GFP domain does not prevent intein excision and endonuclease activity. However, the endonuclease activity of the newly engineered protein was different from the wild-type protein in that it required the presence of Mn(2+) and not Mg(2+) metal cations for activity.

  12. Structural stability and endonuclease activity of a PI-SceI GFP-fusion protein

    PubMed Central

    Senejani, Alireza G.; Gogarten, J. Peter

    2007-01-01

    Homing endonucleases are site-specific and rare cutting endonucleases often encoded by intron or intein containing genes. They lead to the rapid spread of the genetic element that hosts them by a process termed 'homing'; and ultimately the allele containing the element will be fixed in the population. PI-SceI, an endonuclease encoded as a protein insert or intein within the yeast V-ATPase catalytic subunit encoding gene (vma1), is among the best characterized homing endonucleases. The structures of the Sce VMA1 intein and of the intein bound to its target site are known. Extensive biochemical studies performed on the PI-SceI enzyme provide information useful to recognize critical amino acids involved in self-splicing and endonuclease functions of the protein. Here we describe an insertion of the Green Fluorescence Protein (GFP) into a loop which is located between the endonuclease and splicing domains of the Sce VMA1 intein. The GFP is functional and the additional GFP domain does not prevent intein excision and endonuclease activity. However, the endonuclease activity of the newly engineered protein was different from the wild-type protein in that it required the presence of Mn2+ and not Mg2+ metal cations for activity. PMID:17389927

  13. Targeting a truncated Ho-endonuclease of yeast to novel DNA sites with foreign zinc fingers.

    PubMed Central

    Nahon, E; Raveh, D

    1998-01-01

    Ho-endonuclease of the yeast, Saccharomyces cerevisiae, initiates a mating type switch by making a site-specific double strand break in the mating type gene, MAT. Ho is a dodecamer endonuclease and shares six of the seven intein motifs with PI- Sce I endonuclease, an intein encoded by the VMAI gene. We show that a 113 residue truncated Ho-endonuclease starting at intein motif C initiates a mating type switch in yeast. Ho is the only dodecamer endonuclease with zinc fingers. To see whether they have a role in determining site specificity we exchanged them for zinc fingers of the yeast transcription factor, Swi5. A chimeric endonuclease comprising the dodecamer motifs of Ho (C-E) and the zinc finger domain of Swi5 cleaves a Swi5 substrate plasmid in vivo. A similar chimera with the zinc fingers of SpI cleaves a GC box rich substrate plasmid. These experiments delineate a catalytic fragment of Ho-endonuclease that can be fused to various DNA binding moieties in the design of chimeric endonucleases with new site specificities. PMID:9469831

  14. Direct observation of DNA threading in flap endonuclease complexes

    PubMed Central

    AlMalki, Faizah A; Flemming, Claudia S; Zhang, Jing; Feng, Min; Sedelnikova, Svetlana E; Ceska, Tom; Rafferty, John B; Sayers, Jon R; Artymiuk, Peter J

    2016-01-01

    Maintenance of genome integrity requires that branched nucleic acid molecules are accurately processed to produce double-helical DNA. Flap endonucleases are essential enzymes that trim such branched molecules generated by Okazaki fragment synthesis during replication. Here, we report crystal structures of bacteriophage T5 flap endonuclease in complexes with intact DNA substrates, and products, at resolutions of 1.9–2.2 Å. They reveal single-stranded DNA threading through a hole in the enzyme enclosed by an inverted V-shaped helical arch straddling the active site. Residues lining the hole induce an unusual barb-like conformation in the DNA substrate juxtaposing the scissile phosphate and essential catalytic metal ions. A series of complexes and biochemical analyses show how the substrate’s single-stranded branch approaches, threads through, and finally emerges on the far side of the enzyme. Our studies suggest that substrate recognition involves an unusual “fly-casting, thread, bend and barb” mechanism. PMID:27273516

  15. Home and away- the evolutionary dynamics of homing endonucleases

    PubMed Central

    2011-01-01

    Background Homing endonucleases (HEases) are a large and diverse group of site-specific DNAases. They reside within self-splicing introns and inteins, and promote their horizontal dissemination. In recent years, HEases have been the focus of extensive research due to their promising potential use in gene targeting procedures for the treatment of genetic diseases and for the genetic engineering of crop, animal models and cell lines. Results Using mathematical analysis and computational modeling, we present here a novel account for the evolution and population dynamics of HEase genes (HEGs). We describe HEGs as paradoxical selfish elements whose long-term persistence in a single population relies on low transmission rates and a positive correlation between transmission efficiency and toxicity. Conclusion Plausible conditions allow HEGs to sustain at high frequency through long evolutionary periods, with the endonuclease frequency being either at equilibrium or periodically oscillating. The predictions of our model may prove important not only for evolutionary theory but also for gene therapy and bio-engineering applications of HEases. PMID:22054298

  16. LAHEDES: the LAGLIDADG homing endonuclease database and engineering server

    PubMed Central

    Taylor, Gregory K.; Petrucci, Lucas H.; Lambert, Abigail R.; Baxter, Sarah K.; Jarjour, Jordan; Stoddard, Barry L.

    2012-01-01

    LAGLIDADG homing endonucleases (LHEs) are DNA cleaving enzymes, also termed ‘meganucleases’ that are employed as gene-targeting reagents. This use of LHEs requires that their DNA specificity be altered to match sequences in genomic targets. The choice of the most appropriate LHE to target a particular gene is facilitated by the growing number of such enzymes with well-characterized activities and structures. ‘LAHEDES’ (The LAGLIDADG Homing Endonuclease Database and Engineering Server) provides both an online archive of LHEs with validated DNA cleavage specificities and DNA-binding interactions, as well as a tool for the identification of DNA sequences that might be targeted by various LHEs. Searches can be performed using four separate scoring algorithms and user-defined choices of LHE scaffolds. The webserver subsequently provides information regarding clusters of amino acids that should be interrogated during engineering and selection experiments. The webserver is fully open access and can be found at http://homingendonuclease.net. PMID:22570419

  17. DNA-PK autophosphorylation facilitates Artemis endonuclease activity.

    PubMed

    Goodarzi, Aaron A; Yu, Yaping; Riballo, Enriqueta; Douglas, Pauline; Walker, Sarah A; Ye, Ruiqiong; Härer, Christine; Marchetti, Caterina; Morrice, Nick; Jeggo, Penny A; Lees-Miller, Susan P

    2006-08-23

    The Artemis nuclease is defective in radiosensitive severe combined immunodeficiency patients and is required for the repair of a subset of ionising radiation induced DNA double-strand breaks (DSBs) in an ATM and DNA-PK dependent process. Here, we show that Artemis phosphorylation by ATM and DNA-PK in vitro is primarily attributable to S503, S516 and S645 and demonstrate ATM dependent phosphorylation at serine 645 in vivo. However, analysis of multisite phosphorylation mutants of Artemis demonstrates that Artemis phosphorylation is dispensable for endonuclease activity in vitro and for DSB repair and V(D)J recombination in vivo. Importantly, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) autophosphorylation at the T2609-T2647 cluster, in the presence of Ku and target DNA, is required for Artemis-mediated endonuclease activity. Moreover, autophosphorylated DNA-PKcs stably associates with Ku-bound DNA with large single-stranded overhangs until overhang cleavage by Artemis. We propose that autophosphorylation triggers conformational changes in DNA-PK that enhance Artemis cleavage at single-strand to double-strand DNA junctions. These findings demonstrate that DNA-PK autophosphorylation regulates Artemis access to DNA ends, providing insight into the mechanism of Artemis mediated DNA end processing.

  18. Structural Characterization of the Catalytic Subunit of a Novel RNA Splicing Endonuclease

    SciTech Connect

    Calvin, Kate; Hall, Michelle D.; Xu, Fangmin; Xue, Song; Li, Hong

    2010-07-13

    The RNA splicing endonuclease is responsible for recognition and excision of nuclear tRNA and all archaeal introns. Despite the conserved RNA cleavage chemistry and a similar enzyme assembly, currently known splicing endonuclease families have limited RNA specificity. Different from previously characterized splicing endonucleases in Archaea, the splicing endonuclease from archaeum Sulfolobus solfataricus was found to contain two different subunits and accept a broader range of substrates. Here, we report a crystal structure of the catalytic subunit of the S. solfataricus endonuclease at 3.1 {angstrom} resolution. The structure, together with analytical ultracentrifugation analysis, identifies the catalytic subunit as an inactive but stable homodimer, thus suggesting the possibility of two modes of functional assembly for the active enzyme.

  19. Cloning and sequence analysis of the StsI restriction-modification gene: presence of homology to FokI restriction-modification enzymes.

    PubMed Central

    Kita, K; Suisha, M; Kotani, H; Yanase, H; Kato, N

    1992-01-01

    StsI endonuclease (R.StsI), a type IIs restriction endonuclease found in Streptococcus sanguis 54, recognizes the same sequence as FokI but cleaves at different positions. A DNA fragment that carried the genes for R.StsI and StsI methylase (M.StsI) was cloned from the chromosomal DNA of S.sanguis 54, and its nucleotide sequence was analyzed. The endonuclease gene was 1,806 bp long, corresponding to a protein of 602 amino acid residues (M(r) = 68,388), and the methylase gene was 1,959 bp long, corresponding to a protein of 653 amino acid residues (M(r) = 76,064). The assignment of the endonuclease gene was confirmed by analysis of the N-terminal amino acid sequence. Genes for the two proteins were in a tail-to-tail orientation, separated by a 131-nucleotide intercistronic region. The predicted amino acid sequences between the StsI system and the FokI system showed a 49% identity between the methylases and a 30% identity between the endonucleases. The sequence comparison of M.StsI with various methylases showed that the N-terminal half of M.StsI matches M.NIaIII, and the C-terminal half matches adenine methylases that recognize GATC and GATATC. PMID:1387204

  20. A functional endonuclease Q exists in the bacterial domain: identification and characterization of endonuclease Q from Bacillus pumilus.

    PubMed

    Shiraishi, Miyako; Ishino, Sonoko; Cann, Isaac; Ishino, Yoshizumi

    2017-05-01

    DNA base deamination occurs spontaneously under physiological conditions and is promoted by high temperature. Therefore, hyperthermophiles are expected to have efficient repair systems of the deaminated bases in their genomes. Endonuclease Q (EndoQ) was originally identified from the hyperthermophlic archaeon, Pyrococcus furiosus, as a hypoxanthine-specific endonuclease recently. Further biochemical analyses revealed that EndoQ also recognizes uracil, xanthine, and the AP site in DNA, and is probably involved in a specific repair process for damaged bases. Initial phylogenetic analysis showed that an EndoQ homolog is found only in the Thermococcales and some of the methanogens in Archaea, and is not present in most members of the domains Bacteria and Eukarya. A better understanding of the distribution of the EndoQ-mediated repair system is, therefore, of evolutionary interest. We showed here that an EndoQ-like polypeptide from Bacillus pumilus, belonging to the bacterial domain, is functional and has similar properties with the archaeal EndoQs.

  1. Cooperative binding of the C.AhdI controller protein to the C/R promoter and its role in endonuclease gene expression.

    PubMed

    McGeehan, J E; Papapanagiotou, I; Streeter, S D; Kneale, G G

    2006-04-28

    The controller (C) proteins of a wide variety of restriction-modification (R-M) systems are thought to regulate expression of the endonuclease (R) gene by a genetic switch that ensures that methylation precedes endonuclease expression. Previous DNA footprinting experiments with C.AhdI have located the binding site upstream of the C and R genes in the AhdI R-M system, and the structure of C.AhdI has recently been determined. Here, we provide evidence that the binding site can accommodate either one or two dimers of C.AhdI in a concentration-dependent manner. The dimer binding site is adjacent to the -35 hexamer site required for the interaction with RNA polymerase (RNAP); however, co-operative binding of a second dimer blocks this site. Optimum DNA binding site sizes for dimer and tetramer formation were determined to be ca 21 bp and 34 bp, respectively. The stoichiometry and affinities of relevant DNA-protein complexes have been characterised by sedimentation velocity and EMSA using native and mutant promoter sequences. Molecular models of the dimer and tetramer complexes have been constructed that are consistent with the hydrodynamic data. Our results suggest a mechanism for both positive and negative regulation of endonuclease expression, whereby at moderate levels of C.AhdI, the protein binds to the promoter as a dimer and stimulates transcription by the interaction with RNAP. As the levels of C.AhdI increase further, binding of the second dimer competes with RNAP, thus down-regulating transcription of its own gene, and hence that of the endonuclease.

  2. Crystal structure of the 5hmC specific endonuclease PvuRts1I

    PubMed Central

    Czapinska, Honorata; Bochtler, Matthias

    2014-01-01

    PvuRts1I is a prototype for a larger family of restriction endonucleases that cleave DNA containing 5-hydroxymethylcytosine (5hmC) or 5-glucosylhydroxymethylcytosine (5ghmC), but not 5-methylcytosine (5mC) or cytosine. Here, we report a crystal structure of the enzyme at 2.35 Å resolution. Although the protein has been crystallized in the absence of DNA, the structure is very informative. It shows that PvuRts1I consists of an N-terminal, atypical PD-(D/E)XK catalytic domain and a C-terminal SRA domain that might accommodate a flipped 5hmC or 5ghmC base. Changes to predicted catalytic residues of the PD-(D/E)XK domain or to the putative pocket for a flipped base abolish catalytic activity. Surprisingly, fluorescence changes indicative of base flipping are not observed when PvuRts1I is added to DNA substrates containing pyrrolocytosine in place of 5hmC (5ghmC). Despite this caveat, the structure suggests a model for PvuRts1I activity and presents opportunities for protein engineering to alter the enzyme properties for biotechnological applications. PMID:24634440

  3. Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9

    PubMed Central

    Anders, Carolin; Bargsten, Katja; Jinek, Martin

    2016-01-01

    Summary The RNA-guided endonuclease Cas9 from Streptococcus pyogenes (SpCas9) forms the core of a powerful genome editing technology. DNA cleavage by SpCas9 is dependent on the presence of a 5’-NGG-3’ protospacer adjacent motif (PAM) in the target DNA, restricting the choice of targetable sequences. To address this limitation, artificial SpCas9 variants with altered PAM specificities have recently been developed. Here we report crystal structures of the VQR, EQR, and VRER SpCas9 variants bound to target DNAs containing their preferred PAM sequences. The structures reveal that the non-canonical PAMs are recognized by an induced fit mechanism. Besides mediating sequence-specific base recognition, the amino acid substitutions introduced in the SpCas9 variants facilitate conformational remodeling of the PAM region of the bound DNA. Guided by the structural data, we developed a SpCas9 variant that specifically recognizes NAAG PAMs. Taken together, these studies inform further development of Cas9-based genome editing tools. PMID:26990992

  4. Crystal structure of the 5hmC specific endonuclease PvuRts1I.

    PubMed

    Kazrani, Asgar Abbas; Kowalska, Monika; Czapinska, Honorata; Bochtler, Matthias

    2014-05-01

    PvuRts1I is a prototype for a larger family of restriction endonucleases that cleave DNA containing 5-hydroxymethylcytosine (5hmC) or 5-glucosylhydroxymethylcytosine (5ghmC), but not 5-methylcytosine (5mC) or cytosine. Here, we report a crystal structure of the enzyme at 2.35 Å resolution. Although the protein has been crystallized in the absence of DNA, the structure is very informative. It shows that PvuRts1I consists of an N-terminal, atypical PD-(D/E)XK catalytic domain and a C-terminal SRA domain that might accommodate a flipped 5hmC or 5ghmC base. Changes to predicted catalytic residues of the PD-(D/E)XK domain or to the putative pocket for a flipped base abolish catalytic activity. Surprisingly, fluorescence changes indicative of base flipping are not observed when PvuRts1I is added to DNA substrates containing pyrrolocytosine in place of 5hmC (5ghmC). Despite this caveat, the structure suggests a model for PvuRts1I activity and presents opportunities for protein engineering to alter the enzyme properties for biotechnological applications.

  5. The isolation of strand-specific nicking endonucleases from a randomized SapI expression library.

    PubMed

    Samuelson, James C; Zhu, Zhenyu; Xu, Shuang-yong

    2004-01-01

    The Type IIS restriction endonuclease SapI recognizes the DNA sequence 5'-GCTCTTC-3' (top strand by convention) and cleaves downstream (N1/N4) indicating top- and bottom-strand spacing, respectively. The asymmetric nature of DNA recognition presented the possibility that one, if not two, nicking variants might be created from SapI. To explore this possibility, two parallel selection procedures were designed to isolate either top-strand nicking or bottom-strand nicking variants from a randomly mutated SapI expression library. These procedures take advantage of a SapI substrate site designed into the expression plasmid, which allows for in vitro selection of plasmid clones possessing a site-specific and strand-specific nick. A procedure designed to isolate bottom-strand nicking enzymes yielded Nb.SapI-1 containing a critical R420I substitution near the end of the protein. The top-strand procedure yielded several SapI variants with a distinct preference for top-strand cleavage. Mutations present within the selected clones were segregated to confirm a top-strand nicking phenotype for single variants Q240R, E250K, G271R or K273R. The nature of the amino acid substitutions found in the selected variants provides evidence that SapI may possess two active sites per monomer. This work presents a framework for establishing the mechanism of SapI DNA cleavage.

  6. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication

    PubMed Central

    Kindler, Eveline; Gil-Cruz, Cristina; Spanier, Julia; Li, Yize; Wilhelm, Jochen; Rabouw, Huib H.; Züst, Roland; Marti, Sabrina; Habjan, Matthias; Cervantes-Barragan, Luisa; Elliot, Ruth; Karl, Nadja; Gaughan, Christina; Silverman, Robert H.; Keller, Markus; Ludewig, Burkhard; Bergmann, Cornelia C.; Ziebuhr, John; Kalinke, Ulrich

    2017-01-01

    Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis–within the replicase complex—suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses. PMID:28158275

  7. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication.

    PubMed

    Kindler, Eveline; Gil-Cruz, Cristina; Spanier, Julia; Li, Yize; Wilhelm, Jochen; Rabouw, Huib H; Züst, Roland; Hwang, Mihyun; V'kovski, Philip; Stalder, Hanspeter; Marti, Sabrina; Habjan, Matthias; Cervantes-Barragan, Luisa; Elliot, Ruth; Karl, Nadja; Gaughan, Christina; van Kuppeveld, Frank J M; Silverman, Robert H; Keller, Markus; Ludewig, Burkhard; Bergmann, Cornelia C; Ziebuhr, John; Weiss, Susan R; Kalinke, Ulrich; Thiel, Volker

    2017-02-01

    Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis-within the replicase complex-suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses.

  8. Hold your horSSEs: controlling structure-selective endonucleases MUS81 and Yen1/GEN1

    PubMed Central

    Blanco, Miguel G.; Matos, Joao

    2015-01-01

    Repair of DNA lesions through homologous recombination promotes the establishment of stable chromosomal interactions. Multiple helicases, topoisomerases and structure-selective endonucleases (SSEs) act upon recombining joint molecules (JMs) to disengage chromosomal connections and safeguard chromosome segregation. Recent studies on two conserved SSEs – MUS81 and Yen1/GEN1– uncovered multiple layers of regulation that operate to carefully tailor JM-processing according to specific cellular needs. Temporal restriction of SSE function imposes a hierarchy in pathway usage that ensures efficient JM-processing while minimizing reciprocal exchanges between the recombining DNAs. Whereas a conserved strategy of fine-tuning SSE functions exists in different model systems, the precise molecular mechanisms to implement it appear to be significantly different. Here, we summarize the current knowledge on the cellular switches that are in place to control MUS81 and Yen1/GEN1 functions. PMID:26284109

  9. Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of Streptococcus pneumontae

    DOEpatents

    Lacks, S.A.

    1990-10-02

    Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252. 9 figs.

  10. Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of streptococcus pneumontae

    DOEpatents

    Lacks, Sanford A.

    1990-01-01

    Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252.

  11. Restrictive vs. non-restrictive composition: a magnetoencephalography study

    PubMed Central

    Leffel, Timothy; Lauter, Miriam; Westerlund, Masha; Pylkkänen, Liina

    2014-01-01

    Recent research on the brain mechanisms underlying language processing has implicated the left anterior temporal lobe (LATL) as a central region for the composition of simple phrases. Because these studies typically present their critical stimuli without contextual information, the sensitivity of LATL responses to contextual factors is unknown. In this magnetoencephalography (MEG) study, we employed a simple question-answer paradigm to manipulate whether a prenominal adjective or determiner is interpreted restrictively, i.e., as limiting the set of entities under discussion. Our results show that the LATL is sensitive to restriction, with restrictive composition eliciting higher responses than non-restrictive composition. However, this effect was only observed when the restricting element was a determiner, adjectival stimuli showing the opposite pattern, which we hypothesise to be driven by the special pragmatic properties of non-restrictive adjectives. Overall, our results demonstrate a robust sensitivity of the LATL to high level contextual and potentially also pragmatic factors. PMID:25379512

  12. Sequence-specific cleavage of RNA by Type II restriction enzymes

    PubMed Central

    Murray, Iain A.; Stickel, Shawn K.; Roberts, Richard J.

    2010-01-01

    The ability of 223 Type II restriction endonucleases to hydrolyze RNA–DNA heteroduplex oligonucleotide substrates was assessed. Despite the significant topological and sequence asymmetry introduced when one strand of a DNA duplex is substituted by RNA we find that six restriction enzymes (AvaII, AvrII, BanI, HaeIII, HinfI and TaqI), exclusively of the Type IIP class that recognize palindromic or interrupted-palindromic DNA sequences, catalyze robust and specific cleavage of both RNA and DNA strands of such a substrate. Time-course analyses indicate that some endonucleases hydrolyze phosphodiester bonds in both strands simultaneously whereas others appear to catalyze sequential reactions in which either the DNA or RNA product accumulates more rapidly. Such strand-specific variation in cleavage susceptibility is both significant (up to orders of magnitude difference) and somewhat sequence dependent, notably in relation to the presence or absence of uracil residues in the RNA strand. Hybridization to DNA oligonucleotides that contain endonuclease recognition sites can be used to achieve targeted hydrolysis of extended RNA substrates produced by in vitro transcription. The ability to ‘restrict’ an RNA–DNA hybrid, albeit with a limited number of restriction endonucleases, provides a method whereby individual RNA molecules can be targeted for site-specific cleavage in vitro. PMID:20702422

  13. Restrictive cardiomyopathies.

    PubMed

    Nihoyannopoulos, Petros; Dawson, David

    2009-12-01

    Restrictive cardiomyopathies constitute a heterogenous group of heart muscle conditions that all have, in common, the symptoms of heart failure. Diastolic dysfunction with preserved systolic function is often the only echocardiographic abnormality that may be noted, although systolic dysfunction may also be an integral part of some specific pathologies, particularly in the most advanced cases such as amyloid infiltration of the heart. By far, the majority of restrictive cardiomyopathies are secondary to a systemic disorder such as amyloidosis, sarcoidosis, scleroderma, haemochromatosis, eosinophilic heart disease, or as a result of radiation treatment. The much more rare diagnosis of idiopathic restrictive cardiomyopathy is supported only by the absence of specific pathology on either endomyocardial biopsies or at post-mortem. Restrictive cardiomyopathy is diagnosed based on medical history, physical examination, and tests: such as blood tests, electrocardiogram, chest X-ray, echocardiography, and magnetic resonance imaging. With its wide availability, echocardiography is probably the most important investigation to identify the left ventricular dysfunction and should be performed early and by groups that are familiar with the wide variety of aetiologies. Finally, on rare occasions, the differential diagnosis from constrictive pericarditis may be necessary.

