SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping.
Chang, Hsueh-Wei; Cheng, Yu-Huei; Chuang, Li-Yeh; Yang, Cheng-Hong
2010-04-08
PCR-restriction fragment length polymorphism (RFLP) assay is a cost-effective method for SNP genotyping and mutation detection, but the manual mining for restriction enzyme sites is challenging and cumbersome. Three years after we constructed SNP-RFLPing, a freely accessible database and analysis tool for restriction enzyme mining of SNPs, significant improvements over the 2006 version have been made and incorporated into the latest version, SNP-RFLPing 2. The primary aim of SNP-RFLPing 2 is to provide comprehensive PCR-RFLP information with multiple functionality about SNPs, such as SNP retrieval to multiple species, different polymorphism types (bi-allelic, tri-allelic, tetra-allelic or indels), gene-centric searching, HapMap tagSNPs, gene ontology-based searching, miRNAs, and SNP500Cancer. The RFLP restriction enzymes and the corresponding PCR primers for the natural and mutagenic types of each SNP are simultaneously analyzed. All the RFLP restriction enzyme prices are also provided to aid selection. Furthermore, the previously encountered updating problems for most SNP related databases are resolved by an on-line retrieval system. The user interfaces for functional SNP analyses have been substantially improved and integrated. SNP-RFLPing 2 offers a new and user-friendly interface for RFLP genotyping that can be used in association studies and is freely available at http://bio.kuas.edu.tw/snp-rflping2.
REBASE--a database for DNA restriction and modification: enzymes, genes and genomes.
Roberts, Richard J; Vincze, Tamas; Posfai, Janos; Macelis, Dana
2015-01-01
REBASE is a comprehensive and fully curated database of information about the components of restriction-modification (RM) systems. It contains fully referenced information about recognition and cleavage sites for both restriction enzymes and methyltransferases as well as commercial availability, methylation sensitivity, crystal and sequence data. All genomes that are completely sequenced are analyzed for RM system components, and with the advent of PacBio sequencing, the recognition sequences of DNA methyltransferases (MTases) are appearing rapidly. Thus, Type I and Type III systems can now be characterized in terms of recognition specificity merely by DNA sequencing. The contents of REBASE may be browsed from the web http://rebase.neb.com and selected compilations can be downloaded by FTP (ftp.neb.com). Monthly updates are also available via email. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Soares, Vítor Yamashiro Rocha; da Silva, Jailthon Carlos; da Silva, Kleverton Ribeiro; Cruz, Maria do Socorro Pires e; Santos, Marcos Pérsio Dantas; Ribolla, Paulo Eduardo Martins; Alonso, Diego Peres; Coelho, Luiz Felipe Leomil; Costa, Dorcas Lamounier; Costa, Carlos Henrique Nery
2014-01-01
An analysis of the dietary content of haematophagous insects can provide important information about the transmission networks of certain zoonoses. The present study evaluated the potential of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the mitochondrial cytochrome B (cytb) gene to differentiate between vertebrate species that were identified as possible sources of sandfly meals. The complete cytb gene sequences of 11 vertebrate species available in the National Center for Biotechnology Information database were digested with Aci I, Alu I, Hae III and Rsa I restriction enzymes in silico using Restriction Mapper software. The cytb gene fragment (358 bp) was amplified from tissue samples of vertebrate species and the dietary contents of sandflies and digested with restriction enzymes. Vertebrate species presented a restriction fragment profile that differed from that of other species, with the exception of Canis familiaris and Cerdocyon thous. The 358 bp fragment was identified in 76 sandflies. Of these, 10 were evaluated using the restriction enzymes and the food sources were predicted for four: Homo sapiens (1), Bos taurus (1) and Equus caballus (2). Thus, the PCR-RFLP technique could be a potential method for identifying the food sources of arthropods. However, some points must be clarified regarding the applicability of the method, such as the extent of DNA degradation through intestinal digestion, the potential for multiple sources of blood meals and the need for greater knowledge regarding intraspecific variations in mtDNA. PMID:24821056
BrEPS 2.0: Optimization of sequence pattern prediction for enzyme annotation.
Dudek, Christian-Alexander; Dannheim, Henning; Schomburg, Dietmar
2017-01-01
The prediction of gene functions is crucial for a large number of different life science areas. Faster high throughput sequencing techniques generate more and larger datasets. The manual annotation by classical wet-lab experiments is not suitable for these large amounts of data. We showed earlier that the automatic sequence pattern-based BrEPS protocol, based on manually curated sequences, can be used for the prediction of enzymatic functions of genes. The growing sequence databases provide the opportunity for more reliable patterns, but are also a challenge for the implementation of automatic protocols. We reimplemented and optimized the BrEPS pattern generation to be applicable for larger datasets in an acceptable timescale. Primary improvement of the new BrEPS protocol is the enhanced data selection step. Manually curated annotations from Swiss-Prot are used as reliable source for function prediction of enzymes observed on protein level. The pool of sequences is extended by highly similar sequences from TrEMBL and SwissProt. This allows us to restrict the selection of Swiss-Prot entries, without losing the diversity of sequences needed to generate significant patterns. Additionally, a supporting pattern type was introduced by extending the patterns at semi-conserved positions with highly similar amino acids. Extended patterns have an increased complexity, increasing the chance to match more sequences, without losing the essential structural information of the pattern. To enhance the usability of the database, we introduced enzyme function prediction based on consensus EC numbers and IUBMB enzyme nomenclature. BrEPS is part of the Braunschweig Enzyme Database (BRENDA) and is available on a completely redesigned website and as download. The database can be downloaded and used with the BrEPScmd command line tool for large scale sequence analysis. The BrEPS website and downloads for the database creation tool, command line tool and database are freely accessible at http://breps.tu-bs.de.
