Sample records for restriction enzyme analysis

  1. MULTIPLE ENZYME RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS FOR HIGH RESOLUTION DISTINCTION OF PSEUDOMONAS (SENSU STRICTO) 16S RRNA GENES

    EPA Science Inventory

    Pseudomonas specific 16S rDNA PCR amplification and multiple enzyme restriction fragment length polymorphism (MERFLP) analysis using a single digestion mixture of Alu I, Hinf I, Rsa I, and Tru 9I distinguished 150 published sequences and reference strains of authentic Pseudomonas...

  2. Alteration of gene expression by restriction enzymes electroporated into plant cells.

    PubMed

    Ashraf, M; Altschuler, M; Galasinski, S; Griffiths, T D

    1993-06-01

    The alteration in the expression of a beta-glucuronidase (GUS) reporter gene was used to monitor the effect of restriction endonucleases electroporated into the tobacco (Nicotiana tabacum L.) protoplasts. Restriction enzyme (RE) Hind III which does not have a recognition site within the gene cassette, had little effect on enzyme activity. In contrast restriction endonucleases Hae III and Sau3A1 which possess 8 and 16 recognition sites in the GUS cassette, were found to reduce the enzyme activity by 89% and 94% respectively when compared to control electroporations. Restriction-site mutation analysis (RSM) and Southern blot analysis indicated the enzymatic degradation of GUS coding sequence by the REs Hae III and Sau3A1. Results of this study suggest that on electroporation, REs can enter into plant cells and alter the expression of the GUS gene. The alteration of gene expression is thus correlated with the digestion of GUS template DNA. Future applications of this technique could include addressing fundamental questions with regard to DNA repair, site-specific recombination, identifying mutations, insertional mutagenesis, enhancement of stable transformation and gene tagging in plants.

  3. msgbsR: An R package for analysing methylation-sensitive restriction enzyme sequencing data.

    PubMed

    Mayne, Benjamin T; Leemaqz, Shalem Y; Buckberry, Sam; Rodriguez Lopez, Carlos M; Roberts, Claire T; Bianco-Miotto, Tina; Breen, James

    2018-02-01

    Genotyping-by-sequencing (GBS) or restriction-site associated DNA marker sequencing (RAD-seq) is a practical and cost-effective method for analysing large genomes from high diversity species. This method of sequencing, coupled with methylation-sensitive enzymes (often referred to as methylation-sensitive restriction enzyme sequencing or MRE-seq), is an effective tool to study DNA methylation in parts of the genome that are inaccessible in other sequencing techniques or are not annotated in microarray technologies. Current software tools do not fulfil all methylation-sensitive restriction sequencing assays for determining differences in DNA methylation between samples. To fill this computational need, we present msgbsR, an R package that contains tools for the analysis of methylation-sensitive restriction enzyme sequencing experiments. msgbsR can be used to identify and quantify read counts at methylated sites directly from alignment files (BAM files) and enables verification of restriction enzyme cut sites with the correct recognition sequence of the individual enzyme. In addition, msgbsR assesses DNA methylation based on read coverage, similar to RNA sequencing experiments, rather than methylation proportion and is a useful tool in analysing differential methylation on large populations. The package is fully documented and available freely online as a Bioconductor package ( https://bioconductor.org/packages/release/bioc/html/msgbsR.html ).

  4. A simple procedure for parallel sequence analysis of both strands of 5'-labeled DNA.

    PubMed

    Razvi, F; Gargiulo, G; Worcel, A

    1983-08-01

    Ligation of a 5'-labeled DNA restriction fragment results in a circular DNA molecule carrying the two 32Ps at the reformed restriction site. Double digestions of the circular DNA with the original enzyme and a second restriction enzyme cleavage near the labeled site allows direct chemical sequencing of one 5'-labeled DNA strand. Similar double digestions, using an isoschizomer that cleaves differently at the 32P-labeled site, allows direct sequencing of the now 3'-labeled complementary DNA strand. It is possible to directly sequence both strands of cloned DNA inserts by using the above protocol and a multiple cloning site vector that provides the necessary restriction sites. The simultaneous and parallel visualization of both DNA strands eliminates sequence ambiguities. In addition, the labeled circular molecules are particularly useful for single-hit DNA cleavage studies and DNA footprint analysis. As an example, we show here an analysis of the micrococcal nuclease-induced breaks on the two strands of the somatic 5S RNA gene of Xenopus borealis, which suggests that the enzyme may recognize and cleave small AT-containing palindromes along the DNA helix.

  5. CAPRRESI: Chimera Assembly by Plasmid Recovery and Restriction Enzyme Site Insertion.

    PubMed

    Santillán, Orlando; Ramírez-Romero, Miguel A; Dávila, Guillermo

    2017-06-25

    Here, we present chimera assembly by plasmid recovery and restriction enzyme site insertion (CAPRRESI). CAPRRESI benefits from many strengths of the original plasmid recovery method and introduces restriction enzyme digestion to ease DNA ligation reactions (required for chimera assembly). For this protocol, users clone wildtype genes into the same plasmid (pUC18 or pUC19). After the in silico selection of amino acid sequence regions where chimeras should be assembled, users obtain all the synonym DNA sequences that encode them. Ad hoc Perl scripts enable users to determine all synonym DNA sequences. After this step, another Perl script searches for restriction enzyme sites on all synonym DNA sequences. This in silico analysis is also performed using the ampicillin resistance gene (ampR) found on pUC18/19 plasmids. Users design oligonucleotides inside synonym regions to disrupt wildtype and ampR genes by PCR. After obtaining and purifying complementary DNA fragments, restriction enzyme digestion is accomplished. Chimera assembly is achieved by ligating appropriate complementary DNA fragments. pUC18/19 vectors are selected for CAPRRESI because they offer technical advantages, such as small size (2,686 base pairs), high copy number, advantageous sequencing reaction features, and commercial availability. The usage of restriction enzymes for chimera assembly eliminates the need for DNA polymerases yielding blunt-ended products. CAPRRESI is a fast and low-cost method for fusing protein-coding genes.

  6. Functional cooperation between exonucleases and endonucleases—basis for the evolution of restriction enzymes

    PubMed Central

    Raghavendra, Nidhanapathi K.; Rao, Desirazu N.

    2003-01-01

    Many types of restriction enzymes cleave DNA away from their recognition site. Using the type III restriction enzyme, EcoP15I, which cleaves DNA 25–27 bp away from its recognition site, we provide evidence to show that an intact recognition site on the cleaved DNA sequesters the restriction enzyme and decreases the effective concentration of the enzyme. EcoP15I restriction enzyme is shown here to perform only a single round of DNA cleavage. Significantly, we show that an exonuclease activity is essential for EcoP15I restriction enzyme to perform multiple rounds of DNA cleavage. This observation may hold true for all restriction enzymes cleaving DNA sufficiently far away from their recognition site. Our results highlight the importance of functional cooperation in the modulation of enzyme activity. Based on results presented here and other data on well-characterised restriction enzymes, a functional evolutionary hierarchy of restriction enzymes is discussed. PMID:12655005

  7. Identification of blood meal sources of Lutzomyia longipalpis using polymerase chain reaction-restriction fragment length polymorphism analysis of the cytochrome B gene

    PubMed Central

    Soares, Vítor Yamashiro Rocha; da Silva, Jailthon Carlos; da Silva, Kleverton Ribeiro; Cruz, Maria do Socorro Pires e; Santos, Marcos Pérsio Dantas; Ribolla, Paulo Eduardo Martins; Alonso, Diego Peres; Coelho, Luiz Felipe Leomil; Costa, Dorcas Lamounier; Costa, Carlos Henrique Nery

    2014-01-01

    An analysis of the dietary content of haematophagous insects can provide important information about the transmission networks of certain zoonoses. The present study evaluated the potential of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the mitochondrial cytochrome B (cytb) gene to differentiate between vertebrate species that were identified as possible sources of sandfly meals. The complete cytb gene sequences of 11 vertebrate species available in the National Center for Biotechnology Information database were digested with Aci I, Alu I, Hae III and Rsa I restriction enzymes in silico using Restriction Mapper software. The cytb gene fragment (358 bp) was amplified from tissue samples of vertebrate species and the dietary contents of sandflies and digested with restriction enzymes. Vertebrate species presented a restriction fragment profile that differed from that of other species, with the exception of Canis familiaris and Cerdocyon thous. The 358 bp fragment was identified in 76 sandflies. Of these, 10 were evaluated using the restriction enzymes and the food sources were predicted for four: Homo sapiens (1), Bos taurus (1) and Equus caballus (2). Thus, the PCR-RFLP technique could be a potential method for identifying the food sources of arthropods. However, some points must be clarified regarding the applicability of the method, such as the extent of DNA degradation through intestinal digestion, the potential for multiple sources of blood meals and the need for greater knowledge regarding intraspecific variations in mtDNA. PMID:24821056

  8. Species determination within Staphylococcus genus by extended PCR-restriction fragment length polymorphism of saoC gene.

    PubMed

    Bukowski, Michal; Polakowska, Klaudia; Ilczyszyn, Weronika M; Sitarska, Agnieszka; Nytko, Kinga; Kosecka, Maja; Miedzobrodzki, Jacek; Dubin, Adam; Wladyka, Benedykt

    2015-01-01

    Genetic methods based on PCR-restriction fragment length polymorphism (RFLP) are widely used for microbial species determination. In this study, we present the application of saoC gene as an effective tool for species determination and within-species diversity analysis for Staphylococcus genus. The unique sequence diversity of saoC allows us to apply four restriction enzymes to obtain RFLP patterns, which appear highly distinctive even among closely related species as well as atypical isolates of environmental origin. Such patterns were successfully obtained for 26 species belonging to Staphylococcus genus. What is more, tracing polymorphisms detected by different restriction enzymes allowed for basic phylogeny analysis for Staphylococcus aureus, which is potentially applicable for other staphylococcal species. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Restriction Enzyme Mapping: A Simple Student Practical.

    ERIC Educational Resources Information Center

    Higgins, Stephen J.; And Others

    1990-01-01

    An experiment that uses the recombinant plasmid pX1108 to illustrate restriction mapping is described. The experiment involves three restriction enzymes and employs single and double restriction enzyme digestions. A list of needed materials, procedures, safety precautions, results, and discussion are included. (KR)

  10. Identification and characterization of Serpulina hyodysenteriae by restriction enzyme analysis and Southern blot analysis.

    PubMed Central

    Sotiropoulos, C; Coloe, P J; Smith, S C

    1994-01-01

    Chromosomal DNA restriction enzyme analysis and Southern blot hybridization were used to characterize Serpulina hyodysenteriae strains. When chromosomal DNAs from selected strains (reference serotypes) of S. hyodysenteriae were digested with the restriction endonuclease Sau3A and hybridized with a 1.1-kb S. hyodysenteriae-specific DNA probe, a common 3-kb band was always detected in S. hyodysenteriae strains but was absent from Serpulina innocens strains. When the chromosomal DNA was digested with the restriction endonuclease Asp 700 and hybridized with two S. hyodysenteriae-specific DNA probes (0.75 and 1.1 kb of DNA), distinct hybridization patterns for each S. hyodysenteriae reference strain and the Australian isolate S. hyodysenteriae 5380 were detected. Neither the 1.1-kb nor the 0.75-kb DNA probe hybridized with Asp 700- or Sau3A-digested S. innocens chromosomal DNA. The presence of the 3-kb Sau3A DNA fragment in S. hyodysenteriae reference strains from diverse geographical locations shows that this fragment is conserved among S. hyodysenteriae strains and can be used as a species-specific marker. Restriction endonuclease analysis and Southern blot hybridization with these well-defined DNA probes are reliable and accurate methods for species-specific and strain-specific identification of S. hyodysenteriae. Images PMID:7914209

  11. New restriction enzymes discovered from Escherichia coli clinical strains using a plasmid transformation method

    PubMed Central

    Kasarjian, Julie K. A.; Iida, Masatake; Ryu, Junichi

    2003-01-01

    The presence of restriction enzymes in bacterial cells has been predicted by either classical phage restriction-modification (R-M) tests, direct in vitro enzyme assays or more recently from bacterial genome sequence analysis. We have applied phage R-M test principles to the transformation of plasmid DNA and established a plasmid R-M test. To validate this test, six plasmids that contain BamHI fragments of phage lambda DNA were constructed and transformed into Escherichia coli strains containing known R-M systems including: type I (EcoBI, EcoAI, Eco124I), type II (HindIII) and type III (EcoP1I). Plasmid DNA with a single recognition site showed a reduction of relative efficiency of transformation (EOT = 10–1–10–2). When multiple recognition sites were present, greater reductions in EOT values were observed. Once established in the cell, the plasmids were subjected to modification (EOT = 1.0). We applied this test to screen E.coli clinical strains and detected the presence of restriction enzymes in 93% (14/15) of cells. Using additional subclones and the computer program, RM Search, we identified four new restriction enzymes, Eco377I, Eco585I, Eco646I and Eco777I, along with their recognition sequences, GGA(8N)ATGC, GCC(6N)TGCG, CCA(7N)CTTC, and GGA(6N)TATC, respectively. Eco1158I, an isoschizomer of EcoBI, was also found in this study. PMID:12595571

  12. Increasing Genome Sampling and Improving SNP Genotyping for Genotyping-by-Sequencing with New Combinations of Restriction Enzymes.

    PubMed

    Fu, Yong-Bi; Peterson, Gregory W; Dong, Yibo

    2016-04-07

    Genotyping-by-sequencing (GBS) has emerged as a useful genomic approach for exploring genome-wide genetic variation. However, GBS commonly samples a genome unevenly and can generate a substantial amount of missing data. These technical features would limit the power of various GBS-based genetic and genomic analyses. Here we present software called IgCoverage for in silico evaluation of genomic coverage through GBS with an individual or pair of restriction enzymes on one sequenced genome, and report a new set of 21 restriction enzyme combinations that can be applied to enhance GBS applications. These enzyme combinations were developed through an application of IgCoverage on 22 plant, animal, and fungus species with sequenced genomes, and some of them were empirically evaluated with different runs of Illumina MiSeq sequencing in 12 plant species. The in silico analysis of 22 organisms revealed up to eight times more genome coverage for the new combinations consisted of pairing four- or five-cutter restriction enzymes than the commonly used enzyme combination PstI + MspI. The empirical evaluation of the new enzyme combination (HinfI + HpyCH4IV) in 12 plant species showed 1.7-6 times more genome coverage than PstI + MspI, and 2.3 times more genome coverage in dicots than monocots. Also, the SNP genotyping in 12 Arabidopsis and 12 rice plants revealed that HinfI + HpyCH4IV generated 7 and 1.3 times more SNPs (with 0-16.7% missing observations) than PstI + MspI, respectively. These findings demonstrate that these novel enzyme combinations can be utilized to increase genome sampling and improve SNP genotyping in various GBS applications. Copyright © 2016 Fu et al.

  13. SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping.

    PubMed

    Chang, Hsueh-Wei; Cheng, Yu-Huei; Chuang, Li-Yeh; Yang, Cheng-Hong

    2010-04-08

    PCR-restriction fragment length polymorphism (RFLP) assay is a cost-effective method for SNP genotyping and mutation detection, but the manual mining for restriction enzyme sites is challenging and cumbersome. Three years after we constructed SNP-RFLPing, a freely accessible database and analysis tool for restriction enzyme mining of SNPs, significant improvements over the 2006 version have been made and incorporated into the latest version, SNP-RFLPing 2. The primary aim of SNP-RFLPing 2 is to provide comprehensive PCR-RFLP information with multiple functionality about SNPs, such as SNP retrieval to multiple species, different polymorphism types (bi-allelic, tri-allelic, tetra-allelic or indels), gene-centric searching, HapMap tagSNPs, gene ontology-based searching, miRNAs, and SNP500Cancer. The RFLP restriction enzymes and the corresponding PCR primers for the natural and mutagenic types of each SNP are simultaneously analyzed. All the RFLP restriction enzyme prices are also provided to aid selection. Furthermore, the previously encountered updating problems for most SNP related databases are resolved by an on-line retrieval system. The user interfaces for functional SNP analyses have been substantially improved and integrated. SNP-RFLPing 2 offers a new and user-friendly interface for RFLP genotyping that can be used in association studies and is freely available at http://bio.kuas.edu.tw/snp-rflping2.

  14. Restriction enzyme cutting site distribution regularity for DNA looping technology.

    PubMed

    Shang, Ying; Zhang, Nan; Zhu, Pengyu; Luo, Yunbo; Huang, Kunlun; Tian, Wenying; Xu, Wentao

    2014-01-25

    The restriction enzyme cutting site distribution regularity and looping conditions were studied systematically. We obtained the restriction enzyme cutting site distributions of 13 commonly used restriction enzymes in 5 model organism genomes through two novel self-compiled software programs. All of the average distances between two adjacent restriction sites fell sharply with increasing statistic intervals, and most fragments were 0-499 bp. A shorter DNA fragment resulted in a lower looping rate, which was also directly proportional to the DNA concentration. When the length was more than 500 bp, the concentration did not affect the looping rate. Therefore, the best known fragment length was longer than 500 bp, and did not contain the restriction enzyme cutting sites which would be used for digestion. In order to make the looping efficiencies reach nearly 100%, 4-5 single cohesive end systems were recommended to digest the genome separately. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Identification of Pork Contamination in Meatballs of Indonesia Local Market Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis

    PubMed Central

    Erwanto, Yuny; Abidin, Mohammad Zainal; Sugiyono, Eko Yasin Prasetyo Muslim; Rohman, Abdul

    2014-01-01

    This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment. PMID:25178301

  16. Identification of Pork Contamination in Meatballs of Indonesia Local Market Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis.

    PubMed

    Erwanto, Yuny; Abidin, Mohammad Zainal; Sugiyono, Eko Yasin Prasetyo Muslim; Rohman, Abdul

    2014-10-01

    This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment.

  17. Biomolecular computers with multiple restriction enzymes.

    PubMed

    Sakowski, Sebastian; Krasinski, Tadeusz; Waldmajer, Jacek; Sarnik, Joanna; Blasiak, Janusz; Poplawski, Tomasz

    2017-01-01

    The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann "bottleneck". Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro's group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we propose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer based on the use of multiple restriction enzymes is presented. We use this method to construct multistate, biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware. We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of four endonucleases.

  18. Restriction enzyme body doubles and PCR cloning: on the general use of type IIs restriction enzymes for cloning.

    PubMed

    Tóth, Eszter; Huszár, Krisztina; Bencsura, Petra; Kulcsár, Péter István; Vodicska, Barbara; Nyeste, Antal; Welker, Zsombor; Tóth, Szilvia; Welker, Ervin

    2014-01-01

    The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease--a Body Double of the Type IIP enzyme--is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program (http://group.szbk.u-szeged.hu/welkergr/body_double/index.html) for the selection of suitable Body Double enzymes and the design of the appropriate primers.

  19. Genetic differentiation of Colletotrichum gloeosporioides and C. truncatum associated with Anthracnose disease of papaya (Carica papaya L.) and bell pepper (Capsium annuum L.) based on ITS PCR-RFLP fingerprinting.

    PubMed

    Maharaj, Ariana; Rampersad, Sephra N

    2012-03-01

    Members of the genus Colletotrichum include some of the most economically important fungal pathogens in the world. Accurate diagnosis is critical to devising disease management strategies. Two species, Colletotrichum gloeosporioides and C. truncatum, are responsible for anthracnose disease in papaya (Carica papaya L.) and bell pepper (Capsicum annuum L.) in Trinidad. The ITS1-5.8S-ITS2 region of 48 Colletotrichum isolates was sequenced, and the ITS PCR products were analyzed by PCR-RFLP analysis. Restriction site polymorphisms generated from 11 restriction enzymes enabled the identification of specific enzymes that were successful in distinguishing between C. gloeosporioides and C. truncatum isolates. Species-specific restriction fragment length polymorphisms generated by the enzymes AluI, HaeIII, PvuII, RsaI, and Sau3A were used to consistently resolve C. gloeosporioides and C. truncatum isolates from papaya. AluI, ApaI, PvuII, RsaI, and SmaI reliably separated isolates of C. gloeosporioides and C. truncatum from bell pepper. PvuII, RsaI, and Sau3A were also capable of distinguishing among the C. gloeosporioides isolates from papaya based on the different restriction patterns that were obtained as a result of intra-specific variation in restriction enzyme recognition sites in the ITS1-5.8S-ITS2 rDNA region. Of all the isolates tested, C. gloeosporioides from papaya also had the highest number of PCR-RFLP haplotypes. Cluster analysis of sequence and PCR-RFLP data demonstrated that all C. gloeosporioides and C. truncatum isolates clustered separately into species-specific clades regardless of host species. Phylograms also revealed consistent topologies which suggested that the genetic distances for PCR-RFLP-generated data were comparable to that of ITS sequence data. ITS PCR-RFLP fingerprinting is a rapid and reliable method to identify and differentiate between Colletotrichum species.

  20. Genotypic analysis of strains of mutans streptococci by pulsed-field gel electrophoresis.

    PubMed

    Mineyama, R; Yoshino, S; Fukushima, K

    2004-01-01

    The species and serotypes of various strains of S. mutans and S. sobrinus were characterized by pulsed-field gel electrophoresis after the genomic DNA from the various strains had been digested with five restriction enzymes (EcoR I, Xba I, Hind III, Sfi I and BssH II) separately. Among these restriction enzymes, BssH II was very useful for the characterization of species and serotypes and, in particular, digestion discriminated between serotypes d and g. The restriction patterns obtained from the genomic DNA of isolates isolated from children's saliva were essentially identical to those from the genomic DNA of the standard laboratory strains. Patterns of BssH II digests of the genomic DNA of 10 isolates identified as S. sobrinus were characteristic of serotype g of the standard laboratory strains. Our results indicate that digestion with BssH II and subsequence analysis by pulsed-field gel electrophoresis should be useful for the characterization of species and serotypes and for epidemiological studies of mutans streptococci.

  1. Biomolecular computers with multiple restriction enzymes

    PubMed Central

    Sakowski, Sebastian; Krasinski, Tadeusz; Waldmajer, Jacek; Sarnik, Joanna; Blasiak, Janusz; Poplawski, Tomasz

    2017-01-01

    Abstract The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we propose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer based on the use of multiple restriction enzymes is presented. We use this method to construct multistate, biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware. We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of four endonucleases. PMID:29064510

  2. Medium-sized tandem repeats represent an abundant component of the Drosophila virilis genome.

    PubMed

    Abdurashitov, Murat A; Gonchar, Danila A; Chernukhin, Valery A; Tomilov, Victor N; Tomilova, Julia E; Schostak, Natalia G; Zatsepina, Olga G; Zelentsova, Elena S; Evgen'ev, Michael B; Degtyarev, Sergey K H

    2013-11-09

    Previously, we developed a simple method for carrying out a restriction enzyme analysis of eukaryotic DNA in silico, based on the known DNA sequences of the genomes. This method allows the user to calculate lengths of all DNA fragments that are formed after a whole genome is digested at the theoretical recognition sites of a given restriction enzyme. A comparison of the observed peaks in distribution diagrams with the results from DNA cleavage using several restriction enzymes performed in vitro have shown good correspondence between the theoretical and experimental data in several cases. Here, we applied this approach to the annotated genome of Drosophila virilis which is extremely rich in various repeats. Here we explored the combined approach to perform the restriction analysis of D. virilis DNA. This approach enabled to reveal three abundant medium-sized tandem repeats within the D. virilis genome. While the 225 bp repeats were revealed previously in intergenic non-transcribed spacers between ribosomal genes of D. virilis, two other families comprised of 154 bp and 172 bp repeats were not described. Tandem Repeats Finder search demonstrated that 154 bp and 172 bp units are organized in multiple clusters in the genome of D. virilis. Characteristically, only 154 bp repeats derived from Helitron transposon are transcribed. Using in silico digestion in combination with conventional restriction analysis and sequencing of repeated DNA fragments enabled us to isolate and characterize three highly abundant families of medium-sized repeats present in the D. virilis genome. These repeats comprise a significant portion of the genome and may have important roles in genome function and structural integrity. Therefore, we demonstrated an approach which makes possible to investigate in detail the gross arrangement and expression of medium-sized repeats basing on sequencing data even in the case of incompletely assembled and/or annotated genomes.

  3. Parapoxvirus papillomatosis in the muskoxen (Ovibos moschatus): genetical differences between the virus causing new outbreak in a vaccinated herd, the vaccine virus and a local orf virus.

    PubMed

    Moens, U; Wold, I; Mathiesen, S D; Jørgensen, T; Sørensen, D; Traavik, T

    1990-01-01

    Since 1981 a domesticated muskoxen herd had been successfully vaccinated against papillomatosis with homogenated, glutaraldehyde inactivated papilloma tissue. In the fall of 1985 a new clinical outbreak of disease occurred, affecting previously infected as well as vaccinated animals. The purification of parapox virions directly from papilloma tissue and orf scabs collected in a local sheep farm was followed by restriction endonuclease analysis of viral DNA. The morphological identity of purified virus was controlled by electron microscopy. Comparison of restriction endonuclease digests (10 different enzymes) by gel electrophoresis demonstrated that the muskoxen parapoxvirus from the new outbreak 1985 differed considerably from the 2 other isolates (muskoxen 1981 and local orf). The latter viruses demonstrated a high degree of homology, but differences were evident after digestion with the enzyme EcoRI. During metrizamide gradient purification minor bands containing morphologically intact virions were isolated in addition to the major fractions. The restriction enzyme digests indicated that the virions of the minor bands differed from those in the major bands.

  4. Molecular characterization of the probiotic strain Bacillus cereus var. toyoi NCIMB 40112 and differentiation from food poisoning strains.

    PubMed

    Klein, Günter

    2011-07-01

    Bacillus cereus var. toyoi strain NCIMB 40112 (Toyocerin), a probiotic authorized in the European Union as feed additive for swine, bovines, poultry, and rabbits, was characterized by DNA fingerprinting applying pulsed-field gel electrophoresis and multilocus sequence typing and was compared with reference strains (of clinical and environmental origins). The probiotic strain was clearly characterized by pulsed-field gel electrophoresis using the restriction enzymes Apa I and Sma I resulting in unique DNA patterns. The comparison to the clinical reference strain B. cereus DSM 4312 was done with the same restriction enzymes, and again a clear differentiation of the two strains was possible by the resulting DNA patterns. The use of the restriction enzymes Apa I and Sma I is recommended for further studies. Furthermore, multilocus sequence typing analysis revealed a sequence type (ST 111) that was different from all known STs of B. cereus strains from food poisoning incidents. Thus, a strain characterization and differentiation from food poisoning strains for the probiotic strain was possible. Copyright ©, International Association for Food Protection

  5. Preliminary Identification and Typing of Pathogenic and Toxigenic Fusarium Species Using Restriction Digestion of ITS1-5.8S rDNA-ITS2 Region.

    PubMed

    Mirhendi, H; Ghiasian, A; Vismer, Hf; Asgary, Mr; Jalalizand, N; Arendrup, Mc; Makimura, K

    2010-01-01

    Fusarium species are capable of causing a wide range of crop plants infections as well as uncommon human infections. Many species of the genus produce mycotoxins, which are responsible for acute or chronic diseases in animals and humans. Identification of Fusaria to the species level is necessary for biological, epidemiological, pathological, and toxicological purposes. In this study, we undertook a computer-based analysis of ITS1-5.8SrDNA-ITS2 in 192 GenBank sequences from 36 Fusarium species to achieve data for establishing a molecular method for specie-specific identification. Sequence data and 610 restriction enzymes were analyzed for choosing RFLP profiles, and subsequently designed and validated a PCR-restriction enzyme system for identification and typing of species. DNA extracted from 32 reference strains of 16 species were amplified using ITS1 and ITS4 universal primers followed by sequencing and restriction enzyme digestion of PCR products. The following 3 restriction enzymes TasI, ItaI and CfoI provide the best discriminatory power. Using ITS1 and ITS4 primers a product of approximately 550bp was observed for all Fusarium strains, as expected regarding the sequence analyses. After RFLP of the PCR products, some species were definitely identified by the method and some strains had different patterns in same species. Our profile has potential not only for identification of species, but also for genotyping of strains. On the other hand, some Fusarium species were 100% identical in their ITS-5.8SrDNA-ITS2 sequences, therefore differentiation of these species is impossible regarding this target alone. ITS-PCR-RFLP method might be useful for preliminary differentiation and typing of most common Fusarium species.

  6. Modified Terminal Restriction Fragment Analysis for Quantifying Telomere Length Using In-gel Hybridization.

    PubMed

    Jenkins, Frank J; Kerr, Charles M; Fouquerel, Elise; Bovbjerg, Dana H; Opresko, Patricia L

    2017-07-10

    There are several different techniques for measuring telomere length, each with their own advantages and disadvantages. The traditional approach, Telomere Restriction Fragment (TRF) analysis, utilizes a DNA hybridization technique whereby genomic DNA samples are digested with restriction enzymes, leaving behind telomere DNA repeats and some sub-telomeric DNA. These are separated by agarose gel electrophoresis, transferred to a filter membrane and hybridized to oligonucleotide probes tagged with either chemiluminescence or radioactivity to visualize telomere restriction fragments. This approach, while requiring a larger quantity of DNA than other techniques such as PCR, can measure the telomere length distribution of a population of cells and allows measurement expressed in absolute kilobases. This manuscript demonstrates a modified DNA hybridization procedure for determining telomere length. Genomic DNA is first digested with restriction enzymes (that do not cut telomeres) and separated by agarose gel electrophoresis. The gel is then dried and the DNA is denatured and hybridized in situ to a radiolabeled oligonucleotide probe. This in situ hybridization avoids loss of telomere DNA and improves signal intensity. Following hybridization, the gels are imaged utilizing phosphor screens and the telomere length is quantified using a graphing program. This procedure was developed by the laboratories of Drs. Woodring Wright and Jerry Shay at the University of Texas Southwestern 1 , 2 . Here, we present a detailed description of this procedure, with some modifications.

  7. Restriction fragment length polymorphism of the major histocompatibility complex of the dog.

    PubMed

    Sarmiento, U M; Storb, R F

    1988-01-01

    Human major histocompatibility complex (HLA) cDNA probes were used to analyze the restriction fragment length polymorphism (RFLP) of the DLA-D region in dogs. Genomic DNA from peripheral blood leucocytes of 23 unrelated DLA-D-homozygous dogs representing nine DLA-D types (defined by mixed leucocyte reaction) was digested with restriction enzymes (Bam HI, Eco RI, Hind III, Pvu II, Taq I, Rsa I, Msp I, Pst I, and Bgl II), separated by agarose gel electrophoresis, and transferred onto Biotrace membrane. The Southern blots were successively hybridized with radiolabeled HLA cDNA probes corresponding to DR, DQ, DP, and DO beta genes. The autoradiograms for all nine enzyme digests displayed multiple bands with the DRb, DQb, and DPb probes while the DOb probe hybridized with one to two bands. The RFLP patterns were highly polymorphic but consistent within each DLA-D type. Standard RFLP patterns were established for nine DLA-D types which could be discriminated from each other by using two enzymes (Rsa I and Pst I) and the HLA-DPb probe. Cluster analysis of the polymorphic restriction fragments detected by the DRb probe revealed four closely related supertypic groups or DLA-DR families: Dw3 + Dw4 + D1, Dw8 + D10, D7 + D16 + D9, and Dw1. This study provides the basis for DLA-D genotyping at a population level by RFLP analysis. These results also suggest that the genetic organization of the DLA-D region may closely resemble that of the HLA complex.

  8. Detection of the Single Nucleotide Polymorphism at Position rs2735940 in the Human Telomerase Reverse Transcriptase Gene by the Introduction of a New Restriction Enzyme Site for the PCR-RFLP Assay.

    PubMed

    Wang, Sihua; Ding, Mingcui; Duan, Xiaoran; Wang, Tuanwei; Feng, Xiaolei; Wang, Pengpeng; Yao, Wu; Wu, Yongjun; Yan, Zhen; Feng, Feifei; Yu, Songcheng; Wang, Wei

    2017-09-01

    It has been shown that the single nucleotide polymorphism (SNP) of the rs2735940 site in the human telomerase reverse transcriptase ( hTERT ) gene is associated with increased cancer risk. The traditional method to detect SNP genotypes is polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). However, there is a limitation to utilizing PCR-RFLP due to a lack of proper restriction enzyme sites at many polymorphic loci. This study used an improved PCR-RFLP method with a mismatched base for detection of the SNP rs2735940. A new restriction enzyme cutting site was created by created restriction site PCR (CRS-PCR), and in addition, the restriction enzyme Msp I for CRS-PCR was cheaper than other enzymes. We used this novel assay to determine the allele frequencies in 552 healthy Chinese Han individuals, and found the allele frequencies to be 63% for allele C and 37% for allele T In summary, the modified PCR-RFLP can be used to detect the SNP of rs2735940 with low cost and high efficiency. © 2017 by the Association of Clinical Scientists, Inc.

  9. Rapid estimation of microbial populations in fish samples by using terminal restriction fragment length polymorphism analysis of 16S rDNA.

    PubMed

    Tanaka, Yuichiro; Takahashi, Hajime; Kitazawa, Nao; Kimura, Bon

    2010-01-01

    A rapid system using terminal restriction fragment length polymorphism (T-RFLP) analysis targeting 16S rDNA is described for microbial population analysis in edible fish samples. The defined terminal restriction fragment database was constructed by collecting 102 strains of bacteria representing 53 genera that are associated with fish. Digestion of these 102 strains with two restriction enzymes, HhaI and MspI, formed 54 pattern groups with discrimination to the genus level. This T-RFLP system produced results comparable to those from a culture-based method in six natural fish samples with a qualitative correspondence of 71.4 to 92.3%. Using the T-RFLP system allowed an estimation of the microbial population within 7 h. Rapid assay of the microbial population is advantageous for food manufacturers and testing laboratories; moreover, the strategy presented here allows adaptation to specific testing applications.

  10. Genotyping of the fish rhabdovirus, viral haemorrhagic septicaemia virus, by restriction fragment length polymorphisms

    USGS Publications Warehouse

    Einer-Jensen, Katja; Winton, James R.; Lorenzen, Niels

    2005-01-01

    The aim of this study was to develop a standardized molecular assay that used limited resources and equipment for routine genotyping of isolates of the fish rhabdovirus, viral haemorrhagic septicaemia virus (VHSV). Computer generated restriction maps, based on 62 unique full-length (1524 nt) sequences of the VHSV glycoprotein (G) gene, were used to predict restriction fragment length polymorphism (RFLP) patterns that were subsequently grouped and compared with a phylogenetic analysis of the G-gene sequences of the same set of isolates. Digestion of PCR amplicons from the full-lengthG-gene by a set of three restriction enzymes was predicted to accurately enable the assignment of the VHSV isolates into the four major genotypes discovered to date. Further sub-typing of the isolates into the recently described sub-lineages of genotype I was possible by applying three additional enzymes. Experimental evaluation of the method consisted of three steps: (i) RT-PCR amplification of the G-gene of VHSV isolates using purified viral RNA as template, (ii) digestion of the PCR products with a panel of restriction endonucleases and (iii) interpretation of the resulting RFLP profiles. The RFLP analysis was shown to approximate the level of genetic discrimination obtained by other, more labour-intensive, molecular techniques such as the ribonuclease protection assay or sequence analysis. In addition, 37 previously uncharacterised isolates from diverse sources were assigned to specific genotypes. While the assay was able to distinguish between marine and continental isolates of VHSV, the differences did not correlate with the pathogenicity of the isolates.

  11. [Cloning and sequence analysis of recombinant fusion gene of Escherichia coli heat-liable enterotoxin B subunit and Actinobacillus actinomycetemcomitans fimbria associative protein].

    PubMed

    Li, Yi; Sun, Hong-chen; Guo, Xue-jun; Feng, Shu-zhang

    2005-02-01

    To clone the recombinant fusion gene of Escherichia coli heat-liable enterotoxin B subunit (Ltb) and Actinobacillus actinomycetemcomitans fimbria associative protein (Fap). Two couples of primers were designed for PCR according to the known sequence of ltb and fap. The ltb and fap gene were obtained by amplification PCR technique from plasmid EWD299 of Escherichia coli and Actinobacillus actinomycetemcomitans 310 DNA respectively, and fused them by PCR. The fusion gene ltb-fap were cloning into plasmid pET28a(+). The recombined plasmid pET28a ltb-fap was transformed into Escherichia coli DH5alpha. The recombinant was screened and identified by restriction enzyme and PCR. The cloned gene was sequenced. The ltb-fap about 531bp in size was obtained successfully, and identified by PCR, restrictive enzyme and sequence analysis. The vector of pET28a ltb-fap was obtained.

  12. cuRRBS: simple and robust evaluation of enzyme combinations for reduced representation approaches.

    PubMed

    Martin-Herranz, Daniel E; Ribeiro, António J M; Krueger, Felix; Thornton, Janet M; Reik, Wolf; Stubbs, Thomas M

    2017-11-16

    DNA methylation is an important epigenetic modification in many species that is critical for development, and implicated in ageing and many complex diseases, such as cancer. Many cost-effective genome-wide analyses of DNA modifications rely on restriction enzymes capable of digesting genomic DNA at defined sequence motifs. There are hundreds of restriction enzyme families but few are used to date, because no tool is available for the systematic evaluation of restriction enzyme combinations that can enrich for certain sites of interest in a genome. Herein, we present customised Reduced Representation Bisulfite Sequencing (cuRRBS), a novel and easy-to-use computational method that solves this problem. By computing the optimal enzymatic digestions and size selection steps required, cuRRBS generalises the traditional MspI-based Reduced Representation Bisulfite Sequencing (RRBS) protocol to all restriction enzyme combinations. In addition, cuRRBS estimates the fold-reduction in sequencing costs and provides a robustness value for the personalised RRBS protocol, allowing users to tailor the protocol to their experimental needs. Moreover, we show in silico that cuRRBS-defined restriction enzymes consistently out-perform MspI digestion in many biological systems, considering both CpG and CHG contexts. Finally, we have validated the accuracy of cuRRBS predictions for single and double enzyme digestions using two independent experimental datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Nucleic acid indexing

    DOEpatents

    Guilfoyle, Richard A.; Guo, Zhen

    2001-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  14. Nucleic acid indexing

    DOEpatents

    Guilfoyle, Richard A.; Guo, Zhen

    1999-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  15. First Molecular Characterization of Hypoderma actaeon in Cattle and Red Deer (Cervus elaphus) in Portugal.

    PubMed

    Ahmed, Haroon; Sousa, Sérgio Ramalho; Simsek, Sami; Anastácio, Sofia; Kilinc, Seyma Gunyakti

    2017-12-01

    Hypoderma spp. larvae cause subcutaneous myiasis in several animal species. The objective of the present investigation was to identify and characterize morphologically and molecularly the larvae of Hypoderma spp. collected from cattle (Bos taurus taurus) and red deer (Cervus elaphus) in the district of Castelo Branco, Portugal. For this purpose, a total of 8 larvae were collected from cattle (n=2) and red deer (n=6). After morphological identification of Hypoderma spp. larvae, molecular characterization was based on PCR-RFLP and mitochondrial CO1 gene sequence analysis. All larvae were morphologically characterized as the third instar larvae (L3) of H. actaeon. Two restriction enzymes were used for molecular identification of the larvae. TaqI restriction enzyme was not able to cut H. actaeon. However, MboII restriction enzyme differentiated Hypoderma species showing 210 and 450 bp bands in H. actaeon. Furthermore, according to the alignment of the mt-CO1 gene sequences of Hypoderma species and to PCR-RFLP findings, all the identified Hypoderma larvae were confirmed as H. actaeon. This is the first report of identification of Hypoderma spp. (Diptera; Oestridae) from cattle and red deer in Portugal, based on morphological and molecular analyses.

  16. COBRA-Seq: Sensitive and Quantitative Methylome Profiling

    PubMed Central

    Varinli, Hilal; Statham, Aaron L.; Clark, Susan J.; Molloy, Peter L.; Ross, Jason P.

    2015-01-01

    Combined Bisulfite Restriction Analysis (COBRA) quantifies DNA methylation at a specific locus. It does so via digestion of PCR amplicons produced from bisulfite-treated DNA, using a restriction enzyme that contains a cytosine within its recognition sequence, such as TaqI. Here, we introduce COBRA-seq, a genome wide reduced methylome method that requires minimal DNA input (0.1–1.0 μg) and can either use PCR or linear amplification to amplify the sequencing library. Variants of COBRA-seq can be used to explore CpG-depleted as well as CpG-rich regions in vertebrate DNA. The choice of enzyme influences enrichment for specific genomic features, such as CpG-rich promoters and CpG islands, or enrichment for less CpG dense regions such as enhancers. COBRA-seq coupled with linear amplification has the additional advantage of reduced PCR bias by producing full length fragments at high abundance. Unlike other reduced representative methylome methods, COBRA-seq has great flexibility in the choice of enzyme and can be multiplexed and tuned, to reduce sequencing costs and to interrogate different numbers of sites. Moreover, COBRA-seq is applicable to non-model organisms without the reference genome and compatible with the investigation of non-CpG methylation by using restriction enzymes containing CpA, CpT, and CpC in their recognition site. PMID:26512698

  17. The APOBEC3 Family of Retroelement Restriction Factors

    PubMed Central

    Refsland, Eric W.; Harris, Reuben S.

    2014-01-01

    The ability to regulate and even target mutagenesis is an extremely valuable cellular asset. Enzyme-catalyzed DNA cytosine deamination is a molecular strategy employed by vertebrates to promote antibody diversity and defend against foreign nucleic acids. Ten years ago, a family of cellular enzymes was first described with several proving capable of deaminating DNA and inhibiting HIV-1 replication. Ensuing studies on the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) restriction factors have uncovered a broad-spectrum innate defense network that suppresses the replication of numerous endogenous and exogenous DNA-based parasites. Although many viruses possess equally elaborate counter-defense mechanisms, the APOBEC3 enzymes offer a tantalizing possibility of leveraging innate immunity to fend off viral infection. Here we focus on mechanisms of retroelement restriction by the APOBEC3 family of restriction enzymes and we consider the therapeutic benefits, as well as the possible pathological consequences, of arming cells with active DNA deaminases. PMID:23686230

  18. Identification to the species level of Lactobacillus isolated in probiotic prospecting studies of human, animal or food origin by 16S-23S rRNA restriction profiling

    PubMed Central

    Moreira, João Luiz S; Mota, Rodrigo M; Horta, Maria F; Teixeira, Santuza MR; Neumann, Elisabeth; Nicoli, Jacques R; Nunes, Álvaro C

    2005-01-01

    Background The accurate identification of Lactobacillus and other co-isolated bacteria during microbial ecological studies of ecosystems such as the human or animal intestinal tracts and food products is a hard task by phenotypic methods requiring additional tests such as protein and/or lipids profiling. Results Bacteria isolated in different probiotic prospecting studies, using de Man, Rogosa and Sharpe medium (MRS), were typed at species level by PCR amplification of 16S-23S rRNA intergenic spacers using universal primers that anneal within 16S and 23S genes, followed by restriction digestion analyses of PCR products. The set of enzymes chosen differentiates most species of Lactobacillus genus and also co-isolated bacteria such as Enterococcus, Streptococcus, Weissella, Staphylococcus, and Escherichia species. The in silico predictions of restriction patterns generated by the Lactobacillus shorter spacers digested with 11 restriction enzymes with 6 bp specificities allowed us to distinguish almost all isolates at the species level but not at the subspecies one. Simultaneous theoretical digestions of the three spacers (long, medium and short) with the same set of enzymes provided more complex patterns and allowed us to distinguish the species without purifying and cloning of PCR products. Conclusion Lactobacillus isolates and several other strains of bacteria co-isolated on MRS medium from gastrointestinal ecosystem and fermented food products could be identified using DNA fingerprints generated by restriction endonucleases. The methodology based on amplified ribosomal DNA restriction analysis (ARDRA) is easier, faster and more accurate than the current methodologies based on fermentation profiles, used in most laboratories for the purpose of identification of these bacteria in different prospecting studies. PMID:15788104

  19. On-Chip Evaluation of DNA Methylation with Electrochemical Combined Bisulfite Restriction Analysis Utilizing a Carbon Film Containing a Nanocrystalline Structure.

    PubMed

    Kurita, Ryoji; Yanagisawa, Hiroyuki; Kamata, Tomoyuki; Kato, Dai; Niwa, Osamu

    2017-06-06

    This paper reports an on-chip electrochemical assessment of the DNA methylation status in genomic DNA on a conductive nanocarbon film electrode realized with combined bisulfite restriction analysis (COBRA). The film electrode consists of sp 2 and sp 3 hybrid bonds and is fabricated with an unbalanced magnetron (UBM) sputtering method. First, we studied the effect of the sp 2 /sp 3 ratio of the UBM nanocarbon film electrode with p-aminophenol, which is a major electro-active product of the labeling enzyme from p-aminophenol phosphate. The signal current for p-aminophenol increases as the sp 2 content in the UBM nanocarbon film electrode increases because of the π-π interaction between aromatic p-aminophenol and the graphene-like sp 2 structure. Furthermore, the capacitative current at the UBM nanocarbon film electrode was successfully reduced by about 1 order of magnitude thanks to the angstrom-level surface flatness. Therefore, a high signal-to-noise ratio was achieved compared with that of conventional electrodes. Then, after performing an ELISA-like hybridization assay with a restriction enzyme, we undertook an electrochemical evaluation of the cytosine methylation status in DNA by measuring the oxidation current derived from p-aminophenol. When the target cytosine in the analyte sequence is methylated (unmethylated), the restriction enzyme of HpyCH4IV is able (unable) to cleave the sequence, that is, the detection probe cannot (can) hybridize. We succeeded in estimating the methylation ratio at a site-specific CpG site from the peak current of a cyclic voltammogram obtained from a PCR product solution ranging from 0.01 to 1 nM.

  20. Phylogenetic analysis of the envelope protein (domain lll) of dengue 4 viruses

    PubMed Central

    Mota, Javier; Ramos-Castañeda, José; Rico-Hesse, Rebeca; Ramos, Celso

    2011-01-01

    Objective To evaluate the genetic variability of domain III of envelope (E) protein and to estimate phylogenetic relationships of dengue 4 (Den-4) viruses isolated in Mexico and from other endemic areas of the world. Material and Methods A phylogenetic study of domain III of envelope (E) protein of Den-4 viruses was conducted in 1998 using virus strains from Mexico and other parts of the world, isolated in different years. Specific primers were used to amplify by RT-PCR the domain III and to obtain nucleotide sequence. Based on nucleotide and deduced aminoacid sequence, genetic variability was estimated and a phylogenetic tree was generated. To make an easy genetic analysis of domain III region, a Restriction Fragment Length Polymorphism (RFLP) assay was performed, using six restriction enzymes. Results Study results demonstrate that nucleotide and aminoacid sequence analysis of domain III are similar to those reported from the complete E protein gene. Based on the RFLP analysis of domain III using the restriction enzymes Nla III, Dde I and Cfo I, Den-4 viruses included in this study were clustered into genotypes 1 and 2 previously reported. Conclusions Study results suggest that domain III may be used as a genetic marker for phylogenetic and molecular epidemiology studies of dengue viruses. The English version of this paper is available too at: http://www.insp.mx/salud/index.html PMID:12132320

  1. [Analysis of gene mutation in a Chinese family with Norrie disease].

    PubMed

    Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue

    2012-09-01

    To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.

  2. Highlights of the DNA cutters: a short history of the restriction enzymes

    PubMed Central

    Loenen, Wil A. M.; Dryden, David T. F.; Raleigh, Elisabeth A.; Wilson, Geoffrey G.; Murray, Noreen E.

    2014-01-01

    In the early 1950’s, ‘host-controlled variation in bacterial viruses’ was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine. PMID:24141096

  3. Highlights of the DNA cutters: a short history of the restriction enzymes.

    PubMed

    Loenen, Wil A M; Dryden, David T F; Raleigh, Elisabeth A; Wilson, Geoffrey G; Murray, Noreen E

    2014-01-01

    In the early 1950's, 'host-controlled variation in bacterial viruses' was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.

  4. Porphyromonas endodontalis: prevalence and distribution of restriction enzyme patterns in families.

    PubMed

    Petit, M D; van Winkelhoff, A J; van Steenbergen, T J; de Graaff, J

    1993-08-01

    In this study we determined the prevalence and distribution of Porphyromonas endodontalis in 26 families consisting of 107 subjects. P. endodontalis was present in 24% of the investigated subjects and was recovered most often from the dorsum of the tongue (50%). Isolation was also possible from the tonsils, the buccal mucosa, the saliva and the periodontal pocket. The usefulness of restriction endonuclease analysis as a typing method for this particular species was investigated by typing 19 isolates from unrelated individuals. All these isolates had unique restriction endonuclease patterns. The observed heterogeneity indicates that restriction endonuclease analysis is a sensitive measure of genetic dissimilarity between P. endodontalis isolates and is able to characterize individual isolates. Application of restriction endonuclease analysis to the obtained clinical isolates in this study shows the possibility of the presence of multiple clonal types within one subject. The DNA patterns of all P. endodontalis isolates from unrelated individuals were found to be distinct. In 3 families the DNA patterns of isolates from the mother and her child were indistinguishable. These data indicate the possibility of intrafamilial transmission of P. endodontalis.

  5. Identification and differentiation of species and strains of Arthrobacter and Microbacterium barkeri isolated from smear cheeses with Amplified Ribosmal DNA Restriction Analysis (ARDRA) and pulsed field gel electrophoresis (PFGE).

    PubMed

    Hoppe-Seyler, T S; Jaeger, B; Bockelmann, W; Noordman, W H; Geis, A; Heller, K J

    2003-09-01

    ARDRA (Amplified Ribosomal-DNA Restriction Analysis) was used to differentiate among species and genera of Arthrobacter and Microbacteria. Species-specific restriction patterns of PCR-products were obtained with NciI for Arthrobacter citreus (DSM 20133T), A. sulfureus (DSM 20167T), A. globiformis (DSM 20124T) and A. nicotianae strains (DSM 20123T, MGE 10D, CA13, CA14, isolate 95293, 95294, and 95299), A. rhombi CCUG 38813T, and CCUG 38812, and Microbacterium barkeri strains (DSM 30123T, MGE 10D, CA12 and CA15, isolate 95292, and isolate 95207). All yellow pigmented coryneforme bacteria isolated from the smear of surface ripened cheeses were identified as either A. nicotianae or M. barkeri strains. Using pulsed field gel electrophoresis (PFGE) strain specific restriction pattern for all Arthrobacter species and Microbacteria tested were obtained with restriction enzymes AscI and SpeI.

  6. Treatment of PCR products with exonuclease I and heat-labile alkaline phosphatase improves the visibility of combined bisulfite restriction analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Kousuke; Emoto, Noriko; Sunohara, Mitsuhiro

    2010-08-27

    Research highlights: {yields} Incubating PCR products at a high temperature causes smears in gel electrophoresis. {yields} Smears interfere with the interpretation of methylation analysis using COBRA. {yields} Treatment with exonuclease I and heat-labile alkaline phosphatase eliminates smears. {yields} The elimination of smears improves the visibility of COBRA. -- Abstract: DNA methylation plays a vital role in the regulation of gene expression. Abnormal promoter hypermethylation is an important mechanism of inactivating tumor suppressor genes in human cancers. Combined bisulfite restriction analysis (COBRA) is a widely used method for identifying the DNA methylation of specific CpG sites. Here, we report that exonucleasemore » I and heat-labile alkaline phosphatase can be used for PCR purification for COBRA, improving the visibility of gel electrophoresis after restriction digestion. This improvement is observed when restriction digestion is performed at a high temperature, such as 60 {sup o}C or 65 {sup o}C, with BstUI and TaqI, respectively. This simple method can be applied instead of DNA purification using spin columns or phenol/chloroform extraction. It can also be applied to other situations when PCR products are digested by thermophile-derived restriction enzymes, such as PCR restriction fragment length polymorphism (RFLP) analysis.« less

  7. Comprehensive restriction enzyme lists to update any DNA sequence computer program.

    PubMed

    Raschke, E

    1993-04-01

    Restriction enzyme lists are presented for the practical working geneticist to update any DNA computer program. These lists combine formerly scattered information and contain all presently known restriction enzymes with a unique recognition sequence, a cut site, or methylation (in)sensitivity. The lists are in the shortest possible form to also be functional with small DNA computer programs, and will produce clear restriction maps without any redundancy or loss of information. The lists discern between commercial and noncommercial enzymes, and prototype enzymes and different isoschizomers are cross-referenced. Differences in general methylation sensitivities and (in)sensitivities against Dam and Dcm methylases of Escherichia coli are indicated. Commercial methylases and intron-encoded endonucleases are included. An address list is presented to contact commercial suppliers. The lists are constantly updated and available in electronic form as pure US ASCII files, and in formats for the DNA computer programs DNA-Strider for Apple Macintosh, and DNAsis for IBM personal computers or compatibles via e-mail from the internet address: NETSERV@EMBL-HEIDELBERG.DE by sending only the message HELP RELIBRARY.

  8. Effects of realimentation after nutrient restriction during mid- to late gestation on pancreatic digestive enzymes, serum insulin and glucose levels, and insulin-containing cell cluster morphology.

    PubMed

    Keomanivong, F E; Camacho, L E; Lemley, C O; Kuemper, E A; Yunusova, R D; Borowicz, P P; Kirsch, J D; Vonnahme, K A; Caton, J S; Swanson, K C

    2017-06-01

    This study examined effects of stage of gestation and nutrient restriction with subsequent realimentation on maternal and foetal bovine pancreatic function. Dietary treatments were assigned on day 30 of pregnancy and included: control (CON; 100% requirements; n = 18) and restricted (R; 60% requirements; n = 30). On day 85, cows were slaughtered (CON, n = 6; R, n = 6), remained on control (CC; n = 12) and restricted (RR; n = 12), or realimented to control (RC; n = 11). On day 140, cows were slaughtered (CC, n = 6; RR, n = 6; RC, n = 5), remained on control (CCC, n = 6; RCC, n = 5) or realimented to control (RRC, n = 6). On day 254, the remaining cows were slaughtered and serum samples were collected from the maternal jugular vein and umbilical cord to determine insulin and glucose concentrations. Pancreases from cows and foetuses were removed, weighed, and subsampled for enzyme and histological analysis. As gestation progressed, maternal pancreatic α-amylase activity decreased and serum insulin concentrations increased (p ≤ 0.03). Foetal pancreatic trypsin activity increased (p < 0.001) with advancing gestation. Foetal pancreases subjected to realimentation (CCC vs. RCC and RRC) had increased protein and α-amylase activity at day 254 (p ≤ 0.02), while trypsin (U/g protein; p = 0.02) demonstrated the opposite effect. No treatment effects were observed for maternal or foetal pancreatic insulin-containing cell clusters. Foetal serum insulin and glucose levels were reduced with advancing gestation (p ≤ 0.03). The largest maternal insulin-containing cell cluster was not influenced by advancing gestation, while foetal clusters grew throughout (p = 0.01). These effects indicate that maternal digestive enzymes are influenced by nutrient restriction and there is a potential for programming of increased foetal digestive enzyme production resulting from previous maternal nutrient restriction. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  9. Cloning and restriction enzyme mapping of ribosomal DNA of Giardia duodenalis, Giardia ardeae and Giardia muris.

    PubMed

    van Keulen, H; Campbell, S R; Erlandsen, S L; Jarroll, E L

    1991-06-01

    In an attempt to study Giardia at the DNA sequence level, the rRNA genes of three species, Giardia duodenalis, Giardia ardeae and Giardia muris were cloned and restriction enzyme maps were constructed. The rDNA repeats of these Giardia show completely different restriction enzyme recognition patterns. The size of the rDNA repeat ranges from approximately 5.6 kb in G. duodenalis to 7.6 kb in both G. muris and G. ardeae. These size differences are mainly attributable to the variation in length of the spacer. Minor differences exist among these Giardia in the sizes of their small subunit rRNA and the internal transcribed spacer between small and large subunit rRNA. The genetic maps were constructed by sequence analysis of the DNA around the 5' and 3' ends of the mature rRNA genes and between the rRNA covering the 5.8S rRNA gene and internal transcribed spacer. Comparison of the 5.8S rDNA and 3' end of large subunit rDNA from these three Giardia species showed considerable sequence variation, but the rDNA sequences of G. duodenalis and G. ardeae appear more closely related to each other than to G. muris.

  10. Determining mutation density using Restriction Enzyme Sequence Comparative Analysis (RESCAN)

    USDA-ARS?s Scientific Manuscript database

    The average mutation density of a mutant population is a major consideration when developing resources for the efficient, cost-effective implementation of reverse genetics methods such as Targeting of Induced Local Lesions in Genomes (TILLING). Reliable estimates of mutation density can be achieved ...

  11. Identification of the razor clam species Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus using PCR-RFLP analysis of the 5S rDNA region.

    PubMed

    Fernandez-Tajes, Juan; Méndez, Josefina

    2007-09-05

    Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis of the 5S ribosomal DNA region has been applied to the establishment of DNA-based molecular markers for the identification of five razor clam species: Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus. PCR amplifications were carried out using a pair of universal primers from the coding region of 5S rDNA. S. marginatus was simply distinguished by the different size of the amplicons obtained. Species-specific restriction endonuclease patterns were found with the enzymes Hae III for E. arcuatus, E. siliqua, and E. directus, and Acs I for E. macha, and when two enzymes were combined, the four species were also identified. Thus, this work provides a simple, reliable, and rapid protocol for the accurate identification of Ensis and Solen species in fresh and canned products, which is very useful for traceability and to enforce labeling regulations.

  12. Influence of nutrient restriction and melatonin supplementation of pregnant ewes on maternal and fetal pancreatic digestive enzymes and insulin-containing clusters.

    PubMed

    Keomanivong, F E; Lemley, C O; Camacho, L E; Yunusova, R; Borowicz, P P; Caton, J S; Meyer, A M; Vonnahme, K A; Swanson, K C

    2016-03-01

    Primiparous ewes (n=32) were assigned to dietary treatments in a 2×2 factorial arrangement to determine effects of nutrient restriction and melatonin supplementation on maternal and fetal pancreatic weight, digestive enzyme activity, concentration of insulin-containing clusters and plasma insulin concentrations. Treatments consisted of nutrient intake with 60% (RES) or 100% (ADQ) of requirements and melatonin supplementation at 0 (CON) or 5 mg/day (MEL). Treatments began on day 50 of gestation and continued until day 130. On day 130, blood was collected under general anesthesia from the uterine artery, uterine vein, umbilical artery and umbilical vein for plasma insulin analysis. Ewes were then euthanized and the pancreas removed from the ewe and fetus, trimmed of mesentery and fat, weighed and snap-frozen until enzyme analysis. In addition, samples of pancreatic tissue were fixed in 10% formalin solution for histological examination including quantitative characterization of size and distribution of insulin-containing cell clusters. Nutrient restriction decreased (P⩽0.001) maternal pancreatic mass (g) and α-amylase activity (U/g, kU/pancreas, U/kg BW). Ewes supplemented with melatonin had increased pancreatic mass (P=0.03) and α-amylase content (kU/pancreas and U/kg BW). Melatonin supplementation decreased (P=0.002) maternal pancreatic insulin-positive tissue area (relative to section of tissue), and size of the largest insulin-containing cell cluster (P=0.04). Nutrient restriction decreased pancreatic insulin-positive tissue area (P=0.03) and percent of large (32 001 to 512 000 µm2) and giant (⩾512 001 µm2) insulin-containing cell clusters (P=0.04) in the fetus. Insulin concentrations in plasma from the uterine vein, umbilical artery and umbilical vein were greater (P⩽0.01) in animals receiving 100% requirements. When comparing ewes to fetuses, ewes had a greater percentage of medium insulin-containing cell clusters (2001 to 32 000 µm2) while fetuses had more (P<0.001) pancreatic insulin-positive area (relative to section of tissue) and a greater percent of small, large and giant insulin-containing cell clusters (P⩽0.02). Larger insulin-containing clusters were observed in fetuses (P<0.001) compared with ewes. In summary, the maternal pancreas responded to nutrient restriction by decreasing pancreatic weight and activity of digestive enzymes while melatonin supplementation increased α-amylase content. Nutrient restriction decreased the number of pancreatic insulin-containing clusters in fetuses while melatonin supplementation did not influence insulin concentration. This indicated using melatonin as a therapeutic agent to mitigate reduced pancreatic function in the fetus due to maternal nutrient restriction may not be beneficial.

  13. Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas.

    PubMed

    Yadav, Ajar Nath; Sachan, Shashwati Ghosh; Verma, Priyanka; Kaushik, Rajeev; Saxena, Anil Kumar

    2016-03-01

    The diversity of culturable, cold-active enzymes producing Bacilli was investigated from three sub-glacial lakes of north western Indian Himalayas. Amplified ribosomal DNA restriction analysis (ARDRA) using three restriction enzymes Alu I, Msp I, and Hae III led to the clustering of 136 Bacilli into 26, 23, and 22 clusters at 75% similarity index from Chandratal Lake, Dashair Lake, and Pangong Lake, respectively. Phylogenetic analysis based on 16S rRNA gene sequencing led to the identification of 35 Bacilli that could be grouped in seven families viz.: Bacillaceae (48%), Staphylococcaceae (14%), Bacillales incertae sedis (13%), Planococcaceae (12%), Paenibacillaceae (9%), Sporolactobacillaceae (3%), and Carnobacteriaceae (1%), which included twelve different genera Bacillus, Desemzia, Exiguobacterium, Jeotgalicoccus, Lysinibacillus, Paenibacillus, Planococcus, Pontibacillus, Sinobaca, Sporosarcina, Staphylococcus, and Virgibacillus. Based on their optimal temperature for growth, 35 Bacilli were grouped as psychrophilic (11 strains), psychrotrophic (17 strains), or psychrotolerant (7 strains), respectively. The representative isolates from each cluster were screened for cold-active enzyme activities. Amylase, β-glucosidase, pectinase, and protease activities at 4 °C were detected in more than 80% of the strains while approximately 40, 31, 23, 14, 11, and 9% of strains possessed cellulase, xylanase, β-galactosidase, laccase, chitinase, and lipase activity, respectively. Among 35 Bacilli, Bacillus amyloliquefaciens, Bacillus marisflavi, Exiguobacterium indicum, Paenibacillus terrae, Pontibacillus sp., Sporosarcina globispora, and Sporosarcina psychrophila were efficient producers of different cold-active enzymes. These cold-adapted Bacilli could play an important role in industrial and agricultural processes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A general method for the purification of restriction enzymes.

    PubMed Central

    Greene, P J; Heyneker, H L; Bolivar, F; Rodriguez, R L; Betlach, M C; Covarrubias, A A; Backman, K; Russel, D J; Tait, R; Boyer, H W

    1978-01-01

    An abbreviated procedure has been developed for the purification of restriction endonucleases. This procedure uses chromatography on phosphocellulose and hydroxylapatite and results in enzymes of sufficient purity to permit their use in the sequencing, molecular cloning, and physical mapping of DNA. PMID:673857

  15. Evaluation of simultaneous binding of Chromomycin A3 to the multiple sites of DNA by the new restriction enzyme assay.

    PubMed

    Murase, Hirotaka; Noguchi, Tomoharu; Sasaki, Shigeki

    2018-06-01

    Chromomycin A3 (CMA3) is an aureolic acid-type antitumor antibiotic. CMA3 forms dimeric complexes with divalent cations, such as Mg 2+ , which strongly binds to the GC rich sequence of DNA to inhibit DNA replication and transcription. In this study, the binding property of CMA3 to the DNA sequence containing multiple GC-rich binding sites was investigated by measuring the protection from hydrolysis by the restriction enzymes, AccII and Fnu4HI, for the center of the CGCG site and the 5'-GC↓GGC site, respectively. In contrast to the standard DNase I footprinting method, the DNA substrates are fully hydrolyzed by the restriction enzymes, therefore, the full protection of DNA at all the cleavable sites indicates that CMA3 simultaneously binds to all the binding sites. The restriction enzyme assay has suggested that CMA3 has a high tendency to bind the successive CGCG sites and the CGG repeat. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Seventeen {alpha}-hydroxylase deficiency with one base pair deletion of the cytochrome P450c17 (CYP17) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshiro, Chikara; Takasu, Nobuyuki; Wakugami, Tamio

    1995-08-01

    Mutation of the cytochrome P450c17 (CYP17) gene causes 17{alpha}-hydroxylase deficiency (170HD). Recently, several researchers have elucidated the molecular basis of 170HD by gene analysis. We experienced a case of 170HD and intended to reveal the abnormality of the CYP17 gene in this Japanese female with 170HD. Leukocytes were obtained from the patient, her mother and sister, and normal control subjects. We amplified the CYP17 gene using polymerase chain reaction and performed the sequence analysis using the dideoxy terminator method and restriction enzyme analysis. We found that the patient had one base-pair deletion at the position of amino acid 438. Anmore » indentical result was obtained with restriction enzyme analysis. This G deletion altered the reading frame and resulted in a premature stop codon at position 443; the ligand of heme iron (Cys: cystine 442) was absent. This small mutation may account for the patient`s clinical manifestations of 170HD. This is the first case of 170HD with only one base pair deletion of the CYP17 gene. 18 refs., 3 figs.« less

  17. Integrated microfluidic chip for rapid DNA digestion and time-resolved capillary electrophoresis analysis

    PubMed Central

    Lin, Che-Hsin; Wang, Yao-Nan; Fu, Lung-Ming

    2012-01-01

    An integrated microfluidic chip is proposed for rapid DNA digestion and time-resolved capillary electrophoresis (CE) analysis. The chip comprises two gel-filled chambers for DNA enrichment and purification, respectively, a T-form micromixer for DNA/restriction enzyme mixing, a serpentine channel for DNA digestion reaction, and a CE channel for on-line capillary electrophoresis analysis. The DNA and restriction enzyme are mixed electroomostically using a pinched-switching DC field. The experimental and numerical results show that a mixing performance of 97% is achieved within a distance of 1 mm from the T-junction when a driving voltage of 90 V/cm and a switching frequency of 4 Hz are applied. Successive mixing digestion and capillary electrophoresis operation clearly present the changes on digesting φx-174 DNA in different CE runs. The time-resolved electropherograms show that the proposed device enables a φx-174 DNA sample comprising 11 fragments to be concentrated and analyzed within 24 min. Overall, the results presented in this study show that the proposed microfluidic chip provides a rapid and effective tool for DNA digestion and CE analysis applications. PMID:22662085

  18. The SalGI restriction endonuclease. Purification and properties

    PubMed Central

    Maxwell, Anthony; Halford, Stephen E.

    1982-01-01

    The type II restriction endonuclease SalGI has been purified to near homogeneity. At least 80% of the protein remaining after the final stage of the preparation is SalGI restriction endonuclease; no contaminating nucleases remain detectable. The principal form of the protein under both native and denaturing conditions is a monomer of Mr about 29000. The optimal conditions for both enzyme stability and enzyme activity have been determined. ImagesFig. 1. PMID:6285898

  19. Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of streptococcus pneumontae

    DOEpatents

    Lacks, Sanford A.

    1990-01-01

    Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252.

  20. Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of Streptococcus pneumontae

    DOEpatents

    Lacks, S.A.

    1990-10-02

    Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252. 9 figs.

  1. Characterization and identification of enzyme-producing microflora isolated from the gut of sea cucumber Apostichopus japonicus

    NASA Astrophysics Data System (ADS)

    Li, Fenghui; Gao, Fei; Tan, Jie; Fan, Chaojing; Sun, Huiling; Yan, Jingping; Chen, Siqing; Wang, Xiaojun

    2016-01-01

    Gut microorganisms play an important role in the digestion of their host animals. The purpose of this research was to isolate and assess the enzyme-producing microbes from the Apostichopus japonicus gut. Thirty-nine strains that can produce at least one of the three digestive enzymes (protease, amylase, and cellulase) were qualitatively screened based on their extracellular enzyme-producing abilities. The enzyme-producing strains clustered into eight groups at the genetic similarity level of 100% by analyzing the restriction patterns of 16S rDNA amplified with Mbo I. Phylogenetic analysis revealed that 37 strains belonged to the genus Bacillus and two were members of the genus Virgibacillus. Enzyme-producing capability results indicate that the main enzyme-producing microflora in the A. japonicus gut was Bacillus, which can produce protease, amylase, and cellulase. Virgibacillus, however, can only produce protease. The high enzyme-producing capability of the isolates suggests that the gut microbiota play an important role in the sea cucumber digestive process.

  2. How-to-Do-It. An Exercise in Gene Mapping.

    ERIC Educational Resources Information Center

    Seidel-Rogol, Bonnie L.

    1990-01-01

    Described is a laboratory exercise designed to introduce students to the theory and practice of gene mapping including RNA extraction, sucrose density gradient centrifugation, labelling of nucleic acids in vitro, DNA extraction, digestion of DNA with restriction enzymes, and the southern hybridization analysis. Procedures and sample results are…

  3. Effectiveness of sodium azide alone compared to sodium azide in combination with methyl nitrosurea for rice mutagenesis

    USDA-ARS?s Scientific Manuscript database

    Rice seeds of the temperate japonica cultivar Kitaake were mutagenized with sodium azide alone and in combination with methyl nitrosourea. Using the reduced representation sequencing method Restriction Enzyme Sequence Comparative Analysis (RESCAN), the mutation densities, types and local sequence co...

  4. A complete thermodynamic analysis of enzyme turnover links the free energy landscape to enzyme catalysis.

    PubMed

    Jones, Hannah B L; Wells, Stephen A; Prentice, Erica J; Kwok, Anthony; Liang, Liyin L; Arcus, Vickery L; Pudney, Christopher R

    2017-09-01

    Our understanding of how enzymes work is coloured by static structure depictions where the enzyme scaffold is presented as either immobile, or in equilibrium between well-defined static conformations. Proteins, however, exhibit a large degree of motion over a broad range of timescales and magnitudes and this is defined thermodynamically by the enzyme free energy landscape (FEL). The role and importance of enzyme motion is extremely contentious. Much of the challenge is in the experimental detection of so called 'conformational sampling' involved in enzyme turnover. Herein we apply combined pressure and temperature kinetics studies to elucidate the full suite of thermodynamic parameters defining an enzyme FEL as it relates to enzyme turnover. We find that the key thermodynamic parameters governing vibrational modes related to enzyme turnover are the isobaric expansivity term and the change in heat capacity for enzyme catalysis. Variation in the enzyme FEL affects these terms. Our analysis is supported by a range of biophysical and computational approaches that specifically capture information on protein vibrational modes and the FEL (all atom flexibility calculations, red edge excitation shift spectroscopy and viscosity studies) that provide independent evidence for our findings. Our data suggest that restricting the enzyme FEL may be a powerful strategy when attempting to rationally engineer enzymes, particularly to alter thermal activity. Moreover, we demonstrate how rational predictions can be made with a rapid computational approach. © 2017 Federation of European Biochemical Societies.

  5. CisSERS: Customizable in silico sequence evaluation for restriction sites

    DOE PAGES

    Sharpe, Richard M.; Koepke, Tyson; Harper, Artemus; ...

    2016-04-12

    High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Here, data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated tomore » enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERSenable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3’UTR sequencing, and cleaved amplified polymorphic sequence (CAPS) molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERSand results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.« less

  6. CisSERS: Customizable in silico sequence evaluation for restriction sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, Richard M.; Koepke, Tyson; Harper, Artemus

    High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Here, data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated tomore » enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERSenable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3’UTR sequencing, and cleaved amplified polymorphic sequence (CAPS) molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERSand results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.« less

  7. Cystic fibrosis (CF) mutation detection and frequencies in central New York state using single strand conformation (SSC) and heteroduplex analysis (HA) gel analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrimpton, A.E.; Lamberson, C.M.; Hicks, K.E.

    1994-09-01

    Over 100 cystic fibrosis (CF) bearing chromosomes from patients living in central New York state have been screened in order to identify their CF mutations. Ethnic background information and parental samples were also collected when available. Polymerase chain reaction (PCR) amplified products from exons 3, 4, 5, 7, 9, 10, 11, 12, 13, 14B, 15, 17B, 19, 20, 21 and intro 19 have been screened for over 50 known CF mutations by restriction enzyme digest, heteroduplex analysis (HA) and/or single stand conformation (SSC) gel analysis. The exon 9 PCR product was difficult to analyze by HA or SSC gel analysis.more » Restriction enzyme site generating PCR primers were used to identify the R117H, 711+1,G>T, G542X, 1717-1,G>A, 1898-1,G>A and N1303K CF mutations. Haplotyping at CFTR-linked (xv-2c/Taq I, km19/Pst, I, MP6d.9/Msp I and J3.11/Pst I) and CFTR intragenic markers (intron 6 GATT{sub n}, 1540 A/G, 1898+152,T/A) was performed to aid in CF mutation identification.« less

  8. From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes.

    PubMed

    Marton, Ira; Honig, Arik; Omid, Ayelet; De Costa, Noam; Marhevka, Elena; Cohen, Barry; Zuker, Amir; Vainstein, Alexander

    2013-01-01

    Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes being modified through the use of early genome-editing techniques. The development of rare-cutting restriction enzymes as a tool for the induction of site-specific genomic double-strand breaks and their introduction as a reliable tool for genome modification in animals, animal cells and human cell lines have paved the way for the adaptation of rare-cutting restriction enzymes to genome editing in plant cells. Indeed, the number of plant species and genes which have been successfully edited using zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered homing endonucleases is on the rise. In our review, we discuss the basics of rare-cutting restriction enzyme-mediated genome-editing technology with an emphasis on its application in plant species.