  14. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization.

    PubMed

    Zhou, Qinghua; Li, Haimin; Li, Hanzeng; Nakagawa, Akihisa; Lin, Jason L J; Lee, Eui-Seung; Harry, Brian L; Skeen-Gaar, Riley Robert; Suehiro, Yuji; William, Donna; Mitani, Shohei; Yuan, Hanna S; Kang, Byung-Ho; Xue, Ding

    2016-07-22

    Mitochondria are inherited maternally in most animals, but the mechanisms of selective paternal mitochondrial elimination (PME) are unknown. While examining fertilization in Caenorhabditis elegans, we observed that paternal mitochondria rapidly lose their inner membrane integrity. CPS-6, a mitochondrial endonuclease G, serves as a paternal mitochondrial factor that is critical for PME. We found that CPS-6 relocates from the intermembrane space of paternal mitochondria to the matrix after fertilization to degrade mitochondrial DNA. It acts with maternal autophagy and proteasome machineries to promote PME. Loss of cps-6 delays breakdown of mitochondrial inner membranes, autophagosome enclosure of paternal mitochondria, and PME. Delayed removal of paternal mitochondria causes increased embryonic lethality, demonstrating that PME is important for normal animal development. Thus, CPS-6 functions as a paternal mitochondrial degradation factor during animal development.

  15. Regulation of endonuclease activity in human nucleotide excision repair

    PubMed Central

    Fagbemi, Adebanke F.; Orelli, Barbara; Schärer, Orlando D.

    2011-01-01

    Nucleotide excision repair (NER) is a DNA repair pathway that is responsible for removing a variety of lesions caused by harmful UV light, chemical carcinogens, and environmental mutagens from DNA. NER involves the concerted action of over 30 proteins that sequentially recognize a lesion, excise it in the form of an oligonucleotide, and fill in the resulting gap by repair synthesis. ERCC1-XPF and XPG are structure-specific endonucleases responsible for carrying out the incisions 5′ and 3′ to the damage respectively, culminating in the release of the damaged oligonucleotide. This review focuses on the recent work that led to a greater understanding of how the activities of ERCC1-XPF and XPG are regulated in NER to prevent unwanted cuts in DNA or the persistence of gaps after incision that could result in harmful, cytotoxic DNA structures. PMID:21592868

  16. Multiple metal ions drive DNA association by PvuII endonuclease.

    PubMed

    Conlan, Lori H; Dupureur, Cynthia M

    2002-12-17

    Restriction enzymes serve as important model systems for understanding the role of metal ions in phosphodiester hydrolysis. To this end, a number of laboratories have reported dramatic differences between the metal ion-dependent and metal ion-independent DNA binding behaviors of these systems. In an effort to illuminate the underlying mechanistic details which give rise to these differences, we have quantitatively dissected these equilibrium behaviors into component association and dissociation rates for the representative PvuII endonuclease and use these data to assess the stoichiometry of metal ion involvement in the binding process. The dependence of PvuII cognate DNA on Ca(II) concentration binding appears to be cooperative, exhibiting half-saturation at 0.6 mM metal ion and yielding an n(H) of 3.5 +/- 0.2 per enzyme homodimer. Using both nitrocellulose filter binding and fluorescence assays, we observe that the cognate DNA dissociation rate (k(-)(1) or k(off)) is very slow (10(-)(3) s(-)(1)) and exhibits a shallow dependence on metal ion concentration. DNA trap cleavage experiments with Mg(II) confirm the general irreversibility of DNA binding relative to cleavage, even at low metal ion concentrations. More dramatically, the association rate (k(1) or k(on)) also appears to be cooperative, increasing more than 100-fold between 0.2 and 10 mM Ca(II), with an optimum value of 2.7 x 10(7) M(-)(1) s (-)(1). Hill analysis of the metal ion dependence of k(on) indicates an n(H) of 3.6 +/- 0.2 per enzyme dimer. This value is consistent with the involvement in DNA association of two metal ions per subunit active site, a result which lends new strength to arguments for two-metal ion mechanisms in restriction enzymes.

  17. Homing endonucleases from mobile group I introns: discovery to genome engineering

    PubMed Central

    2014-01-01

    Homing endonucleases are highly specific DNA cleaving enzymes that are encoded within genomes of all forms of microbial life including phage and eukaryotic organelles. These proteins drive the mobility and persistence of their own reading frames. The genes that encode homing endonucleases are often embedded within self-splicing elements such as group I introns, group II introns and inteins. This combination of molecular functions is mutually advantageous: the endonuclease activity allows surrounding introns and inteins to act as invasive DNA elements, while the splicing activity allows the endonuclease gene to invade a coding sequence without disrupting its product. Crystallographic analyses of representatives from all known homing endonuclease families have illustrated both their mechanisms of action and their evolutionary relationships to a wide range of host proteins. Several homing endonucleases have been completely redesigned and used for a variety of genome engineering applications. Recent efforts to augment homing endonucleases with auxiliary DNA recognition elements and/or nucleic acid processing factors has further accelerated their use for applications that demand exceptionally high specificity and activity. PMID:24589358

  18. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences

    PubMed Central

    Smith, Julianne; Grizot, Sylvestre; Arnould, Sylvain; Duclert, Aymeric; Epinat, Jean-Charles; Chames, Patrick; Prieto, Jesús; Redondo, Pilar; Blanco, Francisco J.; Bravo, Jerónimo; Montoya, Guillermo; Pâques, Frédéric; Duchateau, Philippe

    2006-01-01

    Meganucleases, or homing endonucleases (HEs) are sequence-specific endonucleases with large (>14 bp) cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These findings have opened novel perspectives for genome engineering in a wide range of fields, including gene therapy. However, the number of identified HEs does not match the diversity of genomic sequences, and the probability of finding a homing site in a chosen gene is extremely low. Therefore, the design of artificial endonucleases with chosen specificities is under intense investigation. In this report, we describe the first artificial HEs whose specificity has been entirely redesigned to cleave a naturally occurring sequence. First, hundreds of novel endonucleases with locally altered substrate specificity were derived from I-CreI, a Chlamydomonas reinhardti protein belonging to the LAGLIDADG family of HEs. Second, distinct DNA-binding subdomains were identified within the protein. Third, we used these findings to assemble four sets of mutations into heterodimeric endonucleases cleaving a model target or a sequence from the human RAG1 gene. These results demonstrate that the plasticity of LAGLIDADG endonucleases allows extensive engineering, and provide a general method to create novel endonucleases with tailored specificities. PMID:17130168

  19. Rapid screening of endonuclease target site preference using a modified bacterial two-plasmid selection.

    PubMed

    Wolfs, Jason M; Kleinstiver, Benjamin P; Edgell, David R

    2014-01-01

    Homing endonucleases and other site-specific endonucleases have potential applications in genome editing, yet efficient targeting requires a thorough understanding of DNA-sequence specificity. Here, we describe a modified two-plasmid genetic selection in Escherichia coli that allows rapid profiling of nucleotide substitutions within a target site of given endonucleases. The selection utilizes a toxic plasmid (pTox) that encodes a DNA gyrase toxin in addition to the endonuclease target site. Cleavage of the toxic plasmid by an endonuclease expressed from a second plasmid (pEndo) facilitates growth under selective conditions. The modified protocol utilizes competent cells harboring the endonuclease expression plasmid into which target site plasmids are transformed. Replica plating on nonselective and selective media plates identifies cleavable and non-cleavable targets. Thus, a library of randomized target sites, or many individual target sites, can be analyzed using a single transformation. Both cleavable and non-cleavable targets can be analyzed by DNA sequencing to gain information about nucleotide preference in the endonuclease's target site.

  20. Detection of treatment-resistant infectious HIV after genome-directed antiviral endonuclease therapy.

    PubMed

    De Silva Feelixge, Harshana S; Stone, Daniel; Pietz, Harlan L; Roychoudhury, Pavitra; Greninger, Alex L; Schiffer, Joshua T; Aubert, Martine; Jerome, Keith R

    2016-02-01

    Incurable chronic viral infections are a major cause of morbidity and mortality worldwide. One potential approach to cure persistent viral infections is via the use of targeted endonucleases. Nevertheless, a potential concern for endonuclease-based antiviral therapies is the emergence of treatment resistance. Here we detect for the first time an endonuclease-resistant infectious virus that is found with high frequency after antiviral endonuclease therapy. While testing the activity of HIV pol-specific zinc finger nucleases (ZFNs) alone or in combination with three prime repair exonuclease 2 (Trex2), we identified a treatment-resistant and infectious mutant virus that was derived from a ZFN-mediated disruption of reverse transcriptase (RT). Although gene disruption of HIV protease, RT and integrase could inhibit viral replication, a chance single amino acid insertion within the thumb domain of RT produced a virus that could actively replicate. The endonuclease-resistant virus could replicate in primary CD4(+) T cells, but remained susceptible to treatment with antiretroviral RT inhibitors. When secondary ZFN-derived mutations were introduced into the mutant virus's RT or integrase domains, replication could be abolished. Our observations suggest that caution should be exercised during endonuclease-based antiviral therapies; however, combination endonuclease therapies may prevent the emergence of resistance.

  1. Consequences of a restrictive syringe exchange policy on utilization patterns of a syringe exchange program in Baltimore, Maryland: Implications for HIV risk

    PubMed Central

    Sherman, Susan G.; Patel, Shivani A.; Ramachandran, Daesha V.; Galai, Noya; Chaulk, Patrick; Serio-Chapman, Chris; Gindi, Renee M.

    2016-01-01

    Background Syringe distribution policies continue to be debated in many jurisdictions throughout the U.S. The Baltimore Needle and Syringe Exchange Program (NSP) operated under a 1-for-1 syringe exchange policy from its inception in 1994 through 1999, when it implemented a restrictive policy (2000–2004) that dictated less than 1-for-1 exchange for non-program syringes. Methods Data were derived from the Baltimore NSP, which prospectively collected data on all client visits. We examined the impact of this restrictive policy on program-level output measures (i.e., distributed:returned syringe ratio, client volume) before, during, and after the restrictive exchange policy. Through multiple logistic regression, we examined correlates of less than 1-for-1 exchange ratios at the client-level before and during the restrictive exchange policy periods. Results During the restrictive policy period, the average annual program-level ratio of total syringes distributed:returned dropped from 0.99 to 0.88, with a low point of 0.85 in 2000. There were substantial decreases in the average number of syringes distributed, syringes returned, the total number of clients, and new clients enrolling during the restrictive compared to the preceding period. During the restrictive period, 33,508 more syringes were returned to the needle exchange than were distributed. In the presence of other variables, correlates of less than 1-for-1 exchange ratio were being white, female, and less than 30 years old. Discussion With fewer clean syringes in circulation, restrictive policies could increase the risk of exposure to HIV among IDUs and the broader community. The study provides evidence to the potentially harmful effects of such policies. PMID:25919590

  2. Consequences of a restrictive syringe exchange policy on utilisation patterns of a syringe exchange program in Baltimore, Maryland: Implications for HIV risk.

    PubMed

    Sherman, Susan G; Patel, Shivani A; Ramachandran, Daesha V; Galai, Noya; Chaulk, Patrick; Serio-Chapman, Chris; Gindi, Renee M

    2015-11-01

    Syringe distribution policies continue to be debated in many jurisdictions throughout the USA. The Baltimore Needle and Syringe Exchange Program (NSP) operated under a 1-for-1 syringe exchange policy from its inception in 1994 through 1999, when it implemented a restrictive policy (2000-2004) that dictated less than 1-for-1 exchange for non-program syringes. Data were derived from the Baltimore NSP, which prospectively collected data on all client visits. We examined the impact of this restrictive policy on program-level output measures (i.e. distributed : returned syringe ratio, client volume) before, during and after the restrictive exchange policy. Through multiple logistic regression, we examined correlates of less than 1-for-1 exchange ratios at the client level before and during the restrictive exchange policy periods. During the restrictive policy period, the average annual program-level ratio of total syringes distributed : returned dropped from 0.99 to 0.88, with a low point of 0.85 in 2000. There were substantial decreases in the average number of syringes distributed, syringes returned, the total number of clients and new clients enrolling during the restrictive compared to the preceding period. During the restrictive period, 33 508 more syringes were returned to the needle exchange than were distributed. In the presence of other variables, correlates of less than 1-for-1 exchange ratio were being white, female and less than 30 years old. With fewer clean syringes in circulation, restrictive policies could increase the risk of exposure to HIV among Injection Drug Users (IDUs) and the broader community. The study provides evidence to the potentially harmful effects of such policies. © 2015 Australasian Professional Society on Alcohol and other Drugs.

  3. Human AP Endonuclease I Stimulates Multiple-Turnover Base Excision by Alkyladenine DNA Glycosylase†

    PubMed Central

    Baldwin, Michael R.; O’Brien, Patrick J.

    2009-01-01

    Human alkyladenine DNA glycosylase (AAG) locates and excises a wide variety of damaged purine bases from DNA, including hypoxanthine that is formed by the oxidative deamination of adenine. We used steady state, pre-steady state, and single-turnover kinetic assays to show that the multiple-turnover excision of hypoxanthine in vitro is limited by release of the abasic DNA product. This suggests the possibility that the product release step is regulated in vivo by interactions with other base excision repair (BER) proteins. Such coordination of BER activities would protect the abasic DNA repair intermediate and ensure its correct processing. AP endonuclease 1 (APE1) is the predominant enzyme for processing abasic DNA sites in human cells. Therefore, we have investigated the functional effects of added APE1 on the base excision activity of AAG. We find that APE1 stimulates the multiple-turnover excision of hypoxanthine by AAG, but has no effect on single-turnover excision. Since the amino terminus of AAG has been implicated in other protein-protein interactions we also characterize the deletion mutant lacking the first 79 amino acids. We find that APE1 fully stimulates the multiple-turnover glycosylase activity of this mutant, demonstrating that the amino terminus of AAG is not strictly required for this functional interaction. These results are consistent with a model whereby APE1 displaces AAG from the abasic site, thereby coordinating the first two steps of the base excision repair pathway. PMID:19449863

  4. Single nucleotide polymorphisms in chum salmon (Oncorhynchus keta) mitochondrial DNA derived from restriction site haplotype information.

    PubMed

    Garvin, M R; Saitoh, K; Churikov, D Y; Brykov, V A; Gharrett, A J

    2010-07-01

    Single nucleotide polymorphisms (SNPs) are useful genetic markers for the management and conservation of commercially important species such as salmon. Informative markers can be derived from data obtained for other purposes. We used restriction endonuclease data from earlier work to identify potentially useful restriction sites in chum salmon (Oncorhynchus keta). With the aid of a newly generated complete mitochondrial DNA sequence (accession number AP010773), we identified the SNP responsible for each restriction site variant, designed rapid genotyping assays, and surveyed the SNPs in more than 400 individuals. The restriction site analysis and the SNP genotyping assays were almost perfectly concordant. Some reasons for the non-concordance were identified and discussed.

  5. Characterization of the endoribonuclease active site of human apurinic/apyrimidinic endonuclease 1.

    PubMed

    Kim, Wan-Cheol; Berquist, Brian R; Chohan, Manbir; Uy, Christopher; Wilson, David M; Lee, Chow H

    2011-09-02

    Apurinic/apyrimidinic endonuclease 1 (APE1) is the major mammalian enzyme in DNA base excision repair that cleaves the DNA phosphodiester backbone immediately 5' to abasic sites. Recently, we identified APE1 as an endoribonuclease that cleaves a specific coding region of c-myc mRNA in vitro, regulating c-myc mRNA level and half-life in cells. Here, we further characterized the endoribonuclease activity of APE1, focusing on the active-site center of the enzyme previously defined for DNA nuclease activities. We found that most site-directed APE1 mutant proteins (N68A, D70A, Y171F, D210N, F266A, D308A, and H309S), which target amino acid residues constituting the abasic DNA endonuclease active-site pocket, showed significant decreases in endoribonuclease activity. Intriguingly, the D283N APE1 mutant protein retained endoribonuclease and abasic single-stranded RNA cleavage activities, with concurrent loss of apurinic/apyrimidinic (AP) site cleavage activities on double-stranded DNA and single-stranded DNA (ssDNA). The mutant proteins bound c-myc RNA equally well as wild-type (WT) APE1, with the exception of H309N, suggesting that most of these residues contributed primarily to RNA catalysis and not to RNA binding. Interestingly, both the endoribonuclease and the ssRNA AP site cleavage activities of WT APE1 were present in the absence of Mg(2+), while ssDNA AP site cleavage required Mg(2+) (optimally at 0.5-2.0 mM). We also found that a 2'-OH on the sugar moiety was absolutely required for RNA cleavage by WT APE1, consistent with APE1 leaving a 3'-PO(4)(2-) group following cleavage of RNA. Altogether, our data support the notion that a common active site is shared for the endoribonuclease and other nuclease activities of APE1; however, we provide evidence that the mechanisms for cleaving RNA, abasic single-stranded RNA, and abasic DNA by APE1 are not identical, an observation that has implications for unraveling the endoribonuclease function of APE1 in vivo. Copyright

  6. [Comparative restriction analysis of chromosomal DNA of strains of Photobacterium leiognathi].

    PubMed

    Videlets, I Iu; Starodubtseva, L I; Podgornova, G P; Lutskaia, N I; Shenderov, A N

    1988-01-01

    Chromosomal DNA in 5 hereditary variants occurring in Photobacterium leiognathi population was subjected to restriction analysis. The variants differed in the levels and regulation of luminescence and colony morphology. Agarose electrophoresis of DNA fragments isolated after exposure to Hind II, Bam HI, Bgl I and Pst I restriction endonucleases revealed respectively 38, 28, 35 and 29 fragments equally distributed by their molecular weights. Electrophoregrams of the 5 strains were absolutely identical. After exposure of DNA of all the strains to PVu II, Xho II, Sal GI and Eco RI restriction endonucleases there were detected no fragments. The pleoiotropic genetic variation in these strains was not associated with large deletions or amplification of chromosomal DNA regions.

  7. DNase γ Is the Effector Endonuclease for Internucleosomal DNA Fragmentation in Necrosis

    PubMed Central

    Mizuta, Ryushin; Araki, Shinsuke; Furukawa, Makoto; Furukawa, Yuki; Ebara, Syota; Shiokawa, Daisuke; Hayashi, Katsuhiko; Tanuma, Sei-ichi; Kitamura, Daisuke

    2013-01-01

    Apoptosis and necrosis, two major forms of cell death, can be distinguished morphologically and biochemically. Internucleosomal DNA fragmentation (INDF) is a biochemical hallmark of apoptosis, and caspase-activated DNase (CAD), also known as DNA fragmentation factor 40 kDa (DFF40), is one of the major effector endonucleases. DNase γ, a Mg2+/Ca2+-dependent endonuclease, is also known to generate INDF but its role among other apoptosis-associated endonucleases in cell death is unclear. Here we show that (i) INDF occurs even during necrosis in cell lines, primary cells, and in tissues of mice in vivo, and (ii) DNase γ, but not CAD, is the effector endonuclease for INDF in cells undergoing necrosis. These results document a previously unappreciated role for INDF in necrosis and define its molecular basis. PMID:24312463

  8. Three new active members of the I-OnuI family of homing endonucleases.

    PubMed

    Bilto, Iman M; Guha, Tuhin K; Wai, Alvan; Hausner, Georg

    2017-08-01

    In vitro characterization of 3 LAGLIDADG-type homing endonucleases (HEs) (I-CcaI, I-CcaII, and I-AstI) that belong to the I-OnuI family showed that they are functional HEs that cleave their respective cognate target sites. These endonucleases are encoded within group ID introns and appear to be orthologues that have inserted into 3 different mitochondrial genes: rns, rnl, and cox3. The endonuclease activity of I-CcaI was tested using various substrates, and its minimum DNA recognition sequence was estimated to be 26 nt. This set of HEs may provide some insight into how these types of mobile elements can migrate into new locations. This study provides additional endonucleases that can be added to the catalog of currently available HEs that may have various biotechnology applications.

  9. Modulation of action of wheat seedling endonucleases WEN1 and WEN2 by histones.

    PubMed

    Fedoreyeva, L I; Smirnova, T A; Kolomijtseva, G Ya; Vanyushin, B F

    2013-05-01

    Wheat core histones and various subfractions of histone H1 modulate differently the action of endonucleases WEN1 and WEN2 from wheat seedlings. The character of this modulation depends on the nature of the histone and the methylation status of the substrate DNA. The modulation of enzyme action occurs at different stages of processive DNA hydrolysis and is accompanied by changes in the site specificity of the enzyme action. It seems that endonuclease WEN1 prefers to bind with protein-free DNA stretches in histone H1-DNA complex. The endonuclease WEN1 does not compete with histone H1/6 for DNA binding sites, but it does compete with histone H1/1, probably for binding with methylated sites of DNA. Unlike histone H1, the core histone H2b binds with endonuclease WEN1 and significantly increases its action. This is associated with changes in the site specificity of the enzyme action that is manifested by a significant increase in the amount of low molecular weight oligonucleotides and mononucleotides produced as a result of hydrolysis of DNA fragments with 120-140-bp length. The WEN2 endonuclease binds with histone-DNA complexes only through histones. The action of WEN2 is increased or decreased depending on the nature of the histone. Histone H1/1 stimulated the exonuclease activity of WEN2. It is supposed that endonucleases WEN1 and WEN2, in addition to the catalytic domain, should have a regulatory domain that is involved in binding of histones. As histone H1 is mainly located in the linker chromatin areas, it is suggested that WEN2 should attack DNA just in the chromatin linker zones. As differentiated from WEN2, DNA hydrolysis with endonuclease WEN1 is increased in the presence of core histones and, in particular, of H2b. Endonuclease WEN1 initially attacks different DNA sites in chromatin than WEN2. Endonuclease WEN2 activity can be increased or diminished depending on presence of histone H1 subfractions. It seems that just different fractions of the histone H1 are

  10. The metabolic enhancer piracetam attenuates mitochondrion-specific endonuclease G translocation and oxidative DNA fragmentation.