BrEPS 2.0: Optimization of sequence pattern prediction for enzyme annotation
Schomburg, Dietmar
2017-01-01
The prediction of gene functions is crucial for a large number of different life science areas. Faster high throughput sequencing techniques generate more and larger datasets. The manual annotation by classical wet-lab experiments is not suitable for these large amounts of data. We showed earlier that the automatic sequence pattern-based BrEPS protocol, based on manually curated sequences, can be used for the prediction of enzymatic functions of genes. The growing sequence databases provide the opportunity for more reliable patterns, but are also a challenge for the implementation of automatic protocols. We reimplemented and optimized the BrEPS pattern generation to be applicable for larger datasets in an acceptable timescale. Primary improvement of the new BrEPS protocol is the enhanced data selection step. Manually curated annotations from Swiss-Prot are used as reliable source for function prediction of enzymes observed on protein level. The pool of sequences is extended by highly similar sequences from TrEMBL and SwissProt. This allows us to restrict the selection of Swiss-Prot entries, without losing the diversity of sequences needed to generate significant patterns. Additionally, a supporting pattern type was introduced by extending the patterns at semi-conserved positions with highly similar amino acids. Extended patterns have an increased complexity, increasing the chance to match more sequences, without losing the essential structural information of the pattern. To enhance the usability of the database, we introduced enzyme function prediction based on consensus EC numbers and IUBMB enzyme nomenclature. BrEPS is part of the Braunschweig Enzyme Database (BRENDA) and is available on a completely redesigned website and as download. The database can be downloaded and used with the BrEPScmd command line tool for large scale sequence analysis. The BrEPS website and downloads for the database creation tool, command line tool and database are freely accessible at http://breps.tu-bs.de. PMID:28750104
Raghavendra, Nidhanapathi K.; Rao, Desirazu N.
2003-01-01
Many types of restriction enzymes cleave DNA away from their recognition site. Using the type III restriction enzyme, EcoP15I, which cleaves DNA 25–27 bp away from its recognition site, we provide evidence to show that an intact recognition site on the cleaved DNA sequesters the restriction enzyme and decreases the effective concentration of the enzyme. EcoP15I restriction enzyme is shown here to perform only a single round of DNA cleavage. Significantly, we show that an exonuclease activity is essential for EcoP15I restriction enzyme to perform multiple rounds of DNA cleavage. This observation may hold true for all restriction enzymes cleaving DNA sufficiently far away from their recognition site. Our results highlight the importance of functional cooperation in the modulation of enzyme activity. Based on results presented here and other data on well-characterised restriction enzymes, a functional evolutionary hierarchy of restriction enzymes is discussed. PMID:12655005
Singh, Satendra; Singh, Dev Bukhsh; Singh, Anamika; Gautam, Budhayash; Ram, Gurudayal; Dwivedi, Seema; Ramteke, Pramod W
2016-12-01
Streptococcus pyogenes is one of the most important pathogens as it is involved in various infections affecting upper respiratory tract and skin. Due to the emergence of multidrug resistance and cross-resistance, S. Pyogenes is becoming more pathogenic and dangerous. In the present study, an in silico comparative analysis of total 65 metabolic pathways of the host (Homo sapiens) and the pathogen was performed. Initially, 486 paralogous enzymes were identified so that they can be removed from possible drug target list. The 105 enzymes of the biochemical pathways of S. pyogenes from the KEGG metabolic pathway database were compared with the proteins from the Homo sapiens by performing a BLASTP search against the non-redundant database restricted to the Homo sapiens subset. Out of these, 83 enzymes were identified as non-human homologous while 30 enzymes of inadequate amino acid length were removed for further processing. Essential enzymes were finally mined from remaining 53 enzymes. Finally, 28 essential enzymes were identified in S. pyogenes SF370 (serotype M1). In subcellular localization study, 18 enzymes were predicted with cytoplasmic localization and ten enzymes with the membrane localization. These ten enzymes with putative membrane localization should be of particular interest. Acyl-carrier-protein S-malonyltransferase, DNA polymerase III subunit beta and dihydropteroate synthase are novel drug targets and thus can be used to design potential inhibitors against S. pyogenes infection. 3D structure of dihydropteroate synthase was modeled and validated that can be used for virtual screening and interaction study of potential inhibitors with the target enzyme.
Tanaka, Yuichiro; Takahashi, Hajime; Kitazawa, Nao; Kimura, Bon
2010-01-01
A rapid system using terminal restriction fragment length polymorphism (T-RFLP) analysis targeting 16S rDNA is described for microbial population analysis in edible fish samples. The defined terminal restriction fragment database was constructed by collecting 102 strains of bacteria representing 53 genera that are associated with fish. Digestion of these 102 strains with two restriction enzymes, HhaI and MspI, formed 54 pattern groups with discrimination to the genus level. This T-RFLP system produced results comparable to those from a culture-based method in six natural fish samples with a qualitative correspondence of 71.4 to 92.3%. Using the T-RFLP system allowed an estimation of the microbial population within 7 h. Rapid assay of the microbial population is advantageous for food manufacturers and testing laboratories; moreover, the strategy presented here allows adaptation to specific testing applications.
CisSERS: Customizable in silico sequence evaluation for restriction sites
Sharpe, Richard M.; Koepke, Tyson; Harper, Artemus; ...
2016-04-12
High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Here, data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated tomore » enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERSenable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3’UTR sequencing, and cleaved amplified polymorphic sequence (CAPS) molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERSand results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.« less
CisSERS: Customizable in silico sequence evaluation for restriction sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharpe, Richard M.; Koepke, Tyson; Harper, Artemus
High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Here, data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated tomore » enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERSenable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3’UTR sequencing, and cleaved amplified polymorphic sequence (CAPS) molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERSand results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.« less
Restriction Enzyme Mapping: A Simple Student Practical.
ERIC Educational Resources Information Center
Higgins, Stephen J.; And Others
1990-01-01
An experiment that uses the recombinant plasmid pX1108 to illustrate restriction mapping is described. The experiment involves three restriction enzymes and employs single and double restriction enzyme digestions. A list of needed materials, procedures, safety precautions, results, and discussion are included. (KR)
Detection of possible restriction sites for type II restriction enzymes in DNA sequences.