  9. Phylogenomics and sequence-structure-function relationships in the GmrSD family of Type IV restriction enzymes.

    PubMed

    Machnicka, Magdalena A; Kaminska, Katarzyna H; Dunin-Horkawicz, Stanislaw; Bujnicki, Janusz M

    2015-10-23

    GmrSD is a modification-dependent restriction endonuclease that specifically targets and cleaves glucosylated hydroxymethylcytosine (glc-HMC) modified DNA. It is encoded either as two separate single-domain GmrS and GmrD proteins or as a single protein carrying both domains. Previous studies suggested that GmrS acts as endonuclease and NTPase whereas GmrD binds DNA. In this work we applied homology detection, sequence conservation analysis, fold recognition and homology modeling methods to study sequence-structure-function relationships in the GmrSD restriction endonucleases family. We also analyzed the phylogeny and genomic context of the family members. Results of our comparative genomics study show that GmrS exhibits similarity to proteins from the ParB/Srx fold which can have both NTPase and nuclease activity. In contrast to the previous studies though, we attribute the nuclease activity also to GmrD as we found it to contain the HNH endonuclease motif. We revealed residues potentially important for structure and function in both domains. Moreover, we found that GmrSD systems exist predominantly as a fused, double-domain form rather than as a heterodimer and that their homologs are often encoded in regions enriched in defense and gene mobility-related elements. Finally, phylogenetic reconstructions of GmrS and GmrD domains revealed that they coevolved and only few GmrSD systems appear to be assembled from distantly related GmrS and GmrD components. Our study provides insight into sequence-structure-function relationships in the yet poorly characterized family of Type IV restriction enzymes. Comparative genomics allowed to propose possible role of GmrD domain in the function of the GmrSD enzyme and possible active sites of both GmrS and GmrD domains. Presented results can guide further experimental characterization of these enzymes.

  10. Methyl-CpG island-associated genome signature tags

    DOEpatents

    Dunn, John J

    2014-05-20

    Disclosed is a method for analyzing the organismic complexity of a sample through analysis of the nucleic acid in the sample. In the disclosed method, through a series of steps, including digestion with a type II restriction enzyme, ligation of capture adapters and linkers and digestion with a type IIS restriction enzyme, genome signature tags are produced. The sequences of a statistically significant number of the signature tags are determined and the sequences are used to identify and quantify the organisms in the sample. Various embodiments of the invention described herein include methods for using single point genome signature tags to analyze the related families present in a sample, methods for analyzing sequences associated with hyper- and hypo-methylated CpG islands, methods for visualizing organismic complexity change in a sampling location over time and methods for generating the genome signature tag profile of a sample of fragmented DNA.

  11. Analysis of the genome of fish lymphocystis disease virus isolated directly from epidermal tumours of pleuronectes.

    PubMed

    Darai, G; Anders, K; Koch, H G; Delius, H; Gelderblom, H; Samalecos, C; Flügel, R M

    1983-04-30

    Virions of fish lymphocystis disease virus (FLDV), a member of the iridovirus family, were isolated directly from lymphocystis disease lesions of individual flatfishes and purified by sucrose and subsequent cesium chloride gradient centrifugation to homogeneity as judged by electron microscopy. The isolated FLDV DNAs appear to be heterogeneous in size. Contour length measurements of 43 DNA molecules gave an average length of 49 +/- 23 microns, corresponding to 93 +/- 44 X 10(6) D. Molecular weight estimations of FLDV DNA by restriction enzyme analysis resulted in only 64.8 X 10(6) D indicating an excess length of the DNA of about 50%. FLDV DNA was sensitive to lambda 5'-exonuclease and to E. coli 3'-exonuclease III without preference of any one terminal DNA restriction fragment. Denaturation and reannealing experiments of FLDV DNA resulted in the formation of circular DNA molecules of 34.25 microns contour length (= 65.22 X 10(6) D). This result suggests that FLDV DNA contains directly repeated sequences at both ends and that it is terminally redundant. FLDV DNA is methylated in cytosine. FLDV DNA did not hybridize with frog virus DNA indicating that the two iridoviruses are not closely related to each other. Restriction enzyme analysis and Southern blot hybridizations revealed that FLDV isolates can be classified into two different strains: FLDV strain 1 occurs in flounders and plaice, whereas strain 2 is usually found in lesions of dabs.

  12. Evaluation of Microbial Diversity in Wetland through Polymerase Chain Reaction (PCR) and Restriction Fragment Length Polymorphism (RFLP)

    DTIC Science & Technology

    2006-06-01

    51 Appendix C. Promega Restriction Digest Protocol ....................................................53...Rsa1 Restriction Digest Results............................................................................180 9. DNA Base Pair Comparison...particular restriction endonuclease, the length of the fragments produced will differ when the DNA is digested with a restriction enzyme (Edwards

  13. Molecular Cloning and Analysis of a DNA Repetitive Element from the Mouse Genome

    ERIC Educational Resources Information Center

    Geisinger, Adriana; Cossio, Gabriela; Wettstein, Rodolfo

    2006-01-01

    We report the development of a 3-week laboratory activity for an undergraduate molecular biology course. This activity introduces students to the practice of basic molecular techniques such as restriction enzyme digestion, agarose gel electrophoresis, cloning, plasmid DNA purification, Southern blotting, and sequencing. Students learn how to carry…

  14. Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.

    PubMed

    Lakshmikumaran, M S; D'Ambrosio, E; Laimins, L A; Lin, D T; Furano, A V

    1985-09-01

    The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this.

  15. Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification

    PubMed Central

    Slocum, Harvey; Boyer, Herbert W.

    1973-01-01

    The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605

  16. Optimizing Restriction Site Placement for Synthetic Genomes

    NASA Astrophysics Data System (ADS)

    Montes, Pablo; Memelli, Heraldo; Ward, Charles; Kim, Joondong; Mitchell, Joseph S. B.; Skiena, Steven

    Restriction enzymes are the workhorses of molecular biology. We introduce a new problem that arises in the course of our project to design virus variants to serve as potential vaccines: we wish to modify virus-length genomes to introduce large numbers of unique restriction enzyme recognition sites while preserving wild-type function by substitution of synonymous codons. We show that the resulting problem is NP-Complete, give an exponential-time algorithm, and propose effective heuristics, which we show give excellent results for five sample viral genomes. Our resulting modified genomes have several times more unique restriction sites and reduce the maximum gap between adjacent sites by three to nine-fold.

  17. Restriction endonuclease analysis as a taxonomic tool in the study of pig isolates belonging to the Australis serogroup of Leptospira interrogans.

    PubMed Central

    Ellis, W A; Montgomery, J M; Thiermann, A B

    1991-01-01

    Restriction endonuclease analysis was performed on DNAs from the type strains of the Australis serogroup of Leptospira interrogans by using 20 restriction enzymes, and the electrophoretic patterns obtained were compared with patterns obtained from 162 Australis serogroup isolates from pigs. It proved to be a quick and reliable method for typing such strains. All of the pig isolates were identified as either serovar bratislava or muenchen. It also showed differences at the subserovar level which may be important in (i) understanding the epidemiology of the Australis serogroup, (ii) the development of suitable vaccines, and (iii) pathogenesis and pathogenicity studies. Two genotypes (B2b and M2) accounted for 92% of isolates from aborted or stillborn piglets, while a third genotype (B2a) was the only one recovered from the brains of piglets with meningitis. Images PMID:1647408

  18. Restriction endonuclease analysis as a taxonomic tool in the study of pig isolates belonging to the Australis serogroup of Leptospira interrogans.

    PubMed

    Ellis, W A; Montgomery, J M; Thiermann, A B

    1991-05-01

    Restriction endonuclease analysis was performed on DNAs from the type strains of the Australis serogroup of Leptospira interrogans by using 20 restriction enzymes, and the electrophoretic patterns obtained were compared with patterns obtained from 162 Australis serogroup isolates from pigs. It proved to be a quick and reliable method for typing such strains. All of the pig isolates were identified as either serovar bratislava or muenchen. It also showed differences at the subserovar level which may be important in (i) understanding the epidemiology of the Australis serogroup, (ii) the development of suitable vaccines, and (iii) pathogenesis and pathogenicity studies. Two genotypes (B2b and M2) accounted for 92% of isolates from aborted or stillborn piglets, while a third genotype (B2a) was the only one recovered from the brains of piglets with meningitis.

  19. Molecular discrimination of lactobacilli used as starter and probiotic cultures by amplified ribosomal DNA restriction analysis.

    PubMed

    Roy, D; Sirois, S; Vincent, D

    2001-04-01

    Lactic acid bacteria such as Lactobacillus helveticus, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, L. acidophilus, and L. casei related taxa which are widely used as starter or probiotic cultures can be identified by amplified ribosomal DNA restriction analysis (ARDRA). The genetic discrimination of the related species belonging to these groups was first obtained by PCR amplifications by using group-specific or species-specific 16S rDNA primers. The numerical analysis of the ARDRA patterns obtained by using CfoI, HinfI, Tru9I, and ScrFI was an efficient typing tool for identification of species of the L. acidophilus and L. casei complex. ARDRA by using CfoI was a reliable method for differentiation of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. Finally, strains ATCC 393 and ATCC 15820 exhibited unique ARDRA patterns with CfoI and Tru9I restriction enzymes as compared with the other strains of L. casei, L. paracasei, and L. rhamnosus.

  20. Suitability of the molecular subtyping methods intergenic spacer region, direct genome restriction analysis, and pulsed-field gel electrophoresis for clinical and environmental Vibrio parahaemolyticus isolates.

    PubMed

    Lüdeke, Catharina H M; Fischer, Markus; LaFon, Patti; Cooper, Kara; Jones, Jessica L

    2014-07-01

    Vibrio parahaemolyticus is the leading cause of infectious illness associated with seafood consumption in the United States. Molecular fingerprinting of strains has become a valuable research tool for understanding this pathogen. However, there are many subtyping methods available and little information on how they compare to one another. For this study, a collection of 67 oyster and 77 clinical V. parahaemolyticus isolates were analyzed by three subtyping methods--intergenic spacer region (ISR-1), direct genome restriction analysis (DGREA), and pulsed-field gel electrophoresis (PFGE)--to determine the utility of these methods for discriminatory subtyping. ISR-1 analysis, run as previously described, provided the lowest discrimination of all the methods (discriminatory index [DI]=0.8665). However, using a broader analytical range than previously reported, ISR-1 clustered isolates based on origin (oyster versus clinical) and had a DI=0.9986. DGREA provided a DI=0.9993-0.9995, but did not consistently cluster the isolates by any identifiable characteristics (origin, serotype, or virulence genotype) and ∼ 15% of isolates were untypeable by this method. PFGE provided a DI=0.9998 when using the combined pattern analysis of both restriction enzymes, SfiI and NotI. This analysis was more discriminatory than using either enzyme pattern alone and primarily grouped isolates by serotype, regardless of strain origin (clinical or oyster) or presence of currently accepted virulence markers. These results indicate that PFGE and ISR-1 are more reliable methods for subtyping V. parahemolyticus, rather than DGREA. Additionally, ISR-1 may provide an indication of pathogenic potential; however, more detailed studies are needed. These data highlight the diversity within V. parahaemolyticus and the need for appropriate selection of subtyping methods depending on the study objectives.

  1. Rapid differentiation of Staphylococcus aureus isolates harbouring egc loci with pseudogenes psient1 and psient2 and the selu or seluv gene using PCR-RFLP.

    PubMed

    Collery, Mark M; Smyth, Cyril J

    2007-02-01

    The egc locus of Staphylococus aureus harbours two enterotoxin genes (seg and sei) and three enterotoxin-like genes (selm, seln and selo). Between the sei and seln genes are located two pseudogenes, psient1 and psient2, or the selu or seluv gene. While these two alternative sei-seln intergenic regions can be distinguished by PCR, to date, DNA sequencing has been the only confirmatory option because of the very high degree of sequence similarity between egc loci bearing the pseudogenes and the selu or seluv gene. In silico restriction enzyme digestion of genomic regions encompassing the egc locus from the 3' end of the sei gene through the 5' first quarter of the seln gene allowed pseudogene- and selu- or seluv-bearing egc loci to be distinguished by PCR-RFLP. Experimental application of these findings demonstrated that endonuclease HindIII cleaved PCR amplimers bearing pseudogenes but not those with a selu or seluv gene, while selu- or seluv-bearing amplimers were susceptible to cleavage by endonuclease HphI, but not by endonuclease HindIII. The restriction enzyme BccI cleaved selu- or seluv-harbouring amplimers at a unique restriction site created by their signature 15 bp insertion compared with pseudogene-bearing amplimers, thereby allowing distinction of these egc loci. PCR-RFLP analysis using these restriction enzymes provides a rapid, easy to interpret alternative to DNA sequencing for verification of PCR findings on the nature of an egc locus type, and can also be used for the primary identification of the intergenic sei-seln egc locus type.

  2. Improved coverage of cDNA-AFLP by sequential digestion of immobilized cDNA.

    PubMed

    Weiberg, Arne; Pöhler, Dirk; Morgenstern, Burkhard; Karlovsky, Petr

    2008-10-13

    cDNA-AFLP is a transcriptomics technique which does not require prior sequence information and can therefore be used as a gene discovery tool. The method is based on selective amplification of cDNA fragments generated by restriction endonucleases, electrophoretic separation of the products and comparison of the band patterns between treated samples and controls. Unequal distribution of restriction sites used to generate cDNA fragments negatively affects the performance of cDNA-AFLP. Some transcripts are represented by more than one fragment while other escape detection, causing redundancy and reducing the coverage of the analysis, respectively. With the goal of improving the coverage of cDNA-AFLP without increasing its redundancy, we designed a modified cDNA-AFLP protocol. Immobilized cDNA is sequentially digested with several restriction endonucleases and the released DNA fragments are collected in mutually exclusive pools. To investigate the performance of the protocol, software tool MECS (Multiple Enzyme cDNA-AFLP Simulation) was written in Perl. cDNA-AFLP protocols described in the literature and the new sequential digestion protocol were simulated on sets of cDNA sequences from mouse, human and Arabidopsis thaliana. The redundancy and coverage, the total number of PCR reactions, and the average fragment length were calculated for each protocol and cDNA set. Simulation revealed that sequential digestion of immobilized cDNA followed by the partitioning of released fragments into mutually exclusive pools outperformed other cDNA-AFLP protocols in terms of coverage, redundancy, fragment length, and the total number of PCRs. Primers generating 30 to 70 amplicons per PCR provided the highest fraction of electrophoretically distinguishable fragments suitable for normalization. For A. thaliana, human and mice transcriptome, the use of two marking enzymes and three sequentially applied releasing enzymes for each of the marking enzymes is recommended.

  3. Type III restriction-modification enzymes: a historical perspective.

    PubMed

    Rao, Desirazu N; Dryden, David T F; Bheemanaik, Shivakumara

    2014-01-01

    Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.

  4. Restriction/modification polypeptides, polynucleotides, and methods

    DOEpatents

    Westpheling, Janet; Chung, DaeHwan; Huddleston, Jennifer; Farkas, Joel A

    2015-02-24

    The present invention relates to the discovery of a novel restriction/modification system in Caldicellulosiruptor bescii. The discovered restriction enzyme is a HaeIII-like restriction enzyme that possesses a thermophilic activity profile. The restriction/modification system also includes a methyltransferase, M.CbeI, that methylates at least one cytosine residue in the CbeI recognition sequence to m.sup.4C. Thus, the invention provides, in various aspects, isolated CbeI or M.CbeI polypeptides, or biologically active fragments thereof; isolated polynucleotides that encode the CbeI or M.CbeI polypeptides or biologically active fragments thereof, including expression vectors that include such polynucleotide sequences; methods of digesting DNA using a CbeI polypeptide; methods of treating a DNA molecule using a M.CbeI polypeptide; and methods of transforming a Caldicellulosiruptor cell.

  5. Mechanisms of double-strand-break repair during gene targeting in mammalian cells.

    PubMed Central

    Ng, P; Baker, M D

    1999-01-01

    In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism. PMID:10049929

  6. Discovery of a novel restriction endonuclease by genome comparison and application of a wheat-germ-based cell-free translation assay: PabI (5'-GTA/C) from the hyperthermophilic archaeon Pyrococcus abyssi.

    PubMed

    Ishikawa, Ken; Watanabe, Miki; Kuroita, Toshihiro; Uchiyama, Ikuo; Bujnicki, Janusz M; Kawakami, Bunsei; Tanokura, Masaru; Kobayashi, Ichizo

    2005-07-21

    To search for restriction endonucleases, we used a novel plant-based cell-free translation procedure that bypasses the toxicity of these enzymes. To identify candidate genes, the related genomes of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii were compared. In line with the selfish mobile gene hypothesis for restriction-modification systems, apparent genome rearrangement around putative restriction genes served as a selecting criterion. Several candidate restriction genes were identified and then amplified in such a way that they were removed from their own translation signal. During their cloning into a plasmid, the genes became connected with a plant translation signal. After in vitro transcription by T7 RNA polymerase, the mRNAs were separated from the template DNA and translated in a wheat-germ-based cell-free protein synthesis system. The resulting solution could be directly assayed for restriction activity. We identified two deoxyribonucleases. The novel enzyme was denoted as PabI, purified and found to recognize 5'-GTAC and leave a 3'-TA overhang (5'-GTA/C), a novel restriction enzyme-generated terminus. PabI is active up to 90 degrees C and optimally active at a pH of around 6 and in NaCl concentrations ranging from 100 to 200 mM. We predict that it has a novel 3D structure.

  7. Problem-Solving Test: Restriction Endonuclease Mapping

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    The term "restriction endonuclease mapping" covers a number of related techniques used to identify specific restriction enzyme recognition sites on small DNA molecules. A method for restriction endonuclease mapping of a 1,000-basepair (bp)-long DNA molecule is described in the fictitious experiment of this test. The most important fact needed to…

  8. The interaction of the Eco R1 restriction enzyme E.coli with nucleotides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollis, Donald F.

    1979-11-01

    The Eco R1 restriction enzyme can be shown to be inhibited by nucleotides which correspond to any part of its known site of phosphodiesterase activity. A series of di-, tetra-, and hexa-nucleotide fragments were synthesized and their effect on the activity of the enzyme upon superhelical Co1 E1 DNA studied. The inhibition caused by the individual mononucleotides were also studied. In general all the nucleotide fragments showed some form of interaction with the enzyme system. Tetranucleotides were stronger inhibitors than dinucleotides, which in turn were stronger inhibitors than the mononucleotides. Within each category of inhibitors, those containing the phosphodiester bondmore » which is acted upon by the enzyme were the strongest inhibitors. Only those fragments which were consistent with the enzymes site of activity showed competitive inhibition kinetics. Nucleotides which do not fit within the site of phosphodiesterase activity show non-competitive inhibition kinetics.« less

  9. Molecular phylogeny and species separation of five morphologically similar Holosticha-complex ciliates (Protozoa, Ciliophora) using ARDRA riboprinting and multigene sequence data

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Yi, Zhenzhen; Gong, Jun; Al-Rasheid Khaled, A. S.; Song, Weibo

    2010-05-01

    To separate and redefine the ambiguous Holosticha-complex, a confusing group of hypotrichous ciliates, six strains belonging to five morphospecies of three genera, Holosticha heterofoissneri, Anteholosticha sp. pop1, Anteholosticha sp. pop2, A. manca, A. gracilis and Nothoholosticha fasciola, were analyzed using 12 restriction enzymes on the basis of amplified ribosomal DNA restriction analysis. Nine of the 12 enzymes could digest the DNA products, four ( Hinf I, Hind III, Msp I, Taq I) yielded species-specific restriction patterns, and Hind III and Taq I produced different patterns for two Anteholosticha sp. populations. Distinctly different restriction digestion haplotypes and similarity indices can be used to separate the species. The secondary structures of the five species were predicted based on the ITS2 transcripts and there were several minor differences among species, while two Anteholosticha sp. populations were identical. In addition, phylogenies based on the SSrRNA gene sequences were reconstructed using multiple algorithms, which grouped them generally into four clades, and exhibited that the genus Anteholosticha should be a convergent assemblage. The fact that Holosticha species clustered with the oligotrichs and choreotrichs, though with very low support values, indicated that the topology may be very divergent and unreliable when the number of sequence data used in the analyses is too low.

  10. Construction of a transfer vector for a clonal isolate of LdNPV

    Treesearch

    Shivanand T. Hiremath; Martha Fikes; Audrey Ichida

    1991-01-01

    Deoxyribonucleic acid from a clonal isolate of LdNPV (CI A2-1), obtained by in vivo cloning procedures, was used to construct genomic libraries in phage (lamda Gem 11) and cosmid (pHC79) vectors. Overlapping clones were selected to generate a restriction enzyme map. The restriction enzyme map, covering about 85% of the CI A2-1 genome, was determined...

  11. One recognition sequence, seven restriction enzymes, five reaction mechanisms

    PubMed Central

    Gowers, Darren M.; Bellamy, Stuart R.W.; Halford, Stephen E.

    2004-01-01

    The diversity of reaction mechanisms employed by Type II restriction enzymes was investigated by analysing the reactions of seven endonucleases at the same DNA sequence. NarI, KasI, Mly113I, SfoI, EgeI, EheI and BbeI cleave DNA at several different positions in the sequence 5′-GGCGCC-3′. Their reactions on plasmids with one or two copies of this sequence revealed five distinct mechanisms. These differ in terms of the number of sites the enzyme binds, and the number of phosphodiester bonds cleaved per turnover. NarI binds two sites, but cleaves only one bond per DNA-binding event. KasI also cuts only one bond per turnover but acts at individual sites, preferring intact to nicked sites. Mly113I cuts both strands of its recognition sites, but shows full activity only when bound to two sites, which are then cleaved concertedly. SfoI, EgeI and EheI cut both strands at individual sites, in the manner historically considered as normal for Type II enzymes. Finally, BbeI displays an absolute requirement for two sites in close physical proximity, which are cleaved concertedly. The range of reaction mechanisms for restriction enzymes is thus larger than commonly imagined, as is the number of enzymes needing two recognition sites. PMID:15226412

  12. An Approach for Identification of Novel Drug Targets in Streptococcus pyogenes SF370 Through Pathway Analysis.

    PubMed

    Singh, Satendra; Singh, Dev Bukhsh; Singh, Anamika; Gautam, Budhayash; Ram, Gurudayal; Dwivedi, Seema; Ramteke, Pramod W

    2016-12-01

    Streptococcus pyogenes is one of the most important pathogens as it is involved in various infections affecting upper respiratory tract and skin. Due to the emergence of multidrug resistance and cross-resistance, S. Pyogenes is becoming more pathogenic and dangerous. In the present study, an in silico comparative analysis of total 65 metabolic pathways of the host (Homo sapiens) and the pathogen was performed. Initially, 486 paralogous enzymes were identified so that they can be removed from possible drug target list. The 105 enzymes of the biochemical pathways of S. pyogenes from the KEGG metabolic pathway database were compared with the proteins from the Homo sapiens by performing a BLASTP search against the non-redundant database restricted to the Homo sapiens subset. Out of these, 83 enzymes were identified as non-human homologous while 30 enzymes of inadequate amino acid length were removed for further processing. Essential enzymes were finally mined from remaining 53 enzymes. Finally, 28 essential enzymes were identified in S. pyogenes SF370 (serotype M1). In subcellular localization study, 18 enzymes were predicted with cytoplasmic localization and ten enzymes with the membrane localization. These ten enzymes with putative membrane localization should be of particular interest. Acyl-carrier-protein S-malonyltransferase, DNA polymerase III subunit beta and dihydropteroate synthase are novel drug targets and thus can be used to design potential inhibitors against S. pyogenes infection. 3D structure of dihydropteroate synthase was modeled and validated that can be used for virtual screening and interaction study of potential inhibitors with the target enzyme.

  13. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif

    PubMed Central

    Feng, Yuqing; Baig, Tayyba T.; Love, Robin P.; Chelico, Linda

    2014-01-01

    The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-)DNA, APOBEC3 enzymes deaminate cytosines to form uracils in single-stranded (-)DNA regions. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite to the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but also by several degradation-independent mechanisms, such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective. PMID:25206352

  14. Evaluation of the applicability of amplified rDNA-restriction analysis (ARDRA) to identification of species of the genus Corynebacterium.

    PubMed

    Vaneechoutte, M; Riegel, P; de Briel, D; Monteil, H; Verschraegen, G; De Rouck, A; Claeys, G

    1995-10-01

    The 16S rRNA genes (rDNA) of 50 strains belonging to 26 different coryneform bacterial species and genomospecies and of the type strain of Rhodococcus equi were enzymatically amplified. Amplified rDNA restriction analysis (ARDRA) with the enzymes AluI, CfoI and RsaI was carried out. The combination of the ARDRA patterns obtained after restriction with these three different enzymes enabled the differentiation between the following species: Corynebacterium accolens (number of strains = 2), C. afermentans subsp. afermentans (2), C. afermentans subsp. lipophilum (2), C. amycolatum (3), CDC coryneform group ANF-1-like (1), CDC coryneform group ANF-3-like (1), C. cystitidis (1), C. diphtheriae (4), C. jeikeium (3), C. macginleyi (2), C. minutissimum (1), C. pilosum (1), C. pseudotuberculosis (2), C. renale (2), C. striatum (2), C. urealyticum (3), C. xerosis (1), CDC coryneform groups B-1 (2), B-3 (2), F-1, genomospecies 1 and 2 (6), G, genomospecies 1 (1) and G, genomospecies 2 (2). The following strains or species could not be differentiated from each other: C. pseudodiphtheriticum (2) from C. propinquum (former CDC coryneform group ANF-3) (2), CDC coryneform group F-1, genomospecies 1 (4) from genomospecies 2 (2) and C. jeikeium genomospecies A (1) from genomospecies C (2). ARDRA may represent a possible alternative for identification of coryneforms, since this technique enabled the identification of most coryneforms tested and since DNA extraction (i.e. cell lysis by boiling), amplification, restriction and electrophoresis can be carried out within 8 hours. This might allow quick identification of C. diphtheriae and other possible pathogens of the genus Corynebacterium.

  15. Programmable DNA-Guided Artificial Restriction Enzymes.

    PubMed

    Enghiad, Behnam; Zhao, Huimin

    2017-05-19

    Restriction enzymes are essential tools for recombinant DNA technology that have revolutionized modern biological research. However, they have limited sequence specificity and availability. Here we report a Pyrococcus furiosus Argonaute (PfAgo) based platform for generating artificial restriction enzymes (AREs) capable of recognizing and cleaving DNA sequences at virtually any arbitrary site and generating defined sticky ends of varying length. Short DNA guides are used to direct PfAgo to target sites for cleavage at high temperatures (>87 °C) followed by reannealing of the cleaved single stranded DNAs. We used this platform to generate over 18 AREs for DNA fingerprinting and molecular cloning of PCR-amplified or genomic DNAs. These AREs work as efficiently as their naturally occurring counterparts, and some of them even do not have any naturally occurring counterparts, demonstrating easy programmability, generality, versatility, and high efficiency for this new technology.

  16. Development of RFLP-PCR method for the identification of medically important Aspergillus species using single restriction enzyme MwoI.

    PubMed

    Diba, K; Mirhendi, H; Kordbacheh, P; Rezaie, S

    2014-01-01

    In this study we attempted to modify the PCR-RFLP method using restriction enzyme MwoI for the identification of medically important Aspergillus species. Our subjects included nine standard Aspergillus species and 205 Aspergillus isolates of approved hospital acquired infections and hospital indoor sources. First of all, Aspergillus isolates were identified in the level of species by using morphologic method. A twenty four hours culture was performed for each isolates to harvest Aspergillus mycelia and then genomic DNA was extracted using Phenol-Chloroform method. PCR-RFLP using single restriction enzyme MwoI was performed in ITS regions of rDNA gene. The electrophoresis data were analyzed and compared with those of morphologic identifications. Total of 205 Aspergillus isolates included 153 (75%) environmental and 52 (25%) clinical isolates. A. flavus was the most frequently isolate in our study (55%), followed by A. niger 65(31.7%), A. fumigatus 18(8.7%), A. nidulans and A. parasiticus 2(1% each). MwoI enabled us to discriminate eight medically important Aspergillus species including A. fumigatus, A. niger, A. flavus as the most common isolated species. PCR-RFLP method using the restriction enzyme MwoI is a rapid and reliable test for identification of at least the most medically important Aspergillus species.

  17. Development of RFLP-PCR method for the identification of medically important Aspergillus species using single restriction enzyme MwoI

    PubMed Central

    Diba, K.; Mirhendi, H.; Kordbacheh, P.; Rezaie, S.

    2014-01-01

    In this study we attempted to modify the PCR-RFLP method using restriction enzyme MwoI for the identification of medically important Aspergillus species. Our subjects included nine standard Aspergillus species and 205 Aspergillus isolates of approved hospital acquired infections and hospital indoor sources. First of all, Aspergillus isolates were identified in the level of species by using morphologic method. A twenty four hours culture was performed for each isolates to harvest Aspergillus mycelia and then genomic DNA was extracted using Phenol-Chloroform method. PCR-RFLP using single restriction enzyme MwoI was performed in ITS regions of rDNA gene. The electrophoresis data were analyzed and compared with those of morphologic identifications. Total of 205 Aspergillus isolates included 153 (75%) environmental and 52 (25%) clinical isolates. A. flavus was the most frequently isolate in our study (55%), followed by A. niger 65(31.7%), A. fumigatus 18(8.7%), A. nidulans and A. parasiticus 2(1% each). MwoI enabled us to discriminate eight medically important Aspergillus species including A. fumigatus, A. niger, A. flavus as the most common isolated species. PCR-RFLP method using the restriction enzyme MwoI is a rapid and reliable test for identification of at least the most medically important Aspergillus species. PMID:25242934

  18. Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.

    PubMed Central

    Lakshmikumaran, M S; D'Ambrosio, E; Laimins, L A; Lin, D T; Furano, A V

    1985-01-01

    The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this. Images PMID:3016521

  19. Molecular typing and whole genome next generation sequencing of human adenovirus 8 strains recovered from four 2012 outbreaks of keratoconjunctivitis in New York State.

    PubMed

    Lamson Bs, Daryl M; Kajon, Adriana E; Shudt, Matthew; Quinn, Monica; Newman, Alexandra; Whitehouse, Joan; Greenko, Jane; Adams, Eleanor; St George, Kirsten

    2018-05-11

    Ocular infections caused by human adenovirus (HAdV) are highly contagious. The most severe are usually caused by members of species HAdV-D (types HAdV8, 19, 37, 53, 54, and 56) and can manifest as epidemic keratoconjunctivitis (EKC), often resulting in prolonged impairment of vision. During the early months of 2012, EKC outbreaks occurred in neonatal intensive care units (NICUs) in 3 hospitals in New York State (New York and Suffolk Counties). A total of 32 neonates were affected. For 14 of them, HAdV8 was laboratory-confirmed as the causative agent. Nine healthcare workers were also affected with 3 laboratory-confirmed, HAdV-positive EKC. A fourth EKC outbreak was documented among patients attending a private ophthalmology practice in Ulster County involving a total of 35 cases. Epidemiological linkage between the neonatal intensive care unit outbreaks was demonstrated by molecular typing of virus isolates with restriction enzyme analysis and next generation whole genome sequencing. The strain isolated from the ophthalmology clinic was easily distinguishable from the others by restriction enzyme analysis. © 2018 Wiley Periodicals, Inc.

  20. ENZVU--An Enzyme Kinetics Computer Simulation Based upon a Conceptual Model of Enzyme Action.

    ERIC Educational Resources Information Center

    Graham, Ian

    1985-01-01

    Discusses a simulation on enzyme kinetics based upon the ability of computers to generate random numbers. The program includes: (1) enzyme catalysis in a restricted two-dimensional grid; (2) visual representation of catalysis; and (3) storage and manipulation of data. Suggested applications and conclusions are also discussed. (DH)

  1. 4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments.

    PubMed

    Raviram, Ramya; Rocha, Pedro P; Müller, Christian L; Miraldi, Emily R; Badri, Sana; Fu, Yi; Swanzey, Emily; Proudhon, Charlotte; Snetkova, Valentina; Bonneau, Richard; Skok, Jane A

    2016-03-01

    4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or "bait") that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes.

  2. 4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments

    PubMed Central

    Raviram, Ramya; Rocha, Pedro P.; Müller, Christian L.; Miraldi, Emily R.; Badri, Sana; Fu, Yi; Swanzey, Emily; Proudhon, Charlotte; Snetkova, Valentina

    2016-01-01

    4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or “bait”) that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes. PMID:26938081

  3. Restriction enzyme analysis of Indian isolates of egg drop syndrome 1976 virus recovered from chicken, duck and quail.

    PubMed

    Senthilkumar, N; Kataria, J M; Koti, M; Dhama, K; Dash, B B

    2004-07-01

    Egg drop syndrome 1976 (EDS-76) is caused by a haemagglutinating adenovirus belonging to group III of the genus Aviadenovirus in the family Adenoviridae. All isolates are serologically identical, but have been divided into three groups based on restriction endonuclease (RE) analysis. In this study the viral DNA of various Indian EDS-76 viral isolates (CEDS-A, CEDS-B, EDS-M, EDS-ML, EDS-1/AD/86, EDS-KC and QEDS) obtained from different avian species and different geographical regions were digested with restriction endonucleases viz., EcoRI, BamHI, HindIII and PstI. The results showed that one Indian isolate obtained from duck (DEDS-KC) was different from all other chicken and quail counterparts. All other isolates were identical to the reference viral strain BC-14, which belong to group I of EDS-76 viruses. The duck isolate EDS-KC could not be placed in any of the three groups reported earlier.

  4. A theory that may explain the Hayflick limit--a means to delete one copy of a repeating sequence during each cell cycle in certain human cells such as fibroblasts.

    PubMed

    Naveilhan, P; Baudet, C; Jabbour, W; Wion, D

    1994-09-01

    A model that may explain the limited division potential of certain cells such as human fibroblasts in culture is presented. The central postulate of this theory is that there exists, prior to certain key exons that code for materials needed for cell division, a unique sequence of specific repeating segments of DNA. One copy of such repeating segments is deleted during each cell cycle in cells that are not protected from such deletion through methylation of their cytosine residues. According to this theory, the means through which such repeated sequences are removed, one per cycle, is through the sequential action of enzymes that act much as bacterial restriction enzymes do--namely to produce scissions in both strands of DNA in areas that correspond to the DNA base sequence recognition specificities of such enzymes. After the first scission early in a replicative cycle, that enzyme becomes inhibited, but the cleavage of the first site exposes the closest site in the repetitive element to the action of a second restriction enzyme after which that enzyme also becomes inhibited. Then repair occurs, regenerating the original first site. Through this sequential activation and inhibition of two different restriction enzymes, only one copy of the repeating sequence is deleted during each cell cycle. In effect, the repeating sequence operates as a precise counter of the numbers of cell doubling that have occurred since the cells involved differentiated during development.

  5. Differentiating the persistency and permanency of some two stages DNA splicing language via Yusof-Goode (Y-G) approach

    NASA Astrophysics Data System (ADS)

    Mudaber, M. H.; Yusof, Y.; Mohamad, M. S.

    2017-09-01

    Predicting the existence of restriction enzymes sequences on the recombinant DNA fragments, after accomplishing the manipulating reaction, via mathematical approach is considered as a convenient way in terms of DNA recombination. In terms of mathematics, for this characteristic of the recombinant DNA strands, which involve the recognition sites of restriction enzymes, is called persistent and permanent. Normally differentiating the persistency and permanency of two stages recombinant DNA strands using wet-lab experiment is expensive and time-consuming due to running the experiment at two stages as well as adding more restriction enzymes on the reaction. Therefore, in this research, by using Yusof-Goode (Y-G) model the difference between persistent and permanent splicing language of some two stages is investigated. Two theorems were provided, which show the persistency and non-permanency of two stages DNA splicing language.

  6. Four new type I restriction enzymes identified in Escherichia coli clinical isolates

    PubMed Central

    Kasarjian, Julie K. A.; Kodama, Yoshiaki; Iida, Masatake; Matsuda, Katsura; Ryu, Junichi

    2005-01-01

    Using a plasmid transformation method and the RM search computer program, four type I restriction enzymes with new recognition sites and two isoschizomers (EcoBI and Eco377I) were identified in a collection of clinical Escherichia coli isolates. These new enzymes were designated Eco394I, Eco826I, Eco851I and Eco912I. Their recognition sequences were determined to be GAC(5N)RTAAY, GCA(6N)CTGA, GTCA(6N)TGAY and CAC(5N)TGGC, respectively. A methylation sensitivity assay, using various synthetic oligonucleotides, was used to identify the adenines that prevent cleavage when methylated (underlined). These results suggest that type I enzymes are abundant in E.coli and many other bacteria, as has been inferred from bacterial genome sequencing projects. PMID:16040596

  7. Characterization of ascaris from ecuador and zanzibar.

    PubMed

    Sparks, A M; Betson, M; Oviedo, G; Sandoval, C; Cooper, P J; Stothard, J R

    2015-07-01

    To shed light on the epidemiology of ascariasis in Ecuador and Zanzibar, 177 adult worms retrieved by chemo-expulsion from either people or pigs were collected, measured and subjected to polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the ribosomal internal transcribed spacer (ITS) region. Upon double digestion with RsaI and HaeIII, PCR-RFLP analysis revealed the presence of A. lumbricoides in people and A. suum in pigs in Ecuador. In contrast, while there are no pigs on Zanzibar, of the 56 worms obtained from people, one was genotyped as A. suum. No additional genetic variation was detected upon further PCR-RFLP analysis with several other restriction enzymes. Upon measurement, worm mass and length differed by location and by species, A. suum being lighter and longer. While there is no evidence to suggest zoonotic transmission in Ecuador, an enduring historical signature of previous zoonotic transmission remains on Zanzibar.

  8. Mojo Hand, a TALEN design tool for genome editing applications.

    PubMed

    Neff, Kevin L; Argue, David P; Ma, Alvin C; Lee, Han B; Clark, Karl J; Ekker, Stephen C

    2013-01-16

    Recent studies of transcription activator-like (TAL) effector domains fused to nucleases (TALENs) demonstrate enormous potential for genome editing. Effective design of TALENs requires a combination of selecting appropriate genetic features, finding pairs of binding sites based on a consensus sequence, and, in some cases, identifying endogenous restriction sites for downstream molecular genetic applications. We present the web-based program Mojo Hand for designing TAL and TALEN constructs for genome editing applications (http://www.talendesign.org). We describe the algorithm and its implementation. The features of Mojo Hand include (1) automatic download of genomic data from the National Center for Biotechnology Information, (2) analysis of any DNA sequence to reveal pairs of binding sites based on a user-defined template, (3) selection of restriction-enzyme recognition sites in the spacer between the TAL monomer binding sites including options for the selection of restriction enzyme suppliers, and (4) output files designed for subsequent TALEN construction using the Golden Gate assembly method. Mojo Hand enables the rapid identification of TAL binding sites for use in TALEN design. The assembly of TALEN constructs, is also simplified by using the TAL-site prediction program in conjunction with a spreadsheet management aid of reagent concentrations and TALEN formulation. Mojo Hand enables scientists to more rapidly deploy TALENs for genome editing applications.

  9. Cryptosporidium canis in Two Mexican Toddlers.

    PubMed

    González-Díaz, Mariana; Urrea-Quezada, Alejandro; Villegas-Gómez, Isaac; Durazo, María; Garibay-Escobar, Adriana; Hernández, Jesús; Xiao, Lihua; Valenzuela, Olivia

    2016-11-01

    Cryptosporidium canis is reported for the first time in 2 toddlers in Northwestern Mexico. The 2 toddlers (33 and 34 months old) were symptomatic at diagnosis, presenting diarrhea and fever, and 1 case presented chronic malnutrition. Both toddlers were HIV-negative. C. canis was identified by SspI and VspI restriction enzyme digestion of the 18S rRNA polymerase chain reaction products and confirmed by sequence analysis.

  10. A rapid and reliable PCR method for genotyping the ABO blood group.

    PubMed

    O'Keefe, D S; Dobrovic, A

    1993-01-01

    The ABO blood group has been used extensively as a marker in population studies, epidemiology, and forensic work. However, until the cloning of the gene, it was not possible to determine the genotype of group A and B individuals without recourse to family studies. We have developed a method to determine the ABO genotype directly from human DNA using multiplex PCR and restriction enzyme analysis. Two PCR fragments spanning positions 258 and 700 of the cDNA sequence are amplified. The site at position 258 allows us to differentiate the O allele from the A and B alleles. The site at position 700 allows us to distinguish the B allele from the A and O alleles. Analysis at the two sites thus allows us to distinguish the three alleles. The multiplex PCR product is digested separately with four enzymes, two for each of the sites. The pair of enzymes for each site cut in a reciprocal fashion. Whereas one enzyme for each site is theoretically sufficient for genotyping, the use of complementary pairs of enzymes prevents the assignment of a false genotype as a result of false negative or partial digestion. This method is fast and reliable, does not rely on probing of blots, and should be widely applicable.

  11. Genetic diversity study of Chromobacterium violaceum isolated from Kolli Hills by amplified ribosomal DNA restriction analysis (ARDRA) and random amplified polymorphic DNA (RAPD).

    PubMed

    Ponnusamy, K; Jose, S; Savarimuthu, I; Michael, G P; Redenbach, M

    2011-09-01

    Chromobacterium are saprophytes that cause highly fatal opportunistic infections. Identification and strain differentiation were performed to identify the strain variability among the environmental samples. We have evaluated the suitability of individual and combined methods to detect the strain variations of the samples collected in different seasons. Amplified ribosomal DNA restriction analysis (ARDRA) and random amplified polymorphic DNA (RAPD) profiles were obtained using four different restriction enzyme digestions (AluI, HaeIII, MspI and RsaI) and five random primers. A matrix of dice similarity coefficients was calculated and used to compare these restriction patterns. ARDRA showed rapid differentiation of strains based on 16S rDNA, but the combined RAPD and ARDRA gave a more reliable differentiation than when either of them was analysed individually. A high level of genetic diversity was observed, which indicates that the Kolli Hills' C. violaceum isolates would fall into at least three new clusters. Results showed a noteworthy bacterial variation and genetic diversity of C. violaceum in the unexplored, virgin forest area. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  12. Characterization of a restriction modification system from the commensal Escherichia coli strain A0 34/86 (O83:K24:H31).

    PubMed

    Weiserová, Marie; Ryu, Junichi

    2008-06-27

    Type I restriction-modification (R-M) systems are the most complex restriction enzymes discovered to date. Recent years have witnessed a renaissance of interest in R-M enzymes Type I. The massive ongoing sequencing programmes leading to discovery of, so far, more than 1 000 putative enzymes in a broad range of microorganisms including pathogenic bacteria, revealed that these enzymes are widely represented in nature. The aim of this study was characterisation of a putative R-M system EcoA0ORF42P identified in the commensal Escherichia coli A0 34/86 (O83: K24: H31) strain, which is efficiently used at Czech paediatric clinics for prophylaxis and treatment of nosocomial infections and diarrhoea of preterm and newborn infants. We have characterised a restriction-modification system EcoA0ORF42P of the commensal Escherichia coli strain A0 34/86 (O83: K24: H31). This system, designated as EcoAO83I, is a new functional member of the Type IB family, whose specificity differs from those of known Type IB enzymes, as was demonstrated by an immunological cross-reactivity and a complementation assay. Using the plasmid transformation method and the RM search computer program, we identified the DNA recognition sequence of the EcoAO83I as GGA(8N)ATGC. In consistence with the amino acids alignment data, the 3' TRD component of the recognition sequence is identical to the sequence recognized by the EcoEI enzyme. The A-T (modified adenine) distance is identical to that in the EcoAI and EcoEI recognition sites, which also indicates that this system is a Type IB member. Interestingly, the recognition sequence we determined here is identical to the previously reported prototype sequence for Eco377I and its isoschizomers. Putative restriction-modification system EcoA0ORF42P in the commensal Escherichia coli strain A0 34/86 (O83: K24: H31) was found to be a member of the Type IB family and was designated as EcoAO83I. Combination of the classical biochemical and bacterial genetics approaches with comparative genomics might contribute effectively to further classification of many other putative Type-I enzymes, especially in clinical samples.

  13. [Carbohydrate restriction in the larval diet causes oxidative stress in adult insects of Drosophila melanogaster].

    PubMed

    Rovenko, B M; Lushchak, V I; Lushchak, O V

    2013-01-01

    The influence of 20 and 1% glucose and fructose, which were components of larval diet, on the level of oxidized proteins and lipids, low molecular mass antioxidant content as well as activities of antioxidant and associated enzymes in adult fruit fly Drosophila melanogaster were investigated. The restriction of carbohydrates in larval diet leads to oxidative stress in adult insects. It is supported by 40-50% increased content of protein carbonyl groups and by 60-70% decreased level of protein thiol groups as well as by a 4-fold increase of lipid peroxide content in 2-day-old flies of both sexes, developed on the diet with 1% carbohydrates. Oxidative stress, induced by carbohydrate restriction of the larval diet, caused the activation of antioxidant defence, differently exhibited in male and female fruit flies. Caloric restriction increased activity of superoxide dismutase and thioredoxin reductase associating only in males with 2-fold higher activity of NADPH-producing enzymes--glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase. Carbohydrate restriction in the larval diet caused the increase of uric acid content, but the decrease in catalase activity in males. In females the values of these parameters were changed in opposite direction compared with males. The obtained results let us conclude the different involvement of low molecular mass antioxidants, glutathione and uric acid, and antioxidant enzyme catalase in the protection of male and female fruit fly macromolecules against oxidative damages, caused by calorie restriction of larval diet.

  14. Gene profiling reveals a role for stress hormones in the molecular and behavioral response to food restriction.

    PubMed

    Guarnieri, Douglas J; Brayton, Catherine E; Richards, Sarah M; Maldonado-Aviles, Jaime; Trinko, Joseph R; Nelson, Jessica; Taylor, Jane R; Gourley, Shannon L; DiLeone, Ralph J

    2012-02-15

    Food restriction is known to enhance learning and motivation. The neural mechanisms underlying these responses likely involve alterations in gene expression in brain regions mediating the motivation to feed. Analysis of gene expression profiles in male C57BL/6J mice using whole-genome microarrays was completed in the medial prefrontal cortex, nucleus accumbens, ventral tegmental area, and the hypothalamus following a 5-day food restriction. Quantitative polymerase chain reaction was used to validate these findings and determine the time course of expression changes. Plasma levels of the stress hormone corticosterone (CORT) were measured by enzyme-linked immunosorbent assay. Expression changes were measured in adrenalectomized animals that underwent food restriction, as well as in animals receiving daily injections of CORT. Progressive ratio responding for food, a measure of motivated behavior, was assessed after CORT treatment in restricted and fed animals. Brief food restriction results in an upregulation of peripheral stress responsive genes in the mammalian brain. Time-course analysis demonstrated rapid and persistent expression changes in all four brain regions under study. Administration of CORT to nonrestricted animals was sufficient to induce a subset of the genes, and alterations in gene expression after food restriction were dependent on intact adrenal glands. CORT can increase the motivation to work for food only in the restricted state. These data demonstrate a central role for CORT in mediating both molecular and behavioral responses to food restriction. The stress hormone-induced alterations in gene expression described here may be relevant for both adaptive and pathological responses to stress. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. High Genetic Diversity Revealed by Variable-Number Tandem Repeat Genotyping and Analysis of hsp65 Gene Polymorphism in a Large Collection of “Mycobacterium canettii” Strains Indicates that the M. tuberculosis Complex Is a Recently Emerged Clone of “M. canettii”

    PubMed Central

    Fabre, Michel; Koeck, Jean-Louis; Le Flèche, Philippe; Simon, Fabrice; Hervé, Vincent; Vergnaud, Gilles; Pourcel, Christine

    2004-01-01

    We have analyzed, using complementary molecular methods, the diversity of 43 strains of “Mycobacterium canettii” originating from the Republic of Djibouti, on the Horn of Africa, from 1998 to 2003. Genotyping by multiple-locus variable-number tandem repeat analysis shows that all the strains belong to a single but very distant group when compared to strains of the Mycobacterium tuberculosis complex (MTBC). Thirty-one strains cluster into one large group with little variability and five strains form another group, whereas the other seven are more diverged. In total, 14 genotypes are observed. The DR locus analysis reveals additional variability, some strains being devoid of a direct repeat locus and others having unique spacers. The hsp65 gene polymorphism was investigated by restriction enzyme analysis and sequencing of PCR amplicons. Four new single nucleotide polymorphisms were discovered. One strain was characterized by three nucleotide changes in 441 bp, creating new restriction enzyme polymorphisms. As no sequence variability was found for hsp65 in the whole MTBC, and as a single point mutation separates M. tuberculosis from the closest “M. canettii” strains, this diversity within “M. canettii” subspecies strongly suggests that it is the most probable source species of the MTBC rather than just another branch of the MTBC. PMID:15243089

  16. A convenient and adaptable package of DNA sequence analysis programs for microcomputers.

    PubMed Central

    Pustell, J; Kafatos, F C

    1982-01-01

    We describe a package of DNA data handling and analysis programs designed for microcomputers. The package is convenient for immediate use by persons with little or no computer experience, and has been optimized by trial in our group for a year. By typing a single command, the user enters a system which asks questions or gives instructions in English. The system will enter, alter, and manage sequence files or a restriction enzyme library. It generates the reverse complement, translates, calculates codon usage, finds restriction sites, finds homologies with various degrees of mismatch, and graphs amino acid composition or base frequencies. A number of options for data handling and printing can be used to produce figures for publication. The package will be available in ANSI Standard FORTRAN for use with virtually any FORTRAN compiler. PMID:6278412

  17. Genetic diversity of Rhizobia isolates from Amazon soils using cowpea (Vigna unguiculata) as trap plant

    PubMed Central

    Silva, F.V.; Simões-Araújo, J.L.; Silva Júnior, J.P.; Xavier, G.R.; Rumjanek, N.G.

    2012-01-01

    The aim of this work was to characterize rhizobia isolated from the root nodules of cowpea (Vigna unguiculata) plants cultivated in Amazon soils samples by means of ARDRA (Amplified rDNA Restriction Analysis) and sequencing analysis, to know their phylogenetic relationships. The 16S rRNA gene of rhizobia was amplified by PCR (polymerase chain reaction) using universal primers Y1 and Y3. The amplification products were analyzed by the restriction enzymes HinfI, MspI and DdeI and also sequenced with Y1, Y3 and six intermediate primers. The clustering analysis based on ARDRA profiles separated the Amazon isolates in three subgroups, which formed a group apart from the reference isolates of Bradyrhizobium japonicum and Bradyrhizobium elkanii. The clustering analysis of 16S rRNA gene sequences showed that the fast-growing isolates had similarity with Enterobacter, Rhizobium, Klebsiella and Bradyrhizobium and all the slow-growing clustered close to Bradyrhizobium. PMID:24031880

  18. Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from 'Kombucha tea'.

    PubMed

    Kurtzman, C P; Robnett, C J; Basehoar-Powers, E

    2001-07-01

    A new ascosporogenous yeast, Zygosaccharomyces kombuchaensis sp. n. (type strain NRRL YB-4811, CBS 8849), is described; it was isolated from Kombucha tea, a popular fermented tea-based beverage. The four known strains of the new species have identical nucleotide sequences in domain D1/D2 of 26S rDNA. Phylogenetic analysis of D1/D2 and 18S rDNA sequences places Z. kombuchaensis near Zygosaccharomyces lentus. The two species are indistinguishable on standard physiological tests used for yeast identification, but can be recognized from differences in restriction fragment length polymorphism patterns obtained by digestion of 18S-ITS1 amplicons with the restriction enzymes DdeI and MboI.

  19. Meat species identification and Halal authentication analysis using mitochondrial DNA.

    PubMed

    Murugaiah, Chandrika; Noor, Zainon Mohd; Mastakim, Maimunah; Bilung, Lesley Maurice; Selamat, Jinap; Radu, Son

    2009-09-01

    A method utilizing PCR-restriction fragment length polymorphism (RFLP) in the mitochondrial genes was developed for beef (Bos taurus), pork (Sus scrofa), buffalo (Bubalus bubali), quail (Coturnix coturnix), chicken (Gallus gallus), goat (Capra hircus), rabbit (Oryctolagus cuniculus) species identification and Halal authentication. PCR products of 359-bp were successfully obtained from the cyt b gene of these six meats. AluI, BsaJI, RsaI, MseI, and BstUI enzymes were identified as potential restriction endonucleases to differentiate the meats. The genetic differences within the cyt b gene among the meat were successfully confirmed by PCR-RFLP. A reliable typing scheme of species which revealed the genetic differences among the species was developed.

  20. Isolation and Identification of Pathogenicity Mutant of Curvularia lunata via Restriction Enzyme-Mediated Integration.

    PubMed

    Wang, Y J; Liu, T; Hou, J M; Zuo, Y H

    2013-09-01

    In this report, 156 hygromycin-resistant mutants were generated via restriction enzyme-mediated insertional (REMI) mutagenesis. All mutants were subjected to a bioassay on detached leaves. Five mutants (T4, T39, T71, T91, and T135) showed reduced symptom development, whereas one mutant (T120) did not exhibit any symptoms on the leaves compared with the wild type. The pathogenicity of these mutants was further assayed through the spray inoculation of whole seedlings. The results demonstrated that the pathogenicity of the T4, T39, T71, T91, and T135 mutants was reduced, whereas the T120 mutant lost its pathogenicity. Southern blot analysis revealed that the plasmids were inserted at different sites in the genome with different copy numbers. Flanking sequences approximately 550, 860, and 150 bp were obtained from T7, T91, and T120, respectively through plasmids rescue. Sequence analysis of the flanking sequences from T7 and T91 showed no homology to any known sequences in GenBank. The flanking sequence from the T120 mutant was highly homologous to MAPKK kinases, which regulates sexual/asexual development, melanization, pathogenicity from Cochliobolus heterostrophus. These results indicate that REMI and plasmids rescue have great potential for finding pathogenicity genes.

  1. Classification of Fowl Adenovirus Serotypes by Use of High-Resolution Melting-Curve Analysis of the Hexon Gene Region▿

    PubMed Central

    Steer, Penelope A.; Kirkpatrick, Naomi C.; O'Rourke, Denise; Noormohammadi, Amir H.

    2009-01-01

    Identification of fowl adenovirus (FAdV) serotypes is of importance in epidemiological studies of disease outbreaks and the adoption of vaccination strategies. In this study, real-time PCR and subsequent high-resolution melting (HRM)-curve analysis of three regions of the hexon gene were developed and assessed for their potential in differentiating 12 FAdV reference serotypes. The results were compared to previously described PCR and restriction enzyme analyses of the hexon gene. Both HRM-curve analysis of a 191-bp region of the hexon gene and restriction enzyme analysis failed to distinguish a number of serotypes used in this study. In addition, PCR of the region spanning nucleotides (nt) 144 to 1040 failed to amplify FAdV-5 in sufficient quantities for further analysis. However, HRM-curve analysis of the region spanning nt 301 to 890 proved a sensitive and specific method of differentiating all 12 serotypes. All melt curves were highly reproducible, and replicates of each serotype were correctly genotyped with a mean confidence value of more than 99% using normalized HRM curves. Sequencing analysis revealed that each profile was related to a unique sequence, with some sequences sharing greater than 94% identity. Melting-curve profiles were found to be related mainly to GC composition and distribution throughout the amplicons, regardless of sequence identity. The results presented in this study show that the closed-tube method of PCR and HRM-curve analysis provides an accurate, rapid, and robust genotyping technique for the identification of FAdV serotypes and can be used as a model for developing genotyping techniques for other pathogens. PMID:19036935

  2. [Construction and functional identification of eukaryotic expression vector carrying Sprague-Dawley rat MSX-2 gene].

    PubMed

    Yang, Xian-Xian; Zhang, Mei; Yan, Zhao-Wen; Zhang, Ru-Hong; Mu, Xiong-Zheng

    2008-01-01

    To construct a high effective eukaryotic expressing plasmid PcDNA 3.1-MSX-2 encoding Sprague-Dawley rat MSX-2 gene for the further study of MSX-2 gene function. The full length SD rat MSX-2 gene was amplified by PCR, and the full length DNA was inserted in the PMD1 8-T vector. It was isolated by restriction enzyme digest with BamHI and Xhol, then ligated into the cloning site of the PcDNA3.1 expression plasmid. The positive recombinant was identified by PCR analysis, restriction endonudease analysis and sequence analysis. Expression of RNA and protein was detected by RT-PCR and Western blot analysis in PcDNA3.1-MSX-2 transfected HEK293 cells. Sequence analysis and restriction endonudease analysis of PcDNA3.1-MSX-2 demonstrated that the position and size of MSX-2 cDNA insertion were consistent with the design. RT-PCR and Western blot analysis showed specific expression of mRNA and protein of MSX-2 in the transfected HEK293 cells. The high effective eukaryotic expression plasmid PcDNA3.1-MSX-2 encoding Sprague-Dawley Rat MSX-2 gene which is related to craniofacial development can be successfully reconstructed. It may serve as the basis for the further study of MSX-2 gene function.

  3. Telomere Restriction Fragment (TRF) Analysis.

    PubMed

    Mender, Ilgen; Shay, Jerry W

    2015-11-20

    While telomerase is expressed in ~90% of primary human tumors, most somatic tissue cells except transiently proliferating stem-like cells do not have detectable telomerase activity (Shay and Wright, 1996; Shay and Wright, 2001). Telomeres progressively shorten with each cell division in normal cells, including proliferating stem-like cells, due to the end replication (lagging strand synthesis) problem and other causes such as oxidative damage, therefore all somatic cells have limited cell proliferation capacity (Hayflick limit) (Hayflick and Moorhead, 1961; Olovnikov, 1973). The progressive telomere shortening eventually leads to growth arrest in normal cells, which is known as replicative senescence (Shay et al. , 1991). Once telomerase is activated in cancer cells, telomere length is stabilized by the addition of TTAGGG repeats to the end of chromosomes, thus enabling the limitless continuation of cell division (Shay and Wright, 1996; Shay and Wright, 2001). Therefore, the link between aging and cancer can be partially explained by telomere biology. There are many rapid and convenient methods to study telomere biology such as Telomere Restriction Fragment (TRF), Telomere Repeat Amplification Protocol (TRAP) (Mender and Shay, 2015b) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this protocol paper we describe Telomere Restriction Fragment (TRF) analysis to determine average telomeric length of cells. Telomeric length can be indirectly measured by a technique called Telomere Restriction Fragment analysis (TRF). This technique is a modified Southern blot, which measures the heterogeneous range of telomere lengths in a cell population using the length distribution of the terminal restriction fragments (Harley et al. , 1990; Ouellette et al. , 2000). This method can be used in eukaryotic cells. The description below focuses on the measurement of human cancer cells telomere length. The principle of this method relies on the lack of restriction enzyme recognition sites within TTAGGG tandem telomeric repeats, therefore digestion of genomic DNA, not telomeric DNA, with a combination of 6 base restriction endonucleases reduces genomic DNA size to less than 800 bp.

  4. alpha-Putrescinylthymine and the sensitivity of bacteriophage phi W-14 DNA to restriction endonucleases.

    PubMed Central

    Miller, P B; Wakarchuk, W W; Warren, R A

    1985-01-01

    The modified base alpha-putrescinylthymine (putT) in phi W-14 DNA blocks cleavage of the DNA by 17 of 32 Type II restriction endonucleases. The enzymes cleaving the DNA do so to widely varying extents. The frequencies of cleavage of three altered forms of the DNA show that putT blocks recognition sites either when it occurs within the site or when it is in a sequence flanking the site. The blocking is dependent on both charge and steric factors. The charge effects can be greater than the steric effects for some of the enzymes tested. All the enzymes cleaving phi W-14 DNA release discrete fragments, showing that the distribution of putT is ordered. The cleavage frequencies for different enzymes suggest that the sequence CAputTG occurs frequently in the DNA. Only TaqI of the enzymes tested appeared not to be blocked by putT, but it was slowed down. TaqI generated fragments are joinable by T4 DNA ligase. PMID:2987859

  5. Sequential cloning of chromosomes

    DOEpatents

    Lacks, Sanford A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism's chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  6. Polyphosphate present in DNA preparations from fungal species of Collectotrichum inhibits restriction endonucleases and other enzymes

    USGS Publications Warehouse

    Rodriguez, R.J.

    1993-01-01

    During the development of a procedure for the isolation of total genomic DNA from filamentous fungi (Rodriguez, R. J., and Yoder, 0. C., Exp. Mycol. 15, 232-242, 1991) a cell fraction was isolated which inhibited the digestion of DNA by restriction enzymes. After elimination of DNA, RNA, proteins, and lipids, the active compound was purified by gel filtration to yield a single fraction capable of complete inhibition of restriction enzyme activity. The inhibitor did not absorb uv light above 220 nm, and was resistant to alkali and acid at 25°C and to temperatures as high as 100°C. More extensive analyses demonstrated that the inhibitor was also capable of inhibiting T4 DNA ligase and TaqI DNA polymerase, but not DNase or RNase. Chemical analyses indicated that the inhibitor was devoid of carbohydrates, proteins, lipids, and nucleic acids but rich in phosphorus. A combination of nuclear magnetic resonance, metachromatic shift of toluidine blue, and gel filtration indicated that the inhibitor was a polyphosphate (polyP) containing approximately 60 phosphate molecules. The mechanism of inhibition appeared to involve complexing of polyP to the enzymatic proteins. All species of Colletotrichum analyzed produced polyP equivalent in chain length and concentration. A modification to the original DNA extraction procedure is described which eliminates polyP and reduces the time necessary to obtain DNA of sufficient purity for restriction enzyme digestion and TaqI polymerase amplification.

  7. Homology between Escherichia coli plasmids ColE1 and p15A.

    PubMed Central

    Bird, R E

    1981-01-01

    The location and extent of the homology between plasmids ColE1 and p15A were determined by analysis of heteroduplexes formed between them as well as with a related plasmid, pBR322, and by hybridization of radioactive deoxyribonucleic acids to restriction fragments of p15A and ColE1. The homology between the plasmids contained the entire region of ColE1 required for its replication as well as an additional 400 base pairs downstream from the origin of replication. This region on p15A, which was 980 +/- 43 base pairs, started at 0.1 of the molecular length from one end formed by cleavage with the restriction endonuclease BglI and extended to 0.54 of the molecular length from the same end. Restriction cleavage maps for the enzymes BglI, HpaI, HaeII, HaeIII, and HincII are also presented. Images PMID:6259130

  8. Segment swapping aided the evolution of enzyme function: The case of uroporphyrinogen III synthase.

    PubMed

    Szilágyi, András; Györffy, Dániel; Závodszky, Péter

    2017-01-01

    In an earlier study, we showed that two-domain segment-swapped proteins can evolve by domain swapping and fusion, resulting in a protein with two linkers connecting its domains. We proposed that a potential evolutionary advantage of this topology may be the restriction of interdomain motions, which may facilitate domain closure by a hinge-like movement, crucial for the function of many enzymes. Here, we test this hypothesis computationally on uroporphyrinogen III synthase, a two-domain segment-swapped enzyme essential in porphyrin metabolism. To compare the interdomain flexibility between the wild-type, segment-swapped enzyme (having two interdomain linkers) and circular permutants of the same enzyme having only one interdomain linker, we performed geometric and molecular dynamics simulations for these species in their ligand-free and ligand-bound forms. We find that in the ligand-free form, interdomain motions in the wild-type enzyme are significantly more restricted than they would be with only one interdomain linker, while the flexibility difference is negligible in the ligand-bound form. We also estimated the entropy costs of ligand binding associated with the interdomain motions, and find that the change in domain connectivity due to segment swapping results in a reduction of this entropy cost, corresponding to ∼20% of the total ligand binding free energy. In addition, the restriction of interdomain motions may also help the functional domain-closure motion required for catalysis. This suggests that the evolution of the segment-swapped topology facilitated the evolution of enzyme function for this protein by influencing its dynamic properties. Proteins 2016; 85:46-53. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Insights into Substrate Specificity and Metal Activation of Mammalian Tetrahedral Aspartyl Aminopeptidase*

    PubMed Central

    Chen, Yuanyuan; Farquhar, Erik R.; Chance, Mark R.; Palczewski, Krzysztof; Kiser, Philip D.

    2012-01-01

    Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases. PMID:22356908

  10. Phenotypic and genotypic analysis of Borrelia burgdorferi isolates from various sources.

    PubMed Central

    Adam, T; Gassmann, G S; Rasiah, C; Göbel, U B

    1991-01-01

    A total of 17 B. burgdorferi isolates from various sources were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell proteins, restriction enzyme analysis, Southern hybridization with probes complementary to unique regions of evolutionarily conserved genes (16S rRNA and fla), and direct sequencing of in vitro polymerase chain reaction-amplified fragments of the 16S rRNA gene. Three groups were distinguished on the basis of phenotypic and genotypic traits, the latter traced to the nucleotide sequence level. Images PMID:1649797

  11. hisT is part of a multigene operon in Escherichia coli K-12.

    PubMed Central

    Marvel, C C; Arps, P J; Rubin, B C; Kammen, H O; Penhoet, E E; Winkler, M E

    1985-01-01

    The Escherichia coli K-12 hisT gene has been cloned, and its organization and expression have been analyzed on multicopy plasmids. The hisT gene, which encodes tRNA pseudouridine synthase I (PSUI), was isolated on a Clarke-Carbon plasmid known to contain the purF gene. The presence of the hisT gene on this plasmid was suggested by its ability to restore both production of PSUI enzymatic activity and suppression of amber mutations in a hisT mutant strain. A 2.3-kilobase HindIII-ClaI restriction fragment containing the hisT gene was subcloned into plasmid pBR322, and the resulting plasmid (designated psi 300) was mapped with restriction enzymes. Complementation analysis with different kinds of hisT mutations and tRNA structural analysis confirmed that plasmid psi 300 contained the hisT structural gene. Enzyme assays showed that plasmid psi 300 overproduced PSUI activity by ca. 20-fold compared with the wild-type level. Subclones containing restriction fragments from plasmid psi 300 inserted downstream from the lac promoter established that the hisT gene is oriented from the HindIII site toward the ClaI site. Other subclones and derivatives of plasmid psi 300 containing insertion or deletion mutations were constructed and assayed for production of PSUI activity and production of proteins in minicells. These experiments showed that: (i) the proximal 1.3-kilobase HindIII-BssHII restriction fragment contains a promoter for the hisT gene and encodes a 45,000-dalton polypeptide that is not PSUI; (ii) the distal 1.0-kilobase BssHII-ClaI restriction fragment encodes the 31,000-dalton PSUI polypeptide; (iii) the 45,000-dalton polypeptide is synthesized in an approximately eightfold excess compared with PSUI; and (iv) synthesis of the two polypeptides is coupled, suggesting that the two genes are part of an operon. Insertion of mini-Mu d1 (lac Km) phage into plasmid psi 300 confirmed that the hisT gene is the downstream gene in the operon. Images PMID:2981810

  12. A semester-long project for teaching basic techniques in molecular biology such as restriction fragment length polymorphism analysis to undergraduate and graduate students.

    PubMed

    DiBartolomeis, Susan M

    2011-01-01

    Several reports on science education suggest that students at all levels learn better if they are immersed in a project that is long term, yielding results that require analysis and interpretation. I describe a 12-wk laboratory project suitable for upper-level undergraduates and first-year graduate students, in which the students molecularly locate and map a gene from Drosophila melanogaster called dusky and one of dusky's mutant alleles. The mapping strategy uses restriction fragment length polymorphism analysis; hence, students perform most of the basic techniques of molecular biology (DNA isolation, restriction enzyme digestion and mapping, plasmid vector subcloning, agarose and polyacrylamide gel electrophoresis, DNA labeling, and Southern hybridization) toward the single goal of characterizing dusky and the mutant allele dusky(73). Students work as individuals, pairs, or in groups of up to four students. Some exercises require multitasking and collaboration between groups. Finally, results from everyone in the class are required for the final analysis. Results of pre- and postquizzes and surveys indicate that student knowledge of appropriate topics and skills increased significantly, students felt more confident in the laboratory, and students found the laboratory project interesting and challenging. Former students report that the lab was useful in their careers.

  13. A Semester-Long Project for Teaching Basic Techniques in Molecular Biology Such as Restriction Fragment Length Polymorphism Analysis to Undergraduate and Graduate Students

    PubMed Central

    DiBartolomeis, Susan M.

    2011-01-01

    Several reports on science education suggest that students at all levels learn better if they are immersed in a project that is long term, yielding results that require analysis and interpretation. I describe a 12-wk laboratory project suitable for upper-level undergraduates and first-year graduate students, in which the students molecularly locate and map a gene from Drosophila melanogaster called dusky and one of dusky's mutant alleles. The mapping strategy uses restriction fragment length polymorphism analysis; hence, students perform most of the basic techniques of molecular biology (DNA isolation, restriction enzyme digestion and mapping, plasmid vector subcloning, agarose and polyacrylamide gel electrophoresis, DNA labeling, and Southern hybridization) toward the single goal of characterizing dusky and the mutant allele dusky73. Students work as individuals, pairs, or in groups of up to four students. Some exercises require multitasking and collaboration between groups. Finally, results from everyone in the class are required for the final analysis. Results of pre- and postquizzes and surveys indicate that student knowledge of appropriate topics and skills increased significantly, students felt more confident in the laboratory, and students found the laboratory project interesting and challenging. Former students report that the lab was useful in their careers. PMID:21364104

  14. Cercosporin-deficient mutants by plasmid tagging in the asexual fungus Cercospora nicotianae.

    PubMed

    Chung, K-R; Ehrenshaft, M; Wetzel, D K; Daub, M E

    2003-11-01

    We have successfully adapted plasmid insertion and restriction enzyme-mediated integration (REMI) to produce cercosporin toxin-deficient mutants in the asexual phytopathogenic fungus Cercospora nicotianae. The use of pre-linearized plasmid or restriction enzymes in the transformation procedure significantly decreased the transformation frequency, but promoted a complicated and undefined mode of plasmid integration that leads to mutations in the C. nicotianae genome. Vector DNA generally integrated in multiple copies, and no increase in single-copy insertion was observed when enzymes were added to the transformation mixture. Out of 1873 transformants tested, 39 putative cercosporin toxin biosynthesis ( ctb) mutants were recovered that showed altered levels of cercosporin production. Seven ctb mutants were recovered using pre-linearized plasmids without the addition of enzymes, and these were considered to be non-REMI mutants. The correlation between a specific insertion and a mutant phenotype was confirmed using rescued plasmids as gene disruption vectors in the wild-type strain. Six out of fifteen rescued plasmids tested yielded cercosporin-deficient transformants when re-introduced into the wild-type strain, suggesting a link between the insertion site and the cercosporin-deficient phenotype. Sequence analysis of a fragment flanking the insert site recovered from one insertion mutant showed it to be disrupted in sequences with high homology to the acyl transferase domain of polyketide synthases from other fungi. Disruption of this polyketide synthase gene ( CTB1) using a rescued plasmid resulted in mutants that were defective in cercosporin production. Thus, we provide the first molecular evidence that cercosporin is synthesized via a polyketide pathway as previously hypothesized.

  15. The role of molecular testing and enzyme analysis in the management of hypomorphic citrullinemia.

    PubMed

    Dimmock, David P; Trapane, Pamela; Feigenbaum, Annette; Keegan, Catherine E; Cederbaum, Stephen; Gibson, James; Gambello, Michael J; Vaux, Keith; Ward, Patricia; Rice, Gregory M; Wolff, Jon A; O'Brien, William E; Fang, Ping

    2008-11-15

    Expanded newborn screening detects patients with modest elevations in citrulline; however it is currently unclear how to treat these patients and how to counsel their parents. In order to begin to address these issues, we compared the clinical, biochemical, and molecular features of 10 patients with mildly elevated citrulline levels. Three patients presented with clinical illness whereas seven came to attention as a result of expanded newborn screening. One patient presented during pregnancy and responded promptly to IV sodium phenylacetate/sodium benzoate and arginine therapy with no long-term adverse effects on mother or fetus. Two children presented with neurocognitive dysfunction, one of these responded dramatically to dietary protein reduction. ASS enzyme activity was not deficient in all patients with biallelic mutations suggesting this test cannot exclude the ASS1 locus in patients with mildly elevated plasma citrulline. Conversely, all symptomatic patients who were tested had deficient activity. We describe four unreported mutations (p.Y291S, p.R272H, p.F72L, and p.L88I), as well as the common p.W179R mutation. In silico algorithms were inconsistent in predicting the pathogenicity of mutations. The cognitive benefit in one patient of protein restriction and the lack of adverse outcome in seven others restricted from birth, suggest a role for protein restriction and continued monitoring to prevent neurocognitive dysfunction. (c) 2008 Wiley-Liss, Inc.

  16. Structure of the c-Ki-ras gene in a rat fibrosarcoma induced by 1,8-dinitropyrene.

    PubMed Central

    Tahira, T; Hayashi, K; Ochiai, M; Tsuchida, N; Nagao, M; Sugimura, T

    1986-01-01

    Restriction enzyme maps were made of the region around exons 1 and 2 of activated c-Ki-ras of a fibrosarcoma (1,8-DNP2) induced in a rat by 1,8-dinitropyrene. Nucleotide sequence analysis revealed that activated c-Ki-ras shows a G----T transversion in codon 12 and consequently encodes cysteine instead of glycine in normal rat c-Ki-ras. PMID:3023884

  17. Analysis of raw meats and fats of pigs using polymerase chain reaction for Halal authentication.

    PubMed

    Aida, A A; Che Man, Y B; Wong, C M V L; Raha, A R; Son, R

    2005-01-01

    A method for species identification from pork and lard samples using polymerase chain reaction (PCR) analysis of a conserved region in the mitochondrial (mt) cytochrome b (cyt b) gene has been developed. Genomic DNA of pork and lard were extracted using Qiagen DNeasy(®) Tissue Kits and subjected to PCR amplification targeting the mt cyt b gene. The genomic DNA from lard was found to be of good quality and produced clear PCR products on the amplification of the mt cyt b gene of approximately 360 base pairs. To distinguish between species, the amplified PCR products were cut with restriction enzyme BsaJI resulting in porcine-specific restriction fragment length polymorphisms (RFLP). The cyt b PCR-RFLP species identification assay yielded excellent results for identification of pig species. It is a potentially reliable technique for detection of pig meat and fat from other animals for Halal authentication.