    PubMed

    Gupta, Sonam; Verma, Dinesh Kumar; Biswas, Joyshree; Rama Raju, K Siva; Joshi, Neeraj; Wahajuddin; Singh, Sarika

    2014-08-01

    This study was performed to investigate the involvement of mitochondrion-specific endonuclease G in piracetam (P)-induced protective mechanisms. Studies have shown the antiapoptotic effects of piracetam but the mechanism of action of piracetam is still an enigma. To assess the involvement of endonuclease G in piracetam-induced protective effects, astrocyte glial cells were treated with lipopolysaccharide (LPS) and piracetam. LPS treatment caused significantly decreased viability, mitochondrial activity, oxidative stress, chromatin condensation, and DNA fragmentation, which were attenuated by piracetam cotreatment. Cotreatment of astrocytes with piracetam showed its significantly time-dependent absorption as observed with high-performance liquid chromatography. Astrocytes treated with piracetam alone showed enhanced mitochondrial membrane potential (MMP) in comparison to control astrocytes. However, in LPS-treated cells no significant alteration in MMP was observed in comparison to control cells. Protein and mRNA levels of the terminal executor of the caspase-mediated pathway, caspase-3, were not altered significantly in LPS or LPS + piracetam-treated astrocytes, whereas endonuclease G was significantly translocated to the nucleus in LPS-treated astrocytes. Piracetam cotreatment attenuated the LPS-induced endonuclease G translocation. In conclusion this study indicates that LPS treatment of astrocytes caused decreased viability, oxidative stress, mitochondrial dysfunction, chromatin condensation, DNA damage, and translocation of endonuclease G to the nucleus, which was inhibited by piracetam cotreatment, confirming that the mitochondrion-specific endonuclease G is one of the factors involved in piracetam-induced protective mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family

    PubMed Central

    Dassa, Bareket; London, Nir; Stoddard, Barry L.; Schueler-Furman, Ora; Pietrokovski, Shmuel

    2009-01-01

    Inteins are genetic elements, inserted in-frame into protein-coding genes, whose products catalyze their removal from the protein precursor via a protein-splicing reaction. Intein domains can be split into two fragments and still ligate their flanks by a trans-protein-splicing reaction. A bioinformatic analysis of environmental metagenomic data revealed 26 different loci with a novel genomic arrangement. In each locus, a conserved enzyme coding region is broken in two by a split intein, with a free-standing endonuclease gene inserted in between. Eight types of DNA synthesis and repair enzymes have this ‘fractured’ organization. The new types of naturally split-inteins were analyzed in comparison to known split-inteins. Some loci include apparent gene control elements brought in with the endonuclease gene. A newly predicted homing endonuclease family, related to very-short patch repair (Vsr) endonucleases, was found in half of the loci. These putative homing endonucleases also appear in group-I introns, and as stand-alone inserts in the absence of surrounding intervening sequences. The new fractured genes organization appears to be present mainly in phage, shows how endonucleases can integrate into inteins, and may represent a missing link in the evolution of gene breaking in general, and in the creation of split-inteins in particular. PMID:19264795

  12. Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease

    PubMed Central

    2012-01-01

    Background A systematic method for plant genome manipulation is a major aim of plant biotechnology. One approach to achieving this involves producing a double-strand DNA break at a genomic target site followed by the introduction or removal of DNA sequences by cellular DNA repair. Hence, a site-specific endonuclease capable of targeting double-strand breaks to unique locations in the plant genome is needed. Results We engineered and tested a synthetic homing endonuclease, PB1, derived from the I-CreI endonuclease of Chlamydomonas reinhardtii, which was re-designed to recognize and cleave a newly specified DNA sequence. We demonstrate that an activity-optimized version of the PB1 endonuclease, under the control of a heat-inducible promoter, is capable of targeting DNA breaks to an introduced PB1 recognition site in the genome of Arabidopsis thaliana. We further demonstrate that this engineered endonuclease can very efficiently excise unwanted transgenic DNA, such as an herbicide resistance marker, from the genome when the marker gene is flanked by PB1 recognition sites. Interestingly, under certain conditions the repair of the DNA junctions resulted in a conservative pairing of recognition half sites to remove the intervening DNA and reconstitute a single functional recognition site. Conclusion These results establish parameters needed to use engineered homing endonucleases for the modification of endogenous loci in plant genomes. PMID:23148662

  13. Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family.

    PubMed

    Dassa, Bareket; London, Nir; Stoddard, Barry L; Schueler-Furman, Ora; Pietrokovski, Shmuel

    2009-05-01

    Inteins are genetic elements, inserted in-frame into protein-coding genes, whose products catalyze their removal from the protein precursor via a protein-splicing reaction. Intein domains can be split into two fragments and still ligate their flanks by a trans-protein-splicing reaction. A bioinformatic analysis of environmental metagenomic data revealed 26 different loci with a novel genomic arrangement. In each locus, a conserved enzyme coding region is broken in two by a split intein, with a free-standing endonuclease gene inserted in between. Eight types of DNA synthesis and repair enzymes have this 'fractured' organization. The new types of naturally split-inteins were analyzed in comparison to known split-inteins. Some loci include apparent gene control elements brought in with the endonuclease gene. A newly predicted homing endonuclease family, related to very-short patch repair (Vsr) endonucleases, was found in half of the loci. These putative homing endonucleases also appear in group-I introns, and as stand-alone inserts in the absence of surrounding intervening sequences. The new fractured genes organization appears to be present mainly in phage, shows how endonucleases can integrate into inteins, and may represent a missing link in the evolution of gene breaking in general, and in the creation of split-inteins in particular.

  14. Conformational Dynamics of DNA Repair by Escherichia coli Endonuclease III*

    PubMed Central

    Kuznetsov, Nikita A.; Kladova, Olga A.; Kuznetsova, Alexandra A.; Ishchenko, Alexander A.; Saparbaev, Murat K.; Zharkov, Dmitry O.; Fedorova, Olga S.

    2015-01-01

    Escherichia coli endonuclease III (Endo III or Nth) is a DNA glycosylase with a broad substrate specificity for oxidized or reduced pyrimidine bases. Endo III possesses two types of activities: N-glycosylase (hydrolysis of the N-glycosidic bond) and AP lyase (elimination of the 3′-phosphate of the AP-site). We report a pre-steady-state kinetic analysis of structural rearrangements of the DNA substrates and uncleavable ligands during their interaction with Endo III. Oligonucleotide duplexes containing 5,6-dihydrouracil, a natural abasic site, its tetrahydrofuran analog, and undamaged duplexes carried fluorescent DNA base analogs 2-aminopurine and 1,3-diaza-2-oxophenoxazine as environment-sensitive reporter groups. The results suggest that Endo III induces several fast sequential conformational changes in DNA during binding, lesion recognition, and adjustment to a catalytically competent conformation. A comparison of two fluorophores allowed us to distinguish between the events occurring in the damaged and undamaged DNA strand. Combining our data with the available structures of Endo III, we conclude that this glycosylase uses a multistep mechanism of damage recognition, which likely involves Gln41 and Leu81 as DNA lesion sensors. PMID:25869130

  15. Germline excision of transgenes in Aedes aegypti by homing endonucleases

    PubMed Central

    Aryan, Azadeh; Anderson, Michelle A. E.; Myles, Kevin M.; Adelman, Zach N.

    2013-01-01

    Aedes (Ae.) aegypti is the primary vector for dengue viruses (serotypes1–4) and chikungunya virus. Homing endonucleases (HEs) are ancient selfish elements that catalyze double-stranded DNA breaks (DSB) in a highly specific manner. In this report, we show that the HEs Y2-I-AniI, I-CreI and I-SceI are all capable of catalyzing the excision of genomic segments from the Ae. aegypti genome in a heritable manner. Y2-I-AniI demonstrated the highest efficiency at two independent genomic targets, with 20–40% of Y2-I-AniI-treated individuals producing offspring that had lost the target transgene. HE-induced DSBs were found to be repaired via the single-strand annealing (SSA) and non-homologous end-joining (NHEJ) pathways in a manner dependent on the availability of direct repeat sequences in the transgene. These results support the development of HE-based gene editing and gene drive strategies in Ae. aegypti, and confirm the utility of HEs in the manipulation and modification of transgenes in this important vector. PMID:23549343

  16. Effects of Dimerization of Serratia marcescens Endonuclease on Water Dynamics.

    SciTech Connect

    Chen, Chuanying; Beck, Brian W.; Krause, Kurt; Weksberg, Tiffany E.; Pettitt, Bernard M.

    2007-02-15

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The dynamics and structure of Serratia marcescens endonuclease and its neighboring solvent are investigated by molecular dynamics (MD). Comparisons are made with structural and biochemical experiments. The dimer form is physiologic and functions more processively than the monomer. We previously found a channel formed by connected clusters of waters from the active site to the dimer interface. Here, we show that dimerization clearly changes correlations in the water structure and dynamics in the active site not seen in the monomer. Our results indicate that water at the active sites of the dimer is less affected compared with bulk solvent than in the monomer where it has much slower characteristic relaxation times. Given that water is a required participant in the reaction, this gives a clear advantage to dimerization in the absence of an apparent ability to use both active sites simultaneously.

  17. DNA endonuclease activities on psoralen plus ultraviolet light treated DNA

    SciTech Connect

    Lambert, M.W.; Clark, M.

    1986-03-01

    Activities of nuclear DNA endonucleases (Endos) from normal human lymphoblastoid cells on DNA treated with the DNA interstrand cross-linking agents 4,5'8-trimethyl psoralen (TMP) or 8-methoxypsoralen (MOP) plus long-wavelength (320-400 nm) ultraviolet light (UVA) were examined. Chromatin-associated DNA Endos were isolated from both cell lines and subjected to isoelectric focusing (IF). Each IF fraction was assayed for DNA Endo activity. Peaks of activity were pooled and assayed for activity on undamaged PM2 bacteriophage DNA and on PM2 DNA that had been treated with 15 ..mu..g/ml TMP or MOP in the dark and then exposed to UVA light. Unbound psoralen was removed by dialysis and a second dose of UVA light was given in order to increase the number of DNA cross-links. Two Endo activities were found which were active on TMP- and MOP-DNA: a major one, pI 4.6, which is also active on intercalated DNA, and a second, lesser one, pI 7.6, which is active on UVC (254 nm) light irradiated DNA. These results indicate that there are two different DNA Endos which act on both TMP- and MOP-treated DNA and that the major activity recognizes the intercalation of, and/or the cross-link produced by interaction of, psoralen with DNA.

  18. Recognition of GT mismatches by Vsr mismatch endonuclease

    PubMed Central

    Fox, Keith R.; Allinson, Sarah L.; Sahagun-Krause, Heidi; Brown, Tom

    2000-01-01

    The Vsr mismatch endonuclease recognises the sequence CTWGG (W = A or T) in which the underlined thymine is paired with guanine and nicks the DNA backbone on the 5′-side of the mispaired thymine. By using base analogues of G and T we have explored the functional groups on the mismatch pair which are recognised by the enzyme. Removal of the thymine 5-methyl group causes a 60% reduction in activity, while removing the 2-amino group of guanine reduces cleavage by 90%. Placing 2-aminopurine or nebularine opposite T generates mismatches which are cut at a much lower rate (0.1%). When either base is removed, generating a pseudoabasic site (1′,2′-dideoxyribose), the enzyme still produces site-specific cleavage, but at only 1% of the original rate. Although TT and CT mismatches at this position are cleaved at a low rate (~1%), mismatches with other bases (such as GA and AC) and Watson–Crick base pairs are not cleaved by the enzyme. There is also no cleavage when the mismatched T is replaced with difluorotoluene. PMID:10871403

  19. Recognition of GT mismatches by Vsr mismatch endonuclease.

    PubMed

    Fox, K R; Allinson, S L; Sahagun-Krause, H; Brown, T

    2000-07-01

    The Vsr mismatch endonuclease recognises the sequence CTWGG (W = A or T) in which the underlined thymine is paired with guanine and nicks the DNA backbone on the 5'-side of the mispaired thymine. By using base analogues of G and T we have explored the functional groups on the mismatch pair which are recognised by the enzyme. Removal of the thymine 5-methyl group causes a 60% reduction in activity, while removing the 2-amino group of guanine reduces cleavage by 90%. Placing 2-amino-purine or nebularine opposite T generates mis-matches which are cut at a much lower rate (0.1%). When either base is removed, generating a pseudoabasic site (1', 2'-dideoxyribose), the enzyme still produces site-specific cleavage, but at only 1% of the original rate. Although TT and CT mismatches at this position are cleaved at a low rate (approximately 1%), mismatches with other bases (such as GA and AC) and Watson-Crick base pairs are not cleaved by the enzyme. There is also no cleavage when the mismatched T is replaced with difluorotoluene.

  20. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand*

    PubMed Central

    Teasley, Daniel C.; Parajuli, Shankar; Nguyen, Mai; Moore, Hayley R.; Alspach, Elise; Lock, Ying Jie; Honaker, Yuchi; Saharia, Abhishek; Piwnica-Worms, Helen; Stewart, Sheila A.

    2015-01-01

    The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer. PMID:25922071

  1. Flap Endonuclease 1 Limits Telomere Fragility on the Leading Strand.

    PubMed

    Teasley, Daniel C; Parajuli, Shankar; Nguyen, Mai; Moore, Hayley R; Alspach, Elise; Lock, Ying Jie; Honaker, Yuchi; Saharia, Abhishek; Piwnica-Worms, Helen; Stewart, Sheila A

    2015-06-12

    The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Detection of possible restriction sites for type II restriction enzymes in DNA sequences.

    PubMed

    Gagniuc, P; Cimponeriu, D; Ionescu-Tîrgovişte, C; Mihai, Andrada; Stavarachi, Monica; Mihai, T; Gavrilă, L

    2011-01-01

    In order to make a step forward in the knowledge of the mechanism operating in complex polygenic disorders such as diabetes and obesity, this paper proposes a new algorithm (PRSD -possible restriction site detection) and its implementation in Applied Genetics software. This software can be used for in silico detection of potential (hidden) recognition sites for endonucleases and for nucleotide repeats identification. The recognition sites for endonucleases may result from hidden sequences through deletion or insertion of a specific number of nucleotides. Tests were conducted on DNA sequences downloaded from NCBI servers using specific recognition sites for common type II restriction enzymes introduced in the software database (n = 126). Each possible recognition site indicated by the PRSD algorithm implemented in Applied Genetics was checked and confirmed by NEBcutter V2.0 and Webcutter 2.0 software. In the sequence NG_008724.1 (which includes 63632 nucleotides) we found a high number of potential restriction sites for ECO R1 that may be produced by deletion (n = 43 sites) or insertion (n = 591 sites) of one nucleotide. The second module of Applied Genetics has been designed to find simple repeats sizes with a real future in understanding the role of SNPs (Single Nucleotide Polymorphisms) in the pathogenesis of the complex metabolic disorders. We have tested the presence of simple repetitive sequences in five DNA sequence. The software indicated exact position of each repeats detected in the tested sequences. Future development of Applied Genetics can provide an alternative for powerful tools used to search for restriction sites or repetitive sequences or to improve genotyping methods.

  3. Site-directed mutagenesis of the T4 endonuclease V gene: role of lysine-130

    SciTech Connect

    Recinos, A. III; Lloyd, R.S.

    1988-03-22

    The DNA sequence of the bacteriophage T4 denV gene which encodes the DNA repair enzyme endonuclease V was previously constructed behind the hybrid lambda promoter OLPR in a plasmid vector. The OLPR-denV sequence was subcloned in M13mp18 and used as template to construct site-specific mutations in the denV structural gene in order to investigate structure/function relationships between the primary structure of the protein and its various DNA binding and catalytic activities. The Lys-130 residue of the wild-type endonuclease V has been postulated to be associated with its apurinic endonuclease (AP-endonuclease) activity. The codon for Lys-130 was changed to His-130 or Gly-130, and each denV sequence was subcloned into a pEMBL expression vector. These plasmids were transformed into repair-deficient Escherichia coli (uvrA recA), and the following parameters were examined for cells or cell extracts: expression and accumulation of endonuclease V protein (K-130, H-130, or G-130); survival after UV irradiation; dimer-specific DNA binding; and kinetics of phosphodiester bond scission at pyrimidine dimer sites, dimer-specific N-glycosylase activity, and AP-endonuclease activity. The enzyme's intracellular accumulation was significantly decreased for G-130 and slightly decreased for H-130 despite normal levels of denV-specific mRNA for each mutant. On a molar basis, the endonuclease V gene products generally gave parallel levels of each of the catalytic and binding functions with K-130 greater than H-130 greater than G-130 much greater than control denV-.

  4. Induction of E. coli oh8Gua endonuclease by oxidative stress: its significance in aerobic life.

    PubMed

    Kim, H S; Park, Y W; Kasai, H; Nishimura, S; Park, C W; Choi, K H; Chung, M H

    1996-06-12

    The induction of 8-hydroxyguanine (oh8Gua) endonuclease, a DNA repair enzyme for an oxidatively modified guanine, oh8Gua was studied in various growth conditions in Escherichia coli (AB1157). Anaerobically grown E. coli were found to have a very low activity of this enzyme while aerobically grown cells showed activity about 20 times that of the anaerobic level. Under the same condition, superoxide dismutase (SOD) showed about 6-fold increase in activity. A shift in growth conditions from anaerobic to aerobic resulted in rapid induction of this enzyme, and this induction was blocked (but not completely) by chloramphenicol. It is indicated that molecular oxygen is an effective stimulator to the induction of this enzyme and its induction depends partly on protein synthesis. Superoxide-producing compounds such as paraquat and menadione also increased the activity of endonuclease as well as SOD, but H2O2 showed no effect. Thus, superoxides are also implied as a stimulator. In contrast, hyperoxia induced only SOD not the endonuclease. This induction of the endonuclease by hyperoxia was only observed in a SOD-deficient strain (QC774). The aerobic activity of the endonuclease in QC774 was the same as that of wild types (AB1157, GC4468). It is implied that the responsiveness of oh8Gua endonuclease to superoxides is less sensitive than that of SOD. The endonuclease was also induced by a temperature shift from 30 to 43 degrees C and treatment with nalidixic acid. Among the stimuli used, molecular oxygen seems to be most effective for its induction. The inducible nature of this enzyme will serve as an important mechanism for the protection of oxidative DNA damage in the aerobic environment.

  5. Structure of the endonuclease IV homologue from Thermotoga maritima in the presence of active-site divalent metal ions

    PubMed Central

    Tomanicek, Stephen J.; Hughes, Ronny C.; Ng, Joseph D.; Coates, Leighton

    2010-01-01

    The most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5′-phosphodiester bond at an AP site to generate a free 3′-­hydroxyl group and a 5′-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-­ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily. PMID:20823514

  6. Structure of the endonuclease IV homologue from Thermotoga maritima in the presence of active-site divalent metal ions

    SciTech Connect

    Tomanicek, Stephen J.; Hughes, Ronny C.; Ng, Joseph D.; Coates, Leighton

    2010-10-05

    The most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5{prime}-phosphodiester bond at an AP site to generate a free 3{prime}-hydroxyl group and a 5{prime}-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily.

  7. Effect of a Sodium-Restricted Diet on Intake of Other Nutrients in Heart Failure: Implications for Research and Clinical Practice.

    PubMed

    Jefferson, Katherine; Ahmed, Mavra; Choleva, Marlene; Mak, Susanna; Allard, Johane P; Newton, Gary E; Arcand, JoAnne

    2015-12-01

    Sodium restriction is the primary dietary therapy for heart failure (HF) patients. Currently, it is unknown if changing diets to reduce dietary sodium in HF causes secondary changes to the intake of other nutrients in this patient population already at nutritional risk. HF patients (n = 16; 52 ± 12 years old; 78% male) followed a sodium-restricted diet for 1 week. Nutritional changes were documented at baseline and after a <2,000 mg/d sodium-restricted diet, as measured by food records before baseline and each day during the study. After a 49% reduction in dietary sodium (3,626 ± 956 to 1,785 ± 696 mg/d), we observed a significant reduction in calorie (2,467 ± 748 to 1,931 ± 388 kcal/d; P < .016), carbohydrate (293 ± 108 to 232 ± 56 g/d; P = .013), calcium (995 ± 496 to 609 ± 208 mg/d; P < .004), thiamine (2.0 ± 0.8 to 1.5 ± 0.8 mg/d; P = .020), and folate (412 ± 192 to 331 ± 172 μg/d; P = .019) intakes. There was a decrease in saturated fat (32 ± 18 to 21 ± 6 g/d; P = .032) and a trend to lower total fat (89 ± 34 to 68 ± 19 g/d; P = .066) and higher potassium (1,262 ± 328 to 1,405 ± 268 mg/1,000 kcal; P = .055) intakes. We found multiple unintentional nutritional consequences with dietary sodium reduction in HF patients. These findings highlight the need to consider the whole diet when counseling HF patients to lower sodium intake. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Endonucleases: new tools to edit the mouse genome.

    PubMed

    Wijshake, Tobias; Baker, Darren J; van de Sluis, Bart

    2014-10-01

    Mouse transgenesis has been instrumental in determining the function of genes in the pathophysiology of human diseases and modification of genes by homologous recombination in mouse embryonic stem cells remains a widely used technology. However, this approach harbors a number of disadvantages, as it is time-consuming and quite laborious. Over the last decade a number of new genome editing technologies have been developed, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas). These systems are characterized by a designed DNA binding protein or RNA sequence fused or co-expressed with a non-specific endonuclease, respectively. The engineered DNA binding protein or RNA sequence guides the nuclease to a specific target sequence in the genome to induce a double strand break. The subsequent activation of the DNA repair machinery then enables the introduction of gene modifications at the target site, such as gene disruption, correction or insertion. Nuclease-mediated genome editing has numerous advantages over conventional gene targeting, including increased efficiency in gene editing, reduced generation time of mutant mice, and the ability to mutagenize multiple genes simultaneously. Although nuclease-driven modifications in the genome are a powerful tool to generate mutant mice, there are concerns about off-target cleavage, especially when using the CRISPR/Cas system. Here, we describe the basic principles of these new strategies in mouse genome manipulation, their inherent advantages, and their potential disadvantages compared to current technologies used to study gene function in mouse models. This article is part of a Special Issue entitled: From Genome to Function.

  9. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency

    DOE PAGES

    Barnhoorn, Sander; Uittenboogaard, Lieneke M.; Jaarsma, Dick; ...

    2014-10-09

    As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg-/- mouse model which—in a C57BL6/FVB F1 hybrid genetic background—displays manymore » progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.« less

  10. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency

    SciTech Connect

    Barnhoorn, Sander; Uittenboogaard, Lieneke M.; Jaarsma, Dick; Vermeij, Wilbert P.; Tresini, Maria; Weymaere, Michael; Menoni, Hervé; Brandt, Renata M. C.; de Waard, Monique C.; Botter, Sander M.; Sarker, Altaf H.; Jaspers, Nicolaas G. J.; van der Horst, Gijsbertus T. J.; Cooper, Priscilla K.; Hoeijmakers, Jan H. J.; van der Pluijm, Ingrid; Niedernhofer, Laura J.

    2014-10-09

    As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg-/- mouse model which—in a C57BL6/FVB F1 hybrid genetic background—displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.

  11. Crystal structure of T4 endonuclease V: An excision repair enzyme for a pyrimidine dimer

    SciTech Connect

    Morikawa, K.; Ariyoshi, M.; Vassylyev, D.

    1994-12-31

    Ultraviolet (UV) light induces the formation of pyrimidine dimers, which are the most prevalent DNA lesion. In bacteriophage T4-infected Escherichia coli, T4 endonuclease V (T4 endV), encoded by the denV gene of bacteriophage T4, is responsible for the first step of the excision repair pathway. Although T4 endV is a very small protein, consisting of 138 amino acids, it catalyzes two distinct reactions, at least in vitro: the cleavage of the glycosyl bond of the 5{prime}-pyrimidine of the cis-syn cyclobutane pyrimidine dimer (pyrimidine dimer glycosylase) and the incision of the phosphodiester bond at the resulting abasic site, producing an {alpha},{beta}-unsaturated aldehyde and a 5{prime}-terminal phosphomonoester. This enzyme is also known to cleave the 3{prime}-phosphodiester bond at an abasic site by {beta}-elimination. It has been also suggested from the salt concentration dependence of the catalytic activity in vitro that the excision-repair involves two distinct steps, in terms of the interaction between the enzyme and DNA. Prior to making specific interaction with a pyrimidine dimer, T4 endV can be nonspecifically bound to DNA duplexes by electrostatic forces and slides on them. Once the enzyme has been specifically bound to a pyrimidine dimer, the glycosylation occurs at the 5{prime}-glycosyl bond in the dimer. It still remains obscure whether or not the same enzyme subsequently acts on the scission of the phosphodiester bond. In this report, we describe the three-dimensional (3D) structure of the T4 endV determined at atomic resolution by x-ray crystallography, and discuss the functional implications of the enzyme. The examination of structural features, including atomic resolution crystal structures of three different mutants, allows the identification of residues that participate in the substrate binding and the catalytic reaction of glycosylase.