Gagniuc, P; Cimponeriu, D; Ionescu-Tîrgovişte, C; Mihai, Andrada; Stavarachi, Monica; Mihai, T; Gavrilă, L
2011-01-01
In order to make a step forward in the knowledge of the mechanism operating in complex polygenic disorders such as diabetes and obesity, this paper proposes a new algorithm (PRSD -possible restriction site detection) and its implementation in Applied Genetics software. This software can be used for in silico detection of potential (hidden) recognition sites for endonucleases and for nucleotide repeats identification. The recognition sites for endonucleases may result from hidden sequences through deletion or insertion of a specific number of nucleotides. Tests were conducted on DNA sequences downloaded from NCBI servers using specific recognition sites for common type II restriction enzymes introduced in the software database (n = 126). Each possible recognition site indicated by the PRSD algorithm implemented in Applied Genetics was checked and confirmed by NEBcutter V2.0 and Webcutter 2.0 software. In the sequence NG_008724.1 (which includes 63632 nucleotides) we found a high number of potential restriction sites for ECO R1 that may be produced by deletion (n = 43 sites) or insertion (n = 591 sites) of one nucleotide. The second module of Applied Genetics has been designed to find simple repeats sizes with a real future in understanding the role of SNPs (Single Nucleotide Polymorphisms) in the pathogenesis of the complex metabolic disorders. We have tested the presence of simple repetitive sequences in five DNA sequence. The software indicated exact position of each repeats detected in the tested sequences. Future development of Applied Genetics can provide an alternative for powerful tools used to search for restriction sites or repetitive sequences or to improve genotyping methods.
Minucci, Angelo; Moradkhani, Kamran; Hwang, Ming Jing; Zuppi, Cecilia; Giardina, Bruno; Capoluongo, Ettore
2012-03-15
In the present paper we have updated the G6PD mutations database, including all the last discovered G6PD genetic variants. We underline that the last database has been published by Vulliamy et al. [1] who analytically reported 140 G6PD mutations: along with Vulliamy's database, there are two main sites, such as http://202.120.189.88/mutdb/ and www.LOVD.nl/MR, where almost all G6PD mutations can be found. Compared to the previous mutation reports, in our paper we have included for each mutation some additional information, such as: the secondary structure and the enzyme 3D position involving by mutation, the creation or abolition of a restriction site (with the enzyme involved) and the conservation score associated with each amino acid position. The mutations reported in the present tab have been divided according to the gene's region involved (coding and non-coding) and mutations affecting the coding region in: single, multiple (at least with two bases involved) and deletion. We underline that for the listed mutations, reported in italic, literature doesn't provide all the biochemical or bio-molecular information or the research data. Finally, for the "old" mutations, we tried to verify features previously reported and, when subsequently modified, we updated the specific information using the latest literature data. Copyright © 2012 Elsevier Inc. All rights reserved.
Restriction enzyme cutting site distribution regularity for DNA looping technology.
Shang, Ying; Zhang, Nan; Zhu, Pengyu; Luo, Yunbo; Huang, Kunlun; Tian, Wenying; Xu, Wentao
2014-01-25
The restriction enzyme cutting site distribution regularity and looping conditions were studied systematically. We obtained the restriction enzyme cutting site distributions of 13 commonly used restriction enzymes in 5 model organism genomes through two novel self-compiled software programs. All of the average distances between two adjacent restriction sites fell sharply with increasing statistic intervals, and most fragments were 0-499 bp. A shorter DNA fragment resulted in a lower looping rate, which was also directly proportional to the DNA concentration. When the length was more than 500 bp, the concentration did not affect the looping rate. Therefore, the best known fragment length was longer than 500 bp, and did not contain the restriction enzyme cutting sites which would be used for digestion. In order to make the looping efficiencies reach nearly 100%, 4-5 single cohesive end systems were recommended to digest the genome separately. Copyright © 2013 Elsevier B.V. All rights reserved.
Corcoran, Callan C.; Grady, Cameron R.; Pisitkun, Trairak; Parulekar, Jaya
2017-01-01
The organization of the mammalian genome into gene subsets corresponding to specific functional classes has provided key tools for systems biology research. Here, we have created a web-accessible resource called the Mammalian Metabolic Enzyme Database (https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/MetabolicEnzymeDatabase.html) keyed to the biochemical reactions represented on iconic metabolic pathway wall charts created in the previous century. Overall, we have mapped 1,647 genes to these pathways, representing ~7 percent of the protein-coding genome. To illustrate the use of the database, we apply it to the area of kidney physiology. In so doing, we have created an additional database (Database of Metabolic Enzymes in Kidney Tubule Segments: https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/), mapping mRNA abundance measurements (mined from RNA-Seq studies) for all metabolic enzymes to each of 14 renal tubule segments. We carry out bioinformatics analysis of the enzyme expression pattern among renal tubule segments and mine various data sources to identify vasopressin-regulated metabolic enzymes in the renal collecting duct. PMID:27974320
Billon, Pierre; Bryant, Eric E; Joseph, Sarah A; Nambiar, Tarun S; Hayward, Samuel B; Rothstein, Rodney; Ciccia, Alberto
2017-09-21
Standard CRISPR-mediated gene disruption strategies rely on Cas9-induced DNA double-strand breaks (DSBs). Here, we show that CRISPR-dependent base editing efficiently inactivates genes by precisely converting four codons (CAA, CAG, CGA, and TGG) into STOP codons without DSB formation. To facilitate gene inactivation by induction of STOP codons (iSTOP), we provide access to a database of over 3.4 million single guide RNAs (sgRNAs) for iSTOP (sgSTOPs) targeting 97%-99% of genes in eight eukaryotic species, and we describe a restriction fragment length polymorphism (RFLP) assay that allows the rapid detection of iSTOP-mediated editing in cell populations and clones. To simplify the selection of sgSTOPs, our resource includes annotations for off-target propensity, percentage of isoforms targeted, prediction of nonsense-mediated decay, and restriction enzymes for RFLP analysis. Additionally, our database includes sgSTOPs that could be employed to precisely model over 32,000 cancer-associated nonsense mutations. Altogether, this work provides a comprehensive resource for DSB-free gene disruption by iSTOP. Copyright © 2017 Elsevier Inc. All rights reserved.
Biomolecular computers with multiple restriction enzymes.