  18. A Sequence-Specific Nicking Endonuclease from Streptomyces: Purification, Physical and Catalytic Properties

    PubMed Central

    Somyoonsap, Peechapack; Kitpreechavanich, Vichein

    2013-01-01

    A sequence-specific nicking endonuclease from Streptomyces designated as DC13 was purified to near homogeneity. Starting with 30 grams of wet cells, the enzyme was purified by ammonium sulfate fractionation, DEAE cellulose, and phenyl-Sepharose chromatography. The purified protein had a specific activity 1000 units/mg and migrated on SDS-PAGE gel with an estimated molecular weight of 71 kDa. Determination of subunit composition by gel filtration chromatography indicated that the native enzyme is a monomer. When incubated with different DNA substrates including pBluescript II KS, pUC118, pET-15b, and pET-26b, the enzyme converted these supercoiled plasmids to a mixture of open circular and linear DNA products, with the open circular DNA as the major cleavage product. Analysis of the kinetic of DNA cleavage showed that the enzyme appeared to cleave super-coiled plasmid in two distinct steps: a rapid cleavage of super-coiled plasmid to an open circular DNA followed a much slower step to linear DNA. The DNA cleavage reaction of the enzyme required Mg2+ as a cofactor. Based on the monomeric nature of the enzyme, the kinetics of DNA cleavage exhibited by the enzyme, and cofactor requirement, it is suggested here that the purified enzyme is a sequence-specific nicking endonuclease that is similar to type IIS restriction endonuclease. PMID:25937959

  19. Characterization of indigenous rhizobia from caatinga

    PubMed Central

    Pires e Teixeira, Fernanda Cíntia; Borges, Wardsson Lustrino; Xavier, Gustavo Ribeiro; Rumjanek, Norma Gouvêa

    2010-01-01

    The aim of this study was to characterize rhizobial isolates from Cratylia mollis Mart. ex Benth, Calliandra depauperata Benth. and Mimosa tenuiflora (Willd.) Poir. by means of rhizobial colonies morphology and restriction analysis of the 16S ribosomal gene (16S rDNA-ARDRA). Nodules were collected in the field and from plants cultivated in a greenhouse experiment using Caatinga soil samples. Sixty seven isolates were described by morphological analysis. Forty seven representative isolates were used for ARDRA analysis using seven restriction enzymes. We observed high diversity of both slow and fast-growing rhizobia that formed three morpho-physiological clusters. A few fast-growing isolates formed a group of strains of the Bradyrhizobium type; however, most of them diverged from the B. japonicum and B. elkanii species. Cratylia mollis nodule isolates were the most diverse, while all Mimosa tenuiflora isolates displayed fast growth with no pH change and were clustered into groups bearing 100% similarity, according to ARDRA results. PMID:24031482

  20. Molecular discrimination of Echinococcus granulosus and Echinococcus multilocularis by sequencing and a new PCR-RFLP method with the potential use for other Echinococcus species.

    PubMed

    Şakalar, Çağrı; Kuk, Salih; Erensoy, Ahmet; Dağli, Adile Ferda; Özercan, İbrahim Hanifi; Çetınkaya, Ülfet; Yazar, Süleyman

    2014-01-01

    To develop a novel polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) protocol using a new genomic marker sequence and a novel set of restriction enzymes in order to detect and discriminate 2 Echinococcus species, E. granulosus and E. multilocularis, found in formalin-fixed paraffin-embedded (FFPE) human tissues. DNA was isolated from 11 FFPE human tissue samples positive for cystic echinococcosis or alveolar echinococcosis. A mitochondrial genomic marker region was amplified and sequenced using a novel primer pair and a new PCR-RFLP protocol was developed for the detection and discrimination of E. granulosus and E. multilocularis using a set of restriction enzymes including AccI, MboI, MboII, and TsoI. The selected marker region was amplified using DNA isolated from FFPE human tissue samples positive for cystic echinococcosis or alveolar echinococcosis and the discrimination of E. granulosus and E. multilocularis was accomplished by use of the novel PCR-RFLP method. In this PCR-RFLP protocol, use of any single restriction enzyme is enough for the discrimination of E. granulosus and E. multilocularis. The PCR-RFLP protocol can be potentially used for the discrimination of 5 other Echinococcus species: E. oligarthus, E. shiquicus, E. ortleppi, E. canadensis, and E. vogeli.

  1. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus

    PubMed Central

    2011-01-01

    Background Streptococcus is an economically important genus as a number of species belonging to this genus are human and animal pathogens. The genus has been divided into different groups based on 16S rRNA gene sequence similarity. The variability observed among the members of these groups is low and it is difficult to distinguish them. The present study was taken up to explore 16S rRNA gene sequence to develop methods that can be used for preliminary identification and can supplement the existing methods for identification of clinically-relevant isolates of the genus Streptococcus. Methods 16S rRNA gene sequences belonging to the isolates of S. dysgalactiae, S. equi, S. pyogenes, S. agalactiae, S. bovis, S. gallolyticus, S. mutans, S. sobrinus, S. mitis, S. pneumoniae, S. thermophilus and S. anginosus were analyzed with the purpose to define genetic variability within each species to generate a phylogenetic framework, to identify species-specific signatures and in-silico restriction enzyme analysis. Results The framework based analysis was used to segregate Streptococcus spp. previously identified upto genus level. This segregation was validated using species-specific signatures and in-silico restriction enzyme analysis. 43 uncharacterized Streptococcus spp. could be identified using this approach. Conclusions The markers generated exploring 16S rRNA gene sequences provided useful tool that can be further used for identification of different species of the genus Streptococcus. PMID:21702978

  2. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP).

    PubMed

    Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J

    2014-01-01

    DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic DNA digestion.

  3. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats.

    PubMed

    Liu, Xiaomei; Qi, Ying; Gao, Hong; Jiao, Yisheng; Gu, Hui; Miao, Jianing; Yuan, Zhengwei

    2013-01-01

    It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.

  4. Sequential cloning of chromosomes

    DOEpatents

    Lacks, S.A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes. 9 figs.

  5. Directional, seamless, and restriction enzyme-free construction of random-primed complementary DNA libraries using phosphorothioate-modified primers.

    PubMed

    Howland, Shanshan W; Poh, Chek-Meng; Rénia, Laurent

    2011-09-01

    Directional cloning of complementary DNA (cDNA) primed by oligo(dT) is commonly achieved by appending a restriction site to the primer, whereas the second strand is synthesized through the combined action of RNase H and Escherichia coli DNA polymerase I (PolI). Although random primers provide more uniform and complete coverage, directional cloning with the same strategy is highly inefficient. We report that phosphorothioate linkages protect the tail sequence appended to random primers from the 5'→3' exonuclease activity of PolI. We present a simple strategy for constructing a random-primed cDNA library using the efficient, size-independent, and seamless In-Fusion cloning method instead of restriction enzymes. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Quantification of mRNA expression by competitive PCR using non-homologous competitors containing a shifted restriction site

    PubMed Central

    Watzinger, Franz; Hörth, Elfriede; Lion, Thomas

    2001-01-01

    Despite the recent introduction of real-time PCR methods, competitive PCR techniques continue to play an important role in nucleic acid quantification because of the significantly lower cost of equipment and consumables. Here we describe a shifted restriction-site competitive PCR (SRS-cPCR) assay based on a modified type of competitor. The competitor fragments are designed to contain a recognition site for a restriction endonuclease that is also present in the target sequence to be quantified, but in a different position. Upon completion of the PCR, the amplicons are digested in the same tube with a single restriction enzyme, without the need to purify PCR products. The generated competitor- and target-specific restriction fragments display different sizes, and can be readily separated by electrophoresis and quantified by image analysis. Suboptimal digestion affects competitor- and target-derived amplicons to the same extent, thus eliminating the problem of incorrect quantification as a result of incomplete digestion of PCR products. We have established optimized conditions for a panel of 20 common restriction endonucleases permitting efficient digestion in PCR buffer. It is possible, therefore, to find a suitable restriction site for competitive PCR in virtually any sequence of interest. The assay presented is inexpensive, widely applicable, and permits reliable and accurate quantification of nucleic acid targets. PMID:11376164

  7. Rapid intranasal delivery of chloramphenicol acetyltransferase in the active form to different brain regions as a model for enzyme therapy in the CNS.

    PubMed

    Appu, Abhilash P; Arun, Peethambaran; Krishnan, Jishnu K S; Moffett, John R; Namboodiri, Aryan M A

    2016-02-01

    The blood brain barrier (BBB) is critical for maintaining central nervous system (CNS) homeostasis by restricting entry of potentially toxic substances. However, the BBB is a major obstacle in the treatment of neurotoxicity and neurological disorders due to the restrictive nature of the barrier to many medications. Intranasal delivery of active enzymes to the brain has therapeutic potential for the treatment of numerous CNS enzyme deficiency disorders and CNS toxicity caused by chemical threat agents. The aim of this work is to provide a sensitive model system for analyzing the rapid delivery of active enzymes into various regions of the brain with therapeutic bioavailability. We tested intranasal delivery of chloramphenicol acetyltransferase (CAT), a relatively large (75kD) enzyme, in its active form into different regions of the brain. CAT was delivered intranasally to anaesthetized rats and enzyme activity was measured in different regions using a highly specific High Performance Thin Layer Chromatography (HP-TLC)-radiometry coupled assay. Active enzyme reached all examined areas of the brain within 15min (the earliest time point tested). In addition, the yield of enzyme activity in the brain was almost doubled in the brains of rats pre-treated with matrix metalloproteinase-9 (MMP-9). Intranasal administration of active enzymes in conjunction with MMP-9 to the CNS is both rapid and effective. The present results suggest that intranasal enzyme therapy is a promising method for counteracting CNS chemical threat poisoning, as well as for treating CNS enzyme deficiency disorders. Published by Elsevier B.V.

  8. Genetic variability in isolates of Chromobacterium violaceum from pulmonary secretion, water, and soil.

    PubMed

    Santini, A C; Magalhães, J T; Cascardo, J C M; Corrêa, R X

    2016-04-28

    Chromobacterium violaceum is a free-living Gram-negative bacillus usually found in the water and soil in tropical regions, which causes infections in humans. Chromobacteriosis is characterized by rapid dissemination and high mortality. The aim of this study was to detect the genetic variability among C. violaceum type strain ATCC 12472, and seven isolates from the environment and one from a pulmonary secretion from a chromobacteriosis patient from Ilhéus, Bahia. The molecular characterization of all samples was performed by polymerase chain reaction (PCR) sequencing and 16S rDNA analysis. Primers specific for two ATCC 12472 pathogenicity genes, hilA and yscD, as well as random amplified polymorphic DNA (RAPD), were used for PCR amplification and comparative sequencing of the products. For a more specific approach, the PCR products of 16S rDNA were digested with restriction enzymes. Seven of the samples, including type-strain ATCC 12472, were amplified by the hilA primers; these were subsequently sequenced. Gene yscD was amplified only in type-strain ATCC 12472. MspI and AluI digestion revealed 16S rDNA polymorphisms. This data allowed the generation of a dendogram for each analysis. The isolates of C. violaceum have variability in random genomic regions demonstrated by RAPD. Also, these isolates have variability in pathogenicity genes, as demonstrated by sequencing and restriction enzyme digestion.

  9. Identification of Two Novel Mycobacterium avium Allelic Variants in Pig and Human Isolates from Brazil by PCR-Restriction Enzyme Analysis

    PubMed Central

    Leão, Sylvia Cardoso; Briones, Marcelo R. S.; Sircili, Marcelo Palma; Balian, Simone Carvalho; Mores, Nelson; Ferreira-Neto, José Soares

    1999-01-01

    Mycobacterium avium complex (MAC) is composed of environmental mycobacteria found widely in soil, water, and aerosols that can cause disease in animals and humans, especially disseminated infections in AIDS patients. MAC consists of two closely related species, M. avium and M. intracellulare, and may also include other, less-defined groups. The precise differentiation of MAC species is a fundamental step in epidemiological studies and for the evaluation of possible reservoirs for MAC infection in humans and animals. In this study, which included 111 pig and 26 clinical MAC isolates, two novel allelic M. avium PCR-restriction enzyme analysis (PRA) variants were identified, differing from the M. avium PRA prototype in the HaeIII digestion pattern. Mutations in HaeIII sites were confirmed by DNA sequencing. Identification of these isolates as M. avium was confirmed by PCR with DT1-DT6 and IS1245 primers, nucleic acid hybridization with the AccuProbe system, 16S ribosomal DNA sequencing, and biochemical tests. The characterization of M. avium PRA variants can be useful in the elucidation of factors involved in mycobacterial virulence and routes of infection and also has diagnostic significance, since they can be misidentified as M. simiae II and M. kansasii I if the PRA method is used in the clinical laboratory for identification of mycobacteria. PMID:10405407

  10. Efficiency of PCR-based methods in discriminating Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis strains of human origin.

    PubMed

    Srůtková, Dagmar; Spanova, Alena; Spano, Miroslav; Dráb, Vladimír; Schwarzer, Martin; Kozaková, Hana; Rittich, Bohuslav

    2011-10-01

    Bifidobacterium longum is considered to play an important role in health maintenance of the human gastrointestinal tract. Probiotic properties of bifidobacterial isolates are strictly strain-dependent and reliable methods for the identification and discrimination of this species at both subspecies and strain levels are thus required. Differentiation between B. longum ssp. longum and B. longum ssp. infantis is difficult due to high genomic similarities. In this study, four molecular-biological methods (species- and subspecies-specific PCRs, random amplified polymorphic DNA (RAPD) method using 5 primers, repetitive sequence-based (rep)-PCR with BOXA1R and (GTG)(5) primers and amplified ribosomal DNA restriction analysis (ARDRA)) and biochemical analysis, were compared for the classification of 30 B. longum strains (28 isolates and 2 collection strains) on subspecies level. Strains originally isolated from the faeces of breast-fed healthy infants (25) and healthy adults (3) showed a high degree of genetic homogeneity by PCR with subspecies-specific primers and rep-PCR. When analysed by RAPD, the strains formed many separate clusters without any potential for subspecies discrimination. These methods together with arabionose/melezitose fermentation analysis clearly differentiated only the collection strains into B. longum ssp. longum and B. longum ssp. infantis at the subspecies level. On the other hand, ARDRA analysis differentiated the strains into the B. longum/infantis subspecies using the cleavage analysis of genus-specific amplicon with just one enzyme, Sau3AI. According to our results the majority of the strains belong to the B. longum ssp. infantis (75%). Therefore we suggest ARDRA using Sau3AI restriction enzyme as the first method of choice for distinguishing between B. longum ssp. longum and B. longum ssp. infantis. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.

    2010-07-23

    Research highlights: {yields} Successful fusion of GFP to M.EcoKI DNA methyltransferase. {yields} GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. {yields} FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerstermore » resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.« less

  12. Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes

    PubMed Central

    Chand, Mahesh Kumar; Nirwan, Neha; Diffin, Fiona M.; van Aelst, Kara; Kulkarni, Manasi; Pernstich, Christian; Szczelkun, Mark D.; Saikrishnan, Kayarat

    2015-01-01

    Endonucleolytic double-strand DNA break production requires separate strand cleavage events. Although catalytic mechanisms for simple dimeric endonucleases are available, there are many complex nuclease machines which are poorly understood in comparison. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide following convergent ATP-driven translocation. We report the 2.7 Angstroms resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are unexpectedly located upstream of the direction of translocation, inconsistent with simple nuclease domain-dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex where the nuclease domains are distal. Sequencing of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand nicking events combine to produce DNA scission. PMID:26389736

  13. Genomic characterization of Indian isolates of egg drop syndrome 1976 virus.

    PubMed

    Raj, G D; Sivakumar, S; Sudharsan, S; Mohan, A C; Nachimuthu, K

    2001-02-01

    Five Indian isolates of egg drop syndrome (EDS) 1976 virus and the reference strain 127 were compared by restriction enzyme analysis of viral DNA, and the hexon gene amplified by polymerase chain reaction. Using these techniques, no differences were seen among these viruses. However, partial sequencing of the hexon gene revealed major differences (4.6%) in one of the isolates sequenced, EDS Kerala. Phylogenetic analysis also placed this isolate in a different lineage compared with the other isolates. The need for constant monitoring of the genetic nature of the field isolates of EDS viruses is emphasized.

  14. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation.

    PubMed

    Yegnasubramanian, Srinivasan; Lin, Xiaohui; Haffner, Michael C; DeMarzo, Angelo M; Nelson, William G

    2006-02-09

    Hypermethylation of CpG island (CGI) sequences is a nearly universal somatic genome alteration in cancer. Rapid and sensitive detection of DNA hypermethylation would aid in cancer diagnosis and risk stratification. We present a novel technique, called COMPARE-MS, that can rapidly and quantitatively detect CGI hypermethylation with high sensitivity and specificity in hundreds of samples simultaneously. To quantitate CGI hypermethylation, COMPARE-MS uses real-time PCR of DNA that was first digested by methylation-sensitive restriction enzymes and then precipitated by methyl-binding domain polypeptides immobilized on a magnetic solid matrix. We show that COMPARE-MS could detect five genome equivalents of methylated CGIs in a 1000- to 10,000-fold excess of unmethylated DNA. COMPARE-MS was used to rapidly quantitate hypermethylation at multiple CGIs in >155 prostate tissues, including benign and malignant prostate specimens, and prostate cell lines. This analysis showed that GSTP1, MDR1 and PTGS2 CGI hypermethylation as determined by COMPARE-MS could differentiate between malignant and benign prostate with sensitivities >95% and specificities approaching 100%. This novel technology could significantly improve our ability to detect CGI hypermethylation.

  15. Effect of Short-term Quercetin, Caloric Restriction and Combined Treatment on Age-related Oxidative Stress Markers in the Rat Cerebral Cortex

    PubMed

    Alugoju, Phaniendra; Swamy, Vkd Krishan; Periyasamy, Latha

    2018-03-14

    Aging is characterized by gradual accumulation of macromolecular damage leading to progressive loss of physiological function and increased susceptibility to diverse diseases. Effective anti-aging strategies involving caloric restriction or antioxidant supplementation are receiving growing attention to attenuate macromolecular damage in age associated pathology. In the present study, we for the first time investigated the effect of quercetin, caloric restriction and combined treatment (caloric restriction with quercetin) on oxidative stress parameters, acetylcholinesterase and ATPases enzyme activities in the cerebral cortex of aged male Wistar rats. 21 months aged rats were divided into four groups (n=6-8) such as group 1-fed ad libitum (AL); group 2-quercetin supplementation of 50 mg/kg b.w/day for 45 days fed ad libitum (QUER); group 3: caloric restricted (CR) (fed 40% reduced AL for 45 days); group 4-fed 40% CR and 50 mg/kg b.w/day QUER for 45 days (CR + QUER). Group 5-three month age old rats served as young control (YOUNG). Our results demonstrate that combined treatment of caloric restriction and quercetin significantly improved the age associated decline in the activities of endogenous antioxidant enzymes [such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)] and glutathione (GSH) content and attenuated elevated levels of protein carbonyl content (PCC), lipid peroxidation, lipofuscin, reactive oxygen species (ROS), and nitric oxide (NO). Furthermore, it is also observed that combined treatment ameliorated age associated alterations in acetylcholine esterase (AChE) and adenosine triphosphatases (ATPases) such as Na+/K+-ATPase and Ca+2-ATPase (but not Mg+2- ATPase) enzyme activities. Finally, we conclude that combined treatment of caloric restriction and quercetin (but not either treatment alone) in late life is an effective anti-aging therapy to counteract the age related accumulation of oxidative macromolecular damage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. The iPhyClassifier, an interactive online tool for phytoplasma classification and taxonomic assignment

    USDA-ARS?s Scientific Manuscript database

    The iPhyClassifier is an Internet-based research tool for quick identification and classification of diverse phytoplasmas. The iPhyClassifier simulates laboratory restriction enzyme digestions and subsequent gel electrophoresis and generates virtual restriction fragment length polymorphism (RFLP) p...

  17. Mucopolysaccharidosis IVA: Four new exonic mutations in patients with N-acetylgalactosamine-6-sulfate sulfatase deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomatsu, Shunji; Fukuda, Seiji; Yamagishi, Atsushi

    1996-05-01

    We report four new mutations in Japanese patients with mucopolysaccharidosis IVA (MPSIVA) who were heterozygous for a common double gene deletion. A nonsense mutation of CAG to TAG at codon 148 in exon 4 was identified, resulting in a change of Q to a stop codon and three missense mutations: V (GTC) to A (GCC) at codon 138 in exon 4, P (CCC) to S (TCC) at codon 151 in exon 5, and P (CCC) to L (CTC) at codon 151 in exon 5. Introduction of these mutations into the normal GALNS cDNA and transient expression in cultured fibroblasts resultedmore » in a significant decrease in the enzyme activity. V138A and Q148X mutations result in changes of restriction site, which were analyzed by restriction-enzyme assay. P151S and P151L mutations that did not alter the restriction site were detected by direct sequencing or allele specific oligohybridization. Detection of the double gene deletion was initially done using Southern blots and was confirmed by PCR. Haplotypes were determined using seven polymorphisms to the GALNS locus in families with the double gene deletion. Haplotype analysis showed that the common double gene deletion occurred on a single haplotype, except for some variation in a VNTR-like polymorphism. This finding is consistent with a common founder for all individuals with this mutation. 48 refs., 5 figs., 1 tab.« less

  18. Rv1458c: a new diagnostic marker for identification of Mycobacterium tuberculosis complex in a novel duplex PCR assay.

    PubMed

    Shrivastava, Kamal; Garima, Kushal; Narang, Anshika; Bhattacharyya, Kausik; Vishnoi, Ekta; Singh, Roshan Kumar; Chaudhry, Anil; Prasad, Rajendra; Bose, Mridula; Varma-Basil, Mandira

    2017-03-01

    We explored the efficiency of Rv1458c, the gene encoding a putative ABC drug transporter specific for the Mycobacterium tuberculosis complex (MTBC), as a diagnostic marker. A 190 bp region of Rv1458c and a 300 bp region of hsp65 were targeted in a novel duplex PCR assay and the results were compared with those for PCR restriction analysis(PRA) using the restriction enzymes NruI and BamHI. Species identification of a subset of the isolates (n=50) was confirmed by sequencing. Clinical isolates of M. tuberculosis (n=426) obtained from clinically suspected patients of pulmonary tuberculosis and mycobacterial (n=13) and non-mycobacterial (n=8) reference strains were included in the study. The duplex PCR assay correctly identified 320/426 isolates as MTBC and 106/426 isolates as non-tuberculous mycobacteria(NTM). The test was 100 % specific and sensitive when compared with NruI/BamHI PCR restriction analysis and highlighted the use of Rv1458c as a diagnostic marker for MTBC. The duplex PCR assay could be developed for use as a screening test to identify MTBC in clinical specimens in peripheral laboratories with limited resources.

  19. BplI, a new BcgI-like restriction endonuclease, which recognizes a symmetric sequence.

    PubMed Central

    Vitkute, J; Maneliene, Z; Petrusyte, M; Janulaitis, A

    1997-01-01

    Bcg I and Bcg I-like restriction endonucleases cleave double stranded DNA specifically on both sides of their asymmetric recognition sequences which are interrupted by several ambiguous base pairs. Their heterosubunit structure, bifunctionality and stimulation by AdoMet make them different from other classified restriction enzymes. Here we report on a new Bcg I-like restriction endonuclease, Bpl I from Bacillus pumilus , which in contrast to all other Bcg I-like enzymes, recognizes a symmetric interrupted sequence, and which, like Bcg I, cleaves double stranded DNA upstream and downstream of its recognition sequence (8/13)GAGN5CTC(13/8). Like Bcg I, Bpl I is a bifunctional enzyme revealing both DNA cleavage and methyltransferase activities. There are two polypeptides in the homogeneous preparation of Bpl I with molecular masses of approximately 74 and 37 kDa. The sizes of the Bpl I subunits are close to those of Bcg I, but the proportion 1:1 in the final preparation is different from that of 2:1 in Bcg I. Low activity observed with Mg2+increases >100-fold in the presence of AdoMet. Even with AdoMet though, specific cleavage is incomplete. S -adenosylhomocysteine (AdoHcy) or sinefungin can replace AdoMet in the cleavage reaction. AdoHcy activated Bpl I yields complete cleavage of DNA. PMID:9358150

  20. The use of denaturing high-pressure liquid chromatography for the detection of mutations in thiopurine methyltransferase.

    PubMed

    Hall, A G; Hamilton, P; Minto, L; Coulthard, S A

    2001-01-30

    The level of expression of the enzyme thiopurine methyltransferase (TPMT) is an important determinant of the metabolism of drugs used both in the treatment of acute leukaemia (6-mercaptopurine and 6-thioguanine) and as an immunosuppressant in patients with autoimmune diseases or following organ transplantation (azathioprine). Studies of enzyme activity in red blood cells have shown that TPMT expression displays genetic polymorphism with 11% of individuals having intermediate and one in 300 undetectable levels. Patients with biallelic mutations and undetectable enzyme activity suffer life-threatening myelosuppression when treated with conventional doses of these drugs. Patients with intermediate activity have an increased risk of drug-associated toxicity. In the Caucasian populations studied to date, intermediate activity is associated with mutations at two sites of the TPMT gene, G460A and A719G (designated TPMT*3A), in 80% of cases. Detection of these mutations has, to date, been based on the analysis of restriction digests of PCR products. In order to simplify this process we have investigated the ability of denaturing high pressure liquid chromatography (DHPLC) to detect the A719G mutation. DHPLC of PCR products from 15 known heterozygotes (TPMT*3A/TPMT*1) and 18 known homozygotes (TPMT*1/TPMT*1) gave a clear pattern difference between the groups and 100% concordance with the results of restriction digests. These results suggest DHPLC represents a valuable technique for accurate and rapid detection of pharmacologically important mutations in the TPMT gene.

  1. Effect of dietary protein restriction on renal ammonia metabolism

    PubMed Central

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Guo, Hui; Verlander, Jill W.

    2015-01-01

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252

  2. Diffusion of tricarboxylic acid cycle enzymes in the mitochondrial matrix in vivo. Evidence for restricted mobility of a multienzyme complex.

    PubMed

    Haggie, Peter M; Verkman, A S

    2002-10-25

    It has been proposed that enzymes in many metabolic pathways, including the tricarboxylic acid cycle in the mitochondrial matrix, are physically associated to facilitate substrate channeling and overcome diffusive barriers. We have used fluorescence recovery after photobleaching to measure the diffusional mobilities of chimeras consisting of green fluorescent protein (GFP) fused to the C terminus of four tricarboxylic acid cycle enzymes: malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, and succinyl-CoA synthetase. The GFP-enzyme chimeras were localized selectively in the mitochondrial matrix in transfected Chinese hamster ovary (CHO) and COS7 cells. Laser photobleaching using a 0.7-microm diameter spot demonstrated restricted diffusion of the GFP-enzyme chimeras. Interestingly, all four chimeras had similar diffusional characteristics, approximately 45% of each chimera was mobile and had a diffusion coefficient of 4 x 10(-8) cm(2)/s. In contrast, unconjugated GFP in the mitochondrial matrix (targeted using COX8 leader sequence) diffused freely (nearly 100% mobility) with a greater diffusion coefficient of 20 x 10(-8) cm(2)/s. The mobility of the GFP-enzyme chimeras was insensitive to substrate source, ATP depletion, or inhibition of the adenine nucleotide translocase. These results indicate similar mobility characteristics of unrelated tricarboxylic acid cycle enzymes having different sizes and physical properties, providing biophysical evidence for a diffusible multienzyme complex in the mitochondrial matrix.

  3. Lipid peroxidation and antioxidant status in rat: effect of food restriction and wheel running.

    PubMed

    Filaire, Edith; Rouveix, Matthieu; Massart, Alain; Gladine, Cécile; Davicco, Marie Jeanne; Durand, Denys

    2009-09-01

    Using the activity-based anorexia model, the aim of this investigation was to explore antioxidant enzyme activity (catalase, superoxide dismutase), total antioxidant status (TAS), and alpha-tocopherol in blood, liver, and gastrocnemius muscle associated with the food restriction and voluntary wheel running during 8 days. In addition, lipid peroxidation was measured by measurements of malondialdehyde (MDA). Wistars rats (n = 56) were randomly assigned to one of four groups: an ad lib sedentary group, a control wheel activity group, a food restriction-induced hyperactivity group (1 h/day ad lib food, 23 h/day ad lib wheel access), and a food-restricted sedentary group. The animals were killed when the rats in the food-restricted group had lost 25% of their free feeding weight. Antioxidant enzyme activities and TAS in blood, liver, and gastrocnemius muscle were unaffected by voluntary wheel running. A wheel activity effect (P < 0.05) was obtained for the MDA concentrations in plasma, with lower concentrations in trained animals. Food restriction effects were obtained for antioxidant capacity in liver, as well as for CAT activity in the gastrocnemius muscle and plasma MDA concentrations with lower values in the restricted animals. On the other hand, the food-restricted rats showed higher plasma TAS concentrations (P < 0.05) and higher alpha-tocopherol concentrations in the liver (P < 0.05) when compared to animals fed ad libitum. Our results also showed that food restriction coupled to wheel running decreased antioxidant parameters in liver, and plasmatic MDA concentrations and increased TAS plasma concentrations when compared to the ad libitum sedentary situation.

  4. The Effects of Exercise on Abdominal Fat and Liver Enzymes in Pediatric Obesity: A Systematic Review and Meta-Analysis.

    PubMed

    González-Ruiz, Katherine; Ramírez-Vélez, Robinson; Correa-Bautista, Jorge Enrique; Peterson, Mark D; García-Hermoso, Antonio

    2017-08-01

    Despite the prevalence of obesity and the multiple position stands promoting exercise for the treatment of obesity and hepatic function, a meta-analytic approach has not previously been used to examine the effects in the pediatric population. The aim of the study was to determine the effectiveness of exercise interventions on abdominal fat, liver enzymes, and intrahepatic fat in overweight and obese youth. A computerized search was made using three databases. The analysis was restricted to studies that examined the effect of supervised exercise interventions on abdominal fat (visceral and subcutaneous fat), liver enzymes (alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase), and intrahepatic fat. Fourteen clinical trials (1231 youths) were eligible for inclusion in this systematic review and meta-analysis. Standardized mean difference [SMD] and 95% confidence intervals (CIs) were calculated. Exercise was associated with a significant reduction in visceral (SMD = -0.661; 95% CI, -0.976 to -0.346; p < 0.001), subcutaneous (SMD = -0.352; 95% CI, -0.517 to -0.186; p < 0.001) and intrahepatic fat (SMD = -0.802; 95% CI, -1.124 to -0.480; p < 0.001), as well as gamma-glutamyl transferase (SMD = -0.726; 95% CI, -1.203 to -0.249; p < 0.001), but did not alter any other liver enzyme. Subgroup analysis recommends exercise programs that involve aerobic exercise longer than three sessions per week. This meta-analysis supports current recommendation for physical exercise, mainly aerobic, as an effective intervention for nonalcoholic fatty liver disease progression by targeting hepatic lipid composition, visceral and subcutaneous adipose tissue. Systematic review registration: PROSPERO CRD42016042163.

  5. Using Restriction Mapping to Teach Basic Skills in the Molecular Biology Lab

    ERIC Educational Resources Information Center

    Walsh, Lauren; Shaker, Elizabeth; De Stasio, Elizabeth A.

    2007-01-01

    Digestion of DNA with restriction enzymes, calculation of volumes and concentrations of reagents for reactions, and the separation of DNA fragments by agarose gel electrophoresis are common molecular biology techniques that are best taught through repetition. The following open-ended, investigative laboratory exercise in plasmid restriction…

  6. A new restriction endonuclease from Citrobacter freundii

    PubMed Central

    Janulaitis, A.A.; Stakenas, P.S.; Lebedenko, E.N.; Berlin, Yu.A.

    1982-01-01

    CfrI, a new restriction endonuclease of unique substrate specificity, has been isolated from a Citrobacter freundii strain. The enzyme recognizes a degenerated sequence PyGGCCPu in double-strand DNA and cleaves it between Py and G residues to yield 5′ -protruding tetranucleotide ends GGCC. Images PMID:6294607

  7. Ovine maternal nutrient restriction from mid to late gestation decreases heptic progesterone inactivating enzyme activity

    USDA-ARS?s Scientific Manuscript database

    Previously we have shown increased concentrations of progesterone and decreased liver weight in mid to late pregnant ewes provided a nutrient restricted vs. adequate diet. This alteration in peripheral progesterone could be due to increased synthesis and/or decreased clearance of progesterone. There...

  8. Identification of dominant optimal HLA-B60- and HLA-B61-restricted cytotoxic T-lymphocyte (CTL) epitopes: rapid characterization of CTL responses by enzyme-linked immunospot assay.

    PubMed

    Altfeld, M A; Trocha, A; Eldridge, R L; Rosenberg, E S; Phillips, M N; Addo, M M; Sekaly, R P; Kalams, S A; Burchett, S A; McIntosh, K; Walker, B D; Goulder, P J

    2000-09-01

    Human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T-lymphocyte (CTL) responses play a major role in the antiviral immune response, but the relative contribution of CTL responses restricted by different HLA class I molecules is less well defined. HLA-B60 or the related allele B61 is expressed in 10 to 20% of Caucasoid populations and is even more highly prevalent in Asian populations, but yet no CTL epitopes restricted by these alleles have been defined. Here we report the definition of five novel HLA-B60-restricted HIV-1-specific CTL epitopes, using peripheral blood mononuclear cells in enzyme-linked immunospot (Elispot) assays and using CTL clones and lines in cytolytic assays. The dominant HLA-B60-restricted epitope, Nef peptide KEKGGLEGL, was targeted by all eight subjects with B60 and also by both subjects with B61 studied. This study additionally establishes the utility of the Elispot assay as a more rapid and efficient method of defining novel CTL epitopes. This approach will help to define new CTL epitopes that may play an important role in the immune control of HIV-1.

  9. Concerted In Vitro Trimming of Viral HLA-B27-Restricted Ligands by Human ERAP1 and ERAP2 Aminopeptidases

    PubMed Central

    Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen; Jiménez, Mercedes; López, Daniel

    2013-01-01

    In the classical human leukocyte antigen (HLA) class I antigen processing and presentation pathway, the antigenic peptides are generated from viral proteins by multiple proteolytic cleavages of the proteasome (and in some cases other cytosolic proteases) and transported to the endoplasmic reticulum (ER) lumen where they are exposed to aminopeptidase activity. In human cells, two different ER-resident enzymes, ERAP1 and ERAP2, can trim the N-terminally extended residues of peptide precursors. In this study, the possible cooperative effect of generating five naturally processed HLA-B27 ligands by both proteases was analyzed. We identified differences in the products obtained with increased detection of natural HLA-B27 ligands by comparing double versus single enzyme digestions by mass spectrometry analysis. These in vitro data suggest that each enzyme can use the degradation products of the other as a substrate for new N-terminal trimming, indicating concerted aminoproteolytic activity of ERAP 1 and ERAP2. PMID:24223975

  10. Concerted in vitro trimming of viral HLA-B27-restricted ligands by human ERAP1 and ERAP2 aminopeptidases.

    PubMed

    Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen; Jiménez, Mercedes; López, Daniel

    2013-01-01

    In the classical human leukocyte antigen (HLA) class I antigen processing and presentation pathway, the antigenic peptides are generated from viral proteins by multiple proteolytic cleavages of the proteasome (and in some cases other cytosolic proteases) and transported to the endoplasmic reticulum (ER) lumen where they are exposed to aminopeptidase activity. In human cells, two different ER-resident enzymes, ERAP1 and ERAP2, can trim the N-terminally extended residues of peptide precursors. In this study, the possible cooperative effect of generating five naturally processed HLA-B27 ligands by both proteases was analyzed. We identified differences in the products obtained with increased detection of natural HLA-B27 ligands by comparing double versus single enzyme digestions by mass spectrometry analysis. These in vitro data suggest that each enzyme can use the degradation products of the other as a substrate for new N-terminal trimming, indicating concerted aminoproteolytic activity of ERAP 1 and ERAP2.

  11. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    PubMed

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Re-evaluating the kinetics of ATP hydrolysis during initiation of DNA sliding by Type III restriction enzymes

    PubMed Central

    Tóth, Júlia; Bollins, Jack; Szczelkun, Mark D.

    2015-01-01

    DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This ‘DNA sliding’ is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding. PMID:26538601

  13. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes.

    PubMed

    Roberts, Richard J; Vincze, Tamas; Posfai, Janos; Macelis, Dana

    2015-01-01

    REBASE is a comprehensive and fully curated database of information about the components of restriction-modification (RM) systems. It contains fully referenced information about recognition and cleavage sites for both restriction enzymes and methyltransferases as well as commercial availability, methylation sensitivity, crystal and sequence data. All genomes that are completely sequenced are analyzed for RM system components, and with the advent of PacBio sequencing, the recognition sequences of DNA methyltransferases (MTases) are appearing rapidly. Thus, Type I and Type III systems can now be characterized in terms of recognition specificity merely by DNA sequencing. The contents of REBASE may be browsed from the web http://rebase.neb.com and selected compilations can be downloaded by FTP (ftp.neb.com). Monthly updates are also available via email. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Calmodulin Polymerase Chain Reaction–Restriction Fragment Length Polymorphism for Leishmania Identification and Typing

    PubMed Central

    Miranda, Aracelis; Samudio, Franklyn; González, Kadir; Saldaña, Azael; Brandão, Adeilton; Calzada, Jose E.

    2016-01-01

    A precise identification of Leishmania species involved in human infections has epidemiological and clinical importance. Herein, we describe a preliminary validation of a restriction fragment length polymorphism assay, based on the calmodulin intergenic spacer region, as a tool for detecting and typing Leishmania species. After calmodulin amplification, the enzyme HaeIII yielded a clear distinction between reference strains of Leishmania mexicana, Leishmania amazonensis, Leishmania infantum, Leishmania lainsoni, and the rest of the Viannia reference species analyzed. The closely related Viannia species: Leishmania braziliensis, Leishmania panamensis, and Leishmania guyanensis, are separated in a subsequent digestion step with different restriction enzymes. We have developed a more accessible molecular protocol for Leishmania identification/typing based on the exploitation of part of the calmodulin gene. This methodology has the potential to become an additional tool for Leishmania species characterization and taxonomy. PMID:27352873

  15. Aquatic Plant Control Research Program. Biological Control of Hydrilla verticillata (L.f.) Royle with Lytic Enzyme-Producing Microorganisms.

    DTIC Science & Technology

    1985-09-01

    pectinase . Lytic enzyme-positive isolates were successively subcultured on restrictive media in the laboratory to enhance enzyme production. Twenty-two...candidate microorganisms by testing isolates for produc- tion of cellulase and pectinase . c. Taxonomically characterize candidates. d. Enhance production of...present study, but could become necessary if results of this study indicate that cellulase-enhanced v ,isolates are capable of damaging hydrilla. Pectinase

  16. Restriction fragment length polymorphism among Israeli Holstein-Friesian dairy bulls.

    PubMed

    Beckmann, J S; Kashi, Y; Hallerman, E M; Nave, A; Soller, M

    1986-01-01

    Israeli Holstein-Friesian dairy bulls were screened for restriction fragment length polymorphisms by hybridizing cloned DNA probes for bovine growth hormone, for chymosin, and for rat muscle beta-actin to restriction endonuclease-digested DNA immobilized on nitrocellulose filters. The population proved to be polymorphic at the growth hormone locus, with evidence consistent with the phenotypes being inherited in allelic fashion. A low level of polymorphism was also observed at one of the beta-actin gene family loci. The chymosin locus was monomorphic with the restriction enzymes utilized. The results illustrate the power of restriction fragment length polymorphism methodology in visualizing genetic variability in dairy cattle populations.

  17. Inquiry-Based Experiments for Large-Scale Introduction to PCR and Restriction Enzyme Digests

    ERIC Educational Resources Information Center

    Johanson, Kelly E.; Watt, Terry J.

    2015-01-01

    Polymerase chain reaction and restriction endonuclease digest are important techniques that should be included in all Biochemistry and Molecular Biology laboratory curriculums. These techniques are frequently taught at an advanced level, requiring many hours of student and faculty time. Here we present two inquiry-based experiments that are…

  18. Mutation analysis of 28 gaucher disease patients: The Australasian experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, B.D.; Nelson, P.V.; Robertson, E.F.

    1994-01-15

    Gaucher disease is the most common lysomal storage disease. It is an autosomal recessive disorder that results from a deficiency of {beta}-glucocerrebrosidase. Three clinical phenotypes have been described: non-neuronopathic, acute neuronopathic, and subacuteneuronopathic. Genomic DNA from 28 Australasian patients of diverse ethnic origin with Gaucher disease was screened for 3 common mutations (1226G, 1448C and 84GG) using the amplification refractory mutation system (ARMS), and one uncommon mutation (1504T) by restriction enzyme digestion. Thirty-eight of the 56 independent alleles in these patients were characterized, with 1448C present in 42% and 1226G in 28% of the alleles. The 1226G mutation was associatedmore » only with the nonneuronopathic phenotype and 7 of the 15 patients who carried the 1448C mutation developed neuronopathic disease. Three infants who died in the neonatal period following a rapidly progressive neurodegenerative course carried no identifiable mutations. The 84GG mutation was carried by 2 Jewish patients and 1504T was present in one patient. It is now possible to rapidly identify the common Gaucher mutations using ARMS and restriction enzyme digestion, and our findings confirm the heterogeneity of mutations in Gaucher disease. It is also possible to predict in part the phenotypic outcome when screening patients for these mutations. The authors consider mutation analysis to be of most use in prenatal diagnosis and for carrier detection within affected families. 27 refs., 2 figs., 2 tabs.« less

  19. Hexon based PCRs combined with restriction enzyme analysis for rapid detection and differentiation of fowl adenoviruses and egg drop syndrome virus.

    PubMed

    Raue, R; Hess, M

    1998-08-01

    Three different polymerase chain reactions (PCRs), two of them combined with restriction enzyme analysis (REA), were developed for detection and differentiation of all 12 fowl adenovirus (FAV) serotypes and the egg drop syndrome (EDS) virus. For primer construction FAV1, FAV10 and EDS virus hexon proteins were aligned and conserved and variable regions were determined. Two primer sets (H1/H2 and H3/H4) for single use were constructed which hybridize in three conserved regions of hexon genes. Each primer pair amplifies approximately half of the hexon gene including two loop regions. An amplification product was detected with both primer sets using purified DNA from all FAV1-12 reference strains. Viral EDS DNA was negative using the H1/H2 or H3/H4 primer pair. HaeII digestion of the H1/H2 amplification products differentiates between all viruses except FAV4 and FAV5. In comparison, much more clustering among genomic closely related FAV serotypes was seen after HpaII digestion of the H3/H4 PCR products. Oligonucleotides H5/H6 located in the variable regions of EDS virus hexon gene do not detect any of the FAV serotypes. The PCRs and REA described are suitable to detect all avian adenoviruses infecting chickens, to distinguish all 12 FAV reference strains and to differentiate FAVs from the EDS virus.

  20. The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro

    PubMed Central

    Serfiotis-Mitsa, Dimitra; Herbert, Andrew P.; Roberts, Gareth A.; Soares, Dinesh C.; White, John H.; Blakely, Garry W.; Uhrín, Dušan; Dryden, David T. F.

    2010-01-01

    Plasmids, conjugative transposons and phage frequently encode anti-restriction proteins to enhance their chances of entering a new bacterial host that is highly likely to contain a Type I DNA restriction and modification (RM) system. The RM system usually destroys the invading DNA. Some of the anti-restriction proteins are DNA mimics and bind to the RM enzyme to prevent it binding to DNA. In this article, we characterize ArdB anti-restriction proteins and their close homologues, the KlcA proteins from a range of mobile genetic elements; including an ArdB encoded on a pathogenicity island from uropathogenic Escherichia coli and a KlcA from an IncP-1b plasmid, pBP136 isolated from Bordetella pertussis. We show that all the ArdB and KlcA act as anti-restriction proteins and inhibit the four main families of Type I RM systems in vivo, but fail to block the restriction endonuclease activity of the archetypal Type I RM enzyme, EcoKI, in vitro indicating that the action of ArdB is indirect and very different from that of the DNA mimics. We also present the structure determined by NMR spectroscopy of the pBP136 KlcA protein. The structure shows a novel protein fold and it is clearly not a DNA structural mimic. PMID:20007596

  1. Structure and function of APH(4)-Ia, a hygromycin B resistance enzyme.

    PubMed

    Stogios, Peter J; Shakya, Tushar; Evdokimova, Elena; Savchenko, Alexei; Wright, Gerard D

    2011-01-21

    The aminoglycoside phosphotransferase (APH) APH(4)-Ia is one of two enzymes responsible for bacterial resistance to the atypical aminoglycoside antibiotic hygromycin B (hygB). The crystal structure of APH(4)-Ia enzyme was solved in complex with hygB at 1.95 Å resolution. The APH(4)-Ia structure adapts a general two-lobe architecture shared by other APH enzymes and eukaryotic kinases, with the active site located at the interdomain cavity. The enzyme forms an extended hydrogen bond network with hygB primarily through polar and acidic side chain groups. Individual alanine substitutions of seven residues involved in hygB binding did not have significant effect on APH(4)-Ia enzymatic activity, indicating that the binding affinity is spread across a distributed network. hygB appeared as the only substrate recognized by APH(4)-Ia among the panel of 14 aminoglycoside compounds. Analysis of the active site architecture and the interaction with the hygB molecule demonstrated several unique features supporting such restricted substrate specificity. Primarily the APH(4)-Ia substrate-binding site contains a cluster of hydrophobic residues that provides a complementary surface to the twisted structure of the substrate. Similar to APH(2″) enzymes, the APH(4)-Ia is able to utilize either ATP or GTP for phosphoryl transfer. The defined structural features of APH(4)-Ia interactions with hygB and the promiscuity in regard to ATP or GTP binding could be exploited for the design of novel aminoglycoside antibiotics or inhibitors of this enzyme.

  2. Differentiation of Toxocara canis and Toxocara cati based on PCR-RFLP analyses of rDNA-ITS and mitochondrial cox1 and nad1 regions.

    PubMed

    Mikaeili, Fattaneh; Mathis, Alexander; Deplazes, Peter; Mirhendi, Hossein; Barazesh, Afshin; Ebrahimi, Sepideh; Kia, Eshrat Beigom

    2017-09-26

    The definitive genetic identification of Toxocara species is currently based on PCR/sequencing. The objectives of the present study were to design and conduct an in silico polymerase chain reaction-restriction fragment length polymorphism method for identification of Toxocara species. In silico analyses using the DNASIS and NEBcutter softwares were performed with rDNA internal transcribed spacers, and mitochondrial cox1 and nad1 sequences obtained in our previous studies along with relevant sequences deposited in GenBank. Consequently, RFLP profiles were designed and all isolates of T. canis and T. cati collected from dogs and cats in different geographical areas of Iran were investigated with the RFLP method using some of the identified suitable enzymes. The findings of in silico analyses predicted that on the cox1 gene only the MboII enzyme is appropriate for PCR-RFLP to reliably distinguish the two species. No suitable enzyme for PCR-RFLP on the nad1 gene was identified that yields the same pattern for all isolates of a species. DNASIS software showed that there are 241 suitable restriction enzymes for the differentiation of T. canis from T. cati based on ITS sequences. RsaI, MvaI and SalI enzymes were selected to evaluate the reliability of the in silico PCR-RFLP. The sizes of restriction fragments obtained by PCR-RFLP of all samples consistently matched the expected RFLP patterns. The ITS sequences are usually conserved and the PCR-RFLP approach targeting the ITS sequence is recommended for the molecular differentiation of Toxocara species and can provide a reliable tool for identification purposes particularly at the larval and egg stages.

  3. Purification of Restriction Endonuclease EcoRII and its Co-Crystallization

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Chen, L.; Meehan, E.; Pusey, M.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Restriction endonuclease EcoRII (EcoRII) is a homodimeric DNA-binding protein. It belongs to the type II family of restriction-modification enzymes (subclass IIe). EcoRII recognizes the nucleotide sequence 5'-CCWGG (W=A or T) and cleaves the phosphodiester bond preceding the first cytosine. Methylation at C5 of the second cytosine inhibits cleavage. The enzyme has a unique ability to search for the presence of two substrate sites before cleavage. To the best of our knowledge no other subclass IIe restriction endonuclease has been crystallized yet, without or with a DNA-substrate. We have recently grown and characterized the crystals of this enzyme (1) Here we report on the result of co-crystallization experiments of EcoRII with an 11 b.p. oligonucleotide substrate. The dissociation constant (Kd) EcoRII: 11 b.p. was determined earlier (unpublished results). The needle-like crystals of oligonucleotide-EcoRII protein complex were obtained with this substrate by the technique of vapor diffusion hanging drops. The crystals obtained were washed and dissolved in an aliquot of 10 mM Tris-HCl buffer, pH=7.5. Running a portion of this solution on the SDS-get indicated the presence of endonuclease in the solution. A UV-spectrophotometric test of a second portion confirmed the presence of DNA. We are now working on improvement of the DNA-EcoRII protein crystals. Results obtained from these and ongoing efforts will be reported.

  4. Molecular Determination of Fasciola Spp. Isolates from Domestic Ruminants Fecal Samples in the Northwest of Iran

    PubMed Central

    IMANI BARAN, Abbas; CHERAGHI SARAY, Habib; KATIRAEE, Farzad

    2017-01-01

    Background: Fasciola species are the main causes for fascioliasis with great financial losses and are among the most important food/water-borne parasites worldwide. The basic proceedings such as epidemiology and effective control of fascioliasis rely mainly on precise identification of Fasciola species. The present study was conducted to determine the Fasciola species in ruminant fecal samples from East Azerbaijan Province in Iran. Methods: Overall, 2012 fecal samples were collected and processed initially for microscopic examination of Fasciola eggs in 2014–15. Then, recovered eggs were subjected to molecular identification. A fragment of 618 bp of the 28S rRNA gene pertaining to Fasciola genus was amplified under PCR. The amplified fragment was restricted by fast digest Ava II enzyme in order to a Restriction Fragment Length Polymorphism. Results: Based on microscopic examination, 72 samples were infected, from which, 10 and 62 cases pertained to cattle and sheep samples respectively. Based on RFLP, the PCR products restricted by the Ava II restriction enzyme produced 529 bp fragments only. According to the positive controls, all restriction patterns were related to Fasciola hepatica, while no restriction patterns were linked to F. gigantica. Conclusion: Based on PCR-RFLP, F. hepatica was dominant species in animals of the studied areas and no evidence of F. gigantica was observed. Therefore, further field studies to verify these results are suggested. PMID:28761485

  5. Transmission of the PabI family of restriction DNA glycosylase genes: mobility and long-term inheritance.

    PubMed

    Kojima, Kenji K; Kobayashi, Ichizo

    2015-10-19

    R.PabI is an exceptional restriction enzyme that functions as a DNA glycosylase. The enzyme excises an unmethylated base from its recognition sequence to generate apurinic/apyrimidinic (AP) sites, and also displays AP lyase activity, cleaving the DNA backbone at the AP site to generate the 3'-phospho alpha, beta-unsaturated aldehyde end in addition to the 5'-phosphate end. The resulting ends are difficult to religate with DNA ligase. The enzyme was originally isolated in Pyrococcus, a hyperthermophilic archaeon, and additional homologs subsequently identified in the epsilon class of the Gram-negative bacterial phylum Proteobacteria, such as Helicobacter pylori. Systematic analysis of R.PabI homologs and their neighboring genes in sequenced genomes revealed co-occurrence of R.PabI with M.PabI homolog methyltransferase genes. R.PabI and M.PabI homolog genes are occasionally found at corresponding (orthologous) loci in different species, such as Helicobacter pylori, Helicobacter acinonychis and Helicobacter cetorum, indicating long-term maintenance of the gene pair. One R.PabI and M.PabI homolog gene pair is observed immediately after the GMP synthase gene in both Campylobacter and Helicobacter, representing orthologs beyond genera. The mobility of the PabI family of restriction-modification (RM) system between genomes is evident upon comparison of genomes of sibling strains/species. Analysis of R.PabI and M.PabI homologs in H. pylori revealed an insertion of integrative and conjugative elements (ICE), and replacement with a gene of unknown function that may specify a membrane-associated toxin (hrgC). In view of the similarity of HrgC with toxins in type I toxin-antitoxin systems, we addressed the biological significance of this substitution. Our data indicate that replacement with hrgC occurred in the common ancestor of hspAmerind and hspEAsia. Subsequently, H. pylori with and without hrgC were intermixed at this locus, leading to complex distribution of hrgC in East Asia and the Americas. In Malaysia, hrgC was horizontally transferred from hspEAsia to hpAsia2 strains. The PabI family of RM system behaves as a mobile, selfish genetic element, similar to the other families of Type II RM systems. Our analysis additionally revealed some cases of long-term inheritance. The distribution of the hrgC gene replacing the PabI family in the subpopulations of H. pylori, hspAmerind, hspEAsia and hpAsia2, corresponds to the two human migration events, one from East Asia to Americas and the other from China to Malaysia.

  6. Towards practical time-of-flight secondary ion mass spectrometry lignocellulolytic enzyme assays

    PubMed Central

    2013-01-01

    Background Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is a surface sensitive mass spectrometry technique with potential strengths as a method for detecting enzymatic activity on solid materials. In particular, ToF-SIMS has been applied to detect the enzymatic degradation of woody lignocellulose. Proof-of-principle experiments previously demonstrated the detection of both lignin-degrading and cellulose-degrading enzymes on solvent-extracted hardwood and softwood. However, these preliminary experiments suffered from low sample throughput and were restricted to samples which had been solvent-extracted in order to minimize the potential for mass interferences between low molecular weight extractive compounds and polymeric lignocellulose components. Results The present work introduces a new, higher-throughput method for processing powdered wood samples for ToF-SIMS, meanwhile exploring likely sources of sample contamination. Multivariate analysis (MVA) including Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR) was regularly used to check for sample contamination as well as to detect extractives and enzyme activity. New data also demonstrates successful ToF-SIMS analysis of unextracted samples, placing an emphasis on identifying the low-mass secondary ion peaks related to extractives, revealing how extractives change previously established peak ratios used to describe enzyme activity, and elucidating peak intensity patterns for better detection of cellulase activity in the presence of extractives. The sensitivity of ToF-SIMS to a range of cellulase doses is also shown, along with preliminary experiments augmenting the cellulase cocktail with other proteins. Conclusions These new procedures increase the throughput of sample preparation for ToF-SIMS analysis of lignocellulose and expand the applications of the method to include unextracted lignocellulose. These are important steps towards the practical use of ToF-SIMS as a tool to screen for changes in plant composition, whether the transformation of the lignocellulose is achieved through enzyme application, plant mutagenesis, or other treatments. PMID:24034438

  7. Identification of single nucleotide polymorphism in protein phosphatase 1 regulatory subunit 11 gene in Murrah bulls

    PubMed Central

    Jain, Varsha; Patel, Brijesh; Umar, Farhat Paul; Ajithakumar, H. M.; Gurjar, Suraj K.; Gupta, I. D.; Verma, Archana

    2017-01-01

    Aim: This study was conducted with the objective to identify single nucleotide polymorphism (SNP) in protein phosphatase 1 regulatory subunit 11 (PPP1R11) gene in Murrah bulls. Materials and Methods: Genomic DNA was isolated by phenol–chloroform extraction method from the frozen semen samples of 65 Murrah bulls maintained at Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal. The quality and concentration of DNA was checked by spectrophotometer reading and agarose gel electrophoresis. The target region of PPP1R11 gene was amplified using four sets of primer designed based on Bos taurus reference sequence. The amplified products were sequenced and aligned using Clustal Omega for identification of SNPs. Animals were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using EcoNI restriction enzyme. Results: The sequences in the NCBI accession number NW_005785016.1 for Bubalus bubalis were compared and aligned with the edited sequences of Murrah bulls with Clustal Omega software. A total of 10 SNPs were found, out of which 1 at 5’UTR, 3 at intron 1, and 6 at intron 2 region. PCR-RFLP using restriction enzyme EcoNI revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study. Conclusion: A total of 10 SNPs were found. PCR-RFLP revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study, due to which association analysis with conception rate was not feasible. PMID:28344410

  8. Nitrite Biosensing via Selective Enzymes—A Long but Promising Route

    PubMed Central

    Almeida, M. Gabriela; Serra, Alexandra; Silveira, Celia M.; Moura, Jose J.G.

    2010-01-01

    The last decades have witnessed a steady increase of the social and political awareness for the need of monitoring and controlling environmental and industrial processes. In the case of nitrite ion, due to its potential toxicity for human health, the European Union has recently implemented a number of rules to restrict its level in drinking waters and food products. Although several analytical protocols have been proposed for nitrite quantification, none of them enable a reliable and quick analysis of complex samples. An alternative approach relies on the construction of biosensing devices using stable enzymes, with both high activity and specificity for nitrite. In this paper we review the current state-of-the-art in the field of electrochemical and optical biosensors using nitrite reducing enzymes as biorecognition elements and discuss the opportunities and challenges in this emerging market. PMID:22163541

  9. Creation of a type IIS restriction endonuclease with a long recognition sequence

    PubMed Central

    Lippow, Shaun M.; Aha, Patti M.; Parker, Matthew H.; Blake, William J.; Baynes, Brian M.; Lipovšek, Daša

    2009-01-01

    Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6 nt from the target site to generate homogeneous, 5′, four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases. PMID:19304757

  10. Identification of Dominant Optimal HLA-B60- and HLA-B61-Restricted Cytotoxic T-Lymphocyte (CTL) Epitopes: Rapid Characterization of CTL Responses by Enzyme-Linked Immunospot Assay

    PubMed Central

    Altfeld, Marcus A.; Trocha, Alicja; Eldridge, Robert L.; Rosenberg, Eric S.; Phillips, Mary N.; Addo, Marylyn M.; Sekaly, Rafick P.; Kalams, Spyros A.; Burchett, Sandra A.; McIntosh, Kenneth; Walker, Bruce D.; Goulder, Philip J. R.

    2000-01-01

    Human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T-lymphocyte (CTL) responses play a major role in the antiviral immune response, but the relative contribution of CTL responses restricted by different HLA class I molecules is less well defined. HLA-B60 or the related allele B61 is expressed in 10 to 20% of Caucasoid populations and is even more highly prevalent in Asian populations, but yet no CTL epitopes restricted by these alleles have been defined. Here we report the definition of five novel HLA-B60-restricted HIV-1-specific CTL epitopes, using peripheral blood mononuclear cells in enzyme-linked immunospot (Elispot) assays and using CTL clones and lines in cytolytic assays. The dominant HLA-B60-restricted epitope, Nef peptide KEKGGLEGL, was targeted by all eight subjects with B60 and also by both subjects with B61 studied. This study additionally establishes the utility of the Elispot assay as a more rapid and efficient method of defining novel CTL epitopes. This approach will help to define new CTL epitopes that may play an important role in the immune control of HIV-1. PMID:10954555

  11. Molecular typing of Staphylococcus aureus based on coagulase gene.

    PubMed

    Javid, Faizan; Taku, Anil; Bhat, Mohd Altaf; Badroo, Gulzar Ahmad; Mudasir, Mir; Sofi, Tanveer Ahmad

    2018-04-01

    This study was conducted to study the coagulase gene-based genetic diversity of Staphylococcus aureus , isolated from different samples of cattle using restriction fragment length polymorphism (RFLP) and their sequence-based phylogenetic analysis. A total of 192 different samples from mastitic milk, nasal cavity, and pus from skin wounds of cattle from Military Dairy Farm, Jammu, India, were screened for the presence of S. aureus . The presumptive isolates were confirmed by nuc gene-based polymerase chain reaction (PCR). The confirmed S. aureus isolates were subjected to coagulase ( coa ) gene PCR. Different coa genotypes observed were subjected to RFLP using restriction enzymes Hae111 and Alu1 , to obtain the different restriction patterns. One isolate from each restriction pattern was sequenced. These sequences were aligned for maximum homology using the Bioedit softwareandsimilarity in the sequences was inferred with the help of sequence identity matrix. Of 192 different samples,39 (20.31%) isolates of S. aureus were confirmed by targeting nuc gene using PCR. Of 39 S. aureus isolates, 25 (64.10%) isolates carried coa gene. Four different genotypes of coa gene, i.e., 514 bp, 595 bp, 757 bp, and 802 bp were obtained. Two coa genotypes, 595 bp (15 isolates) and 802 bp (4 isolates), were observed in mastitic milk. 514 bp (2 isolates) and 757 bp (4 isolates) coa genotypes were observed from nasal cavity and pus from skin wounds, respectively. On RFLP using both restriction enzymes, four different restriction patterns P1, P2, P3, and P4 were observed. On sequencing, four different sequences having unique restriction patterns were obtained. The most identical sequences with the value of 0.810 were found between isolate S. aureus 514 (nasal cavity) and S. aureus 595 (mastitic milk), and thus, they are most closely related. While as the most distant sequences with the value of 0.483 were found between S. aureus 514 and S. aureus 802 isolates. The study, being localized to only one farm, yielded different RFLP patterns as observed from different sampling sites, which indicates that different S . aureus coagulase typeshave a site-specific predilection. Two coa patterns were observed in mastitic milk indicating multiple origins of infection, with 595 bp coa genotype being predominant in mastitic milk. The coa genotypes and their restriction patterns observed in the present study are novel, not published earlier. 514 and 595 coa variants of S. aureus are genetically most related.

  12. piggyBac Transposon-Mediated Transgenesis in the Apicomplexan Parasite Eimeria tenella

    PubMed Central

    Su, Huali; Liu, Xianyong; Yan, Wenchao; Shi, Tuanyuan; Zhao, Xinxin; Blake, Damer P.; Tomley, Fiona M.; Suo, Xun

    2012-01-01

    piggyBac, a type II transposon that is useful for efficient transgenesis and insertional mutagenesis, has been used for effective and stable transfection in a wide variety of organisms. In this study we investigate the potential use of the piggyBac transposon system for forward genetics studies in the apicomplexan parasite Eimeria tenella. Using the restriction enzyme-mediated integration (REMI) method, E. tenella sporozoites were electroporated with a donor plasmid containing the enhanced yellow fluorescent protein (EYFP) gene flanked by piggyBac inverted terminal repeats (ITRs), an Asc I-linearized helper plasmid containing the transposase gene and the restriction enzyme Asc I. Subsequently, electroporated sporozoites were inoculated into chickens via the cloacal route and transfected progeny oocysts expressing EYFP were sorted by flow cytometry. A transgenic E. tenella population was selected by successive in vivo passage. Southern-blotting analysis showed that exogenous DNA containing the EYFP gene was integrated into the parasite genome at a limited number of integration sites and that the inserted part of the donor plasmid was the fragment located between the 5′ and 3′ ITRs as indicated by primer-specific PCR screening. Genome walking revealed that the insertion sites were TTAA-specific, which is consistent with the transposition characteristics of piggyBac. PMID:22768223

  13. Demonstration of the Principles of Restriction Endonuclease Cleavage Reactions Using Thermostable Bfl I from "Anoxybacillus Flavithermus"

    ERIC Educational Resources Information Center

    Sharma, Prince; D'Souza, David R.; Bhandari, Deepali; Parashar, Vijay; Capalash, Neena

    2003-01-01

    Restriction enzymes are basic tools in recombinant DNA technology. To shape the molecular biology experiments, the students must know how to work with these molecular scissors. Here, we describe an integrated set of experiments, introduced in the "Advances in Molecular Biology and Biotechnology" postgraduate course, which covers the important…

  14. Detection and differentiation of field and vaccine strains of canine distemper virus using reverse transcription followed by nested real time PCR (RT-nqPCR) and RFLP analysis.

    PubMed

    Fischer, Cristine Dossin Bastos; Ikuta, Nilo; Canal, Cláudio Wageck; Makiejczuk, Aline; Allgayer, Mariangela da Costa; Cardoso, Cristine Hoffmeister; Lehmann, Fernanda Kieling; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2013-12-01

    Canine distemper virus (CDV) is the cause of a severe and highly contagious disease in dogs. Practical diagnosis of canine distemper based on clinical signs and laboratory tests are required to confirm CDV infection. The present study aimed to develop a molecular assay to detect and differentiate field and vaccine CDV strains. Reverse transcription followed by nested real time polymerase chain reaction (RT-nqPCR) was developed, which exhibited analytical specificity (all the samples from healthy dogs and other canine infectious agents were not incorrectly detected) and sensitivity (all replicates of a vaccine strain were positive up to the 3125-fold dilution - 10(0.7) TCID50). RT-nqPCR was validated for CDV detection on different clinical samples (blood, urine, rectal and conjunctival swabs) of 103 animals suspected to have distemper. A total of 53 animals were found to be positive based on RT-nqPCR in at least one clinical sample. Blood resulted in more positive samples (50 out of 53, 94.3%), followed by urine (44/53, 83.0%), rectal (38/53, 71%) and conjunctival (27/53, 50.9%) swabs. A commercial immunochromatography (IC) assay had detected CDV in only 30 conjunctival samples of these positive dogs. Nucleoprotein (NC) gene sequencing of 25 samples demonstrated that 23 of them were closer to other Brazilian field strains and the remaining two to vaccine strains. A single nucleotide sequences difference, which creates an Msp I restriction enzyme digestion, was used to differentiate between field and vaccine CDV strains by restriction fragment length polymorphism (RFLP) analysis. The complete assay was more sensitive than was IC for the detection of CDV. Blood was the more frequently positive specimen and the addition of a restriction enzyme step allowed the differentiation of vaccine and Brazilian field strains. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Molecular analysis of Leptospira spp. isolated from humans by restriction fragment length polymorphism, real-time PCR and pulsed-field gel electrophoresis.

    PubMed

    Turk, Nenad; Milas, Zoran; Mojcec, Vesna; Ruzic-Sabljic, Eva; Staresina, Vilim; Stritof, Zrinka; Habus, Josipa; Postic, Daniele

    2009-11-01

    A total of 17 Leptospira clinical strains isolated from humans in Croatia were serologically and genetically analysed. For serovar identification, the microscopic agglutination test (MAT) and pulsed-field gel electrophoresis (PFGE) were used. To identify isolates on genomic species level, PCR-based restriction fragment length polymorphism (RFLP) and real-time PCR were performed. MAT revealed the following serogroup affinities: Grippotyphosa (seven isolates), Icterohaemorrhagiae (eight isolates) and Javanica (two isolates). RFLP of PCR products from a 331-bp-long fragment of rrs (16S rRNA gene) digested with endonucleases MnlI and DdeI and real-time PCR revealed three Leptospira genomic species. Grippotyphosa isolates belonged to Leptospira kirschneri, Icterohaemorrhagiae isolates to Leptospira interrogans and Javanica isolates to Leptospira borgpetersenii. Genomic DNA from 17 leptospiral isolates was digested with NotI and SgrAI restriction enzymes and analysed by PFGE. Results showed that seven isolates have the same binding pattern to serovar Grippotyphosa, eight isolates to serovar Icterohaemorrhagiae and two isolates to serovar Poi. Results demonstrate the diversity of leptospires circulating in Croatia. We point out the usefulness of a combination of PFGE, RFLP and real-time PCR as appropriate molecular methods in molecular analysis of leptospires.

  16. Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives.

    PubMed

    Fregene, M A; Vargas, J; Ikea, J; Angel, F; Tohme, J; Asiedu, R A; Akoroda, M O; Roca, W M

    1994-11-01

    Chloroplast DNA (cp) and nuclear ribosomal DNA (rDNA) variation was investigated in 45 accessions of cultivated and wild Manihot species. Ten independent mutations, 8 point mutations and 2 length mutations were identified, using eight restriction enzymes and 12 heterologous cpDNA probes from mungbean. Restriction fragment length polymorphism analysis defined nine distinct chloroplast types, three of which were found among the cultivated accessions and six among the wild species. Cladistic analysis of the cpDNA data using parsimony yielded a hypothetical phylogeny of lineages among the cpDNAs of cassava and its wild relatives that is congruent with morphological evolutionary differentiation in the genus. The results of our survey of cpDNA, together with rDNA restriction site change at the intergenic spacer region and rDNA repeat unit length variation (using rDNA cloned fragments from taro as probe), suggest that cassava might have arisen from the domestication of wild tuberous accessions of some Manihot species, followed by intensive selection. M. esculenta subspp flabellifolia is probably a wild progenitor. Introgressive hybridization with wild forms and pressures to adapt to the widely varying climates and topography in which cassava is found might have enhanced the crop's present day variability.

  17. Isotype analysis of the anti-CENP-B anticentromere autoantibody: evidence for restricted clonality.

    PubMed

    Eisenberg, R A; Earnshaw, W C; Bordwell, B J; Craven, S Y; Cheek, R; Rothfield, N F

    1989-10-01

    Utilizing the centromere B fusion protein (CENP-B) and specific, matched monoclonal antiisotype reagents in an enzyme-linked immunosorbent assay, we found that anti-CENP-B autoantibodies were skewed to the IgG1 isotype. The overall kappa:lambda light chain ratio was 2:1, although several individual sera showed a strong predominance of one of the light chains. Isoelectric focusing of light chain-skewed sera showed polyclonal patterns. Our findings are consistent with the anti-CENP-B autoantibody response being a chronic, antigen-driven response.

  18. Typing clinical and animal environment Aspergillus fumigatus gliotoxin producer strains isolated from Brazil by PCR-RFLP markers.

    PubMed

    Soleiro, C A; Pena, G A; Cavaglieri, L R; Coelho, I; Keller, L M; Dalcero, A M; Rosa, C A R

    2013-12-01

    Aspergillus fumigatus, a well-known human and animal pathogen causing aspergillosis, has been historically identified by morphological and microscopic features. However, recent studies have shown that species identification on the basis of morphology alone is problematic. The aim of this work was to confirm the taxonomic state at specie level of a set of clinical (human and animal) and animal environment A. fumigatus strains identified by morphological criteria applying a PCR-RFLP assay by an in silico and in situ analysis with three restriction enzymes. The A. fumigatus gliotoxin-producing ability was also determined. Previous to the in situ PCR-RFLP analysis, an in silico assay with BccI, MspI and Sau3AI restriction enzymes was carried out. After that, these enzymes were used for in situ assay. All A. fumigatus strains isolated from corn silage, human aspergillosis and bovine mastitis and high per cent of the strains isolated from cereals, animal feedstuff and sorghum silage were able to produce high gliotoxin levels. Also, all these strains identified by morphological criteria as A. fumigatus, regardless of its isolation source, had band patterns according to A. fumigatus sensu stricto by PCR-RFLP markers. Aspergillus fumigatus is a well-known human and animal pathogen causing aspergillosis. In this study, clinical (human and animal) and animal environment strains were able to produce high gliotoxin levels and had band profiles according to A. fumigatus sensu stricto by PCR-RFLP markers. The results obtained here suggest that strains involved in human and animal aspergillosis could come from the animal environment in which A. fumigatus is frequently found. Its presence in animal environments could affect animal health and productivity; in addition, there are risks of contamination for rural workers during handling and storage of animal feedstuffs. © 2013 The Society for Applied Microbiology.

  19. Multi-Homologous Recombination-Based Gene Manipulation in the Rice Pathogen Fusarium fujikuroi

    PubMed Central

    Hwang, In Sun; Ahn, Il-Pyung

    2016-01-01

    Gene disruption by homologous recombination is widely used to investigate and analyze the function of genes in Fusarium fujikuroi, a fungus that causes bakanae disease and root rot symptoms in rice. To generate gene deletion constructs, the use of conventional cloning methods, which rely on restriction enzymes and ligases, has had limited success due to a lack of unique restriction enzyme sites. Although strategies that avoid the use of restriction enzymes have been employed to overcome this issue, these methods require complicated PCR steps or are frequently inefficient. Here, we introduce a cloning system that utilizes multi-fragment assembly by In-Fusion to generate a gene disruption construct. This method utilizes DNA fragment fusion and requires only one PCR step and one reaction for construction. Using this strategy, a gene disruption construct for Fusarium cyclin C1 (FCC1 ), which is associated with fumonisin B1 biosynthesis, was successfully created and used for fungal transformation. In vivo and in vitro experiments using confirmed fcc1 mutants suggest that fumonisin production is closely related to disease symptoms exhibited by F. fujikuroi strain B14. Taken together, this multi-fragment assembly method represents a simpler and a more convenient process for targeted gene disruption in fungi. PMID:27298592

  20. Identification of the "A" genome of finger millet using chloroplast DNA.

    PubMed

    Hilu, K W

    1988-01-01

    Finger millet (Eleusine corocana subsp. coracana), an important cereal in East Africa and India, is a tetraploid species with unknown genomic components. A recent cytogenetic study confirmed the direct origin of this millet from the tetraploid E. coracana subsp. africana but questioned Eleusine indica as a genomic donor. Chloroplast (ct) DNA sequence analysis using restriction fragment pattern was used to examine the phylogenetic relationships between E. coracana subsp. coracana (domesticated finger millet), E. coracana subspecies africana (wild finger millet), and E. indica. Eleusine tristachya was included since it is the only other annual diploid species in the genus with a basic chromosome number of x = 9 like finger millet. Eight of the ten restriction endonucleases used had 16 to over 30 restriction sites per genome and were informative. E. coracana subsp. coracana and subsp. africana and E. indica were identical in all the restriction sites surveyed, while the ct genome of E, tristachya differed consistently by at least one mutational event for each restriction enzyme surveyed. This random survey of the ct genomes of these species points out E. indica as one of the genome donors (maternal genome donor) of domesticated finger millet contrary to a previous cytogenetic study. The data also substantiate E. coracana subsp. africana as the progenitor of domesticated finger millet. The disparity between the cytogenetic and the molecular approaches is discussed in light of the problems associated with chromosome pairing and polyploidy.

  1. Peculiarities of Crystallization of the Restriction Endonuclease EcoRII

    NASA Technical Reports Server (NTRS)

    Karpove, Elizaveta; Pusey, M.arc L.

    1998-01-01

    Nucleases interfere with most standard molecular biology procedures. We have purified and crystallized the restriction endonuclease EcoRII, which belongs to the type II of restriction- modification enzyme, to study the protein crystallization process using a "non standard" macromolecule. A procedure for the purification of EcoRII was developed and 99% pure protein as determined by SDS PAGE electrophoresis obtained. Light scattering experiments were performed to assist in screening protein suitable crystallization conditions. The second virial coefficient was determined as a function of precipitating salt concentration, using sodium chloride, ammonium sulfate, and sodium sulfate. Small (maximum size approximately 0.2 mm) well shaped crystals have been obtained. Larger poorly formed crystals (ca 0.5 mm) have also been obtained, but we have been unable to mount them for diff-raction analysis due to their extreme fragility. Crystallization experiments with PEG have shown that using this precipitant, the best crystals are obtained from slightly over-saturated solutions. Use of higher precipitant concentration leads to dendritic crystal formation. EcoRII is difficult to solubilize and meticulous attention must be paid to the presence of reducing agents.