  12. Cell-Autonomous Progeroid Changes in Conditional Mouse Models for Repair Endonuclease XPG Deficiency

    PubMed Central

    Vermeij, Wilbert P.; Tresini, Maria; Weymaere, Michael; Menoni, Hervé; Brandt, Renata M. C.; de Waard, Monique C.; Botter, Sander M.; Sarker, Altaf H.; Jaspers, Nicolaas G. J.; van der Horst, Gijsbertus T. J.; Cooper, Priscilla K.; Hoeijmakers, Jan H. J.; van der Pluijm, Ingrid

    2014-01-01

    As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg−/− mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg−/− mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging. PMID:25299392

  13. Analysis of nuclear transport signals in the human apurinic/apyrimidinic endonuclease (APE1/Ref1)

    PubMed Central

    Jackson, Elias B.; Theriot, Corey A.; Chattopadhyay, Ranajoy; Mitra, Sankar; Izumi, Tadahide

    2005-01-01

    The mammalian abasic-endonuclease1/redox-factor1 (APE1/Ref1) is an essential protein whose subcellular distribution depends on the cellular physiological status. However, its nuclear localization signals have not been studied in detail. We examined nuclear translocation of APE1, by monitoring enhanced green fluorescent protein (EGFP) fused to APE1. APE1's nuclear localization was significantly decreased by deleting 20 amino acid residues from its N-terminus. Fusion of APE1's N-terminal 20 residues directed nuclear localization of EGFP. An APE1 mutant lacking the seven N-terminal residues (ND7 APE1) showed nearly normal nuclear localization, which was drastically reduced when the deletion was combined with the E12A/D13A double mutation. On the other hand, nearly normal nuclear localization of the full-length E12A/D13A mutant suggests that the first 7 residues and residues 8–13 can independently promote nuclear import. Both far-western analyses and immuno-pull-down assays indicate interaction of APE1 with karyopherin alpha 1 and 2, which requires the 20 N-terminal residues and implicates nuclear importins in APE1's nuclear translocation. Nuclear accumulation of the ND7 APE1(E12A/D13A) mutant after treatment with the nuclear export inhibitor leptomycin B suggests the presence of a previously unidentified nuclear export signal, and the subcellular distribution of APE1 may be regulated by both nuclear import and export. PMID:15942031

  14. Human melanoma patients recognize an HLA-A1-restricted CTL epitope from tyrosinase containing two cysteine residues: implications for tumor vaccine development.

    PubMed

    Kittlesen, D J; Thompson, L W; Gulden, P H; Skipper, J C; Colella, T A; Shabanowitz, J; Hunt, D F; Engelhard, V H; Slingluff, C L; Shabanowitz, J A

    1998-03-01

    To identify shared epitopes for melanoma-reactive CTL restricted by MHC molecules other than HLA-A*0201, six human melanoma patient CTL lines expressing HLA-A1 were screened for reactivity against the melanocyte differentiation proteins Pmel-17/gp100, MART-1/Melan-A, and tyrosinase, expressed via recombinant vaccinia virus vectors. CTL from five of the six patients recognized epitopes from tyrosinase, and recognition of HLA-A1+ target cells was strongly correlated with tyrosinase expression. Restriction by HLA-A1 was further demonstrated for two of those tyrosinase-reactive CTL lines. Screening of 119 synthetic tyrosinase peptides with the HLA-A1 binding motif demonstrated that nonamer, decamer, and dodecamer peptides containing the sequence KCDICTDEY (residues 243-251) all reconstituted the CTL epitope in vitro. Epitope reconstitution in vitro required high concentrations of these peptides, which was hypothesized to be a result of spontaneous modification of cysteine residues, interfering with MHC binding. Substitution of serine or alanine for the more N-terminal cysteine prevented modification at that residue and permitted target cell sensitization at peptide concentrations 2 to 3 orders of magnitude lower than that required for the wild-type peptide. Because spontaneous modification of sulfhydryl groups may also occur in vivo, tumor vaccines using this or other cysteine-containing peptides may be improved by amino acid substitutions at cysteine residues.

  15. Searching the web: a survey on the quality of advice on postnatal sequelae of intrauterine growth restriction and the implication of developmental origins of health and disease.

    PubMed

    Perzel, S; Huebner, H; Rascher, W; Menendez-Castro, C; Hartner, A; Fahlbusch, F B

    2017-10-01

    Intrauterine growth restriction (IUGR) and fetal growth restriction (FGR) are pregnancy complications associated with morbidity in later life. Despite a growing body of evidence from current research on developmental origins of health and disease (DOHaD), little information is currently provided to parents on long-term metabolic, cardiovascular and neurologic consequences. As parents strongly rely on internet-based health-related information, we examined the quality of information on IUGR/FGR sequelae and DOHaD in webpages used by laypersons. Simulating non-clinicians experience, we entered the terms 'IUGR consequences' and 'FGR consequences' into Google and Yahoo search engines. The quality of the top search-hits was analyzed with regard to the certification through the Health On the Net Foundation (HON), currentness of cited references, while reliability of information and DOHaD-related consequences were assessed via the DISCERN Plus score (DPS). Overall the citation status was not up-to-date and only a few websites were HON-certified. The results of our analysis showed a dichotomy between the growing body of evidence regarding IUGR/FGR-related sequelae and lack of current guidelines, leaving parents without clear directions. Furthermore, detailed information on the concept of DOHaD is not provided. These findings emphasize the responsibility of the individual physician for providing advice on IUGR/FGR-related sequelae, monitoring and follow-up.

  16. Amalgam to tooth-coloured materials--implications for clinical practice and dental education: governmental restrictions and amalgam-usage survey results.

    PubMed

    Burke, F J Trevor

    2004-07-01

    To review governmental guidelines on amalgam use worldwide and to assess trends in the usage of amalgam and composite materials in restoration of posterior teeth. A letter was sent to 24 government health agencies or representative organisations requesting details of regulations pertaining to amalgam use. A literature search was carried out in order to identify papers in which the incidence of amalgam and composite restorations was stated. Ten replies were received, indicating few restrictions on the use of amalgam. Results obtained from published work appear to indicate that amalgam use is declining, but at rates which are unclear in many countries because of the paucity of published data. Amalgam use has been found to be decreasing in the USA, Australia and Scandinavia, with lesser decreases being apparent in the UK. There are few restrictions to the use of amalgam worldwide. In countries where data are available, such as USA, Australia and Scandinavia, amalgam use has been found to be decreasing, with smaller decreases being apparent in the UK.

  17. SLX4 Assembles a Telomere Maintenance Toolkit by Bridging Multiple Endonucleases with Telomeres

    PubMed Central

    Wan, Bingbing; Yin, Jinhu; Horvath, Kent; Sarkar, Jaya; Chen, Yong; Wu, Jian; Wan, Ke; Lu, Jian; Gu, Peili; Yu, Eun Young; Lue, Neal F.; Chang, Sandy

    2014-01-01

    Summary SLX4 interacts with several endonucleases to resolve structural barriers in DNA metabolism. SLX4 also interacts with telomeric protein TRF2 in human cells. The molecular mechanism of these interactions at telomeres remains unknown. Here, we report the crystal structure of the TRF2-binding motif of SLX4 (SLX4TBM) in complex with the TRFH domain of TRF2 (TRF2TRFH) and map the interactions of SLX4 with endonucleases SLX1, XPF, and MUS81. TRF2 recognizes a unique HxLxP motif on SLX4 via the peptide-binding site in its TRFH domain. Telomeric localization of SLX4 and associated nucleases depend on the SLX4-endonuclease and SLX4-TRF2 interactions and the protein levels of SLX4 and TRF2. SLX4 assembles an endonuclease toolkit that negatively regulates telomere length via SLX1-catalyzed nucleolytic resolution of telomere DNA structures. We propose that the SLX4-TRF2 complex serves as a double-layer scaffold bridging multiple endonucleases with telomeres for recombination-based telomere maintenance. PMID:24012755

  18. Identification and characterization of influenza variants resistant to a viral endonuclease inhibitor

    DOE PAGES

    Song, Min-Suk; Kumar, Gyanendra; Shadrick, William R.; ...

    2016-03-14

    The influenza endonuclease is an essential subdomain of the viral RNA polymerase. It processes host pre-mRNAs to serve as primers for viral mRNA and is an attractive target for antiinfluenza drug discovery. Compound L-742,001 is a prototypical endonuclease inhibitor, and we found that repeated passaging of influenza virus in the presence of this drug did not lead to the development of resistant mutant strains. Reduced sensitivity to L-742,001 could only be induced by creating point mutations via a random mutagenesis strategy. Furthermore, these mutations mapped to the endonuclease active site where they can directly impact inhibitor binding. Engineered viruses containingmore » the mutations showed resistance to L-742,001 both in vitro and in vivo, with only a modest reduction in fitness. Introduction of the mutations into a second virus also increased its resistance to the inhibitor. When using the isolated wild-type and mutant endonuclease domains, we used kinetics, inhibitor binding and crystallography to characterize how the two most significant mutations elicit resistance to L-742,001. These studies lay the foundation for the development of a new class of influenza therapeutics with reduced potential for the development of clinical endonuclease inhibitor-resistant influenza strains.« less

  19. Identification and characterization of influenza variants resistant to a viral endonuclease inhibitor

    PubMed Central

    Song, Min-Suk; Kumar, Gyanendra; Shadrick, William R.; Zhou, Wei; Jeevan, Trushar; Li, Zhenmei; Slavish, P. Jake; Yoon, Sun-Woo; Webb, Thomas R.; Webby, Richard J.; White, Stephen W.

    2016-01-01

    The influenza endonuclease is an essential subdomain of the viral RNA polymerase. It processes host pre-mRNAs to serve as primers for viral mRNA and is an attractive target for antiinfluenza drug discovery. Compound L-742,001 is a prototypical endonuclease inhibitor, and we found that repeated passaging of influenza virus in the presence of this drug did not lead to the development of resistant mutant strains. Reduced sensitivity to L-742,001 could only be induced by creating point mutations via a random mutagenesis strategy. These mutations mapped to the endonuclease active site where they can directly impact inhibitor binding. Engineered viruses containing the mutations showed resistance to L-742,001 both in vitro and in vivo, with only a modest reduction in fitness. Introduction of the mutations into a second virus also increased its resistance to the inhibitor. Using the isolated wild-type and mutant endonuclease domains, we used kinetics, inhibitor binding and crystallography to characterize how the two most significant mutations elicit resistance to L-742,001. These studies lay the foundation for the development of a new class of influenza therapeutics with reduced potential for the development of clinical endonuclease inhibitor-resistant influenza strains. PMID:26976575

  20. Mutations affecting a putative MutLα endonuclease motif impact multiple mismatch repair functions

    PubMed Central

    Erdeniz, Naz; Nguyen, Megan; Deschênes, Suzanne M.; Liskay, R. Michael

    2008-01-01

    Mutations in DNA mismatch repair (MMR) lead to increased mutation rates and higher recombination between similar, but not identical sequences, as well as resistance to certain DNA methylating agents. Recently, a component of human MMR machinery, MutLα, has been shown to display a latent endonuclease activity. The endonuclease active site appears to include a conserved motif, DQHA(X)2E(X)4E, within the COOH-terminus of human PMS2. Substitution of the glutamic acid residue (E705) abolished the endonuclease activity and mismatch-dependent excision in vitro. Previously, we showed that the PMS2-E705K mutation and the corresponding mutation in Saccharomyces cerevisiae were both recessive loss of function alleles for mutation avoidance in vivo. Here, we show that mutations impacting this endonuclease motif also significantly affect MMR-dependent suppression of homeologous recombination in yeast and responses to Sn1-type methylating agents in both yeast and mammalian cells. Thus, our in vivo results suggest that the endonuclease activity of MutLα is important not only in MMR-dependent mutation avoidance but also for recombination and damage response functions. PMID:17567544

  1. Heteroduplex resolution using T7 endonuclease I in microbial community analyses.

    PubMed

    Lowell, J L; Klein, D A

    2000-04-01

    Microbial community analyses using molecular techniques, such as PCR followed by genomic library construction, have been helpful in better understanding microbial communities. This is especially critical in ecological systems where most of the microbes present cannot be cultured using traditional techniques. Unfortunately, there are problems associated with the use of such molecular techniques for the analysis of microbial community structure, primarily from the frequent formation of PCR artifacts. Multitemplate PCR is often subject to errors such as heteroduplex formation that is generated during the amplification of a particular gene from a mixed community of DNA. Based on work in this laboratory, heteroduplexes may be resolved before carrying out genomic library construction by including a digestion step with T7 endonuclease I. Here, the 18S rDNA gene of fungi was amplified from soil community DNA and digested with T7 endonuclease I to resolve any heteroduplexes present in the PCR product before cloning. These samples were compared with replicates that did not receive the T7 endonuclease I treatment. Digestion of the amplified community 18S rDNA with 10 U T7 endonuclease I/microgram DNA prior to cloning eliminated heteroduplexes, leaving only the desired clones. Without the T7 endonuclease I treatment, heteroduplexes were produced in approximately 10% of the recombinants screened. The addition of this step may eliminate heteroduplexes from PCR products and ensure that subsequent genomic library construction is not compromised.

  2. Identification and characterization of influenza variants resistant to a viral endonuclease inhibitor.

    PubMed

    Song, Min-Suk; Kumar, Gyanendra; Shadrick, William R; Zhou, Wei; Jeevan, Trushar; Li, Zhenmei; Slavish, P Jake; Fabrizio, Thomas P; Yoon, Sun-Woo; Webb, Thomas R; Webby, Richard J; White, Stephen W

    2016-03-29

    The influenza endonuclease is an essential subdomain of the viral RNA polymerase. It processes host pre-mRNAs to serve as primers for viral mRNA and is an attractive target for antiinfluenza drug discovery. Compound L-742,001 is a prototypical endonuclease inhibitor, and we found that repeated passaging of influenza virus in the presence of this drug did not lead to the development of resistant mutant strains. Reduced sensitivity to L-742,001 could only be induced by creating point mutations via a random mutagenesis strategy. These mutations mapped to the endonuclease active site where they can directly impact inhibitor binding. Engineered viruses containing the mutations showed resistance to L-742,001 both in vitro and in vivo, with only a modest reduction in fitness. Introduction of the mutations into a second virus also increased its resistance to the inhibitor. Using the isolated wild-type and mutant endonuclease domains, we used kinetics, inhibitor binding and crystallography to characterize how the two most significant mutations elicit resistance to L-742,001. These studies lay the foundation for the development of a new class of influenza therapeutics with reduced potential for the development of clinical endonuclease inhibitor-resistant influenza strains.

  3. Processive nicking activity of T4 endonuclease V on UV-irradiated chromatin

    SciTech Connect

    Gruskin, E.A.; Lloyd, R.S.

    1986-05-01

    T4 endonuclease V initiates the excision repair of pyrimidine dimers in UV-irradiated T4 infected E. coli cells. The pyrimidine dimer specific nicking activity of T4 endonuclease V functions by a processive scanning on UV-irradiated DNA. Previously it has been demonstrated that introduction of endonuclease V into repair-deficient human cells causes a restoration of UV survival in these cells. This demonstrates that endonuclease V is competent to incise mammalian DNA at the site of pyrimidine dimers. In order to assess the ability of endonuclease V to act processively on DNA associated as chromatin, minichromosomes were prepared for use as a substrate. Form I DNA was reconstituted with H3, H4 +/- H1 histones by sequential dialysis steps from 2.0 M NaCl to 50 mM NaCl. Time course reactions were performed with minichromosomes containing 10 and 25 dimers per molecule. In each case the rate of disappearance of form I DNA which was associated as chromatin was decreased relative to that of naked form I DNA. Concurrent with that observation, the rate and extent of appearance of form III DNA was increased with the DNA in minichromosomes relative to naked DNA. This is diagnostic of an enhancement of processivity. The inclusion of H1 in the minichromosomes resulted in a slight additional increase in processivity relative to minichromosomes consisting only of H3 and H4.

  4. Identification and characterization of influenza variants resistant to a viral endonuclease inhibitor

    SciTech Connect

    Song, Min-Suk; Kumar, Gyanendra; Shadrick, William R.; Zhou, Wei; Jeevan, Trushar; Li, Zhenmei; Slavish, P. Jake; Fabrizio, Thomas P.; Yoon, Sun-Woo; Webb, Thomas R.; Webby, Richard J.; White, Stephen W.

    2016-03-14

    The influenza endonuclease is an essential subdomain of the viral RNA polymerase. It processes host pre-mRNAs to serve as primers for viral mRNA and is an attractive target for antiinfluenza drug discovery. Compound L-742,001 is a prototypical endonuclease inhibitor, and we found that repeated passaging of influenza virus in the presence of this drug did not lead to the development of resistant mutant strains. Reduced sensitivity to L-742,001 could only be induced by creating point mutations via a random mutagenesis strategy. These mutations mapped to the endonuclease active site where they can directly impact inhibitor binding. Engineered viruses containing the mutations showed resistance to L-742,001 both in vitro and in vivo, with only a modest reduction in fitness. Introduction of the mutations into a second virus also increased its resistance to the inhibitor. Using the isolated wild-type and mutant endonuclease domains, we used kinetics, inhibitor binding and crystallography to characterize how the two most significant mutations elicit resistance to L-742,001. These studies lay the foundation for the development of a new class of influenza therapeutics with reduced potential for the development of clinical endonuclease inhibitor-resistant influenza strains.

  5. Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay

    PubMed Central

    Farkash, Evan A.; Kao, Gary D.; Horman, Shane R.; Prak, Eline T. Luning

    2006-01-01

    Long Interspersed Elements (LINE-1s, L1s) are the most active mobile elements in the human genome and account for a significant fraction of its mass. The propagation of L1 in the human genome requires disruption and repair of DNA at the site of integration. As Barbara McClintock first hypothesized, genotoxic stress may contribute to the mobilization of transposable elements, and conversely, element mobility may contribute to genotoxic stress. We tested the ability of genotoxic agents to increase L1 retrotransposition in a cultured cell assay. We observed that cells exposed to gamma radiation exhibited increased levels of L1 retrotransposition. The L1 retrotransposition frequency was proportional to the number of phosphorylated H2AX foci, an indicator of genotoxic stress. To explore the role of the L1 endonuclease in this context, endonuclease-deficient tagged L1 constructs were produced and tested for their activity in irradiated cells. The activity of the endonuclease-deficient L1 was very low in irradiated cells, suggesting that most L1 insertions in irradiated cells still use the L1 endonuclease. Consistent with this interpretation, DNA sequences that flank L1 insertions in irradiated cells harbored target site duplications. These results suggest that increased L1 retrotransposition in irradiated cells is endonuclease dependent. The mobilization of L1 in irradiated cells potentially contributes to genomic instability and could be a driving force for secondary mutations in patients undergoing radiation therapy. PMID:16507671

  6. Crystal structure and assembly of the functional Nanoarchaeum equitans tRNA splicing endonuclease

    SciTech Connect

    Mitchell, Michelle; Xue, Song; Erdman, Rachel; Randau, Lennart; Söll, Dieter; Li, Hong

    2009-10-27

    The RNA splicing and processing endonuclease from Nanoarchaeum equitans (NEQ) belongs to the recently identified ({alpha}{beta}){sub 2} family of splicing endonucleases that require two different subunits for splicing activity. N. equitans splicing endonuclease comprises the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Here, we report the crystal structure of the functional NEQ enzyme at 2.1 {angstrom} containing both subunits, as well as that of the NEQ261 subunit alone at 2.2 {angstrom}. The functional enzyme resembles previously known {alpha}{sub 2} and {alpha}{sub 4} endonucleases but forms a heterotetramer: a dimer of two heterodimers of the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Surprisingly, NEQ261 alone forms a homodimer, similar to the previously known homodimer of the catalytic subunit. The homodimers of isolated subunits are inhibitory to heterodimerization as illustrated by a covalently linked catalytic homodimer that had no RNA cleavage activity upon mixing with the structural subunit. Detailed structural comparison reveals a more favorable hetero- than homodimerization interface, thereby suggesting a possible regulation mechanism of enzyme assembly through available subunits. Finally, the uniquely flexible active site of the NEQ endonuclease provides a possible explanation for its broader substrate specificity.

  7. Evidence that the DNA endonuclease ARTEMIS also has intrinsic 5'-exonuclease activity.

    PubMed

    Li, Sicong; Chang, Howard H; Niewolik, Doris; Hedrick, Michael P; Pinkerton, Anthony B; Hassig, Christian A; Schwarz, Klaus; Lieber, Michael R

    2014-03-14

    ARTEMIS is a member of the metallo-β-lactamase protein family. ARTEMIS has endonuclease activity at DNA hairpins and at 5'- and 3'-DNA overhangs of duplex DNA, and this endonucleolytic activity is dependent upon DNA-PKcs. There has been uncertainty about whether ARTEMIS also has 5'-exonuclease activity on single-stranded DNA and 5'-overhangs, because this 5'-exonuclease is not dependent upon DNA-PKcs. Here, we show that the 5'-exonuclease and the endonuclease activities co-purify. Second, we show that a point mutant of ARTEMIS at a putative active site residue (H115A) markedly reduces both the endonuclease activity and the 5'-exonuclease activity. Third, divalent cation effects on the 5'-exonuclease and the endonuclease parallel one another. Fourth, both the endonuclease activity and 5'-exonuclease activity of ARTEMIS can be blocked in parallel by small molecule inhibitors, which do not block unrelated nucleases. We conclude that the 5'-exonuclease is intrinsic to ARTEMIS, making it relevant to the role of ARTEMIS in nonhomologous DNA end joining.

  8. DNA-PKcs Regulates a Single-stranded DNA Endonuclease Activity of Artemis

    PubMed Central

    Gu, Jiafeng; Li, Sicong; Zhang, Xiaoshan; Wang, Ling-Chi; Niewolik, Doris; Schwarz, Klaus; Legerski, Randy J.; Zandi, Ebrahim; Lieber, Michael R.

    2010-01-01

    Human nuclease Artemis belongs to the metallo-beta-lactamase protein family. It acquires double-stranded DNA endonuclease activity in the presence of DNA-PKcs. This double-stranded DNA endonuclease activity is critical for opening DNA hairpins in V(D)J recombination and is thought to be important for processing overhangs during the nonhomologous DNA end joining (NHEJ) process. Here we show that purified human Artemis exhibits single-stranded DNA endonuclease activity. This activity is proportional to the amount of highly purified Artemis from a gel filtration column. The activity is stimulated by DNA-PKcs and modulated by purified antibodies raised against Artemis. Moreover, the divalent cation-dependence and sequence-dependence of this single-stranded endonuclease activity is the same as the double-stranded DNA endonuclease activity of Artemis:DNA-PKcs. These findings further expand the range of DNA substrates upon which Artemis and Artemis:DNA-PKcs can act. The findings are discussed in the context of NHEJ. PMID:20117966

  9. Evidence That the DNA Endonuclease ARTEMIS also Has Intrinsic 5′-Exonuclease Activity*

    PubMed Central

    Li, Sicong; Chang, Howard H.; Niewolik, Doris; Hedrick, Michael P.; Pinkerton, Anthony B.; Hassig, Christian A.; Schwarz, Klaus; Lieber, Michael R.