Sakowski, Sebastian; Krasinski, Tadeusz; Waldmajer, Jacek; Sarnik, Joanna; Blasiak, Janusz; Poplawski, Tomasz
2017-01-01
The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann "bottleneck". Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro's group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we propose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer based on the use of multiple restriction enzymes is presented. We use this method to construct multistate, biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware. We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of four endonucleases.
Corcoran, Callan C; Grady, Cameron R; Pisitkun, Trairak; Parulekar, Jaya; Knepper, Mark A
2017-03-01
The organization of the mammalian genome into gene subsets corresponding to specific functional classes has provided key tools for systems biology research. Here, we have created a web-accessible resource called the Mammalian Metabolic Enzyme Database ( https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/MetabolicEnzymeDatabase.html) keyed to the biochemical reactions represented on iconic metabolic pathway wall charts created in the previous century. Overall, we have mapped 1,647 genes to these pathways, representing ~7 percent of the protein-coding genome. To illustrate the use of the database, we apply it to the area of kidney physiology. In so doing, we have created an additional database ( Database of Metabolic Enzymes in Kidney Tubule Segments: https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/), mapping mRNA abundance measurements (mined from RNA-Seq studies) for all metabolic enzymes to each of 14 renal tubule segments. We carry out bioinformatics analysis of the enzyme expression pattern among renal tubule segments and mine various data sources to identify vasopressin-regulated metabolic enzymes in the renal collecting duct. Copyright © 2017 the American Physiological Society.
Tóth, Eszter; Huszár, Krisztina; Bencsura, Petra; Kulcsár, Péter István; Vodicska, Barbara; Nyeste, Antal; Welker, Zsombor; Tóth, Szilvia; Welker, Ervin
2014-01-01
The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease--a Body Double of the Type IIP enzyme--is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program (http://group.szbk.u-szeged.hu/welkergr/body_double/index.html) for the selection of suitable Body Double enzymes and the design of the appropriate primers.
ExplorEnz: a MySQL database of the IUBMB enzyme nomenclature.
McDonald, Andrew G; Boyce, Sinéad; Moss, Gerard P; Dixon, Henry B F; Tipton, Keith F
2007-07-27
We describe the database ExplorEnz, which is the primary repository for EC numbers and enzyme data that are being curated on behalf of the IUBMB. The enzyme nomenclature is incorporated into many other resources, including the ExPASy-ENZYME, BRENDA and KEGG bioinformatics databases. The data, which are stored in a MySQL database, preserve the formatting of chemical and enzyme names. A simple, easy to use, web-based query interface is provided, along with an advanced search engine for more complex queries. The database is publicly available at http://www.enzyme-database.org. The data are available for download as SQL and XML files via FTP. ExplorEnz has powerful and flexible search capabilities and provides the scientific community with the most up-to-date version of the IUBMB Enzyme List.
Biomolecular computers with multiple restriction enzymes
Sakowski, Sebastian; Krasinski, Tadeusz; Waldmajer, Jacek; Sarnik, Joanna; Blasiak, Janusz; Poplawski, Tomasz
2017-01-01
Abstract The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we propose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer based on the use of multiple restriction enzymes is presented. We use this method to construct multistate, biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware. We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of four endonucleases. PMID:29064510
The CoFactor database: organic cofactors in enzyme catalysis.
Fischer, Julia D; Holliday, Gemma L; Thornton, Janet M
2010-10-01
Organic enzyme cofactors are involved in many enzyme reactions. Therefore, the analysis of cofactors is crucial to gain a better understanding of enzyme catalysis. To aid this, we have created the CoFactor database. CoFactor provides a web interface to access hand-curated data extracted from the literature on organic enzyme cofactors in biocatalysis, as well as automatically collected information. CoFactor includes information on the conformational and solvent accessibility variation of the enzyme-bound cofactors, as well as mechanistic and structural information about the hosting enzymes. The database is publicly available and can be accessed at http://www.ebi.ac.uk/thornton-srv/databases/CoFactor.
msgbsR: An R package for analysing methylation-sensitive restriction enzyme sequencing data.
Mayne, Benjamin T; Leemaqz, Shalem Y; Buckberry, Sam; Rodriguez Lopez, Carlos M; Roberts, Claire T; Bianco-Miotto, Tina; Breen, James
2018-02-01
Genotyping-by-sequencing (GBS) or restriction-site associated DNA marker sequencing (RAD-seq) is a practical and cost-effective method for analysing large genomes from high diversity species. This method of sequencing, coupled with methylation-sensitive enzymes (often referred to as methylation-sensitive restriction enzyme sequencing or MRE-seq), is an effective tool to study DNA methylation in parts of the genome that are inaccessible in other sequencing techniques or are not annotated in microarray technologies. Current software tools do not fulfil all methylation-sensitive restriction sequencing assays for determining differences in DNA methylation between samples. To fill this computational need, we present msgbsR, an R package that contains tools for the analysis of methylation-sensitive restriction enzyme sequencing experiments. msgbsR can be used to identify and quantify read counts at methylated sites directly from alignment files (BAM files) and enables verification of restriction enzyme cut sites with the correct recognition sequence of the individual enzyme. In addition, msgbsR assesses DNA methylation based on read coverage, similar to RNA sequencing experiments, rather than methylation proportion and is a useful tool in analysing differential methylation on large populations. The package is fully documented and available freely online as a Bioconductor package ( https://bioconductor.org/packages/release/bioc/html/msgbsR.html ).
Thermodynamics of Enzyme-Catalyzed Reactions Database
National Institute of Standards and Technology Data Gateway
SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access) The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.