  2. Molecular cloning and physical mapping of the genome of fish lymphocystis disease virus.

    PubMed

    Darai, G; Delius, H; Clarke, J; Apfel, H; Schnitzler, P; Flügel, R M

    1985-10-30

    A defined and complete gene library of the fish lymphocystis disease virus (FLDV) genome was established. FLDV DNA was cleaved with EcoRI, BamHI, EcoRI/BamHI and EcoRI/HindIII and the resulting fragments were inserted into the corresponding sites of the pACYC184 or pAT153 plasmid vectors using T4 DNA ligase. Since FLDV DNA is highly methylated at CpG sequences (Darai et al., 1983; Wagner et al., 1985), an Escherichia coli GC-3 strain was required to amplify the recombinant plasmids harboring the FLDV DNA fragments. Bacterial colonies harboring recombinant plasmids were selected. All cloned fragments were individually identified by digestion of the recombinant plasmid DNA with different restriction enzymes and screened by hybridization of recombinant plasmid DNA to viral DNA. This analysis revealed that sequences representing 100% of the viral genome were cloned. Using these recombinant plasmids, the physical maps of the genome were constructed for BamHI, EcoRI, BestEII, and PstI restriction endonucleases. Although the FLDV genome is linear, due to circular permutation the restriction maps are circular.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stogios, Peter J.; Shakya, Tushar; Evdokimova, Elena

    The aminoglycoside phosphotransferase (APH) APH(4)-Ia is one of two enzymes responsible for bacterial resistance to the atypical aminoglycoside antibiotic hygromycin B (hygB). The crystal structure of APH(4)-Ia enzyme was solved in complex with hygB at 1.95 {angstrom} resolution. The APH(4)-Ia structure adapts a general two-lobe architecture shared by other APH enzymes and eukaryotic kinases, with the active site located at the interdomain cavity. The enzyme forms an extended hydrogen bond network with hygB primarily through polar and acidic side chain groups. Individual alanine substitutions of seven residues involved in hygB binding did not have significant effect on APH(4)-Ia enzymatic activity,more » indicating that the binding affinity is spread across a distributed network. hygB appeared as the only substrate recognized by APH(4)-Ia among the panel of 14 aminoglycoside compounds. Analysis of the active site architecture and the interaction with the hygB molecule demonstrated several unique features supporting such restricted substrate specificity. Primarily the APH(4)-Ia substrate-binding site contains a cluster of hydrophobic residues that provides a complementary surface to the twisted structure of the substrate. Similar to APH(2{double_prime}) enzymes, the APH(4)-Ia is able to utilize either ATP or GTP for phosphoryl transfer. The defined structural features of APH(4)-Ia interactions with hygB and the promiscuity in regard to ATP or GTP binding could be exploited for the design of novel aminoglycoside antibiotics or inhibitors of this enzyme.« less

  4. A fine structure genomic map of the region of 12q13 containing SAS and CDK4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linder, C.Y.; Elkahloun, A.G.; Su, Y.A.

    1994-09-01

    We have recently adapted a method, originally described by Rackwitz, to the rapid restriction mapping of multiple cosmid DNA samples. Linearization of the cosmids at the lambda cohesive site using lambda terminase is followed by partial digestion with selected restriction enzymes and hybridization to oligonucleotides specific for the right or left hand termini. Partial digestions are performed in a microtiter plate thus allowing up to 12 cosmid clones to be digested with one restriction enzyme. We have applied this rapid restriction mapping method to cosmids derived from a region of chromosome 12q13 that has recently been shown to be amplifiedmore » in a variety of cancers including malignant fibrous histiocytoma, fibrosarcoma, liposarcoma, osteosarcoma and brain tumors. A small segment of this amplification unit containing three genes, SAS (a membrane protein), CDK4 (a cyclin dependent kinase) and OS-9 (a recently described cDNA) has been analyzed with the system described above. This fine structure genomic map will be useful for completing the expression map of this region as well as characterizing its pattern of amplification in tumor specimens.« less

  5. Use of restriction fragment length polymorphisms to investigate strain variation within Neisseria meningitidis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, S.D.

    1989-01-01

    Similarity within bacterial populations is difficult to assess due to the limited number of characters available for evaluation and the heterogeneity of bacterial species. Currently, the preferred method used to evaluate the structure of bacterial populations is multilocus enzyme electrophoresis. However, this method is extremely cumbersome and only offers an indirect measure of genetic similarities. The development of a more direct and less cumbersome method for this purpose is warranted. Restriction fragment length polymorphism analysis was evaluated as a tool for use in the study of bacterial population structures and in the epidemiology and surveillance of infectious disease. A collectionmore » of Neisseria meningitidis was available for use in the investigation of this technique. Neisseria meningitidis is the causative agent of epidemic cerebrospinal meningitis and septicemia as well as a variety of other clinical manifestations. Each isolate in the collection was defined in terms of serogroup specificity, clinical history, geographic source, and date of isolation. Forty-six strains were chosen for this study. The DNA from each strain was restricted with Pst1 and EcoR1 and electrophoresed on agarose gels. The DNA was transferred to nylon filters and hybridized with P{sup 32} labeled DNA probes. Two randomly generated probes and a gene-specific probe were used to estimate the genetic similarities between and among the strains in the study population. A total of 28 different restriction fragment migration types were detected by the probes used. Data obtained from the RFLP analysis was analyzed by cluster analysis and multivariate statistical methods. A total of 7 clones groups were detected. Two of these appear to be major clones that comprise 35% of the population.« less

  6. Authentication of beef, carabeef, chevon, mutton and pork by a PCR-RFLP assay of mitochondrial cytb gene.

    PubMed

    Kumar, Deepak; Singh, S P; Karabasanavar, Nagappa S; Singh, Rashmi; Umapathi, V

    2014-11-01

    Authentication of meat assumes significance in view of religious, quality assurance, food safety, public health, conservation and legal concerns. Here, we describe a PCR-RFLP (Polymerase Chain Reaction- Restriction Fragment Length Polymorphism) assay targeting mitochondrial cytochrome-b gene for the identification of meats of five most common food animals namely cattle, buffalo, goat, sheep and pig. A pair of forward and reverse primers (VPH-F & VPH-R) amplifying a conserved region (168-776 bp) of mitochondrial cytochrome-b (cytb) gene for targeted species was designed which yielded a 609 bp PCR amplicon. Further, restriction enzyme digestion of the amplicons with Alu1 and Taq1 restriction enzymes resulted in a distinctive digestion pattern that was able to discriminate each species. The repeatability of the PCR-RFLP assay was validated ten times with consistent results observed. The developed assay can be used in routine diagnostic laboratories to differentiate the meats of closely related domestic livestock species namely cattle from buffalo and sheep from goat.

  7. Use of Restriction Fragment Length Polymorphisms to Investigate Strain Variation Within Neisseria Meningitidis.

    NASA Astrophysics Data System (ADS)

    Williams, Shelley Diane

    Similarity within bacterial populations is difficult to assess due to the limited number of characters available for evaluation and the heterogeneity of bacterial species. Currently, the preferred method used to evaluate the structure of bacterial populations is multilocus enzyme electrophoresis. However, this method is extremely cumbersome and only offers an indirect measure of genetic similarities. The development of a more direct and less cumbersome method for this purpose is warranted. Restriction fragment length polymorphism analysis was evaluated as a tool for use in the study of bacterial population structures and in the epidemiology and surveillance of infectious disease. A collection of Neisseria meningitidis was available for use in the investigation of this technique. Neisseria meningitidis is the causative agent of epidemic cerebrospinal meningitis and septicemia as well as a variety of other clinical manifestations. Each isolate in the collection was defined in terms of serogroup specificity, clinical history, geographic source, and date of isolation. Forty -six strains were chosen for this study. The DNA from each strain was restricted with Pst1 and EcoR1 and electrophoresed on agarose gels. The DNA was transferred to nylon filters and hybridized with P ^{32} labeled DNA probes. Two randomly generated probes and a gene-specific probe were used to estimate the genetic similarities between and among the strains in the study population. A total of 28 different restriction fragment migration types were detected by the probes used. Data obtained from the RFLP analysis was analysed by cluster analysis and multivariate statistical methods. A total of 7 clones groups were detected. Two of these appear to be major clones that comprise 35% of the population. This analysis demonstrates the lack of structure within Neisseria meningitidis due primarily to a heterogenous population and the lack of geographic segregation. The potential utility of this technique as a tool in epidemiologic surveillance is addressed. Further work is needed in the evaluation of RFLP analysis in the taxonomy bacteria.

  8. Marine Metagenome as A Resource for Novel Enzymes.

    PubMed

    Alma'abadi, Amani D; Gojobori, Takashi; Mineta, Katsuhiko

    2015-10-01

    More than 99% of identified prokaryotes, including many from the marine environment, cannot be cultured in the laboratory. This lack of capability restricts our knowledge of microbial genetics and community ecology. Metagenomics, the culture-independent cloning of environmental DNAs that are isolated directly from an environmental sample, has already provided a wealth of information about the uncultured microbial world. It has also facilitated the discovery of novel biocatalysts by allowing researchers to probe directly into a huge diversity of enzymes within natural microbial communities. Recent advances in these studies have led to a great interest in recruiting microbial enzymes for the development of environmentally-friendly industry. Although the metagenomics approach has many limitations, it is expected to provide not only scientific insights but also economic benefits, especially in industry. This review highlights the importance of metagenomics in mining microbial lipases, as an example, by using high-throughput techniques. In addition, we discuss challenges in the metagenomics as an important part of bioinformatics analysis in big data. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  9. Artificial enzymes based on supramolecular scaffolds.

    PubMed

    Dong, Zeyuan; Luo, Quan; Liu, Junqiu

    2012-12-07

    Enzymes are nanometer-sized molecules with three-dimensional structures created by the folding and self-assembly of polymeric chain-like components through supramolecular interactions. They are capable of performing catalytic functions usually accompanied by a variety of conformational states. The conformational diversities and complexities of natural enzymes exerted in catalysis seriously restrict the detailed understanding of enzymatic mechanisms in molecular terms. A supramolecular viewpoint is undoubtedly helpful in understanding the principle of enzyme catalysis. The emergence of supramolecular artificial enzymes therefore provides an alternative way to approach the structural complexity and thus to unravel the mystery of enzyme catalysis. This critical review covers the recent development of artificial enzymes designed based on supramolecular scaffolds ranging from the synthetic macrocycles to self-assembled nanometer-sized objects. Such findings are anticipated to facilitate the design of supramolecular artificial enzymes as well as their potential uses in important fields, such as manufacturing and food industries, environmental biosensors, pharmaceutics and so on.

  10. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases

    PubMed Central

    Kurian, P.; Dunston, G.; Lindesay, J.

    2015-01-01

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme’s displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations—a possible signature of quantum entanglement—may be explained by such a mechanism. PMID:26682627

  11. Isolation of a complementary DNA clone for the human complement protein C2 and its use in the identification of a restriction fragment length polymorphism.

    PubMed Central

    Woods, D E; Edge, M D; Colten, H R

    1984-01-01

    Complementary DNA (cDNA) clones corresponding to the major histocompatibility (MHC) class III antigen, complement protein C2, have been isolated from human liver cDNA libraries with the use of a complex mixture of synthetic oligonucleotides (17 mer) that contains 576 different oligonucleotide sequences. The C2 cDNA were used to identify a DNA restriction enzyme fragment length polymorphism that provides a genetic marker within the MHC that was not detectable at the protein level. An extensive search for genomic polymorphisms using a cDNA clone for another MHC class III gene, factor B, failed to reveal any DNA variants. The genomic variants detected with the C2 cDNA probe provide an additional genetic marker for analysis of MHC-linked diseases. Images PMID:6086718

  12. Automated Processing of 2-D Gel Electrophoretograms of Genomic DNA for Hunting Pathogenic DNA Molecular Changes.

    PubMed

    Takahashi; Nakazawa; Watanabe; Konagaya

    1999-01-01

    We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.

  13. Transformable Rhodobacter strains, method for producing transformable Rhodobacter strains

    DOEpatents

    Laible, Philip D.; Hanson, Deborah K.

    2018-05-08

    The invention provides an organism for expressing foreign DNA, the organism engineered to accept standard DNA carriers. The genome of the organism codes for intracytoplasmic membranes and features an interruption in at least one of the genes coding for restriction enzymes. Further provided is a system for producing biological materials comprising: selecting a vehicle to carry DNA which codes for the biological materials; determining sites on the vehicle's DNA sequence susceptible to restriction enzyme cleavage; choosing an organism to accept the vehicle based on that organism not acting upon at least one of said vehicle's sites; engineering said vehicle to contain said DNA; thereby creating a synthetic vector; and causing the synthetic vector to enter the organism so as cause expression of said DNA.

  14. Molecular variability among isolates of Fusarium oxysporum associated with root rot disease of Agave tequilana.

    PubMed

    Vega-Ramos, Karla L; Uvalle-Bueno, J Xavier; Gómez-Leyva, Juan F

    2013-04-01

    In this study, 115 isolates of Fusarium oxysporum from roots of Agave tequilana Weber cv azul plants and soil in commercial plantations in western Mexico were characterized using morphological and molecular methods. Genetic analyses of monosporic isolates included restriction enzyme analysis of rDNA (ARDRA) using HaeIII and HinfI, and genetic diversity was determined using Box-PCR molecular markers. Box-PCR analysis generated 14 groups. The groups correlated highly with the geographic location of the isolate and sample type. These results demonstrate the usefulness of ARDRA and Box-PCR techniques in the molecular characterization of the Fusarium genus for the discrimination of pathogenic isolates.

  15. Human aldolase A deficiency associated with a hemolytic anemia: thermolabile aldolase due to a single base mutation.

    PubMed Central

    Kishi, H; Mukai, T; Hirono, A; Fujii, H; Miwa, S; Hori, K

    1987-01-01

    Fructose-1,6-bisphosphate aldolase A (fructose-bisphosphate aldolase; EC 4.1.2.13) deficiency is an autosomal recessive disorder associated with hereditary hemolytic anemia. To clarify the molecular mechanism of the deficiency at the nucleotide level, we have cloned aldolase A cDNA from a patient's poly(A)+ RNA that was expressed in cultured lymphoblastoid cells. Nucleotide analysis of the patient's aldolase A cDNA showed a substitution of a single nucleotide (adenine to guanine) at position 386 in a coding region. As a result, the 128th amino acid, aspartic acid, was replaced with glycine (GAT to GGT). Furthermore, change of the second letter of the aspartic acid codon extinguished a F ok I restriction site (GGATG to GGGTG). Southern blot analysis of the genomic DNA showed the patient carried a homozygous mutation inherited from his parents. When compared with normal human aldolase A, the patient's enzyme from erythrocytes and from cultured lymphoblastoid cells was found to be highly thermolabile, suggesting that this mutation causes a functional defect of the enzyme. To further examine this possibility, the thermal stability of aldolase A of the patient and of a normal control, expressed in Escherichia coli using expression plasmids, was determined. The results of E. coli expression of the mutated aldolase A enzyme confirmed the thermolabile nature of the abnormal enzyme. The Asp-128 is conserved in aldolase A, B, and C of eukaryotes, including an insect, Drosophila, suggesting that the Asp-128 of the aldolase A protein is likely to be an amino acid residue with a crucial role in maintaining the correct spatial structure or in performing the catalytic function of the enzyme. Images PMID:2825199

  16. Optimization of the genotyping-by-sequencing strategy for population genomic analysis in conifers.

    PubMed

    Pan, Jin; Wang, Baosheng; Pei, Zhi-Yong; Zhao, Wei; Gao, Jie; Mao, Jian-Feng; Wang, Xiao-Ru

    2015-07-01

    Flexibility and low cost make genotyping-by-sequencing (GBS) an ideal tool for population genomic studies of nonmodel species. However, to utilize the potential of the method fully, many parameters affecting library quality and single nucleotide polymorphism (SNP) discovery require optimization, especially for conifer genomes with a high repetitive DNA content. In this study, we explored strategies for effective GBS analysis in pine species. We constructed GBS libraries using HpaII, PstI and EcoRI-MseI digestions with different multiplexing levels and examined the effect of restriction enzymes on library complexity and the impact of sequencing depth and size selection of restriction fragments on sequence coverage bias. We tested and compared UNEAK, Stacks and GATK pipelines for the GBS data, and then developed a reference-free SNP calling strategy for haploid pine genomes. Our GBS procedure proved to be effective in SNP discovery, producing 7000-11 000 and 14 751 SNPs within and among three pine species, respectively, from a PstI library. This investigation provides guidance for the design and analysis of GBS experiments, particularly for organisms for which genomic information is lacking. © 2014 John Wiley & Sons Ltd.

  17. Phylogenetic relationships among anuran trypanosomes as revealed by riboprinting.

    PubMed

    Clark, C G; Martin, D S; Diamond, L S

    1995-01-01

    Twenty trypanosome isolates from Anura (frogs and toads) assigned to several species were characterized by riboprinting-restriction enzyme digestion of polymerase chain reaction amplified small subunit ribosomal RNA genes. Restriction site polymorphisms allowed distinction of all the recognized species and no intraspecific variation in riboprint patterns was detected. Phylogenetic reconstruction using parsimony and distance estimates based on restriction fragment comigration showed Trypanosoma chattoni to be only distantly related to the other species, while T. ranarum and T. fallisi appear to be sister taxa despite showing non-overlapping host specificities.

  18. The T4 Phage DNA Mimic Protein Arn Inhibits the DNA Binding Activity of the Bacterial Histone-like Protein H-NS*

    PubMed Central

    Ho, Chun-Han; Wang, Hao-Ching; Ko, Tzu-Ping; Chang, Yuan-Chih; Wang, Andrew H.-J.

    2014-01-01

    The T4 phage protein Arn (Anti restriction nuclease) was identified as an inhibitor of the restriction enzyme McrBC. However, until now its molecular mechanism remained unclear. In the present study we used structural approaches to investigate biological properties of Arn. A structural analysis of Arn revealed that its shape and negative charge distribution are similar to dsDNA, suggesting that this protein could act as a DNA mimic. In a subsequent proteomic analysis, we found that the bacterial histone-like protein H-NS interacts with Arn, implying a new function. An electrophoretic mobility shift assay showed that Arn prevents H-NS from binding to the Escherichia coli hns and T4 p8.1 promoters. In vitro gene expression and electron microscopy analyses also indicated that Arn counteracts the gene-silencing effect of H-NS on a reporter gene. Because McrBC and H-NS both participate in the host defense system, our findings suggest that T4 Arn might knock down these mechanisms using its DNA mimicking properties. PMID:25118281

  19. Genotypic characterization of psittacid herpesvirus isolates from Brazil.

    PubMed

    Luppi, Marcela Miranda; Luiz, Ana Paula Moreira Franco; Coelho, Fabiana Magalhães; Ecco, Roselene; da Fonseca, Flávio Guimarães; Resende, Mauricio

    2016-01-01

    Thirty-six isolates of psittacid herpesvirus (PsHV), obtained from 12 different species of psittacids in Brazil, were genotypically characterized by restriction fragment length polymorphism (RFLP) analysis and PCR amplification. RFLP analysis with the PstI enzyme revealed four distinct restriction patterns (A1, X, W and Y), of which only A1 (corresponding to PsHV-1) had previously been described. To study PCR amplification patterns, six pairs of primers were used. Using this method, six variants were identified, of which, variants 10, 8, and 9 (in this order) were most prevalent, followed by variants 1, 4, and 5. It was not possible to correlate the PCR and RFLP patterns. Twenty-nine of the 36 isolates were shown to contain a 419bp fragment of the UL16 gene, displaying high similarity to the PsHV-1 sequences available in GenBank. Comparison of the results with the literature data suggests that the 36 Brazilian isolates from this study belong to genotype 1 and serotype 1. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. [Mitochondrial DNA genetic differentiation of the muksun Coregonus muksun (Pallas) and related Siberian species of Coregonus (Coredonidae, Salmoniformes)].

    PubMed

    Baldina, S N; Gordon, N Iu; Politov, D V

    2008-07-01

    Restriction enzyme analysis of the mitochondrial DNA (mtDNA) fragment encoding subunit 1 of the NADH dehydrogenase complex (ND-1) amplified via polymerase chain reaction (PCR) has been used to obtain data on genetic differentiation of muksun Coregonus muksun (Pallas) populations. Population polymorphism with respect to the restriction sites of 18 endonucleases has been described. It has been demonstrated that the muksun is genetically related to the pidschian C. pidschian (Gmelin), its sympatric species in Siberian waters. Analysis of the median network of mtDNA haplotypes has shown that haplotypes of muksun from various Siberian basins form a common group with haplotypes of pidschian of the Arctic Ocean basin, some frequent haplotypes been found in both forms. This raises the question as to the validity of the muksun as a species. Differences within this group of haplotypes are much smaller than those typical of species of the genus Coregonus. The possibility of a hybrid origin of the muksun from a pidschian-like ancestor and species of the cisco-peled (C. sardinella-C. peled) complex is discussed.

  1. Characterization of Anopheles pseudopunctipennis sensu lato from three countries of neotropical America from variation in allozymes and ribosomal DNA.

    PubMed

    Estrada-Franco, J G; Lanzaro, G C; Ma, M C; Walker-Abbey, A; Romans, P; Galvan-Sanchez, C; Cespedes, J L; Vargas-Sagarnaga, R; Laughinghouse, A; Columbus, I

    1993-12-01

    Enzyme electrophoresis and restriction fragment length polymorphism (RFLP) analysis of Anopheles pseudopunctipennis sensu lato from nine isolated populations in neotropical America confirmed previous observations that it constitutes a species complex. Electrophoretic studies showed fixed differences at two enzyme loci, glycerol dehydrogenase (Gcd) and phosphoglucomutase (Pgm), suggesting limited or no gene flow between populations from Mexico and South America. In addition, analysis of genetic distance showed two distinctive clusters, one from Mexico and the other from South America, separated at a Nei's distance level of 0.13, a value consistent in magnitude with that of other anopheline sibling species. The RFLP analysis revealed the presence of a ribosomal DNA fragment in Mexican strains that was absent in strains from South America. Two species have been identified through these studies, one provisionally named An. pseudopunctipennis A, a species from central Mexico, and the other An. pseudopunctipennis B, for the species found in the interAndean valleys and Andean slopes in regions of Peru and Bolivia. This research provides information required to elucidate the status of the different species of the An. pseudopunctipennis complex as vectors of malaria in the Americas.

  2. [The importance of C-terminal aspartic acid residue (D141) to the antirestriction activity of the ArdB (R64) protein].

    PubMed

    Kudryavtseva, A A; Osetrova, M S; Livinyuk, V Ya; Manukhov, I V; Zavilgelsky, G B

    2017-01-01

    Antirestriction proteins of the ArdB/KlcA family are specific inhibitors of restriction (endonuclease) activity of type-I restriction/modification enzymes. The effect of conserved amino acid residues on the antirestriction activity of the ArdB protein encoded by the transmissible R64 (IncI1) plasmid has been investigated. An analysis of the amino acid sequences of ArdB homologues demonstrated the presence of four groups of conserved residues ((1) R16, E32, and W51; (2) Y46 and G48; (3) S81, D83 and E132, and (4) N77, L(I)140, and D141) on the surface of the protein globule. Amino acid residues of the fourth group showed a unique localization pattern with the terminal residue protruding beyond the globule surface. The replacement of two conserved amino acids (D141 and N77) located in the close vicinity of each other on the globule surface showed that the C-terminal D141 is essential for the antirestriction activity of ArdB. The deletion of this residue, as well as replacement by a hydrophobic threonine residue (D141T), completely abolished the antirestriction activity of ArdB. The synonymous replacement of D141 by a glutamic acid residue (D141E) caused an approximately 30-fold decrease of the antirestriction activity of ArdB, and the point mutation N77A caused an approximately 20-fold decrease in activity. The residues D141 and N77 located on the surface of the protein globule are presumably essential for the formation of a contact between ArdB and a currently unknown factor that modulates the activity of type-I restriction/modification enzymes.

  3. Lack of association between vitamin D receptor genotypes and osteoporosis in Koreans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Sung Kil; Park, Young Suk; Park, Jae Min

    To evaluate whether common allelic variants in the gene encoding the vitamin D receptor (VDR) were useful in predicting differences in bone mineral density (BMD) and bone turnover rate in Koreans, we analyzed the restriction pattern of the polymerase chain reaction product of the VDR gene with the Bsm1 enzyme and serum osteocalcin in patients with osteoporosis. The prevalence of the BB genotype in the controls was extremely low when compared with that in other reports: the BB, Bb, and bb genotypes accounted for 1.4%, 12.9%, and 85.7%, respectively. Only 2.8% of those patients with osteoporosis had the BB genotype.more » In contrast, 12.5% had the Bb genotype, and 84.7% had the bb genotype. The prevalence of the BB genotype in patients with severe osteoporosis was also extremely low: the BB, Bb and bb genotypes accounted for 0%, 12.4%, and 87.6%, respectively. Compared with the mean serum osteocalcin level of the pre- and post-menopausal controls, the levels in patients with severe osteoporosis was higher, and this was statistically significant. As expected, a negative correlation was observed between the serum osteocalcin levels and the age-matched Z scores for spinal BMD. However, no correlation was found in the femoral neck BMD. These results suggest that restriction fragment length polymorphism analysis of the VDR gene with a Bsm1 restriction enzyme in Koreans is not helpful for early detection of patients at risk of developing osteoporosis. This is true even in patients with a high rate of bone turnover. Our data suggest extreme ethnic differences in the pattern of prevalence of the VDR allele. 19 refs., 5 figs., 2 tabs.« less

  4. Characterization of a TOL-like plasmid from Alcaligenes eutrophus that controls expression of a chromosomally encoded p-cresol pathway.

    PubMed Central

    Hughes, E J; Bayly, R C; Skurray, R A

    1984-01-01

    Alcaligenes eutrophus wild-type strain 345 metabolizes m- and p-toluate via a catechol meta-cleavage pathway. DNA analysis, curing studies, and transfer of this phenotype by conjugation and transformation showed that the degradative genes are encoded on a self-transmissible 85-kilobase plasmid, pRA1000. HindIII and XhoI restriction endonuclease analysis of pRA1000 showed it to be similar to the archetypal TOL plasmid, pWWO, differing in the case of HindIII only by the absence of fragments B and D present in pWWO. In strain 345, the presence of pRA1000 prevented the expression of chromosomally encoded enzymes required for the degradation of p-cresol, whereas these enzymes were expressed in strains cured of pRA1000. On the basis of studies with an R68.45-pRA1000 cointegrate plasmid, pRA1001, we conclude that the gene(s) responsible for the effect of p-cresol degradation resides within or near the m- and p-toluate degradative region on pRA1000. Images PMID:6325399

  5. Modification-dependent restriction endonuclease, MspJI, flips 5-methylcytosine out of the DNA helix

    DOE PAGES

    Horton, J. R.; Wang, H.; Mabuchi, M. Y.; ...

    2014-09-27

    MspJI belongs to a family of restriction enzymes that cleave DNA containing 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC). MspJI is specific for the sequence 5(h)mC-N-N-G or A and cleaves with some variability 9/13 nucleotides downstream. Earlier, we reported the crystal structure of MspJI without DNA and proposed how it might recognize this sequence and catalyze cleavage. Here we report its co-crystal structure with a 27-base pair oligonucleotide containing 5mC. This structure confirms that MspJI acts as a homotetramer and that the modified cytosine is flipped from the DNA helix into an SRA-like-binding pocket. We expected the structure to reveal two DNAmore » molecules bound specifically to the tetramer and engaged with the enzyme's two DNA-cleavage sites. A coincidence of crystal packing precluded this organization, however. We found that each DNA molecule interacted with two adjacent tetramers, binding one specifically and the other non-specifically. The latter interaction, which prevented cleavage-site engagement, also involved base flipping and might represent the sequence-interrogation phase that precedes specific recognition. MspJI is unusual in that DNA molecules are recognized and cleaved by different subunits. Such interchange of function might explain how other complex multimeric restriction enzymes act.« less

  6. A virus-based single-enzyme nanoreactor

    NASA Astrophysics Data System (ADS)

    Comellas-Aragonès, Marta; Engelkamp, Hans; Claessen, Victor I.; Sommerdijk, Nico A. J. M.; Rowan, Alan E.; Christianen, Peter C. M.; Maan, Jan C.; Verduin, Benedictus J. M.; Cornelissen, Jeroen J. L. M.; Nolte, Roeland J. M.

    2007-10-01

    Most enzyme studies are carried out in bulk aqueous solution, at the so-called ensemble level, but more recently studies have appeared in which enzyme activity is measured at the level of a single molecule, revealing previously unseen properties. To this end, enzymes have been chemically or physically anchored to a surface, which is often disadvantageous because it may lead to denaturation. In a natural environment, enzymes are present in a confined reaction space, which inspired us to develop a generic method to carry out single-enzyme experiments in the restricted spatial environment of a virus capsid. We report here the incorporation of individual horseradish peroxidase enzymes in the inner cavity of a virus, and describe single-molecule studies on their enzymatic behaviour. These show that the virus capsid is permeable for substrate and product and that this permeability can be altered by changing pH.

  7. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils

    PubMed Central

    Jiménez, Diego Javier; Montaña, José Salvador; Martínez, María Mercedes

    2011-01-01

    With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB) of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen Ashby-Sucrose agar obtaining a recovery of 40%. Twenty four isolates were evaluated for colony and cellular morphology, pigment production and metabolic activities. Molecular characterization was carried out using amplified ribosomal DNA restriction analysis (ARDRA). After digestion of 16S rDNA Y1-Y3 PCR products (1487pb) with AluI, HpaII and RsaI endonucleases, a polymorphism of 16% was obtained. Cluster analysis showed three main groups based on DNA fingerprints. Comparison between ribotypes generated by isolates and in silico restriction of 16S rDNA partial sequences with same restriction enzymes was done with Gen Workbench v.2.2.4 software. Nevertheless, Y1-Y2 PCR products were analysed using BLASTn. Isolate C5T from tomato (Lycopersicon esculentum) grown soils presented the same in silico restriction patterns with A. chroococcum (AY353708) and 99% of similarity with the same sequence. Isolate C5CO from cauliflower (Brassica oleracea var. botrytis) grown soils showed black pigmentation in Ashby-Benzoate agar and high similarity (91%) with A. nigricans (AB175651) sequence. In this work we demonstrated the utility of molecular techniques and bioinformatics tools as a support to conventional techniques in characterization of the genus Azotobacter from vegetable-grown soils. PMID:24031700

  8. Divergence of Structure and Function in the Haloacid Dehalogenase Enzyme Superfamily: Bacteroides thetaiotaomicron BT2127 is an Inorganic Pyrophosphatase+

    PubMed Central

    Huang, Hua; Yury, Patskovsky; Toro, Rafael; Farelli, Jeremiah D.; Pandya, Chetanya; Almo, Steven C.; Allen, Karen N.; Dunaway-Mariano, Debra

    2012-01-01

    The explosion of protein sequence information requires that current strategies for function assignment must evolve to complement experimental approaches with computationally-based function prediction. This necessitates the development of strategies based on the identification of sequence markers in the form of specificity determinants and a more informed definition of orthologues. Herein, we have undertaken the function assignment of the unknown Haloalkanoate Dehalogenase superfamily member BT2127 (Uniprot accession # Q8A5V9) from Bacteroides thetaiotaomicron using an integrated bioinformatics/structure/mechanism approach. The substrate specificity profile and steady-state rate constants of BT2127 (with kcat/Km value for pyrophosphate of ∼1 × 105 M−1 s−1), together with the gene context, supports the assigned in vivo function as an inorganic pyrophosphatase. The X-ray structural analysis of the wild-type BT2127 and several variants generated by site-directed mutagenesis shows that substrate discrimination is based, in part, on active site space restrictions imposed by the cap domain (specifically by residues Tyr76 and Glu47). Structure guided site directed mutagenesis coupled with kinetic analysis of the mutant enzymes identified the residues required for catalysis, substrate binding, and domain-domain association. Based on this structure-function analysis, the catalytic residues Asp11, Asp13, Thr113, and Lys147 as well the metal binding residues Asp171, Asn172 and Glu47 were used as markers to confirm BT2127 orthologues identified via sequence searches. This bioinformatic analysis demonstrated that the biological range of BT2127 orthologue is restricted to the phylum Bacteroidetes/Chlorobi. The key structural determinants in the divergence of BT2127 and its closest homologue β-phosphoglucomutase control the leaving group size (phosphate vs. glucose-phosphate) and the position of the Asp acid/base in the open vs. closed conformations. HADSF pyrophosphatases represent a third mechanistic and fold type for bacterial pyrophosphatases. PMID:21894910

  9. Genomics dataset of unidentified disclosed isolates.

    PubMed

    Rekadwad, Bhagwan N

    2016-09-01

    Analysis of DNA sequences is necessary for higher hierarchical classification of the organisms. It gives clues about the characteristics of organisms and their taxonomic position. This dataset is chosen to find complexities in the unidentified DNA in the disclosed patents. A total of 17 unidentified DNA sequences were thoroughly analyzed. The quick response codes were generated. AT/GC content of the DNA sequences analysis was carried out. The QR is helpful for quick identification of isolates. AT/GC content is helpful for studying their stability at different temperatures. Additionally, a dataset on cleavage code and enzyme code studied under the restriction digestion study, which helpful for performing studies using short DNA sequences was reported. The dataset disclosed here is the new revelatory data for exploration of unique DNA sequences for evaluation, identification, comparison and analysis.

  10. Detection of possible restriction sites for type II restriction enzymes in DNA sequences.

    PubMed

    Gagniuc, P; Cimponeriu, D; Ionescu-Tîrgovişte, C; Mihai, Andrada; Stavarachi, Monica; Mihai, T; Gavrilă, L

    2011-01-01

    In order to make a step forward in the knowledge of the mechanism operating in complex polygenic disorders such as diabetes and obesity, this paper proposes a new algorithm (PRSD -possible restriction site detection) and its implementation in Applied Genetics software. This software can be used for in silico detection of potential (hidden) recognition sites for endonucleases and for nucleotide repeats identification. The recognition sites for endonucleases may result from hidden sequences through deletion or insertion of a specific number of nucleotides. Tests were conducted on DNA sequences downloaded from NCBI servers using specific recognition sites for common type II restriction enzymes introduced in the software database (n = 126). Each possible recognition site indicated by the PRSD algorithm implemented in Applied Genetics was checked and confirmed by NEBcutter V2.0 and Webcutter 2.0 software. In the sequence NG_008724.1 (which includes 63632 nucleotides) we found a high number of potential restriction sites for ECO R1 that may be produced by deletion (n = 43 sites) or insertion (n = 591 sites) of one nucleotide. The second module of Applied Genetics has been designed to find simple repeats sizes with a real future in understanding the role of SNPs (Single Nucleotide Polymorphisms) in the pathogenesis of the complex metabolic disorders. We have tested the presence of simple repetitive sequences in five DNA sequence. The software indicated exact position of each repeats detected in the tested sequences. Future development of Applied Genetics can provide an alternative for powerful tools used to search for restriction sites or repetitive sequences or to improve genotyping methods.

  11. Abstracts of papers presented at the 8th workshop of the Virology Section of the Deutsche Gesellschaft für Hygiene und Mikro-biologie, Würzburg, March 17-19, 1983.

    PubMed

    1983-09-01

    17 adenovirus strains were found to be antigenically related to prototype Ad 15 by neutralization. No relationship to Ad 15, but to Ad 9 could be detected by hemagglutination-inhibition; we therefore named them Ad 15/H9 intermediate strains. After analysis of the genome by five different restriction enzymes, the fragment patterns obtained deviated widely from the prototype Ad 15, but only slightly from Ad 9. Differences could also be observed among the variants. After digestion by five restriction enzymes, altogether six genome types could be established among the 17 intermediate strains. To map the variations on the genome of the 15/H9 strains, two methods were employed: the double digestion of the DNA and DNA fragments together with the determination of the terminal fragments made it possible to construct a physical map. The second method depends on a particularity of adenoviruses: the DNA is covalently linked with a 55 kD protein at the 5' terminus. After digestion of the DNA, which does contain this protein, the terminal DNA fragments do not migrate into the agarose gel; after an additional digestion with pronase B, they do migrate into the gel. Thus the terminal fragments were determined by comparing the fragment patterns with and without previous pronase B treatment.

  12. Oligoclonal T cell receptor gene rearrangements in blood lymphocytes of patients with acute Epstein-Barr virus-induced infectious mononucleosis.

    PubMed Central

    Strickler, J G; Movahed, L A; Gajl-Peczalska, K J; Horwitz, C A; Brunning, R D; Weiss, L M

    1990-01-01

    Gene rearrangement studies were performed on blood lymphocytes from eight patients with acute Epstein-Barr virus-induced infectious mononucleosis. The diagnosis in each case was based on characteristic clinical, hematologic, and serologic findings. The blood lymphocytes in each patient consisted predominantly of CD8+ T cells. EBV DNA was detected in seven patients by Southern blot analysis (EBV Bam HI W probe, Bam HI). A germline configuration was found for the immunoglobulin heavy and light chain genes (JH probe, Bam HI and Eco RI; C kappa probe, Bam HI; and C lambda probe, Eco RI). T cell receptor gene rearrangements were detected with J gamma and J beta 1 + 2 probes. Using a J gamma probe with two different restriction enzymes (Bgl II and Eco RI), the blood from each patient showed several bands corresponding to the polyclonal pattern previously described in the blood of normal individuals. Using J beta 1 + 2 probes with two different restriction enzymes (Bgl II and Bam HI), each case showed from 3 to about 12 extragermline bands of varying intensity and in different locations from case to case. In addition, each case showed relative deletion of the J beta 1 germline band. This oligoclonal pattern of T cell receptor gene rearrangements has not been previously reported in benign or malignant T cell populations. Images PMID:2170451

  13. Simple cloning strategy using GFPuv gene as positive/negative indicator.

    PubMed

    Miura, Hiromi; Inoko, Hidetoshi; Inoue, Ituro; Tanaka, Masafumi; Sato, Masahiro; Ohtsuka, Masato

    2011-09-15

    Because construction of expression vectors is the first requisite in the functional analysis of genes, development of simple cloning systems is a major requirement during the postgenomic era. In the current study, we developed cloning vectors for gain- or loss-of-function studies by using the GFPuv gene as a positive/negative indicator of cloning. These vectors allow us to easily detect correct clones and obtain expression vectors from a simple procedure by means of the combined use of the GFPuv gene and a type IIS restriction enzyme. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Identification of the ``a'' Genome of Finger Millet Using Chloroplast DNA

    PubMed Central

    Hilu, K. W.

    1988-01-01

    Finger millet (Eleusine corocana subsp. coracana), an important cereal in East Africa and India, is a tetraploid species with unknown genomic components. A recent cytogenetic study confirmed the direct origin of this millet from the tetraploid E. coracana subsp. africana but questioned Eleusine indica as a genomic donor. Chloroplast (ct) DNA sequence analysis using restriction fragment pattern was used to examine the phylogenetic relationships between E. coracana subsp. coracana (domesticated finger millet), E. coracana subspecies africana (wild finger millet), and E. indica. Eleusine tristachya was included since it is the only other annual diploid species in the genus with a basic chromosome number of x = 9 like finger millet. Eight of the ten restriction endonucleases used had 16 to over 30 restriction sites per genome and were informative. E. coracana subsp. coracana and subsp. africana and E. indica were identical in all the restriction sites surveyed, while the ct genome of E. tristachya differed consistently by at least one mutational event for each restriction enzyme surveyed. This random survey of the ct genomes of these species points out E. indica as one of the genome donors (maternal genome donor) of domesticated finger millet contrary to a previous cytogenetic study. The data also substantiate E. coracana subsp. africana as the progenitor of domesticated finger millet. The disparity between the cytogenetic and the molecular approaches is discussed in light of the problems associated with chromosome pairing and polyploidy. PMID:8608927

  15. Restriction by APOBEC3 proteins of endogenous retroviruses with an extracellular life cycle: ex vivo effects and in vivo "traces" on the murine IAPE and human HERV-K elements

    PubMed Central

    Esnault, Cécile; Priet, Stéphane; Ribet, David; Heidmann, Odile; Heidmann, Thierry

    2008-01-01

    Background APOBEC3 cytosine deaminases have been demonstrated to restrict infectivity of a series of retroviruses, with different efficiencies depending on the retrovirus. In addition, APOBEC3 proteins can severely restrict the intracellular transposition of a series of retroelements with a strictly intracellular life cycle, including the murine IAP and MusD LTR-retrotransposons. Results Here we show that the IAPE element, which is the infectious progenitor of the strictly intracellular IAP elements, and the infectious human endogenous retrovirus HERV-K are restricted by both murine and human APOBEC3 proteins in an ex vivo assay for infectivity, with evidence in most cases of strand-specific G-to-A editing of the proviruses, with the expected signatures. In silico analysis of the naturally occurring genomic copies of the corresponding endogenous elements performed on the mouse and human genomes discloses "traces" of APOBEC3-editing, with the specific signature of the murine APOBEC3 and human APOBEC3G enzymes, respectively, and to a variable extent depending on the family member. Conclusion These results indicate that the IAPE and HERV-K elements, which can only replicate via an extracellular infection cycle, have been restricted at the time of their entry, amplification and integration into their target host genomes by definite APOBEC3 proteins, most probably acting in evolution to limit the mutagenic effect of these endogenized extracellular parasites. PMID:18702815

  16. Phe71 in Type III Trypanosomal Protein Arginine Methyltransferase 7 (TbPRMT7) Restricts the Enzyme to Monomethylation.

    PubMed

    Cáceres, Tamar B; Thakur, Abhishek; Price, Owen M; Ippolito, Nicole; Li, Jun; Qu, Jun; Acevedo, Orlando; Hevel, Joan M

    2018-02-27

    Protein arginine methyltransferase 7 (PRMT7) is unique within the PRMT family as it is the only isoform known to exclusively make monomethylarginine (MMA). Given its role in epigenetics, the mechanistic basis for the strict monomethylation activity is under investigation. It is thought that PRMT7 enzymes are unable to add a second methyl group because of steric hindrance in the active site that restricts them to monomethylation. To test this, we probed the active site of trypanosomal PRMT7 (TbPRMT7) using accelerated molecular dynamics, site-directed mutagenesis, kinetic, binding, and product analyses. Both the dynamics simulations and experimental results show that the mutation of Phe71 to Ile converts the enzyme from a type III methyltransferase into a mixed type I/II, that is, an enzyme that can now perform dimethylation. In contrast, the serine and alanine mutants of Phe71 preserve the type III behavior of the native enzyme. These results are inconsistent with a sterics-only model to explain product specificity. Instead, molecular dynamics simulations of these variants bound to peptides show hydrogen bonding between would-be substrates and Glu172 of TbPRMT7. Only in the case of the Phe71 to Ile mutation is this interaction between MMA and the enzyme maintained, and the geometry for optimal S N 2 methyl transfer is obtained. The results of these studies highlight the benefit of combined computational and experimental methods in providing a better understanding for how product specificity is dictated by PRMTs.

  17. Mechanisms Underlying the Breast Cancer Susceptibility Locus Mcs5a

    DTIC Science & Technology

    2010-07-01

    fixed using formaldehyde . The extracted fixed chromatin is digested with a restriction enzyme and religated in a strongly dilute fashion. In this...procedure the ligation of genetic elements that were glued together by formaldehyde fixation is favored over ligation of random elements. Following... digested and randomly ligated control template containing all restriction fragments of interest in equal molarity. To investigate the Mcs5a1-Mcs5a2

  18. Let the substrate flow, not the enzyme: Practical immobilization of d-amino acid oxidase in a glass microreactor for effective biocatalytic conversions.

    PubMed

    Bolivar, Juan M; Tribulato, Marco A; Petrasek, Zdenek; Nidetzky, Bernd

    2016-11-01

    Exploiting enzymes for chemical synthesis in flow microreactors necessitates their reuse for multiple rounds of conversion. To achieve this goal, immobilizing the enzymes on microchannel walls is a promising approach, but practical methods for it are lacking. Using fusion to a silica-binding module to engineer enzyme adsorption to glass surfaces, we show convenient immobilization of d-amino acid oxidase on borosilicate microchannel plates. In confocal laser scanning microscopy, channel walls appeared uniformly coated with target protein. The immobilized enzyme activity was in the range expected for monolayer coverage of the plain surface with oxidase (2.37 × 10(-5)  nmol/mm(2) ). Surface attachment of the enzyme was completely stable under flow. The operational half-life of the immobilized oxidase (25°C, pH 8.0; soluble catalase added) was 40 h. Enzymatic oxidation of d-Met into α-keto-γ-(methylthio)butyric acid was characterized in single-pass and recycle reactor configurations, employing in-line measurement of dissolved O2 , and off-line determination of the keto-acid product. Reaction-diffusion time-scale analysis for different flow conditions showed that the heterogeneously catalyzed reaction was always slower than diffusion of O2 to the solid surface (DaII  ≤ 0.3). Potential of the microreactor for intensifying O2 -dependent biotransformations restricted by mass transfer in conventional reactors is thus revealed. Biotechnol. Bioeng. 2016;113: 2342-2349. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. 19F NMR measurements of the rotational mobility of proteins in vivo.

    PubMed Central

    Williams, S P; Haggie, P M; Brindle, K M

    1997-01-01

    Three glycolytic enzymes, hexokinase, phosphoglycerate kinase, and pyruvate kinase, were fluorine labeled in the yeast Saccharomyces cerevisiae by biosynthetic incorporation of 5-fluorotryptophan. 19F NMR longitudinal relaxation time measurements on the labeled enzymes were used to assess their rotational mobility in the intact cell. Comparison with the results obtained from relaxation time measurements of the purified enzymes in vitro and from theoretical calculations showed that two of the labeled enzymes, phosphoglycerate kinase and hexokinase, were tumbling in a cytoplasm that had a viscosity approximately twice that of water. There were no detectable signals from pyruvate kinase in vivo, although it could be detected in diluted cell extracts, indicating that there was some degree of motional restriction of the enzyme in the intact cell. PMID:8994636

  20. Physical and genetic map of Streptococcus thermophilus A054.

    PubMed Central

    Roussel, Y; Pebay, M; Guedon, G; Simonet, J M; Decaris, B

    1994-01-01

    The three restriction endonucleases SfiI, BssHII, and SmaI were found to generate fragments with suitable size distributions for mapping the genome of Streptococcus thermophilus A054. A total of 5, 8, and 24 fragments were produced with SfiI, BssHII, and SmaI, respectively. An average genome size of 1,824 kb was determined by summing the total fragment sizes obtained by digestions with these three enzymes. Partial and multiple digestions of genomic DNA in conjunction with Southern hybridization were used to map SfiI, BssHII, and SmaI fragments. All restriction fragments were arranged in a unique circular chromosome. Southern hybridization analysis with specific probes allowed 23 genetic markers to be located on the restriction map. Among them, six rrn loci were precisely located. The area of the chromosome containing the ribosomal operons was further detailed by mapping some of the ApaI and SgrAI sites. Comparison of macrorestriction patterns from three clones derived from strain A054 revealed two variable regions in the chromosome. One was associated with the tandem rrnD and rrnE loci, and the other was mapped in the region of the lactose operon. Images PMID:8002562

  1. Caloric restriction counteracts age-related changes in the activities of sorbitol metabolizing enzymes from mouse liver

    PubMed Central

    Hagopian, Kevork; Ramsey, Jon J.; Weindruch, Richard

    2009-01-01

    The influence of caloric restriction (CR) on hepatic sorbitol-metabolizing enzyme activities was investigated in young and old mice. Aldose reductase and sorbitol dehydrogenase activities were significantly lower in old CR mice than in old controls. Young CR mice showed decreased aldose reductase activity and a trend towards decreased sorbitol dehydrogenase when compared to controls. Metabolites of the pathway, namely sorbitol, glucose and fructose were decreased by CR in young and old mice. Pyruvate levels were decreased by CR in both young and old mice, while lactate decreased only in old CR. Malate levels increased in old CR but remained unchanged in young CR, when compared with controls. Accordingly, the lactae/pyruvate and malate/pyruvate ratios in young and old CR mice were increased, indicating increased NADH/NAD and NADPH/NADP redox couples, respectively. The results indicate that decreased glucose levels under CR conditions lead to decreased sorbitol pathway enzyme activities and metabolite levels, and could contribute to the beneficial effects of long-term CR through decreased sorbitol levels and NADPH sparing. PMID:18953666

  2. Mechanisms leading to increased risk of preterm birth in growth-restricted guinea pig pregnancies.

    PubMed

    Palliser, Hannah K; Kelleher, Meredith A; Welsh, Toni N; Zakar, Tamas; Hirst, Jonathan J

    2014-02-01

    Intrauterine growth restriction (IUGR) is a risk factor for preterm labor; however, the mechanisms of the relationship remain unknown. Prostaglandin (PG), key stimulants of labor, availability is regulated by the synthetic enzymes, prostaglandin endoperoxidases 1 and 2 (PTGS1 and 2), and the metabolizing enzyme, 15-hydroxyprostaglandin dehydrogenase (HPGD). We hypothesized that IUGR increases susceptibility to preterm labor due to the changing balance of synthetic and metabolizing enzymes and hence greater PG availability. We have tested this hypothesis using a surgically induced IUGR model in guinea pigs, which results in significantly shorter gestation. Myometrium, amnion, chorion, and placentas were collected from sham operated or IUGR pregnancies, and PTGS1 and HPGD protein expression were quantified throughout late gestation (>62 days) and labor. The PTGS1 expression was significantly upregulated in the myometrium of IUGR animals, and chorionic HPGD expression was markedly decreased (P < .01 and P < .001, respectively). These findings suggest a shift in the balance of PG production over metabolism in IUGR pregnancies leads to a greater susceptibility to preterm birth.

  3. How-to-Do-It: Biotechnology in Three Days.

    ERIC Educational Resources Information Center

    Gardner, Alan M.

    1988-01-01

    Outlines a three-day unit for presenting biotechnology. States that the approach surveys the processes of enzyme restriction, ligation, transformations of recombinant plasmids, and gel electrophoresis. Diagrams accompany the article. (RT)

  4. Uncovering allostery and regulation in SAMHD1 through molecular dynamics simulations.

    PubMed

    Patra, Kajwal Kumar; Bhattacharya, Akash; Bhattacharya, Swati

    2017-07-01

    The human sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a retroviral restriction factor in myeloid cells and non-cycling CD4+ T cells, a feature imputed to its phosphohydrolase activity-the enzyme depletes the cellular dNTP levels inhibiting reverse transcription. The functionally active form of SAMHD1 is an allosterically triggered tetramer which utilizes GTP-Mg +2 -dNTP cross bridges to link and stabilize adjacent monomers. However, very little is known about how it assembles into a tetramer and how long the tetramer stays intact. In this computational study, we provide a molecular dynamics based analysis of the structural stability and allosteric site dynamics in SAMHD1. We have investigated the allosteric links which assemble and hold the tetramer together. We have also extended this analysis to a regulatory mutant of SAMHD1. Experimental studies have indicated that phosphorylation of T592 downregulates HIV-1 restriction. A similar result is also achieved by a phosphomimetic mutation T592E. While a mechanistic understanding of the process is still elusive, the loss of structural integrity of the enzyme is conjectured to be the cause of the impaired dNTPase activity of the T592E mutant. MD simulations show that the T592E mutation causes slightly elevated local motions which remain confined to the short helix (residues 591-595), which contains the phosphorylation site and do not cause long-range destabilization of the SAMHD1 tetramer within the timeframe of the simulations. Thus, the regulatory mechanism of SAMHD1 is a more subtle mechanism than has been previously suspected. Proteins 2017; 85:1266-1275. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India.

    PubMed

    Verma, Priyanka; Yadav, Ajar Nath; Khannam, Kazy Sufia; Kumar, Sanjay; Saxena, Anil Kumar; Suman, Archna

    2016-01-01

    The diversity of culturable Bacilli was investigated in six wheat cultivating agro-ecological zones of India viz: northern hills, north western plains, north eastern plains, central, peninsular, and southern hills. These agro-ecological regions are based on the climatic conditions such as pH, salinity, drought, and temperature. A total of 395 Bacilli were isolated by heat enrichment and different growth media. Amplified ribosomal DNA restriction analysis using three restriction enzymes AluI, MspI, and HaeIII led to the clustering of these isolates into 19-27 clusters in the different zones at >70% similarity index, adding up to 137 groups. Phylogenetic analysis based on 16S rRNA gene sequencing led to the identification of 55 distinct Bacilli that could be grouped in five families, Bacillaceae (68%), Paenibacillaceae (15%), Planococcaceae (8%), Staphylococcaceae (7%), and Bacillales incertae sedis (2%), which included eight genera namely Bacillus, Exiguobacterium, Lysinibacillus, Paenibacillus, Planococcus, Planomicrobium, Sporosarcina, and Staphylococcus. All 395 isolated Bacilli were screened for their plant growth promoting attributes, which included direct-plant growth promoting (solubilization of phosphorus, potassium, and zinc; production of phytohormones; 1-aminocyclopropane-1-carboxylate deaminase activity and nitrogen fixation), and indirect-plant growth promotion (antagonistic, production of lytic enzymes, siderophore, hydrogen cyanide, and ammonia). To our knowledge, this is the first report for the presence of Bacillus endophyticus, Paenibacillus xylanexedens, Planococcus citreus, Planomicrobium okeanokoites, Sporosarcina sp., and Staphylococcus succinus in wheat rhizosphere and exhibit multifunctional PGP attributes. These niche-specific and multifarious PGP Bacilli may serve as inoculants for crops growing in respective climatic conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Detection of restriction fragment length polymorphisms in clinical isolates and serially passaged Pseudomonas aeruginosa strains.

    PubMed Central

    Hjelm, L N; Branstrom, A A; Warren, R L

    1990-01-01

    An 800-base-pair HindIII-PstI fragment that flanks a hot spot for Tn7 insertion was isolated from the chromosome of Pseudomonas aeruginosa and cloned into pUC12. The fragment was used to probe XhoI digests of genomic DNA from 18 P. aeruginosa isolates collected from sputum samples of seven cystic fibrosis patients. Only two XhoI restriction fragment length polymorphisms (RFLPs), of 3.7 and 7.7 kilobases (kb), were detected. Isolate WSU3531-1 (3.7-kb XhoI fragment) and WSU3860 (7.7-kb XhoI fragment), while isolated from the same patient, showed different RFLPs. Serial passages of isolate WSU3531-1 demonstrated that this strain was phenotypically stable. In contrast, colony and pigment variants were readily isolated at a frequency of 1% from serial passages of isolate WSU3860. When XhoI-digested genomic DNA from phenotypic variants of serially passaged WSU3860 were probed with the 800-base-pair HindIII-PstI fragment, the probe hybridized to a 10.4-kb XhoI fragment from three isolates. Restriction analysis of the genomic DNA digested with a variety of restriction enzymes showed that a 2.7-kb insertion occurred in the same region for all three isolates. There appeared to be no correlation between changes in the RFLP and changes in colony morphology. Images PMID:1977762

  7. Illuminating the Mechanistic Roles of Enzyme Conformational Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Jeffrey A.; Dunderstadt, Karl; Watkins, Lucas P.

    2007-11-13

    Many enzymes mold their structures to enclose substrates in their active sites such that conformational remodeling may be required during each catalytic cycle. In adenylate kinase (AK), this involves a large-amplitude rearrangement of the enzyme’s lid domain. Using our method of high-resolution single-molecule FRET, we directly followed AK’s domain movements on its catalytic time scale. To quantitatively measure the enzyme’s entire conformational distribution, we have applied maximum entropy-based methods to remove photon-counting noise from single-molecule data. This analysis shows unambiguously that AK is capable of dynamically sampling two distinct states, which correlate well with those observed by x-ray crystallography. Unexpectedly,more » the equilibrium favors the closed, active-site-forming configurations even in the absence of substrates. Our experiments further showed that interaction with substrates, rather than locking the enzyme into a compact state, restricts the spatial extent of conformational fluctuations and shifts the enzyme’s conformational equilibrium toward the closed form by increasing the closing rate of the lid. Integrating these microscopic dynamics into macroscopic kinetics allows us to model lid opening-coupled product release as the enzyme’s rate-limiting step.« less

  8. Long-term colonization with single and multiple strains of Helicobacter pylori assessed by DNA fingerprinting.

    PubMed Central

    Taylor, N S; Fox, J G; Akopyants, N S; Berg, D E; Thompson, N; Shames, B; Yan, L; Fontham, E; Janney, F; Hunter, F M

    1995-01-01

    The gastric pathogen Helicobacter pylori establishes long-term chronic infections that can lead to gastritis, peptic ulcers, and cancer. The species is so diverse that distinctly different strains are generally recovered from each patient. To better understand the dynamics of long-term carriage, we characterized H. pylori isolates from initial and follow-up biopsy specimens from a patient population at high risk of H. pylori infection and gastric cancer. Eighty-five isolates were obtained from 23 patients and were analyzed by genomic restriction enzyme analysis, arbitrarily primed PCR fingerprinting, (random amplified polymorphic DNA analysis), and/or restriction of specific PCR-amplified genes (restriction fragment length polymorphism analysis). A single strain was found in sequential biopsy specimens from 12 of 15 patients (80%) receiving sucralfate. In the remaining three patients treated with sucralfate, two strains were identified in two patients and three strains were identified in the third patient. In contrast, a single strain was found in sequential biopsy specimens from only three of eight patients (37%) receiving bismuth, metronidazole, and nitrofurantoin. Two strains were identified in five other patients receiving bismuth-antibiotic (63%). Immunoglobulin G antibodies to H. pylori were present in the sera of all patients. Thus, H. pylori colonization can persist for long periods (up to at least 4 years), despite high titers of immunoglobulin G antibodies in serum. Resistance to metronidazole was noted in some strains before and/or after treatment, but all strains remained susceptible to amoxicillin, tetracycline, and nitrofurantoin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7790461

  9. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1991-01-01

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. Probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations.

  10. Purification and characterization of the restriction endonuclease RsrI, an isoschizomer of EcoRI.

    PubMed

    Greene, P J; Ballard, B T; Stephenson, F; Kohr, W J; Rodriguez, H; Rosenberg, J M; Boyer, H W

    1988-08-15

    Rhodobacter sphaeroides strain 630 produces restriction enzyme RsrI which is an isoschizomer of EcoRI. We have purified this enzyme and initiated a comparison with the EcoRI endonuclease. The properties of RsrI are consistent with a reaction mechanism similar to that of EcoRI: the position of cleavage within the -GAATTC-site is identical, the MgCl2 optimum for the cleavage is identical, and the pH profile is similar. Methylation of the substrate sequence by the EcoRI methylase protects the site from cleavage by the RsrI endonuclease. RsrI cross-reacts strongly with anti-EcoRI serum indicating three-dimensional structural similarities. We have determined the sequence of 34 N terminal amino acids for RsrI and this sequence possesses significant similarity to the EcoRI N terminus.

  11. Mouse mammary tumor virus chromatin in human breast cancer cells is constitutively hypersensitive and exhibits steroid hormone-independent loading of transcription factors in vivo.

    PubMed Central

    Mymryk, J S; Berard, D; Hager, G L; Archer, T K

    1995-01-01

    We have stably introduced a reporter gene under the control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) into human T47D breast cancer cells to study the action of the progesterone receptor (PR) on transcription from a chromatin template. Unexpectedly, the chromatin organization of the MMTV LTR in these human breast cancer cells differed markedly from what we have observed previously. The region adjacent to the transcription start site (-221 to -75) was found to be constitutively hypersensitive to restriction enzyme cleavage in the absence of hormone. This region is normally encompassed within the second nucleosome of a phased array of six nucleosomes that is assembled when the MMTV LTR is stably maintained in mouse cells. Characteristically, in these rodent cells, the identical DNA sequences show increased restriction enzyme cleavage only in the presence of glucocorticoid. The increased access of restriction enzymes observed in the human PR+ cells was not observed in adjacent nucleosomes and was unaffected by treatment with the progesterone antagonist RU486. In addition, exonuclease III-dependent stops corresponding to the binding sites for nuclear factor 1 and the PR were observed before and after hormone treatment. These results indicate that MMTV chromatin replicated in these cells is organized into a constitutively open architecture and that this open chromatin state is accompanied by hormone-independent loading of a transcription factor complex that is normally excluded from uninduced chromatin. PMID:7799933

  12. Mouse mammary tumor virus chromatin in human breast cancer cells is constitutively hypersensitive and exhibits steroid hormone-independent loading of transcription factors in vivo.

    PubMed

    Mymryk, J S; Berard, D; Hager, G L; Archer, T K

    1995-01-01

    We have stably introduced a reporter gene under the control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) into human T47D breast cancer cells to study the action of the progesterone receptor (PR) on transcription from a chromatin template. Unexpectedly, the chromatin organization of the MMTV LTR in these human breast cancer cells differed markedly from what we have observed previously. The region adjacent to the transcription start site (-221 to -75) was found to be constitutively hypersensitive to restriction enzyme cleavage in the absence of hormone. This region is normally encompassed within the second nucleosome of a phased array of six nucleosomes that is assembled when the MMTV LTR is stably maintained in mouse cells. Characteristically, in these rodent cells, the identical DNA sequences show increased restriction enzyme cleavage only in the presence of glucocorticoid. The increased access of restriction enzymes observed in the human PR+ cells was not observed in adjacent nucleosomes and was unaffected by treatment with the progesterone antagonist RU486. In addition, exonuclease III-dependent stops corresponding to the binding sites for nuclear factor 1 and the PR were observed before and after hormone treatment. These results indicate that MMTV chromatin replicated in these cells is organized into a constitutively open architecture and that this open chromatin state is accompanied by hormone-independent loading of a transcription factor complex that is normally excluded from uninduced chromatin.

  13. Enzyme Mini-Test for Field Identification of Leishmania Isolates from U.S. Military Personnel.

    DTIC Science & Technology

    1985-08-15

    8217.*". .. , 00 ENZYME MINI-TEST FOR FIELD IDENTIFICATION OF ’ r LEISHMANIA ISOLATES FROM U.S. MILITARY la ...No 0704-0188% __REPORTDOCUMENTATION__PAGEExp Date Jun30, 1986 la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS Unclassified 2a SECURITY...Soc. Trop. Med. ’* Mcreevy, P. B., P. D. Kreutzer, E. D. Frank-, H. A. Stim- son , C. N. Oster and L. D. H-ndricks. 1983. Taxonomy, clinical pathology

  14. Genetic diversity and differentiation in Prunus species (Rosaceae) using chloroplast and mitochondrial DNA CAPS markers.

    PubMed

    Ben Mustapha, S; Ben Tamarzizt, H; Baraket, G; Abdallah, D; Salhi Hannachi, A

    2015-04-27

    Chloroplast (cpDNA) and mitochondrial DNA (mtDNA) were analyzed to establish genetic relationships among Tunisian plum cultivars using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) technique. Two mtDNA regions (nad 1 b/c and nad 4 1/2) and a cpDNA region (trnL-trnF) were amplified and digested using restriction enzymes. Seventy and six polymorphic sites were revealed in cpDNA and mtDNA, respectively. As a consequence, cpDNA appears to be more polymorphic than mtDNA. The unweighted pair group method with arithmetic mean (UPGMA) dendrogram showed that accessions were distributed independently of their geographical origin, and introduced and local cultivars appear to be closely related. Both UPGMA and principal component analysis grouped Tunisian plum accessions into similar clusters. The analysis of the pooled sequences allowed the detection of 17 chlorotypes and 12 mitotypes. The unique haplotypes detected for cultivars are valuable for management and preservation of the plum local resources. From this study, PCR-RFLP analysis appears to be a useful approach to detect and identify cytoplasmic variation in plum trees. Our results also provide useful information for the management of genetic resources and to establish a program to improve the genetic resources available for plums.

  15. Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.

    PubMed

    von Schnakenburg, C; Rumsby, G

    1997-06-01

    Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1.

  16. Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.

    PubMed Central

    von Schnakenburg, C; Rumsby, G

    1997-01-01

    Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1. Images PMID:9192270

  17. Genetic Variation within a Lotic Population of Janthinobacterium lividum

    PubMed Central

    Saeger, Jennifer L.; Hale, Alan B.

    1993-01-01

    An understanding of the genetic variation within and between populations should allow scientists to address many problems, including those associated with endangered species and the release of genetically modified organisms into the environment. With respect to microorganisms, the release of genetically engineered microorganisms is likely to increase dramatically given the current growth in the bioremediation industry. In this study, genetic variation within a lotic, bacterial population of Janthinobacterium lividum was measured with restriction fragment length polymorphism analysis. Chromosomal DNA from 10 Kettle Creek (Hawk Mountain Sanctuary, Kempton, Pa.) J. lividum isolates was digested with six restriction endonucleases and probed with a 7.5-kb pKK3535 fragment containing the E. coli rrnB rRNA operon. Genetic variation, as measured in terms of nucleotide diversity, was high within the population. The 0.0781 value for genetic variation was especially high given the conservative nature of the genetic probe. The average percent similarity among isolates within the population was 67.25%. Pairwise comparisons of nucleotide diversity values (π) and similarity coefficients (F) yielded values ranging from 0.0032 to 0.1816 and 0.3363 to 0.9808, respectively. Putative clonemates were not present within the group of isolates; however, all isolates shared 14 fragments across a spectrum of six restriction enzymes. The presence of these common fragments indicates that restriction fragment length polymorphism analysis may provide population- or species-specific diagnostic markers for J. lividum. Data that suggest a plume effect with respect to the downstream movement of J. lividum are also presented. An increase in genetic variation within groups of isolates along the longitudinal gradient of Kettle Creek is also suggested. PMID:16348995

  18. Genetic Variation within a Lotic Population of Janthinobacterium lividum.

    PubMed

    Saeger, J L; Hale, A B

    1993-07-01

    An understanding of the genetic variation within and between populations should allow scientists to address many problems, including those associated with endangered species and the release of genetically modified organisms into the environment. With respect to microorganisms, the release of genetically engineered microorganisms is likely to increase dramatically given the current growth in the bioremediation industry. In this study, genetic variation within a lotic, bacterial population of Janthinobacterium lividum was measured with restriction fragment length polymorphism analysis. Chromosomal DNA from 10 Kettle Creek (Hawk Mountain Sanctuary, Kempton, Pa.) J. lividum isolates was digested with six restriction endonucleases and probed with a 7.5-kb pKK3535 fragment containing the E. coli rrnB rRNA operon. Genetic variation, as measured in terms of nucleotide diversity, was high within the population. The 0.0781 value for genetic variation was especially high given the conservative nature of the genetic probe. The average percent similarity among isolates within the population was 67.25%. Pairwise comparisons of nucleotide diversity values (pi) and similarity coefficients (F) yielded values ranging from 0.0032 to 0.1816 and 0.3363 to 0.9808, respectively. Putative clonemates were not present within the group of isolates; however, all isolates shared 14 fragments across a spectrum of six restriction enzymes. The presence of these common fragments indicates that restriction fragment length polymorphism analysis may provide population- or species-specific diagnostic markers for J. lividum. Data that suggest a plume effect with respect to the downstream movement of J. lividum are also presented. An increase in genetic variation within groups of isolates along the longitudinal gradient of Kettle Creek is also suggested.

  19. Genetic and Biochemical Diversity among Isolates of Paenibacillus alvei Cultured from Australian Honeybee (Apis mellifera) Colonies

    PubMed Central

    Djordjevic, Steven P.; Forbes, Wendy A.; Smith, Lisa A.; Hornitzky, Michael A.

    2000-01-01

    Twenty-five unique CfoI-generated whole-cell DNA profiles were identified in a study of 30 Paenibacillus alvei isolates cultured from honey and diseased larvae collected from honeybee (Apis mellifera) colonies in geographically diverse areas in Australia. The fingerprint patterns were highly variable and readily discernible from one another, which highlighted the potential of this method for tracing the movement of isolates in epidemiological studies. 16S rRNA gene fragments (length, 1,416 bp) for all 30 isolates were enzymatically amplified by PCR and subjected to restriction analysis with DraI, HinfI, CfoI, AluI, FokI, and RsaI. With each enzyme the restriction profiles of the 16S rRNA genes from all 30 isolates were identical (one restriction fragment length polymorphism [RFLP] was observed in the HinfI profile of the 16S rRNA gene from isolate 17), which confirmed that the isolates belonged to the same species. The restriction profiles generated by using DraI, FokI, and HinfI differentiated P. alvei from the phylogenetically closely related species Paenibacillus macerans and Paenibacillus macquariensis. Alveolysin gene fragments (length, 1,555 bp) were enzymatically amplified from some of the P. alvei isolates (19 of 30 isolates), and RFLP were detected by using the enzymes CfoI, Sau3AI, and RsaI. Extrachromosomal DNA ranging in size from 1 to 10 kb was detected in 17 of 30 (57%) P. alvei whole-cell DNA profiles. Extensive biochemical heterogeneity was observed among the 28 P. alvei isolates examined with the API 50CHB system. All of these isolates were catalase, oxidase, and Voges-Proskauer positive and nitrate negative, and all produced acid when glycerol, esculin, and maltose were added. The isolates produced variable results for 16 of the 49 biochemical tests; negative reactions were recorded in the remaining 30 assays. The genetic and biochemical heterogeneity in P. alvei isolates may be a reflection of adaptation to the special habitats in which they originated. PMID:10698777

  20. Genetic and biochemical diversity among isolates of Paenibacillus alvei cultured from Australian honeybee (Apis mellifera) colonies.

    PubMed

    Djordjevic, S P; Forbes, W A; Smith, L A; Hornitzky, M A

    2000-03-01

    Twenty-five unique CfoI-generated whole-cell DNA profiles were identified in a study of 30 Paenibacillus alvei isolates cultured from honey and diseased larvae collected from honeybee (Apis mellifera) colonies in geographically diverse areas in Australia. The fingerprint patterns were highly variable and readily discernible from one another, which highlighted the potential of this method for tracing the movement of isolates in epidemiological studies. 16S rRNA gene fragments (length, 1,416 bp) for all 30 isolates were enzymatically amplified by PCR and subjected to restriction analysis with DraI, HinfI, CfoI, AluI, FokI, and RsaI. With each enzyme the restriction profiles of the 16S rRNA genes from all 30 isolates were identical (one restriction fragment length polymorphism [RFLP] was observed in the HinfI profile of the 16S rRNA gene from isolate 17), which confirmed that the isolates belonged to the same species. The restriction profiles generated by using DraI, FokI, and HinfI differentiated P. alvei from the phylogenetically closely related species Paenibacillus macerans and Paenibacillus macquariensis. Alveolysin gene fragments (length, 1, 555 bp) were enzymatically amplified from some of the P. alvei isolates (19 of 30 isolates), and RFLP were detected by using the enzymes CfoI, Sau3AI, and RsaI. Extrachromosomal DNA ranging in size from 1 to 10 kb was detected in 17 of 30 (57%) P. alvei whole-cell DNA profiles. Extensive biochemical heterogeneity was observed among the 28 P. alvei isolates examined with the API 50CHB system. All of these isolates were catalase, oxidase, and Voges-Proskauer positive and nitrate negative, and all produced acid when glycerol, esculin, and maltose were added. The isolates produced variable results for 16 of the 49 biochemical tests; negative reactions were recorded in the remaining 30 assays. The genetic and biochemical heterogeneity in P. alvei isolates may be a reflection of adaptation to the special habitats in which they originated.

  1. LD2SNPing: linkage disequilibrium plotter and RFLP enzyme mining for tag SNPs

    PubMed Central

    Chang, Hsueh-Wei; Chuang, Li-Yeh; Chang, Yan-Jhu; Cheng, Yu-Huei; Hung, Yu-Chen; Chen, Hsiang-Chi; Yang, Cheng-Hong

    2009-01-01

    Background Linkage disequilibrium (LD) mapping is commonly used to evaluate markers for genome-wide association studies. Most types of LD software focus strictly on LD analysis and visualization, but lack supporting services for genotyping. Results We developed a freeware called LD2SNPing, which provides a complete package of mining tools for genotyping and LD analysis environments. The software provides SNP ID- and gene-centric online retrievals for SNP information and tag SNP selection from dbSNP/NCBI and HapMap, respectively. Restriction fragment length polymorphism (RFLP) enzyme information for SNP genotype is available to all SNP IDs and tag SNPs. Single and multiple SNP inputs are possible in order to perform LD analysis by online retrieval from HapMap and NCBI. An LD statistics section provides D, D', r2, δQ, ρ, and the P values of the Hardy-Weinberg Equilibrium for each SNP marker, and Chi-square and likelihood-ratio tests for the pair-wise association of two SNPs in LD calculation. Finally, 2D and 3D plots, as well as plain-text output of the results, can be selected. Conclusion LD2SNPing thus provides a novel visualization environment for multiple SNP input, which facilitates SNP association studies. The software, user manual, and tutorial are freely available at . PMID:19500380

  2. Mitochondrial-DNA variation among subspecies and populations of sea otters (Enhydra lutris)

    USGS Publications Warehouse

    Cronin, Matthew A.; Bodkin, James L.; Ballachey, Brenda E.; Estes, James A.; Patton, John C.

    1996-01-01

    We used restriction-enzyme analysis of polymerase-chain reaction-amplified, mitochondrial DNA (mtDNA) to assess genetic differentiation of subspecies and populations of sea otters, Enhydra lutris, throughout the range of the species. There were several haplotypes of mtDNA in each subspecies and geographically separate populations. MtDNA sequence divergence of haplotypes of sea otters was 0.0004–0.0041 base substitutions per nucleotide. E. L nereis appears to have monophyletic mitochondrial DNA, while E. I. lutris and E. I. kenyoni do not. Different frequencies of haplotypes of mtDNA among populations reflect current restriction of gene flow and the unique histories of different populations. There are two or three haplotypes of mtDNA and diversity of haplotypes is 0.1376–0.5854 in each population of otters. This is consistent with theoretical work, which suggests that population bottlenecks of sea otters probably did not result in major losses of genetic variation for individual populations, or the species as a whole.

  3. Screening of cytoplasmic DNA diversity between and within Lupinus mutabilis Sweet and Lupinus albus sensu lato by restriction fragment length polymorphism (RFLP).