    2014-01-01

    ARTEMIS is a member of the metallo-β-lactamase protein family. ARTEMIS has endonuclease activity at DNA hairpins and at 5′- and 3′-DNA overhangs of duplex DNA, and this endonucleolytic activity is dependent upon DNA-PKcs. There has been uncertainty about whether ARTEMIS also has 5′-exonuclease activity on single-stranded DNA and 5′-overhangs, because this 5′-exonuclease is not dependent upon DNA-PKcs. Here, we show that the 5′-exonuclease and the endonuclease activities co-purify. Second, we show that a point mutant of ARTEMIS at a putative active site residue (H115A) markedly reduces both the endonuclease activity and the 5′-exonuclease activity. Third, divalent cation effects on the 5′-exonuclease and the endonuclease parallel one another. Fourth, both the endonuclease activity and 5′-exonuclease activity of ARTEMIS can be blocked in parallel by small molecule inhibitors, which do not block unrelated nucleases. We conclude that the 5′-exonuclease is intrinsic to ARTEMIS, making it relevant to the role of ARTEMIS in nonhomologous DNA end joining. PMID:24500713

  10. DNA-PKcs regulates a single-stranded DNA endonuclease activity of Artemis.

    PubMed

    Gu, Jiafeng; Li, Sicong; Zhang, Xiaoshan; Wang, Ling-Chi; Niewolik, Doris; Schwarz, Klaus; Legerski, Randy J; Zandi, Ebrahim; Lieber, Michael R

    2010-04-04

    Human nuclease Artemis belongs to the metallo-beta-lactamase protein family. It acquires double-stranded DNA endonuclease activity in the presence of DNA-PKcs. This double-stranded DNA endonuclease activity is critical for opening DNA hairpins in V(D)J recombination and is thought to be important for processing overhangs during the nonhomologous DNA end joining (NHEJ) process. Here we show that purified human Artemis exhibits single-stranded DNA endonuclease activity. This activity is proportional to the amount of highly purified Artemis from a gel filtration column. The activity is stimulated by DNA-PKcs and modulated by purified antibodies raised against Artemis. Moreover, the divalent cation-dependence and sequence-dependence of this single-stranded endonuclease activity is the same as the double-stranded DNA endonuclease activity of Artemis:DNA-PKcs. These findings further expand the range of DNA substrates upon which Artemis and Artemis:DNA-PKcs can act. The findings are discussed in the context of NHEJ. 2010 Elsevier B.V. All rights reserved.

  11. Site-specific DNA transesterification catalyzed by a restriction enzyme

    PubMed Central

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2007-01-01

    Most restriction endonucleases use Mg2+ to hydrolyze phosphodiester bonds at specific DNA sites. We show here that BfiI, a metal-independent restriction enzyme from the phospholipase D superfamily, catalyzes both DNA hydrolysis and transesterification reactions at its recognition site. In the presence of alcohols such as ethanol or glycerol, it attaches the alcohol covalently to the 5′ terminus of the cleaved DNA. Under certain conditions, the terminal 3′-OH of one DNA strand can attack the target phosphodiester bond in the other strand to create a DNA hairpin. Transesterification reactions on DNA with phosphorothioate linkages at the target bond proceed with retention of stereoconfiguration at the phosphorus, indicating, uniquely for a restriction enzyme, a two-step mechanism. We propose that BfiI first makes a covalent enzyme–DNA intermediate, and then it resolves it by a nucleophilic attack of water or an alcohol, to yield hydrolysis or transesterification products, respectively. PMID:17267608

  12. Site-specific DNA transesterification catalyzed by a restriction enzyme.

    PubMed

    Sasnauskas, Giedrius; Connolly, Bernard A; Halford, Stephen E; Siksnys, Virginijus

    2007-02-13

    Most restriction endonucleases use Mg2+ to hydrolyze phosphodiester bonds at specific DNA sites. We show here that BfiI, a metal-independent restriction enzyme from the phospholipase D superfamily, catalyzes both DNA hydrolysis and transesterification reactions at its recognition site. In the presence of alcohols such as ethanol or glycerol, it attaches the alcohol covalently to the 5' terminus of the cleaved DNA. Under certain conditions, the terminal 3'-OH of one DNA strand can attack the target phosphodiester bond in the other strand to create a DNA hairpin. Transesterification reactions on DNA with phosphorothioate linkages at the target bond proceed with retention of stereoconfiguration at the phosphorus, indicating, uniquely for a restriction enzyme, a two-step mechanism. We propose that BfiI first makes a covalent enzyme-DNA intermediate, and then it resolves it by a nucleophilic attack of water or an alcohol, to yield hydrolysis or transesterification products, respectively.

  13. Methionine restriction and lifespan control

    PubMed Central

    Lee, Byung Cheon; Kaya, Alaattin; Gladyshev, Vadim N.

    2016-01-01

    Dietary restriction (DR) without malnutrition is associated with longevity in various organisms. However, it has also been shown that reduced calorie intake is often ineffective in extending lifespan. Selecting optimal dietary regimens for DR studies is complicated, as the same regimen may lead to different outcomes depending on genotype and environmental factors. Recent studies suggested that interventions such as moderate protein restriction with/without adequate nutrition (e.g. particular amino acids or carbohydrates) may have additional beneficial effects mediated by certain metabolic and hormonal factors implicated in the biology of aging, regardless of total calorie intake. In particular, it was shown that restriction of a single amino acid, methionine, can mimic the effects of DR and extend lifespan in various model organisms. We discuss beneficial effects of methionine-restricted (MR) diet, the molecular pathways involved, and the use of this regimen in longevity interventions. PMID:26663138

  14. Restriction enzyme body doubles and PCR cloning: on the general use of type IIs restriction enzymes for cloning.

    PubMed

    Tóth, Eszter; Huszár, Krisztina; Bencsura, Petra; Kulcsár, Péter István; Vodicska, Barbara; Nyeste, Antal; Welker, Zsombor; Tóth, Szilvia; Welker, Ervin

    2014-01-01

    The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease--a Body Double of the Type IIP enzyme--is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program (http://group.szbk.u-szeged.hu/welkergr/body_double/index.html) for the selection of suitable Body Double enzymes and the design of the appropriate primers.

  15. Uric Acid Crystals Induce Placental Inflammation and Alter Trophoblast Function via an IL-1-Dependent Pathway: Implications for Fetal Growth Restriction.

    PubMed

    Brien, Marie-Eve; Duval, Cyntia; Palacios, Julia; Boufaied, Ines; Hudon-Thibeault, Andrée-Anne; Nadeau-Vallée, Mathieu; Vaillancourt, Cathy; Sibley, Colin P; Abrahams, Vikki M; Jones, Rebecca L; Girard, Sylvie

    2017-01-01

    Excessive placental inflammation is associated with several pathological conditions, including stillbirth and fetal growth restriction. Although infection is a known cause of inflammation, a significant proportion of pregnancies have evidence of inflammation without any detectable infection. Inflammation can also be triggered by endogenous mediators, called damage associated molecular patterns or alarmins. One of these damage-associated molecular patterns, uric acid, is increased in the maternal circulation in pathological pregnancies and is a known agonist of the Nlrp3 inflammasome and inducer of inflammation. However, its effects within the placenta and on pregnancy outcomes remain largely unknown. We found that uric acid (monosodium urate [MSU]) crystals induce a proinflammatory profile in isolated human term cytotrophoblast cells, with a predominant secretion of IL-1β and IL-6, a result confirmed in human term placental explants. The proinflammatory effects of MSU crystals were shown to be IL-1-dependent using a caspase-1 inhibitor (inhibits IL-1 maturation) and IL-1Ra (inhibits IL-1 signaling). The proinflammatory effect of MSU crystals was accompanied by trophoblast apoptosis and decreased syncytialization. Correspondingly, administration of MSU crystals to rats during late gestation induced placental inflammation and was associated with fetal growth restriction. These results make a strong case for an active proinflammatory role of MSU crystals at the maternal-fetal interface in pathological pregnancies, and highlight a key mediating role of IL-1. Furthermore, our study describes a novel in vivo animal model of noninfectious inflammation during pregnancy, which is triggered by MSU crystals and leads to reduced fetal growth.

  16. Leucine-enriched protein feeding does not impair exercise-induced free fatty acid availability and lipid oxidation: beneficial implications for training in carbohydrate-restricted states.

    PubMed

    Impey, Samuel G; Smith, Dominic; Robinson, Amy L; Owens, Daniel J; Bartlett, Jonathan D; Smith, Kenneth; Limb, Marie; Tang, Jonathan; Fraser, William D; Close, Graeme L; Morton, James P

    2015-02-01

    Given that the enhanced oxidative adaptations observed when training in carbohydrate (CHO)-restricted states is potentially regulated through free fatty acid (FFA)-mediated signalling and that leucine-rich protein elevates muscle protein synthesis, the present study aimed to test the hypothesis that leucine-enriched protein feeding enhances circulating leucine concentration but does not impair FFA availability or whole body lipid oxidation during exercise. Nine males cycled for 2 h at 70% VO2peak when fasted (PLACEBO) or having consumed a whey protein solution (WHEY) or a leucine-enriched whey protein gel (GEL), administered as 22 g 1 h pre-exercise, 11 g/h during and 22 g 30 min post-exercise. Total leucine administration was 14.4 g and 6.3 in GEL and WHEY, respectively. Mean plasma leucine concentrations were elevated in GEL (P = 0.001) compared with WHEY and PLACEBO (375 ± 100, 272 ± 51, 146 ± 14 µmol L(-1), respectively). No differences (P = 0.153) in plasma FFA (WHEY 0.53 ± 0.30, GEL 0.45 ± 0.25, PLACEBO 0.65 ± 0.30, mmol L(-1)) or whole body lipid oxidation during exercise (WHEY 0.37 ± 0.26, GEL 0.36 ± 0.24, PLACEBO 0.34 ± 0.24 g/min) were apparent between trials, despite elevated (P = 0.001) insulin in WHEY and GEL compared with PLACEBO (38 ± 16, 35 ± 16, 22 ± 11 pmol L(-1), respectively). We conclude that leucine-enriched protein feeding does not impair FFA availability or whole body lipid oxidation during exercise, thus having practical applications for athletes who deliberately train in CHO-restricted states to promote skeletal muscle adaptations.

  17. Insights into HLA restricted T cell responses in a novel mouse model of dengue virus infection point towards new implications for vaccine design1

    PubMed Central

    Weiskopf, Daniela; Yauch, Lauren E.; Angelo, Michael A.; John, Daisy V.; Greenbaum, Jason A.; Sidney, John; Kolla, Ravi V.; De Silva, Aruna D.; de Silva, Aravinda M.; Grey, Howard; Peters, Bjoern; Shresta, Sujan; Sette, Alessandro

    2011-01-01

    The frequency of dengue virus (DENV) infection has increased dramatically in the last few decades, and the lack of a vaccine has led to significant morbidity and mortality worldwide. To date, a convenient murine system to study human T cell responses to DENV has not been available. Mice transgenic for human leukocyte antigens (HLA) are widely used to model human immune responses and it has been shown that mouse-passaged DENV is able to replicate to significant levels in IFN-α/βR−/− mice. To cover a wide range of HLA phenotypes, we backcrossed IFN-α/βR−/− mice with HLA A*0201, A*0101, A*1101, B*0702 and DRB1*0101 transgenic mice. A DENV proteome-wide screen identified a total of 42 epitopes across all HLA-transgenic IFN-α/βR−/− strains tested. In contrast only 8 of these elicited responses in the corresponding IFN-α/βR+/+ mice. We were able to identify T cell epitopes from 9 out of the 10 DENV proteins. However, the majority of responses were derived from the highly conserved nonstructural proteins NS3 and NS5. The relevance of this model is further demonstrated by the fact that most of the epitopes identified in our murine system are also recognized by PBMC from DENV exposed human donors, and a dominance of HLA B*0702 restricted responses has been detected in both systems. Our results provide new insights into HLA-restricted T cell responses against DENV, and we herein describe a novel murine model, which allows the investigation of T cell-mediated immune mechanisms relevant to vaccine design. PMID:21918184

  18. Application of natural and amplification created restriction sites for the diagnosis of PKU mutations.

    PubMed Central

    Eiken, H G; Odland, E; Boman, H; Skjelkvåle, L; Engebretsen, L F; Apold, J

    1991-01-01

    PCR amplification, either conventional, or as site directed mutagenesis using primers with mismatched 3'-ends, followed by restriction endonuclease digestion, provides rapid, non-isotope assays of known mutations in the human phenylalanine hydroxylase gene. Such assays were shown to have the potential to detect all of the 18 presently reported phenylketonuria mutations. The practical applicability of this approach was demonstrated for eight mutations in Norwegian phenylketonuria patients, among them the most common ones. Images PMID:1851292

  19. The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage

    PubMed Central

    Fu, Haiqing; Martin, Melvenia M.; Regairaz, Marie; Huang, Liang; You, Yang; Lin, Chi-Mei; Ryan, Michael; Kim, RyangGuk; Shimura, Tsutomu; Pommier, Yves; Aladjem, Mirit I.

    2015-01-01

    The Mus81 endonuclease resolves recombination intermediates and mediates cellular responses to exogenous replicative stress. Here, we show that Mus81 also regulates the rate of DNA replication during normal growth by promoting replication fork progression while reducing the frequency of replication initiation events. In the absence of Mus81 endonuclease activity, DNA synthesis is slowed and replication initiation events are more frequent. In addition, Mus81 deficient cells fail to recover from exposure to low doses of replication inhibitors and cell viability is dependent on the XPF endonuclease. Despite an increase in replication initiation frequency, cells lacking Mus81 use the same pool of replication origins as Mus81-expressing cells. Therefore, decelerated DNA replication in Mus81 deficient cells does not initiate from cryptic or latent origins not used during normal growth. These results indicate that Mus81 plays a key role in determining the rate of DNA replication without activating a novel group of replication origins. PMID:25879486

  20. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification

    PubMed Central

    Stoddard, Barry L.

    2011-01-01

    Homing endonucleases are microbial DNA-cleaving enzymes that mobilize their own reading frames by generating double strand breaks at specific genomic invasion sites. These proteins display an economy of size, and yet recognize long DNA sequences (typically 20 to 30 basepairs). They exhibit a wide range of fidelity at individual nucleotide positions, in a manner that is strongly influenced by host constraints on the coding sequence of the targeted gene. The activity of these proteins leads to site-specific recombination events that can result in the insertion, deletion, mutation or correction of DNA sequences. Over the past 15 years the crystal structures of representatives from several homing endonuclease families have been solved, and methods have been described to create variants of these enzymes that cleave novel DNA targets. Engineered homing endonucleases proteins are now being used to generate targeted genomic modifications for a variety of biotech and medical applications. PMID:21220111

  1. N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes

    NASA Astrophysics Data System (ADS)

    Carcelli, Mauro; Rogolino, Dominga; Gatti, Anna; de Luca, Laura; Sechi, Mario; Kumar, Gyanendra; White, Stephen W.; Stevaert, Annelies; Naesens, Lieve

    2016-08-01

    Influenza virus PA endonuclease has recently emerged as an attractive target for the development of novel antiviral therapeutics. This is an enzyme with divalent metal ion(s) (Mg2+ or Mn2+) in its catalytic site: chelation of these metal cofactors is an attractive strategy to inhibit enzymatic activity. Here we report the activity of a series of N-acylhydrazones in an enzymatic assay with PA-Nter endonuclease, as well as in cell-based influenza vRNP reconstitution and virus yield assays. Several N-acylhydrazones were found to have promising anti-influenza activity in the low micromolar concentration range and good selectivity. Computational docking studies are carried on to investigate the key features that determine inhibition of the endonuclease enzyme by N-acylhydrazones. Moreover, we here describe the crystal structure of PA-Nter in complex with one of the most active inhibitors, revealing its interactions within the protein’s active site.

  2. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?

    PubMed

    Gasiunas, Giedrius; Siksnys, Virginijus

    2013-11-01

    Tailor-made nucleases for precise genome modification, such as zinc finger or TALE nucleases, currently represent the state-of-the-art for genome editing. These nucleases combine a programmable protein module which guides the enzyme to the target site with a nuclease domain which cuts DNA at the addressed site. Reprogramming of these nucleases to cut genomes at specific locations requires major protein engineering efforts. RNA-guided DNA endonuclease Cas9 of the type II (clustered regularly interspaced short palindromic repeat) CRISPR-Cas system uses CRISPR RNA (crRNA) as a guide to locate the DNA target and the Cas9 protein to cut DNA. Easy programmability of the Cas9 endonuclease using customizable RNAs brings unprecedented flexibility and versatility for targeted genome modification. We highlight the potential of the Cas9 RNA-guided DNA endonuclease as a novel tool for genome surgery, and discuss possible constraints and future prospects.

  3. N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes

    PubMed Central

    Carcelli, Mauro; Rogolino, Dominga; Gatti, Anna; De Luca, Laura; Sechi, Mario; Kumar, Gyanendra; White, Stephen W.; Stevaert, Annelies; Naesens, Lieve

    2016-01-01

    Influenza virus PA endonuclease has recently emerged as an attractive target for the development of novel antiviral therapeutics. This is an enzyme with divalent metal ion(s) (Mg2+ or Mn2+) in its catalytic site: chelation of these metal cofactors is an attractive strategy to inhibit enzymatic activity. Here we report the activity of a series of N-acylhydrazones in an enzymatic assay with PA-Nter endonuclease, as well as in cell-based influenza vRNP reconstitution and virus yield assays. Several N-acylhydrazones were found to have promising anti-influenza activity in the low micromolar concentration range and good selectivity. Computational docking studies are carried on to investigate the key features that determine inhibition of the endonuclease enzyme by N-acylhydrazones. Moreover, we here describe the crystal structure of PA-Nter in complex with one of the most active inhibitors, revealing its interactions within the protein’s active site. PMID:27510745

  4. Inhibitors of Influenza Virus Polymerase Acidic (PA) Endonuclease: Contemporary Developments and Perspectives.

    PubMed

    Ju, Han; Zhang, Jian; Huang, Boshi; Kang, Dongwei; Huang, Bing; Liu, Xinyong; Zhan, Peng

    2017-02-07

    Influenza virus (IFV) causes periodic global influenza pandemics, resulting in substantial socioeconomic loss and burden on medical facilities. Yearly variation in the effectiveness of vaccines, slow responsiveness to vaccination in cases of pandemic IFV, and emerging resistance to available drugs highlight the need to develop additional small-molecular inhibitors that act on IFV proteins. One promising target is polymerase acidic (PA) endonuclease, which is a bridged dinuclear metalloenzyme that plays a crucial role in initiating IFV replication. During the past decade, intensive efforts have been made to develop small-molecular inhibitors of this endonuclease as candidate agents for treatment of IFV infection. Here, we review the current status of development of PA endonuclease inhibitors and we discuss the applicability of newer medicinal-chemistry strategies for the discovery more potent, selective, and safer inhibitors.

  5. Antibody to a human DNA repair protein allows for cloning of a Drosophila cDNA that encodes an apurinic endonuclease

    SciTech Connect

    Kelley, M.R. ); Venugopal, S.; Harless, J.; Deutsch, W.A. . Dept. of Biochemistry)

    1989-03-01

    The cDNA of a Drosophila DNA repair gene, AP3, was cloned by screening an embryonic lambda gt11 expression library with an antibody that was originally prepared against a purified human apurinicapyrimidine (AP) endonuclease. The 1.2-kilobase (kb) AP3 cDNA mapped to a region on the third chromosome where a number of mutagen-sensitive alleles were located. The cDNA clone yielded an in vitro translation product of 35,000 daltons, in agreement with the predicted size of the translation product of the only open reading frame of AP3, and identical to the molecular size of an AP endonuclease activity recovered following sodium dodecyl sulfate-polyacrymalide gel electrophoresis of Drosophilia extracts. The C-terminal portion of the predicted protein contained regions of presumptive DNA-binding domains, while the DNA sequence at the amino end of AP3 showed similarity to the Escherichia coli recA gene. AP3 is expressed as an abundant 1.3-kb mRNA that is detected throughout the life cycle of Drosophila melanogaster. Another 3.5-klb mRNA also hybridized to the AP3 cDNA, but species was restricted to the early stages of development.

  6. Mm19, a Mycoplasma meleagridis Major Surface Nuclease that Is Related to the RE_AlwI Superfamily of Endonucleases

    PubMed Central

    Yacoub, Elhem; Ben Abdelmoumen Mardassi, Boutheina

    2016-01-01

    Mycoplasma meleagridis infection is widespread in turkeys, causing poor growth and feathering, airsacculitis, osteodystrophy, and reduction in hatchability. Like most mycoplasma species, M. meleagridis is characterized by its inability to synthesize purine and pyrimidine nucleotides de novo. Consistent with this intrinsic deficiency, we here report the cloning, expression, and characterization of a M. meleagridis gene sequence encoding a major surface nuclease, referred to as Mm19. Mm19 consists of a 1941- bp ORF encoding a 646-amino-acid polypeptide with a predicted molecular mass of 74,825 kDa. BLASTP analysis revealed a significant match with the catalytic/dimerization domain of type II restriction enzymes of the RE_AlwI superfamily. This finding is consistent with the genomic location of Mm19 sequence, which dispalys characteristics of a typical type II restriction-modification locus. Like intact M. meleagridis cells, the E. coli-expressed Mm19 fusion product was found to exhibit a nuclease activity against plasmid DNA, double-stranded DNA, single-stranded DNA, and RNA. The Mm19-associated nuclease activity was consistently enhanced with Mg2+ divalent cations, a hallmark of type II restriction enzymes. A rabbit hyperimmune antiserum raised against the bacterially expressed Mm19 strongly reacted with M. meleagridis intact cells and fully neutralized the surface-bound nuclease activity. Collectively, the results show that M. meleagridis expresses a strong surface-bound nuclease activity, which is the product of a single gene sequence that is related to the RE_AlwI superfamily of endonucleases. PMID:27010566

  7. Gelatinases, endonuclease and Vascular Endothelial Growth Factor during development and regression of swine luteal tissue

    PubMed Central

    Ribeiro, Luciana Andrea; Turba, Maria Elena; Zannoni, Augusta; Bacci, Maria Laura; Forni, Monica

    2006-01-01

    Background The development and regression of corpus luteum (CL) is characterized by an intense angiogenesis and angioregression accompanied by luteal tissue and extracellular matrix (ECM) remodelling. Vascular Endothelial Growth Factor (VEGF) is the main regulator of angiogenesis, promoting endothelial cell mitosis and differentiation. After the formation of neovascular tubes, the remodelling of ECM is essential for the correct development of CL, particularly by the action of specific class of proteolytic enzymes known as matrix metalloproteinases (MMPs). During luteal regression, characterized by an apoptotic process and successively by an intense ECM and luteal degradation, the activation of Ca++/Mg++-dependent endonucleases and MMPs activity are required. The levels of expression and activity of VEGF, MMP-2 and -9, and Ca++/Mg++-dependent endonucleases throughout the oestrous cycle and at pregnancy were analyzed. Results Different patterns of VEGF, MMPs and Ca++/Mg++-dependent endonuclease were observed in swine CL during different luteal phases and at pregnancy. Immediately after ovulation, the highest levels of VEGF mRNA/protein and MMP-9 activity were detected. On days 5–14 after ovulation, VEGF expression and MMP-2 and -9 activities are at basal levels, while Ca++/Mg++-dependent endonuclease levels increased significantly in relation to day 1. Only at luteolysis (day 17), Ca++/Mg++-dependent endonuclease and MMP-2 spontaneous activity increased significantly. At pregnancy, high levels of MMP-9 and VEGF were observed. Conclusion Our findings, obtained from a precisely controlled in vivo model of CL development and regression, allow us to determine relationships among VEGF, MMPs and endonucleases during angiogenesis and angioregression. Thus, CL provides a very interesting model for studying factors involved in vascular remodelling. PMID:17137503

  8. Intermolecular and intramolecular quencher based quantum dot nanoprobes for multiplexed detection of endonuclease activity and inhibition.