Wang, Sihua; Ding, Mingcui; Duan, Xiaoran; Wang, Tuanwei; Feng, Xiaolei; Wang, Pengpeng; Yao, Wu; Wu, Yongjun; Yan, Zhen; Feng, Feifei; Yu, Songcheng; Wang, Wei
2017-09-01
It has been shown that the single nucleotide polymorphism (SNP) of the rs2735940 site in the human telomerase reverse transcriptase ( hTERT ) gene is associated with increased cancer risk. The traditional method to detect SNP genotypes is polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). However, there is a limitation to utilizing PCR-RFLP due to a lack of proper restriction enzyme sites at many polymorphic loci. This study used an improved PCR-RFLP method with a mismatched base for detection of the SNP rs2735940. A new restriction enzyme cutting site was created by created restriction site PCR (CRS-PCR), and in addition, the restriction enzyme Msp I for CRS-PCR was cheaper than other enzymes. We used this novel assay to determine the allele frequencies in 552 healthy Chinese Han individuals, and found the allele frequencies to be 63% for allele C and 37% for allele T In summary, the modified PCR-RFLP can be used to detect the SNP of rs2735940 with low cost and high efficiency. © 2017 by the Association of Clinical Scientists, Inc.
ExplorEnz: a MySQL database of the IUBMB enzyme nomenclature
McDonald, Andrew G; Boyce, Sinéad; Moss, Gerard P; Dixon, Henry BF; Tipton, Keith F
2007-01-01
Background We describe the database ExplorEnz, which is the primary repository for EC numbers and enzyme data that are being curated on behalf of the IUBMB. The enzyme nomenclature is incorporated into many other resources, including the ExPASy-ENZYME, BRENDA and KEGG bioinformatics databases. Description The data, which are stored in a MySQL database, preserve the formatting of chemical and enzyme names. A simple, easy to use, web-based query interface is provided, along with an advanced search engine for more complex queries. The database is publicly available at . The data are available for download as SQL and XML files via FTP. Conclusion ExplorEnz has powerful and flexible search capabilities and provides the scientific community with the most up-to-date version of the IUBMB Enzyme List. PMID:17662133
Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha
2013-01-01
Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation. PMID:23717462
Roy, Priti; Kumar, Brijesh; Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha
2013-01-01
Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.
CAPRRESI: Chimera Assembly by Plasmid Recovery and Restriction Enzyme Site Insertion.
Santillán, Orlando; Ramírez-Romero, Miguel A; Dávila, Guillermo
2017-06-25
Here, we present chimera assembly by plasmid recovery and restriction enzyme site insertion (CAPRRESI). CAPRRESI benefits from many strengths of the original plasmid recovery method and introduces restriction enzyme digestion to ease DNA ligation reactions (required for chimera assembly). For this protocol, users clone wildtype genes into the same plasmid (pUC18 or pUC19). After the in silico selection of amino acid sequence regions where chimeras should be assembled, users obtain all the synonym DNA sequences that encode them. Ad hoc Perl scripts enable users to determine all synonym DNA sequences. After this step, another Perl script searches for restriction enzyme sites on all synonym DNA sequences. This in silico analysis is also performed using the ampicillin resistance gene (ampR) found on pUC18/19 plasmids. Users design oligonucleotides inside synonym regions to disrupt wildtype and ampR genes by PCR. After obtaining and purifying complementary DNA fragments, restriction enzyme digestion is accomplished. Chimera assembly is achieved by ligating appropriate complementary DNA fragments. pUC18/19 vectors are selected for CAPRRESI because they offer technical advantages, such as small size (2,686 base pairs), high copy number, advantageous sequencing reaction features, and commercial availability. The usage of restriction enzymes for chimera assembly eliminates the need for DNA polymerases yielding blunt-ended products. CAPRRESI is a fast and low-cost method for fusing protein-coding genes.
ExplorEnz: the primary source of the IUBMB enzyme list
McDonald, Andrew G.; Boyce, Sinéad; Tipton, Keith F.
2009-01-01
ExplorEnz is the MySQL database that is used for the curation and dissemination of the International Union of Biochemistry and Molecular Biology (IUBMB) Enzyme Nomenclature. A simple web-based query interface is provided, along with an advanced search engine for more complex Boolean queries. The WWW front-end is accessible at http://www.enzyme-database.org, from where downloads of the database as SQL and XML are also available. An associated form-based curatorial application has been developed to facilitate the curation of enzyme data as well as the internal and public review processes that occur before an enzyme entry is made official. Suggestions for new enzyme entries, or modifications to existing ones, can be made using the forms provided at http://www.enzyme-database.org/forms.php. PMID:18776214
Computer systems for annotation of single molecule fragments
Schwartz, David Charles; Severin, Jessica
2016-07-19
There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.
cuRRBS: simple and robust evaluation of enzyme combinations for reduced representation approaches.
Martin-Herranz, Daniel E; Ribeiro, António J M; Krueger, Felix; Thornton, Janet M; Reik, Wolf; Stubbs, Thomas M
2017-11-16
DNA methylation is an important epigenetic modification in many species that is critical for development, and implicated in ageing and many complex diseases, such as cancer. Many cost-effective genome-wide analyses of DNA modifications rely on restriction enzymes capable of digesting genomic DNA at defined sequence motifs. There are hundreds of restriction enzyme families but few are used to date, because no tool is available for the systematic evaluation of restriction enzyme combinations that can enrich for certain sites of interest in a genome. Herein, we present customised Reduced Representation Bisulfite Sequencing (cuRRBS), a novel and easy-to-use computational method that solves this problem. By computing the optimal enzymatic digestions and size selection steps required, cuRRBS generalises the traditional MspI-based Reduced Representation Bisulfite Sequencing (RRBS) protocol to all restriction enzyme combinations. In addition, cuRRBS estimates the fold-reduction in sequencing costs and provides a robustness value for the personalised RRBS protocol, allowing users to tailor the protocol to their experimental needs. Moreover, we show in silico that cuRRBS-defined restriction enzymes consistently out-perform MspI digestion in many biological systems, considering both CpG and CHG contexts. Finally, we have validated the accuracy of cuRRBS predictions for single and double enzyme digestions using two independent experimental datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Guilfoyle, Richard A.; Guo, Zhen
2001-01-01
A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.
Guilfoyle, Richard A.; Guo, Zhen
1999-01-01
A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.
dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock.
Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta
2016-01-01
Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of lipid metabolic pathway. Consequently, we have also developed a database, dEMBF (Database of Enzymes of Microalgal Biofuel Feedstock), which catalogues the complete list of identified enzymes along with their computed annotation details including length, hydrophobicity, amino acid composition, subcellular location, gene ontology, KEGG pathway, orthologous group, Pfam domain, intron-exon organization, transmembrane topology, and secondary/tertiary structural data. Furthermore, to facilitate functional and evolutionary study of these enzymes, a collection of built-in applications for BLAST search, motif identification, sequence and phylogenetic analysis have been seamlessly integrated into the database. dEMBF is the first database that brings together all enzymes responsible for lipid synthesis from available algal genomes, and provides an integrative platform for enzyme inquiry and analysis. This database will be extremely useful for algal biofuel research. It can be accessed at http://bbprof.immt.res.in/embf.
dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock
Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta
2016-01-01
Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of lipid metabolic pathway. Consequently, we have also developed a database, dEMBF (Database of Enzymes of Microalgal Biofuel Feedstock), which catalogues the complete list of identified enzymes along with their computed annotation details including length, hydrophobicity, amino acid composition, subcellular location, gene ontology, KEGG pathway, orthologous group, Pfam domain, intron-exon organization, transmembrane topology, and secondary/tertiary structural data. Furthermore, to facilitate functional and evolutionary study of these enzymes, a collection of built-in applications for BLAST search, motif identification, sequence and phylogenetic analysis have been seamlessly integrated into the database. dEMBF is the first database that brings together all enzymes responsible for lipid synthesis from available algal genomes, and provides an integrative platform for enzyme inquiry and analysis. This database will be extremely useful for algal biofuel research. It can be accessed at http://bbprof.immt.res.in/embf. PMID:26727469
Schomburg, Ida; Chang, Antje; Placzek, Sandra; Söhngen, Carola; Rother, Michael; Lang, Maren; Munaretto, Cornelia; Ulas, Susanne; Stelzer, Michael; Grote, Andreas; Scheer, Maurice; Schomburg, Dietmar
2013-01-01
The BRENDA (BRaunschweig ENzyme DAtabase) enzyme portal (http://www.brenda-enzymes.org) is the main information system of functional biochemical and molecular enzyme data and provides access to seven interconnected databases. BRENDA contains 2.7 million manually annotated data on enzyme occurrence, function, kinetics and molecular properties. Each entry is connected to a reference and the source organism. Enzyme ligands are stored with their structures and can be accessed via their names, synonyms or via a structure search. FRENDA (Full Reference ENzyme DAta) and AMENDA (Automatic Mining of ENzyme DAta) are based on text mining methods and represent a complete survey of PubMed abstracts with information on enzymes in different organisms, tissues or organelles. The supplemental database DRENDA provides more than 910 000 new EC number-disease relations in more than 510 000 references from automatic search and a classification of enzyme-disease-related information. KENDA (Kinetic ENzyme DAta), a new amendment extracts and displays kinetic values from PubMed abstracts. The integration of the EnzymeDetector offers an automatic comparison, evaluation and prediction of enzyme function annotations for prokaryotic genomes. The biochemical reaction database BKM-react contains non-redundant enzyme-catalysed and spontaneous reactions and was developed to facilitate and accelerate the construction of biochemical models.
The APOBEC3 Family of Retroelement Restriction Factors
Refsland, Eric W.; Harris, Reuben S.
2014-01-01
The ability to regulate and even target mutagenesis is an extremely valuable cellular asset. Enzyme-catalyzed DNA cytosine deamination is a molecular strategy employed by vertebrates to promote antibody diversity and defend against foreign nucleic acids. Ten years ago, a family of cellular enzymes was first described with several proving capable of deaminating DNA and inhibiting HIV-1 replication. Ensuing studies on the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) restriction factors have uncovered a broad-spectrum innate defense network that suppresses the replication of numerous endogenous and exogenous DNA-based parasites. Although many viruses possess equally elaborate counter-defense mechanisms, the APOBEC3 enzymes offer a tantalizing possibility of leveraging innate immunity to fend off viral infection. Here we focus on mechanisms of retroelement restriction by the APOBEC3 family of restriction enzymes and we consider the therapeutic benefits, as well as the possible pathological consequences, of arming cells with active DNA deaminases. PMID:23686230
SABIO-RK: an updated resource for manually curated biochemical reaction kinetics
Rey, Maja; Weidemann, Andreas; Kania, Renate; Müller, Wolfgang
2018-01-01
Abstract SABIO-RK (http://sabiork.h-its.org/) is a manually curated database containing data about biochemical reactions and their reaction kinetics. The data are primarily extracted from scientific literature and stored in a relational database. The content comprises both naturally occurring and alternatively measured biochemical reactions and is not restricted to any organism class. The data are made available to the public by a web-based search interface and by web services for programmatic access. In this update we describe major improvements and extensions of SABIO-RK since our last publication in the database issue of Nucleic Acid Research (2012). (i) The website has been completely revised and (ii) allows now also free text search for kinetics data. (iii) Additional interlinkages with other databases in our field have been established; this enables users to gain directly comprehensive knowledge about the properties of enzymes and kinetics beyond SABIO-RK. (iv) Vice versa, direct access to SABIO-RK data has been implemented in several systems biology tools and workflows. (v) On request of our experimental users, the data can be exported now additionally in spreadsheet formats. (vi) The newly established SABIO-RK Curation Service allows to respond to specific data requirements. PMID:29092055
Using the structure-function linkage database to characterize functional domains in enzymes.
Brown, Shoshana; Babbitt, Patricia
2014-12-12
The Structure-Function Linkage Database (SFLD; http://sfld.rbvi.ucsf.edu/) is a Web-accessible database designed to link enzyme sequence, structure, and functional information. This unit describes the protocols by which a user may query the database to predict the function of uncharacterized enzymes and to correct misannotated functional assignments. The information in this unit is especially useful in helping a user discriminate functional capabilities of a sequence that is only distantly related to characterized sequences in publicly available databases. Copyright © 2014 John Wiley & Sons, Inc.
Highlights of the DNA cutters: a short history of the restriction enzymes
Loenen, Wil A. M.; Dryden, David T. F.; Raleigh, Elisabeth A.; Wilson, Geoffrey G.; Murray, Noreen E.