    PubMed

    Olczak, T; Rurek, M; Jańska, H; Augustyniak, H; Sawicka-Sienkiewicz, E J

    2001-01-01

    Seven populations and five mutant lines of the Andean lupin and four species from the section Albus were screened for their mitochondrial and chloroplast polymorphisms. For this purpose the RFLP method with EcoRI as a restriction enzyme was used. Lupinus luteus, Lupinus albus and Phaseolus vulgaris organellar clones as well as amplified fragments were used as probes. We found that mitochondrial probes were more suitable than chloroplast probes for identification of inter- and intra-specific variations within the examined material. Most mitochondrial probes differentiate the two species investigated. A high level of mitochondrial polymorphism was observed among the populations of L. mutabilis in contrast to monomorphism among the species in the section Albus. A limited polymorphism was detected between the mutant lines of L. mutabilis. We conclude from this study that the mitochondrial RFLP analysis is a valuable tool for identification of variability among Andean lupin populations.

  4. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction

    PubMed Central

    Hallows, William C.; Yu, Wei; Smith, Brian C.; Devries, Mark K.; Ellinger, James J.; Someya, Shinichi; Shortreed, Michael R.; Prolla, Tomas; Markley, John L.; Smith, Lloyd M.; Zhao, Shimin; Guan, Kun-Liang; Denu, John M.

    2011-01-01

    Summary Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3−/−) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3−/− mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino-acid catabolism and β-oxidation. PMID:21255725

  5. Differentiation of mycoplasmalike organisms (MLOs) in European fruit trees by PCR using specific primers derived from the sequence of a chromosomal fragment of the apple proliferation MLO.

    PubMed Central

    Jarausch, W; Saillard, C; Dosba, F; Bové, J M

    1994-01-01

    A 1.8-kb chromosomal DNA fragment of the mycoplasmalike organism (MLO) associated with apple proliferation was sequenced. Three putative open reading frames were observed on this fragment. The protein encoded by open reading frame 2 shows significant homologies with bacterial nitroreductases. From the nucleotide sequence four primer pairs for PCR were chosen to specifically amplify DNA from MLOs associated with European diseases of fruit trees. Primer pairs specific for (i) Malus-affecting MLOs, (ii) Malus- and Prunus-affecting MLOs, and (iii) Malus-, Prunus-, and Pyrus-affecting MLOs were obtained. Restriction enzyme analysis of the amplification products revealed restriction fragment length polymorphisms between Malus-, Prunus, and Pyrus-affecting MLOs as well as between different isolates of the apple proliferation MLO. No amplification with either primer pair could be obtained with DNA from 12 different MLOs experimentally maintained in periwinkle. Images PMID:7916180

  6. Norrie disease: linkage analysis using a 4.2-kb RFLP detected by a human ornithine aminotransferase cDNA probe.

    PubMed

    Ngo, J T; Bateman, J B; Cortessis, V; Sparkes, R S; Mohandas, T; Inana, G; Spence, M A

    1989-05-01

    Previous study has shown that the usual DNA marker for Norrie disease, the L1.28 probe which identifies the DXS7 locus, can recombine with the disease locus. In this study, we used a human ornithine aminotransferase (OAT) cDNA which detects OAT-related DNA sequences mapped to the same region on the X chromosome as that of the L1.28 probe to investigate the family with Norrie disease who exhibited the recombinational event. When genomic DNA from this family was digested with the PvuII restriction endonuclease, we found a restriction fragment length polymorphism (RFLP) of 4.2 kb in size. This fragment was absent in the affected males and cosegregated with the disease locus; we calculated a lod score of 0.602, at theta = 0.00. No deletion could be detected by chromosomal analysis or on Southern blots with other enzymes. These results suggest that one of the OAT-related sequences on the X chromosome may be in close proximity to the Norrie disease locus and represent the first report which indicates that the OAT cDNA may be useful for the identification of carrier status and/or prenatal diagnosis.

  7. PCR-Restriction Fragment Length Polymorphism Analysis of the Phospholipase B (PLB1) Gene for Subtyping of Cryptococcus neoformans Isolates

    PubMed Central

    Latouche, G. Nicolas; Huynh, Matthew; Sorrell, Tania C.; Meyer, Wieland

    2003-01-01

    Cryptococcus neoformans is a pathogenic yeast that is currently divided into three varieties, five serotypes, and eight molecular types. The following report describes the use of PCR-restriction fragment length polymorphism (RFLP) analysis of the phospholipase B gene (PLB1) as a simple tool to differentiate between C. neoformans subgroups. A PLB1 fragment, 1,970 bp, was amplified and digested with either AvaI or HindIII. Both sets of profiles grouped the isolates into their respective varieties, but only the AvaI profiles allowed for the identification of the eight molecular types via the corresponding RFLP profiles A1 to A8. Digestion of the same fragments with HindIII resulted in RFLP profiles H1 to H5, which distinguished only between serotype A, AD, D, and B/C. Neither enzyme distinguished serotype B from serotype C. The serotype AD profile was a composite of the serotype A and D profiles. Further investigation showed that the serotype AD isolates used in this study are heterozygous, with one allele of PLB1 originating from a serotype A parent and the other from a serotype D parent. PMID:12676686

  8. Citrullinemia type I, classical variant. Identification of ASS-p~G390R (c.1168G>A) mutation in families of a limited geographic area of Argentina: a possible population cluster.

    PubMed

    Laróvere, Laura E; Angaroni, Celia J; Antonozzi, Sandra L; Bezard, Miriam B; Shimohama, Mariko; de Kremer, Raquel Dodelson

    2009-07-01

    Citrullinemia type I (CTLN1) is an urea cycle defect caused by mutations in the argininosuccinate synthetase gene. We report the first identification in Argentina of patients with CTLN1 in a limited geographic area. Molecular analysis in patient/relatives included PCR, sequencing and restriction enzyme assay. The studied families showed the same mutation: ASS~p.G390R, associated with the early-onset/severe phenotype. We postulate a possible population cluster. A program to know the carrier frequency in that population is in progress.

  9. Disorders of Human Hemoglobin

    NASA Astrophysics Data System (ADS)

    Bank, Arthur; Mears, J. Gregory; Ramirez, Francesco

    1980-02-01

    Studies of the human hemoglobin system have provided new insights into the regulation of expression of a group of linked human genes, the γ -δ -β globin gene complex in man. In particular, the thalassemia syndromes and related disorders of man are inherited anemias that provide mutations for the study of the regulation of globin gene expression. New methods, including restriction enzyme analysis and cloning of cellular DNA, have made it feasible to define more precisely the structure and organization of the globin genes in cellular DNA. Deletions of specific globin gene fragments have already been found in certain of these disorders and have been applied in prenatal diagnosis.

  10. Recycling of protein subunits during DNA translocation and cleavage by Type I restriction-modification enzymes

    PubMed Central

    Simons, Michelle; Szczelkun, Mark D.

    2011-01-01

    The Type I restriction-modification enzymes comprise three protein subunits; HsdS and HsdM that form a methyltransferase (MTase) and HsdR that associates with the MTase and catalyses Adenosine-5′-triphosphate (ATP)-dependent DNA translocation and cleavage. Here, we examine whether the MTase and HsdR components can ‘turnover’ in vitro, i.e. whether they can catalyse translocation and cleavage events on one DNA molecule, dissociate and then re-bind a second DNA molecule. Translocation termination by both EcoKI and EcoR124I leads to HsdR dissociation from linear DNA but not from circular DNA. Following DNA cleavage, the HsdR subunits appear unable to dissociate even though the DNA is linear, suggesting a tight interaction with the cleaved product. The MTases of EcoKI and EcoAI can dissociate from DNA following either translocation or cleavage and can initiate reactions on new DNA molecules as long as free HsdR molecules are available. In contrast, the MTase of EcoR124I does not turnover and additional cleavage of circular DNA is not observed by inclusion of RecBCD, a helicase–nuclease that degrades the linear DNA product resulting from Type I cleavage. Roles for Type I restriction endonuclease subunit dynamics in restriction alleviation in the cell are discussed. PMID:21712244

  11. An A-T linker adapter polymerase chain reaction method for chromosome walking without restriction site cloning bias.

    PubMed

    Trinh, Quoclinh; Xu, Wentao; Shi, Hui; Luo, Yunbo; Huang, Kunlun

    2012-06-01

    A-T linker adapter polymerase chain reaction (PCR) was modified and employed for the isolation of genomic fragments adjacent to a known DNA sequence. The improvements in the method focus on two points. The first is the modification of the PO(4) and NH(2) groups in the adapter to inhibit the self-ligation of the adapter or the generation of nonspecific products. The second improvement is the use of the capacity of rTaq DNA polymerase to add an adenosine overhang at the 3' ends of digested DNA to suppress self-ligation in the digested DNA and simultaneously resolve restriction site clone bias. The combination of modifications in the adapter and in the digested DNA leads to T/A-specific ligation, which enhances the flexibility of this method and makes it feasible to use many different restriction enzymes with a single adapter. This novel A-T linker adapter PCR overcomes the inherent limitations of the original ligation-mediated PCR method such as low specificity and a lack of restriction enzyme choice. Moreover, this method also offers higher amplification efficiency, greater flexibility, and easier manipulation compared with other PCR methods for chromosome walking. Experimental results from 143 Arabidopsis mutants illustrate that this method is reliable and efficient in high-throughput experiments. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Methyltransferases acquired by lactococcal 936-type phage provide protection against restriction endonuclease activity.

    PubMed

    Murphy, James; Klumpp, Jochen; Mahony, Jennifer; O'Connell-Motherway, Mary; Nauta, Arjen; van Sinderen, Douwe

    2014-10-01

    So-called 936-type phages are among the most frequently isolated phages in dairy facilities utilising Lactococcus lactis starter cultures. Despite extensive efforts to control phage proliferation and decades of research, these phages continue to negatively impact cheese production in terms of the final product quality and consequently, monetary return. Whole genome sequencing and in silico analysis of three 936-type phage genomes identified several putative (orphan) methyltransferase (MTase)-encoding genes located within the packaging and replication regions of the genome. Utilising SMRT sequencing, methylome analysis was performed on all three phages, allowing the identification of adenine modifications consistent with N-6 methyladenine sequence methylation, which in some cases could be attributed to these phage-encoded MTases. Heterologous gene expression revealed that M.Phi145I/M.Phi93I and M.Phi93DAM, encoded by genes located within the packaging module, provide protection against the restriction enzymes HphI and DpnII, respectively, representing the first functional MTases identified in members of 936-type phages. SMRT sequencing technology enabled the identification of the target motifs of MTases encoded by the genomes of three lytic 936-type phages and these MTases represent the first functional MTases identified in this species of phage. The presence of these MTase-encoding genes on 936-type phage genomes is assumed to represent an adaptive response to circumvent host encoded restriction-modification systems thereby increasing the fitness of the phages in a dynamic dairy environment.

  13. PCR Amplification of Ribosomal DNA for Species Identification in the Plant Pathogen Genus Phytophthora

    PubMed Central

    Ristaino, Jean B.; Madritch, Michael; Trout, Carol L.; Parra, Gregory

    1998-01-01

    We have developed a PCR procedure to amplify DNA for quick identification of the economically important species from each of the six taxonomic groups in the plant pathogen genus Phytophthora. This procedure involves amplification of the 5.8S ribosomal DNA gene and internal transcribed spacers (ITS) with the ITS primers ITS 5 and ITS 4. Restriction digests of the amplified DNA products were conducted with the restriction enzymes RsaI, MspI, and HaeIII. Restriction fragment patterns were similar after digestions with RsaI for the following species: P. capsici and P. citricola; P. infestans, P. cactorum, and P. mirabilis; P. fragariae, P. cinnamomi, and P. megasperma from peach; P. palmivora, P. citrophthora, P. erythroseptica, and P. cryptogea; and P. megasperma from raspberry and P. sojae. Restriction digests with MspI separated P. capsici from P. citricola and separated P. cactorum from P. infestans and P. mirabilis. Restriction digests with HaeIII separated P. citrophthora from P. cryptogea, P. cinnamomi from P. fragariae and P. megasperma on peach, P. palmivora from P. citrophthora, and P. megasperma on raspberry from P. sojae. P. infestans and P. mirabilis digests were identical and P. cryptogea and P. erythroseptica digests were identical with all restriction enzymes tested. A unique DNA sequence from the ITS region I in P. capsici was used to develop a primer called PCAP. The PCAP primer was used in PCRs with ITS 1 and amplified only isolates of P. capsici, P. citricola, and P. citrophthora and not 13 other species in the genus. Restriction digests with MspI separated P. capsici from the other two species. PCR was superior to traditional isolation methods for detection of P. capsici in infected bell pepper tissue in field samples. The techniques described will provide a powerful tool for identification of the major species in the genus Phytophthora. PMID:9501434

  14. Current molecular genetics strategies for the diagnosis of lysosomal storage disorders.

    PubMed

    Giugliani, Roberto; Brusius-Facchin, Ana-Carolina; Pasqualim, Gabriela; Leistner-Segal, Sandra; Riegel, Mariluce; Matte, Ursula

    2016-01-01

    Lysosomal storage disorders (LSDs) are a group of almost 50 monogenic diseases characterized by mutations causing deficiency of lysosomal enzymes or non-enzyme proteins involved in transport across the lysosomal membrane, protein maturation or lysosomal biogenesis. Usually, affected patients are normal at birth and have a progressive and severe disease with high morbidity and reduced life expectancy. The overall incidence of LSDs is usually estimated as 1:5000, but newborn screening studies are indicating that it could be much higher. Specific therapies were already developed for selected LSDs, making the timely and correct diagnosis very important for successful treatment and also for genetic counseling. In most LSD cases the biochemical techniques provide a reliable diagnosis. However, the identification of pathogenic mutations by genetic analysis is being increasingly recommended to provide additional information. In this paper we discuss the conventional methods for genetic analysis used in the LSDs [restriction fragment length polymorphism (RFLP), amplification-refractory mutation system (ARMS), single strand conformation polymorphism (SSCP), denaturing high performance liquid chromatography (dHPLC), real-time polymerase chain reaction, high resolution melting (HRM), multiplex ligation-dependent probe amplification (MLPA), Sanger sequencing] and also the newer approaches [massive parallel sequencing, array comparative genomic hybridization (CGH)].

  15. CHD5, a brain-specific paralog of Mi2 chromatin remodeling enzymes, regulates expression of neuronal genes.

    PubMed

    Potts, Rebecca Casaday; Zhang, Peisu; Wurster, Andrea L; Precht, Patricia; Mughal, Mohamed R; Wood, William H; Zhang, Yonqing; Becker, Kevin G; Mattson, Mark P; Pazin, Michael J

    2011-01-01

    CHD5 is frequently deleted in neuroblastoma and is a tumor suppressor gene. However, little is known about the role of CHD5 other than it is homologous to chromatin remodeling ATPases. We found CHD5 mRNA was restricted to the brain; by contrast, most remodeling ATPases were broadly expressed. CHD5 protein isolated from mouse brain was associated with HDAC2, p66ß, MTA3 and RbAp46 in a megadalton complex. CHD5 protein was detected in several rat brain regions and appeared to be enriched in neurons. CHD5 protein was predominantly nuclear in primary rat neurons and brain sections. Microarray analysis revealed genes that were upregulated and downregulated when CHD5 was depleted from primary neurons. CHD5 depletion altered expression of neuronal genes, transcription factors, and brain-specific subunits of the SWI/SNF remodeling enzyme. Expression of gene sets linked to aging and Alzheimer's disease were strongly altered by CHD5 depletion from primary neurons. Chromatin immunoprecipitation revealed CHD5 bound to these genes, suggesting the regulation was direct. Together, these results indicate that CHD5 protein is found in a NuRD-like multi-protein complex. CHD5 expression is restricted to the brain, unlike the closely related family members CHD3 and CHD4. CHD5 regulates expression of neuronal genes, cell cycle genes and remodeling genes. CHD5 is linked to regulation of genes implicated in aging and Alzheimer's disease.

  16. CHD5, a Brain-Specific Paralog of Mi2 Chromatin Remodeling Enzymes, Regulates Expression of Neuronal Genes

    PubMed Central

    Potts, Rebecca Casaday; Zhang, Peisu; Wurster, Andrea L.; Precht, Patricia; Mughal, Mohamed R.; Wood, William H.; Zhang, Yonqing; Becker, Kevin G.; Mattson, Mark P.; Pazin, Michael J.

    2011-01-01

    CHD5 is frequently deleted in neuroblastoma and is a tumor suppressor gene. However, little is known about the role of CHD5 other than it is homologous to chromatin remodeling ATPases. We found CHD5 mRNA was restricted to the brain; by contrast, most remodeling ATPases were broadly expressed. CHD5 protein isolated from mouse brain was associated with HDAC2, p66ß, MTA3 and RbAp46 in a megadalton complex. CHD5 protein was detected in several rat brain regions and appeared to be enriched in neurons. CHD5 protein was predominantly nuclear in primary rat neurons and brain sections. Microarray analysis revealed genes that were upregulated and downregulated when CHD5 was depleted from primary neurons. CHD5 depletion altered expression of neuronal genes, transcription factors, and brain-specific subunits of the SWI/SNF remodeling enzyme. Expression of gene sets linked to aging and Alzheimer's disease were strongly altered by CHD5 depletion from primary neurons. Chromatin immunoprecipitation revealed CHD5 bound to these genes, suggesting the regulation was direct. Together, these results indicate that CHD5 protein is found in a NuRD-like multi-protein complex. CHD5 expression is restricted to the brain, unlike the closely related family members CHD3 and CHD4. CHD5 regulates expression of neuronal genes, cell cycle genes and remodeling genes. CHD5 is linked to regulation of genes implicated in aging and Alzheimer's disease. PMID:21931736

  17. Poorly expressed endogenous ecotropic provirus of DBA/2 mice encodes a mutant Pr65gag protein that is not myristylated.

    PubMed Central

    Copeland, N G; Jenkins, N A; Nexø, B; Schultz, A M; Rein, A; Mikkelsen, T; Jørgensen, P

    1988-01-01

    DBA/2 mice carry a single endogenous ecotropic murine leukemia provirus designated Emv-3. Although this provirus appears to be nondefective by genomic restriction enzyme mapping, weanling mice do not produce virus and only about one-third of adult mice ever express virus. 5-Iododeoxyuridine and 5-azacytidine, two potent inducers of ecotropic virus expression, are relatively ineffective at inducing Emv-3 expression. However, the chemical carcinogen 7,12-dimethylbenz(a)anthracene can induce ecotropic virus expression in approximately 95% of treated DBA/2 mice. Previous experiments involving DNA transfection and marker rescue analysis of molecularly cloned Emv-3 DNA suggested that Emv-3 carries a small defect(s) in the gag gene, not detectable by restriction enzyme mapping, that inhibits virus expression in vivo and in vitro. Using a combination of approaches, including DNA sequencing, peptide mapping, and metabolic labeling of cells with [3H]myristate, we have demonstrated that the defect in Emv-3 most likely results from a single nucleotide substitution within the gene for p15gag that inhibits myristylation of the Pr65gag N terminus. Myristylation of Pr65gag is thought to be required for this protein to associate with the plasma membrane and is essential for virus particle formation. These results provide a conceptual framework for understanding how Emv-3 expression is regulated during development and after chemical induction. Images PMID:2826810

  18. A Systems Biology Framework for Modeling Metabolic Enzyme Inhibition of Mycobacterium Tuberculosis

    DTIC Science & Technology

    2009-09-15

    Quadri LE: Assembly of aryl-capped siderophores by modular peptide synthetases and polyketide synthases . Mol Microbiol 2000, 37:1-12. 51. Chou CJ...opportunities for therapeutic intervention. Results: We developed a mathematical framework to simulate the effects on the growth of a pathogen when enzymes in... on the growth of M. tuberculosis in a medium whose carbon source was restricted to fatty acids, and that of the 5’-O-(N-salicylsulfamoyl) adenosine

  19. Porcine MYF6 gene: sequence, homology analysis, and variation in the promoter region.

    PubMed

    Wyszyńska-Koko, J; Kurył, J

    2004-01-01

    MYF6 gene codes for the bHLH transcription factor belonging to MyoD family. Its expression accompanies the processes of differentiation and maturation of myotubes during embriogenesis and continues on a relatively high level after birth, affecting the muscle phenotype. The porcine MYF6 gene was amplified and sequenced and compared with MYF6 gene sequences of other species. The amino acid sequence was deduced and an interspecies homology analysis was performed. Myf-6 protein shows a high conservation among species of 99 and 97% identity when comparing pig with cow and human, respectively, and of 93% when comparing pig with mouse and rat. The single nucleotide polymorphism (SNP) was revealed within the promoter region, which appeared to be T --> C transition recognized by a MspI restriction enzyme.

  20. Comparison of camelpox viruses isolated in Dubai.

    PubMed

    Pfeffer, M; Meyer, H; Wernery, U; Kaaden, O R

    1996-03-01

    Between October 1993 and March 1994, outbreaks of pox-like exanthemas were observed in several camel raising farms in Dubai. Scabs from twenty camels with either local or generalized lesions were examined, seven of them had previously been vaccinated with a modified live camelpox virus vaccine. Inspection of scabs by electron microscopy confirmed an infection with orthopox viruses (OPV) in 10 animals and with parapox virus in one camel. Investigation of the scabs by polymerase chain reaction and dot blot assay revealed the presence of OPV in 15 or 13 samples, respectively. OPV could be isolated in cell culture in 14 cases. Restriction enzyme profiles characterized all isolates as camelpox virus. Their DNA patterns were virtually identical displaying only slight variations in the terminal fragments. In contrast, the vaccine strain showed a distinct restriction enzyme profile, indicating that it was not involved in the infections.

  1. Determination of ABO genotypes with DNA extracted from formalin-fixed, paraffin-embedded tissues.

    PubMed

    Yamada, M; Yamamoto, Y; Tanegashima, A; Kane, M; Ikehara, Y; Fukunaga, T; Nishi, K

    1994-01-01

    The gene encoding the specific glycosyltransferases which catalyze the conversion of the H antigen to A or B antigens shows a slight but distinct variation in its allelic nucleotide sequence and can be divided into 6 genotypes when digested with specific restriction enzymes. We extracted DNA from formalin-fixed, paraffin-embedded tissues using SDS/proteinase K treatment followed by phenol/chloroform extraction. The sequence of nucleotides for the A, B and O genes was amplified by the polymerase chain reaction (PCR). DNA fragments of 128 bp and 200 bp could be amplified in the second round of PCR, using an aliquot of the first round PCR product as template. Degraded DNA from paraffin blocks stored for up to 10.7 years could be successfully typed. The ABO genotype was deduced from the digestion patterns with an appropriate combination of restriction enzymes and was compatible with the phenotype obtained from the blood sample.

  2. Genotype identification of human cystic echinococcosis in Isfahan, central Iran.

    PubMed

    Kia, Eshrat Bigom; Rahimi, Hamidreza; Sharbatkhori, Mitra; Talebi, Ardeshir; Fasihi Harandi, Majid; Mirhendi, Hossein

    2010-08-01

    Echinococcosis/hydatidosis is one of the most important zoonotic diseases commonly found in different regions of Iran with a major economic and public health importance. In the current study, Echinococcus granulosus isolates were collected from hospitalized patients in Isfahan, central Iran. The genotypes of 30 samples were determined by polymerase chain reaction amplification of internal transcribed spacer-1 region of ribosomal DNA, followed by restriction fragment length polymorphism (RFLP) with two restriction enzymes namely AluI and MspI. As expected, each isolate yielded an approximately 1-kbp DNA fragment on the electrophoresis gel. According to RFLP results for both enzymes, all isolates had an equal pattern indicating the G1 genotype. Our findings confirmed that G1 is the dominant genotype of cystic echinococcosis in human in central Iran, with predilection to different organs including liver, lung, and brain, and warrants the importance of sheep dog cycle in public health.

  3. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1991-07-02

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. The probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations. No Drawings

  4. An efficient and rapid influenza gene cloning strategy for reverse genetics system.

    PubMed

    Shao, Hongxia; Fan, Zhonglei; Wan, Zhimin; Tian, Xiaoyan; Chen, Hongjun; Perez, Daniel R; Qin, Aijian; Ye, Jianqiang

    2015-09-15

    Influenza reverse genetics plays vital roles in understanding influenza molecular characteristics and vaccine development. However, current influenza reverse genetics heavily depends on restriction enzyme and ligation for gene cloning. The traditional cloning process of influenza eight fragments for virus rescuing generally requires considerable work. To simplify and increase the pace of gene cloning for influenza reverse genetics system, we developed a rapid restriction enzyme-free ExnaseTM II-based in vitro recombination approach for influenza gene cloning. We used this strategy rapidly and successfully to clone influenza eight genes both from viruses PR8 and H9N2 for virus rescuing. Our data demonstrate that the strategy developed here can accelerate the process of influenza gene cloning into reverse genetics system, and shows high potential for applications in both influenza basic and applied research. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Abscinazole-F1, a conformationally restricted analogue of the plant growth retardant uniconazole and an inhibitor of ABA 8'-hydroxylase CYP707A with no growth-retardant effect.

    PubMed

    Todoroki, Yasushi; Kobayashi, Kyotaro; Shirakura, Minaho; Aoyama, Hikaru; Takatori, Kokichi; Nimitkeatkai, Hataitip; Jin, Mei-Hong; Hiramatsu, Saori; Ueno, Kotomi; Kondo, Satoru; Mizutani, Masaharu; Hirai, Nobuhiro

    2009-09-15

    To develop a specific inhibitor of abscisic acid (ABA) 8'-hydroxylase, a key enzyme in the catabolism of ABA, a plant hormone involved in stress tolerance, seed dormancy, and other various physiological events, we designed and synthesized conformationally restricted analogues of uniconazole (UNI), a well-known plant growth retardant, which inhibits a biosynthetic enzyme (ent-kaurene oxidase) of gibberellin as well as ABA 8'-hydroxylase. Although most of these analogues were less effective than UNI in inhibition of ABA 8'-hydroxylase and rice seedling growth, we found that a lactol-bridged analogue with an imidazole is a potent inhibitor of ABA 8'-hydroxylase but not of plant growth. This compound, abscinazole-F1, induced drought tolerance in apple seedlings upon spray treatment with a 10 microM solution.

  6. Single Day Construction of Multigene Circuits with 3G Assembly.

    PubMed

    Halleran, Andrew D; Swaminathan, Anandh; Murray, Richard M

    2018-05-18

    The ability to rapidly design, build, and test prototypes is of key importance to every engineering discipline. DNA assembly often serves as a rate limiting step of the prototyping cycle for synthetic biology. Recently developed DNA assembly methods such as isothermal assembly and type IIS restriction enzyme systems take different approaches to accelerate DNA construction. We introduce a hybrid method, Golden Gate-Gibson (3G), that takes advantage of modular part libraries introduced by type IIS restriction enzyme systems and isothermal assembly's ability to build large DNA constructs in single pot reactions. Our method is highly efficient and rapid, facilitating construction of entire multigene circuits in a single day. Additionally, 3G allows generation of variant libraries enabling efficient screening of different possible circuit constructions. We characterize the efficiency and accuracy of 3G assembly for various construct sizes, and demonstrate 3G by characterizing variants of an inducible cell-lysis circuit.

  7. DNA in a Tunnel: A Comfy Spot for Recognition - or -The Structure of BsoBI Complexed with DNA. What can we Learn about Function via Structure Determination and how can this be Applied to Bone or Muscle Biology?

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark

    2004-01-01

    The structure and function of a biologically active molecule are related. To understand its function, it is necessary (but not always sufficient) to know the structure of the molecule. There are many ways of relating the molecular function with the structure. Mutation analysis can identify pertinent amino acids of an enzyme, or alternatively structure comparison of the of two similar molecules with different function may lead to understanding which parts are responsible for a functional aspect, or a series of "structural cartoons" - enzyme structure, enzyme plus substrate, enzyme with transition state analog, and enzyme with product - may give insight in the function of a molecule. As an example we will discuss the structure and function of the restriction enzyme BsoBI from Bacillus stearothemzophilus in complex with its cognate DNA. The enzyme forms a unique complex with DNA in that it completely encircles the DNA. The structure reveals the enzyme-DNA contacts, how the DNA is distorted compared with the canonical forms, and elegantly shows how two distinct DNA sequences can be recognized with the same efficiency. Based on the structure we may also propose a hypothesis how the enzymatic mechanism works. The knowledge gained thru studies such as this one can be used to alter the function by changing the molecular structure. Usually this is done by design of inhibitors specifically active against and fitting into an active site of the enzyme of choice. In the case of BsoBI one of the objectives of the study was to alter the enzyme specificity. In bone biology there are many candidates available for molecular study in order to explain, alter, or (temporarily) suspend activity. For example, the understanding of a pathway that negatively regulates bone formation may be a good target for drug design to stimulate bone formation and have good potential as the basis for new countermeasures against bone loss. In principle the same approach may aid muscle atrophy, radiation damage, immune response changes and other risks identified for long-duration Space travel.

  8. Structural and dynamical insight into thermally induced functional inactivation of firefly luciferase

    PubMed Central

    Jazayeri, Fatemeh S.; Hosseinkhani, Saman

    2017-01-01

    Luciferase is the key component of light production in bioluminescence process. Extensive and advantageous application of this enzyme in biotechnology is restricted due to its low thermal stability. Here we report the effect of heating up above Tm on the structure and dynamical properties of luciferase enzyme compared to temperature at 298 K. In this way we demonstrate that the number of hydrogen bonds between N- and C-domain is increased for the free enzyme at 325 K. Increased inter domain hydrogen bonds by three at 325 K suggests that inter domain contact is strengthened. The appearance of simultaneous strong salt bridge and hydrogen bond between K529 and D422 and increased existence probability between R533 and E389 could mechanistically explain stronger contact between N- and C-domain. Mutagenesis studies demonstrated the importance of K529 and D422 experimentally. Also the significant reduction in SASA for experimentally important residues K529, D422 and T343 which are involved in active site region was observed. Principle component analysis (PCA) in our study shows that the dynamical behavior of the enzyme is changed upon heating up which mainly originated from the change of motion modes and associated extent of those motions with respect to 298 K. These findings could explain why heating up of the enzyme or thermal fluctuation of protein conformation reduces luciferase activity in course of time as a possible mechanism of thermal functional inactivation. According to these results we proposed two strategies to improve thermal stability of functional luciferase. PMID:28672033

  9. Functional characterization and expression of a cytosolic iron-superoxide dismutase from cowpea root nodules.

    PubMed

    Moran, Jose F; James, Euan K; Rubio, Maria C; Sarath, Gautam; Klucas, Robert V; Becana, Manuel

    2003-10-01

    An iron-superoxide dismutase (FeSOD) with an unusual subcellular localization, VuFeSOD, has been purified from cowpea (Vigna unguiculata) nodules and leaves. The enzyme has two identical subunits of 27 kD that are not covalently bound. Comparison of its N-terminal sequence (NVAGINLL) with the cDNA-derived amino acid sequence showed that VuFeSOD is synthesized as a precursor with seven additional amino acids. The mature protein was overexpressed in Escherichia coli, and the recombinant enzyme was used to generate a polyclonal monospecific antibody. Phylogenetic and immunological data demonstrate that there are at least two types of FeSODs in plants. An enzyme homologous to VuFeSOD is present in soybean (Glycine max) and common bean (Phaseolus vulgaris) nodules but not in alfalfa (Medicago sativa) and pea (Pisum sativum) nodules. The latter two species also contain FeSODs in the leaves and nodules, but the enzymes are presumably localized to the chloroplasts and plastids. In contrast, immunoblots of the soluble nodule fraction and immunoelectron microscopy of cryo-processed nodule sections demonstrate that VuFeSOD is localized to the cytosol. Immunoblot analysis showed that the content of VuFeSOD protein increases in senescent nodules with active leghemoglobin degradation, suggesting a direct or indirect (free radical-mediated) role of the released Fe in enzyme induction. Therefore, contrary to the widely held view, FeSODs in plants are not restricted to the chloroplasts and may become an important defensive mechanism against the oxidative stress associated with senescence.

  10. The use of enzymopathic human red cells in the study of malarial parasite glucose metabolism.

    PubMed

    Roth, E; Joulin, V; Miwa, S; Yoshida, A; Akatsuka, J; Cohen-Solal, M; Rosa, R

    1988-05-01

    The in vitro growth of Plasmodium falciparum malaria parasites was assayed in mutant red cells deficient in either diphosphoglycerate mutase (DPGM) or phosphoglycerate kinase (PGK). In addition, cDNA probes developed for human DNA sequences coding for these enzymes were used to examine the parasite genome by means of restriction endonuclease digestion and Southern blot analysis of parasite DNA. In both types of enzymopathic red cells, parasite growth was normal. In infected DPGM deficient red cells, no DPGM activity could be detected, and in normal red cells, DPGM activity declined slightly in a manner suggestive of parasite catabolism of host protein. However, in infected PGK deficient red cells, there was a 100-fold increase in PGK activity, and in normal red cells, a threefold increase in PGK activity was observed. Parasite PGK could be recovered from isolated parasites, and a marked increase in heat instability of parasite PGK as compared with the host cell enzyme was noted. Neither cDNA probe was found to cross-react with DNA sequences in the parasite genome. It is concluded that the parasite has no requirement for DPGM, and probably has no gene for this enzyme. On the other hand, the parasite does require PGK, (an adenosine triphosphate [ATP] generating enzyme) and synthesizes its own enzyme, which must have been encoded in the parasite genome. The parasite PGK gene most likely lacks sufficient homology to be detected by a human cDNA probe. Enzymopathic red cells are useful tools for elucidating the glycolytic enzymology of parasites and their co-evolution with their human hosts.

  11. A universal small molecule, inorganic phosphate, restricts the substrate specificity of Dicer-2 in small RNA biogenesis

    PubMed Central

    Fukunaga, Ryuya; Zamore, Phillip D

    2014-01-01

    The enzyme Dicer is central to the production of small silencing RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs). Like other insects, Drosophila melanogaster uses different Dicers to make siRNAs and miRNAs: Dicer-1 produces miRNAs from pre-miRNAs, whereas Dicer-2 generates siRNAs from long double-stranded RNA (dsRNA). How do the 2 Dicers achieve their substrate specificity? Here, we review recent findings that inorganic phosphate restricts the substrate specificity of Dicer-2 to long dsRNA. Inorganic phosphate inhibits Dicer-2 from binding and cleaving pre-miRNAs, without affecting the processing of long dsRNA. Crystal structures of a fragment of human Dicer in complex with an RNA duplex identify a phosphate-binding pocket that recognizes both the 5′-monophosphate of a substrate RNA and inorganic phosphate. We propose that inorganic phosphate occupies the phosphate-binding pocket in the fly Dicer-2, blocking binding of pre-miRNA and restricting pre-miRNA processing to Dicer-1. Thus, a small molecule can alter the substrate specificity of a nucleic acid-processing enzyme. PMID:24787225

  12. The Epigenomic Landscape of Prokaryotes

    DOE PAGES

    Blow, Matthew J.; Clark, Tyson A.; Daum, Chris G.; ...

    2016-02-12

    DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities ofmore » 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.« less

  13. The Epigenomic Landscape of Prokaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blow, Matthew J.; Clark, Tyson A.; Daum, Chris G.

    DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities ofmore » 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.« less

  14. Enzymatic correlates of energy status in wild yellow perch inhabiting clean and contaminated environments.

    PubMed

    Gauthier, Charles; Campbell, Peter G C; Couture, Patrice

    2011-09-01

    Enzymes representing a variety of metabolic pathways were examined in yellow perch (Perca flavescens) collected from a metal-contaminated region (Rouyn-Noranda, Québec, Canada) to determine which were most closely related to fish condition factor, pyloric caeca weight, and visceral lipid accumulation, as well to seek a better understanding of the influence of metal contamination on the physiology and biometrics of perch. Compared to laboratory fish, wild perch were under important energy restrictions. The condition factor of wild fish was correlated with indicators of aerobic metabolism (citrate synthase, cytochrome C oxidase), protein anabolism (nucleoside diphosphokinase), and indicators of lipid accumulation (glucose-6-phosphate dehydrogenase, visceral lipid index). Pyloric caeca weights were well correlated with indicators of protein anabolism, but only when both seasons were examined together, possibly indicating a lag in the response of enzymes to changes in diet. The addition of contaminant stress to existing energy restrictions led to changes in the relationships between enzymes and biometrics, reducing the predictive power of the models for perch in contaminated lakes. The present study broadens our knowledge of the impact of metal contamination on energy accumulation and tissue metabolic capacities in wild perch. Copyright © 2011 SETAC.

  15. Long-Term Effects of Prenatal Exposure to Undernutrition on Cannabinoid Receptor-Related Behaviors: Sex and Tissue-Specific Alterations in the mRNA Expression of Cannabinoid Receptors and Lipid Metabolic Regulators.

    PubMed

    Ramírez-López, María T; Arco, Rocío; Decara, Juan; Vázquez, Mariam; Rivera, Patricia; Blanco, Rosario Noemi; Alén, Francisco; Gómez de Heras, Raquel; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2016-01-01

    Maternal malnutrition causes long-lasting alterations in feeding behavior and energy homeostasis in offspring. It is still unknown whether both, the endocannabinoid (eCB) machinery and the lipid metabolism are implicated in long-term adaptive responses to fetal reprogramming caused by maternal undernutrition. We investigated the long-term effects of maternal exposure to a 20% standard diet restriction during preconceptional and gestational periods on the metabolically-relevant tissues hypothalamus, liver, and perirenal fat (PAT) of male and female offspring at adulthood. The adult male offspring from calorie-restricted dams (RC males) exhibited a differential response to the CB1 antagonist AM251 in a chocolate preference test as well as increased body weight, perirenal adiposity, and plasma levels of triglycerides, LDL, VLDL, bilirubin, and leptin. The gene expression of the cannabinoid receptors Cnr1 and Cnr2 was increased in RC male hypothalamus, but a down-expression of most eCBs-metabolizing enzymes ( Faah, Dagl α , Dagl β , Mgll ) and several key regulators of fatty-acid β-oxidation ( Cpt1b, Acox1 ), mitochondrial respiration ( Cox4i1 ), and lipid flux ( Ppar γ) was found in their PAT. The female offspring from calorie-restricted dams exhibited higher plasma levels of LDL and glucose as well as a reduction in chocolate and caloric intake at post-weaning periods in the feeding tests. Their liver showed a decreased gene expression of Cnr1, Ppar α, Ppar γ, the eCBs-degrading enzymes Faah and Mgll , the de novo lipogenic enzymes Acaca and Fasn , and the liver-specific cholesterol biosynthesis regulators Insig1 and Hmgcr . Our results suggest that the long-lasting adaptive responses to maternal caloric restriction affected cannabinoid-regulated mechanisms involved in feeding behavior, adipose β-oxidation, and hepatic lipid and cholesterol biosynthesis in a sex-dependent manner.

  16. Long-Term Effects of Prenatal Exposure to Undernutrition on Cannabinoid Receptor-Related Behaviors: Sex and Tissue-Specific Alterations in the mRNA Expression of Cannabinoid Receptors and Lipid Metabolic Regulators

    PubMed Central

    Ramírez-López, María T.; Arco, Rocío; Decara, Juan; Vázquez, Mariam; Rivera, Patricia; Blanco, Rosario Noemi; Alén, Francisco; Gómez de Heras, Raquel; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2016-01-01

    Maternal malnutrition causes long-lasting alterations in feeding behavior and energy homeostasis in offspring. It is still unknown whether both, the endocannabinoid (eCB) machinery and the lipid metabolism are implicated in long-term adaptive responses to fetal reprogramming caused by maternal undernutrition. We investigated the long-term effects of maternal exposure to a 20% standard diet restriction during preconceptional and gestational periods on the metabolically-relevant tissues hypothalamus, liver, and perirenal fat (PAT) of male and female offspring at adulthood. The adult male offspring from calorie-restricted dams (RC males) exhibited a differential response to the CB1 antagonist AM251 in a chocolate preference test as well as increased body weight, perirenal adiposity, and plasma levels of triglycerides, LDL, VLDL, bilirubin, and leptin. The gene expression of the cannabinoid receptors Cnr1 and Cnr2 was increased in RC male hypothalamus, but a down-expression of most eCBs-metabolizing enzymes (Faah, Daglα, Daglβ, Mgll) and several key regulators of fatty-acid β-oxidation (Cpt1b, Acox1), mitochondrial respiration (Cox4i1), and lipid flux (Pparγ) was found in their PAT. The female offspring from calorie-restricted dams exhibited higher plasma levels of LDL and glucose as well as a reduction in chocolate and caloric intake at post-weaning periods in the feeding tests. Their liver showed a decreased gene expression of Cnr1, Pparα, Pparγ, the eCBs-degrading enzymes Faah and Mgll, the de novo lipogenic enzymes Acaca and Fasn, and the liver-specific cholesterol biosynthesis regulators Insig1 and Hmgcr. Our results suggest that the long-lasting adaptive responses to maternal caloric restriction affected cannabinoid-regulated mechanisms involved in feeding behavior, adipose β-oxidation, and hepatic lipid and cholesterol biosynthesis in a sex-dependent manner. PMID:28082878

  17. Salt-dependent properties of proteins from extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1974-01-01

    Based on information concerning the interaction of salts and macromolecules the literature of the enzymes of halophilic bacteria and their constituents is examined. Although in halophilic systems the salt requirement of enzyme activity is variable the enzymes investigated show a time-dependent inactivation at lower salt concentrations especially in the absence of salt. The studies described show that in some halophilic systems the effect of salt may be restricted to a small region on the protein molecule. The concept of the hydrophobic bond to consider certain solvent-dependent phenomena is introduced. It is shown that some halophilic enzymes are unable to maintain their structure without the involvement of hydrophobic interactions that are usually not supported by water. A table lists indices of hydrophobicity and polarity for various halophilic and nonhalophilic proteins.

  18. Characterization of the Origin of DNA Replication of the Coxiella burnetii Chromosome

    DTIC Science & Technology

    1990-01-26

    chromosomal DNAs (FIG. IB): the 19.4-kb EcoR I fragment of Salmonella typhimurium DNA (lane 4),9 the 17.5-kb Sal I fragment of Enterobacter aerogenes ...IacZYA-argF) U 1694680d IacZAM15 Salmonella typhimurium Wild type WVUd Kiebsiella pneumoniae Wild type WVUd Enterobacter aero genes Wild type WVUd... aerogenes and K. pneumoniae were digested with appropriate restriction enzymes. The restriction fragments were separated on a 0.9% agarose gel, transferred to

  19. Molecular identification of house dust mites and storage mites.

    PubMed

    Wong, Shew Fung; Chong, Ai Ling; Mak, Joon Wah; Tan, Jessie; Ling, Suk Jiun; Ho, Tze Ming

    2011-10-01

    Mites are known causes of allergic diseases. Currently, identification of mites based on morphology is difficult if only one mite is isolated from a (dust) sample, or when only one gender is found, or when the specimen is not intact especially with the loss of the legs. The purpose of this study was to use polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of the ITS2 gene, to complement the morphological data for the identification of mites to the species level. For this, six species were cultured: Dermatophagoides pteronyssinus, D. farinae, Blomia tropicalis, Tyrophagus putrescentiae, Aleuroglyphus ovatus and Glycycometus malaysiensis. Genomic DNA of the mites was extracted, quantified, amplified and digested individually with restriction enzymes. Hinf I and Ple I differentiated the restriction patterns of D. pteronyssinus and D. farinae. Bfa I and Alu I enzymes differentiated B. tropicalis and G. malaysiensis. Ple I enzyme was useful for the differentiation between T. putrescentiae and A. ovatus. Bfa I was useful for the differentiation of G. malaysiensis from the rest of the species. In conclusion, different species of mites can be differentiated using PCR-RFLP of ITS2 region. With the established PCR-RFLP method in this study, identification of these mites to the species level is possible even if complete and intact adult specimens of both sexes are not available. As no study to date has reported PCR-RFLP method for the identification of domestic mites, the established method should be validated for the identification of other species of mites that were not included in this study.

  20. Linkage map of the fragments of herpesvirus papio DNA.

    PubMed Central

    Lee, Y S; Tanaka, A; Lau, R Y; Nonoyama, M; Rabin, H

    1981-01-01

    Herpesvirus papio (HVP), an Epstein-Barr-like virus, causes lymphoblastoid disease in baboons. The physical map of HVP DNA was constructed for the fragments produced by cleavage of HVP DNA with restriction endonucleases EcoRI, HindIII, SalI, and PvuI, which produced 12, 12, 10, and 4 fragments, respectively. The total molecular size of HVP DNA was calculated as close to 110 megadaltons. The following methods were used for construction of the map; (i) fragments near the ends of HVP DNA were identified by treating viral DNA with lambda exonuclease before restriction enzyme digestion; (ii) fragments containing nucleotide sequences in common with fragments from the second enzyme digest of HVP DNA were examined by Southern blot hybridization; and (iii) the location of some fragments was determined by isolating individual fragments from agarose gels and redigesting the isolated fragments with a second restriction enzyme. Terminal heterogeneity and internal repeats were found to be unique features of HVP DNA molecule. One to five repeats of 0.8 megadaltons were found at both terminal ends. Although the repeats of both ends shared a certain degree of homology, it was not determined whether they were identical repeats. The internal repeat sequence of HVP DNA was found in the EcoRI-C region, which extended from 8.4 to 23 megadaltons from the left end of the molecule. The average number of the repeats was calculated to be seven, and the molecular size was determined to be 1.8 megadaltons. Similar unique features have been reported in EBV DNA (D. Given and E. Kieff, J. Virol. 28:524-542, 1978). Images PMID:6261015

  1. Comparison of time-restricted and ad libitum self-feeding on the growth, feeding behavior and daily digestive enzyme profiles of Atlantic salmon

    NASA Astrophysics Data System (ADS)

    Shi, Ce; Liu, Ying; Yi, Mengmeng; Zheng, Jimeng; Tian, Huiqin; Du, Yishuai; Li, Xian; Sun, Guoxiang

    2017-07-01

    Although it has been hypothesized that a predictable feeding regime in animals allows physiological variables to be adjusted to maximize nutrient utilization and, hence, better growth performance, the assumption has rarely been tested. This study compares the effects of time-restricted versus free access self-feeding on the growth, feeding behavior and daily digestive enzyme rhythms of Atlantic salmon ( Salmo salar). In an experiment that lasted 6 weeks, fish (109.9 g) were divided into two groups: group 1 had free access to a self-feeder (FA); group 2 received three meals per day (2 h per meal) at dawn, midday and dusk via a time-restricted self-feeder (TR). At the end of the experiment, the fish were sampled every 3 h over a 24-h period. The results showed that the TR fish quickly synchronized their feeding behavior to the feeding window and their blood glucose showed a significant postprandial increase, while FA fish displayed no statistically significant rhythms ( P>0.05). Pepsin activity of TR fish also showed a significant daily rhythm ( P<0.05) with the acrophase at the second feed and a decrease over the next 12 h. Average daily trypsin, lipase and amylase levels of FA fish were significantly lower than those of TR fish ( P<0.01); however, the growth performance of both groups was similar ( P>0.05). In conclusion, the study failed to confirm a link between the entrainment of daily digestive enzyme profiles and growth performance, with the TR group showing comparatively poor blood glucose regulation.

  2. Microbial expression of alkaloid biosynthetic enzymes for characterization of their properties.

    PubMed

    Minami, Hiromichi; Ikezawa, Nobuhiro; Sato, Fumihiko

    2010-01-01

    A wide variety of secondary metabolites are produced in higher plants. These metabolites are synthesized in specific organs/cells at certain developmental stages and/or under specific environmental conditions. Since these biosynthetic activities are rather restricted and difficult to detect, the biochemical characterization of biosynthetic enzymes involved in secondary metabolism has been limited compared to those involved in primary metabolism. Recently, however, progress in tissue culture and molecular biology has made it easier to study biosynthetic enzymes. Here we describe protocols for expressing some biosynthetic enzymes in Escherichia coli expression systems, since this system is both efficient and cost-effective. First, we describe a standard system for expressing biosynthetic enzymes as a soluble protein under the T7 promoter of the pET expression system in E. coli. In addition, the successful expression of cytochrome P450 in E. coli in an active soluble form with N-terminal modification is discussed, since P450 is the critical enzyme in secondary metabolite biosynthesis.

  3. Sequence analysis of tau 3'untranslated region and saitohin gene in sporadic progressive supranuclear palsy

    PubMed Central

    Ezquerra, M; Campdelacreu, J; Munoz, E; Oliva, R; Tolosa, E

    2004-01-01

    Objectives: To search for genetic changes in the 3'untranslated region (3'UTR) of tau and adjacent sequence LOC147077, and in the coding region of STH in PSP patients. Methods: The study included 57 PSP patients and 83 healthy controls. The genetic analysis of each region was performed through sequencing. The Q7R polymorphism was studied through restriction enzyme and electrophoresis analysis. Results: No mutations were found in the regions analysed. The QQ genotype of the STH polymorphism was over-represented in participants with PSP (91.5%) compared with control subjects (47%) (p⩽0.00001). This genotype co-segregated with the H1/H1 haplotype in our PSP cases. Conclusions: Our results do not support a major role for the tau 3'UTR in PSP genetics. The QQ genotype of STH confers susceptibility for PSP and is in linkage disequilibrium with the H1/H1 haplotype. PMID:14707330

  4. Characterization of the SOS meta-regulon in the human gut microbiome.

    PubMed

    Cornish, Joseph P; Sanchez-Alberola, Neus; O'Neill, Patrick K; O'Keefe, Ronald; Gheba, Jameel; Erill, Ivan

    2014-05-01

    Data from metagenomics projects remain largely untapped for the analysis of transcriptional regulatory networks. Here, we provide proof-of-concept that metagenomic data can be effectively leveraged to analyze regulatory networks by characterizing the SOS meta-regulon in the human gut microbiome. We combine well-established in silico and in vitro techniques to mine the human gut microbiome data and determine the relative composition of the SOS network in a natural setting. Our analysis highlights the importance of translesion synthesis as a primary function of the SOS response. We predict the association of this network with three novel protein clusters involved in cell wall biogenesis, chromosome partitioning and restriction modification, and we confirm binding of the SOS response transcriptional repressor to sites in the promoter of a cell wall biogenesis enzyme, a phage integrase and a death-on-curing protein. We discuss the implications of these findings and the potential for this approach for metagenome analysis.

  5. Biotechnology Outlines for Classroom Use.

    ERIC Educational Resources Information Center

    Paolella, Mary Jane

    1991-01-01

    Presents a course outline for the study of biotechnology at the high school or college level. The outline includes definitions, a history, and the vocabulary of biotechnology. Presents a science experiment to analyze the effects of restriction enzymes on DNA. (MDH)

  6. Molecular Determinants of Antiestrogen and Drug Sensitivity in Breast Carcinoma Cells

    DTIC Science & Technology

    1996-08-01

    00 ~cd -olC CC) 00, COq -6 0 00d C5 kr0) C~U, 23l Effects of infection rate and selection pressure on gene expression from an internal promoter of a...Hybridization probes were prepared by restriction enzyme digestion of the LNCIuc plasmid, followed by the isolation of the desired fragments by...sensitivity to this drug. The bacterial neo gene encodes neomycin phosphotransferase, an enzyme that metabolically inactivates G418, with the extent of

  7. Facile Site-Directed Mutagenesis of Large Constructs Using Gibson Isothermal DNA Assembly.

    PubMed

    Yonemoto, Isaac T; Weyman, Philip D

    2017-01-01

    Site-directed mutagenesis is a commonly used molecular biology technique to manipulate biological sequences, and is especially useful for studying sequence determinants of enzyme function or designing proteins with improved activity. We describe a strategy using Gibson Isothermal DNA Assembly to perform site-directed mutagenesis on large (>~20 kbp) constructs that are outside the effective range of standard techniques such as QuikChange II (Agilent Technologies), but more reliable than traditional cloning using restriction enzymes and ligation.

  8. Vectors for co-expression of an unrestricted number of proteins

    PubMed Central

    Scheich, Christoph; Kümmel, Daniel; Soumailakakis, Dimitri; Heinemann, Udo; Büssow, Konrad

    2007-01-01

    A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five ‘pQLink’ vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells. PMID:17311810

  9. Fibroblast growth factor 23 and the antiproteinuric response to dietary sodium restriction during renin-angiotensin-aldosterone system blockade.

    PubMed

    Humalda, Jelmer K; Lambers Heerspink, Hiddo J; Kwakernaak, Arjan J; Slagman, Maartje C J; Waanders, Femke; Vervloet, Marc G; Ter Wee, Pieter M; Navis, Gerjan; de Borst, Martin H

    2015-02-01

    Residual proteinuria during renin-angiotensin-aldosterone system (RAAS) blockade is a major renal and cardiovascular risk factor in chronic kidney disease. Dietary sodium restriction potentiates the antiproteinuric effect of RAAS blockade, but residual proteinuria remains in many patients. Previous studies linked high fibroblast growth factor 23 (FGF-23) levels with volume overload; others linked higher serum phosphate levels with impaired RAAS-blockade efficacy. We hypothesized that FGF-23 reduces the capacity of dietary sodium restriction to potentiate RAAS blockade, impairing the antiproteinuric effect. Post hoc analysis of cohort data from a randomized crossover trial with two 6-week study periods comparing proteinuria after a regular-sodium diet with proteinuria after a low-sodium diet, both during background angiotensin-converting enzyme inhibition. 47 nondiabetic patients with CKD with residual proteinuria (median protein excretion, 1.9 [IQR, 0.8-3.1] g/d; mean age, 50±13 [SD] years; creatinine clearance, 69 [IQR, 50-110] mL/min). Plasma carboxy-terminal FGF-23 levels. Difference in residual proteinuria at the end of the regular-sodium versus low-sodium study period. Residual proteinuria during the low-sodium diet period adjusted for proteinuria during the regular-sodium diet period. Higher baseline FGF-23 level was associated with reduced antiproteinuric response to dietary sodium restriction (standardized β=-0.46; P=0.001; model R(2)=0.71). For every 100-RU/mL increase in FGF-23 level, the antiproteinuric response to dietary sodium restriction was reduced by 10.6%. Higher baseline FGF-23 level was a determinant of more residual proteinuria during the low-sodium diet (standardized β=0.27; P=0.003) in linear regression analysis adjusted for baseline proteinuria (model R(2)=0.71). There was no interaction with creatinine clearance (P interaction=0.5). Baseline FGF-23 level did not predict changes in systolic or diastolic blood pressure upon intensified antiproteinuric treatment. Observational study, limited sample size. FGF-23 levels are associated independently with impaired antiproteinuric response to sodium restriction in addition to RAAS blockade. Future studies should address whether FGF-23-lowering strategies may further optimize proteinuria reduction by RAAS blockade combined with dietary sodium restriction. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  10. MTHFR-Ala222Val and male infertility: a study in Iranian men, an updated meta-analysis and an in silico-analysis.

    PubMed

    Nikzad, Hossein; Karimian, Mohammad; Sareban, Kobra; Khoshsokhan, Maryam; Hosseinzadeh Colagar, Abasalt

    2015-11-01

    Methylenetetrahydrofolate reductase (MTHFR) functions as a main regulatory enzyme in folate metabolism. The association of MTHFR gene Ala222Val polymorphism with male infertility in an Iranian population was investigated by undertaking a meta-analysis and in-silico approach. A genetic association study included 497 men; 242 had unexplained infertility and 255 were healthy controls. Polymerase chain reaction restriction fragment length polymorphism was used for genotyping MTHFR-Ala222Val. OpenMeta[Analyst] software was used to conduct the analysis; 22 studies were identified by searching PubMed and the currently reported genetic association study. A novel in-silico approach was used to analyse the effects of Ala222Val substitution on the structure of mRNA and protein. Genetic association study revealed a significant association of MTHFR-222Val/Val genotype with oligozoospermia (OR 2.32; 95% CI, 1.12 to 4.78; P = 0.0451) and azoospermia (OR 2.59; 95% CI 1.09 to 6.17; P = 0.0314). Meta-analysis for allelic, dominant and codominant models showed a significant association between Ala222Val polymorphism and the risk of male infertility (P < 0.001). In silico-analysis showed MTHFR-Ala222Val affects enzyme structure and could also change the mRNA properties (P = 0.1641; P < 0.2 is significant). The meta-analysis suggested significant association of MTHFR-Ala222Val with risk of male infertility, especially in Asian populations. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  11. Antioxidant enzymes GSR, SOD1, SOD2, and CAT gene variants and bone mineral density values in postmenopausal women: a genetic association analysis.

    PubMed

    Mlakar, Simona Jurkovic; Osredkar, Josko; Prezelj, Janez; Marc, Janja

    2012-03-01

    Oxidative stress participates in decreasing bone formation and stimulating bone resorption. Furthermore, antioxidant enzymes have been observed to have low protective activity in women with osteoporosis.The aim of the present study was to examine any association of selected gene polymorphisms of the glutathione S-reductase (GSR), superoxide dismutase (SOD1 and SOD2), and catalase (CAT) genes, alone or in combination, with the bone mineral density (BMD) values of femoral neck (fn), lumbar spine (ls), and total hip (th) in Slovenian postmenopausal women. The gene polymorphisms of CAT, GSR, SOD1, and SOD2 genes in 468 postmenopausal women were analyzed using restriction fragment length polymorphism and a fluorescent 5'-exonuclease genotyping method. BMD_fn, BMD_ls, and BMD_th were measured using dual-energy x-ray absorptiometry. Moreover, univariate statistic analysis and two-way analysis of variance for interaction testing were performed. A significant association of BMD_th values (P = 0.027) was found in genotype subgroups of 423-287G>A GSR polymorphism located in the third intron among postmenopausal women. Furthermore, women with at least one G allele showed significantly higher levels of BMD_fn (P = 0.044), BMD_th (P = 0.009), and BMD_ls (P = 0.043) than those that are AA homozygotes. Interestingly, the 423-287G>A_GSR*1154-393T>A_GSR combination was significantly associated with BMD_fn (P = 0.013) and BMD_th (P = 0.002) in postmenopausal women. The results of our study demonstrate for the first time that antioxidant enzyme GSR gene polymorphisms are significantly associated with BMD, suggesting that the A allele of 423-287G>A GSR polymorphism could contribute to decreased BMD values in postmenopausal women.

  12. Evaluation and Selection of Bacillus Species Based on Enzyme Production, Antimicrobial Activity, and Biofilm Synthesis as Direct-Fed Microbial Candidates for Poultry

    PubMed Central

    Latorre, Juan D.; Hernandez-Velasco, Xochitl; Wolfenden, Ross E.; Vicente, Jose L.; Wolfenden, Amanda D.; Menconi, Anita; Bielke, Lisa R.; Hargis, Billy M.; Tellez, Guillermo

    2016-01-01

    Social concern about misuse of antibiotics as growth promoters (AGP) and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM) are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly resistant endospores, produce antimicrobial compounds, and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity, and pathogen-inhibition activity. Thirty-one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase, and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as Bacillus subtilis (1/3), and Bacillus amyloliquefaciens (2/3), based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31), Escherichia coli (28/31), and Clostridioides difficile (29/31). Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds, may contribute to enhanced performance through improving nutrient digestibility, reducing intestinal viscosity, maintaining a beneficial gut microbiota, and promoting healthy intestinal integrity in poultry. PMID:27812526

  13. A novel cytosolic regulator, Pianissimo, is required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase in Dictyostelium

    PubMed Central

    Chen, Mei-Yu; Long, Yu; Devreotes, Peter N.

    1997-01-01

    Genetic analysis was applied to identify novel genes involved in G protein-linked pathways controlling development. Using restriction enzyme-mediated integration (REMI), we have identified a new gene, Pianissimo (PiaA), involved in cAMP signaling in Dictyostelium discoideum. PiaA encodes a 130-kD cytosolic protein required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase. In piaA− null mutants, neither chemoattractant stimulation of intact cells nor GTPγS treatment of lysates activates the enzyme; constitutive expression of PiaA reverses these defects. Cytosols of wild-type cells that contain Pia protein reconstitute the GTPγS stimulation of adenylyl cyclase activity in piaA− lysates, indicating that Pia is directly involved in the activation. Pia and CRAC, a previously identified cytosolic regulator, are both essential for activation of the enzyme as lysates of crac− piaA− double mutants require both proteins for reconstitution. Homologs of PiaA are found in Saccharomyces cerevisiae and Schizosaccaromyces pombe; disruption of the S. cerevisiae homolog results in lethality. We propose that homologs of Pia and similar modes of regulation of these ubiquitous G protein-linked pathways are likely to exist in higher eukaryotes. PMID:9389653

  14. Gene knockout and overexpression analysis revealed the role of N-acetylmuramidase in autolysis of Lactobacillus delbrueckii subsp. bulgaricus ljj-6.

    PubMed

    Pang, Xiao-Yang; Cui, Wen-Ming; Liu, Lu; Zhang, Shu-Wen; Lv, Jia-Ping

    2014-01-01

    Autolysis of lactic acid bacteria (LAB) plays a vital role in dairy processing. During cheese making, autolysis of LAB affects cheese flavor development through release of intracellular enzymes and restricts the proliferation of cells in yogurt fermentation and probiotics production. In order to explore the mechanism of autolysis, the gene for the autolytic enzymes of L. bulgaricus, N-acetylmuramidase (mur), was cloned and sequenced (GenBank accession number: KF157911). Mur gene overexpression and gene knockout vectors were constructed based on pMG76e and pUC19 vectors. Recombinant plasmids were transformed into L. bulgaricus ljj-6 by electroporation, then three engineered strains with pMG76e-mur vector and fifteen engineered strains with pUC19-mur::EryBII were screened. The autolysis of the mur knockout strain was significantly lower and autolysis of the mur overexpressed strain was significantly higher compared with that of the wild type strain ljj-6. This result suggested that the mur gene played an important role in autolysis of L. bulgaricus. On the other hand, autolytic activity in a low degree was still observed in the mur knockout strain, which implied that other enzymes but autolysin encoded by mur were also involved in autolysis of L. bulgaricus.

  15. The potential impact of carboxylic-functionalized multi-walled carbon nanotubes on trypsin: A Comprehensive spectroscopic and molecular dynamics simulation study.

    PubMed

    Noordadi, Maryam; Mehrnejad, Faramarz; Sajedi, Reza H; Jafari, Majid; Ranjbar, Bijan

    2018-01-01

    In this study, we report a detailed experimental, binding free energy calculation and molecular dynamics (MD) simulation investigation of the interactions of carboxylic-functionalized multi-walled carbon nanotubes (COOH-f-MWCNTs) with porcine trypsin (pTry). The enzyme exhibits decreased thermostability at 330K in the presence of COOH-f-MWCNTs. Furthermore, the activity of pTry also decreases in the presence of COOH-f-MWCNTs. The restricted diffusion of the substrate to the active site of the enzyme was observed in the experiment. The MD simulation analysis suggested that this could be because of the blocking of the S1 pocket of pTry, which plays a vital role in the substrate selectivity. The intrinsic fluorescence of pTry is quenched with increase in the COOH-f-MWCNTs concentration. Circular dichroism (CD) and UV-visible absorption spectroscopies indicate the ability of COOH-f-MWCNTs to experience conformational change in the native structure of the enzyme. The binding free energy calculations also show that electrostatics, π-cation, and π-π stacking interactions play important roles in the binding of the carboxylated CNTs with pTry. The MD simulation results demonstrated that the carboxylated CNTs adsorb to the enzyme stronger than the CNT without the-COOH groups. Our observations can provide an example of the nanoscale toxicity of COOH-f-MWCNTs for proteins, which is a critical issue for in vivo application of COOH-f-MWCNTs.

  16. Dietary protein restriction causes modification in aluminum-induced alteration in glutamate and GABA system of rat brain

    PubMed Central

    Nayak, Prasunpriya; Chatterjee, Ajay K

    2003-01-01

    Background Alteration of glutamate and γ-aminobutyrate system have been reported to be associated with neurodegenerative disorders and have been postulated to be involved in aluminum-induced neurotoxicity as well. Aluminum, an well known and commonly exposed neurotoxin, was found to alter glutamate and γ-aminobutyrate levels as well as activities of associated enzymes with regional specificity. Protein malnutrition also reported to alter glutamate level and some of its metabolic enzymes. Thus the region-wise study of levels of brain glutamate and γ-aminobutyrate system in protein adequacy and inadequacy may be worthwhile to understand the mechanism of aluminum-induced neurotoxicity. Results Protein restriction does not have any significant impact on regional aluminum and γ-aminobutyrate contents of rat brain. Significant interaction of dietary protein restriction and aluminum intoxication to alter regional brain glutamate level was observed in the tested brain regions except cerebellum. Alteration in glutamate α-decarboxylase and γ-aminobutyrate transaminase activities were found to be significantly influenced by interaction of aluminum intoxication and dietary protein restriction in all the tested brain regions. In case of regional brain succinic semialdehyde content, this interaction was significant only in cerebrum and thalamic area. Conclusion The alterations of regional brain glutamate and γ-aminobutyrate levels by aluminum are region specific as well as dependent on dietary protein intake. The impact of aluminum exposure on the metabolism of these amino acid neurotransmitters are also influenced by dietary protein level. Thus, modification of dietary protein level or manipulation of the brain amino acid homeostasis by any other means may be an useful tool to find out a path to restrict amino acid neurotransmitter alterations in aluminum-associated neurodisorders. PMID:12657166

  17. Allosteric dynamics of SAMHD1 studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Patra, K. K.; Bhattacharya, A.; Bhattacharya, S.

    2016-10-01

    SAMHD1 is a human cellular enzyme that blocks HIV-1 infection in myeloid cells and non-cycling CD4+T cells. The enzyme is an allosterically regulated triphosphohydrolase that modulates the level of cellular dNTP. The virus restriction is attributed to the lowering of the pool of dNTP in the cell to a point where reverse-transcription is impaired. Mutations in SAMHD1 are also implicated in Aicardi-Goutieres syndrome. A mechanistic understanding of the allosteric activation of the enzyme is still elusive. We have performed molecular dynamics simulations to examine the allosteric site dynamics of the protein and to examine the connection between the stability of the tetrameric complex and the Allosite occupancy.

  18. Safe and Successful Treatment With Agalsidase Beta During Pregnancy in Fabry Disease.

    PubMed

    Senocak Tasci, Elif; Bicik, Zerrin

    2015-09-01

    Fabry disease, an X-linked lysosomal storage disorder, is caused by α-galactosidase A deficiency and leads to accumulation of glycospinhgolipids in most tissues, with life-theratening consequences in the kidney, heart, and cerebrovascular system. Enzyme replacement therapy is available as 2 different preparations: agalsidase alfa and agalsidase beta. Enzyme replacement therapy is started as soon as the diagnosis is confirmed, but there is no data available in the literature about its safety during preganacy. Herein, we described 2 patients with Fabry disease who received agalsidase beta during their pregnancy. This report is important as the data about enzyme replacement therapy during pregnancy is restricted with case reports.

  19. Zinc finger nuclease technology: advances and obstacles in modelling and treating genetic disorders.

    PubMed

    Jabalameli, Hamid Reza; Zahednasab, Hamid; Karimi-Moghaddam, Amin; Jabalameli, Mohammad Reza

    2015-03-01

    Zinc finger nucleases (ZFNs) are engineered restriction enzymes designed to target specific DNA sequences within the genome. Assembly of zinc finger DNA-binding domain to a DNA-cleavage domain enables the enzyme machinery to target unique locus in the genome and invoke endogenous DNA repair mechanisms. This machinery offers a versatile approach in allele editing and gene therapy. Here we discuss the architecture of ZFNs and strategies for generating targeted modifications within the genome. We review advances in gene therapy and modelling of the disease using these enzymes and finally, discuss the practical obstacles in using this technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Identification of Clinical Isolates of Actinomyces Species by Amplified 16S Ribosomal DNA Restriction Analysis

    PubMed Central

    Hall, Val; Talbot, P. R.; Stubbs, S. L.; Duerden, B. I.

    2001-01-01

    Amplified 16S ribosomal DNA (rDNA) restriction analysis (ARDRA), using enzymes HaeIII and HpaII, was applied to 176 fresh and 299 stored clinical isolates of putative Actinomyces spp. referred to the Anaerobe Reference Unit of the Public Health Laboratory Service for confirmation of identity. Results were compared with ARDRA results obtained previously for reference strains and with conventional phenotypic reactions. Identities of some strains were confirmed by analysis of partial 16S rDNA sequences. Of the 475 isolates, 331 (70%) were clearly assigned to recognized Actinomyces species, including 94 isolates assigned to six recently described species. A further 52 isolates in 12 ARDRA profiles were designated as apparently resembling recognized species, and 44 isolates, in 18 novel profiles, were confirmed as members of genera other than Actinomyces. The identities of 48 isolates in nine profiles remain uncertain, and they may represent novel species of Actinomyces. For the majority of species, phenotypic results, published reactions for the species, and ARDRA profiles concurred. However, of 113 stored isolates originally identified as A. meyeri or resembling A. meyeri by phenotypic tests, only 21 were confirmed as A. meyeri by ARDRA; 63 were reassigned as A. turicensis, 7 as other recognized species, and 22 as unidentified actinomycetes. Analyses of incidence and clinical associations of Actinomyces spp. add to the currently sparse knowledge of some recently described species. PMID:11574572

  1. Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes

    PubMed Central

    Throop, Andrea L.; LaBaer, Joshua

    2015-01-01

    The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088

  2. Techniques for investigation of an apparent outbreak of infections with Candida glabrata.

    PubMed Central

    Arif, S; Barkham, T; Power, E G; Howell, S A

    1996-01-01

    A cluster of Candida glabrata isolates recovered from seven patients in an intensive care unit over a 10-week period were compared with a collection of isolates from six epidemiologically distinct outpatients and a reference strain by several DNA typing methods. Restriction enzyme analysis with HinII distinguished 13 strains from the 14 sources and was the method of choice. Pulsed-field gel electrophoresis and random amplification of polymorphic DNA both detected nine types from the 14 sources; however, the results of these two methods did not always correlate. These methods demonstrated that five of the seven patients had distinguishable strains and that cross-infection was unlikely. PMID:8862586

  3. Capture of unstable protein complex on the streptavidin-coated single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Zunfeng; Voskamp, Patrick; Zhang, Yue; Chu, Fuqiang; Abrahams, Jan Pieter

    2013-04-01

    Purification of unstable protein complexes is a bottleneck for investigation of their 3D structure and in protein-protein interaction studies. In this paper, we demonstrate that streptavidin-coated single-walled carbon nanotubes (Strep•SWNT) can be used to capture the biotinylated DNA- EcoRI complexes on a 2D surface and in solution using atomic force microscopy and electrophoresis analysis, respectively. The restriction enzyme EcoRI forms unstable complexes with DNA in the absence of Mg2+. Capturing the EcoRI-DNA complexes on the Strep•SWNT succeeded in the absence of Mg2+, demonstrating that the Strep•SWNT can be used for purifying unstable protein complexes.

  4. [Corn plant DNA methylation pattern changes upon fractional UV-C irradiation].

    PubMed

    Kravets, A P; Sokolova, D A; Vengzhen, G S; Grodzinskiĭ, D M

    2013-01-01

    Relationship of changes of methylation pattern of functionally different parts of DNA and chromosomal aberration yield was studied at the conditions of the fractionating of UV-C irradiation. Combination of restriction analysis (Hpall, MspI, MboI enzymes) with the subsequent raising of PCR (internal transcribed space ITS1, 1TS4 and inter simple sequence repeat - ISSR, 14b primers) was used. The got results testify to the changes in methylation pattern of satellite and transcription active part of DNA atan irradiation in the mode of fractionating and depending on fraction time ranges. The role of the methylation DNA pattern change in development of radiation damage and induction of organism protective reactions was discussed.

  5. Enzyme activities in parotid saliva of patients with the restrictive type of anorexia nervosa.

    PubMed

    Paszynska, Elzbieta; Slopien, Agnieszka; Dmitrzak-Weglarz, Monika; Hannig, Christian

    2017-04-01

    In patients with anorexia nervosa (AN) specific signs may occur in the oral cavity, but there are conflicting reports about their significance, especially concerning changes in salivary composition. The aim of this clinical study was to evaluate the resting parotid flow rate (PFR) and the activity of the following enzymes in parotid saliva: amylase, aspartate amino transferase (AST), lysozyme, peroxidase, serine and acidic proteases in the acute phase of the restrictive type of AN and to compare the findings with those in healthy controls. Forty-one subjects participated (20 patients with AN, 21 matched healthy controls), parotid saliva was collected using a modified Lashley cap at rest. Enzyme activities were measured with fluorimetric and photometric assays. The unstimulated PFR was significantly lower than in the controls, lysozyme and AST activity was significantly lower, and amylase showed a high inter-individual variability. A positive correlation for amylase and lysozyme and negative ones for lysozyme and BMI, lysozyme and IBW%, serine protease and salivary flow were observed. The reduced PFR and enzyme activities levels suggest that AN does not only affect the quantity of the saliva but also its quality and, its biological functions. The results obtained should help to provide a better understanding of the effect of AN disease on the pathogenesis of at least some oral diseases. Further research is needed on any possible role of reduced lysozyme and transaminase activity in maintaining oral protection against external toxic agents and bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    PubMed Central

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D.

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1–2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855

  7. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    PubMed

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  8. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    PubMed Central

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  9. Cleavage of influenza RNA by using a human PUF-based artificial RNA-binding protein–staphylococcal nuclease hybrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Tomoaki; Nakamura, Kento; Masaoka, Keisuke

    Various viruses infect animals and humans and cause a variety of diseases, including cancer. However, effective methodologies to prevent virus infection have not yet been established. Therefore, development of technologies to inactivate viruses is highly desired. We have already demonstrated that cleavage of a DNA virus genome was effective to prevent its replication. Here, we expanded this methodology to RNA viruses. In the present study, we used staphylococcal nuclease (SNase) instead of the PIN domain (PilT N-terminus) of human SMG6 as an RNA-cleavage domain and fused the SNase to a human Pumilio/fem-3 binding factor (PUF)-based artificial RNA-binding protein to constructmore » an artificial RNA restriction enzyme with enhanced RNA-cleavage rates for influenzavirus. The resulting SNase-fusion nuclease cleaved influenza RNA at rates 120-fold greater than the corresponding PIN-fusion nuclease. The cleaving ability of the PIN-fusion nuclease was not improved even though the linker moiety between the PUF and RNA-cleavage domain was changed. Gel shift assays revealed that the RNA-binding properties of the PUF derivative used was not as good as wild type PUF. Improvement of the binding properties or the design method will allow the SNase-fusion nuclease to cleave an RNA target in mammalian animal cells and/or organisms. - Highlights: • A novel RNA restriction enzyme using SNase was developed tor cleave viral RNA. • Our enzyme cleaved influenza RNA with rates >120-fold higher rates a PIN-fusion one. • Our artificial enzyme with the L5 linker showed the highest RNA cleavage rate. • Our artificial enzyme site-selectively cleaved influenza RNA in vitro.« less

  10. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution.