    PubMed

    Huang, Yong; Zhao, Shulin; Shi, Ming; Chen, Jia; Chen, Zhen-Feng; Liang, Hong

    2011-12-01

    DNA cleavage by endonucleases plays an important role in many biological events such as DNA replication, recombination, and repair and is used as a powerful tool in medicinal chemistry. However, conventional methods for assaying endonuclease activity and inhibition by gel electrophoresis and chromatography techniques are time-consuming, laborious, not sensitive, or costly. Herein, we combine the high specificity of DNA cleavage reactions with the benefits of quantum dots (QDs) and ultrahigh quenching abilities of inter- and intramolecular quenchers to develop highly sensitive and specific nanoprobes for multiplexed detection of endonucleases. The nanoprobe was prepared by conjugating two sets of DNA substrates carrying quenchers onto the surface of aminated QDs through direct assembly and DNA hybridization. With this new design, the background fluorescence was significantly suppressed by introducing inter- and intramolecular quenchers. When these nanoprobes are exposed to the targeted endonucleases, specific DNA cleavages occur and pieces of DNA fragments are released from the QD surface along with the quenchers, resulting in fluorescence recovery. The endonuclease activity was quantified by monitoring the change in the fluorescence intensity. The detection was accomplished with a single excitation light. Multiplexed detection was demonstrated by simultaneously assaying EcoRI and BamHI (as model analytes) using two different emissions of QDs. The limits of detection were 4.0 × 10(-4) U/mL for EcoRI and 8.0 × 10(-4) U/mL for BamHI, which were at least 100 times more sensitive than traditional gel electrophoresis and chromatography assays. Moreover, the potential application of the proposed method for screening endonuclease inhibitors has also been demonstrated. The assay protocol presented here proved to be simple, sensitive, effective, and easy to carry out.

  9. Molecular phylogenetic relationships of puffer fish inferred from partial sequences of cytochrome b gene and restriction fragment length polymorphism analysis.

    PubMed

    Hsieh, Yu-Wen; Hwang, Deng-Fwu

    2004-06-30

    Phylogenetic relationships among puffer fish were investigated by comparing cytochrome b gene sequences and restriction endonuclease assays of 16 species from Taiwan. DNA was prepared for sequencing by PCR. No variation in sequences was detected among individuals within each species. Direct estimates of mitochondrial cytochrome b gene sequence divergence among 16 puffer fish were from 3.41 to 31.78%. Different restriction patterns were found among 16 puffer fish with 10 restriction endonucleases, whereas no variation in patterns was detected among individuals within each species. The polymorphisms obtained by RFLP have provided a new set of genetic markers for the accurate identification of sibling puffer species. It is the first molecularly based study of puffer diversity and sheds light on the evolution and taxonomy of this major puffer fish family.

  10. Rice PROTEIN l-ISOASPARTYL METHYLTRANSFERASE isoforms differentially accumulate during seed maturation to restrict deleterious isoAsp and reactive oxygen species accumulation and are implicated in seed vigor and longevity.

    PubMed

    Petla, Bhanu Prakash; Kamble, Nitin Uttam; Kumar, Meenu; Verma, Pooja; Ghosh, Shraboni; Singh, Ajeet; Rao, Venkateswara; Salvi, Prafull; Kaur, Harmeet; Saxena, Saurabh Chandra; Majee, Manoj

    2016-07-01

    PROTEIN l-ISOASPARTYL O-METHYLTRANSFERASE (PIMT) is a protein-repairing enzyme involved in seed vigor and longevity. However, the regulation of PIMT isoforms during seed development and the mechanism of PIMT-mediated improvement of seed vigor and longevity are largely unknown. In this study in rice (Oryza sativa), we demonstrate the dynamics and correlation of isoaspartyl (isoAsp)-repairing demands and PIMT activity, and their implications, during seed development, germination and aging, through biochemical, molecular and genetic studies. Molecular and biochemical analyses revealed that rice possesses various biochemically active and inactive PIMT isoforms. Transcript and western blot analyses clearly showed the seed development stage and tissue-specific accumulation of active isoforms. Immunolocalization studies revealed distinct isoform expression in embryo and aleurone layers. Further analyses of transgenic lines for each OsPIMT isoform revealed a clear role in the restriction of deleterious isoAsp and age-induced reactive oxygen species (ROS) accumulation to improve seed vigor and longevity. Collectively, our data suggest that a PIMT-mediated, protein repair mechanism is initiated during seed development in rice, with each isoform playing a distinct, yet coordinated, role. Our results also raise the intriguing possibility that PIMT repairs antioxidative enzymes and proteins which restrict ROS accumulation, lipid peroxidation, etc. in seed, particularly during aging, thus contributing to seed vigor and longevity. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. DNA translocation blockage, a general mechanism of cleavage site selection by type I restriction enzymes.

    PubMed Central

    Janscak, P; MacWilliams, M P; Sandmeier, U; Nagaraja, V; Bickle, T A

    1999-01-01

    Type I restriction enzymes bind to a specific DNA sequence and subsequently translocate DNA past the complex to reach a non-specific cleavage site. We have examined several potential blocks to DNA translocation, such as positive supercoiling or a Holliday junction, for their ability to trigger DNA cleavage by type I restriction enzymes. Introduction of positive supercoiling into plasmid DNA did not have a significant effect on the rate of DNA cleavage by EcoAI endonuclease nor on the enzyme's ability to select cleavage sites randomly throughout the DNA molecule. Thus, positive supercoiling does not prevent DNA translocation. EcoR124II endonuclease cleaved DNA at Holliday junctions present on both linear and negatively supercoiled substrates. The latter substrate was cleaved by a single enzyme molecule at two sites, one on either side of the junction, consistent with a bi-directional translocation model. Linear DNA molecules with two recognition sites for endonucleases from different type I families were cut between the sites when both enzymes were added simultaneously but not when a single enzyme was added. We propose that type I restriction enzymes can track along a DNA substrate irrespective of its topology and cleave DNA at any barrier that is able to halt the translocation process. PMID:10228175

  12. Cloning and Characterization of a Wheat Homologue of Apurinic/Apyrimidinic Endonuclease Ape1L

    PubMed Central

    Grin, Inga R.; Zharkov, Dmitry O.; Ishenko, Alexander A.; Tudek, Barbara; Bissenbaev, Amangeldy K.; Saparbaev, Murat

    2014-01-01

    Background Apurinic/apyrimidinic (AP) endonucleases are key DNA repair enzymes involved in the base excision repair (BER) pathway. In BER, an AP endonuclease cleaves DNA at AP sites and 3′-blocking moieties generated by DNA glycosylases and/or oxidative damage. A Triticum aestivum cDNA encoding for a putative homologue of ExoIII family AP endonucleases which includes E. coli Xth, human APE1 and Arabidopsis thaliana AtApe1L has been isolated and its protein product purified and characterized. Methodology/Principal Findings We report that the putative wheat AP endonuclease, referred here as TaApe1L, contains AP endonuclease, 3′-repair phosphodiesterase, 3′-phosphatase and 3′→5′ exonuclease activities. Surprisingly, in contrast to bacterial and human AP endonucleases, addition of Mg2+ and Ca2+ (5–10 mM) to the reaction mixture inhibited TaApe1L whereas the presence of Mn2+, Co2+ and Fe2+ cations (0.1–1.0 mM) strongly stimulated all its DNA repair activities. Optimization of the reaction conditions revealed that the wheat enzyme requires low divalent cation concentration (0.1 mM), mildly acidic pH (6–7), low ionic strength (20 mM KCl) and has a temperature optimum at around 20°C. The steady-state kinetic parameters of enzymatic reactions indicate that TaApe1L removes 3′-blocking sugar-phosphate and 3′-phosphate groups with good efficiency (kcat/KM = 630 and 485 μM−1·min−1, respectively) but possesses a very weak AP endonuclease activity as compared to the human homologue, APE1. Conclusions/Significance Taken together, these data establish the DNA substrate specificity of the wheat AP endonuclease and suggest its possible role in the repair of DNA damage generated by endogenous and environmental factors. PMID:24667595

  13. Endonucléases de restriction: isolement et identification d'une souche d'adénovirus canin de type 1.

    PubMed

    Assaf, R; Turgeon, D; St-Jacques, C; Hamelin, C

    1985-07-01

    For the first time in Quebec, a type 1 canine adenovirus was isolated in cell culture and typed by restriction endonuclease analysis. This virus originated from the internal organs of a young dog killed by a severe respiratory disease without showing any sign of hepatitis.

  14. Endonuclease from Micrococcus luteus Which Has Activity Toward Ultraviolet-Irradiated Deoxyribonucleic Acid: Its Action on Transforming Deoxyribonucleic Acid

    PubMed Central

    Setlow, R. B.; Setlow, Jane K.; Carrier, W. L.

    1970-01-01

    An endonuclease purified from Micrococcus luteus makes single-strand breaks in ultraviolet (UV)-irradiated, native deoxyribonucleic acid (DNA). The purified endonuclease is able to reactivate UV-inactivated transforming DNA of Haemophilus influenzae, especially when the DNA is assayed on a UV-sensitive mutant of H. influenzae. After extensive endonuclease action, there is a loss of transforming DNA when assayed on both UV-sensitive and -resistant cells. The endonuclease does not affect unirradiated DNA. The results indicate that the endonuclease function is involved in the repair of biological damage resulting from UV irradiation and that the UV-sensitive mutant is deficient in this step. We interpret the data as indicating that the various steps in the repair of DNA must be well coordinated if repair is to be effective. PMID:4314478

  15. Does growth restriction increase the vulnerability to acute ventilation-induced brain injury in newborn lambs? Implications for future health and disease.

    PubMed

    Allison, B J; Hooper, S B; Coia, E; Jenkin, G; Malhotra, A; Zahra, V; Sehgal, A; Kluckow, M; Gill, A W; Yawno, T; Polglase, G R; Castillo-Melendez, M; Miller, S L

    2017-10-01

    Fetal growth restriction (FGR) and preterm birth are frequent co-morbidities, both are independent risks for brain injury. However, few studies have examined the mechanisms by which preterm FGR increases the risk of adverse neurological outcomes. We aimed to determine the effects of prematurity and mechanical ventilation (VENT) on the brain of FGR and appropriately grown (AG, control) lambs. We hypothesized that FGR preterm lambs are more vulnerable to ventilation-induced acute brain injury. FGR was surgically induced in fetal sheep (0.7 gestation) by ligation of a single umbilical artery. After 4 weeks, preterm lambs were euthanized at delivery or delivered and ventilated for 2 h before euthanasia. Brains and cerebrospinal fluid (CSF) were collected for analysis of molecular and structural indices of early brain injury. FGRVENT lambs had increased oxidative cell damage and brain injury marker S100B levels compared with all other groups. Mechanical ventilation increased inflammatory marker IL-8 within the brain of FGRVENT and AGVENT lambs. Abnormalities in the neurovascular unit and increased blood-brain barrier permeability were observed in FGRVENT lambs, as well as an altered density of vascular tight junctions markers. FGR and AG preterm lambs have different responses to acute injurious mechanical ventilation, changes which appear to have been developmentally programmed in utero.

  16. The Fab conformations in the solution structure of human immunoglobulin G4 (IgG4) restrict access to its Fc region: implications for functional activity.

    PubMed

    Rayner, Lucy E; Hui, Gar Kay; Gor, Jayesh; Heenan, Richard K; Dalby, Paul A; Perkins, Stephen J

    2014-07-25

    Human IgG4 antibody shows therapeutically useful properties compared with the IgG1, IgG2, and IgG3 subclasses. Thus IgG4 does not activate complement and shows conformational variability. These properties are attributable to its hinge region, which is the shortest of the four IgG subclasses. Using high throughput scattering methods, we studied the solution structure of wild-type IgG4(Ser(222)) and a hinge mutant IgG4(Pro(222)) in different buffers and temperatures where the proline substitution suppresses the formation of half-antibody. Analytical ultracentrifugation showed that both IgG4 forms were principally monomeric with sedimentation coefficients s20,w(0) of 6.6-6.8 S. A monomer-dimer equilibrium was observed in heavy water buffer at low temperature. Scattering showed that the x-ray radius of gyration Rg was unchanged with concentration in 50-250 mm NaCl buffers, whereas the neutron Rg values showed a concentration-dependent increase as the temperature decreased in heavy water buffers. The distance distribution curves (P(r)) revealed two peaks, M1 and M2, that shifted below 2 mg/ml to indicate concentration-dependent IgG4 structures in addition to IgG4 dimer formation at high concentration in heavy water. Constrained x-ray and neutron scattering modeling revealed asymmetric solution structures for IgG4(Ser(222)) with extended hinge structures. The IgG4(Pro(222)) structure was similar. Both IgG4 structures showed that their Fab regions were positioned close enough to the Fc region to restrict C1q binding. Our new molecular models for IgG4 explain its inability to activate complement and clarify aspects of its stability and function for therapeutic applications. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. I-SceI endonuclease, a new tool for studying DNA double-strand break repair mechanisms in Drosophila.

    PubMed Central

    Bellaiche, Y; Mogila, V; Perrimon, N

    1999-01-01

    As a step toward the development of a homologous recombination system in Drosophila, we have developed a methodology to target double-strand breaks (DSBs) to a specific position in the Drosophila genome. This method uses the mitochondrial endonuclease I-SceI that recognizes and cuts an 18-bp restriction site. We find that >6% of the progeny derived from males that carry a marker gene bordered by two I-SceI sites and that express I-SceI in their germ line lose the marker gene. Southern blot analysis and sequencing of the regions surrounding the I-SceI sites revealed that in the majority of the cases, the introduction of DSBs at the I-SceI sites resulted in the complete deletion of the marker gene; the other events were associated with partial deletion of the marker gene. We discuss a number of applications for this novel technique, in particular its use to study DSB repair mechanisms. PMID:10388822

  18. Isolation and properties of the acid site-specific endonuclease from mature eggs of the sea urchin Strongylocentrotus intermedius

    SciTech Connect

    Sibirtsev, Yu.T.; Konechnyi, A.A.; Rasskazov, V.A.

    1986-01-10

    An acid site-specific endonuclease has been detected in mature sea urchin eggs and cells of embryos at early stages of differentiation. Fractionation with ammonium sulfate, followed by chromatography on columns with DEAE, phosphocellulose, and hydroxyapatite resulted in an 18,000-fold purification. The molecular weight of the enzyme was determined at approx. 29,000, the optimum pH 5.5. The activity of the enzyme does not depend on divalent metal ions, EDTA, ATP, and tRNA, but it is modulated to a substantial degree by NaCl. The maximum rate of cleavage of the DNA supercoil (form I) is observed at 100 mM NaCl. Increasing the NaCl concentration to 350 mM only slightly lowers the rate of cleavage of form I, yielding form II, but entirely suppresses the accumulation of form III. Restriction analysis of the products of enzymatic hydrolysis of Co1E1 and pBR322 DNA showed that at the early stages of hydrolysis the enzyme exhibits pronounced specificity for definite sites, the number of which is 12 for Co1 E1 DNA and 8 sites for pBR322 DNA.

  19. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    NASA Astrophysics Data System (ADS)

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A.

    2012-05-01

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.

  20. T7 Endonuclease I Mediates Error Correction in Artificial Gene Synthesis.

    PubMed

    Sequeira, Ana Filipa; Guerreiro, Catarina I P D; Vincentelli, Renaud; Fontes, Carlos M G A

    2016-09-01

    Efficacy of de novo gene synthesis largely depends on the quality of overlapping oligonucleotides used as template for PCR assembly. The error rate associated with current gene synthesis protocols limits the efficient and accurate production of synthetic genes, both in the small and large scales. Here, we analysed the ability of different endonuclease enzymes, which specifically recognize and cleave DNA mismatches resulting from incorrect impairments between DNA strands, to remove mutations accumulated in synthetic genes. The gfp gene, which encodes the green fluorescent protein, was artificially synthesized using an integrated protocol including an enzymatic mismatch cleavage step (EMC) following gene assembly. Functional and sequence analysis of resulting artificial genes revealed that number of deletions, insertions and substitutions was strongly reduced when T7 endonuclease I was used for mutation removal. This method diminished mutation frequency by eightfold relative to gene synthesis not incorporating an error correction step. Overall, EMC using T7 endonuclease I improved the population of error-free synthetic genes, resulting in an error frequency of 0.43 errors per 1 kb. Taken together, data presented here reveal that incorporation of a mutation-removal step including T7 endonuclease I can effectively improve the fidelity of artificial gene synthesis.

  1. Large negatively charged organic host molecules as inhibitors of endonuclease enzymes.

    PubMed

    Tauran, Yannick; Anjard, Christophe; Kim, Beomjoon; Rhimi, Moez; Coleman, Anthony W

    2014-10-07

    Three large negatively charged organic host molecules; β-cyclodextrin sulphate, para-sulphonato-calix[6]arene and para-sulphonato-calix[8]arene have been shown to be effective inhibitors of endonuclease in the low micromolar range, additionally para-sulphonato-calix[8]arene is a partial inhibitor of rhDNase I.

  2. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    SciTech Connect

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A.

    2012-05-15

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.

  3. Structural basis for sequence-dependent DNA cleavage by nonspecific endonucleases

    PubMed Central

    Wang, Yi-Ting; Yang, Wei-Jen; Li, Chia-Lung; Doudeva, Lyudmila G.; Yuan, Hanna S.

    2007-01-01

    Nonspecific endonucleases hydrolyze DNA without sequence specificity but with sequence preference, however the structural basis for cleavage preference remains elusive. We show here that the nonspecific endonuclease ColE7 cleaves DNA with a preference for making nicks after (at 3′O-side) thymine bases but the periplasmic nuclease Vvn cleaves DNA more evenly with little sequence preference. The crystal structure of the ‘preferred complex’ of the nuclease domain of ColE7 bound to an 18 bp DNA with a thymine before the scissile phosphate had a more distorted DNA phosphate backbone than the backbones in the non-preferred complexes, so that the scissile phosphate was compositionally closer to the endonuclease active site resulting in more efficient DNA cleavage. On the other hand, in the crystal structure of Vvn in complex with a 16 bp DNA, the DNA phosphate backbone was similar and not distorted in comparison with that of a previously reported complex of Vvn with a different DNA sequence. Taken together these results suggest a general structural basis for the sequence-dependent DNA cleavage catalyzed by nonspecific endonucleases, indicating that nonspecific nucleases could induce DNA to deform to distinctive levels depending on the local sequence leading to different cleavage rates along the DNA chain. PMID:17175542

  4. Homing endonuclease I-TevIII: dimerization as a means to a double-strand break

    PubMed Central

    Robbins, Justin B.; Stapleton, Michelle; Stanger, Matthew J.; Smith, Dorie; Dansereau, John T.; Derbyshire, Victoria; Belfort, Marlene

    2007-01-01

    Homing endonucleases are unusual enzymes, capable of recognizing lengthy DNA sequences and cleaving site-specifically within genomes. Many homing endonucleases are encoded within group I introns, and such enzymes promote the mobility reactions of these introns. Phage T4 has three group I introns, within the td, nrdB and nrdD genes. The td and nrdD introns are mobile, whereas the nrdB intron is not. Phage RB3 is a close relative of T4 and has a lengthier nrdB intron. Here, we describe I-TevIII, the H–N–H endonuclease encoded by the RB3 nrdB intron. In contrast to previous reports, we demonstrate that this intron is mobile, and that this mobility is dependent on I-TevIII, which generates 2-nt 3′ extensions. The enzyme has a distinct catalytic domain, which contains the H–N–H motif, and DNA-binding domain, which contains two zinc fingers required for interaction with the DNA substrate. Most importantly, I-TevIII, unlike the H–N–H endonucleases described so far, makes a double-strand break on the DNA homing site by acting as a dimer. Through deletion analysis, the dimerization interface was mapped to the DNA-binding domain. The unusual propensity of I-TevIII to dimerize to achieve cleavage of both DNA strands underscores the versatility of the H–N–H enzyme family. PMID:17289754

  5. Molecular Recognition of DNA Damage Sites by Apurinic/Apyrimidinic Endonucleases

    SciTech Connect

    Braun, W. A.

    2005-07-28

    The DNA repair/redox factor AP endonuclease 1 (APE1) is a multifunctional protein which is known to to be essential for DNA repair activity in human cells. Structural/functional analyses of the APE activity is thus been an important research field to assess cellular defense mechanisms against ionizing radiation.

  6. Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease.

    PubMed

    Grizot, Sylvestre; Smith, Julianne; Daboussi, Fayza; Prieto, Jesús; Redondo, Pilar; Merino, Nekane; Villate, Maider; Thomas, Séverine; Lemaire, Laetitia; Montoya, Guillermo; Blanco, Francisco J; Pâques, Frédéric; Duchateau, Philippe

    2009-09-01

    Sequence-specific endonucleases recognizing long target sequences are emerging as powerful tools for genome engineering. These endonucleases could be used to correct deleterious mutations or to inactivate viruses, in a new approach to molecular medicine. However, such applications are highly demanding in terms of safety. Mutations in the human RAG1 gene cause severe combined immunodeficiency (SCID). Using the I-CreI dimeric LAGLIDADG meganuclease as a scaffold, we describe here the engineering of a series of endonucleases cleaving the human RAG1 gene, including obligate heterodimers and single-chain molecules. We show that a novel single-chain design, in which two different monomers are linked to form a single molecule, can induce high levels of recombination while safeguarding more effectively against potential genotoxicity. We provide here the first demonstration that an engineered meganuclease can induce targeted recombination at an endogenous locus in up to 6% of transfected human cells. These properties rank this new generation of endonucleases among the best molecular scissors available for genome surgery strategies, potentially avoiding the deleterious effects of previous gene therapy approaches.