2014-01-01
In the early 1950’s, ‘host-controlled variation in bacterial viruses’ was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine. PMID:24141096
Highlights of the DNA cutters: a short history of the restriction enzymes.
Loenen, Wil A M; Dryden, David T F; Raleigh, Elisabeth A; Wilson, Geoffrey G; Murray, Noreen E
2014-01-01
In the early 1950's, 'host-controlled variation in bacterial viruses' was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.
Alteration of gene expression by restriction enzymes electroporated into plant cells.
Ashraf, M; Altschuler, M; Galasinski, S; Griffiths, T D
1993-06-01
The alteration in the expression of a beta-glucuronidase (GUS) reporter gene was used to monitor the effect of restriction endonucleases electroporated into the tobacco (Nicotiana tabacum L.) protoplasts. Restriction enzyme (RE) Hind III which does not have a recognition site within the gene cassette, had little effect on enzyme activity. In contrast restriction endonucleases Hae III and Sau3A1 which possess 8 and 16 recognition sites in the GUS cassette, were found to reduce the enzyme activity by 89% and 94% respectively when compared to control electroporations. Restriction-site mutation analysis (RSM) and Southern blot analysis indicated the enzymatic degradation of GUS coding sequence by the REs Hae III and Sau3A1. Results of this study suggest that on electroporation, REs can enter into plant cells and alter the expression of the GUS gene. The alteration of gene expression is thus correlated with the digestion of GUS template DNA. Future applications of this technique could include addressing fundamental questions with regard to DNA repair, site-specific recombination, identifying mutations, insertional mutagenesis, enhancement of stable transformation and gene tagging in plants.
Comprehensive restriction enzyme lists to update any DNA sequence computer program.
Raschke, E
1993-04-01
Restriction enzyme lists are presented for the practical working geneticist to update any DNA computer program. These lists combine formerly scattered information and contain all presently known restriction enzymes with a unique recognition sequence, a cut site, or methylation (in)sensitivity. The lists are in the shortest possible form to also be functional with small DNA computer programs, and will produce clear restriction maps without any redundancy or loss of information. The lists discern between commercial and noncommercial enzymes, and prototype enzymes and different isoschizomers are cross-referenced. Differences in general methylation sensitivities and (in)sensitivities against Dam and Dcm methylases of Escherichia coli are indicated. Commercial methylases and intron-encoded endonucleases are included. An address list is presented to contact commercial suppliers. The lists are constantly updated and available in electronic form as pure US ASCII files, and in formats for the DNA computer programs DNA-Strider for Apple Macintosh, and DNAsis for IBM personal computers or compatibles via e-mail from the internet address: NETSERV@EMBL-HEIDELBERG.DE by sending only the message HELP RELIBRARY.
Schallmey, Marcus; Koopmeiners, Julia; Wells, Elizabeth; Wardenga, Rainer; Schallmey, Anett
2014-12-01
Halohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications. After the identification of specific sequence motifs, 37 novel enzyme sequences were readily identified in public sequence databases. All enzymes that could be heterologously expressed also catalyzed typical halohydrin dehalogenase reactions. Phylogenetic inference for enzymes of the halohydrin dehalogenase enzyme family confirmed that all enzymes form a distinct monophyletic clade within the short-chain dehydrogenase/reductase superfamily. In addition, the majority of novel enzymes are substantially different from previously known phylogenetic subtypes. Consequently, four additional phylogenetic subtypes were defined, greatly expanding the halohydrin dehalogenase enzyme family. We show that the enormous wealth of environmental and genome sequences present in public databases can be tapped for in silico identification of very rare but biotechnologically important biocatalysts. Our findings help to readily identify halohydrin dehalogenases in ever-growing sequence databases and, as a consequence, make even more members of this interesting enzyme family available to the scientific and industrial community. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Ribeiro, António J M; Holliday, Gemma L; Furnham, Nicholas; Tyzack, Jonathan D; Ferris, Katherine; Thornton, Janet M
2018-01-04
M-CSA (Mechanism and Catalytic Site Atlas) is a database of enzyme active sites and reaction mechanisms that can be accessed at www.ebi.ac.uk/thornton-srv/m-csa. Our objectives with M-CSA are to provide an open data resource for the community to browse known enzyme reaction mechanisms and catalytic sites, and to use the dataset to understand enzyme function and evolution. M-CSA results from the merging of two existing databases, MACiE (Mechanism, Annotation and Classification in Enzymes), a database of enzyme mechanisms, and CSA (Catalytic Site Atlas), a database of catalytic sites of enzymes. We are releasing M-CSA as a new website and underlying database architecture. At the moment, M-CSA contains 961 entries, 423 of these with detailed mechanism information, and 538 with information on the catalytic site residues only. In total, these cover 81% (195/241) of third level EC numbers with a PDB structure, and 30% (840/2793) of fourth level EC numbers with a PDB structure, out of 6028 in total. By searching for close homologues, we are able to extend M-CSA coverage of PDB and UniProtKB to 51 993 structures and to over five million sequences, respectively, of which about 40% and 30% have a conserved active site. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
A general method for the purification of restriction enzymes.
Greene, P J; Heyneker, H L; Bolivar, F; Rodriguez, R L; Betlach, M C; Covarrubias, A A; Backman, K; Russel, D J; Tait, R; Boyer, H W
1978-01-01
An abbreviated procedure has been developed for the purification of restriction endonucleases. This procedure uses chromatography on phosphocellulose and hydroxylapatite and results in enzymes of sufficient purity to permit their use in the sequencing, molecular cloning, and physical mapping of DNA. PMID:673857
Murase, Hirotaka; Noguchi, Tomoharu; Sasaki, Shigeki
2018-06-01
Chromomycin A3 (CMA3) is an aureolic acid-type antitumor antibiotic. CMA3 forms dimeric complexes with divalent cations, such as Mg 2+ , which strongly binds to the GC rich sequence of DNA to inhibit DNA replication and transcription. In this study, the binding property of CMA3 to the DNA sequence containing multiple GC-rich binding sites was investigated by measuring the protection from hydrolysis by the restriction enzymes, AccII and Fnu4HI, for the center of the CGCG site and the 5'-GC↓GGC site, respectively. In contrast to the standard DNase I footprinting method, the DNA substrates are fully hydrolyzed by the restriction enzymes, therefore, the full protection of DNA at all the cleavable sites indicates that CMA3 simultaneously binds to all the binding sites. The restriction enzyme assay has suggested that CMA3 has a high tendency to bind the successive CGCG sites and the CGG repeat. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mouser, P. J.; Rizzo, D. M.; Druschel, G.; O'Grady, P.; Stevens, L.