    PubMed

    Kobayashi, I

    2001-09-15

    Restriction-modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and function of RM enzymes.

  11. Molecular description of α-keto-based inhibitors of cruzain with activity against Chagas disease combining 3D-QSAR studies and molecular dynamics.

    PubMed

    Saraiva, Ádria P B; Miranda, Ricardo M; Valente, Renan P P; Araújo, Jéssica O; Souza, Rutelene N B; Costa, Clauber H S; Oliveira, Amanda R S; Almeida, Michell O; Figueiredo, Antonio F; Ferreira, João E V; Alves, Cláudio Nahum; Honorio, Kathia M

    2018-04-22

    In this work, a group of α-keto-based inhibitors of the cruzain enzyme with anti-chagas activity was selected for a three-dimensional quantitative structure-activity relationship study (3D-QSAR) combined with molecular dynamics (MD). Firstly, statistical models based on Partial Least Square (PLS) regression were developed employing comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) descriptors. Validation parameters (q 2 and r 2 )for the models were, respectively, 0.910 and 0.997 (CoMFA) and 0.913 and 0.992 (CoMSIA). In addition, external validation for the models using a test group revealed r 2 pred  = 0.728 (CoMFA) and 0.971 (CoMSIA). The most relevant aspect in this study was the generation of molecular fields in both favorable and unfavorable regions based on the models developed. These fields are important to interpret modifications necessary to enhance the biological activities of the inhibitors. This analysis was restricted considering the inhibitors in a fixed conformation, not interacting with their target, the cruzain enzyme. Then, MD was employed taking into account important variables such as time and temperature. MD helped describe the behavior of the inhibitors and their properties showed similar results as those generated by QSAR-3D study. © 2018 John Wiley & Sons A/S.

  12. Simian Immunodeficiency Virus Vif and Human APOBEC3B Interactions Resemble Those between HIV-1 Vif and Human APOBEC3G.

    PubMed

    Wang, Jiayi; Shaban, Nadine M; Land, Allison M; Brown, William L; Harris, Reuben S

    2018-06-15

    Several members of the APOBEC3 DNA cytosine deaminase family can potently inhibit Vif-deficient human immunodeficiency virus type 1 (HIV-1) by catalyzing cytosine deamination in viral cDNA and impeding reverse transcription. HIV-1 counteracts restriction with the virally encoded Vif protein, which targets relevant APOBEC3 proteins for proteasomal degradation. HIV-1 Vif is optimized for degrading the restrictive human APOBEC3 repertoire, and, in general, lentiviral Vif proteins specifically target the restricting APOBEC3 enzymes of each host species. However, simian immunodeficiency virus SIV mac239 Vif elicits a curiously wide range of APOBEC3 degradation capabilities that include degradation of several human APOBEC3s and even human APOBEC3B, a non-HIV-1-restricting APOBEC3 enzyme. To better understand the molecular determinants of the interaction between SIV mac239 Vif and human APOBEC3B, we analyzed an extensive series of mutants. We found that SIV mac239 Vif interacts with the N-terminal domain of human APOBEC3B and, interestingly, that this occurs within a structural region homologous to the HIV-1 Vif interaction surface of human APOBEC3G. An alanine scan of SIV mac239 Vif revealed several residues required for human APOBEC3B degradation activity. These residues overlap HIV-1 Vif surface residues that interact with human APOBEC3G and are distinct from those that engage APOBEC3F or APOBEC3H. Overall, these studies indicate that the molecular determinants of the functional interaction between human APOBEC3B and SIV mac239 Vif resemble those between human APOBEC3G and HIV-1 Vif. These studies contribute to the growing knowledge of the APOBEC-Vif interaction and may help guide future efforts to disrupt this interaction as an antiviral therapy or exploit the interaction as a novel strategy to inhibit APOBEC3B-dependent tumor evolution. IMPORTANCE Primate APOBEC3 proteins provide innate immunity against retroviruses such as HIV and SIV. HIV-1, the primary cause of AIDS, utilizes its Vif protein to specifically counteract restrictive human APOBEC3 enzymes. SIV mac239 Vif exhibits a much wider range of anti-APOBEC3 activities that includes several rhesus macaque enzymes and extends to multiple proteins in the human APOBEC3 repertoire, including APOBEC3B. Understanding the molecular determinants of the interaction between SIV mac239 Vif and human APOBEC3B adds to existing knowledge on the APOBEC3-Vif interaction and has potential to shed light on what processes may have shaped Vif functionality over evolutionary time. An intimate understanding of this interaction may also lead to a novel cancer therapy because, for instance, creating a derivative of SIV mac239 Vif that specifically targets human APOBEC3B could be used to suppress tumor genomic DNA mutagenesis by this enzyme, slow ongoing tumor evolution, and help prevent poor clinical outcomes. Copyright © 2018 American Society for Microbiology.

  13. Identification of two invasive Cacopsylla chinensis (Hemiptera: Psyllidae) lineages based on two mitochondrial sequences and restriction fragment length polymorphism of cytochrome oxidase I amplicon.

    PubMed

    Lee, Hsien-Chung; Yang, Man-Miao; Yeh, Wen-Bin

    2008-08-01

    The occurrence of pear decline, a disease found in some pear (Pyrus spp.) orchards of Taiwan in recent years, is accompanied by an outbreak of Cacopsylla chinensis (Yang & Li). Two major morphological forms (summer and winter forms) with a variety of intermediate body color and two phylogenetic lineages of this psyllid have been described. The work herein used sequences of mitochondrial cytochrome oxidase I (COI) and 16S rDNA regions to delineate the genetic differentiation of this color-variable insect and to elucidate their relationship. Sequence divergence and phylogenetic analysis have shown that C. chinensis individuals could be divided into two lineages with 3.3 and 2.3% divergence of COI and 16S rDNA, respectively. All specimens from China were found to belong to lineage I. Restriction fragment length polymorphism analysis of COI with restriction enzymes AcuI, AseI, BccI, and FokI on 263 specimens of six populations from Taiwan produced two digestion patterns, which are in agreement with the two lineages described above. Both patterns could be found in each population, with most individuals belonging to lineage I and 5-21% of the individuals belonging to lineage II. Because these two lineages included summer as well as winter morphological forms, the lineage differentiation is apparently not related to morphological characters of this psyllid. Because the invasive records are not in favor of a sympatric differentiation, this psyllid is more likely introduced as different populations from countries in temperate regions.

  14. A Sequence-Independent Strategy for Detection and Cloning of Circular DNA Virus Genomes by Using Multiply Primed Rolling-Circle Amplification

    PubMed Central

    Rector, Annabel; Tachezy, Ruth; Van Ranst, Marc

    2004-01-01

    The discovery of novel viruses has often been accomplished by using hybridization-based methods that necessitate the availability of a previously characterized virus genome probe or knowledge of the viral nucleotide sequence to construct consensus or degenerate PCR primers. In their natural replication cycle, certain viruses employ a rolling-circle mechanism to propagate their circular genomes, and multiply primed rolling-circle amplification (RCA) with φ29 DNA polymerase has recently been applied in the amplification of circular plasmid vectors used in cloning. We employed an isothermal RCA protocol that uses random hexamer primers to amplify the complete genomes of papillomaviruses without the need for prior knowledge of their DNA sequences. We optimized this RCA technique with extracted human papillomavirus type 16 (HPV-16) DNA from W12 cells, using a real-time quantitative PCR assay to determine amplification efficiency, and obtained a 2.4 × 104-fold increase in HPV-16 DNA concentration. We were able to clone the complete HPV-16 genome from this multiply primed RCA product. The optimized protocol was subsequently applied to a bovine fibropapillomatous wart tissue sample. Whereas no papillomavirus DNA could be detected by restriction enzyme digestion of the original sample, multiply primed RCA enabled us to obtain a sufficient amount of papillomavirus DNA for restriction enzyme analysis, cloning, and subsequent sequencing of a novel variant of bovine papillomavirus type 1. The multiply primed RCA method allows the discovery of previously unknown papillomaviruses, and possibly also other circular DNA viruses, without a priori sequence information. PMID:15113879

  15. Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase.

    PubMed

    Trigoso, Yvonne D; Evans, Russell C; Karsten, William E; Chooback, Lilian

    2016-01-01

    The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5'and 3' terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40-50 mgs of protein, an improvement on the previous protein expression and multistep purification.

  16. Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase

    PubMed Central

    Trigoso, Yvonne D.; Evans, Russell C.; Karsten, William E.; Chooback, Lilian

    2016-01-01

    The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5’and 3’ terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40–50 mgs of protein, an improvement on the previous protein expression and multistep purification. PMID:26815040

  17. Monitoring DNA triplex formation using multicolor fluorescence and application to insulin-like growth factor I promoter downregulation.

    PubMed

    Hégarat, Nadia; Novopashina, Darya; Fokina, Alesya A; Boutorine, Alexandre S; Venyaminova, Alya G; Praseuth, Danièle; François, Jean-Christophe

    2014-03-01

    Inhibition of insulin-like growth factor I (IGF-I) signaling is a promising antitumor strategy and nucleic acid-based approaches have been investigated to target genes in the pathway. Here, we sought to modulate IGF-I transcriptional activity using triple helix formation. The IGF-I P1 promoter contains a purine/pyrimidine (R/Y) sequence that is pivotal for transcription as determined by deletion analysis and can be targeted with a triplex-forming oligonucleotide (TFO). We designed modified purine- and pyrimidine-rich TFOs to bind to the R/Y sequence. To monitor TFO binding, we developed a fluorescence-based gel-retardation assay that allowed independent detection of each strand in three-stranded complexes using end-labeling with Alexa 488, cyanine (Cy)3 and Cy5 fluorochromes. We characterized TFOs for their ability to inhibit restriction enzyme activity, compete with DNA-binding proteins and inhibit IGF-I transcription in reporter assays. TFOs containing modified nucleobases, 5-methyl-2'-deoxycytidine and 5-propynyl-2'-deoxyuridine, specifically inhibited restriction enzyme cleavage and formed triplexes on the P1 promoter fragment. In cells, deletion of the R/Y-rich sequence led to 48% transcriptional inhibition of a reporter gene. Transfection with TFOs inhibited reporter gene activity to a similar extent, whereas transcription from a mutant construct with an interrupted R/Y region was unaffected, strongly suggesting the involvement of triplex formation in the inhibitory mechanisms. Our results indicate that nuclease-resistant TFOs will likely inhibit endogenous IGF-I gene function in cells. © 2014 FEBS.

  18. Cyclooxygenase 2 gene polymorphisms and chronic periodontitis in a North Indian population: a pilot study

    PubMed Central

    Daing, Anika; Singh, Sarvendra Vikram; Saimbi, Charanjeet Singh; Khan, Mohammad Akhlaq

    2012-01-01

    Purpose Cyclooxygenase (COX) enzyme catalyzes the production of prostaglandins, which are important mediators of tissue destruction in periodontitis. Single nucleotide polymorphisms of COX2 enzyme have been associated with increasing susceptibility to inflammatory diseases. The present study evaluates the association of two single nucleotide polymorphisms in COX2 gene (-1195G>A and 8473C>T) with chronic periodontitis in North Indians. Methods Both SNPs and their haplotypes were used to explore the associations between COX2 polymorphisms and chronic periodontitis in 56 patients and 60 controls. Genotyping was done by polymerase chain reaction followed by restriction fragment length polymorphism. Chi-square test and logistic regression analysis were performed for association analysis. Results By the individual genotype analysis, mutant genotypes (GA and AA) of COX2 -1195 showed more than a two fold risk (odds ratio [OR]>2) and COX2 8473 (TC and CC) showed a reduced risk for the disease, but the findings were not statistically significant. Haplotype analysis showed that the frequency of the haplotype AT was higher in the case group and a significant association was found for haplotype AT (OR, 1.79; 95% confidence interval, 1.03 to 3.11; P=0.0370) indicating an association between the AT haplotype of COX2 gene SNPs and chronic periodontitis. Conclusions Individual genotypes of both the SNPs were not associated while haplotype AT was found to be associated with chronic periodontitis in North Indians. PMID:23185695

  19. Chloroplast and nuclear DNA studies in a few members of the Brassica oleracea L. group using PCR-RFLP and ISSR-PCR markers: a population genetic analysis.

    PubMed

    Panda, S; Martín, J P; Aguinagalde, I

    2003-04-01

    A population genetic analysis of chloroplast and nuclear DNA was performed covering nine wild populations of Brassica oleracea. Three members of the n = 9 group, all close to B. oleracea, Brassica alboglabra Bailey, Brassica bourgeaui (Webb) O. Kuntze and Brassica montana Pourret, were also studied to better understand their relationship with B. oleracea. Chloroplast DNA was analysed using the PCR-RFLP (polymerase chain reaction - restriction fragment length polymorphism) method. The ISSR-PCR (inter-simple sequence repeat - polymerase chain reaction) technique was adopted to study nuclear DNA. Twelve primer pairs of chloroplast DNA showed very good amplification. The amplified product of each primer pair, digested by three restriction enzymes, revealed no variation of cpDNA among the taxa studied. This indicates they may have the same chloroplast genotype. Seven selected ISSR primers have detected genetic variation, both within and among the populations/taxa surveyed. The information obtained on the intra- and inter-populational genetic diversity of wild populations of B. oleracea neatly defined the individual plants. It could provide important guidelines for backing management and conservation strategies in this species. The study confirms a close relationship between B. alboglabra, B. bourgeaui and B. montana, which is parallel to their morphological similitude.

  20. Type II restriction endonucleases—a historical perspective and more

    PubMed Central

    Pingoud, Alfred; Wilson, Geoffrey G.; Wende, Wolfgang

    2014-01-01

    This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss ‘Type II’ REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures. PMID:24878924

  1. Molecular Microbial Analysis of Lactobacillus Strains Isolated from the Gut of Calves for Potential Probiotic Use

    PubMed Central

    Soto, Lorena P.; Frizzo, Laureano S.; Bertozzi, Ezequiel; Avataneo, Elizabeth; Sequeira, Gabriel J.; Rosmini, Marcelo R.

    2010-01-01

    The intestinal microbiota has an influence on the growth and health status of the hosts. This is of particular interest in animals reared using intensive farming practices. Hence, it is necessary to know more about complexity of the beneficial intestinal microbiota. The use of molecular methods has revolutionized microbial identification by improving its quality and effectiveness. The specific aim of the study was to analyze predominant species of Lactobacillus in intestinal microbial ecosystem of young calves. Forty-two lactic acid bacteria (LAB) isolated from intestinal tract of young calves were characterized by: Amplified Ribosomal DNA Restriction Analysis (ARDRA), by using Hae III, Msp I, and Hinf I restriction enzymes, and 16S rDNA gene sequencing. ARDRA screening revealed nine unique patterns among 42 isolates, with the same pattern for 29 of the isolates. Gene fragments of 16S rDNA of 19 strains representing different patterns were sequenced to confirm the identification of these species. These results confirmed that ARDRA is a good tool for identification and discrimination of bacterial species isolated from complex ecosystem and between closely related groups. This paper provides information about the LAB species predominant in intestinal tract of young calves that could provide beneficial effects when administered as probiotic. PMID:20445780

  2. Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis.

    PubMed

    Kang, Yun; McMillan, Ian; Norris, Michael H; Hoang, Tung T

    2015-07-01

    Until recently, transcriptome analyses of single cells have been confined to eukaryotes. The information obtained from single-cell transcripts can provide detailed insight into spatiotemporal gene expression, and it could be even more valuable if expanded to prokaryotic cells. Transcriptome analysis of single prokaryotic cells is a recently developed and powerful tool. Here we describe a procedure that allows amplification of the total transcript of a single prokaryotic cell for in-depth analysis. This is performed by using a laser-capture microdissection instrument for single-cell isolation, followed by reverse transcription via Moloney murine leukemia virus, degradation of chromosomal DNA with McrBC and DpnI restriction enzymes, single-stranded cDNA (ss-cDNA) ligation using T4 polynucleotide kinase and CircLigase, and polymerization of ss-cDNA to double-stranded cDNA (ds-cDNA) by Φ29 polymerase. This procedure takes ∼5 d, and sufficient amounts of ds-cDNA can be obtained from single-cell RNA template for further microarray analysis.

  3. A unifying view of the broad-spectrum antiviral activity of RSAD2 (viperin) based on its radical-SAM chemistry.

    PubMed

    Honarmand Ebrahimi, Kourosh

    2018-04-25

    RSAD2 (cig-5), also known as viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible), is a member of the radical S-adenosylmethionine (SAM) superfamily of enzymes. Since the discovery of this enzyme more than a decade ago, numerous studies have shown that it exhibits antiviral activity against a wide range of viruses. However, there is no clear picture demonstrating the mechanism by which RSAD2 restricts the replication process of different viruses, largely because there is no direct evidence describing its in vivo enzymatic activity. As a result, a multifunctionality model has emerged. According to this model the mechanism by which RSAD2 restricts replication of different viruses varies and in many cases is not dependent on the radical-SAM chemistry of RSAD2. If the radical-SAM activity of RSAD2 is not required for its antiviral function, the question worth asking is: why does the cellular defence mechanism induce the expression of the radical-SAM enzyme RSAD2, which is metabolically expensive due to the requirement for a [4Fe-4S] cluster and usage of SAM? Here, in contrast to the multifunctionality view, I put forward a unifying model. I postulate that the radical-SAM activity of RSAD2 modulates cellular metabolic pathways essential for viral replication and/or cell proliferation and survival. As a result, its catalytic activity restricts the replication of a wide range of viruses via a common cellular function. This view is based on recent discoveries hinting towards possible substrates of RSAD2, re-evaluation of previous studies regarding the antiviral activity of RSAD2, and accumulating evidence suggesting a role of human RSAD2 in the metabolic reprogramming of cells.

  4. DNA methylation in sugarcane somaclonal variants assessed through methylation-sensitive amplified polymorphism.

    PubMed

    Francischini, J H M B; Kemper, E L; Costa, J B; Manechini, J R V; Pinto, L R

    2017-05-04

    Micropropagation is an important tool for large-scale multiplication of plant superior genotypes. However, somaclonal variation is one of the drawbacks of this process. Changes in DNA methylation have been widely reported as one of the main causes of somaclonal variations in plants. In order to investigate the occurrence of changes in the methylation pattern of sugarcane somaclonal variants, the MSAP (methylation-sensitive amplified polymorphism) technique was applied to micro-propagated plantlets sampled at the third subculture phase. The mother plant, in vitro normal plantlets, and in vitro abnormal plantlets (somaclonal variants) of four sugarcane clones were screened against 16 MSAP selective primers for EcoRI/MspI and EcoRI/HpaII restriction enzymes. A total of 1005 and 1200 MSAP-derived markers with polymorphism percentages of 28.36 and 40.67 were obtained for EcoRI/HpaII and EcoRI/MspI restriction enzyme combinations, respectively. The genetic similarity between the mother plant and the somaclonal variants ranged from 0.877 to 0.911 (EcoRI/MspI) and from 0.928 to 0.955 (EcoRI/HpaII). Most of the MASPs among mother plant and micro-propagated plantlets were derived from EcoRI/MspI restriction enzymes suggesting alteration due to gain or loss of internal cytosine methylation. A higher rate of loss of methylation (hypomethylation) than gain of methylation (hypermethylation) was observed in the abnormal in vitro sugarcane plantlets. Although changes in the methylation pattern were also observed in the in vitro normal plantlets, they were lower than those observed for the in vitro abnormal plantlets. The MASP technique proved to be a promising tool to early assessment of genetic fidelity of micro-propagated sugarcane plants.

  5. A Rapid Method to Test for Chloroplast DNA Involvement in Atrazine Resistance

    PubMed Central

    McNally, Sheila; Bettini, Priscilla; Sevignac, Mireille; Darmency, Henry; Gasquez, Jacques; Dron, Michel

    1987-01-01

    A point mutation in the chloroplast psbA gene at codon 264 resulting in an animo acid substitution (ser-gly) manifests itself as atrazine resistance in all recognized weed species studied to date. The single base substitution overlaps a highly conserved Mae1 restriction site which is present in susceptible but not in resistant plants. This restriction enzyme, recently commercialized, has been used to show that it is now possible to discriminate rapidly between the two biotypes without the need for DNA sequencing. Images Fig. 1 PMID:16665229

  6. Using ITS2 PCR-RFLP to generate molecular markers for authentication of Sophora flavescens Ait.

    PubMed

    Lin, Tzu Che; Yeh, Mau Shing; Cheng, Ya Ming; Lin, Li Chang; Sung, Jih Min

    2012-03-15

    Dried root of Sophora flavescens Ait. is a medicinal material occasionally misused or adulterated by other species similar in appearance. In this study the internal transcribed spacer (ITS) regions of DNA samples of S. flavescens Ait. collected from different areas of Taiwan were amplified by polymerase chain reaction (PCR) and compared. The effectiveness of using ITS2 PCR restriction fragment length polymorphism (RFLP)-generated markers to differentiate S. flavescens Ait. from possible adulterants was also evaluated. The S. flavescens Ait. samples collected from different areas were extremely low in ITS sequence variability at species level. ITS2 PCR-RFLP coupled with restriction enzymes Sac I, Sac II, Xho I or Pvu I produced specific fragments for all tested variants. ITS2 PCR-RFLP coupled with Sac II was further performed to identify mixtures of DNA extracts of S. flavescens Ait. and Sophora tomentosa L. in various ratios. The developed ITS2 PCR-RFLP markers could detect mixed DNA samples of S. flavescens Ait./S. tomentosa L. up to a ratio of 10:1. The present study demonstrates the usefulness of ITS2 PCR-RFLP coupled with pre-selected restriction enzymes for practical and accurate authentication of S. flavescens Ait. The technique is also suitable for analysing S. flavescens Ait. mixed with other adulterants.

  7. Biochemical properties and subcellular localization of tyrosine aminotransferases in Arabidopsis thaliana.

    PubMed

    Wang, Minmin; Toda, Kyoko; Maeda, Hiroshi A

    2016-12-01

    Plants produce various L-tyrosine (Tyr)-derived compounds that are of pharmaceutical or nutritional importance to humans. Tyr aminotransferase (TAT) catalyzes the reversible transamination between Tyr and 4-hydroxyphenylpyruvate (HPP), the initial step in the biosynthesis of many Tyr-derived plant natural products. Herein reported is the biochemical characterization and subcellular localization of TAT enzymes from the model plant Arabidopsis thaliana. Phylogenetic analysis showed that Arabidopsis has at least two homologous TAT genes, At5g53970 (AtTAT1) and At5g36160 (AtTAT2). Their recombinant enzymes showed distinct biochemical properties: AtTAT1 had the highest activity towards Tyr, while AtTAT2 exhibited a broad substrate specificity for both amino and keto acid substrates. Also, AtTAT1 favored the direction of Tyr deamination to HPP, whereas AtTAT2 preferred transamination of HPP to Tyr. Subcellular localization analysis using GFP-fusion proteins and confocal microscopy showed that AtTAT1, AtTAT2, and HPP dioxygenase (HPPD), which catalyzes the subsequent step of TAT, are localized in the cytosol, unlike plastid-localized Tyr and tocopherol biosynthetic enzymes. Furthermore, subcellular fractionation indicated that, while HPPD activity is restricted to the cytosol, TAT activity is detected in both cytosolic and plastidic fractions of Arabidopsis leaf tissue, suggesting that an unknown aminotransferase(s) having TAT activity is also present in the plastids. Biochemical and cellular analyses of Arabidopsis TATs provide a fundamental basis for future in vivo studies and metabolic engineering for enhanced production of Tyr-derived phytochemicals in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons.

    PubMed

    Billon, Pierre; Bryant, Eric E; Joseph, Sarah A; Nambiar, Tarun S; Hayward, Samuel B; Rothstein, Rodney; Ciccia, Alberto

    2017-09-21

    Standard CRISPR-mediated gene disruption strategies rely on Cas9-induced DNA double-strand breaks (DSBs). Here, we show that CRISPR-dependent base editing efficiently inactivates genes by precisely converting four codons (CAA, CAG, CGA, and TGG) into STOP codons without DSB formation. To facilitate gene inactivation by induction of STOP codons (iSTOP), we provide access to a database of over 3.4 million single guide RNAs (sgRNAs) for iSTOP (sgSTOPs) targeting 97%-99% of genes in eight eukaryotic species, and we describe a restriction fragment length polymorphism (RFLP) assay that allows the rapid detection of iSTOP-mediated editing in cell populations and clones. To simplify the selection of sgSTOPs, our resource includes annotations for off-target propensity, percentage of isoforms targeted, prediction of nonsense-mediated decay, and restriction enzymes for RFLP analysis. Additionally, our database includes sgSTOPs that could be employed to precisely model over 32,000 cancer-associated nonsense mutations. Altogether, this work provides a comprehensive resource for DSB-free gene disruption by iSTOP. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Short mucin 6 alleles are associated with H pylori infection

    PubMed Central

    Nguyen, Thai V; Janssen, Marcel JR; Gritters, Paulien; te Morsche, René HM; Drenth, Joost PH; van Asten, Henri; Laheij, Robert JF; Jansen, Jan BMJ

    2006-01-01

    AIM: To investigate the relationship between mucin 6 (MUC6) VNTR length and H pylori infection. METHODS: Blood samples were collected from patients visiting the Can Tho General Hospital for upper gastrointestinal endoscopy. DNA was isolated from whole blood, the repeated section was cut out using a restriction enzyme (PvuII) and the length of the allele fragments was determined by Southern blotting. H pylori infection was diagnosed by 14C urea breath test. For analysis, MUC6 allele fragment length was dichotomized as being either long (> 13.5 kbp) or short (≤ 13.5 kbp) and patients were classified according to genotype [long-long (LL), long-short (LS), short-short (SS)]. RESULTS: 160 patients were studied (mean age 43 years, 36% were males, 58% H pylori positive). MUC6 PvuII-restricted allele fragment lengths ranged from 7 to 19 kbp. Of the patients with the LL, LS, SS MUC6 genotype, 43% (24/56), 57% (25/58) and 76% (11/46) were infected with H pylori, respectively (P = 0.003). CONCLUSION: Short MUC6 alleles are associated with H pylori infection. PMID:17009402

  10. Short mucin 6 alleles are associated with H pylori infection.

    PubMed

    Nguyen, Thai V; Janssen, Marcel; Gritters, Paulien; te Morsche, René H M; Drenth, Joost P H; van Asten, Henri; Laheij, Robert J F; Jansen, Jan B M J

    2006-10-07

    To investigate the relationship between mucin 6 (MUC6) VNTR length and H pylori infection. Blood samples were collected from patients visiting the Can Tho General Hospital for upper gastrointestinal endoscopy. DNA was isolated from whole blood, the repeated section was cut out using a restriction enzyme (Pvu II) and the length of the allele fragments was determined by Southern blotting. H pylori infection was diagnosed by (14)C urea breath test. For analysis, MUC6 allele fragment length was dichotomized as being either long (> 13.5 kbp) or short (< or = 13.5 kbp) and patients were classified according to genotype [long-long (LL), long-short (LS), short-short (SS)]. 160 patients were studied (mean age 43 years, 36% were males, 58% H pylori positive). MUC6 Pvu II-restricted allele fragment lengths ranged from 7 to 19 kbp. Of the patients with the LL, LS, SS MUC6 genotype, 43% (24/56), 57% (25/58) and 76% (11/46) were infected with H pylori, respectively (P = 0.003). Short MUC6 alleles are associated with H pylori infection.

  11. Acinetobacter baumannii producing OXA-23 detected in the Czech Republic.

    PubMed

    Senkyrikova, Marketa; Husickova, Vendula; Chroma, Magdalena; Sauer, Pavel; Bardon, Jan; Kolar, Milan

    2013-12-01

    Acinetobacter baumannii is an opportunistic pathogen posing an increased risk to hospitalized persons, causing nosocomial pneumonias, urinary tract infections and postoperative infections. Between 1 December 2011 and 30 September 2012, strains of Acinetobacter spp. were isolated from clinical samples obtained from hospitalized patients. Susceptibility to antibiotics was determined by the standard microdilution method and phenotypic testing was used to detect the presence of serine carbapenemases and metallo-beta-lactamases. The polymerase chain reaction was used to detect the genes encoding carbapenemases. Pulsed field gel electrophoresis was used to investigate the genetic relationship among the carbapenem resistant isolates of Acinetobacter baumannii. In three strains of Acinetobacter baumannii enzyme OXA-23 was detected. This positive result was confirmed by restriction analysis and sequencing. The study reported an OXA-23-producing strains of Acinetobacter baumannii in the Czech Republic. All three strains isolated from Military Hospital patients had a completely identical restriction profile, indicating clonal spread of a strain carrying serine carbapenemase OXA-23 in this health care facility. Moreover this was the first time the strain was detected in the country in patients who had not stayed abroad.

  12. Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method.

    PubMed

    Fernández-Pérez, Rocío; Torres, Carmen; Sanz, Susana; Ruiz-Larrea, Fernanda

    2010-12-01

    Strain typing of 103 acetic acid bacteria isolates from vinegars elaborated by the submerged method from ciders, wines and spirit ethanol, was carried on in this study. Two different molecular methods were utilised: pulsed field gel electrophoresis (PFGE) of total DNA digests with a number of restriction enzymes, and enterobacterial repetitive intergenic consensus (ERIC) - PCR analysis. The comparative study of both methods showed that restriction fragment PFGE of SpeI digests of total DNA was a suitable method for strain typing and for determining which strains were present in vinegar fermentations. Results showed that strains of the species Gluconacetobacter europaeus were the most frequent leader strains of fermentations by the submerged method in the studied vinegars, and among them strain R1 was the predominant one. Results showed as well that mixed populations (at least two different strains) occurred in vinegars from cider and wine, whereas unique strains were found in spirit vinegars, which offered the most stressing conditions for bacterial growth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Feline APOBEC3s, Barriers to Cross-Species Transmission of FIV?

    PubMed Central

    Zhang, Zeli; Gu, Qinyong; Marino, Daniela; Lee, Kyeong-Lim; Kong, Il-Keun; Häussinger, Dieter; Münk, Carsten

    2018-01-01

    The replication of lentiviruses highly depends on host cellular factors, which defines their species-specific tropism. Cellular restriction factors that can inhibit lentiviral replication were recently identified. Feline immunodeficiency virus (FIV) was found to be sensitive to several feline cellular restriction factors, such as apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) and tetherin, but FIV evolved to counteract them. Here, we describe the molecular mechanisms by which feline APOBEC3 restriction factors inhibit FIV replication and discuss the molecular interaction of APOBEC3 proteins with the viral antagonizing protein Vif. We speculate that feline APOBEC3 proteins could explain some of the observed FIV cross-species transmissions described in wild Felids. PMID:29642583

  14. Trypanosomatid protozoa in plants of southeastern Spain: characterization by analysis of isoenzymes, kinetoplast DNA, and metabolic behavior.

    PubMed

    Sánchez-Moreno, M; Fernández-Becerra, C; Fernández-Ramos, C; Luque, F; Rodriguez-Cabezas, M N; Dollet, M; Osuna, A

    1998-05-01

    Three flagellates of the family Trypanosomatidae were isolated from mango fruits (Mangifera indica) and from the stems of clover (Trifolium glomeratum) and Amaranth (Amaranthus retroflexus) in southeastern Spain and were adapted to in vitro culture in monophase media. The parasites showed an ultrastructural pattern similar to that of other species of the genus Phytomonas. Mango and clover isolates differed from amaranth isolates in ultrastructural terms. The isolates were characterized by isoenzymatic analysis and by kDNA analysis using five different restriction endonucleases. With eight of the nine enzymatic systems, mango and clover isolates were distinguished from those of amaranth. Nevertheless, with the enzymes malate dehydrogenase and superoxide dismutase, flagellates isolated from clover were differentiated from those isolated from mango. Electrophoretic and restriction-endonuclease analysis of kDNA minicircles showed similar restriction cleavage patterns for the isolates from mango and clover, whereas the patterns of the amaranth isolates differed. The results of the present study confirm that the strains isolated from mango and clover constitute a phylogenetically closely related group of plant trypanosomatids, which is more distantly related to the strain isolated from amaranth. The similarities in the results obtained for isolates from mango and clover foliage, on the one hand, and those obtained from tomato and cherimoya fruits (studied previously), on the other, as well as the geographic proximity of the different plants support the contention that only one strain is involved, albeit one strain that can parasitize different plants. Furthermore, some of the plants appear to act as reservoirs for the parasites. On the other hand, the metabolism studies using [1H]-nuclear magnetic resonance spectroscopy did not reveal that the catabolism of Phytomonas in general follows a pattern common to all the species or isolates. Phytomonas are incapable of completely degrading glucose, excreting a large part of their carbon skeleton into the medium as fermentative metabolites (acetate, ethanol, glycine, glycerol, and succinate).

  15. Reliable differentiation of Meyerozyma guilliermondii from Meyerozyma caribbica by internal transcribed spacer restriction fingerprinting.

    PubMed

    Romi, Wahengbam; Keisam, Santosh; Ahmed, Giasuddin; Jeyaram, Kumaraswamy

    2014-02-28

    Meyerozyma guilliermondii (anamorph Candida guilliermondii) and Meyerozyma caribbica (anamorph Candida fermentati) are closely related species of the genetically heterogenous M. guilliermondii complex. Conventional phenotypic methods frequently misidentify the species within this complex and also with other species of the Saccharomycotina CTG clade. Even the long-established sequencing of large subunit (LSU) rRNA gene remains ambiguous. We also faced similar problem during identification of yeast isolates of M. guilliermondii complex from indigenous bamboo shoot fermentation in North East India. There is a need for development of reliable and accurate identification methods for these closely related species because of their increasing importance as emerging infectious yeasts and associated biotechnological attributes. We targeted the highly variable internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) and identified seven restriction enzymes through in silico analysis for differentiating M. guilliermondii from M. caribbica. Fifty five isolates of M. guilliermondii complex which could not be delineated into species-specific taxonomic ranks by API 20 C AUX and LSU rRNA gene D1/D2 sequencing were subjected to ITS-restriction fragment length polymorphism (ITS-RFLP) analysis. TaqI ITS-RFLP distinctly differentiated the isolates into M. guilliermondii (47 isolates) and M. caribbica (08 isolates) with reproducible species-specific patterns similar to the in silico prediction. The reliability of this method was validated by ITS1-5.8S-ITS2 sequencing, mitochondrial DNA RFLP and electrophoretic karyotyping. We herein described a reliable ITS-RFLP method for distinct differentiation of frequently misidentified M. guilliermondii from M. caribbica. Even though in silico analysis differentiated other closely related species of M. guilliermondii complex from the above two species, it is yet to be confirmed by in vitro analysis using reference strains. This method can be used as a reliable tool for rapid and accurate identification of closely related species of M. guilliermondii complex and for differentiating emerging infectious yeasts of the Saccharomycotina CTG clade.

  16. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model.

    PubMed

    Morscher, Raphael Johannes; Aminzadeh-Gohari, Sepideh; Feichtinger, René Gunther; Mayr, Johannes Adalbert; Lang, Roland; Neureiter, Daniel; Sperl, Wolfgang; Kofler, Barbara

    2015-01-01

    Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer's oxidative phosphorylation system. Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2)]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content). Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention. Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens. Therefore, we propose that a ketogenic diet and/or calorie restriction should be further evaluated as a possible adjuvant therapy for patients undergoing treatment for neuroblastoma.

  17. Immunolocalization of two hydrogenosomal enzymes of Trichomonas vaginalis.

    PubMed

    Brugerolle, G; Bricheux, G; Coffe, G

    2000-01-01

    Three monoclonal antibodies specific for malic enzyme and for the alpha- and beta-subunits, respectively, of the succinyl-coenzyme A (CoA) synthetase of Trichomonas vaginalis were used to immunolocalize these proteins in the cell. All antibodies labeled the hydrogenosome matrix as determined both by immunofluorescence and by immunogold staining. There was no labeling on the cell surface or in any other cell compartment. These results support the idea that these proteins are restricted to a hydrogenosomal function and do not play a role as adhesins at the plasma membrane surface.

  18. Aromatase in the brain: not just for reproduction anymore.

    PubMed

    Garcia-Segura, L M

    2008-06-01

    Aromatase, the enzyme that synthesises oestrogens from androgen precursors, is expressed in the brain, where it has been classically associated with the regulation of neuroendocrine events and behaviours linked with reproduction. Recent findings, however, have revealed new unexpected roles for brain aromatase, indicating that the enzyme regulates synaptic activity, synaptic plasticity, neurogenesis and the response of neural tissue to injury, and may contribute to control nonreproductive behaviours, mood and cognition. Therefore, the function of brain aromatase is not restricted to the regulation of reproduction as previously thought.

  19. Unexplained high thyroid stimulating hormone: a "BIG" problem.

    PubMed

    Mendoza, Heidi; Connacher, Alan; Srivastava, Rajeev

    2009-01-01

    Macro-hormones and macro-enzymes are high molecular weight conjugates of hormones or enzymes, respectively, often with immunoglobulins. These are referred to as macromolecular complexes, and may cause artefactually elevated biochemical tests results. Macro enzymes of the most commonly measured serum enzymes have been identified and are recognised as a source of elevated measurements that may cause diagnostic confusion; macro-creatine kinase and macro-amylase are the two better known macro-enzymes in clinical practice. Literature on macro-hormones is largely restricted to macro-prolactin. We present a case of a clinically euthyroid patient, who had persistently elevated thyroid stimulating hormone (TSH) but free thyroxine within the reference limits. She underwent repeated thyroid investigations and thyroid hormone interference studies, until macro-TSH was identified as the most likely cause of unexplained elevated TSH. Following the identification and characterisation of this biochemical abnormality, she is no longer subject to repeated blood tests for assessment of thyroid function; the patient currently remains clinically euthyroid.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akinosho, Hannah; Yee, Kelsey; Rodriguez, Miguel

    Because cellulosic ethanol production remains cost-prohibitive„ advances in consolidated bioprocessing (CBP) have been directed towards lifting this restriction. CBP reduces the need for added enzymes and can potentially slash ethanol production costs through process integration. Clostridium thermocellum, a CBP microorganism, organizes its enzymes in a multi-enzyme complex - a stark contrast to fungal enzymes. Nonetheless, recalcitrance may limit the extent of biomass deconstruction. Here in this study, six Populus were treated with C. thermocellum (ATCC 27405) and characterized to determine structural changes that resulted from CBP. The 2D HSQC NMR spectra of lignin-enriched residues revealed that higher S/G ratio (2.6)more » and fewer carbon-carbon interunit linkages (generally 2–5%) were present in the top performing poplar. Furthermore, cellulose degree of polymerization data suggests that C. thermocellum likely circumvents long chain cellulose, while cellulose crystallinity and hemicellulose molecular weight data do not provide a direct indication of features connected to recalcitrance. Hence, C. thermocellum is similarly impacted by the proposed lignin properties that negatively impact biomass deconstruction using fungal enzymes.« less

  1. Small heat shock protein AgsA: an effective stabilizer of enzyme activities.

    PubMed

    Tomoyasu, Toshifumi; Tabata, Atsushi; Ishikawa, Yoko; Whiley, Robert A; Nagamune, Hideaki

    2013-01-01

    A small heat shock protein, AgsA, possesses chaperone activity that can reduce the amount of heat-aggregated protein in vivo, and suppress the aggregation of chemical- and heat-denatured proteins in vitro. Therefore, we examined the ability of AgsA to stabilize the activity of several enzymes by using this chaperone activity. We observed that AgsA can stabilize the enzymatic activities of Renilla (Renilla reniformis) luciferase, firefly (Photinus pyralis) luciferase, and β-galactosidase, and showed comparable or greater stabilization of these enzymes than bovine serum albumin (BSA), a well-known stabilizer of enzyme activities. In particular, AgsA revealed better stabilization of Renilla luciferase and β-galactosidase than BSA under disulfide bond-reducing conditions with dithiothreitol. In addition, AgsA also increased the enzymatic performance of β-galactosidase and various restriction enzymes to a comparable or greater extent than BSA. These data indicate that AgsA may be useful as a general stabilizer of enzyme activities. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Adjustment of Conformational Flexibility is a Key Event in the Thermal Adaptation of Proteins

    NASA Astrophysics Data System (ADS)

    Zavodszky, Peter; Kardos, Jozsef; Svingor, Adam; Petsko, Gregory A.

    1998-06-01

    3-Isopropylmalate dehydrogenase (IPMDH, E.C. 1.1.1.85) from the thermophilic bacterium Thermus thermophilus HB8 is homologous to IPMDH from the mesophilic Escherichia coli, but has an approximately 17 degrees C higher melting temperature. Its temperature optimum is 22-25 degrees C higher than that of the E. coli enzyme; however, it is hardly active at room temperature. The increased conformational rigidity required to stabilize the thermophilic enzyme against heat denaturation might explain its different temperature-activity profile. Hydrogen/deuterium exchange studies were performed on this thermophilic-mesophilic enzyme pair to compare their conformational flexibilities. It was found that Th. thermophilus IPMDH is significantly more rigid at room temperature than E. coli IPMDH, whereas the enzymes have nearly identical flexibilities under their respective optimal working conditions, suggesting that evolutionary adaptation tends to maintain a ``corresponding state'' regarding conformational flexibility. These observations confirm that conformational fluctuations necessary for catalytic function are restricted at room temperature in the thermophilic enzyme, suggesting a close relationship between conformational flexibility and enzyme function.

  3. Effects of chronic caloric restriction on kidney and heart redox status and antioxidant enzyme activities in Wistar rats

    PubMed Central

    Dutra, Márcio Ferreira; Bristot, Ivi Juliana; Batassini, Cristiane; Cunha, Núbia Broetto; Vizuete, Adriana Fernanda Kuckartz; de Souza, Daniela Fraga; Moreira, José Cláudio Fonseca; Gonçalves, Carlos-Alberto

    2012-01-01

    Caloric restriction (CR) has been associated with health benefits and these effects have been attributed, in part, to modulation of oxidative status by CR; however, data are still controversial. Here, we investigate the effects of seventeen weeks of chronic CR on parameters of oxidative damage/modification of proteins and on antioxidant enzyme activities in cardiac and kidney tissues. Our results demonstrate that CR induced an increase in protein carbonylation in the heart without changing the content of sulfhydryl groups or the activities of superoxide dismutase and catalase (CAT). Moreover, CR caused an increase in CAT activity in kidney, without changing other parameters. Protein carbonylation has been associated with oxidative damage and functional impairment; however, we cannot exclude the possibility that, under our conditions, this alteration indicates a different functional meaning in the heart tissue. In addition, we reinforce the idea that CR can increase CAT activity in the kidney. [BMB Reports 2012; 45(11): 671-676] PMID:23187008

  4. Structure of the EndoMS-DNA Complex as Mismatch Restriction Endonuclease.

    PubMed

    Nakae, Setsu; Hijikata, Atsushi; Tsuji, Toshiyuki; Yonezawa, Kouki; Kouyama, Ken-Ichi; Mayanagi, Kouta; Ishino, Sonoko; Ishino, Yoshizumi; Shirai, Tsuyoshi

    2016-11-01

    Archaeal NucS nuclease was thought to degrade the single-stranded region of branched DNA, which contains flapped and splayed DNA. However, recent findings indicated that EndoMS, the orthologous enzyme of NucS, specifically cleaves double-stranded DNA (dsDNA) containing mismatched bases. In this study, we determined the structure of the EndoMS-DNA complex. The complex structure of the EndoMS dimer with dsDNA unexpectedly revealed that the mismatched bases were flipped out into binding sites, and the overall architecture most resembled that of restriction enzymes. The structure of the apo form was similar to the reported structure of Pyrococcus abyssi NucS, indicating that movement of the C-terminal domain from the resting state was required for activity. In addition, a model of the EndoMS-PCNA-DNA complex was preliminarily verified with electron microscopy. The structures strongly support the idea that EndoMS acts in a mismatch repair pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Overview of post Cohen-Boyer methods for single segment cloning and for multisegment DNA assembly

    PubMed Central

    Sands, Bryan; Brent, Roger

    2016-01-01

    In 1973, Cohen and coworkers published a foundational paper describing the cloning of DNA fragments into plasmid vectors. In it, they used DNA segments made by digestion with restriction enzymes and joined these in vitro with DNA ligase. These methods established working recombinant DNA technology and enabled the immediate start of the biotechnology industry. Since then, “classical” recombinant DNA technology using restriction enzymes and DNA ligase has matured. At the same time, researchers have developed numerous ways to generate large, complex, multisegment DNA constructions that offer advantages over classical techniques. Here, we provide an overview of “post-Cohen-Boyer” techniques used for cloning single segments into vectors (T/A, Topo cloning, Gateway and Recombineering) and for multisegment DNA assembly (Biobricks, Golden Gate, Gibson, Yeast homologous recombination in vivo, and Ligase Cycling Reaction). We compare and contrast these methods and also discuss issues that researchers should consider before choosing a particular multisegment DNA assembly method. PMID:27152131

  6. Identification of Burkholderia spp. in the Clinical Microbiology Laboratory: Comparison of Conventional and Molecular Methods

    PubMed Central

    van Pelt, Cindy; Verduin, Cees M.; Goessens, Wil H. F.; Vos, Margreet C.; Tümmler, Burkhard; Segonds, Christine; Reubsaet, Frans; Verbrugh, Henri; van Belkum, Alex

    1999-01-01

    Cystic fibrosis (CF) predisposes patients to bacterial colonization and infection of the lower airways. Several species belonging to the genus Burkholderia are potential CF-related pathogens, but microbiological identification may be complicated. This situation is not in the least due to the poorly defined taxonomic status of these bacteria, and further validation of the available diagnostic assays is required. A total of 114 geographically diverse bacterial isolates, previously identified in reference laboratories as Burkholderia cepacia (n = 51), B. gladioli (n = 14), Ralstonia pickettii (n = 6), B. multivorans (n = 2), Stenotrophomonas maltophilia (n = 3), and Pseudomonas aeruginosa (n = 11), were collected from environmental, clinical, and reference sources. In addition, 27 clinical isolates putatively identified as Burkholderia spp. were recovered from the sputum of Dutch CF patients. All isolates were used to evaluate the accuracy of two selective growth media, four systems for biochemical identification (API 20NE, Vitek GNI, Vitek NFC, and MicroScan), and three different PCR-based assays. The PCR assays amplify different parts of the ribosomal DNA operon, either alone or in combination with cleavage by various restriction enzymes (PCR-restriction fragment length polymorphism [RFLP] analysis). The best system for the biochemical identification of B. cepacia appeared to be the API 20NE test. None of the biochemical assays successfully grouped the B. gladioli strains. The PCR-RFLP method appeared to be the optimal method for accurate nucleic acid-mediated identification of the different Burkholderia spp. With this method, B. gladioli was also reliably classified in a separate group. For the laboratory diagnosis of B. cepacia, we recommend parallel cultures on blood agar medium and selective agar plates. Further identification of colonies with a Burkholderia phenotype should be performed with the API 20NE test. For final confirmation of species identities, PCR amplification of the small-subunit rRNA gene followed by RFLP analysis with various enzymes is recommended. PMID:10364579

  7. A heuristic approach to the analysis of enzymic catalysis: reaction of delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-alpha-aminobutyrate and delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-allylglycine catalyzed by isopenicillin N synthase isozymes.

    PubMed

    Blackburn, J M; Sutherland, J D; Baldwin, J E

    1995-06-06

    Isopenicillin N synthase (IPNS) catalyzes the oxidative cyclization of delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine to isopenicillin N. It is proposed that the multiple products produced from certain substrate analogues result from pathway branching after formation of a ferryl oxene intermediate. We have been interested in ascertaining the reasons for multiple product formation. One possibility is that the products are predisposed toward formation once the beta-lactam ring and the ferryl oxene are produced. Alternately, the products may be persuaded into being by the enzyme restricting conformations such that otherwise less favorable chemistry can take place. With the existing description of the IPNS catalytic cycle, this fundamental question has not been answerable. We describe here the application of a heuristic method to resolve this key issue. It was reasoned that by comparing the ratios of products formed by a set of perturbed IPNS variants it might be possible to generate qualitative information about the relative magnitude of certain activation parameters. If certain product ratios are affected but others are not, then it should be possible to say which steps in the reaction are dictated merely by chemical fundamentals and which steps are directly effected by the enzyme. In this paper we report the high-level expression, purification, and characterization of four IPNS isozymes. Comparison of the product ratios obtained on incubation of unnatural substrate analogues with four IPNS isozymes corresponding to perturbed active site variants shows substantial variation in some cases and little in others. Interpretation of the results obtained with delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-alpha-aminobutyrate (ACAB) allows conclusions to be drawn regarding the role of the enzyme in restricting available conformations of the natural substrate to disfavor certain otherwise chemically favorable pathways and hence products. The results obtained with delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-allylglycine, while rather more complex, substantiate the conclusions drawn from the ACAB data. A major conclusion is that, in the oxidation of ACV, IPNS is a negative catalyst of cepham formation but a positive catalyst of penam formation.

  8. Two-dimensional enzyme diffusion in laterally confined DNA monolayers.

    PubMed

    Castronovo, Matteo; Lucesoli, Agnese; Parisse, Pietro; Kurnikova, Anastasia; Malhotra, Aseem; Grassi, Mario; Grassi, Gabriele; Scaggiante, Bruna; Casalis, Loredana; Scoles, Giacinto

    2011-01-01

    Addressing the effects of confinement and crowding on biomolecular function may provide insight into molecular mechanisms within living organisms, and may promote the development of novel biotechnology tools. Here, using molecular manipulation methods, we investigate restriction enzyme reactions with double-stranded (ds)DNA oligomers confined in relatively large (and flat) brushy matrices of monolayer patches of controlled, variable density. We show that enzymes from the contacting solution cannot access the dsDNAs from the top-matrix interface, and instead enter at the matrix sides to diffuse two-dimensionally in the gap between top- and bottom-matrix interfaces. This is achieved by limiting lateral access with a barrier made of high-density molecules that arrest enzyme diffusion. We put forward, as a possible explanation, a simple and general model that relates these data to the steric hindrance in the matrix, and we briefly discuss the implications and applications of this strikingly new phenomenon.

  9. Effects of Vitamin D Receptor Activation and Dietary Sodium Restriction on Residual Albuminuria in CKD: The ViRTUE-CKD Trial.

    PubMed

    Keyzer, Charlotte A; van Breda, G Fenna; Vervloet, Marc G; de Jong, Maarten A; Laverman, Gozewijn D; Hemmelder, Marc H; Janssen, Wilbert M T; Lambers Heerspink, Hiddo J; Kwakernaak, Arjan J; Bakker, Stephan J L; Navis, Gerjan; de Borst, Martin H

    2017-04-01

    Reduction of residual albuminuria during single-agent renin-angiotensin-aldosterone blockade is accompanied by improved cardiorenal outcomes in CKD. We studied the individual and combined effects of the vitamin D receptor activator paricalcitol (PARI) and dietary sodium restriction on residual albuminuria in CKD. In a multicenter, randomized, placebo (PLAC)-controlled, crossover trial, 45 patients with nondiabetic CKD stages 1-3 and albuminuria >300 mg/24 h despite ramipril at 10 mg/d and BP<140/90 mmHg were treated for four 8-week periods with PARI (2 μ g/d) or PLAC, each combined with a low-sodium (LS) or regular sodium (RS) diet. We analyzed the treatment effect by linear mixed effect models for repeated measurements. In the intention-to-treat analysis, albuminuria (geometric mean) was 1060 (95% confidence interval, 778 to 1443) mg/24 h during RS + PLAC and 990 (95% confidence interval, 755 to 1299) mg/24 h during RS + PARI ( P =0.20 versus RS + PLAC). LS + PLAC reduced albuminuria to 717 (95% confidence interval, 512 to 1005) mg/24 h ( P <0.001 versus RS + PLAC), and LS + PARI reduced albuminuria to 683 (95% confidence interval, 502 to 929) mg/24 h ( P <0.001 versus RS + PLAC). The reduction by PARI beyond the effect of LS was nonsignificant ( P =0.60). In the per-protocol analysis restricted to participants with ≥95% compliance with study medication, PARI did provide further albuminuria reduction ( P =0.04 LS + PARI versus LS + PLAC). Dietary adherence was good as reflected by urinary excretion of 174±64 mmol Na + per day in the combined RS groups and 108±61 mmol Na + per day in the LS groups ( P <0.001). In conclusion, moderate dietary sodium restriction substantially reduced residual albuminuria during fixed dose angiotensin-converting enzyme inhibition. The additional effect of PARI was small and nonsignificant. Copyright © 2017 by the American Society of Nephrology.

  10. Effects of Vitamin D Receptor Activation and Dietary Sodium Restriction on Residual Albuminuria in CKD: The ViRTUE-CKD Trial

    PubMed Central

    Keyzer, Charlotte A.; van Breda, G. Fenna; Vervloet, Marc G.; de Jong, Maarten A.; Laverman, Gozewijn D.; Hemmelder, Marc H.; Janssen, Wilbert M.T.; Lambers Heerspink, Hiddo J.; Kwakernaak, Arjan J.; Bakker, Stephan J.L.; Navis, Gerjan

    2017-01-01

    Reduction of residual albuminuria during single–agent renin-angiotensin-aldosterone blockade is accompanied by improved cardiorenal outcomes in CKD. We studied the individual and combined effects of the vitamin D receptor activator paricalcitol (PARI) and dietary sodium restriction on residual albuminuria in CKD. In a multicenter, randomized, placebo (PLAC)–controlled, crossover trial, 45 patients with nondiabetic CKD stages 1–3 and albuminuria >300 mg/24 h despite ramipril at 10 mg/d and BP<140/90 mmHg were treated for four 8-week periods with PARI (2 μg/d) or PLAC, each combined with a low-sodium (LS) or regular sodium (RS) diet. We analyzed the treatment effect by linear mixed effect models for repeated measurements. In the intention-to-treat analysis, albuminuria (geometric mean) was 1060 (95% confidence interval, 778 to 1443) mg/24 h during RS + PLAC and 990 (95% confidence interval, 755 to 1299) mg/24 h during RS + PARI (P=0.20 versus RS + PLAC). LS + PLAC reduced albuminuria to 717 (95% confidence interval, 512 to 1005) mg/24 h (P<0.001 versus RS + PLAC), and LS + PARI reduced albuminuria to 683 (95% confidence interval, 502 to 929) mg/24 h (P<0.001 versus RS + PLAC). The reduction by PARI beyond the effect of LS was nonsignificant (P=0.60). In the per-protocol analysis restricted to participants with ≥95% compliance with study medication, PARI did provide further albuminuria reduction (P=0.04 LS + PARI versus LS + PLAC). Dietary adherence was good as reflected by urinary excretion of 174±64 mmol Na+ per day in the combined RS groups and 108±61 mmol Na+ per day in the LS groups (P<0.001). In conclusion, moderate dietary sodium restriction substantially reduced residual albuminuria during fixed dose angiotensin–converting enzyme inhibition. The additional effect of PARI was small and nonsignificant. PMID:27856633

  11. Restriction-Site-Specific PCR as a Rapid Test To Detect Enterohemorrhagic Escherichia coli O157:H7 Strains in Environmental Samples

    PubMed Central

    Kimura, Richard; Mandrell, Robert E.; Galland, John C.; Hyatt, Doreene; Riley, Lee W.

    2000-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important food-borne pathogen in industrialized countries. We developed a rapid and simple test for detecting E. coli O157:H7 using a method based on restriction site polymorphisms. Restriction-site-specific PCR (RSS-PCR) involves the amplification of DNA fragments using primers based on specific restriction enzyme recognition sequences, without the use of endonucleases, to generate a set of amplicons that yield “fingerprint” patterns when resolved electrophoretically on an agarose gel. The method was evaluated in a blinded study of E. coli isolates obtained from environmental samples collected at beef cattle feedyards. The 54 isolates were all initially identified by a commonly used polyclonal antibody test as belonging to O157:H7 serotype. They were retested by anti-O157 and anti-H7 monoclonal antibody enzyme-linked immunosorbent assay (ELISA). The RSS-PCR method identified all 28 isolates that were shown to be E. coli O157:H7 by the monoclonal antibody ELISA as belonging to the O157:H7 serotype. Of the remaining 26 ELISA-confirmed non-O157:H7 strains, the method classified 25 strains as non-O157:H7. The specificity of the RSS-PCR results correlated better with the monoclonal antibody ELISA than with the polyclonal antibody latex agglutination tests. The RSS-PCR method may be a useful test to distinguish E. coli O157:H7 from a large number of E. coli isolates from environmental samples. PMID:10831431

  12. Chromosome map of the thermophilic archaebacterium Thermococcus celer

    NASA Technical Reports Server (NTRS)

    Noll, K. M.; Woese, C. R. (Principal Investigator)

    1989-01-01

    A physical map for the chromosome of the thermophilic archaebacterium Thermococcus celer Vu13 has been constructed. Thirty-four restriction endonucleases were tested for their ability to generate large restriction fragments from the chromosome of T. celer. Of these, the enzymes NheI, SpeI, and XbaI yielded the fewest fragments when analyzed by pulsed-field electrophoresis. NheI and SpeI each gave 5 fragments, while XbaI gave 12. The size of the T. celer chromosome was determined from the sum of the apparent sizes of restriction fragments derived from single and double digests by using these enzymes and was found to be 1,890 +/- 27 kilobase pairs. Partial and complete digests allowed the order of all but three small (less than 15 kilobase pairs) fragments to be deduced. These three fragments were assigned positions by using hybridization probes derived from these restriction fragments. The positions of the other fragments were confirmed by using hybridization probes derived in the same manner. The positions of the 5S, 16S, and 23S rRNA genes as well as the 7S RNA gene were located on this map by using cloned portions of these genes as hybridization probes. The 5S rRNA gene was localized 48 to 196 kilobases from the 5' end of the 16S gene. The 7S RNA gene was localized 190 to 504 kilobases from the 3' end of the 23S gene. These analyses demonstrated that the chromosome of T. celer is a single, circular DNA molecule. This is the first such demonstration of the structure of an archaebacterial chromosome.

  13. DNA Investigations.

    ERIC Educational Resources Information Center

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  14. Molecular Investigation of Tularemia Outbreaks, Spain, 1997–2008

    PubMed Central

    Ariza-Miguel, Jaime; Johansson, Anders; Fernández-Natal, María Isabel; Martínez-Nistal, Carmen; Orduña, Antonio; Rodríguez-Ferri, Elías F.; Hernández, Marta

    2014-01-01

    Tularemia outbreaks occurred in northwestern Spain in 1997–1998 and 2007–2008 and affected >1,000 persons. We assessed isolates involved in these outbreaks by using pulsed-field gel electrophoresis with 2 restriction enzymes and multilocus variable number tandem repeat analysis of 16 genomic loci of Francisella tularensis, the cause of this disease. Isolates were divided into 3 pulsotypes by pulsed-field gel electrophoresis and 8 allelic profiles by multilocus variable number tandem repeat analysis. Isolates obtained from the second tularemia outbreak had the same genotypes as isolates obtained from the first outbreak. Both outbreaks were caused by genotypes of genetic subclade B.Br:FTNF002–00, which is widely distributed in countries in central and western Europe. Thus, reemergence of tularemia in Spain was not caused by the reintroduction of exotic strains, but probably by persistence of local reservoirs of infection. PMID:24750848

  15. Xylella fastidiosa esterase rather than hydroxynitrile lyase.

    PubMed

    Torrelo, Guzman; Ribeiro de Souza, Fayene Zeferino; Carrilho, Emanuel; Hanefeld, Ulf

    2015-03-02

    In 2009, we reported that the product of the gene SCJ21.16 (XFa0032) from Xylella fastidiosa, a xylem-restricted plant pathogen that causes a range of diseases in several important crops, encodes a protein (XfHNL) with putative hydroxynitrile lyase activity. Sequence analysis and activity tests indicated that XfHNL exhibits an α/β-hydrolase fold and could be classified as a member of the family of FAD-independent HNLs. Here we provide a more detailed sequence analysis and new experimental data. Using pure heterologously expressed XfHNL we show that this enzyme cannot catalyse the cleavage/synthesis of mandelonitrile and that this protein is in fact a non-enantioselective esterase. Homology modelling and ligand docking simulations were used to study the active site and support these results. This finding could help elucidate the common ancestor of esterases and hydroxynitrile lyases with an α/β -hydrolase fold. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.

    PubMed

    Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P

    1986-02-01

    Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations.

  17. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.

    PubMed Central

    Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P

    1986-01-01

    Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations. Images PMID:3003377

  18. Combined use of ribotyping, PFGE typing and IS431 typing in the discrimination of nosocomial strains of methicillin-resistant Staphylococcus aureus.

    PubMed

    Yoshida, T; Kondo, N; Hanifah, Y A; Hiramatsu, K

    1997-01-01

    We have previously reported the phenotypic characterization of methicillin-resistant Staphylococcus aureus (MRSA) clinical strains isolated in Malaya University Hospital in the period 1987 to 1989 using antibiogram, coagulase typing, plasmid profiles, and phage typing. Here, we report the analysis of the same strains with three genotyping methods; ribotyping, pulsed-field gel electrophoresis (PFGE) typing, and IS431 typing (a restriction enzyme fragment length polymorphism analysis using an IS431 probe). Ribotyping could discriminate 46 clinical MRSA strains into 5 ribotypes, PFGE typing into 22 types, and IS431 typing into 15 types. Since the differences of the three genotyping patterns from strain to strain were quite independent from one another, the combined use of the three genotyping methods could discriminate 46 strains into 39 genotypes. Thus, the powerful discriminatory ability of the combination was demonstrated.

  19. Lotus japonicus flowers are defended by a cyanogenic β-glucosidase with highly restricted expression to essential reproductive organs.

    PubMed

    Lai, Daniela; Pičmanová, Martina; Abou Hachem, Maher; Motawia, Mohammed Saddik; Olsen, Carl Erik; Møller, Birger Lindberg; Rook, Fred; Takos, Adam M

    2015-09-01

    Flowers and leaves of Lotus japonicus contain α-, β-, and γ-hydroxynitrile glucoside (HNG) defense compounds, which are bioactivated by β-glucosidase enzymes (BGDs). The α-HNGs are referred to as cyanogenic glucosides because their hydrolysis upon tissue disruption leads to release of toxic hydrogen cyanide gas, which can deter herbivore feeding. BGD2 and BGD4 are HNG metabolizing BGD enzymes expressed in leaves. Only BGD2 is able to hydrolyse the α-HNGs. Loss of function mutants of BGD2 are acyanogenic in leaves but fully retain cyanogenesis in flowers pointing to the existence of an alternative cyanogenic BGD in flowers. This enzyme, named BGD3, is identified and characterized in this study. Whereas all floral tissues contain α-HNGs, only those tissues in which BGD3 is expressed, the keel and the enclosed reproductive organs, are cyanogenic. Biochemical analysis, active site architecture molecular modelling, and the observation that L. japonicus accessions lacking cyanogenic flowers contain a non-functional BGD3 gene, all support the key role of BGD3 in floral cyanogenesis. The nectar of L. japonicus flowers was also found to contain HNGs and additionally their diglycosides. The observed specialisation in HNG based defence in L. japonicus flowers is discussed in the context of balancing the attraction of pollinators with the protection of reproductive structures against herbivores.

  20. Evidence for N- and C-terminal processing of a plant defense-related enzyme: Primary structure of tobacco prepro-β-1,3-glucanase

    PubMed Central

    Shinshi, H.; Wenzler, H.; Neuhaus, J.-M.; Felix, G.; Hofsteenge, J.; Meins, F.

    1988-01-01

    Tobacco glucan endo-1,3-β-glucosidase (β-1,3-glucanase; 1,3-β-D-glucan glucanohydrolase; EC 3.2.1.39) exhibits complex hormonal and developmental regulation and is induced when plants are infected with pathogens. We determined the primary structure of this enzyme from the nucleotide sequence of five partial cDNA clones and the amino acid sequence of five peptides covering a total of 70 residues. β-1,3-Glucanase is produced as a 359-residue preproenzyme with an N-terminal hydrophobic signal peptide of 21 residues and a C-terminal extension of 22 residues containing a putative N-glycosylation site. The results of pulse-chase experiments with tunicamycin provide evidence that the first step in processing is loss of the signal peptide and addition of an oligosaccharide side chain. The glycosylated intermediate is further processed with the loss of the oligosaccharide side chain and C-terminal extension to give the mature enzyme. Heterogeneity in the sequences of cDNA clones and of mature protein and in Southern blot analysis of restriction endonuclease fragments indicates that tobacco β-1,3-glucanase is encoded by a small gene family. Two or three members of this family appear to have their evolutionary origin in each of the progenitors of tobacco, Nicotiana sylvestris and Nicotiana tomentosiformis. Images PMID:16593965

  1. Changes in subcellular distribution and antioxidant compounds involved in Pb accumulation and detoxification in Neyraudia reynaudiana.

    PubMed

    Zhou, Chuifan; Huang, Meiying; Li, Ying; Luo, Jiewen; Cai, Li Ping

    2016-11-01

    The effects of increasing concentrations of lead (Pb) on Pb accumulation, subcellular distribution, ultrastructure, photosynthetic characteristics, antioxidative enzyme activity, malondialdehyde content, and phytochelatin contents were investigated in Neyraudia reynaudiana seedlings after a 21-day exposure. A Pb analysis at the subcellular level showed that the majority of Pb in the roots was associated with the cell wall fraction, followed by the soluble fraction. In contrast, the majority of the Pb in the leaves was located in the soluble fraction based on transmission electron microscopy and energy dispersive X-ray analyses. Furthermore, high Pb concentrations adversely affected N. reynaudiana cellular structure. The changes in enzyme activity suggested that the antioxidant system plays an important role in eliminating or alleviating Pb toxicity, both in the roots and leaves of N. reynaudiana. Additionally, the phytochelatin contents in the roots and leaves differed significantly between Pb-spiked treatments and control plants. Our results provide strong evidence that cell walls restrict Pb uptake into the protoplasm and establish an important protective barrier. Subsequent vacuolar compartmentalization in leaves could isolate Pb from other substances in the cell and minimize Pb toxicity in other organelles over time. These results also demonstrated that the levels of antioxidant enzymes and phytochelatin in leaves and roots are correlated with Pb toxicity. These detoxification mechanisms promote Pb tolerance in N. reynaudiana.

  2. Nucleosome stability and accessibility of its DNA to proteins.

    PubMed

    Prinsen, Peter; Schiessel, Helmut

    2010-12-01

    In this paper we present a theoretical description of the accessibility of nucleosomal DNA to proteins. We reassess the classical analysis of Polach and Widom (1995) who demonstrated that proteins (in their case restriction enzymes) gain access to buried binding sites inside a nucleosome through spontaneous unwrapping of DNA from the protein spool. We introduce a straightforward nucleosome model the predictions of which show good agreement with experimental data. By fitting the model to the data we obtain the values of two quantities: the adsorption energy to the histone octamer per length of DNA and the extra length that the DNA needs to unwrap beyond the binding site of an enzyme before the enzyme can act as effectively as on bare DNA. Our results indicate that the effective binding energy is surprisingly low which suggests that the nucleosomal parameters are tuned such that two large energies, the DNA bending energy and the pure adsorption energy, nearly cancel. This paper is based on a lecture presented at the summer school "DNA and Chromosomes 2009: Physical and Biological Applications". We follow the lecture as closely as possible which is why we spend more time than usual on issues that are already well-known in the field, and why we discuss some well-known results from a different perspective. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  3. Identification of a new mutation in platelet glycoprotein IX (GPIX) in a patient with Bernard-Soulier syndrome.

    PubMed

    Rivera, C E; Villagra, J; Riordan, M; Williams, S; Lindstrom, K J; Rick, M E

    2001-01-01

    We describe a new mutation in glycoprotein IX (GPIX) in a patient with Bernard-Soulier syndrome (BSS). Sequencing of GPIX revealed a homozygous (T-->C) transition at nucleotide 1717 (GenBank/HUMGPIX/M80478), resulting in a Cys(8) (TGT)-->Arg (CGT) replacement in the mature peptide. DNA restriction enzyme analysis using BsaAI revealed that the patient was homozygous and that his parents were heterozygous for the defect. This mutation disrupts a putative disulphide bond between the Cys(8) and Cys(12) that would alter the secondary structure of GPIX and which probably accounts for the absence of the GPIb/IX/V complex from the platelet surface in this patient.

  4. Pathovars of Pseudomonas syringae Causing Bacterial Brown Spot and Halo Blight in Phaseolus vulgaris L. Are Distinguishable by Ribotyping

    PubMed Central

    González, Ana J.; Landeras, Elena; Mendoza, M. Carmen

    2000-01-01

    Ribotyping was evaluated as a method to differentiate between Pseudomonas syringae pv. phaseolicola and pv. syringae strains causing bacterial brown spot and halo blight diseases in Phaseolus vulgaris L. Ribotyping, with restriction enzymes BglI and SalI and using the Escherichia coli rrnB operon as the probe, differentiated 11 and 14 ribotypes, respectively, and a combination of data from both procedures yielded 19 combined ribotypes. Cluster analysis of the combined ribotypes differentiated the pathovars phaseolicola and syringae, as well as different clonal lineages within these pathovars. The potential of ribotyping to screen for correlations between lineages and factors such as geographical region and/or bean varieties is also reported. PMID:10653764

  5. Slime production by clinical isolates of Blastoschizomyces capitatus from patients with hematological malignancies and catheter-related fungemia.

    PubMed

    D'Antonio, D; Parruti, G; Pontieri, E; Di Bonaventura, G; Manzoli, L; Sferra, R; Vetuschi, A; Piccolomini, R; Romano, F; Staniscia, T

    2004-10-01

    In order to expand the present knowledge of the pathogenic potential of Blastoschizomyces capitatus in central venous catheter (CVC)-related bloodstream infections, six strains of the organism recovered from three leukemic patients with CVC-related fungemia in different years were investigated. Isolates and control strains were tested for their genetic relatedness and for their ability to produce slime in glucose-containing solutions. DNA restriction enzyme analysis revealed that all strains of B. capitatus were identical, whereas slime production assays and examination of ex vivo material showed that they were able to produce large amounts of slime. Slime production may therefore play a relevant pathogenic role in cases of CVC-related fungemia caused by B. capitatus.

  6. Effects of polychlorinated biphenyls and nutritional restriction on barbituate-induced sleeping times and selected blood characteristics in raccoons (Procyon lotor)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montz, W.E.; Card, W.C.; Kirkpatrick, R.L.

    1982-05-01

    Hepatic microsomal enzyme activity was induced in wild-trapped raccoons (Procyon lotor) and selected blood characteristics were measured in an effort to detect responses due to PCB ingestion, nutritional restriction, and their interactions. Barbiturate-induced sleeping times were used as an index of hepatic microsomal activity because they have been used reliably by other workers. Blood characteristics examined in the study were nonesterified fatty acids (NEFA), cholesterol, and three ketone bodies (D-(-)-3-hydroxybutyrate, acetoacetate, and acetone). Results show a reduction in sleeping times, elevated NEFA and D-(-)-3-hydroxybutyrate concentrations, and lower cholesterol concentrations in PCB-treated groups. A highly significant interaction between PCB treatment andmore » nutritional restriction was observed in acetoacetate concentrations. (JMT)« less

  7. A 405-kb cosmid contig and HindIII restriction map of the progressive myoclonus epilepsy type 1 (EPM1) candidate region in 21q22.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafreniere, R.G.; Rouleau, G.A.; De Jong, P.J.

    1995-09-01

    As a step toward identifying the molecular defect in patients afflicted with progressive myoclonus epilepsy type 1 (EPM1), we have assembled a cosmid contig of the candidate EPM1 region in 21q22.3. The contig constitutes a collection of 87 different cosmids spanning 405 kb based on a derived HindIII restriction map. Potential CpG-rich islands have been identified based on the restriction map generated from eight different rare-cutting enzymes. This contig contains the genetic material required for the isolation of expressed sequences and the identification of the gene defective in EPM1 and possibly other disorders mapping to this region. 15 refs., 1more » fig.« less

  8. The "Frankenplasmid" Lab: An Investigative Exercise for Teaching Recombinant DNA Methods

    ERIC Educational Resources Information Center

    Dean, Derek M.; Wilder, Jason A.

    2011-01-01

    We describe an investigative laboratory module designed to give college undergraduates strong practical and theoretical experience with recombinant DNA methods within 3 weeks. After deducing restriction enzyme maps for two different plasmids, students ligate the plasmids together in the same reaction, transform "E. coli" with this mixture of…

  9. Microbial genome sequencing using optical mapping and Illumina sequencing

    USDA-ARS?s Scientific Manuscript database

    Introduction Optical mapping is a technique in which strands of genomic DNA are digested with one or more restriction enzymes, and a physical map of the genome constructed from the resulting image. In outline, genomic DNA is extracted from a pure culture, linearly arrayed on a specialized glass sli...

  10. Restriction digest screening facilitates efficient detection of site-directed mutations introduced by CRISPR in C. albicans UME6.

    PubMed

    Evans, Ben A; Smith, Olivia L; Pickerill, Ethan S; York, Mary K; Buenconsejo, Kristen J P; Chambers, Antonio E; Bernstein, Douglas A

    2018-01-01

    Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn 2+ -binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans . Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest.