  7. Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease

    PubMed Central

    Grizot, Sylvestre; Smith, Julianne; Daboussi, Fayza; Prieto, Jesús; Redondo, Pilar; Merino, Nekane; Villate, Maider; Thomas, Séverine; Lemaire, Laetitia; Montoya, Guillermo; Blanco, Francisco J.; Pâques, Frédéric; Duchateau, Philippe

    2009-01-01

    Sequence-specific endonucleases recognizing long target sequences are emerging as powerful tools for genome engineering. These endonucleases could be used to correct deleterious mutations or to inactivate viruses, in a new approach to molecular medicine. However, such applications are highly demanding in terms of safety. Mutations in the human RAG1 gene cause severe combined immunodeficiency (SCID). Using the I-CreI dimeric LAGLIDADG meganuclease as a scaffold, we describe here the engineering of a series of endonucleases cleaving the human RAG1 gene, including obligate heterodimers and single-chain molecules. We show that a novel single-chain design, in which two different monomers are linked to form a single molecule, can induce high levels of recombination while safeguarding more effectively against potential genotoxicity. We provide here the first demonstration that an engineered meganuclease can induce targeted recombination at an endogenous locus in up to 6% of transfected human cells. These properties rank this new generation of endonucleases among the best molecular scissors available for genome surgery strategies, potentially avoiding the deleterious effects of previous gene therapy approaches. PMID:19584299

  8. Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering

    PubMed Central

    Aouida, Mustapha; Eid, Ayman; Ali, Zahir; Cradick, Thomas; Lee, Ciaran; Deshmukh, Harshavardhan; Atef, Ahmed; AbuSamra, Dina; Gadhoum, Samah Zeineb; Merzaban, Jasmeen; Bao, Gang; Mahfouz, Magdy

    2015-01-01

    The Cas9 endonuclease is used for genome editing applications in diverse eukaryotic species. A high frequency of off-target activity has been reported in many cell types, limiting its applications to genome engineering, especially in genomic medicine. Here, we generated a synthetic chimeric protein between the catalytic domain of the FokI endonuclease and the catalytically inactive Cas9 protein (fdCas9). A pair of guide RNAs (gRNAs) that bind to sense and antisense strands with a defined spacer sequence range can be used to form a catalytically active dimeric fdCas9 protein and generate double-strand breaks (DSBs) within the spacer sequence. Our data demonstrate an improved catalytic activity of the fdCas9 endonuclease, with a spacer range of 15–39 nucleotides, on surrogate reporters and genomic targets. Furthermore, we observed no detectable fdCas9 activity at known Cas9 off-target sites. Taken together, our data suggest that the fdCas9 endonuclease variant is a superior platform for genome editing applications in eukaryotic systems including mammalian cells. PMID:26225561

  9. Structural and functional characterization of deep-sea thermophilic bacteriophage GVE2 HNH endonuclease

    PubMed Central

    Zhang, Likui; Xu, Dandan; Huang, Yanchao; Zhu, Xinyuan; Rui, Mianwen; Wan, Ting; Zheng, Xin; Shen, Yulong; Chen, Xiangdong; Ma, Kesen; Gong, Yong

    2017-01-01

    HNH endonucleases in bacteriophages play a variety of roles in the phage lifecycle as key components of phage DNA packaging machines. The deep-sea thermophilic bacteriophage Geobacillus virus E2 (GVE2) encodes an HNH endonuclease (GVE2 HNHE). Here, the crystal structure of GVE2 HNHE is reported. This is the first structural study of a thermostable HNH endonuclease from a thermophilic bacteriophage. Structural comparison reveals that GVE2 HNHE possesses a typical ββα-metal fold and Zn-finger motif similar to those of HNH endonucleases from other bacteriophages, apart from containing an extra α-helix, suggesting conservation of these enzymes among bacteriophages. Biochemical analysis suggests that the alanine substitutions of the conserved residues (H93, N109 and H118) in the HNH motif of GVE2 HNHE abolished 94%, 60% and 83% of nicking activity, respectively. Compared to the wild type enzyme, the H93A mutant displayed almost the same conformation while the N108A and H118A mutants had different conformations. In addition, the wild type enzyme was more thermostable than the mutants. In the presence of Mn2+ or Zn2+, the wild type enzyme displayed distinct DNA nicking patterns. However, high Mn2+ concentrations were needed for the N109A and H118A mutants to nick DNA while Zn2+ inactivated their nicking activity. PMID:28211904

  10. Human Rad54 protein stimulates human Mus81–Eme1 endonuclease

    PubMed Central

    Mazina, Olga M.; Mazin, Alexander V.

    2008-01-01

    Rad54, a key protein of homologous recombination, physically interacts with a DNA structure-specific endonuclease, Mus81–Eme1. Genetic data indicate that Mus81–Eme1 and Rad54 might function together in the repair of damaged DNA. In vitro, Rad54 promotes branch migration of Holliday junctions, whereas the Mus81–Eme1 complex resolves DNA junctions by endonucleolytic cleavage. Here, we show that human Rad54 stimulates Mus81–Eme1 endonuclease activity on various Holliday junction-like intermediates. This stimulation is the product of specific interactions between the human Rad54 (hRad54) and Mus81 proteins, considering that Saccharomyces cerevisiae Rad54 protein does not stimulate human Mus81–Eme1 endonuclease activity. Stimulation of Mus81–Eme1 cleavage activity depends on formation of specific Rad54 complexes on DNA substrates occurring in the presence of ATP and, to a smaller extent, of other nucleotide cofactors. Thus, our results demonstrate a functional link between the branch migration activity of hRad54 and the structure-specific endonuclease activity of hMus81–Eme1, suggesting that the Rad54 and Mus81–Eme1 proteins may cooperate in the processing of Holliday junction-like intermediates during homologous recombination or DNA repair. PMID:19017809

  11. Surface enhanced vibrational spectroscopic evidence for an alternative DNA-independent redox activation of endonuclease III.

    PubMed

    Moe, Elin; Sezer, Murat; Hildebrandt, Peter; Todorovic, Smilja

    2015-02-21

    Surface enhanced vibrational spectro-electrochemistry of endonuclease III provides direct evidence that the [4Fe-4S] cluster is responsible for the enzyme redox activity, and that this process is not exclusively DNA-mediated, as currently proposed. We report the first surface enhanced resonance Raman spectrum of a [4Fe-4S](2+) cluster containing enzyme.

  12. Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.; Moro, M.; Fubelli, G.; Saroli, M.; Chiarabba, C.; Galadini, F.

    2015-05-01

    We investigate the Middle Aterno Valley fault system (MAVF), a poorly investigated seismic gap in the central Apennines, adjacent to the 2009 L'Aquila earthquake epicentral area. Geological and paleoseismological analyses revealed that the MAVF evolved through hanging wall splay nucleation, its main segment moving at 0.23-0.34 mm/year since the Middle Pleistocene; the penultimate activation event occurred between 5388-5310 B.C. and 1934-1744 B.C., the last event after 2036-1768 B.C. and just before 1st-2nd century AD. These data define hard linkage (sensu Walsh and Watterson, 1991; Peacock et al., 2000; Walsh et al., 2003, and references therein) with the contiguous Subequana Valley fault segment, able to rupture in large magnitude earthquakes (up to 6.8), that did not rupture since about two millennia. By the joint analysis of geological observations and seismological data acquired during to the 2009 seismic sequence, we derive a picture of the complex structural framework of the area comprised between the MAVF, the Paganica fault (the 2009 earthquake causative fault) and the Gran Sasso Range. This sector is affected by a dense array of few-km long, closely and regularly spaced Quaternary normal fault strands, that are considered as branches of the MAVF northern segment. Our analysis reveals that these structures are downdip confined by a decollement represented by to the presently inactive thrust sheet above the Gran Sasso front limiting their seismogenic potential. Our study highlights the advantage of combining Quaternary geological field analysis with high resolution seismological data to fully unravel the structural setting of regions where subsequent tectonic phases took place and where structural interference plays a key role in influencing the seismotectonic context; this has also inevitably implications for accurately assessing seismic hazard of such structurally complex regions.

  13. Cloning of the BssHII restriction-modification system in Escherichia coli : BssHII methyltransferase contains circularly permuted cytosine-5 methyltransferase motifs.

    PubMed Central

    Xu, S; Xiao, J; Posfai, J; Maunus, R; Benner, J

    1997-01-01

    BssHII restriction endonuclease cleaves 5'-GCGCGC-3' on double-stranded DNA between the first and second bases to generate a four base 5'overhang. BssHII restriction endonuclease was purified from the native Bacillus stearothermophilus H3 cells and its N-terminal amino acid sequence was determined. Degenerate PCR primers were used to amplify the first 20 codons of the BssHII restriction endonuclease gene. The BssHII restriction endonuclease gene (bssHIIR) and the cognate BssHII methyltransferase gene (bssHIIM) were cloned in Escherichia coli by amplification of Bacillus stearothermophilus genomic DNA using PCR and inverse PCR. BssHII methyltransferase (M.BssHII) contains all 10 conserved cytosine-5 methyltransferase motifs, but motifs IX and X precede motifs I-VIII. Thus, the conserved motifs of M. BssHII are circularly permuted relative to the motif organizations of other cytosine-5 methyltransferases. M.BssHII and the non-cognate multi-specific phiBssHII methyltransferase, M.phiBss HII [Schumann,J. et al . (1995) Gene, 157, 103-104] share 34% identity in amino acid sequences from motifs I-VIII, and 40% identity in motifs IX-X. A conserved arginine is located upstream of a TV dipeptide in the N-terminus of M.BssHII that may be responsible for the recognition of the guanine 5' of the target cytosine. The BssHII restriction endonuclease gene was expressed in E.coli via a T7 expression vector. PMID:9321648

  14. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species

    PubMed Central

    Posey, Karen L.; Koufopanou, Vassiliki; Burt, Austin; Gimble, Frederick S.

    2004-01-01

    Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 → T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites. PMID:15280510

  15. Neisseria gonorrhoeae FA1090 Carries Genes Encoding Two Classes of Vsr Endonucleases

    PubMed Central

    Kwiatek, Agnieszka; Łuczkiewicz, Maciej; Bandyra, Katarzyna; Stein, Daniel C.; Piekarowicz, Andrzej

    2010-01-01

    A very short patch repair system prevents mutations resulting from deamination of 5-methylcytosine to thymine. The Vsr endonuclease is the key enzyme of this system, providing sequence specificity. We identified two genes encoding Vsr endonucleases V.NgoAXIII and V.NgoAXIV from Neisseria gonorrhoeae FA1090 based on DNA sequence similarity to genes encoding Vsr endonucleases from other bacteria. After expression of the gonococcal genes in Escherichia coli, the proteins were biochemically characterized and the endonucleolytic activities and specificities of V.NgoAXIII and V.NgoAXIV were determined. V.NgoAXIII was found to be multispecific and to recognize T:G mismatches in every nucleotide context tested, whereas V.NgoAXIV recognized T:G mismatches in the following sequences: GTGG, CTGG, GTGC, ATGC, and CTGC. Alanine mutagenesis of conserved residues showed that Asp50 and His68 of V.NgoAXIII and Asp51 and His69 of V.NgoAXIV are essential for hydrolytic activity. Glu25, His64, and Asp97 of V.NgoAXIV and Glu24, Asp63, and Asp97 of V.NgoAXIII are important but not crucial for the activity of V.NgoAXIII and V.NgoAXIV. However, Glu24 and Asp63 are also important for the specificity of V.NgoAXIII. On the basis of our results concerning features of Vsr endonucleases expressed by N. gonorrhoeae FA1090, we postulate that at least two types of Vsr endonucleases can be distinguished. PMID:20511499

  16. Neisseria gonorrhoeae FA1090 carries genes encoding two classes of Vsr endonucleases.

    PubMed

    Kwiatek, Agnieszka; Luczkiewicz, Maciej; Bandyra, Katarzyna; Stein, Daniel C; Piekarowicz, Andrzej

    2010-08-01

    A very short patch repair system prevents mutations resulting from deamination of 5-methylcytosine to thymine. The Vsr endonuclease is the key enzyme of this system, providing sequence specificity. We identified two genes encoding Vsr endonucleases V.NgoAXIII and V.NgoAXIV from Neisseria gonorrhoeae FA1090 based on DNA sequence similarity to genes encoding Vsr endonucleases from other bacteria. After expression of the gonococcal genes in Escherichia coli, the proteins were biochemically characterized and the endonucleolytic activities and specificities of V.NgoAXIII and V.NgoAXIV were determined. V.NgoAXIII was found to be multispecific and to recognize T:G mismatches in every nucleotide context tested, whereas V.NgoAXIV recognized T:G mismatches in the following sequences: GTGG, CTGG, GTGC, ATGC, and CTGC. Alanine mutagenesis of conserved residues showed that Asp50 and His68 of V.NgoAXIII and Asp51 and His69 of V.NgoAXIV are essential for hydrolytic activity. Glu25, His64, and Asp97 of V.NgoAXIV and Glu24, Asp63, and Asp97 of V.NgoAXIII are important but not crucial for the activity of V.NgoAXIII and V.NgoAXIV. However, Glu24 and Asp63 are also important for the specificity of V.NgoAXIII. On the basis of our results concerning features of Vsr endonucleases expressed by N. gonorrhoeae FA1090, we postulate that at least two types of Vsr endonucleases can be distinguished.

  17. Apurinic/Apyrimidinic Endonuclease/Redox Factor-1 (APE1/Ref-1) Redox Function Negatively Regulates NRF2*

    PubMed Central

    Fishel, Melissa L.; Wu, Xue; Devlin, Cecilia M.; Logsdon, Derek P.; Jiang, Yanlin; Luo, Meihua; He, Ying; Yu, Zhangsheng; Tong, Yan; Lipking, Kelsey P.; Maitra, Anirban; Rajeshkumar, N. V.; Scandura, Glenda; Kelley, Mark R.; Ivan, Mircea

    2015-01-01

    Apurinic/apyrimidinic endonuclease/redox factor-1 (APE1/Ref-1) (henceforth referred to as Ref-1) is a multifunctional protein that in addition to its base excision DNA repair activity exerts redox control of multiple transcription factors, including nuclear factor κ-light chain enhancer of activated B cells (NF-κB), STAT3, activator protein-1 (AP-1), hypoxia-inducible factor-1 (HIF-1), and tumor protein 53 (p53). In recent years, Ref-1 has emerged as a promising therapeutic target in cancer, particularly in pancreatic ductal carcinoma. Although a significant amount of research has centered on Ref-1, no wide-ranging approach had been performed on the effects of Ref-1 inhibition and transcription factor activity perturbation. Starting with a broader approach, we identified a previously unsuspected effect on the nuclear factor erythroid-related factor 2 (NRF2), a critical regulator of cellular defenses against oxidative stress. Based on genetic and small molecule inhibitor-based methodologies, we demonstrated that repression of Ref-1 potently activates NRF2 and its downstream targets in a dose-dependent fashion, and that the redox, rather than the DNA repair function of Ref-1 is critical for this effect. Intriguingly, our results also indicate that this pathway does not involve reactive oxygen species. The link between Ref-1 and NRF2 appears to be present in all cells tested in vitro, noncancerous and cancerous, including patient-derived tumor samples. In particular, we focused on understanding the implications of the novel interaction between these two pathways in primary pancreatic ductal adenocarcinoma tumor cells and provide the first evidence that this mechanism has implications for overcoming the resistance against experimental drugs targeting Ref-1 activity, with clear translational implications. PMID:25492865

  18. DENV gene of bacteriophage T4 codes for both pyrimidine dimer-DNA glycosylase and apyrimidinic endonuclease activities

    SciTech Connect

    McMillan, S.; Edenberg, H.J.; Radany, E.H.; Friedberg, R.C.; Friedberg, E.C.

    1981-10-01

    Recent studies have shown that purified preparations of phage T4 UV DNA-incising activity (T4 UV endonuclease or endonuclease V of phase T4) contain a pyrimidine dimer-DNA glycosylase activity that catalyzes hydrolysis of the 5' glycosyl bond of dimerized pyrimidines in UV-irradiated DNA. Such enzyme preparations have also been shown to catalyze the hydrolysis of phosphodiester bonds in UV-irradiated DNA at a neutral pH, presumably reflecting the action of an apurinic/apyrimidinic endonuclease at the apyrimidinic sites created by the pyrimidine dimer-DNA glycosylase. In this study we found that preparations of T4 UV DNA-incising activity contained apurinic/apyrimidinic endonuclease activity that nicked depurinated form I simian virus 40 DNA. Apurinic/apyrimidinic endonuclease activity was also found in extracts of Escherichia coli infected with T4 denV/sup +/ phage. Extracts of cells infected with T4 denV mutants contained significantly lower levels of apurinic/apyrimidinic endonuclease activity; these levels were no greater than the levels present in extracts of uninfected cells. Furthermore, the addition of DNA containing UV-irradiated DNA and T4 enzyme resulted in competition for pyrimidine dimer-DNA glycosylase activity against the UV-irradiated DNA. On the basis of these results, we concluded that apurinic/apyrimidinic endonuclease activity is encoded by the denV gene of phage T4, the same gene that codes for pyrimidine dimer-DNA glycosylase activity.

  19. Flying squirrel-associated Rickettsia prowazekii (epidemic typhus rickettsiae) characterized by a specific DNA fragment produced by restriction endonuclease digestion.

    PubMed Central

    Regnery, R L; Fu, Z Y; Spruill, C L

    1986-01-01

    The DNA from flying squirrel-associated Rickettsia prowazekii was characterized by using a specific DNA fragment produced by digestion with the enzyme BamHI. The DNA fragment was cloned into a plasmid vector and used to readily distinguish between available human- and flying squirrel-associated R. prowazekii DNAs derived from crude cytoplasmic extracts. Images PMID:3009528

  20. Alteration of sequence specificity of the type II restriction endonuclease HincII through an indirect readout mechanism.

    PubMed

    Joshi, Hemant K; Etzkorn, Christopher; Chatwell, Lorentz; Bitinaite, Jurate; Horton, Nancy C

    2006-08-18

    The functional and structural consequences of a mutation of the DNA intercalating residue of HincII, Q138F, are presented. Modeling has suggested that the DNA intercalation by Gln-138 results in DNA distortions potentially used by HincII in indirect readout of its cognate DNA, GTYRAC (Y = C or T, R = A or G) (Horton, N. C., Dorner, L. F., and Perona, J. J. (2002) Nat. Struct. Biol. 9, 42-47). Kinetic data presented here indicate that the mutation of glutamine 138 to phenylalanine (Q138F) results in a change in sequence specificity at the center two base pairs of the cognate recognition site. We show that the preference of HincII for cutting, but not binding, the three cognate sites differing in the center two base pairs has been altered by the mutation Q138F. Five new crystal structures are presented including Q138F HincII bound to GTTAAC and GTCGAC both with and without Ca2+ as well as the structure of wild type HincII bound to GTTAAC. The Q138F HincII/DNA structures show conformational changes in the protein, bound DNA, and at the protein-DNA interface, consistent with the formation of adaptive complexes. Analysis of these structures and the effect of Ca2+ binding on the protein-DNA interface illuminates the origin of the altered specificity by the mutation Q138F in the HincII enzyme.

  1. Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans.

    PubMed

    Gouspillou, Gilles; Sgarioto, Nicolas; Kapchinsky, Sophia; Purves-Smith, Fennigje; Norris, Brandon; Pion, Charlotte H; Barbat-Artigas, Sébastien; Lemieux, Francois; Taivassalo, Tanja; Morais, José A; Aubertin-Leheudre, Mylène; Hepple, Russell T

    2014-04-01

    Mitochondrial dysfunction is implicated in skeletal muscle atrophy and dysfunction with aging, with strong support for an increased mitochondrial-mediated apoptosis in sedentary rodent models. Whether this applies to aged human muscle is unknown, nor is it clear whether these changes are caused by sedentary behavior. Thus, we examined mitochondrial function [respiration, reactive oxygen species (ROS) emission, and calcium retention capacity (CRC)] in permeabilized myofibers obtained from vastus lateralis muscle biopsies of healthy physically active young (23.7±2.7 yr; mean±SD) and older (71.2±4.9 yr) men. Although mitochondrial ROS and maximal respiratory capacity were unaffected, the acceptor control ratio was reduced by 18% with aging, suggesting mild uncoupling of oxidative phosphorylation. CRC was reduced by 50% with aging, indicating sensitization of the mitochondrial permeability transition pore (mPTP) to apoptosis. Consistent with the mPTP sensitization, older muscles showed a 3-fold greater fraction of endonuclease G (a mitochondrial proapoptotic factor)-positive myonuclei. Aged muscles also had lower mitophagic potential, based on a 43% reduction in Parkin to the voltage-dependent anion channel (VDAC) protein ratio. Collectively, these results show that mitochondrial-mediated apoptotic signaling is increased in older human muscle and suggest that accumulation of dysfunctional mitochondria with exaggerated apoptotic sensitivity is due to impaired mitophagy.

  2. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS-mediated cardiomyocyte hypertrophy.

    PubMed

    Tigchelaar, Wardit; Yu, Hongjuan; de Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Silljé, Herman H W

    2015-01-15

    Recently, a locus at the mitochondrial exo/endonuclease EXOG gene, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and hypertrophy in cardiomyocytes. Depletion of EXOG in primary neonatal rat ventricular cardiomyocytes (NRVCs) induced a marked increase in cardiomyocyte hypertrophy. Depletion of EXOG, however, did not result in loss of mitochondrial DNA integrity. Although EXOG depletion did not induce fetal gene expression and common hypertrophy pathways were not activated, a clear increase in ribosomal S6 phosphorylation was observed, which readily explains increased protein synthesis. With the use of a Seahorse flux analyzer, it was shown that the mitochondrial oxidative consumption rate (OCR) was increased 2.4-fold in EXOG-depleted NRVCs. Moreover, ATP-linked OCR was 5.2-fold higher. This increase was not explained by mitochondrial biogenesis or alterations in mitochondrial membrane potential. Western blotting confirmed normal levels of the oxidative phosphorylation (OXPHOS) complexes. The increased OCR was accompanied by a 5.4-fold increase in mitochondrial ROS levels. These increased ROS levels could be normalized with specific mitochondrial ROS scavengers (MitoTEMPO, mnSOD). Remarkably, scavenging of excess ROS strongly attenuated the hypertrophic response. In conclusion, loss of EXOG affects normal mitochondrial function resulting in increased mitochondrial respiration, excess ROS production, and cardiomyocyte hypertrophy. Copyright © 2015 the American Physiological Society.

  3. Activity of FEN1 endonuclease on nucleosome substrates is dependent upon DNA sequence but not flap orientation.

    PubMed

    Jagannathan, Indu; Pepenella, Sharon; Hayes, Jeffrey J

    2011-05-20

    We demonstrated previously that human FEN1 endonuclease, an enzyme involved in excising single-stranded DNA flaps that arise during Okazaki fragment processing and base excision repair, cleaves model flap substrates assembled into nucleosomes. Here we explore the effect of flap orientation with respect to the surface of the histone octamer on nucleosome structure and FEN1 activity in vitro. We find that orienting the flap substrate toward the histone octamer does not significantly alter the rotational orientation of two different nucleosome positioning sequences on the surface of the histone octamer but does cause minor perturbation of nucleosome structure. Surprisingly, flaps oriented toward the nucleosome surface are accessible to FEN1 cleavage in nucleosomes containing the Xenopus 5S positioning sequence. In contrast, neither flaps oriented toward nor away from the nucleosome surface are cleaved by the enzyme in nucleosomes containing the high-affinity 601 nucleosome positioning sequence. The data are consistent with a model in which sequence-dependent motility of DNA on the nucleosome is a major determinant of FEN1 activity. The implications of these findings for the activity of FEN1 in vivo are discussed.

  4. [Effect of endonuclease G depletion on plasmid DNA uptake and levels of homologous recombination in hela cells].

    PubMed

    Misic, V; El-Mogy, M; Geng, S; Haj-Ahmad, Y

    2016-01-01

    Endonuclease G (EndoG) is a mitochondrial apoptosis regulator that also has roles outside of programmed cell death. It has been implicated as a defence DNase involved in the degradation of exogenous DNA after transfection of mammalian cells and in homologous recombination of viral and endogenous DNA. In this study, we looked at the effect of EndoG depletion on plasmid DNA uptake and the levels of homologous recombination in HeLa cells. We show that the proposed defence role of EndoG against uptake of non-viral DNA vectors does not extend to the cervical carcinoma HeLa cells, as targeting of EndoG expression by RNA interference failed to increase intracellular plasmid DNA levels. However, reducing EndoG levels in HeLa cells resulted in a statistically significant reduction of homologous recombination between two plasmid DNA substrates. These findings suggest that non-viral DNA vectors are also substrates for EndoG in its role in homologous recombination.

  5. Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes.

    SciTech Connect

    Tsutakawa, Susan E.; Shin, David S.; Mol, Clifford D.; Izum, Tadahide; Arvai, Andrew S.; Mantha, Anil K.; Szczesny, Bartosz; Ivanov, Ivaylo N.; Hosfield, David J.; Maiti, Buddhadev; Pique, Mike E.; Frankel, Kenneth A.; Hitomi, Kenichi; Cunningham, Richard P.; Mitra, Sankar; Tainer, John A.

    2013-03-22

    Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5' AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5' AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5' to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 ? resolution APE1-DNA product complex with Mg(2+) and a 0.92 Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg(2+). Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.

  6. Restriction site detection in repetitive nuclear DNA sequences of Trypanosoma evansi for strain differentiation among different isolates.

    PubMed

    Shyma, K P; Gupta, S K; Gupta, J P; Singh, Ajit; Chaudhari, S S; Singh, Veer

    2016-09-01

    The differences or similarities among different isolates of Trypanosoma evansi through endonuclease profile was identified in the present study. The repetitive nuclear DNA of T. evansi isolated from infected cattle, buffalo and equine blood was initially amplified by PCR using specific primers. A panel of restriction enzymes, EcoRI, Eco91l, HindIII and PstI were for complete digestion of PCR products. Agarose gel electrophoresis of digested product did not show cleavage fragments and only single DNA band of the original size was visible in the ethidium bromide stained agarose gel. This indicated that the 227 bp PCR product from repetitive sequence had no site-specific cleavage sites for the REs used in this study. No heterogeneity in the repetitive nuclear DNA restriction endonuclease profile among the different isolates was recorded.

  7. Restoration by T4 ligase of DNA sequences sensitive to "flush" cleaving restriction enzyme.

    PubMed

    Mottes, M; Morandi, C; Cremaschi, S; Sgaramella, V

    1977-07-01

    Fouteen "flush"-ended segments originate from the action of the restriction endonuclease Hae III of Haemophilus aegiptius on the DNA of the colicinogenic factor ColE 1 (A. Oka and M. Takanami, Nature, 264, 191, 1976). They are joined by the T4 polynucleotide ligase. The reaction can be monitored by gel electrophoresis, electron microscopy and resistance to phosphatase of the 5'-32P labelled ends. The joined products are a random recombination of the original segments, and can be cleaved by the same Hae III endonuclease to restore the exact electrophoretic pattern of the Hae III-cut ColE 1 DNA. In a properly diluted mixture of 5'-32P segments treated with T4 ligase, the level of phosphatase resistance is very close to the frequency of circle-formation as determined by electron microscopy: thus, the joining of the "flush"-ends involves the formation of circular structures covalently closed in both strands.

  8. Characterization of DNA substrate specificities of apurinic/apyrimidinic endonucleases from Mycobacterium tuberculosis.

    PubMed

    Abeldenov, Sailau; Talhaoui, Ibtissam; Zharkov, Dmitry O; Ishchenko, Alexander A; Ramanculov, Erlan; Saparbaev, Murat; Khassenov, Bekbolat

    2015-09-01

    Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacteria Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo members of the exonuclease III and endonuclease IV families, which are exemplified by Escherichia coli Xth and Nfo, respectively. It has been shown that both MtbXthA and MtbNfo contain AP endonuclease and 3'→5' exonuclease activities. However, it remains unclear whether these enzymes hold 3'-repair phosphodiesterase and nucleotide incision repair (NIR) activities. Here, we report that both mycobacterial enzymes have 3'-repair phosphodiesterase and 3'-phosphatase, and MtbNfo contains in addition a very weak NIR activity. Interestingly, depending on pH, both enzymes require different concentrations of divalent cations: 0.5mM MnCl2 at pH 7.6 and 10 mM at pH 6.5. MtbXthA requires a low ionic strength and 37 °C, while MtbNfo requires high ionic strength (200 mM KCl) and has a temperature optimum at 60 °C. Point mutation analysis showed that D180 and N182 in MtbXthA and H206 and E129 in MtbNfo are critical for enzymes activities. The steady-state kinetic parameters indicate that MtbXthA removes 3'-blocking sugar-phosphate and 3'-phosphate moieties at DNA strand breaks with an extremely high efficiency (kcat/KM=440 and 1280 μM(-1)∙min(-1), respectively), while MtbNfo exhibits much lower 3'-repair activities (kcat/KM=0.26 and 0.65 μM(-1)∙min(-1), respectively). Surprisingly, both MtbXthA and MtbNfo exhibited very weak AP site cleavage activities, with kinetic parameters 100- and 300-fold lower, respectively, as compared with the results reported previously. Expression of MtbXthA and MtbNfo reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2 to various degrees. Taken together, these data establish the DNA substrate specificity of M. tuberculosis AP endonucleases and suggest their possible role

  9. Structure of the C-Terminal Half of UvrC Reveals an RNase H Endonuclease Domain with an Argonaute-like Catalytic Triad

    SciTech Connect

    Karakas,E.; Truglio, J.; Croteau, D.; Rhau, B.; Wang, L.; Van Houten, B.; Kisker, C.

    2007-01-01

    Removal and repair of DNA damage by the nucleotide excision repair pathway requires two sequential incision reactions, which are achieved by the endonuclease UvrC in eubacteria. Here, we describe the crystal structure of the C-terminal half of UvrC, which contains the catalytic domain responsible for 5' incision and a helix-hairpin-helix-domain that is implicated in DNA binding. Surprisingly, the 5' catalytic domain shares structural homology with RNase H despite the lack of sequence homology and contains an uncommon DDH triad. The structure also reveals two highly conserved patches on the surface of the protein, which are not related to the active site. Mutations of residues in one of these patches led to the inability of the enzyme to bind DNA and severely compromised both incision reactions. Based on our results, we suggest a model of how UvrC forms a productive protein-DNA complex to excise the damage from DNA.

  10. The N-Terminal Domain of the Arenavirus L Protein Is an RNA Endonuclease Essential in mRNA Transcription

    PubMed Central

    Morin, Benjamin; Coutard, Bruno; Lelke, Michaela; Ferron, François; Kerber, Romy; Jamal, Saïd; Frangeul, Antoine; Baronti, Cécile; Charrel, Rémi; de Lamballerie, Xavier; Vonrhein, Clemens; Lescar, Julien; Bricogne, Gérard; Günther, Stephan; Canard, Bruno

    2010-01-01

    Arenaviridae synthesize viral mRNAs using short capped primers presumably acquired from cellular transcripts by a ‘cap-snatching’ mechanism. Here, we report the crystal structure and functional characterization of the N-terminal 196 residues (NL1) of the L protein from the prototypic arenavirus: lymphocytic choriomeningitis virus. The NL1 domain is able to bind and cleave RNA. The 2.13 Å resolution crystal structure of NL1 reveals a type II endonuclease α/β architecture similar to the N-terminal end of the influenza virus PA protein. Superimposition of both structures, mutagenesis and reverse genetics studies reveal a unique spatial arrangement of key active site residues related to the PD…(D/E)XK type II endonuclease signature sequence. We show that this endonuclease domain is conserved and active across the virus families Arenaviridae, Bunyaviridae and Orthomyxoviridae and propose that the arenavirus NL1 domain is the Arenaviridae cap-snatching endonuclease. PMID:20862324

  11. Endonuclease cleavage of blocked replication forks: An indirect pathway of DNA damage from antitumor drug-topoisomerase complexes

    NASA Astrophysics Data System (ADS)

    Hong, George; Kreuzer, Kenneth N.

    2003-04-01

    The cytotoxicity of several important antitumor drugs depends on formation of the covalent topoisomerase-DNA cleavage complex. However, cellular processes such as DNA replication are necessary to convert the cleavage complex into a cytotoxic lesion, but the molecular mechanism of this conversion and the precise nature of the cytotoxic lesion are unknown. Using a bacteriophage T4 model system, we have previously shown that antitumor drug-induced cleavage complexes block replication forks in vivo. In this report, we show that these blocked forks can be cleaved by T4 endonuclease VII to create overt DNA breaks. The accumulation of blocked forks increased in endonuclease VII-deficient infections, suggesting that endonuclease cleavage contributes to fork processing in vivo. Furthermore, purified endonuclease VII cleaved the blocked forks in vitro close to the branch points. These results suggest that an indirect pathway of branched-DNA cleavage contributes to the cytotoxicity of antitumor drugs that target DNA topoisomerases.

  12. On the DNA cleavage mechanism of Type I restriction enzymes.

    PubMed

    Jindrova, Eva; Schmid-Nuoffer, Stefanie; Hamburger, Fabienne; Janscak, Pavel; Bickle, Thomas A

    2005-01-01

    Although the DNA cleavage mechanism of Type I restriction-modification enzymes has been extensively studied, the mode of cleavage remains elusive. In this work, DNA ends produced by EcoKI, EcoAI and EcoR124I, members of the Type IA, IB and IC families, respectively, have been characterized by cloning and sequencing restriction products from the reactions with a plasmid DNA substrate containing a single recognition site for each enzyme. Here, we show that all three enzymes cut this substrate randomly with no preference for a particular base composition surrounding the cleavage site, producing both 5'- and 3'-overhangs of varying lengths. EcoAI preferentially generated 3'-overhangs of 2-3 nt, whereas EcoKI and EcoR124I displayed some preference for the formation of 5'-overhangs of a length of approximately 6-7 and 3-5 nt, respectively. A mutant EcoAI endonuclease assembled from wild-type and nuclease-deficient restriction subunits generated a high proportion of nicked circular DNA, whereas the wild-type enzyme catalyzed efficient cleavage of both DNA strands. We conclude that Type I restriction enzymes require two restriction subunits to introduce DNA double-strand breaks, each providing one catalytic center for phosphodiester bond hydrolysis. Possible models for DNA cleavage are discussed.

  13. Genetic mapping of nth, a gene affecting endonuclease III (thymine glycol-DNA glycosylase) in Escherichia coli K-12.

    PubMed Central

    Weiss, B; Cunningham, R P

    1985-01-01

    The nth gene of Escherichia coli affects the production of endonuclease III, a glycosylase-endonuclease that attacks DNA damaged by oxidizing agents or by ionizing radiation. An nth insertion mutant and a deletion mutant were studied. nth is located between add and tyrS on the linkage map of E. coli K-12 and was 97% linked to tyrS in a transduction with phage P1. PMID:3886628

  14. Analysis of DNA structure and sequence requirements for Pseudomonas aeruginosa MutL endonuclease activity.

    PubMed

    Correa, Elisa M E; De Tullio, Luisina; Vélez, Pablo S; Martina, Mariana A; Argaraña, Carlos E; Barra, José L

    2013-12-01

    The hallmark of the mismatch repair system in bacterial and eukaryotic organisms devoid of MutH is the presence of a MutL homologue with endonuclease activity. The aim of this study was to analyse whether different DNA structures affect Pseudomonas aeruginosa MutL (PaMutL) endonuclease activity and to determine if a specific nucleotide sequence is required for this activity. Our results showed that PaMutL was able to nick covalently closed circular plasmids but not linear DNA at high ionic strengths, while the activity on linear DNA was only found below 60 mM salt. In addition, single strand DNA, ss/ds DNA boundaries and negatively supercoiling degree were not required for PaMutL nicking activity. Finally, the analysis of the incision sites revealed that PaMutL, as well as Bacillus thuringiensis MutL homologue, did not show DNA sequence specificity.

  15. Spectroelectrochemical insights into structural and redox properties of immobilized endonuclease III and its catalytically inactive mutant.

    PubMed

    Moe, Elin; Rollo, Filipe; Silveira, Célia M; Sezer, Murat; Hildebrandt, Peter; Todorovic, Smilja

    2018-01-05

    Endonuclease III is a Fe-S containing bifunctional DNA glycosylase which is involved in the repair of oxidation damaged DNA. Here we employ surface enhanced IR spectroelectrochemistry and electrochemistry to study the enzyme from the highly radiation- and desiccation-resistant bacterium Deinococcus radiodurans (DrEndoIII2). The experiments are designed to shed more light onto specific parameters that are currently proposed to govern damage search and recognition by endonucleases III. We demonstrate that electrostatic interactions required for the redox activation of DrEndoIII2 may result in high electric fields that alter its structural and thermodynamic properties. Analysis of inactive DrEndoIII2 (K132A/D150A double mutant) interacting with undamaged DNA, and the active enzyme interacting with damaged DNA also indicate that the electron transfer is modulated by subtle differences in the protein-DNA complex. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Molecular cloning and characterization of a cDNA encoding endonuclease from potato (Solanum tuberosum).

    PubMed

    Larsen, Knud

    2005-11-01

    A cDNA, StEN1, encoding a potato (Solanum tuberosum) endonuclease was cloned and sequenced. The nucleotide sequence of this clone contains an open reading frame of 906 nucleotides encoding a protein of 302 amino acids, and with a calculated molecular mass of 34.4kDa and a Pi of 5.6. The deduced StEN1 protein contains a putative signal sequence of 25 amino acid residues. The StEN1 encoded protein shows substantial homology to both plant and fungal endonucleases isolated and cloned from other sources. The highest identity (73%) was observed with AgCEL I from celery, Apium graveolens, ZEN1 from Zinnia elegans (69%) and DSA6 from daylily, Hemerocallis (68%). RT-PCR expression analysis demonstrated that the potato StEN1 gene is constitutively expressed in potato, although minor differences in expression level in different tissues were observed.

  17. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III

    SciTech Connect

    Gossett, J.; Lee, K.; Cunningham, R.P.; Doetsch, P.W.

    1988-04-05

    A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO/sub 4/-damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants.

  18. A second site specific endonuclease from Thermus thermophilus 111, Tth111II.

    PubMed Central

    Shinomiya, T; Kobayashi, M; Sato, S

    1980-01-01

    A second site specific endonuclease with novel specificity has been purified from Thermus thermophilus strain 111 and named Tth111II. The enzyme is active at temperature up to 80 degrees C and requires Mg2+ or Mn2+ for endonuclease activity. Tth111II cleaves phi X174RFDNA into 11 fragments and lambda NA into more than 25 fragments. From the 5'-terminal sequences of TthlllII fragments of phi X174RFDNA determined by the two dimensional homochromatography and the survey on nucleotide sequence of phi X174RFDNA, it was concluded that Tth111II recognizes the DNA sequence (see former index) and cleaves the sites as indicated by the arrows. Images PMID:6255411

  19. Modulation of the DNA scanning activity of the Micrococcus luteus UV endonuclease

    SciTech Connect

    Hamilton, R.W.; Lloyd, R.S. )

    1989-10-15

    Micrococcus luteus UV endonuclease incises DNA at the sites of ultraviolet (UV) light-induced pyrimidine dimers. The mechanism of incision has been previously shown to be a glycosylic bond cleavage at the 5'-pyrimidine of the dimer followed by an apyrimidine endonuclease activity which cleaves the phosphodiester backbone between the pyrimidines. The process by which M. luteus UV endonuclease locates pyrimidine dimers within a population of UV-irradiated plasmids was shown to occur, in vitro, by a processive or sliding mechanism on non-target DNA as opposed to a distributive or random hit mechanism. Form I plasmid DNA containing 25 dimers per molecule was incubated with M. luteus UV endonuclease in time course reactions. The three topological forms of plasmid DNA generated were analyzed by agarose gel electrophoresis. When the enzyme encounters a pyrimidine dimer, it is significantly more likely to make only the glycosylase cleavage as opposed to making both the glycosylic and phosphodiester bond cleavages. Thus, plasmids are accumulated with many alkaline-labile sites relative to single-stranded breaks. In addition, reactions were performed at both pH 8.0 and pH 6.0, in the absence of NaCl, as well as 25,100, and 250 mM NaCl. The efficiency of the DNA scanning reaction was shown to be dependent on both the ionic strength and pH of the reaction. At low ionic strengths, the reaction was shown to proceed by a processive mechanism and shifted to a distributive mechanism as the ionic strength of the reaction increased. Processivity at pH 8.0 is shown to be more sensitive to increases in ionic strength than reactions performed at pH 6.0.

  20. Phage T4 mobE promotes trans homing of the defunct homing endonuclease I-TevIII

    PubMed Central

    Wilson, Gavin W.; Edgell, David R.

    2009-01-01

    Homing endonucleases are site-specific DNA endonucleases that typically function as mobile genetic elements by introducing a double-strand break (DSB) in genomes that lack the endonuclease, resulting in a unidirectional gene conversion event that mobilizes the homing endonuclease gene and flanking DNA. Here, we characterize phage T4-encoded mobE, a predicted free-standing HNH family homing endonuclease. We show that mobE is promoterless and dependent on upstream transcription for expression, and that an internal intrinsic terminator regulates mobE transcript levels. Crucially, in vivo mapping experiments revealed a MobE-dependent, strand-specific nick in the non-coding strand of the nrdB gene of phage T2. An internal deletion of the predicted HNH catalytic motif of MobE abolishes nicking, and reduces high-frequency inheritance of mobE. Sequence polymorphisms of progeny phage that inherit mobE are consistent with DSB repair pathways. Significantly, we found that mobility of the neighboring I-TevIII, a defunct homing endonuclease encoded within a group I intron interrupting the nrdB gene of phage T4, was dependent on an intact mobE gene. Thus, our data indicate that the stagnant nrdB intron and I-TevIII are mobilized in trans as a consequence of a MobE-dependent gene conversion event, facilitating persistence of genetic elements that have no inherent means of promoting their own mobility. PMID:19773422

  1. Perpetuating the homing endonuclease life cycle: identification of mutations that modulate and change I-TevI cleavage preference

    PubMed Central

    Roy, Alexander C.; Wilson, Geoffrey G.; Edgell, David R.

    2016-01-01

    Homing endonucleases are sequence-tolerant DNA endonucleases that act as mobile genetic elements. The ability of homing endonucleases to cleave substrates with multiple nucleotide substitutions suggests a high degree of adaptability in that changing or modulating cleavage preference would require relatively few amino acid substitutions. Here, using directed evolution experiments with the GIY-YIG homing endonuclease I-TevI that targets the thymidylate synthase gene of phage T4, we readily isolated variants that dramatically broadened I-TevI cleavage preference, as well as variants that fine-tuned cleavage preference. By combining substitutions, we observed an ∼10 000-fold improvement in cleavage on some substrates not cleaved by the wild-type enzyme, correlating with a decrease in readout of information content at the cleavage site. Strikingly, we were able to change the cleavage preference of I-TevI to that of the isoschizomer I-BmoI which targets a different cleavage site in the thymidylate synthase gene, recapitulating the evolution of cleavage preference in this family of homing endonucleases. Our results define a strategy to isolate GIY-YIG nuclease domains with distinct cleavage preferences, and provide insight into how homing endonucleases may escape a dead-end life cycle in a population of saturated target sites by promoting transposition to different target sites. PMID:27387281

  2. Phage T4 mobE promotes trans homing of the defunct homing endonuclease I-TevIII.

    PubMed

    Wilson, Gavin W; Edgell, David R

    2009-11-01

    Homing endonucleases are site-specific DNA endonucleases that typically function as mobile genetic elements by introducing a double-strand break (DSB) in genomes that lack the endonuclease, resulting in a unidirectional gene conversion event that mobilizes the homing endonuclease gene and flanking DNA. Here, we characterize phage T4-encoded mobE, a predicted free-standing HNH family homing endonuclease. We show that mobE is promoterless and dependent on upstream transcription for expression, and that an internal intrinsic terminator regulates mobE transcript levels. Crucially, in vivo mapping experiments revealed a MobE-dependent, strand-specific nick in the non-coding strand of the nrdB gene of phage T2. An internal deletion of the predicted HNH catalytic motif of MobE abolishes nicking, and reduces high-frequency inheritance of mobE. Sequence polymorphisms of progeny phage that inherit mobE are consistent with DSB repair pathways. Significantly, we found that mobility of the neighboring I-TevIII, a defunct homing endonuclease encoded within a group I intron interrupting the nrdB gene of phage T4, was dependent on an intact mobE gene. Thus, our data indicate that the stagnant nrdB intron and I-TevIII are mobilized in trans as a consequence of a MobE-dependent gene conversion event, facilitating persistence of genetic elements that have no inherent means of promoting their own mobility.

  3. Crystal Structure of the Homing Endonuclease I-CvuI Provides a New Template for Genome Modification*

    PubMed Central

    Molina, Rafael; Redondo, Pilar; López-Méndez, Blanca; Villate, Maider; Merino, Nekane; Blanco, Francisco J.; Valton, Julien; Grizot, Silvestre; Duchateau, Phillipe; Prieto, Jesús; Montoya, Guillermo

    2015-01-01

    Homing endonucleases recognize and generate a DNA double-strand break, which has been used to promote gene targeting. These enzymes recognize long DNA stretches; they are highly sequence-specific enzymes and display a very low frequency of cleavage even in complete genomes. Although a large number of homing endonucleases have been identified, the landscape of possible target sequences is still very limited to cover the complexity of the whole eukaryotic genome. Therefore, the finding and molecular analysis of homing endonucleases identified but not yet characterized may widen the landscape of possible target sequences. The previous characterization of protein-DNA interaction before the engineering of new homing endonucleases is essential for further enzyme modification. Here we report the crystal structure of I-CvuI in complex with its target DNA and with the target DNA of I-CreI, a homologue enzyme widely used in genome engineering. To characterize the enzyme cleavage mechanism, we have solved the I-CvuI DNA structures in the presence of non-catalytic (Ca2+) and catalytic ions (Mg2+). We have also analyzed the metal dependence of DNA cleavage using Mg2+ ions at different concentrations ranging from non-cleavable to cleavable concentrations obtained from in vitro cleavage experiments. The structure of I-CvuI homing endonuclease expands the current repertoire for engineering custom specificities, both by itself as a new scaffold alone and in hybrid constructs with other related homing endonucleases or other DNA-binding protein templates. PMID:26363068

  4. Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns.

    PubMed

    Cook, Andrew E; Meyers, Paul R

    2003-11-01

    A rapid method for identifying filamentous actinomycete genera was developed based on 16S rRNA gene restriction fragment patterns. The patterns were generated by using specific restriction endonucleases to perform in silico digestions on the 16S rRNA gene sequences of all validly published filamentous actinomycete species. The method was applied to identifying actinomycete isolates from soil. Amplified 16S rDNA of soil actinomycetes was restricted with selected endonucleases and electrophoresed on agarose gels. The restriction fragment patterns of the unknown isolates were easily compared to the established patterns. Significantly, the genus Streptomyces could be differentiated from all other actinomycete genera by using only four restriction endonucleases, Sau3AI, AsnI, KpnI and SphI. This could be achieved in a time period of as little as a week, following PCR-template DNA isolation by a simple method. The identification method allowed unknown, non-Streptomyces soil isolates to be identified to a genus or small subgroup of genera. The genera in these subgroups could, in some cases, be distinguished by virtue of colony-morphology differences.

  5. Structural and Thermodynamic Basis for Enhanced DNA Binding by a Promiscuous Mutant EcoRI Endonuclease

    PubMed Central

    Sapienza, Paul J.; Rosenberg, John M.; Jen-Jacobson, Linda

    2008-01-01

    SUMMARY Promiscuous mutant EcoRI endonucleases bind to the canonical site GAATTC more tightly than does the wild-type endonuclease, yet cleave variant (EcoRI*) sites more rapidly than does wild-type. The crystal structure of the A138T promiscuous mutant homodimer in complex with a GAATTC site is nearly identical to that of the wild-type complex, except that the Thr138 side chains make novel packing interactions with bases in the 5′-flanking regions outside the recognition hexanucleotide, while excluding two bound water molecules seen in the wild-type complex. Molecular dynamics simulations confirm exclusion of these waters. The structure and simulations suggest multiple possible reasons why binding of A138T protein to the GAATTC site has ΔS° more favorable and ΔH° less favorable than for wild-type endonuclease binding. The novel interactions of Thr138 with flanking bases may permit A138T, unlike wild-type enzyme, to form complexes with EcoRI* sites that structurally resemble the specific wild-type complex with GAATTC. PMID:17997963

  6. Shade avoidance 6 encodes an Arabidopsis flap endonuclease required for maintenance of genome integrity and development

    PubMed Central

    Zhang, Yijuan; Wen, Chunhong; Liu, Songbai; Zheng, Li; Shen, Binghui; Tao, Yi

    2016-01-01

    Flap endonuclease-1 (FEN1) belongs to the Rad2 family of structure-specific nucleases. It is required for several DNA metabolic pathways, including DNA replication and DNA damage repair. Here, we have identified a shade avoidance mutant, sav6, which reduces the mRNA splicing efficiency of SAV6.