  11. The effects of beta-adrenergic blockade on body composition in free-fed and diet-restricted rats.

    PubMed

    Ji, L L; Doan, T D; Lennon, D L; Nagle, F J; Lardy, H A

    1987-04-01

    The effects of the non-selective beta-adrenergic blocking agent propranolol (known for its anti-lipolytic activity) on body composition were investigated in growing male rats on normal unrestricted diet (N = 7) and on diet restriction (N = 7, 95% of controls). Three animals in each group were injected i.p. with 30 mg propranolol per kg body weight (bw) dissolved in saline, 5 days/week. This dose attenuates exercising heart rate by 25% and exercise training-induced enzyme activity. The remaining animals received saline. Fat, glycogen, moisture and non-ether extractable residue were determined in the homogenized residue of the whole animal. After 9 weeks on the experimental regimen, bw gain was significantly lower in the diet restricted rats, whereas propranolol had no effect on the bw gain. The percentage of fat, moisture and non-ether extractable residue were unchanged by either propranolol or diet restriction. However, glycogen content was significantly lower in the beta-blocked rats either with or without diet restriction. These data indicated that neither beta-adrenergic blockade nor minimal diet restriction influences the percentage body fat, whereas body glycogen content is decreased under both conditions.

  12. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species.

    PubMed

    Caballero-Mellado, Jesús; Martínez-Aguilar, Lourdes; Paredes-Valdez, Guadalupe; Santos, Paulina Estrada-De los

    2004-07-01

    It was shown recently that the genus Burkholderia is rich in N2-fixing bacteria that are associated with plants. A group of these diazotrophic isolates with identical or very similar 16S rDNA restriction patterns [designated amplified rDNA restriction analysis (ARDRA) genotypes 13, 14 and 15] was selected and a polyphasic taxonomic study was performed, which included new isolates that were recovered from rhizospheres, rhizoplanes or internal tissues of maize, sugarcane and coffee plants. Morphological, physiological and biochemical features, as well as multi-locus enzyme electrophoresis profiles and whole-cell protein patterns, of 20 strains were analysed. In addition, analysis of cellular fatty acid profiles, 16S rDNA sequence analysis and DNA-DNA reassociation experiments were performed with representative strains. The taxonomic data indicated that the strains analysed belong to a novel diazotrophic Burkholderia species, for which the name Burkholderia unamae sp. nov. is proposed. Strain MTl-641T (=ATCC BAA-744T=CIP 107921T), isolated from the rhizosphere of maize, was designated as the type strain. B. unamae was found as an endophyte of plants grown in regions with climates ranging from semi-hot subhumid to hot humid, but not from plants grown in regions with semi-hot or hot dry climates. Moreover, B. unamae was isolated from rhizospheres and plants growing in soils with pH values in the range 4.5-7.1, but not from soils with pH values higher than 7.5.

  13. Characterization of esculin-positive Pseudomonas fluorescens strains isolated from an underground brook.

    PubMed

    Svec, P; Stegnerová, H; Durnová, E; Sedlácek, I

    2004-01-01

    A group of sixteen esculin-positive fluorescent pseudomonads isolated from an underground brook flowing through a cave complex was characterized by biotyping, multiple enzyme restriction fragment length polymorphism analysis of 16S rDNA (MERFLP), ribotyping and whole-cell fatty-acid methyl-esters analysis (FAME). All strains were phenotypically close to Pseudomonas fluorescens, but they revealed high biochemical variability as well as some reactions atypical for P. fluorescens species. Because identification of pseudomonads by of biochemical testing is often unclear, further techniques were employed. Fingerprints obtained by MERFLP clearly showed that all strains represent P. fluorescens species. Ribotyping separated the strains analyzed into four groups corresponding almost completely (with the exception of one strain) to the clustering based on biochemical profiles. FAME analysis grouped all the strains into one cluster together with the P. putida (biotype A, B), P. chlororaphis and P. fluorescens biotype F representatives, but differentiated them from other FAME profiles of all pseudomonads included in the standard library TSBA 40 provided by MIDI, Inc.

  14. Carnitine palmitoyltransferase II deficiency

    PubMed Central

    Roe, C R.; Yang, B-Z; Brunengraber, H; Roe, D S.; Wallace, M; Garritson, B K.

    2008-01-01

    Background: Carnitine palmitoyltransferase II (CPT II) deficiency is an important cause of recurrent rhabdomyolysis in children and adults. Current treatment includes dietary fat restriction, with increased carbohydrate intake and exercise restriction to avoid muscle pain and rhabdomyolysis. Methods: CPT II enzyme assay, DNA mutation analysis, quantitative analysis of acylcarnitines in blood and cultured fibroblasts, urinary organic acids, the standardized 36-item Short-Form Health Status survey (SF-36) version 2, and bioelectric impedance for body fat composition. Diet treatment with triheptanoin at 30% to 35% of total daily caloric intake was used for all patients. Results: Seven patients with CPT II deficiency were studied from 7 to 61 months on the triheptanoin (anaplerotic) diet. Five had previous episodes of rhabdomyolysis requiring hospitalizations and muscle pain on exertion prior to the diet (two younger patients had not had rhabdomyolysis). While on the diet, only two patients experienced mild muscle pain with exercise. During short periods of noncompliance, two patients experienced rhabdomyolysis with exercise. None experienced rhabdomyolysis or hospitalizations while on the diet. All patients returned to normal physical activities including strenuous sports. Exercise restriction was eliminated. Previously abnormal SF-36 physical composite scores returned to normal levels that persisted for the duration of the therapy in all five symptomatic patients. Conclusions: The triheptanoin diet seems to be an effective therapy for adult-onset carnitine palmitoyltransferase II deficiency. GLOSSARY ALT = alanine aminotransferase; AST = aspartate aminotransferase; ATP = adenosine triphosphate; BHP = β-hydroxypentanoate; BKP = β-ketopentanoate; BKP-CoA = β-ketopentanoyl–coenzyme A; BUN = blood urea nitrogen; CAC = citric acid cycle; CoA = coenzyme A; CPK = creatine phosphokinase; CPT II = carnitine palmitoyltransferase II; LDL = low-density lipoprotein; MCT = medium-chain triglyceride; PCS = physical composite score; SF-36 = 36-item Short-Form Health Status survey. PMID:18645163

  15. Molecular typing of Iranian mycobacteria isolates by polymerase chain reaction-restriction fragment length polymorphism analysis of 360-bp rpoB gene

    PubMed Central

    Hadifar, Shima; Moghim, Sharareh; Fazeli, Hossein; GhasemianSafaei, Hajieh; Havaei, Seyed Asghar; Farid, Fariba; Esfahani, Bahram Nasr

    2015-01-01

    Background: Diagnosis and typing of Mycobacterium genus provides basic tools for investigating the epidemiology and pathogenesis of this group of bacteria. Polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis (PRA) is an accurate method providing diagnosis and typing of species of mycobacteria. The present study is conducted by the purpose of determining restriction fragment profiles of common types of mycobacteria by PRA method of rpoB gene in this geographical region. Materials and Methods: Totally 60 clinical and environmental isolates from February to October, 2013 were collected and subcultured and identified by phenotypic methods. A 360 bp fragment of the rpoB gene amplified by PCR and products were digested by MspI and HaeIII enzymes. Results: In the present study, of all mycobacteria isolates identified by PRA method, 13 isolates (21.66%) were Mycobacterium tuberculosis, 34 isolates (56.66%) were rapidly growing Nontuberculosis Mycobacteria (NTM) that including 26 clinical isolates (43.33%) and 8 environmental isolates (13.33%), 11 isolates (18.33%) were clinical slowly growing NTM. among the clinical NTM isolates, Mycobacterium fortuitum Type I with the frequency of 57.77% was the most prevalent type isolates. Furthermore, an unrecorded of the PRA pattern of Mycobacterium conceptionense (HeaIII: 120/90/80, MspI: 120/105/80) was found. This study demonstrated that the PRA method was high discriminatory power for identification and typing of mycobacteria species and was able to identify 96.6% of all isolates. Conclusion: Based on the result of this study, rpoB gene could be a potentially useful tool for identification and investigation of molecular epidemiology of mycobacterial species. PMID:26380237

  16. Matrilineage differentiation of the genus Tetragonisca using mitochondrial DNA markers and the polymerase chain reaction-restriction fragment length polymorphism technique.

    PubMed

    Santos, S A; Bronzato, A R; Moreira, B M T; Araujo, K F; Ronqui, L; Mangolin, C A; Toledo, V A A; Ruvolo-Takasusuki, M C C

    2015-10-21

    The Meliponinae are important pollinators of plant species, and one of the most managed species is Tetragonisca angustula. Initially, two subspecies were identified in T. angustula: T. angustula angustula and T. angustula fiebrigi. Subsequently, T. a. fiebrigi was considered a species, based on the coloration of its mesepisternum. The objective of the present study was to obtain genetic markers that could differentiate the two species by amplifying regions of mitochondrial DNA and conducting polymerase chain reaction-restriction fragment length polymorphism analysis. Worker bees were collected in three Brazilian states: Paraná (Maringá, Altônia, and Foz do Iguaçu), São Paulo (Dracena, São Carlos, and Santa Cruz do Rio Pardo), and Rondônia (Ariquemes). Ten pairs of insect heterologous primers were tested and four were used (primer pair 1, ND2 and COI; primer pair 2, COI; primer pair 8, 16S and 12S; and primer pair 9, COII). For the restriction analysis, 13 enzymes were tested: EcoRI, EcoRV, HindIII, HinfI, RsaI, PstI, XbaI, HaeIII, ClaI, XhoI, BglII, PvuII, and ScaI. Markers were obtained (primer pair 8 cleaved with EcoRV and XbaI and primer pair 9 cleaved with HaeIII, RsaI, and XbaI) that enabled matrilineage identification in the nests studied, which confirmed that hybridization could occur between both Tetragonisca species. The beginning of speciation was probably recent, and secondary contact has resulted in crosses between T. angustula females and T. fiebrigi males. Because of this hybridization, it would be appropriate to consider them as two subspecies of T. angustula.

  17. Screening for glycosidase activities of lactic acid bacteria as a biotechnological tool in oenology.

    PubMed

    Pérez-Martín, Fátima; Seseña, Susana; Izquierdo, Pedro Miguel; Martín, Raúl; Palop, María Llanos

    2012-04-01

    The aim of this study was to evaluate the ability from a number of lactic acid bacteria isolated from different sources to produce glycosidase enzymes. Representative isolates (225) from clusters obtained after genotyping, using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) analysis, of 1,464 isolates, were screened for β-D-glucosidase activity. Thirty-five of them were selected for subsequent analysis. These strains were able to hydrolyze α-D-glucopyranoside, β-D-xylopyranoside and α-L-arabinofuranoside although β-D-glucosidase activity was the predominant activity for 22 of the selected strains. Only some of them did so with α-L-rhamnopyranoside. All of these were from wine samples and were identified as belonging to the Oenococcus oeni species using Amplification and Restriction Analysis of 16S-rRNA gene (16S-ARDRA). When the influence of pH, temperature and ethanol or sugars content on β-D-glucosidase activity was assayed, a strain-dependent response was observed. The β-D-glucosidase activity occurred in both whole and sonicated cells but not in the supernatants from cultures or obtained after cell sonication. Strains 10, 17, 21, and 23 retained the most β-D-glucosidase activity when they were assayed at the conditions of temperature, pH, ethanol and sugar content used in winemaking. These results suggest that these strains could be used as a source of glycosidase enzymes for use in winemaking.

  18. TRIM5α requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription

    PubMed Central

    Fletcher, Adam J; Christensen, Devin E; Nelson, Chad; Tan, Choon Ping; Schaller, Torsten; Lehner, Paul J; Sundquist, Wesley I; Towers, Greg J

    2015-01-01

    TRIM5α is an antiviral, cytoplasmic, E3 ubiquitin (Ub) ligase that assembles on incoming retroviral capsids and induces their premature dissociation. It inhibits reverse transcription of the viral genome and can also synthesize unanchored polyubiquitin (polyUb) chains to stimulate innate immune responses. Here, we show that TRIM5α employs the E2 Ub-conjugating enzyme Ube2W to anchor the Lys63-linked polyUb chains in a process of TRIM5α auto-ubiquitination. Chain anchoring is initiated, in cells and in vitro, through Ube2W-catalyzed monoubiquitination of TRIM5α. This modification serves as a substrate for the elongation of anchored Lys63-linked polyUb chains, catalyzed by the heterodimeric E2 enzyme Ube2N/Ube2V2. Ube2W targets multiple TRIM5α internal lysines with Ub especially lysines 45 and 50, rather than modifying the N-terminal amino group, which is instead αN-acetylated in cells. E2 depletion or Ub mutation inhibits TRIM5α ubiquitination in cells and restores restricted viral reverse transcription, but not infection. Our data indicate that the stepwise formation of anchored Lys63-linked polyUb is a critical early step in the TRIM5α restriction mechanism and identify the E2 Ub-conjugating cofactors involved. PMID:26101372

  19. Frequency of uridine monophosphate synthase Gly(213)Ala polymorphism in Caucasian gastrointestinal cancer patients and healthy subjects, investigated by means of new, rapid genotyping assays.

    PubMed

    Gusella, Milena; Bertolaso, Laura; Bolzonella, Caterina; Pasini, Felice; Padrini, Roberto

    2011-10-01

    Uridine monophosphate synthase (UMPS) is a fundamental enzyme in pyrimidine synthesis. A single-nucleotide polymorphism, a G-C transversion at the 638th nucleotide, was demonstrated to increase UMPS activity and suggested to have clinical effects. The aims of this study were to set up simple genotyping methods and investigate the UMPS 638G>C polymorphism in the Caucasian population. Two hundred forty-one patients with gastrointestinal cancers and 189 healthy subjects were enrolled. Genomic DNA was extracted from peripheral blood. A polymerase chain reaction-restriction fragment length polymorphism (RFLP) method was implemented using a forward primer incorporating a mismatched base to produce an artificial restriction site and BsrI restriction enzyme digestion; a denaturing high performance liquid chromatography (DHPLC) method was developed to further speed up UMPS genotyping. A 153 bp UMPS gene fragment was successfully amplified and analyzed in all samples. RFLP and DHPLC results showed a 100% match and where confirmed by direct sequencing. UMPS genotype distribution was similar in patients with cancer and control subjects. Although no association was detected between UMPS variants and gastrointestinal cancer risk in Caucasians, polymerase chain reaction-RFLP with BsrI digestion and DHPLC set up at 59°C are reliable and cost-effective methods to genotype UMPS.

  20. [Molecular typing of Leishmania (Leishmania) amazonensis and species of the subgenus Viannia associated with cutaneous and mucosal leishmaniasis in Colombia: A concordance study].

    PubMed

    Ovalle-Bracho, Clemencia; Camargo, Carolina; Díaz-Toro, Yira; Parra-Muñoz, Marcela

    2018-03-15

    Multilocus enzyme electrophoresis (MLEE) is the reference standard for the characterization of Leishmania species. The test is restricted to specialized laboratories due to its technical complexity, cost, and time required to obtain results. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) is used to identify Leishmania species. To establish the concordance between the two tests as identifying methods for circulating species in Colombia. A total of 96 isolates from patients with cutaneous or mucosal leishmaniasis were selected and identified by MLEE and PCR-RFLP with miniexon and hsp70 as the molecular targets, which were used sequentially. Restriction enzymes HaeIII and BccI were similarly applied. Cohen's kappa coefficient and the 95% confidence interval (CI) were calculated. The kappa coefficient and the 95% CI between MLEE and PCR-RFLP displayed "very good" concordance with a coefficient of 0.98 (CI95%: 0.98 to 1.00). The identified species were Leishmania Viannia braziliensis, Leishmania Viannia panamensis, Leishmania Viannia guyanensis and Leishmania Leishmania amazonensis. A total of 80 of the 96 isolates were sequenced and the results obtained by PCR-RFLP were confirmed. Due to the concordance obtained between tests results with the amplification of the genes miniexon and hsp70, PCR-RFLP is proposed as an alternative for identifying circulating Leishmania species in Colombia.

  1. RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on Breaking RAD by Lowry et al. (2016).

    PubMed

    McKinney, Garrett J; Larson, Wesley A; Seeb, Lisa W; Seeb, James E

    2017-05-01

    In their recently corrected manuscript, "Breaking RAD: An evaluation of the utility of restriction site associated DNA sequencing for genome scans of adaptation", Lowry et al. argue that genome scans using RADseq will miss many loci under selection due to a combination of sparse marker density and low levels of linkage disequilibrium in most species. We agree that marker density and levels of LD are important considerations when designing a RADseq study; however, we dispute that RAD-based genome scans are as prone to failure as Lowry et al. suggest. Their arguments ignore the flexible nature of RADseq; the availability of different restriction enzymes and capacity for combining restriction enzymes ensures that a well-designed study should be able to generate enough markers for efficient genome coverage. We further believe that simplifying assumptions about linkage disequilibrium in their simulations are invalid in many species. Finally, it is important to note that the alternative methods proposed by Lowry et al. have limitations equal to or greater than RADseq. The wealth of studies with positive impactful findings that have used RAD genome scans instead supports the argument that properly conducted RAD genome scans are an effective method for gaining insight into ecology and evolution, particularly for non-model organisms and those with large or complex genomes. © 2016 John Wiley & Sons Ltd.

  2. Rapid stalk elongation in tulip (Tulipa gesneriana L. cv. Apeldoorn) and the combined action of cold-induced invertase and the water-channel protein gammaTIP.

    PubMed

    Balk, P A; de Boer, A D

    1999-09-01

    Many bulbous plants need a low-temperature treatment for flowering. Cold, for example, affects the elongation of the stalk, thereby influencing the quality of the cut flower. How the elongation of the stalk is promoted by cold and which physiological and biochemical mechanisms are involved have remained obscure. As invertase has been shown to be involved in the cold-induced elongation of the flower stalks of tulips (Lambrechts et al., 1994, Plant Physiol 104: 515-520), we further characterized this enzyme by cloning the cDNA and analysing its expression in various tissues of the tulip (Tulipa gesneriana L. cv. Apeldoorn) stalk. In addition, the role of sucrose synthase was investigated. Since turgor pressure is an important force driving cell elongation, the role of a water-channel protein (gammaTIP) was studied in relation to these two enzymes. The mRNA level of the invertase found was substantially up-regulated as a result of cold treatment. Analysis of the amino acid sequence of this invertase revealed the presence of a vacuolar targeting signal. Two different forms of sucrose synthase were found, the expression of one of them appeared to be restricted to the vascular tissue while the other form was present in the surrounding tissue. Both sucrose synthases were present in the stalk during the entire period of bulb storage and after planting, but their activities declined during stalk elongation. The expression of the gammaTIP gene was restricted mainly to the vascular tissue and its expression profile was identical to that of invertase. Simultaneous expression of invertase and gammaTIP possibly leads to an increase in osmotic potential and vacuolar water uptake, thus providing a driving force for stretching the stalk cells.

  3. [Construction of Plasmodium falciparum signal peptide peptidase-GFP mutant and its expression analysis in the malaria parasite].

    PubMed

    Li, Xue-rong; Wu, Yin-juan; Shang, Mei; Li, Ye; Xu, Jin; Yu, Xin-bing; Athar, Chishti

    2014-08-01

    To construct recombinant plasmid pSPPcGT which contains signal peptide peptidase gene of Plasmodium falciparum (PJSPP) and GFP, and transfect into P. falciparum (3D7 strain) to obtain mutant parasites which can express PJSPP-GFP. Plasmodium falciparum(3D7 strain) genomic DNA was extracted from cultured malaria parasites. The C-terminal region of PJSPP, an 883 bp gene fragment was amplified by PCR, and then cloned into pPM2GT vector to get recombinant vector pSPPcGT. The recombinant vectors were identified by PCR, double restriction enzyme digestion and DNA sequencing. pSPPcGT vector was transfected into malaria parasites. The positive clones were selected by adding inhibitor of Plasmodium falciparum dihydrofolate reductase WR99210 to the culture medium. The pSPP-GFP-transfected parasites were fixed with methanol, stained with DAPI, and observed under immunofluorescence microscope. The PJSPP-GFP expression in P. falciparum was identified by SDS-PAGE and Western blotting. The C-terminal region of PJSPP was amplified from P.falciparum (3D7 strain) genomic DNA by PCR with the length of 883 bp. The constructed recombinant vectors were identified by PCR screening, double restriction enzyme digestion and DNA sequencing. The pSPPcGT vector was transfected into P. falciparum and the positive clones were selected by WR99210. GFP fluorescence was observed in transfected parasites by immunofluorescence microscopy, and mainly located in the cytoplasm. The PJSPP-GFP expression in malaria parasites was confirmed by Western blotting with a relative molecular mass of Mr 64,000. Recombinant vector PJSPP-GFP is constructed and transfected into P. falciparum to obtain P. falciparum mutant clone which can express PfSPP-GFP.

  4. [Prokaryotic expression and immunogenicity analysis of the chimeric HBcAg containing APP beta cleavage site peptide and Aβ(1-15);].

    PubMed

    Feng, Gai-feng; Wang, Jun-yang; Jin, Hui; Wang, Wei-xi; Qian, Yi-hua; Yang, Wei-na; Wang, Quan-ying; Yang, Guang-xiao

    2011-11-01

    To construct the recombinant prokaryotic expression plasmid pET/c-ABCSP-Aβ(15-c);, and evaluate the immunogenicity of the fusion protein expressed in E.coli. The gene fragment HBc88-144 was amplified by PCR and subcloned to pUC19. The APP beta cleavage site peptide(ABCSP) and Aβ(1-15); gene(ABCSP-Aβ(15);) was amplified by PCR and inserted downstream of HBc1-71 in pGEMEX/c1-71. After restriction enzyme digestion, c1-17-ABCSP-Aβ(15); were connected with HBc88-144, yielding the recombinant gene c-ABCSP-Aβ(15-c);. c-ABCSP-Aβ(15-c); gene was subcloned into pET-28a(+).The fusion protein expressed in transformed E.coli BL21 was induced with IPTG and analyzed by SDS-PAGE. The virus-like particles (VLP) formed by fusion protein was observed with Transmission Electron Microscope (TEM). 4 Kunming (KM) mice received intraperitoneal injection (i.p) of fusion protein VLP. The antibody was detected by indirect ELISA. The recombinant gene was confirmed by restriction enzyme digestion and DNA sequencing. After IPTG induction, fusion protein was expressed and mainly existed in the sediment of the bacterial lysate. The expression level was 40% of all the proteins in the sediment. The fusion protein could form VLP. After 5 times of immunization, the titer of anti-ABCSP and anti-Aβantibody in sera of KM mice reached up to 1:5 000 and 1:10 000 respectively, while the anti-HBc antibody was undetectable. Recombinant c-ABCSP-Aβ(15-c); gene can be expressed in E.coli. The expressed protein could form VLP and has a strong immunogenicity. This study lays the foundation for the study of AD genetic engineering vaccine.

  5. Easy preparation of a large-size random gene mutagenesis library in Escherichia coli.

    PubMed

    You, Chun; Percival Zhang, Y-H

    2012-09-01

    A simple and fast protocol for the preparation of a large-size mutant library for directed evolution in Escherichia coli was developed based on the DNA multimers generated by prolonged overlap extension polymerase chain reaction (POE-PCR). This protocol comprised the following: (i) a linear DNA mutant library was generated by error-prone PCR or shuffling, and a linear vector backbone was prepared by regular PCR; (ii) the DNA multimers were generated based on these two DNA templates by POE-PCR; and (iii) the one restriction enzyme-digested DNA multimers were ligated to circular plasmids, followed by transformation to E. coli. Because the ligation efficiency of one DNA fragment was several orders of magnitude higher than that of two DNA fragments for typical mutant library construction, it was very easy to generate a mutant library with a size of more than 10(7) protein mutants per 50 μl of the POE-PCR product. Via this method, four new fluorescent protein mutants were obtained based on monomeric cherry fluorescent protein. This new protocol was simple and fast because it did not require labor-intensive optimizations in restriction enzyme digestion and ligation, did not involve special plasmid design, and enabled constructing a large-size mutant library for directed enzyme evolution within 1 day. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Structural modeling identifies Plasmodium vivax 4-diphosphocytidyl-2C-methyl-d-erythritol kinase (IspE) as a plausible new antimalarial drug target.

    PubMed

    Kadian, Kavita; Vijay, Sonam; Gupta, Yash; Rawal, Ritu; Singh, Jagbir; Anvikar, Anup; Pande, Veena; Sharma, Arun

    2018-08-01

    Malaria parasites utilize Methylerythritol phosphate (MEP) pathway for synthesis of isoprenoid precursors which are essential for maturation and survival of parasites during erythrocytic and gametocytic stages. The absence of MEP pathway in the human host establishes MEP pathway enzymes as a repertoire of essential drug targets. The fourth enzyme, 4-diphosphocytidyl-2C-methyl-d-erythritol kinase (IspE) has been proved essential in pathogenic bacteria, however; it has not yet been studied in any Plasmodium species. This study was undertaken to investigate genetic polymorphism and concomitant structural implications of the Plasmodium vivax IspE (PvIspE) by employing sequencing, modeling and bioinformatics approach. We report that PvIspE gene displayed six non-synonymous mutations which were restricted to non-conserved regions within the gene from seven topographically distinct malaria-endemic regions of India. Phylogenetic studies reflected that PvIspE occupies unique status within Plasmodia genus and reflects that Plasmodium vivax IspE gene has a distant and non-conserved relation with human ortholog Mevalonate Kinase (MAVK). Structural modeling analysis revealed that all PvIspE Indian isolates have critically conserved canonical galacto-homoserine-mevalonate-phosphomevalonate kinase (GHMP) domain within the active site lying in a deep cleft sandwiched between ATP and CDPME-binding domains. The active core region was highly conserved among all clinical isolates, may be due to >60% β-pleated rigid architecture. The mapped structural analysis revealed the critically conserved active site of PvIspE, both sequence, and spacially among all Indian isolates; showing no significant changes in the active site. Our study strengthens the candidature of Plasmodium vivax IspE enzyme as a future target for novel antimalarials. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils.

    PubMed

    Lee, Seung-Hoon; Jang, Inyoung; Chae, Namyi; Choi, Taejin; Kang, Hojeong

    2013-02-01

    Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.

  8. Characterization of a New Type of Human Papillomavirus That Causes Skin Warts

    PubMed Central

    Orth, Gérard; Favre, Michel; Croissant, Odile

    1977-01-01

    A human papillomavirus (HPV) was isolated from the lesions of a patient (ML) bearing numerous hand common warts. This virus was compared with the well-characterized HPV found in typical plantar warts (plantar HPV). ML and plantar HPV DNAs have similar molecular weights (5.26 × 106 and 5.23 × 106, respectively) but were shown to be different by restriction enzyme analysis. When the cleavage products of both DNAs by endonuclease EcoRI, BamI, HpaI, or Hind were analyzed by electron microscopy, one, two, one, and four fragments were detected for ML HPV DNA instead of the two, one, two, and six fragments, respectively, detected for plantar HPV DNA. In contrast to plantar HPV DNA, a high proportion of ML HPV DNA molecules were resistant to these restriction enzymes. Most, if not all, of the molecules were either resistant to BamI and sensitive to EcoRI or sensitive to BamI and resistant to EcoRI. After denaturation and renaturation of the cleavage products of ML HPV DNA by a mixture of the two enzymes, the circular “heteroduplexes” formed showed one to three heterology loops corresponding to about 4 to 8% of the genome length. No sequence homology was detected between ML and plantar HPV DNAs by cRNA-DNA filter hybridization, by measuring the reassociation kinetics of an iodinated plantar HPV DNA in the presence of a 25-fold excess of ML HPV DNA, or by the heteroduplex technique. The two viruses had distinct electrophoretic polypeptide patterns and showed no antigenic cross-reaction by immunodiffusion or immunofluorescence techniques. Preliminary cRNA-DNA hybridization experiments, using viral DNAs from single or pooled plantar or hand warts, suggest that hand common warts are associated with viruses similar or related to ML HPV. The existence of at least two distinct types of HPVs that cause skin warts was demonstrated; they were provisionally called HPV type 1 and HPV type 2, with plantar HPV and ML HPV as prototypical viruses, respectively. Images PMID:198572

  9. A Kinetic Modelling of Enzyme Inhibitions in the Central Metabolism of Yeast Cells

    NASA Astrophysics Data System (ADS)

    Kasbawati; Kalondeng, A.; Aris, N.; Erawaty, N.; Azis, M. I.

    2018-03-01

    Metabolic regulation plays an important role in the metabolic engineering of a cellular process. It is conducted to improve the productivity of a microbial process by identifying the important regulatory nodes of a metabolic pathway such as fermentation pathway. Regulation of enzymes involved in a particular pathway can be held to improve the productivity of the system. In the central metabolism of yeast cell, some enzymes are known as regulating enzymes that can be inhibited to increase the production of ethanol. In this research we study the kinetic modelling of the enzymes in the central pathway of yeast metabolism by taking into consideration the enzyme inhibition effects to the ethanol production. The existence of positive steady state solution and the stability of the system are also analysed to study the property and dynamical behaviour of the system. One stable steady state of the system is produced if some conditions are fulfilled. The conditions concern to the restriction of the maximum reactions of the enzymes in the pyruvate and acetaldehyde branch points. There exists a certain time of fermentation reaction at which a maximum and a minimum ethanol productions are attained after regulating the system. Optimal ethanol concentration is also produced for a certain initial concentration of inhibitor.

  10. Lignin Exhibits Recalcitrance-Associated Features Following the Consolidated Bioprocessing of Populus trichocarpa Natural Variants

    DOE PAGES

    Akinosho, Hannah; Yee, Kelsey; Rodriguez, Miguel; ...

    2017-11-21

    Because cellulosic ethanol production remains cost-prohibitive„ advances in consolidated bioprocessing (CBP) have been directed towards lifting this restriction. CBP reduces the need for added enzymes and can potentially slash ethanol production costs through process integration. Clostridium thermocellum, a CBP microorganism, organizes its enzymes in a multi-enzyme complex - a stark contrast to fungal enzymes. Nonetheless, recalcitrance may limit the extent of biomass deconstruction. Here in this study, six Populus were treated with C. thermocellum (ATCC 27405) and characterized to determine structural changes that resulted from CBP. The 2D HSQC NMR spectra of lignin-enriched residues revealed that higher S/G ratio (2.6)more » and fewer carbon-carbon interunit linkages (generally 2–5%) were present in the top performing poplar. Furthermore, cellulose degree of polymerization data suggests that C. thermocellum likely circumvents long chain cellulose, while cellulose crystallinity and hemicellulose molecular weight data do not provide a direct indication of features connected to recalcitrance. Hence, C. thermocellum is similarly impacted by the proposed lignin properties that negatively impact biomass deconstruction using fungal enzymes.« less

  11. Short-Term Vitamin B-6 Restriction Does Not Affect Plasma Concentrations of Hydrogen Sulfide Biomarkers Lanthionine and Homolanthionine in Healthy Men and Women123

    PubMed Central

    DeRatt, Barbara N; Ralat, Maria A; Gregory, Jesse F

    2016-01-01

    Background: Suboptimal vitamin B-6 status is associated with increased cardiovascular disease risk, although the mechanism is unknown. The synthesis of the vasodilator hydrogen sulfide occurs through side reactions of the transsulfuration enzymes cystathionine β-synthase and cystathionine γ-lyase, with pyridoxal 5′-phosphate as a coenzyme. Two proposed hydrogen sulfide biomarkers, lanthionine and homolanthionine, are produced concurrently. Objective: To determine whether hydrogen sulfide production is reduced by vitamin B-6 deficiency, we examined the relations between plasma concentrations of lanthionine and homolanthionine, along with other components of the transsulfuration pathway (homocysteine, cystathionine, and Cys), in a secondary analysis of samples from 2 vitamin B-6 restriction studies in healthy men and women. Methods: Metabolite concentrations were measured in plasma from 23 healthy adults (12 men and 11 women) before and after 28-d controlled dietary vitamin B-6 restriction (0.37 ± 0.04 mg/d). Vitamin B-6 restriction effects on lanthionine and homolanthionine concentrations were assessed. Associations between hydrogen sulfide biomarkers, transsulfuration metabolites, and functional indicators of vitamin B-6 deficiency were analyzed by linear regression. Results: Preprandial plasma lanthionine and homolanthionine concentrations ranged from 89.0 to 372 nmol/L and 5.75 to 32.3 nmol/L, respectively, in healthy adults. Mean lanthionine and homolanthionine concentrations were not affected by vitamin B-6 restriction (P < 0.66), with marked heterogeneity of individual responses. After restriction, homolanthionine was positively associated with functional indicators of vitamin B-6 deficiency, which differed from hypothesized negative associations. Plasma lanthionine was positively correlated with the concentration of its precursor, Cys, before (R2 = 0.36; P = 0.002) and after (R2 = 0.37; P = 0.002) restriction. Likewise, homolanthionine concentration was positively correlated with its precursor homocysteine, but only in vitamin B-6 adequacy (R2 = 0.41; P < 0.001). Conclusions: The resiliency of plasma lanthionine and homolanthionine concentrations after short-term vitamin B-6 restriction suggests a minimal effect of moderate vitamin B-6 deficiency on hydrogen sulfide production. Additional research is needed to better understand the metabolism and disposal of these biomarkers in humans. This study was registered at clinicaltrials.gov as NCT00877812. PMID:26962179

  12. Short-Term Vitamin B-6 Restriction Does Not Affect Plasma Concentrations of Hydrogen Sulfide Biomarkers Lanthionine and Homolanthionine in Healthy Men and Women.

    PubMed

    DeRatt, Barbara N; Ralat, Maria A; Gregory, Jesse F

    2016-03-09

    Suboptimal vitamin B-6 status is associated with increased cardiovascular disease risk, although the mechanism is unknown. The synthesis of the vasodilator hydrogen sulfide occurs through side reactions of the transsulfuration enzymes cystathionine β-synthase and cystathionine γ-lyase, with pyridoxal 5'-phosphate as a coenzyme. Two proposed hydrogen sulfide biomarkers, lanthionine and homolanthionine, are produced concurrently. To determine whether hydrogen sulfide production is reduced by vitamin B-6 deficiency, we examined the relations between plasma concentrations of lanthionine and homolanthionine, along with other components of the transsulfuration pathway (homocysteine, cystathionine, and Cys), in a secondary analysis of samples from 2 vitamin B-6 restriction studies in healthy men and women. Metabolite concentrations were measured in plasma from 23 healthy adults (12 men and 11 women) before and after 28-d controlled dietary vitamin B-6 restriction (0.37 ± 0.04 mg/d). Vitamin B-6 restriction effects on lanthionine and homolanthionine concentrations were assessed. Associations between hydrogen sulfide biomarkers, transsulfuration metabolites, and functional indicators of vitamin B-6 deficiency were analyzed by linear regression. Preprandial plasma lanthionine and homolanthionine concentrations ranged from 89.0 to 372 nmol/L and 5.75 to 32.3 nmol/L, respectively, in healthy adults. Mean lanthionine and homolanthionine concentrations were not affected by vitamin B-6 restriction (P < 0.66), with marked heterogeneity of individual responses. After restriction, homolanthionine was positively associated with functional indicators of vitamin B-6 deficiency, which differed from hypothesized negative associations. Plasma lanthionine was positively correlated with the concentration of its precursor, Cys, before (R 2 = 0.36; P = 0.002) and after (R 2 = 0.37; P = 0.002) restriction. Likewise, homolanthionine concentration was positively correlated with its precursor homocysteine, but only in vitamin B-6 adequacy (R 2 = 0.41; P < 0.001). The resiliency of plasma lanthionine and homolanthionine concentrations after short-term vitamin B-6 restriction suggests a minimal effect of moderate vitamin B-6 deficiency on hydrogen sulfide production. Additional research is needed to better understand the metabolism and disposal of these biomarkers in humans. This study was registered at clinicaltrials.gov as NCT00877812. © 2016 American Society for Nutrition.

  13. Homozygosity for a newly identified missense mutation in a patient with very severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID).

    PubMed Central

    Hirschhorn, R; Chakravarti, V; Puck, J; Douglas, S D

    1991-01-01

    We have identified a previously unrecognized missense mutation in a patient with severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID). The mutation is a G646-to-A transition at a CG dinucleotide and predicts a glycine-to-arginine substitution at codon 216. Computer analysis of secondary structure predicts a major alteration with loss of a beta-pleated sheet in a highly conserved region of the protein. The basepair substitution also generates a new site for the restriction enzyme BstXI in exon 7 of the genomic DNA. Digestion of genomic DNA from the patient and from his parents revealed that he was homozygous for the mutation and that his mother and father were carriers. This mutation in homozygous form appears to be associated with very severe disease, since the patient had perinatal onset of clinical manifestations of SCID, the highest concentration of the toxic metabolite deoxyATP in nine patients studied, and a relatively poor immunologic response during the initial 2 years of therapy with polyethylene glycol-adenosine deaminase. Analysis of DNA from 21 additional patients with ADA-SCID and from 19 unrelated normals revealed that, while none of the normal individuals showed the abnormal restriction fragment, two of the 21 patients studied were heterozygous for the G646-to-A mutation. Images Figure 2 PMID:1680289

  14. Differentiation of Leishmania (Viannia) panamensis and Leishmania (V.) guyanensis using BccI for hsp70 PCR-RFLP.

    PubMed

    Montalvo Alvarez, Ana Margarita; Nodarse, Jorge Fraga; Goodridge, Ivón Montano; Fidalgo, Lianet Monzote; Marin, Marcel; Van Der Auwera, Gert; Dujardin, Jean-Claude; Bernal, Iván Darío Velez; Muskus, Carlos

    2010-05-01

    Leishmania panamensis and Leishmania guyanensis are two species of the subgenus Viannia that are genetically very similar. Both parasites are usually associated with cutaneous leishmaniasis, but also have the potential to cause the mucocutaneous form of the disease. In addition, the study of foci and consequently the identification of vectors and probable reservoirs involved in transmission require a correct differentiation between both species, which is important at epidemiological level. We explored the possibility of identifying these species by using restriction fragment length polymorphisms (RFLP) in the gene coding for heat-shock protein 70 (hsp70). Previously, an hsp70 PCR-RFLP assay proved to be very effective in differentiating other Leishmania species when HaeIII is used as restriction enzyme. Based on hsp70 sequences analysis, BccI was found to generate species-specific fragments that can easily be recognized by agarose gel electrophoresis. Using the analysis of biopsies, scrapings, and parasite isolates previously grouped in a cluster comprising both L. panamensis and L. guyanensis, we showed that our approach allowed differentiation of both entities. This offers the possibility not only for identification of parasites in biological samples, but also to apply molecular epidemiology in certain countries of the New World, where several Leishmania species could coexist. Copyright 2009 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  15. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice.

    PubMed

    Fu, Zidong Donna; Klaassen, Curtis D

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. An evaluation of the PCR-RFLP technique to aid molecular-based monitoring of felids and canids in India

    PubMed Central

    2010-01-01

    Background The order Carnivora is well represented in India, with 58 of the 250 species found globally, occurring here. However, small carnivores figure very poorly in research and conservation policies in India. This is mainly due to the dearth of tested and standardized techniques that are both cost effective and conducive to small carnivore studies in the field. In this paper we present a non-invasive genetic technique standardized for the study of Indian felids and canids with the use of PCR amplification and restriction enzyme digestion of scat collected in the field. Findings Using existing sequences of felids and canids from GenBank, we designed primers from the 16S rRNA region of the mitochondrial genome and tested these on ten species of felids and five canids. We selected restriction enzymes that would cut the selected region differentially for various species within each family. We produced a restriction digestion profile for the potential differentiation of species based on fragment patterns. To test our technique, we used felid PCR primers on scats collected from various habitats in India, representing varied environmental conditions. Amplification success with field collected scats was 52%, while 86% of the products used for restriction digestion could be accurately assigned to species. We verified this through sequencing. A comparison of costs across the various techniques currently used for scat assignment showed that this technique was the most practical and cost effective. Conclusions The species-specific key developed in this paper provides a means for detailed investigations in the future that focus on elusive carnivores in India and this approach provides a model for other studies in areas of Asia where many small carnivores co-occur. PMID:20525407

  17. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Zidong Donna; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors.more » In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. - Highlights: • Utilized a graded CR model in male mice • The mRNA profiles of xenobiotic processing genes (XPGs) in liver were investigated. • CR up-regulates many phase-II enzymes. • CR tends to feminize the mRNA profiles of XPGs.« less

  18. Geographically diverse Australian isolates of Melissococcus pluton exhibit minimal genotypic diversity by restriction endonuclease analysis.

    PubMed

    Djordjevic, S P; Smith, L A; Forbes, W A; Hornitzky, M A

    1999-04-15

    Melissococcus pluton, the causative agent of European foulbrood is an economically significant disease of honey bees (Apis mellifera) across most regions of the world and is prevalent throughout most states of Australia. 49 Isolates of M. pluton recovered from diseased colonies or honey samples in New South Wales, Queensland, South Australia, Tasmania and Victoria were compared using SDS-PAGE, Western immunoblotting and restriction endonuclease analyses. DNA profiles of all 49 geographically diverse isolates showed remarkably similar AluI profiles although four isolates (one each from Queensland, South Australia, New South Wales and Victoria) displayed minor profile variations compared to AluI patterns of all other isolates. DNA from a subset of the 49 Australian and three isolates from the United Kingdom were digested separately with the restriction endonucleases CfoI, RsaI and DraI. Restriction endonuclease fragment patterns generated using these enzymes were also similar although minor variations were noted. SDS-PAGE of whole cell proteins from 13 of the 49 isolates from different states of Australia, including the four isolates which displayed minor profile variations (AluI) produced indistinguishable patterns. Major immunoreactive proteins of approximate molecular masses of 21, 24, 28, 30, 36, 40, 44, 56, 60, 71, 79 and 95 kDa were observed in immunoblots of whole cell lysates of 22 of the 49 isolates and reacted with rabbit hyperimmune antibodies raised against M. pluton whole cells. Neither SDS-PAGE or immunoblotting was capable of distinguishing differences between geographically diverse isolates of M. pluton. Collectively these data confirm that Australian isolates of M. pluton are genetically homogeneous and that this species may be clonal. Plasmid DNA was not detected in whole cell DNA profiles of any isolate resolved using agarose gel electrophoresis.

  19. Development of cleaved amplified polymorphic sequence markers and a CAPS-based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) constructed using whole-genome re-sequencing data

    PubMed Central

    Liu, Shi; Gao, Peng; Zhu, Qianglong; Luan, Feishi; Davis, Angela R.; Wang, Xiaolu

    2016-01-01

    Cleaved amplified polymorphic sequence (CAPS) markers are useful tools for detecting single nucleotide polymorphisms (SNPs). This study detected and converted SNP sites into CAPS markers based on high-throughput re-sequencing data in watermelon, for linkage map construction and quantitative trait locus (QTL) analysis. Two inbred lines, Cream of Saskatchewan (COS) and LSW-177 had been re-sequenced and analyzed by Perl self-compiled script for CAPS marker development. 88.7% and 78.5% of the assembled sequences of the two parental materials could map to the reference watermelon genome, respectively. Comparative assembled genome data analysis provided 225,693 and 19,268 SNPs and indels between the two materials. 532 pairs of CAPS markers were designed with 16 restriction enzymes, among which 271 pairs of primers gave distinct bands of the expected length and polymorphic bands, via PCR and enzyme digestion, with a polymorphic rate of 50.94%. Using the new CAPS markers, an initial CAPS-based genetic linkage map was constructed with the F2 population, spanning 1836.51 cM with 11 linkage groups and 301 markers. 12 QTLs were detected related to fruit flesh color, length, width, shape index, and brix content. These newly CAPS markers will be a valuable resource for breeding programs and genetic studies of watermelon. PMID:27162496

  20. Linguini Models of Molecular Genetic Mapping and Fingerprinting.

    ERIC Educational Resources Information Center

    Thompson, James N., Jr.; Gray, Stanton B.; Hellack, Jenna J.

    1997-01-01

    Presents an exercise using linguini noodles to demonstrate an aspect of DNA fingerprinting. DNA maps that show genetic differences can be produced by digesting a certain piece of DNA with two or more restriction enzymes both individually and in combination. By rearranging and matching linguini fragments, students can recreate the original pattern…

  1. Development of a high-density intra-specific linkage map of lettuce using genotyping by sequencing (GBS)

    USDA-ARS?s Scientific Manuscript database

    Genotyping by sequencing (GBS) has been developed as an affordable application of next-generation sequencing for the purposes of discovering and genotyping SNPs in a variety of crop species and populations. In this study we employed a double restriction enzyme digestion protocol (HindIII and NlaIII)...

  2. A Role for Histone Deacetylases in the Cellular and Behavioral Mechanisms Underlying Learning and Memory

    ERIC Educational Resources Information Center

    Mahgoub, Melissa; Monteggia, Lisa M.

    2014-01-01

    Histone deacetylases (HDACs) are a family of chromatin remodeling enzymes that restrict access of transcription factors to the DNA, thereby repressing gene expression. In contrast, histone acetyltransferases (HATs) relax the chromatin structure allowing for an active chromatin state and promoting gene transcription. Accumulating data have…

  3. Genetic fingerprinting of longleaf pine seed orchard clones following Hurricane Hugo

    Treesearch

    K. D. Jermstad; P.A. Guge; E.R. Carroll; S.T. Friedman; D.B. Neale

    1993-01-01

    Isozyme and restriction fragment length polymorphism (RFLP) markers were used to determine the genetic identities of 12 longleaf pine (Pinus palustrus Mill.) ramets whose identities came into question after Hurricane Hugo. Isozyme assays were performed for 12 enzyme systems representing 15 loci. Variation at 6 loci revealed unique identities for 6...

  4. Synthesis and evaluation of conformationally restricted inhibitors of aspartate semialdehyde dehydrogenase.

    PubMed

    Evitt, Andrew S; Cox, Russell J

    2011-05-01

    Inhibitors of the enzyme aspartate semialdehyde dehydrogenase, a key biological target for the generation of a new class of antibiotic compounds, have been developed. To investigate improvements to binding within an inhibitor series, the lowering of the entropic barrier to binding through conformational restriction was investigated. A library of linear and cyclic substrate analogues was generated and computational docking used to aid in structure selection. The cyclic phosphonate inhibitor 18 was thus identified as complimentary to the enzyme active-site. Synthesis and in vitro inhibition assay revealed a K(i) of 3.8 mM against natural substrate, where the linear analogue of 18, compound 15, had previously shown no inhibitory activity. Two further inhibitors, phosphate analogue diastereoisomers 17a and 17b, were synthesised and also found to have low millimolar K(i) values. As a result of the computational docking investigations, a novel substrate binding interaction was discovered: hydrogen bonding between the substrate (phosphate hydroxy-group as the hydrogen bond donor) and the NADPH cofactor (2'-oxygen as the hydrogen bond acceptor).

  5. Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami.

    PubMed

    Jiang, Qiao; Liu, Qing; Shi, Yuefeng; Wang, Zhen-Gang; Zhan, Pengfei; Liu, Jianbing; Liu, Chao; Wang, Hui; Shi, Xinghua; Zhang, Li; Sun, Jiashu; Ding, Baoquan; Liu, Minghua

    2017-11-08

    In response to environmental variations, living cells need to arrange the conformational changes of macromolecules to achieve the specific biofunctions. Inspired by natural molecular machines, artificial macromolecular assemblies with controllable nanostructures and environmentally responsive functions can be designed. By assembling macromolecular nanostructures with noble metal nanoparticles, environmental information could be significantly amplified and modulated. However, manufacturing dynamic plasmonic nanostructures that are efficiently responsive to different stimuli is still a challenging task. Here we demonstrate a stimulus-responsive plasmonic nanosystem based on DNA origami-organized gold nanorods (GNRs). L-shaped GNR dimers were assembled on rhombus-shaped DNA origami templates. The geometry and chiral signals of the GNR nanoarchitectures respond to multiple stimuli, including glutathione reduction, restriction enzyme action, pH change, or photoirradiation. While the glutathione reduction or restriction enzyme caused irreversible changes in the plasmonic circular dichroism (CD) signals, both pH and light irradiation triggered reversible changes in the plasmonic CD. Our system transduces external stimuli into conformational changes and circular dichroism responses in near-infrared (NIR) wavelengths. By this approach, programmable optical reporters for essential biological signals can be fabricated.

  6. [Construction and expression of a eukaryotic expression vector containing human CR2-Fc fusion protein].

    PubMed

    Li, Xinxin; Wu, Zhihao; Zhang, Chuanfu; Jia, Leili; Song, Hongbin; Xu, Yuanyong

    2014-01-01

    To construct a eukaryotic expression vector containing human complement receptor 2 (CR2)-Fc and express the CR2-Fc fusion protein in Chinese hamster ovary (CHO) cells. The extracellular domain of human CR2 and IgG1 Fc were respectively amplified, ligated and inserted into the eukaryotic expression vector PCI-neo. After verified by restriction enzyme digestion and sequencing, the recombinant plasmid was transfected into CHO K1 cells. The ones with stable expression of the fusion protein were obtained by means of G418 selection. The expression of the CR2-Fc fusion protein was detected and confirmed by SDS-PAGE and Western blotting. Restriction enzyme digestion and sequencing demonstrated that the recombinant plasmid was valid. SDS-PAGE showed that relative molecular mass (Mr;) of the purified product was consistent with the expected value. Western blotting further proved the single band at the same position. We constructed the eukaryotic expression vector of CR2-Fc/PCI-neo successfully. The obtained fusion protein was active and can be used for the further study of the role in HIV control.

  7. Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.

    PubMed

    Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo

    2015-11-01

    Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Molecular analysis of the anaerobic rumen fungus Orpinomyces - insights into an AT-rich genome.

    PubMed

    Nicholson, Matthew J; Theodorou, Michael K; Brookman, Jayne L

    2005-01-01

    The anaerobic gut fungi occupy a unique niche in the intestinal tract of large herbivorous animals and are thought to act as primary colonizers of plant material during digestion. They are the only known obligately anaerobic fungi but molecular analysis of this group has been hampered by difficulties in their culture and manipulation, and by their extremely high A+T nucleotide content. This study begins to answer some of the fundamental questions about the structure and organization of the anaerobic gut fungal genome. Directed plasmid libraries using genomic DNA digested with highly or moderately rich AT-specific restriction enzymes (VspI and EcoRI) were prepared from a polycentric Orpinomyces isolate. Clones were sequenced from these libraries and the breadth of genomic inserts, both genic and intergenic, was characterized. Genes encoding numerous functions not previously characterized for these fungi were identified, including cytoskeletal, secretory pathway and transporter genes. A peptidase gene with no introns and having sequence similarity to a gene encoding a bacterial peptidase was also identified, extending the range of metabolic enzymes resulting from apparent trans-kingdom transfer from bacteria to fungi, as previously characterized largely for genes encoding plant-degrading enzymes. This paper presents the first thorough analysis of the genic, intergenic and rDNA regions of a variety of genomic segments from an anaerobic gut fungus and provides observations on rules governing intron boundaries, the codon biases observed with different types of genes, and the sequence of only the second anaerobic gut fungal promoter reported. Large numbers of retrotransposon sequences of different types were found and the authors speculate on the possible consequences of any such transposon activity in the genome. The coding sequences identified included several orphan gene sequences, including one with regions strongly suggestive of structural proteins such as collagens and lampirin. This gene was present as a single copy in Orpinomyces, was expressed during vegetative growth and was also detected in genomes from another gut fungal genus, Neocallimastix.

  9. Restriction fragment length polymorphism and allozyme linkage map of Cuphea lanceolata.

    PubMed

    Webb, D M; Knapp, S J; Tagliani, L A

    1992-02-01

    Cuphea lanceolata Ait. has had a significant role in the domestication of Cuphea and is a useful experimental organism for investigating how medium-chain lipids are synthesized in developing seeds. To expand the genetics of this species, a linkage map of the C. lanceolata genome was constructed using five allozyme and 32 restriction-fragment-length-polymorphism (RFLP) marker loci. These loci were assigned to six linkage groups that correspond to the six chromosomes of this species. Map length is 288 cM. Levels of polymorphism were estimated for three inbred lines of C. lanceolata and an inbred line of C. viscosissima using 84 random genomic clones and two restriction enzymes, EcoRI and HindIII. Of the probes 29% detected RFLPs between C. lanceolata and C. viscosissima lines. Crosses between these species can be exploited to expand the map.

  10. Application of physico-chemical typing methods for the epidemiological analysis of Salmonella enteritidis strains of phage type 25/17.

    PubMed Central

    Seltmann, G.; Voigt, W.; Beer, W.

    1994-01-01

    Eighty-nine Salmonella enteritidis phage type 25/17 strains isolated from a localized outbreak in the German state Nordrhein-Westfalen (outbreak NWI) could not be further differentiated by biochemotyping and plasmid pattern analysis. They were submitted to a complex typing system consisting of modern physico-chemical analytical procedures. In lipopolysaccharide pattern analysis the strains proved to be homogeneous. In multilocus enzyme electrophoresis, outer membrane and whole cell protein pattern (WCPP) analysis, and Fourier-transform infrared (FT-IR) spectroscopy (increasing extent of differentiation in the given order) strains deviating from each basal pattern were found. The extent of correspondence in these deviations was satisfactory. Forty-six strains of the same sero- and phage type, however, obtained from different outbreaks, were additionally typed. The results obtained with them indicate that the data of the first group were not restricted to strains from outbreak NWI, but of general validity. It was found that both WCPP and FT-IR represent valuable methods for the sub-grouping of bacteria. Images Fig. 1 Fig. 2 Fig. 3 PMID:7995351

  11. Structural Basis for the Entrance into the Phenylpropanoid Metabolism Catalyzed by Phenylalanine Ammonia-Lyase

    PubMed Central

    Ritter, Holger; Schulz, Georg E.

    2004-01-01

    Because of its key role in secondary phenylpropanoid metabolism, Phe ammonia-lyase is one of the most extensively studied plant enzymes. To provide a basis for detailed structure–function studies, the enzyme from parsley (Petroselinum crispum) was crystallized, and the structure was elucidated at 1.7-Å resolution. It contains the unusual electrophilic 4-methylidene-imidazole-5-one group, which is derived from a tripeptide segment in two autocatalytic dehydration reactions. The enzyme resembles His ammonia-lyase from the general His degradation pathway but contains 207 additional residues, mainly in an N-terminal extension rigidifying a domain interface and in an inserted α-helical domain restricting the access to the active center. Presumably, Phe ammonia-lyase developed from His ammonia-lyase when fungi and plants diverged from the other kingdoms. A pathway of the catalyzed reaction is proposed in agreement with established biochemical data. The inactivation of the enzyme by a nucleophile is described in detail. PMID:15548745

  12. Functional Genotyping of Sulfurospirillum spp. in Mixed Cultures Allowed the Identification of a New Tetrachloroethene Reductive Dehalogenase

    PubMed Central

    Buttet, Géraldine F.; Holliger, Christof

    2013-01-01

    Reductive dehalogenases are the key enzymes involved in the anaerobic respiration of organohalides such as the widespread groundwater pollutant tetrachloroethene. The increasing number of available bacterial genomes and metagenomes gives access to hundreds of new putative reductive dehalogenase genes that display a high level of sequence diversity and for which substrate prediction remains very challenging. In this study, we present the development of a functional genotyping method targeting the diverse reductive dehalogenases present in Sulfurospirillum spp., which allowed us to unambiguously identify a new reductive dehalogenase from our tetrachloroethene-dechlorinating SL2 bacterial consortia. The new enzyme, named PceATCE, shows 92% sequence identity with the well-characterized PceA enzyme of Sulfurospirillum multivorans, but in contrast to the latter, it is restricted to tetrachloroethene as a substrate. Its apparent higher dechlorinating activity with tetrachloroethene likely allowed its selection and maintenance in the bacterial consortia among other enzymes showing broader substrate ranges. The sequence-substrate relationships within tetrachloroethene reductive dehalogenases are also discussed. PMID:23995945

  13. Genetic polymorphism of estrogen receptor alpha gene in Egyptian women with type II diabetes mellitus

    PubMed Central

    Motawi, Tarek M.K.; El-Rehany, Mahmoud A.; Rizk, Sherine M.; Ramzy, Maggie M.; el-Roby, Doaa M.

    2015-01-01

    Estrogen might play an important role in type 2 diabetes mellitus pathogenesis. A number of polymorphisms have been reported in the estrogen receptor alpha gene including the XbaI and PvuII restriction enzyme polymorphisms. The aim of this study was to determine if ESRα gene polymorphisms are associated with type 2 diabetes mellitus and correlated with lipid profile. Ninety diabetic Egyptian patients were compared with forty healthy controls. ESRα genotyping of PvuII and XbaI was performed using restriction fragment length polymorphism analysis. Our study showed that there is more significant difference in the frequency of C and G polymorphic allele between patients and control groups in PvuII and XbaI respectively. Also carriers of minor C and G alleles of PvuII and XbaI gene polymorphisms were associated with increased fasting blood glucose and disturbance in lipid profile as there is an increase in total cholesterol, triglycerides and Low density lipoprotein. So findings of present study suggest the possibility that PvuII and XbaI polymorphisms in ERα are related to T2DM and with increased serum lipids among Egyptian population. PMID:26401488

  14. Effect of L-arginine supplementation on the hepatic phosphatidylinositol 3-kinase signaling pathway and gluconeogenic enzymes in early intrauterine growth-restricted rats

    PubMed Central

    Luo, Kaiju; Chen, Pingyang; Li, Suping; Li, Wen; He, Mingfeng; Wang, Tao; Chen, Juncao

    2017-01-01

    The present study aimed to investigate the response of the phosphatidylinositol 3-kinase (PI3K) signaling pathway and gluconeogenic enzymes in intrauterine growth-restricted rats to dietary L-arginine (L-Arg) supplementation during the lactation period early in life. Pregnant Sprague-Dawley rats were randomly divided into a control group (CON), an intrauterine growth restriction group (IUGR) and an L-Arg group (LA). The pregnant rats in the CON group were fed a 21% protein diet, and those in the IUGR and LA groups were fed a 10% low protein diet, and all rats were fed a 21% protein diet after delivery. Water was available ad libitum to the pregnant rats during the 21-day lactation period, and the water provided to the LA group included 200 mg/kg/day L-Arg. Blood glucose, serum insulin, homeostasis model of assessment for insulin resistance (HOMA-IR), PI3K and protein kinase B (PKB) protein expression, and phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase) mRNA expression in the offspring rats were measured postnatally at 1, 3 and 8 weeks. No significant difference in blood glucose, serum insulin and HOMA-IR were identified at any time point among the three groups. PI3K and PKB expression was lower in the IUGR group offspring compared with that in the CON group offspring, but both were increased by dietary L-Arg supplementation. PEPCK mRNA and G-6-Pase mRNA expression levels in the offspring of the IUGR group were higher compared with those in the CON group but were downregulated following L-Arg supplementation. These results suggest that dietary L-Arg supplementation during the early lactation period promoted catch-up growth and reversed abnormalities in hepatic insulin signaling and gene expression of gluconeogenic enzymes in IUGR offspring rats. PMID:28962167

  15. Genetically Engineered Escherichia coli Nissle 1917 Synbiotics Reduce Metabolic Effects Induced by Chronic Consumption of Dietary Fructose

    PubMed Central

    Somabhai, Chaudhari Archana; Raghuvanshi, Ruma; Nareshkumar, G.

    2016-01-01

    Aims To assess protective efficacy of genetically modified Escherichia coli Nissle 1917 (EcN) on metabolic effects induced by chronic consumption of dietary fructose. Materials and Methods EcN was genetically modified with fructose dehydrogenase (fdh) gene for conversion of fructose to 5-keto-D-fructose and mannitol-2-dehydrogenase (mtlK) gene for conversion to mannitol, a prebiotic. Charles foster rats weighing 150–200 g were fed with 20% fructose in drinking water for two months. Probiotic treatment of EcN (pqq), EcN (pqq-glf-mtlK), EcN (pqq-fdh) was given once per week 109 cells for two months. Furthermore, blood and liver parameters for oxidative stress, dyslipidemia and hyperglycemia were estimated. Fecal samples were collected to determine the production of short chain fatty acids and pyrroloquinoline quinone (PQQ) production. Results EcN (pqq-glf-mtlK), EcN (pqq-fdh) transformants were confirmed by restriction digestion and functionality was checked by PQQ estimation and HPLC analysis. There was significant increase in body weight, serum glucose, liver injury markers, lipid profile in serum and liver, and decrease in antioxidant enzyme activity in high-fructose-fed rats. However the rats treated with EcN (pqq-glf-mtlK) and EcN (pqq-fdh) showed significant reduction in lipid peroxidation along with increase in serum and hepatic antioxidant enzyme activities. Restoration of liver injury marker enzymes was also seen. Increase in short chain fatty acids (SCFA) demonstrated the prebiotic effects of mannitol and gluconic acid. Conclusions Our study demonstrated the effectiveness of probiotic EcN producing PQQ and fructose metabolizing enzymes against the fructose induced hepatic steatosis suggesting that its potential for use in treating fructose induced metabolic syndrome. PMID:27760187

  16. The effect of polymorphic metabolism enzymes on serum phenytoin level.

    PubMed

    Ozkaynakci, Aydan; Gulcebi, Medine Idrizoglu; Ergeç, Deniz; Ulucan, Korkut; Uzan, Mustafa; Ozkara, Cigdem; Guney, Ilter; Onat, Filiz Yilmaz

    2015-03-01

    Phenytoin has a widespread use in epilepsy treatment and is mainly metabolized by hepatic cytochrome P450 enzymes (CYP). We have investigated CYP2C9*2, CYP2C9*3, CYP2C19*2 and CYP2C19*3 allelic variants in a Turkish population of patients on phenytoin therapy. Patients on phenytoin therapy (n = 102) for the prevention of epileptic seizures were included. Polymorphic alleles were analyzed by restriction fragment length polymorphism method. Serum concentrations of phenytoin were measured by fluorescence polarization immune assay method. The most frequent genotype was detected for CYP2C9 wild-type alleles (78.43 %), whereas CYP2C19*2/*2 (5.88 %) was the least frequent genotype group. According to the classification made with both enzyme polymorphisms, CYP2C9*1/*1-CYP2C19*1/*1 (G1: 41.17 %) genotype group was the most frequent whereas CYP2C9*1/*2-CYP2C19*1/*3 (G7: 0.98 %) was the least frequent one. The highest mean phenytoin level (27.95 ± 1.85 µg/ml) was detected in the G8 genotype group (CYP2C9*1/*3-CYP2C19*2/*3) and the G1 genotype group showed the lowest mean phenytoin level (7.43 ± 0.73 µg/ml). The mean serum concentration of phenytoin of the polymorphic patients with epilepsy was higher than that for the wild-type alleles both in the monotherapy and polytherapy patients. These results show the importance of the genetic polymorphism analysis of the main metabolizing enzyme groups of phenytoin for the dose adjustment.

  17. PfPK7, an atypical MEK-related protein kinase, reflects the absence of classical three-component MAPK pathways in the human malaria parasite Plasmodium falciparum.

    PubMed

    Dorin, Dominique; Semblat, Jean-Philippe; Poullet, Patrick; Alano, Pietro; Goldring, J P Dean; Whittle, Christina; Patterson, Shelley; Chakrabarti, Debopam; Doerig, Christian

    2005-01-01

    Two members of the mitogen-activated protein kinase (MAPK) family have been previously characterized in Plasmodium falciparum, but in vitro attempts at identifying MAP kinase kinase (MAPKK) homologues have failed. Here we report the characterization of a novel plasmodial protein kinase, PfPK7, whose top scores in blastp analysis belong to the MAPKK3/6 subgroup of MAPKKs. However, homology to MAPKKs is restricted to regions of the C-terminal lobe of the kinase domain, whereas the N-terminal region is closer to fungal protein kinase A enzymes (PKA, members of the AGC group of protein kinases). Hence, PfPK7 is a 'composite' enzyme displaying regions of similarity to more than one protein kinase family, similar to a few other plasmodial protein kinases. PfPK7 is expressed in several developmental stages of the parasite, both in the mosquito vector and in the human host. Recombinant PfPK7 displayed kinase activity towards a variety of substrates, but was unable to phosphorylate the two P. falciparum MAPK homologues in vitro, and was insensitive to PKA and MEK inhibitors. Together with the absence of a typical MAPKK activation site in its T-loop, this suggests that PfPK7 is not a MAPKK orthologue, despite the fact that this enzyme is the most 'MAPKK-like' enzyme encoded in the P. falciparum genome. This is consistent with recent observations that the plasmodial MAPKs are not true orthologues of the ERK1/2, p38 or JNK MAPKs, and strengthens the evidence that classical three-component module-dependent MAPK signalling pathways do not operate in malaria parasites, a feature that has not been described in any other eukaryote.

  18. Microorganism mediated liquid fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troiano, Richard

    Herein disclosed is a method for producing liquid hydrocarbon product, the method comprising disintegrating a hydrocarbon source; pretreating the disintegrated hydrocarbon source; solubilizing the disintegrated hydrocarbon source to form a slurry comprising a reactant molecule of the hydrocarbon source; admixing a biochemical liquor into the slurry, wherein the biochemical liquor comprises at least one conversion enzyme configured to facilitate bond selective photo-fragmentation of said reactant molecule of the hydrocarbon source, to form liquid hydrocarbons via enzyme assisted bond selective photo-fragmentation, wherein said conversion enzyme comprises reactive sites configured to restrict said reactant molecule such that photo-fragmentation favorably targets a preselectedmore » internal bond of said reactant molecule; separating the liquid hydrocarbons from the slurry, wherein contaminants remain in the slurry; and enriching the liquid hydrocarbons to form a liquid hydrocarbon product. Various aspects of such method/process are also discussed.« less

  19. Phylogenetic Analysis and Molecular Characterization of Xanthium sibiricum Using DNA Barcoding, PCR-RFLP, and Specific Primers.

    PubMed

    Tomasello, Salvatore; Heubl, Günther

    2017-07-01

    The fruits of Xanthium sibiricum have been widely used in traditional Chinese medicine for the treatment of nasal sinusitis and headaches. The genus Xanthium (cocklebur) is a taxonomically complex genus. Different taxonomic concepts have been proposed, some including several species, others lumping the different taxa in a few extremely polymorphic species. Due to the morphological similarities between species, the correct authentication of X. sibiricum is very difficult. Therefore, we established a polymerase chain reaction-restriction fragment length polymorphism method and diagnostic PCR based on nuclear internal transcribed spacer and chloroplast trnQ-rps16 barcodes to differentiate X. sibirium from related species.Results from the phylogenetic analyses based on sequence information from four marker regions (plastidal psbA-trnH and trnQ-rps16 and nuclear ITS and D35 ) support those taxonomic concepts accepting a reduced number of species, as four to five major clades are revealed in the phylogenetic reconstructions. X. sibiricum , together with some accessions from closely related taxa, is always supported as monophyletic, constituting a well-defined genetic entity. Allele-specific primer pairs for ITS and trnQ-rps16 were designed to amplify diagnostic products from the genomic DNA of X. sibiricum . Specific PCR in combination with digestion using the restriction enzyme Mse I allowed for the identification of X. sibiricum by producing specific restriction patterns. The results demonstrate that the applied techniques provide effective and accurate authentication of X. sibiricum . Georg Thieme Verlag KG Stuttgart · New York.

  20. The proteome of methylmalonic acidemia (MMA): the elucidation of altered pathways in patient livers.

    PubMed

    Caterino, Marianna; Chandler, Randy J; Sloan, Jennifer L; Dorko, Kenneth; Cusmano-Ozog, Kristina; Ingenito, Laura; Strom, Stephen C; Imperlini, Esther; Scolamiero, Emanuela; Venditti, Charles P; Ruoppolo, Margherita

    2016-02-01

    Methylmalonic acidemia (MMA) is a heterogeneous and severe autosomal recessive inborn error of metabolism most commonly caused by the deficient activity of the vitamin B12 dependent enzyme, methylmalonyl-CoA mutase (MUT). The main treatment for MMA patients is the dietary restriction of propiogenic amino acids and carnitine supplementation. Despite treatment, the prognosis for vitamin B12 non-responsive patients remains poor and is associated with neonatal lethality, persistent morbidity and decreased life expectancy. While multi-organ pathology is a feature of MMA, the liver is severely impacted by mitochondrial dysfunction which likely underlies the metabolic instability experienced by the patients. Liver and/or combined liver/kidney transplantation is therefore sometimes performed in severely affected patients. Using liver specimens from donors and MMA patients undergoing elective liver transplantation collected under a dedicated natural history protocol (clinicaltrials.gov: NCT00078078), we employed proteomics to characterize the liver pathology and impaired hepatic metabolism observed in the patients. Pathway analysis revealed perturbations of enzymes involved in energy metabolism, gluconeogenesis and Krebs cycle anaplerosis. Our findings identify new pathophysiologic and therapeutic targets that could be valuable for designing alternative therapies to alleviate clinical manifestations seen in this disorder.

  1. Gene and process level modulation to overcome the bottlenecks of recombinant proteins expression in Pichia pastoris.

    PubMed

    Prabhu, Ashish A; Boro, Bibari; Bharali, Biju; Chakraborty, Shuchishloka; Dasu, Veeranki V

    2017-01-01

    Process development involving system metabolic engineering and bioprocess engineering has become one of the major thrust for the development of therapeutic proteins or enzymes. Pichia pastoris has emerged as a prominent host for the production of therapeutic protein or enzymes. Regardless of producing high protein titers, various cellular and process level bottlenecks restrict the expression of recombinant proteins in P. pastoris. In the present review, we have summarized the recent developments in the expression of foreign proteins in P. pastoris. Further, we have discussed various cellular engineering strategies which include codon optimization, pathway engineering, signal peptide processing, development of protease deficient strain and glyco-engineered strains for the high yield protein secretion of recombinant protein. Bioprocess development of recombinant proteins in large-scale bioreactor including medium optimization, optimum feeding strategy and co-substrate feeding in fed-batch as well as continuous cultivation have been described. The recent advances in system and synthetic biology studies including metabolic flux analysis in understanding the phenotypic characteristics of recombinant Pichia and genome editing with CRISPR-CAS system have also been summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Purification and identification of a nuclease activity in embryo axes from French bean.

    PubMed

    Lambert, Rocío; Quiles, Francisco Antonio; Cabello-Díaz, Juan Miguel; Piedras, Pedro

    2014-07-01

    Plant nucleases are involved in nucleic acid degradation associated to programmed cell death processes as well as in DNA restriction, repair and recombination processes. However, the knowledge about the function of plant nucleases is limited. A major nuclease activity was detected by in-gel assay with whole embryonic axes of common bean by using ssDNA or RNA as substrate, whereas this activity was minimal in cotyledons. The enzyme has been purified to electrophoretic homogeneity from embryonic axes. The main biochemical properties of the purified enzyme indicate that it belongs to the S1/P1 family of nucleases. This was corroborated when this protein, after SDS-electrophoresis, was excised from the gel and further analysis by MALDI TOF/TOF allowed identification of the gene (PVN1) that codes this protein. The gene that codes the purified protein was identified. The expression of PVN1 gene was induced at the specific moment of radicle protrusion. The inclusion of inorganic phosphate to the imbibition media reduced the level of expression of this gene and the nuclease activity suggesting a relationship with the phosphorous status in French bean seedlings. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Severe Hypertriglyceridemia due to a novel p.Q240H mutation in the Lipoprotein Lipase gene.

    PubMed

    Soto, Angela Ganan; McIntyre, Adam; Agrawal, Sungeeta; Bialo, Shara R; Hegele, Robert A; Boney, Charlotte M

    2015-09-04

    Lipoprotein Lipase (LPL) deficiency is a rare autosomal recessive disorder with a heterogeneous clinical presentation. Several mutations in the LPL gene have been identified to cause decreased activity of the enzyme. An 11-week-old, exclusively breastfed male presented with coffee-ground emesis, melena, xanthomas, lipemia retinalis and chylomicronemia. Genomic DNA analysis identified lipoprotein lipase deficiency due to compound heterozygosity including a novel p.Q240H mutation in exon 5 of the lipoprotein lipase (LPL) gene. His severe hypertriglyceridemia, including xanthomas, resolved with dietary long-chain fat restriction. We describe a novel mutation of the LPL gene causing severe hypertriglyceridemia and report the response to treatment. A review of the current literature regarding LPL deficiency syndrome reveals a few potential new therapies under investigation.

  4. Chromosomal changes during experimental evolution in laboratory populations of Escherichia coli.

    PubMed

    Bergthorsson, U; Ochman, H

    1999-02-01

    Short-term rates of chromosome evolution were analyzed in experimental populations of Escherichia coli B that had been propagated for 2,000 generations under four thermal regimens. Chromosome alterations were monitored in 24 independent populations by pulsed-field gel electrophoresis of DNA treated with five rare-cutting restriction enzymes. A total of 11 changes, 8 affecting chromosome size and 3 altering restriction sites, were observed in these populations, with none occurring in strains cultured at 37 degreesC. Considering the changes detected in these experimental populations, the rate of chromosome alteration of E. coli is estimated to be half of that observed in experimental populations of yeast.

  5. Restriction digest screening facilitates efficient detection of site-directed mutations introduced by CRISPR in C. albicans UME6

    PubMed Central

    Evans, Ben A.; Smith, Olivia L.; Pickerill, Ethan S.; York, Mary K.; Buenconsejo, Kristen J.P.; Chambers, Antonio E.

    2018-01-01

    Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn2+-binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans. Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest. PMID:29892505

  6. Draft genome sequence of Actinotignum schaalii DSM 15541T: Genetic insights into the lifestyle, cell fitness and virulence.

    PubMed

    Yassin, Atteyet F; Langenberg, Stefan; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Mukherjee, Supratim; Reddy, T B K; Daum, Chris; Shapiro, Nicole; Ivanova, Natalia; Woyke, Tanja; Kyrpides, Nikos C

    2017-01-01

    The permanent draft genome sequence of Actinotignum schaalii DSM 15541T is presented. The annotated genome includes 2,130,987 bp, with 1777 protein-coding and 58 rRNA-coding genes. Genome sequence analysis revealed absence of genes encoding for: components of the PTS systems, enzymes of the TCA cycle, glyoxylate shunt and gluconeogensis. Genomic data revealed that A. schaalii is able to oxidize carbohydrates via glycolysis, the nonoxidative pentose phosphate and the Entner-Doudoroff pathways. Besides, the genome harbors genes encoding for enzymes involved in the conversion of pyruvate to lactate, acetate and ethanol, which are found to be the end products of carbohydrate fermentation. The genome contained the gene encoding Type I fatty acid synthase required for de novo FAS biosynthesis. The plsY and plsX genes encoding the acyltransferases necessary for phosphatidic acid biosynthesis were absent from the genome. The genome harbors genes encoding enzymes responsible for isoprene biosynthesis via the mevalonate (MVA) pathway. Genes encoding enzymes that confer resistance to reactive oxygen species (ROS) were identified. In addition, A. schaalii harbors genes that protect the genome against viral infections. These include restriction-modification (RM) systems, type II toxin-antitoxin (TA), CRISPR-Cas and abortive infection system. A. schaalii genome also encodes several virulence factors that contribute to adhesion and internalization of this pathogen such as the tad genes encoding proteins required for pili assembly, the nanI gene encoding exo-alpha-sialidase, genes encoding heat shock proteins and genes encoding type VII secretion system. These features are consistent with anaerobic and pathogenic lifestyles. Finally, resistance to ciprofloxacin occurs by mutation in chromosomal genes that encode the subunits of DNA-gyrase (GyrA) and topisomerase IV (ParC) enzymes, while resistant to metronidazole was due to the frxA gene, which encodes NADPH-flavin oxidoreductase.

  7. BrEPS 2.0: Optimization of sequence pattern prediction for enzyme annotation.

    PubMed

    Dudek, Christian-Alexander; Dannheim, Henning; Schomburg, Dietmar

    2017-01-01

    The prediction of gene functions is crucial for a large number of different life science areas. Faster high throughput sequencing techniques generate more and larger datasets. The manual annotation by classical wet-lab experiments is not suitable for these large amounts of data. We showed earlier that the automatic sequence pattern-based BrEPS protocol, based on manually curated sequences, can be used for the prediction of enzymatic functions of genes. The growing sequence databases provide the opportunity for more reliable patterns, but are also a challenge for the implementation of automatic protocols. We reimplemented and optimized the BrEPS pattern generation to be applicable for larger datasets in an acceptable timescale. Primary improvement of the new BrEPS protocol is the enhanced data selection step. Manually curated annotations from Swiss-Prot are used as reliable source for function prediction of enzymes observed on protein level. The pool of sequences is extended by highly similar sequences from TrEMBL and SwissProt. This allows us to restrict the selection of Swiss-Prot entries, without losing the diversity of sequences needed to generate significant patterns. Additionally, a supporting pattern type was introduced by extending the patterns at semi-conserved positions with highly similar amino acids. Extended patterns have an increased complexity, increasing the chance to match more sequences, without losing the essential structural information of the pattern. To enhance the usability of the database, we introduced enzyme function prediction based on consensus EC numbers and IUBMB enzyme nomenclature. BrEPS is part of the Braunschweig Enzyme Database (BRENDA) and is available on a completely redesigned website and as download. The database can be downloaded and used with the BrEPScmd command line tool for large scale sequence analysis. The BrEPS website and downloads for the database creation tool, command line tool and database are freely accessible at http://breps.tu-bs.de.

  8. BrEPS 2.0: Optimization of sequence pattern prediction for enzyme annotation

    PubMed Central

    Schomburg, Dietmar

    2017-01-01

    The prediction of gene functions is crucial for a large number of different life science areas. Faster high throughput sequencing techniques generate more and larger datasets. The manual annotation by classical wet-lab experiments is not suitable for these large amounts of data. We showed earlier that the automatic sequence pattern-based BrEPS protocol, based on manually curated sequences, can be used for the prediction of enzymatic functions of genes. The growing sequence databases provide the opportunity for more reliable patterns, but are also a challenge for the implementation of automatic protocols. We reimplemented and optimized the BrEPS pattern generation to be applicable for larger datasets in an acceptable timescale. Primary improvement of the new BrEPS protocol is the enhanced data selection step. Manually curated annotations from Swiss-Prot are used as reliable source for function prediction of enzymes observed on protein level. The pool of sequences is extended by highly similar sequences from TrEMBL and SwissProt. This allows us to restrict the selection of Swiss-Prot entries, without losing the diversity of sequences needed to generate significant patterns. Additionally, a supporting pattern type was introduced by extending the patterns at semi-conserved positions with highly similar amino acids. Extended patterns have an increased complexity, increasing the chance to match more sequences, without losing the essential structural information of the pattern. To enhance the usability of the database, we introduced enzyme function prediction based on consensus EC numbers and IUBMB enzyme nomenclature. BrEPS is part of the Braunschweig Enzyme Database (BRENDA) and is available on a completely redesigned website and as download. The database can be downloaded and used with the BrEPScmd command line tool for large scale sequence analysis. The BrEPS website and downloads for the database creation tool, command line tool and database are freely accessible at http://breps.tu-bs.de. PMID:28750104

  9. One-step random mutagenesis by error-prone rolling circle amplification

    PubMed Central

    Fujii, Ryota; Kitaoka, Motomitsu; Hayashi, Kiyoshi

    2004-01-01

    In vitro random mutagenesis is a powerful tool for altering properties of enzymes. We describe here a novel random mutagenesis method using rolling circle amplification, named error-prone RCA. This method consists of only one DNA amplification step followed by transformation of the host strain, without treatment with any restriction enzymes or DNA ligases, and results in a randomly mutated plasmid library with 3–4 mutations per kilobase. Specific primers or special equipment, such as a thermal-cycler, are not required. This method permits rapid preparation of randomly mutated plasmid libraries, enabling random mutagenesis to become a more commonly used technique. PMID:15507684

  10. Regeneration and molecular characterization of an intergeneric hybrid between Graphium putredinis and Trichoderma harzianum by protoplasmic fusion.

    PubMed

    Savitha, S; Sadhasivam, S; Swaminathan, K

    2010-01-01

    The fungal strains Graphium putredinis and Trichoderma harzianum were selected as parents for fusant development. Protoplasts were isolated using the combination of lysing enzymes Novozym 234 and cellulase with 0.6M KCl as osmotic stabilizer. The optimum conditions for release of viable protoplasts from the fungal mycelium viz. age of the mycelium, lytic enzymes, osmotic stabilizers, pH, incubation period and regeneration medium were determined. Intergeneric protoplast fusion was carried out using 50% polyethylene glycol with calcium chloride (CaCl(2)) and glycine buffer and the conditions for effective protoplast fusion, viz. fusogen, osmotic stabilizer, pH, incubation period and regeneration medium were optimized. At optimum conditions, the regeneration frequency of the fused protoplasts on potato dextrose agar (PDA) medium and fusion frequency were calculated. The regeneration frequency on non-selective (PDA) and selective media (PDA amended with starch) was determined for the parental and fusant strains in which, fusant showed a higher rate of regeneration. Fusant formation was confirmed by morphological markers (colony morphology and spore size and shape) and genetical markers like, mycelial protein pattern, restriction digestion pattern and random amplified polymorphic DNA (RAPD) analysis. The efficiency of these parental strains and their intergeneric fusant in the production of hydrolytic enzymes - amylases (treatment plant for sago factory effluent), cellulases (bioethanol), xylanases (bleaching agents for waste paper pulp) and proteases (additives in commercial detergents) - have probable applications in various industrial processes. (c) 2010 Elsevier Inc. All rights reserved.

  11. Differences in the association between maternal serum homocysteine and ADMA levels in women with pregnancies complicated by preeclampsia and/or intrauterine growth restriction.

    PubMed

    Laskowska, Marzena; Laskowska, Katarzyna; Oleszczuk, Jan

    2013-01-01

    The aim of our study was to investigate the association between homocysteine and asymmetric dimethylarginine in preeclamptic women with and without intrauterine growth restriction compared with normal healthy uncomplicated pregnancies and normotensive pregnancies complicated by idiopathic isolated intrauterine fetal growth restriction. The maternal serum homocysteine and asymmetric dimethylarginine concentrations were determined using a sandwich enzyme-linked immunosorbent assays. A statistically significant positive correlation of maternal serum homocysteine levels with the serum asymmetric dimethylarginine levels was observed in healthy normotensive uncomplicated pregnant women from the control group and in preeclamptic patients with appropriate-for-gestational-age fetuses (R = 0.380079, p-value = 0.002311* and R = 0.455797, p-value = 0.004030* for the control and the P groups, respectively). However, this correlation was not significant in women with pregnancy complicated by intrauterine growth restriction, both isolated and in the course of severe preeclampsia. These findings provide support for the hypothesis that elevated levels of asymmetric dimethylarginine in pregnancy complicated by preeclampsia are associated with elevated homocysteine levels. But our results also demonstrate that in pregnancies complicated by intrauterine growth restriction, this mechanism is important, although not the only one.

  12. Biodiversity and ITS-RFLP Characterisation of Aspergillus Section Nigri Isolates in Grapes from Four Traditional Grape-Producing Areas in Greece

    PubMed Central

    Kizis, Dimosthenis; Natskoulis, Pantelis; Nychas, George-John E.; Panagou, Efstathios Z.

    2014-01-01

    A study on the occurrence of Aspergillus section Nigri species on grapes from four traditional grape-producing areas in Greece during the 2011/2012 vintage, and their capability to produce OTA was conducted. One hundred and twenty-eight black aspergilli isolates were characterised at the species level initially by the use of morphological criteria in accordance with appropriate keys, followed by molecular characterisation performed with Polymerase Chain Reaction–Restriction Fragment Length Polymorphism (PCR-RFLP) of the 5.8 ribosomal RNA gene Internal Transcribed Spacer region (5.8 rRNA ITS). Restriction enzyme digestion of the ITS amplicons using the HhaI, HinfI and RsaI, endonucleases distinguished eleven different patterns of restriction fragment length polymorphism (RFLP), four for each of the HhaI and RsaI digests and three for HinfI. From a total number of 128 individual isolates, 124 were classified into four Aspergillus species corresponding to A. carbonarius, A. tubingensis, A. japonicus and A. ibericus, and the remaining 4 were classified as members of the A. niger aggregate. A. carbonarius and A. tubingensis being the main representative species were equally counted, with higher geographical representation of the former in southern and the latter in northern regions, respectively. All isolates were tested for their ochratoxigenic potential by use of High Performance Liquid Chromatography (HPLC) and Enzyme Linked Immuno Sorbent Assay (ELISA), resulting in significant interspecies differences in OTA production. PMID:24710283

  13. Exploitation of rolling circle amplification for the construction of large phage-display antibody libraries.

    PubMed

    Shahsavarian, Melody A; Le Minoux, Damien; Matti, Kalyankumar M; Kaveri, Srini; Lacroix-Desmazes, Sébastien; Boquet, Didier; Friboulet, Alain; Avalle, Bérangère; Padiolleau-Lefèvre, Séverine

    2014-05-01

    Phage display antibody libraries have proven to have a significant role in the discovery of therapeutic antibodies and polypeptides with desired biological and physicochemical properties. Obtaining a large and diverse phage display antibody library, however, is always a challenging task. Various steps of this technique can still undergo optimization in order to obtain an efficient library. In the construction of a single chain fragment variable (scFv) phage display library, the cloning of the scFv fragments into a phagemid vector is of crucial importance. An efficient restriction enzyme digestion of the scFv DNA leads to its proper ligation with the phagemid followed by its successful cloning and expression. Here, we are reporting a different approach to enhance the efficiency of the restriction enzyme digestion step. We have exploited rolling circle amplification (RCA) to produce a long strand of DNA with tandem repeats of scFv sequences, which is found to be highly susceptible to restriction digestion. With this important modification, we are able to construct a large phage display antibody library of naive SJL/J mice. The size of the library is estimated as ~10(8) clones. The number of clones containing a scFv fragment is estimated at 90%. Hence, the present results could considerably aid the utilization of the phage-display technique in order to get an efficiently large antibody library. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Construction and characterization of a bacterial artificial chromosome library for hexaploid wheat line 92R137

    USDA-ARS?s Scientific Manuscript database

    For map-based cloning of genes conferring important traits in the hexaploid wheat line 92R137, a bacterial artificial chromosome (BAC) library, including two sub libraries, was constructed using the genomic DNA of 92R137 digested with restriction enzymes HindIII and BamHI. The BAC library was compos...

  15. CTLA-4 gene polymorphisms and their influence on predisposition to autoimmune thyroid diseases (Graves’ disease and Hashimoto's thyroiditis)

    PubMed Central

    Pastuszak-Lewandoska, Dorota; Sewerynek, Ewa; Domańska, Daria; Gładyś, Aleksandra; Skrzypczak, Renata

    2012-01-01

    Introduction Autoimmune thyroid disease (AITD) is associated with both genetic and environmental factors which lead to the overactivity of immune system. Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) gene polymorphisms belong to the main genetic factors determining the susceptibility to AITD (Hashimoto's thyroiditis, HT and Graves' disease, GD) development. The aim of the study was to evaluate the relationship between CTLA-4 polymorphisms (A49G, 1822 C/T and CT60 A/G) and HT and/or GD in Polish patients. Material and methods Molecular analysis involved AITD group, consisting of HT (n=28) and GD (n=14) patients, and a control group of healthy persons (n=20). Genomic DNA was isolated from peripheral blood and CTLA-4 polymorphisms were assessed by polymerase chain reaction-restriction fragment length polymorphism method, using three restriction enzymes: Fnu4HI (A49G), BsmAI (1822 C/T) and BsaAI (CT60 A/G). Results Statistical analysis (χ2 test) confirmed significant differences between the studied groups concerning CTLA-4 A49G genotypes. CTLA-4 A/G genotype was significantly more frequent in AITD group and OR analysis suggested that it might increase the susceptibility to HT. In GD patients, OR analysis revealed statistically significant relationship with the presence of G allele. In controls, CTLA-4 A/A genotype frequency was significantly increased suggesting a protective effect. There were no statistically significant differences regarding frequencies of other genotypes and polymorphic alleles of the CTLA-4 gene (1822 C/T and CT60 A/G) between the studied groups. Conclusions CTLA-4 A49G polymorphism seems to be an important genetic determinant of the risk of HT and GD in Polish patients. PMID:22851994

  16. CTLA-4 gene polymorphisms and their influence on predisposition to autoimmune thyroid diseases (Graves' disease and Hashimoto's thyroiditis).

    PubMed

    Pastuszak-Lewandoska, Dorota; Sewerynek, Ewa; Domańska, Daria; Gładyś, Aleksandra; Skrzypczak, Renata; Brzeziańska, Ewa

    2012-07-04

    Autoimmune thyroid disease (AITD) is associated with both genetic and environmental factors which lead to the overactivity of immune system. Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) gene polymorphisms belong to the main genetic factors determining the susceptibility to AITD (Hashimoto's thyroiditis, HT and Graves' disease, GD) development. The aim of the study was to evaluate the relationship between CTLA-4 polymorphisms (A49G, 1822 C/T and CT60 A/G) and HT and/or GD in Polish patients. Molecular analysis involved AITD group, consisting of HT (n=28) and GD (n=14) patients, and a control group of healthy persons (n=20). Genomic DNA was isolated from peripheral blood and CTLA-4 polymorphisms were assessed by polymerase chain reaction-restriction fragment length polymorphism method, using three restriction enzymes: Fnu4HI (A49G), BsmAI (1822 C/T) and BsaAI (CT60 A/G). Statistical analysis (χ(2) test) confirmed significant differences between the studied groups concerning CTLA-4 A49G genotypes. CTLA-4 A/G genotype was significantly more frequent in AITD group and OR analysis suggested that it might increase the susceptibility to HT. In GD patients, OR analysis revealed statistically significant relationship with the presence of G allele. In controls, CTLA-4 A/A genotype frequency was significantly increased suggesting a protective effect. There were no statistically significant differences regarding frequencies of other genotypes and polymorphic alleles of the CTLA-4 gene (1822 C/T and CT60 A/G) between the studied groups. CTLA-4 A49G polymorphism seems to be an important genetic determinant of the risk of HT and GD in Polish patients.

  17. Endothelial Targeting of Semi-permeable Polymer Nanocarriers for Enzyme Therapies

    PubMed Central

    Dziubla, Thomas D; Shuvaev, Vladimir V.; Hong, Nan Kang; Hawkins, Brian; Muniswamy, Madesh; Takano, Hajime; Simone, Eric; Nakada, Marian T.; Fisher, Aron; Albelda, Steven M.; Muzykantov, Vladimir R.

    2007-01-01

    The medical utility of proteins, e.g. therapeutic enzymes, is greatly restricted by their liable nature and inadequate delivery. Most therapeutic enzymes do not accumulate in their targets and are inactivated by proteases. Targeting of enzymes encapsulated into substrate-permeable Polymeric Nano-Carriers (PNC) impermeable for proteases might overcome these limitations. To test this hypothesis, we designed endothelial targeted PNC loaded with catalase, the H2O2-detoxifying enzyme, and tested if this approach protects against vascular oxidative stress, a pathological process implicated in ischemia-reperfusion and other disease conditions. Encapsulation of catalase (MW 240KD), peroxidase (MW 42kD) and xanthine oxidase (XO, MW 300 kD) into ~300nm diameter PNC composed of co-polymers of PEG-PLGA (polyethylene glycol and poly-lactic/poly-glycolic acid) was in the range ~10% for all enzymes. PNC/catalase and PNC/peroxidase were protected from external proteolysis and exerted the enzymatic activity on their PNC diffusible substrates, H2O2 and ortho-phenylendiamine, whereas activity of encapsulated XO was negligible due to polymer impermeability to the substrate. PNC targeted to platelet-endothelial cell adhesion molecule-1 delivered active encapsulated catalase to endothelial cells and protected the endothelium against oxidative stress in cell culture and animal studies. Vascular targeting of PNC-loaded detoxifying enzymes may find wide medical applications including management of oxidative stress and other toxicities. PMID:17950837

  18. Isolation of a new herpes virus from human CD4 sup + T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenkel, N.; Schirmer, E.C.; Wyatt, L.S.

    1990-01-01

    A new human herpes virus has been isolated from CD4{sup +} T cells purified from peripheral blood mononuclear cells of a healthy individual (RK), following incubation of the cells under conditions promoting T-cell activation. The virus could not be recovered from nonactivated cells. Cultures of lymphocytes infected with the RK virus exhibited a cytopathic effect, and electron microscopic analyses revealed a characteristic herpes virus structure. RK virus DNA did not hybridize with large probes derived from herpes simplex virus, Epstein-Barr virus, varicella-zoster virus, and human cytomegalovirus. The genetic relatedness of the RK virus to the recently identified T-lymphotropic human herpesmore » virus 6 (HHV-6) was investigated by restriction enzyme analyses using 21 different enzymes and by blot hydridization analyses using 11 probes derived from two strains of HHV-6 (Z29 and U1102). Whereas the two HHV-6 strains exhibited only limited restriction enzyme polymorphism, cleavage of the RK virus DNA yielded distinct patterns. Of the 11 HHV-6 DNA probes tested, only 6 cross-hybridized with DNA fragments derived from the RK virus. Taken together, the maximal homology amounted to 31 kilobases of the 75 kilobases tested. The authors conclude that the RK virus is distinct from previously characterized human herpesviruses. The authors propose to designate it as the prototype of a new herpes virus, the seventh human herpes virus identified to date.« less

  19. Metabolic adaptations to short-term every-other-day feeding in long-living Ames dwarf mice.

    PubMed

    Brown-Borg, Holly M; Rakoczy, Sharlene

    2013-09-01

    Restrictive dietary interventions exert significant beneficial physiological effects in terms of aging and age-related disease in many species. Every other day feeding (EOD) has been utilized in aging research and shown to mimic many of the positive outcomes consequent with dietary restriction. This study employed long living Ames dwarf mice subjected to EOD feeding to examine the adaptations of the oxidative phosphorylation and antioxidative defense systems to this feeding regimen. Every other day feeding lowered liver glutathione (GSH) concentrations in dwarf and wild type (WT) mice but altered GSH biosynthesis and degradation in WT mice only. The activities of liver OXPHOS enzymes and corresponding proteins declined in WT mice fed EOD while in dwarf animals, the levels were maintained or increased with this feeding regimen. Antioxidative enzymes were differentially affected depending on the tissue, whether proliferative or post-mitotic. Gene expression of components of liver methionine metabolism remained elevated in dwarf mice when compared to WT mice as previously reported however, enzymes responsible for recycling homocysteine to methionine were elevated in both genotypes in response to EOD feeding. The data suggest that the differences in anabolic hormone levels likely affect the sensitivity of long living and control mice to this dietary regimen, with dwarf mice exhibiting fewer responses in comparison to WT mice. These results provide further evidence that dwarf mice may be better protected against metabolic and environmental perturbations which may in turn, contribute to their extended longevity. © 2013.

  20. A Genome-Wide Screen Indicates Correlation between Differentiation and Expression of Metabolism Related Genes

    PubMed Central

    Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation. PMID:23717462

  1. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes.

    PubMed

    Roy, Priti; Kumar, Brijesh; Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.

  2. Impact of the method of G6PD deficiency assessment on genetic association studies of malaria susceptibility.

    PubMed

    Johnson, Marla K; Clark, Tamara D; Njama-Meya, Denise; Rosenthal, Philip J; Parikh, Sunil

    2009-09-30

    Clinical association studies have yielded varied results regarding the impact of glucose-6-phosphate dehydrogenase (G6PD) deficiency upon susceptibility to malaria. Analyses have been complicated by varied methods used to diagnose G6PD deficiency. We compared the association between uncomplicated malaria incidence and G6PD deficiency in a cohort of 601 Ugandan children using two different diagnostic methods, enzyme activity and G6PD genotype (G202A, the predominant East African allele). Although roughly the same percentage of males were identified as deficient using enzyme activity (12%) and genotype (14%), nearly 30% of males who were enzymatically deficient were wild-type at G202A. The number of deficient females was three-fold higher with assessment by genotype (21%) compared to enzyme activity (7%). Heterozygous females accounted for the majority (46/54) of children with a mutant genotype but normal enzyme activity. G6PD deficiency, as determined by G6PD enzyme activity, conferred a 52% (relative risk [RR] 0.48, 95% CI 0.31-0.75) reduced risk of uncomplicated malaria in females. In contrast, when G6PD deficiency was defined based on genotype, the protective association for females was no longer seen (RR = 0.99, 95% CI 0.70-1.39). Notably, restricting the analysis to those females who were both genotypically and enzymatically deficient, the association of deficiency and protection from uncomplicated malaria was again demonstrated in females, but not in males (RR = 0.57, 95% CI 0.37-0.88 for females). This study underscores the impact that the method of identifying G6PD deficient individuals has upon association studies of G6PD deficiency and uncomplicated malaria. We found that G6PD-deficient females were significantly protected against uncomplicated malaria, but this protection was only seen when G6PD deficiency is described using enzyme activity. These observations may help to explain the discrepancy in some published association studies involving G6PD deficiency and uncomplicated malaria.

  3. Probing the role of highly conserved residues in triosephosphate isomerase--analysis of site specific mutants at positions 64 and 75 in the Plasmodial enzyme.

    PubMed

    Bandyopadhyay, Debarati; Murthy, Mathur R N; Balaram, Hemalatha; Balaram, Padmanabhan

    2015-10-01

    Highly conserved residues in enzymes are often found to be clustered close to active sites, suggesting that functional constraints dictate the nature of amino acid residues accommodated at these sites. Using the Plasmodium falciparum triosephosphate isomerase (PfTIM) enzyme (EC 5.3.1.1) as a template, we have examined the effects of mutations at positions 64 and 75, which are not directly involved in the proton transfer cycle. Thr (T) occurring at position 75 is completely conserved, whereas only Gln (Q) and Glu (E) are accommodated at position 64. Biophysical and kinetic data are reported for four T75 (T75S/V/C/N) and two Q64 (Q64N/E) mutants. The dimeric structure is weakened in the Q64E and Q64N mutants, whereas dimer integrity is unimpaired in all four T75 mutants. Measurement of the concentration dependence of enzyme activity permits an estimate of Kd values for dimer dissociation (Q64N = 73.7 ± 9.2 nm and Q64E = 44.6 ± 8.4 nm). The T75S/V/C mutants have activities comparable to the wild-type enzyme, whereas a fourfold drop is observed for T75N. All four T75 mutants show a dramatic fall in activity between 35 °C and 45 °C. Crystal structure determination of the T75S/V/N mutants provides insights into the variations in local interactions, with the T75N mutant showing the largest changes. Hydrogen-bond interactions determine dimer stability restricting the choice of residues at position 64 to Gln (Q) and Glu (E). At position 75, the overwhelming preference for Thr (T) may be dictated by the imperative of maintaining temperature stability of enzyme activity. Structural data have been deposited in the Protein Data Bank under accession numbers 4ZZ9, 5BMW, 5BMX, 5BNK and 5BRB. © 2015 FEBS.

  4. A new assay based on terminal restriction fragment length polymorphism of homocitrate synthase gene fragments for Candida species identification.

    PubMed

    Szemiako, Kasjan; Śledzińska, Anna; Krawczyk, Beata

    2017-08-01

    Candida sp. have been responsible for an increasing number of infections, especially in patients with immunodeficiency. Species-specific differentiation of Candida sp. is difficult in routine diagnosis. This identification can have a highly significant association in therapy and prophylaxis. This work has shown a new application of the terminal restriction fragment length polymorphism (t-RFLP) method in the molecular identification of six species of Candida, which are the most common causes of fungal infections. Specific for fungi homocitrate synthase gene was chosen as a molecular target for amplification. The use of three restriction enzymes, DraI, RsaI, and BglII, for amplicon digestion can generate species-specific fluorescence labeled DNA fragment profiles, which can be used to determine the diagnostic algorithm. The designed method can be a cost-efficient high-throughput molecular technique for the identification of six clinically important Candida species.

  5. Mitochondrial DNA pattern of the fine shrimp Metapenaeus elegans (De Man, 1907) in the lagoon of Segara Anakan, Central Java, using Hind III

    NASA Astrophysics Data System (ADS)

    Nugraha, Fitra Arya Dwi; Holil, Kholifah; Kurniawan, Nia

    2017-05-01

    Ecological damages to the Lagoon of Segara Anakan, Central Java, as well as large-scale and continuous exploitation are threatening the sustainability of fine shrimp, Metapenaeus elegans, and resources. Information in regards to genetic resources is crucial to establish long-term conservation programs and to preserve germplasm quality. This study aims to evaluate the number and size of the fragment which is digested with restriction enzyme Hind III. Seven individuals of Metapenaeus elegans from the Lagoon of Segara Anakan were examined using Hind III. Amplification of mitochondrial DNA resulted in 950 bp, and the digestion using Hind III generated four fragments consisting of 114 bp, 200 bp, 250 bp, and 386 bp, which formed a monomorphic pattern. The restriction pattern showed the probability of homozygosity of alleles that restricted using Hind III. Homozygosity indicates no variation of DNA sequence.

  6. Cloning of gene-encoded stem bromelain on system coming from Pichia pastoris as therapeutic protein candidate

    NASA Astrophysics Data System (ADS)

    Yusuf, Y.; Hidayati, W.

    2018-01-01

    The process of identifying bacterial recombination using PCR, and restriction, and then sequencing process was done after identifying the bacteria. This research aimed to get a yeast cell of Pichia pastoris which has an encoder gene of stem bromelain enzyme. The production of recombinant stem bromelain enzymes using yeast cells of P. pastoris can produce pure bromelain rod enzymes and have the same conformation with the enzyme’s conformation in pineapple plants. This recombinant stem bromelain enzyme can be used as a therapeutic protein in inflammatory, cancer and degenerative diseases. This study was an early stage of a step series to obtain bromelain rod protein derived from pineapple made with genetic engineering techniques. This research was started by isolating the RNA of pineapple stem which was continued with constructing cDNA using reserve transcriptase-PCR technique (RT-PCR), doing the amplification of bromelain enzyme encoder gene with PCR technique using a specific premiere couple which was designed. The process was continued by cloning into bacterium cells of Escherichia coli. A vector which brought the encoder gene of stem bromelain enzyme was inserted into the yeast cell of P. pastoris and was continued by identifying the yeast cell of P. pastoris which brought the encoder gene of stem bromelain enzyme. The research has not found enzyme gene of stem bromelain in yeast cell of P. pastoris yet. The next step is repeating the process by buying new reagent; RNase inhibitor, and buying liquid nitrogen.

  7. pH-dependent immobilization of urease on glutathione-capped gold nanoparticles.

    PubMed

    Garg, Seema; De, Arnab; Mozumdar, Subho

    2015-05-01

    Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea to form ammonia and carbon dioxide. Although the enzyme serves a significant role in several detoxification and analytical processes, its usability is restricted due to high cost, availability in small amounts, instability, and a limited possibility of economic recovery from a reaction mixture. Hence, there is a need to develop an efficient, simple, and reliable immobilization strategy for the enzyme. In this study, the carboxyl terminated surface of glutathione-capped gold nanoparticles have been utilized as a solid support for the covalent attachment of urease. The immobilization has been carried out at different pH conditions so as to elucidate its effect on the immobilization efficiency and enzyme bioactivity. The binding of the enzyme has been quantitatively and qualitatively analyzed through techniques like ultraviolet-visible spectroscopy, intrinsic steady state fluorescence, and circular dichorism. The bioactivity of the immobilized enzyme was investigated with respect to the native enzyme under different thermal conditions. Recyclability and shelf life studies of the immobilized enzyme have also been carried out. Results reveal that the immobilization is most effective at pH of 7.4 followed by that in an acidic medium and is least in alkaline environment. The immobilized enzyme also exhibits enhance activity in comparison to the native form at physiological temperature. The immobilized urease (on gold glutathione nanoconjugates surface) can be effectively employed for biosensor fabrication, immunoassays and as an in vivo diagnostic tool in the future. © 2014 Wiley Periodicals, Inc.

  8. Conserved DNA methylation patterns in healthy blood cells and extensive changes in leukemia measured by a new quantitative technique

    PubMed Central

    Jelinek, Jaroslav; Liang, Shoudan; Lu, Yue; He, Rong; Ramagli, Louis S.; Shpall, Elizabeth J.; Estecio, Marcos R.H.; Issa, Jean-Pierre J.

    2012-01-01

    Genome wide analysis of DNA methylation provides important information in a variety of diseases, including cancer. Here, we describe a simple method, Digital Restriction Enzyme Analysis of Methylation (DREAM), based on next generation sequencing analysis of methylation-specific signatures created by sequential digestion of genomic DNA with SmaI and XmaI enzymes. DREAM provides information on 150,000 unique CpG sites, of which 39,000 are in CpG islands and 30,000 are at transcription start sites of 13,000 RefSeq genes. We analyzed DNA methylation in healthy white blood cells and found methylation patterns to be remarkably uniform. Inter individual differences > 30% were observed only at 227 of 28,331 (0.8%) of autosomal CpG sites. Similarly, > 30% differences were observed at only 59 sites when we comparing the cord and adult blood. These conserved methylation patterns contrasted with extensive changes affecting 18–40% of CpG sites in a patient with acute myeloid leukemia and in two leukemia cell lines. The method is cost effective, quantitative (r2 = 0.93 when compared with bisulfite pyrosequencing) and reproducible (r2 = 0.997). Using 100-fold coverage, DREAM can detect differences in methylation greater than 10% or 30% with a false positive rate below 0.05 or 0.001, respectively. DREAM can be useful in quantifying epigenetic effects of environment and nutrition, correlating developmental epigenetic variation with phenotypes, understanding epigenetics of cancer and chronic diseases, measuring the effects of drugs on DNA methylation or deriving new biological insights into mammalian genomes. PMID:23075513

  9. 13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis.

    PubMed

    Rühl, Martin; Le Coq, Dominique; Aymerich, Stéphane; Sauer, Uwe

    2012-08-10

    In their natural habitat, microorganisms are typically confronted with nutritional limitations that restrict growth and force them to persevere in a stationary phase. Despite the importance of this phase, little is known about the metabolic state(s) that sustains it. Here, we investigate metabolically active but non-growing Bacillus subtilis during nitrogen starvation. In the absence of biomass formation as the major NADPH sink, the intracellular flux distribution in these resting B. subtilis reveals a large apparent catabolic NADPH overproduction of 5.0 ± 0.6 mmol g(-1)h(-1) that was partly caused by high pentose phosphate pathway fluxes. Combining transcriptome analysis, stationary (13)C-flux analysis in metabolic deletion mutants, (2)H-labeling experiments, and kinetic flux profiling, we demonstrate that about half of the catabolic excess NADPH is oxidized by two transhydrogenation cycles, i.e. isoenzyme pairs of dehydrogenases with different cofactor specificities that operate in reverse directions. These transhydrogenation cycles were constituted by the combined activities of the glyceraldehyde 3-phosphate dehydrogenases GapA/GapB and the malic enzymes MalS/YtsJ. At least an additional 6% of the overproduced NADPH is reoxidized by continuous cycling between ana- and catabolism of glutamate. Furthermore, in vitro enzyme data show that a not yet identified transhydrogenase could potentially reoxidize ∼20% of the overproduced NADPH. Overall, we demonstrate the interplay between several metabolic mechanisms that concertedly enable network-wide NADPH homeostasis under conditions of high catabolic NADPH production in the absence of cell growth in B. subtilis.

  10. 13C-flux Analysis Reveals NADPH-balancing Transhydrogenation Cycles in Stationary Phase of Nitrogen-starving Bacillus subtilis *

    PubMed Central

    Rühl, Martin; Le Coq, Dominique; Aymerich, Stéphane; Sauer, Uwe

    2012-01-01

    In their natural habitat, microorganisms are typically confronted with nutritional limitations that restrict growth and force them to persevere in a stationary phase. Despite the importance of this phase, little is known about the metabolic state(s) that sustains it. Here, we investigate metabolically active but non-growing Bacillus subtilis during nitrogen starvation. In the absence of biomass formation as the major NADPH sink, the intracellular flux distribution in these resting B. subtilis reveals a large apparent catabolic NADPH overproduction of 5.0 ± 0.6 mmol·g−1·h−1 that was partly caused by high pentose phosphate pathway fluxes. Combining transcriptome analysis, stationary 13C-flux analysis in metabolic deletion mutants, 2H-labeling experiments, and kinetic flux profiling, we demonstrate that about half of the catabolic excess NADPH is oxidized by two transhydrogenation cycles, i.e. isoenzyme pairs of dehydrogenases with different cofactor specificities that operate in reverse directions. These transhydrogenation cycles were constituted by the combined activities of the glyceraldehyde 3-phosphate dehydrogenases GapA/GapB and the malic enzymes MalS/YtsJ. At least an additional 6% of the overproduced NADPH is reoxidized by continuous cycling between ana- and catabolism of glutamate. Furthermore, in vitro enzyme data show that a not yet identified transhydrogenase could potentially reoxidize ∼20% of the overproduced NADPH. Overall, we demonstrate the interplay between several metabolic mechanisms that concertedly enable network-wide NADPH homeostasis under conditions of high catabolic NADPH production in the absence of cell growth in B. subtilis. PMID:22740702

  11. Quantitative assessment of the association between the angiotensin-converting enzyme gene insertion/deletion polymorphism and digestive system cancer risk.

    PubMed

    Wang, J; Yang, S; Guo, F H; Mao, X; Zhou, H; Dong, Y Q; Wang, Z M; Luo, F

    2015-11-13

    The angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism has been reported to be associated with digestive system cancer; however, the results from previous studies have been conflicting. The present study aimed to investigate the association between the ACE I/D polymorphism and the risk of digestive system cancer using a meta-analysis of previously published studies. Databases were systematically searched to identify relevant studies published prior to December 2014. We estimated the pooled OR with its 95%CI to assess the association. The meta-analysis consisted of thirteen case-control studies that included 2557 patients and 4356 healthy controls. Meta-analysis results based on all the studies showed no significant association between the ACE I/D polymorphism and the risk of digestive system cancer (DD vs II: OR = 0.85, 95%CI = 0.59-1.24; DI vs II: OR = 0.94, 95%CI = 0.78-1.15; dominant model: OR = 0.96, 95%CI = 0.81- 1.15; recessive model: OR = 1.06, 95%CI = 0.76-1.48). Subgroup analyses by race and cancer type did not detect an association between the ACE I/D polymorphism and digestive system cancer risk. However, when the analyses were restricted to smaller studies (N < 500 patients), the summary OR of DI vs II was 0.80 (95%CI = 0.66-0.97). Our analyses detected a possibility of publication bias with a misestimate of the true association by smaller studies. Overall, meta-analysis results suggest the ACE I/D polymorphism might not be associated with susceptibility to digestive system cancer. Further large and well-designed studies are needed to confirm these conclusions.

  12. [Role of phosphorylation of MARCKS-PSD in the secretion of MUC5AC induced by cold temperatures in human airway epithelial cells].

    PubMed

    Li, Minchao; Perelman, Juliy M; Zhou, Xiangdong

    2012-05-01

    To construct phosphorylation sites domain (PSD) mutant of myristoylated alaninerich C kinase substrate (MARCKS) and explore the role of transient receptor potential melastatin 8 cation channels (TRPM8) and MARCKS in cold-induced synthesis and exocytosis of mucin (MUC) 5AC. Human placental cDNA was used as a template to amplify the full coding region of MARCKS cDNA by PCR. Ser159, Ser 163, Ser 167, Ser 170 in the PSD were mutated to aspartic acids by an overlap PCR method. The resultant PSD mutant cDNA and the wild-type MARCKS cDNA were each subcloned into a mammalian expression vector pcDNA3.0. Recombinant constructs were confirmed by restriction enzyme digestion analysis and DNA sequencing. In intervention experiments, cells were pretreated with the TRPM8 channel antagonist BCTC and transfected with MARCKS-PSD mutant cDNA, and thereafter cold stimulation was applied. The levels of MUC5AC were measured by immunofluorescence and ELISA to clarify the roles of TRPM8 and PSD mutant on the synthesis and secretion of MUC5AC induced by cold, respectively. Restriction enzyme digestion analysis and DNA sequencing revealed that the pcDNA3.0- MARCKS and pcDNA3.0-MARCKS-PSD mutants were successfully constructed. The levels of intracellular and secreted MUC5AC of cold treated group were significantly higher than those of control group (P<0.05). BCTC attenuated the cold-induced synthesis and secretion of MUC5AC when compared with cold treated group (P<0.05). Transfection of 16HBE cells with the MARCKS-PSD mutant cDNA resulted in significant inhibition of mucin secretion in response to cold, and significantly higher level of intracellular MUC5AC than that of control group (P<0.01), whereas transfection with the vector DNA or the wild-type MARCKS cDNA had no effect on the mucin synthesis and secretion in response to cold (P>0.05). TRPM8 and phosphorylation of MARCKS-PSD mediates the cold-induced exocytosis of MUC5AC by airway epithelial cells.

  13. Drosophila innate immunity: regional and functional specialization of prophenoloxidases.

    PubMed

    Dudzic, Jan P; Kondo, Shu; Ueda, Ryu; Bergman, Casey M; Lemaitre, Bruno

    2015-10-01

    The diversification of immune systems during evolution involves the expansion of particular gene families in given phyla. A better understanding of the metazoan immune system requires an analysis of the logic underlying such immune gene amplification. This analysis is now within reach due to the ease with which we can generate multiple mutations in an organism. In this paper, we analyze the contribution of the three Drosophila prophenoloxidases (PPOs) to host defense by generating single, double and triple mutants. PPOs are enzymes that catalyze the production of melanin at the site of infection and around parasites. They are the rate-limiting enzymes that contribute to the melanization reaction, a major immune mechanism of arthropods. The number of PPO-encoding genes is variable among insects, ranging from one in the bee to ten in the mosquito. By analyzing mutations alone and in combination, we ascribe a specific function to each of the three PPOs of Drosophila. Our study confirms that two PPOs produced by crystal cells, PPO1 and PPO2, contribute to the bulk of melanization in the hemolymph, upon septic or clean injury. In contrast, PPO3, a PPO restricted to the D. melanogaster group, is expressed in lamellocytes and contributes to melanization during the encapsulation process. Interestingly, another overlapping set of PPOs, PPO2 and PPO3, achieve melanization of the capsule upon parasitoid wasp infection. The use of single or combined mutations allowed us to show that each PPO mutant has a specific phenotype, and that knocking out two of three genes is required to abolish fully a particular function. Thus, Drosophila PPOs have partially overlapping functions to optimize melanization in at least two conditions: following injury or during encapsulation. Since PPO3 is restricted to the D. melanogaster group, this suggests that production of PPO by lamellocytes emerged as a recent defense mechanism against parasitoid wasps. We conclude that differences in spatial localization, immediate or late availability, and mode of activation underlie the functional diversification of the three Drosophila PPOs, with each of them having non-redundant but overlapping functions.

  14. Cost–Utility of Angiotensin-Converting Enzyme Inhibitor-Based Treatment Compared With Thiazide Diuretic-Based Treatment for Hypertension in Elderly Australians Considering Diabetes as Comorbidity

    PubMed Central

    Chowdhury, Enayet K.; Ademi, Zanfina; Moss, John R.; Wing, Lindon M.H.; Reid, Christopher M.

    2015-01-01

    Abstract The objective of this study was to examine the cost-effectiveness of angiotensin-converting enzyme inhibitor (ACEI)-based treatment compared with thiazide diuretic-based treatment for hypertension in elderly Australians considering diabetes as an outcome along with cardiovascular outcomes from the Australian government's perspective. We used a cost–utility analysis to estimate the incremental cost-effectiveness ratio (ICER) per quality-adjusted life-year (QALY) gained. Data on cardiovascular events and new onset of diabetes were used from the Second Australian National Blood Pressure Study, a randomized clinical trial comparing diuretic-based (hydrochlorothiazide) versus ACEI-based (enalapril) treatment in 6083 elderly (age ≥65 years) hypertensive patients over a median 4.1-year period. For this economic analysis, the total study population was stratified into 2 groups. Group A was restricted to participants diabetes free at baseline (n = 5642); group B was restricted to participants with preexisting diabetes mellitus (type 1 or type 2) at baseline (n = 441). Data on utility scores for different events were used from available published literatures; whereas, treatment and adverse event management costs were calculated from direct health care costs available from Australian government reimbursement data. Costs and QALYs were discounted at 5% per annum. One-way and probabilistic sensitivity analyses were performed to assess the uncertainty around utilities and cost data. After a treatment period of 5 years, for group A, the ICER was Australian dollars (AUD) 27,698 (€ 18,004; AUD 1–€ 0.65) per QALY gained comparing ACEI-based treatment with diuretic-based treatment (sensitive to the utility value for new-onset diabetes). In group B, ACEI-based treatment was a dominant strategy (both more effective and cost-saving). On probabilistic sensitivity analysis, the ICERs per QALY gained were always below AUD 50,000 for group B; whereas for group A, the probability of being below AUD 50,000 was 85%. Although the dispensed price of diuretic-based treatment of hypertension in the elderly is lower, upon considering the potential enhanced likelihood of the development of diabetes in addition to the costs of treating cardiovascular disease, ACEI-based treatment may be a more cost-effective strategy in this population. PMID:25738481

  15. Protein-linked Ubiquitin Chain Structure Restricts Activity of Deubiquitinating Enzymes*

    PubMed Central

    Schaefer, Jonathan B.; Morgan, David O.

    2011-01-01

    The attachment of lysine 48 (Lys48)-linked polyubiquitin chains to proteins is a universal signal for degradation by the proteasome. Here, we report that long Lys48-linked chains are resistant to many deubiquitinating enzymes (DUBs). Representative enzymes from this group, Ubp15 from yeast and its human ortholog USP7, rapidly remove mono- and diubiquitin from substrates but are slow to remove longer Lys48-linked chains. This resistance is lost if the structure of Lys48-linked chains is disrupted by mutation of ubiquitin or if chains are linked through Lys63. In contrast to Ubp15 and USP7, Ubp12 readily cleaves the ends of long chains, regardless of chain structure. We propose that the resistance to many DUBs of long, substrate-attached Lys48-linked chains helps ensure that proteins are maintained free from ubiquitin until a threshold of ubiquitin ligase activity enables degradation. PMID:22072716

  16. Hypermutation by intersegmental transfer of APOBEC3G cytidine deaminase.

    PubMed

    Nowarski, Roni; Britan-Rosich, Elena; Shiloach, Tamar; Kotler, Moshe

    2008-10-01

    Deamination of cytidine residues in single-stranded DNA (ssDNA) is an important mechanism by which apolipoprotein B mRNA-editing, catalytic polypeptide-like (APOBEC) enzymes restrict endogenous and exogenous viruses. The dynamic process underlying APOBEC-induced hypermutation is not fully understood. Here we show that enzymatically active APOBEC3G can be detected in wild-type Vif(+) HIV-1 virions, albeit at low levels. In vitro studies showed that single enzyme-DNA encounters result in distributive deamination of adjacent cytidines. Nonlinear translocation of APOBEC3G, however, directed scattered deamination of numerous targets along the DNA. Increased ssDNA concentrations abolished enzyme processivity in the case of short, but not long, DNA substrates, emphasizing the key role of rapid intersegmental transfer in targeting the deaminase. Our data support a model by which APOBEC3G intersegmental transfer via monomeric binding to two ssDNA segments results in dispersed hypermutation of viral genomes.

  17. Structural, functional and evolutionary relationships between homing endonucleases and proteins from their host organisms

    PubMed Central

    Taylor, Gregory K.; Stoddard, Barry L.

    2012-01-01

    Homing endonucleases (HEs) are highly specific DNA-cleaving enzymes that are encoded by invasive DNA elements (usually mobile introns or inteins) within the genomes of phage, bacteria, archea, protista and eukaryotic organelles. Six unique structural HE families, that collectively span four distinct nuclease catalytic motifs, have been characterized to date. Members of each family display structural homology and functional relationships to a wide variety of proteins from various organisms. The biological functions of those proteins are highly disparate and include non-specific DNA-degradation enzymes, restriction endonucleases, DNA-repair enzymes, resolvases, intron splicing factors and transcription factors. These relationships suggest that modern day HEs share common ancestors with proteins involved in genome fidelity, maintenance and gene expression. This review summarizes the results of structural studies of HEs and corresponding proteins from host organisms that have illustrated the manner in which these factors are related. PMID:22406833

  18. Fish species identification using PCR-RFLP analysis and lab-on-a-chip capillary electrophoresis: application to detect white fish species in food products and an interlaboratory study.

    PubMed

    Dooley, John J; Sage, Helen D; Clarke, Marie-Anne L; Brown, Helen M; Garrett, Stephen D

    2005-05-04

    Identification of 10 white fish species associated with U.K. food products was achieved using PCR-RFLP of the mitochondrial cytochrome b gene. Use of lab-on-a-chip capillary electrophoresis for end-point analysis enabled accurate sizing of DNA fragments and identification of fish species at a level of 5% (w/w) in a fish admixture. One restriction enzyme, DdeI, allowed discrimination of eight species. When combined with NlaIII and HaeIII, specific profiles for all 10 species were generated. The method was applied to a range of products and subjected to an interlaboratory study carried out by five U.K. food control laboratories. One hundred percent correct identification of single species samples and six of nine admixture samples was achieved by all laboratories. The results indicated that fish species identification could be carried out using a database of PCR-RFLP profiles without the need for reference materials.

  19. Neurovirulence of Type 1 Polioviruses Isolated from Sewage in Japan

    PubMed Central

    Horie, Hitoshi; Yoshida, Hiromu; Matsuura, Kumiko; Miyazawa, Miwako; Ota, Yoshihiro; Nakayama, Takashi; Doi, Yutaka; Hashizume, So

    2002-01-01

    Sixteen type 1 poliovirus strains were isolated from a sewage disposal plant located downstream of the Oyabe River in Japan between October 1993 and September 1995. The isolates were intratypically differentiated as vaccine-derived strains. Neutralizing antigenicity analysis with monoclonal antibodies and estimation of neurovirulence by mutant analysis by PCR and restriction enzyme cleavage (MAPREC) were performed for 13 type 1 strains of these isolates. The isolates were classified into three groups. Group I (five strains) had a variant type of antigenicity and neurovirulent phenotype. Group II (four strains) had the vaccine type of antigenicity and neurovirulent phenotype. Group III (four strains) had the vaccine type of antigenicity and an attenuated phenotype. Furthermore, it was demonstrated that the virulent isolates were neutralized by human sera obtained after oral poliomyelitis vaccine (OPV) administration, and the sera of rats immunized with inactivated poliovirus vaccine. Although vaccination was effective against virulent polioviruses, virulent viruses will continue to exist in the environment as long as OPV is in use. PMID:11772619

  20. Disseminated Mycobacterium tuberculosis Infection in a Dog

    PubMed Central

    Martinho, Anna Paula Vitirito; Franco, Marília Masello Junqueira; Ribeiro, Márcio Garcia; Perrotti, Isabella Belletti Mutt; Mangia, Simone Henriques; Megid, Jane; Vulcano, Luiz Carlos; Lara, Gustavo Henrique Batista; Santos, Adolfo Carlos Barreto; Leite, Clarice Queico Fujimura; de Carvalho Sanches, Osimar; Paes, Antonio Carlos

    2013-01-01

    An uncommon disseminated Mycobacterium tuberculosis infection is described in a 12-year-old female dog presenting with fever, dyspnea, cough, weight loss, lymphadenopathy, melena, epistaxis, and emesis. The dog had a history of close contact with its owner, who died of pulmonary tuberculosis. Radiographic examination revealed diffuse radio-opaque images in both lung lobes, diffuse visible masses in abdominal organs, and hilar and mesenteric lymphadenopathy. Bronchial washing samples and feces were negative for acid-fast organisms. Polymerase chain reaction (PCR)-based species identification of bronchial washing samples, feces, and urine revealed M. tuberculosis using PCR-restriction enzyme pattern analysis-PRA. Because of public health concerns, which were worsened by the physical condition of the dog, euthanasia of the animal was recommended. Rough and tough colonies suggestive of M. tuberculosis were observed after microbiological culture of lung, liver, spleen, heart, and lymph node fragments in Löwenstein-Jensen and Stonebrink media. The PRA analysis enabled diagnosis of M. tuberculosis strains isolated from organs. PMID:23339199

  1. Nuclear translocation of PKM2/AMPK complex sustains cancer stem cell populations under glucose restriction stress.

    PubMed

    Yang, Yi-Chieh; Chien, Ming-Hsien; Liu, Hsin-Yi; Chang, Yu-Chan; Chen, Chi-Kuan; Lee, Wei-Jiunn; Kuo, Tsang-Chih; Hsiao, Michael; Hua, Kuo-Tai; Cheng, Tsu-Yao

    2018-05-01

    Cancer cells encounter metabolic stresses such as hypoxia and nutrient limitations because they grow and divide more quickly than their normal counterparts. In response to glucose restriction, we found that nuclear translocation of the glycolic enzyme, pyruvate kinase M2 (PKM2), helped cancer cells survive under the metabolic stress. Restriction of glucose stimulated AMPK activation and resulted in co-translocation of AMPK and PKM2 through Ran-mediated nuclear transport. Nuclear PKM2 subsequently bound to Oct4 and promoted the expression of cancer stemness-related genes, which might enrich the cancer stem cell population under the metabolic stress. Nuclear PKM2 was also capable of promoting cancer metastasis in an orthotopic xenograft model. In summary, we found that cytosolic AMPK helped PKM2 carry out its nonmetabolic functions in the nucleus under glucose restriction and that nuclear PKM2 promoted cancer stemness and metastasis. These findings suggested a potential new targeting pathway for cancer therapy in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A modular toolset for recombination transgenesis and neurogenetic analysis of Drosophila.

    PubMed

    Wang, Ji-Wu; Beck, Erin S; McCabe, Brian D

    2012-01-01

    Transgenic Drosophila have contributed extensively to our understanding of nervous system development, physiology and behavior in addition to being valuable models of human neurological disease. Here, we have generated a novel series of modular transgenic vectors designed to optimize and accelerate the production and analysis of transgenes in Drosophila. We constructed a novel vector backbone, pBID, that allows both phiC31 targeted transgene integration and incorporates insulator sequences to ensure specific and uniform transgene expression. Upon this framework, we have built a series of constructs that are either backwards compatible with existing restriction enzyme based vectors or utilize Gateway recombination technology for high-throughput cloning. These vectors allow for endogenous promoter or Gal4 targeted expression of transgenic proteins with or without fluorescent protein or epitope tags. In addition, we have generated constructs that facilitate transgenic splice isoform specific RNA inhibition of gene expression. We demonstrate the utility of these constructs to analyze proteins involved in nervous system development, physiology and neurodegenerative disease. We expect that these reagents will facilitate the proficiency and sophistication of Drosophila genetic analysis in both the nervous system and other tissues.

  3. An analysis of variation in the long-range genomic organization of the human major histocompatibility complex class II region by pulsed-field gel electrophoresis.

    PubMed

    Dunham, I; Sargent, C A; Dawkins, R L; Campbell, R D

    1989-11-01

    The class II region of the human major histocompatibility complex in seven common HLA haplotypes has been analyzed using pulsed-field gel electrophoresis, restriction enzymes that cut genomic DNA infrequently, and Southern blotting. This analysis has revealed that there are differences in the amount of DNA present in the DQ and DR subregions dependent on the haplotype. The class II region of the DR3 haplotype spans approximately 750 kb and has the same amount of DNA as the class II region of the DR5 and DR6 haplotypes. However, the DR2 haplotype has approximately 30 kb more DNA within the DR subregion. The DR4 haplotype has an additional approximately 110 kb of DNA within the DQ or DR subregions compared to the DR3, DR5, and DR6 haplotypes. These haplotype-specific differences could have some bearing both on the analysis of disease susceptibility and on the ability of chromosomes possessing different HLA haplotypes to recombine within the DQ/DR subregions.

  4. Occurance of Staphylococcus nepalensis strains in different sources including human clinical material.

    PubMed

    Nováková, Dana; Pantůcek, Roman; Petrás, Petr; Koukalová, Dagmar; Sedlácek, Ivo

    2006-10-01

    Five isolates of coagulase-negative staphylococci were obtained from human urine, the gastrointestinal tract of squirrel monkeys, pig skin and from the environment. All key biochemical characteristics of the tested strains corresponded with the description of Staphylococcus xylosus species. However, partial 16S rRNA gene sequences obtained from analysed strains corresponded with those of Staphylococcus nepalensis reference strains, except for two strains which differed in one residue. Ribotyping with EcoRI and HindIII restriction enzymes, whole cell protein profile analysis performed by SDS-PAGE and SmaI macrorestriction analysis were used for more precise characterization and identification of the analysed strains. Obtained results showed that EcoRI and HindIII ribotyping and whole cell protein fingerprinting are suitable and reliable methods for the differentiation of S. nepalensis strains from the other novobiocin resistant staphylococci, whereas macrorestriction analysis was found to be a good tool for strain typing. The isolation of S. nepalensis is sporadic, and according to our best knowledge this study is the first report of the occurrence of this species in human clinical material as well as in other sources.

  5. Molecular identification of Fasciola spp. (Digenea: Fasciolidae) in Egypt

    PubMed Central

    Dar, Y.; Amer, S.; Mercier, A.; Courtioux, B.; Dreyfuss, G.

    2012-01-01

    A total of 134 Egyptian liver flukes were collected from different definitive hosts (cattle, sheep, and buffaloes) to identify them via the use of PCR-RFLP and sequence analysis of the first nuclear ribosomal internal transcribed spacer (ITS1). Specimens of F. hepatica from France, as well as F. gigantica from Cameroon were included in the study for comparison. PCR products of ITS1 were subjected for digestion by RsaI restriction enzyme and visualized on agarose gel. According to RFLP pattern, Egyptian flukes were allocated into two categories. The first was identical to that of French hepatica flukes to have a pattern of 360, 100, and 60 (bp) band size, whereas the second resembled to that of Cameroonian gigantica worms to have a profile of 360, 170, and 60 bp in size. Results of RFLP analysis were confirmed by sequence analysis of representative ITS1 amplicons. No hybrid forms were detected in the present study. Taken together, this study concluded that both species of Fasciola are present in Egypt, whereas the hybrid form may be not very common. PMID:22550630

  6. Biochemical and molecular analysis of an X-linked case of Leigh syndrome associated with thiamin-responsive pyruvate dehydrogenase deficiency.

    PubMed

    Naito, E; Ito, M; Yokota, I; Saijo, T; Matsuda, J; Osaka, H; Kimura, S; Kuroda, Y

    1997-08-01

    We report molecular analysis of thiamin-responsive pyruvate dehydrogenase complex (PDHC) deficiency in a patient with an X-linked form of Leigh syndrome. PDHC activity in cultured lymphoblastoid cells of this patient and his asymptomatic mother were normal in the presence of a high thiamin pyrophosphate (TPP) concentration (0.4 mmol/L). However, in the presence of a low concentration (1 x 10(-4) mmol/L) of TPP, the activity was significantly decreased, indicating that PDHC deficiency in this patient was due to decreased affinity of PDHC for TPP. The patient's older brother also was diagnosed as PDHC deficiency with Leigh syndrome, suggesting that PDHC deficiency in these two brothers was not a de novo mutation. Sequencing of the X-linked PDHC E1 alpha subunit revealed a C-->G point mutation at nucleotide 787, resulting in a substitution of glycine for arginine 263. Restriction enzyme analysis of the E1 alpha gene revealed that the mother was a heterozygote, indicating that thiamin-responsive PDHC deficiency associated with Leigh syndrome due to this mutation is transmitted by X-linked inheritance.

  7. Roles of Long-range Electrostatic Domain Interactions and K+ in Phosphoenzyme Transition of Ca2+-ATPase*

    PubMed Central

    Yamasaki, Kazuo; Daiho, Takashi; Danko, Stefania; Suzuki, Hiroshi

    2013-01-01

    Sarcoplasmic reticulum Ca2+-ATPase couples the motions and rearrangements of three cytoplasmic domains (A, P, and N) with Ca2+ transport. We explored the role of electrostatic force in the domain dynamics in a rate-limiting phosphoenzyme (EP) transition by a systematic approach combining electrostatic screening with salts, computer analysis of electric fields in crystal structures, and mutations. Low KCl concentration activated and increasing salt above 0.1 m inhibited the EP transition. A plot of the logarithm of the transition rate versus the square of the mean activity coefficient of the protein gave a linear relationship allowing division of the activation energy into an electrostatic component and a non-electrostatic component in which the screenable electrostatic forces are shielded by salt. Results show that the structural change in the transition is sterically restricted, but that strong electrostatic forces, when K+ is specifically bound at the P domain, come into play to accelerate the reaction. Electric field analysis revealed long-range electrostatic interactions between the N and P domains around their hinge. Mutations of the residues directly involved and other charged residues at the hinge disrupted in parallel the electric field and the structural transition. Favorable electrostatics evidently provides a low energy path for the critical N domain motion toward the P domain, overcoming steric restriction. The systematic approach employed here is, in general, a powerful tool for understanding the structural mechanisms of enzymes. PMID:23737524

  8. Identification of polymorphism in exons 7 and 12 of lactoferrin gene and its association with incidence of clinical mastitis in Murrah buffalo.

    PubMed

    Dinesh, Krishanender; Verma, Archana; Das Gupta, Ishwar; Thakur, Yash Pal; Verma, Nishant; Arya, Ashwani

    2015-04-01

    Lactoferrin gene is one of the important candidate genes for mastitis resistance. The gene is located on chromosome BTA 22 and consists of 17 exons spanning over 34.5 kb of genomic DNA. The present study was undertaken with the objectives to identify allelic variants in exons 7 and 12 of lactoferrin gene and to analyze association between its genetic variants and incidence of clinical mastitis in Murrah buffalo. The amplification of exons 7 and 12 of lactoferrin gene yielded amplicons of 232- and 461-bp sizes. PCR-restriction fragment length polymorphism (RFLP) analysis of 232-bp amplicon using BccI restriction enzyme revealed three genotypes (AA, AB, and BB) with frequencies of 0.62, 0.22, and 0.16, respectively. The frequencies of two alleles, A and B, were estimated as 0.73 and 0.27. Hpy188I-RFLP for 461-bp amplicon revealed polymorphism with three genotypes, CC, CD, and DD, with respective frequencies of 0.06, 0.39, and 0.56, whereas frequencies for C and D alleles were 0.25 and 0.75. The chi-square (χ(2)) analysis revealed a significant association between incidence of clinical mastitis and genetic variants of exon 7, and animals of AA genotype of exon 7 were found to be least susceptible to mastitis. The findings indicate potential scope for incorporation of lactoferrin gene in selection and breeding of Murrah buffaloes for improved genetic resistance to mastitis.

  9. Alterations in the antioxidant defense system in prepubertal children with a history of extrauterine growth restriction.

    PubMed

    Ortiz-Espejo, M; Gil-Campos, M; Mesa, M D; García-Rodríguez, C E; Muñoz-Villanueva, M C; Pérez-Navero, J L

    2014-01-01

    The role of oxidative stress is well known in the pathogenesis of acquired malnutrition. Intrauterine growth restriction has been associated with an imbalance in oxidative stress/antioxidant system. Therefore, early postnatal environment and, consequently, extrauterine growth restriction might be associated with alterations in the antioxidant defense system, even in the prepubertal stage. This is a descriptive, analytical, and observational case-control study. The study included two groups; 38 Caucasian prepubertal children born prematurely and with a history of extrauterine growth restriction as the case group, and 123 gender- and age-matched controls. Plasma exogenous antioxidant (retinol, β-carotene, and α-tocopherol) concentrations were measured by HPLC; antioxidant enzyme activities of catalase, glutathione reductase, glutathione peroxidase, and superoxide dismutase were determined in lysed erythrocytes by spectrophotometric techniques. Catalase and glutathione peroxidase concentrations were significantly lower in extrauterine growth restriction children than in controls (P < 0.001). Lower plasma retinol concentrations were found in the case group (P = 0.029), while concentrations of β-carotene and α-tocopherol were higher (P < 0.001) in extrauterine growth restriction prepubertal children as compared with controls. After correction by gestational age, birth weight, and length, statistically significant differences were also found, except for retinol. Prepubertal children with a history of extrauterine growth restriction present alterations in their antioxidant defense system. Knowing these alterations may be important in establishing pharmacological and nutritional treatments as this situation might be associated with higher metabolic disorders in adulthood.

  10. PCR-based diagnosis, molecular characterization and detection of atypical strains of avian Chlamydia psittaci in companion and wild birds.

    PubMed

    Madani, S A; Peighambari, S M

    2013-02-01

    Chlamydiosis is one of the most important infectious diseases of birds. In this study, 253 clinical samples were taken from 27 bird species belonging to seven orders. Thirty-two (12.6%) samples were positive for Chlamydia psittaci major outer membrane gene (ompA) DNA by a nested polymerase chain reaction (PCR). Twelve nested PCR-positive specimens were typed by ompA gene-based PCR-restricted fragment length polymorphism, using CTU/CTL primers and AluI restriction enzyme. Four restriction patterns were identified, including genotype A (two specimens from an African grey parrot [Psittacus erithacus] and a lorikeet [Trichoglossus haematodus]), genotype B (two specimens from a rock dove [Columbia livia] and a canary [Serinus canaria]), a third new restriction pattern (six specimens from African grey parrots), and a fourth new restriction pattern (two specimens from a ring-necked parakeet [Psittacula krameri] and an Alexandrine parakeet [Psittacula eupatria]). The third and the fourth restriction patterns are suggested to be provisional genotypes I and J, respectively. Partial sequencing of the ompA gene of seven specimens completely correlated with the results of PCR-restricted fragment length polymorphism and confirmed the presence of genotypes A and B and the two new provisional genotypes I and J. The two new genotypes have the closest identity with C. psittaci genotype F and Chlamydia abortus, respectively. From an evolutionary perspective, both new genotypes, particularly genotype J, are intermediate between the two species, C. psittaci and C. abortus.

  11. Deoxyribonucleic acid restriction and modification systems in Salmonella: chromosomally located systems of different serotypes.

    PubMed Central

    Bullas, L R; Colson, C; Neufeld, B

    1980-01-01

    With the use of four different phages, Salmonella strains representing 85 different serotypes were examined to determine their restriction-modification phenotype. They fell into one of three groups on this basis: group 1, those which lacked the common LT system; group 2, those in which only the LT system could be recognized; and group 3. those which possessed the LT system and at least one other system shown with some serotypes to be closely linked to serB. The specificity of the serB-linked restriction-modification system was unique for each serotype, but different strains of the same serotype expressed the same specificity. Two of the systems were shown to behave in genetic crosses as functional alleles of the S. typhimurium SB system. It is possible that these serB-linked restriction-modification systems constitute a large multiallelic series of genes extending throughout the Salmonella genus and Escherichia coli. We suggest that the division of the Salmonella into the three restriction-modification groups may be significant in defining a "biological grouping" of the different serotypes within the genus which may ultimately be useful in describing the Salmonella species. From the genetic relatedness between the genes of some of the Salmonella restriction-modification systems with those of the E. coli systems, we deduce that the restriction endonuclases produced by the Salmonella serB-linked systems are of type 1. Determination of the nucleotide sequences of the recognition sites of the restriction endonucleases of selected Salmonella systems should further our understanding of specificity with these enzymes. PMID:6243623

  12. Mechanism of Enhanced HIV Restriction by Virion Coencapsidated Cytidine Deaminases APOBEC3F and APOBEC3G.

    PubMed

    Ara, Anjuman; Love, Robin P; Follack, Tyson B; Ahmed, Khawaja A; Adolph, Madison B; Chelico, Linda

    2017-02-01

    The APOBEC3 (A3) enzymes, A3G and A3F, are coordinately expressed in CD4 + T cells and can become coencapsidated into HIV-1 virions, primarily in the absence of the viral infectivity factor (Vif). A3F and A3G are deoxycytidine deaminases that inhibit HIV-1 replication by inducing guanine-to-adenine hypermutation through deamination of cytosine to form uracil in minus-strand DNA. The effect of the simultaneous presence of both A3G and A3F on HIV-1 restriction ability is not clear. Here, we used a single-cycle infectivity assay and biochemical analyses to determine if coencapsidated A3G and A3F differ in their restriction capacity from A3G or A3F alone. Proviral DNA sequencing demonstrated that compared to each A3 enzyme alone, A3G and A3F, when combined, had a coordinate effect on hypermutation. Using size exclusion chromatography, rotational anisotropy, and in vitro deamination assays, we demonstrate that A3F promotes A3G deamination activity by forming an A3F/G hetero-oligomer in the absence of RNA which is more efficient at deaminating cytosines. Further, A3F caused the accumulation of shorter reverse transcripts due to decreasing reverse transcriptase efficiency, which would leave single-stranded minus-strand DNA exposed for longer periods of time, enabling more deamination events to occur. Although A3G and A3F are known to function alongside each other, these data provide evidence for an A3F/G hetero-oligomeric A3 with unique properties compared to each individual counterpart. The APOBEC3 enzymes APOBEC3F and APOBEC3G act as a barrier to HIV-1 replication in the absence of the HIV-1 Vif protein. After APOBEC3 enzymes are encapsidated into virions, they deaminate cytosines in minus-strand DNA, which forms promutagenic uracils that induce transition mutations or proviral DNA degradation. Even in the presence of Vif, footprints of APOBEC3-catalyzed deaminations are found, demonstrating that APOBEC3s still have discernible activity against HIV-1 in infected individuals. We undertook a study to better understand the activity of coexpressed APOBEC3F and APOBEC3G. The data demonstrate that an APOBEC3F/APOBEC3G hetero-oligomer can form that has unique properties compared to each APOBEC3 alone. This hetero-oligomer has increased efficiency of virus hypermutation, raising the idea that we still may not fully realize the antiviral mechanisms of endogenous APOBEC3 enzymes. Hetero-oligomerization may be a mechanism to increase their antiviral activity in the presence of Vif. Copyright © 2017 American Society for Microbiology.

  13. Evaluating the Relationship between FRET Changes and Distance Changes Using DNA Length and Restriction Enzyme Specificity

    ERIC Educational Resources Information Center

    Pazhani, Yogitha; Horn, Abigail E.; Grado, Lizbeth; Kugel, Jennifer F.

    2016-01-01

    FRET (Fo¨rster resonance energy transfer) involves the transfer of energy from an excited donor fluorophore to an acceptor molecule in a manner that is dependent on the distance between the two. A biochemistry laboratory experiment is described that teaches students how to use FRET to evaluate distance changes in biological molecules. Students…

  14. Using Synthetic Nanopores for Single-Molecule Analyses: Detecting SNPs, Trapping DNA Molecules, and the Prospects for Sequencing DNA

    ERIC Educational Resources Information Center

    Dimitrov, Valentin V.

    2009-01-01

    This work focuses on studying properties of DNA molecules and DNA-protein interactions using synthetic nanopores, and it examines the prospects of sequencing DNA using synthetic nanopores. We have developed a method for discriminating between alleles that uses a synthetic nanopore to measure the binding of a restriction enzyme to DNA. There exists…

  15. Development of restriction enzyme analyses to distinguish winter moth from bruce spanworm and hybrids between them

    Treesearch

    Marinko Sremac; Joseph Elkinton; Adam Porter

    2011-01-01

    Elkinton et. al. recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which consists of a single compound also used by Bruce spanworm, O. bruceata (Hulst), the North American congener of winter moth. Our...

  16. Glucocorticoid Regulation of Rat Renal Sodium Potassium Adenosine Triphosphatase

    DTIC Science & Technology

    1990-03-29

    sequences; restriction enzymes fluorescein isothiocyanate glomerular filtration rate Horseradish Peroxidase immunoglobulin G kllodalton Magnesium...studies were conducted, in this project , to determine whether the observed changes in NaK-ATPase activity occurred after, and possibly as the result of...excitable tissue required for nerve impulse transmission and 6 muscle contraction (Skou, 1957), the functioning of hepatic amino acid and bile acid

  17. Novel host restriction factors implicated in HIV-1 replication.

    PubMed

    Ghimire, Dibya; Rai, Madhu; Gaur, Ritu

    2018-04-01

    Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.

  18. Changes in metabolite, energy metabolism related enzyme activities and peripheral blood mononuclear cell (PBMC) populations in beef heifers with two differing liveweight change profiles in New Zealand.

    PubMed

    Mori, A; Kenyon, P R; Mori, N; Yamamoto, I; Tanaka, Y; Suzuki, N; Tazaki, H; Ozawa, T; Hayashi, T; Hickson, R E; Morris, S T; Blair, H; Arai, T

    2008-02-01

    Metabolite and immunoreactive insulin (IRI) concentrations, energy metabolism related enzymes activities and peripheral blood mononuclear cell (PBMC) populations were measured in blood of pregnant Angus heifers with differing liveweight change profiles (gaining or losing), in New Zealand to investigate the meanings of those parameters in the restricted feeding beef heifers. Beef heifers losing liveweight (-412 g/day) showed significantly lower concentrations of plasma IRI, and higher concentrations of plasma free fatty acid (FFA) than heifers gaining liveweight (483 g/day). The cytosolic and mitochondrial malate dehydrogenase (MDH) activities and MDH/lactate dehydrogenase (M/L) ratio in leukocytes of the liveweight losing heifers were significantly higher than those the liveweight gaining heifers. Percentages of cluster of differentiation (CD) 3 positive cells and natural killer (NK) cells in PBMC decreased significantly in the liveweight losing heifers compared to those in the liveweight gaining heifers. Plasma IRI and FFA concentrations, leukocyte cytosolic and mitochondrial MDH activities and CD3 positive and NK cell populations may be useful markers to evaluate metabolic conditions and immunity in the restricted feeding beef heifers.

  19. Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction

    PubMed Central

    Sanz, Alberto; Soikkeli, Mikko; Portero-Otín, Manuel; Wilson, Angela; Kemppainen, Esko; McIlroy, George; Ellilä, Simo; Kemppainen, Kia K.; Tuomela, Tea; Lakanmaa, Matti; Kiviranta, Essi; Stefanatos, Rhoda; Dufour, Eric; Hutz, Bettina; Naudí, Alba; Jové, Mariona; Zeb, Akbar; Vartiainen, Suvi; Matsuno-Yagi, Akemi; Yagi, Takao; Rustin, Pierre; Pamplona, Reinald; Jacobs, Howard T.

    2010-01-01

    Mutations in mitochondrial oxidative phosphorylation complex I are associated with multiple pathologies, and complex I has been proposed as a crucial regulator of animal longevity. In yeast, the single-subunit NADH dehydrogenase Ndi1 serves as a non-proton-translocating alternative enzyme that replaces complex I, bringing about the reoxidation of intramitochondrial NADH. We have created transgenic strains of Drosophila that express yeast NDI1 ubiquitously. Mitochondrial extracts from NDI1-expressing flies displayed a rotenone-insensitive NADH dehydrogenase activity, and functionality of the enzyme in vivo was confirmed by the rescue of lethality resulting from RNAi knockdown of complex I. NDI1 expression increased median, mean, and maximum lifespan independently of dietary restriction, and with no change in sirtuin activity. NDI1 expression mitigated the aging associated decline in respiratory capacity and the accompanying increase in mitochondrial reactive oxygen species production, and resulted in decreased accumulation of markers of oxidative damage in aged flies. Our results support a central role of mitochondrial oxidative phosphorylation complex I in influencing longevity via oxidative stress, independently of pathways connected to nutrition and growth signaling. PMID:20435911

  20. Type III restriction endonucleases are heterotrimeric: comprising one helicase–nuclease subunit and a dimeric methyltransferase that binds only one specific DNA

    PubMed Central

    Butterer, Annika; Pernstich, Christian; Smith, Rachel M.; Sobott, Frank; Szczelkun, Mark D.; Tóth, Júlia

    2014-01-01

    Fundamental aspects of the biochemistry of Type III restriction endonucleases remain unresolved despite being characterized by numerous research groups in the past decades. One such feature is the subunit stoichiometry of these hetero-oligomeric enzyme complexes, which has important implications for the reaction mechanism. In this study, we present a series of results obtained by native mass spectrometry and size exclusion chromatography with multi-angle light scattering consistent with a 1:2 ratio of Res to Mod subunits in the EcoP15I, EcoPI and PstII complexes as the main holoenzyme species and a 1:1 stoichiometry of specific DNA (sDNA) binding by EcoP15I and EcoPI. Our data are also consistent with a model where ATP hydrolysis activated by recognition site binding leads to release of the enzyme from the site, dissociation from the substrate via a free DNA end and cleavage of the DNA. These results are discussed critically in the light of the published literature, aiming to resolve controversies and discuss consequences in terms of the reaction mechanism. PMID:24510100

Top