2005-12-01
This interdisciplinary study integrates hydrochemical and genome-based data to estimate the redox processes occurring at long-term monitoring sites. Groundwater samples have been collected from a well-characterized landfill-leachate contaminated aquifer in northeastern New York. Primers from the 16S rDNA gene were used to amplify Bacteria and Archaea in groundwater taken from monitoring wells located in clean, fringe, and contaminated locations within the aquifer. PCR-amplified rDNA were digested with restriction enzymes to evaluate terminal restriction fragment length polymorphism (T-RFLP) community profiles. The rDNA was cloned, sequenced, and partial sequences were matched against known organisms using the NCBI Blast database. Phylogenetic trees and bootstrapping were used to identify classifications of organisms and compare the communities from clean, fringe, and contaminated locations. We used Artificial Neural Network (ANN) models to incorporate microbial data with hydrochemical information for improving our understanding of subsurface processes.
The SalGI restriction endonuclease. Purification and properties
Maxwell, Anthony; Halford, Stephen E.
1982-01-01
The type II restriction endonuclease SalGI has been purified to near homogeneity. At least 80% of the protein remaining after the final stage of the preparation is SalGI restriction endonuclease; no contaminating nucleases remain detectable. The principal form of the protein under both native and denaturing conditions is a monomer of Mr about 29000. The optimal conditions for both enzyme stability and enzyme activity have been determined. ImagesFig. 1. PMID:6285898
Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of streptococcus pneumontae
Lacks, Sanford A.
1990-01-01
Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252.
Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of Streptococcus pneumontae
Lacks, S.A.
1990-10-02
Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252. 9 figs.
Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP).
Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J
2014-01-01
DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic DNA digestion.
Pseudomonas specific 16S rDNA PCR amplification and multiple enzyme restriction fragment length polymorphism (MERFLP) analysis using a single digestion mixture of Alu I, Hinf I, Rsa I, and Tru 9I distinguished 150 published sequences and reference strains of authentic Pseudomonas...
Marton, Ira; Honig, Arik; Omid, Ayelet; De Costa, Noam; Marhevka, Elena; Cohen, Barry; Zuker, Amir; Vainstein, Alexander
2013-01-01
Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes being modified through the use of early genome-editing techniques. The development of rare-cutting restriction enzymes as a tool for the induction of site-specific genomic double-strand breaks and their introduction as a reliable tool for genome modification in animals, animal cells and human cell lines have paved the way for the adaptation of rare-cutting restriction enzymes to genome editing in plant cells. Indeed, the number of plant species and genes which have been successfully edited using zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered homing endonucleases is on the rise. In our review, we discuss the basics of rare-cutting restriction enzyme-mediated genome-editing technology with an emphasis on its application in plant species.
Kasarjian, Julie K. A.; Iida, Masatake; Ryu, Junichi
2003-01-01
The presence of restriction enzymes in bacterial cells has been predicted by either classical phage restriction-modification (R-M) tests, direct in vitro enzyme assays or more recently from bacterial genome sequence analysis. We have applied phage R-M test principles to the transformation of plasmid DNA and established a plasmid R-M test. To validate this test, six plasmids that contain BamHI fragments of phage lambda DNA were constructed and transformed into Escherichia coli strains containing known R-M systems including: type I (EcoBI, EcoAI, Eco124I), type II (HindIII) and type III (EcoP1I). Plasmid DNA with a single recognition site showed a reduction of relative efficiency of transformation (EOT = 10–1–10–2). When multiple recognition sites were present, greater reductions in EOT values were observed. Once established in the cell, the plasmids were subjected to modification (EOT = 1.0). We applied this test to screen E.coli clinical strains and detected the presence of restriction enzymes in 93% (14/15) of cells. Using additional subclones and the computer program, RM Search, we identified four new restriction enzymes, Eco377I, Eco585I, Eco646I and Eco777I, along with their recognition sequences, GGA(8N)ATGC, GCC(6N)TGCG, CCA(7N)CTTC, and GGA(6N)TATC, respectively. Eco1158I, an isoschizomer of EcoBI, was also found in this study. PMID:12595571
novPTMenzy: a database for enzymes involved in novel post-translational modifications
Khater, Shradha; Mohanty, Debasisa
2015-01-01
With the recent discoveries of novel post-translational modifications (PTMs) which play important roles in signaling and biosynthetic pathways, identification of such PTM catalyzing enzymes by genome mining has been an area of major interest. Unlike well-known PTMs like phosphorylation, glycosylation, SUMOylation, no bioinformatics resources are available for enzymes associated with novel and unusual PTMs. Therefore, we have developed the novPTMenzy database which catalogs information on the sequence, structure, active site and genomic neighborhood of experimentally characterized enzymes involved in five novel PTMs, namely AMPylation, Eliminylation, Sulfation, Hydroxylation and Deamidation. Based on a comprehensive analysis of the sequence and structural features of these known PTM catalyzing enzymes, we have created Hidden Markov Model profiles for the identification of similar PTM catalyzing enzymatic domains in genomic sequences. We have also created predictive rules for grouping them into functional subfamilies and deciphering their mechanistic details by structure-based analysis of their active site pockets. These analytical modules have been made available as user friendly search interfaces of novPTMenzy database. It also has a specialized analysis interface for some PTMs like AMPylation and Eliminylation. The novPTMenzy database is a unique resource that can aid in discovery of unusual PTM catalyzing enzymes in newly sequenced genomes. Database URL: http://www.nii.ac.in/novptmenzy.html PMID:25931459
Fu, Yong-Bi; Peterson, Gregory W; Dong, Yibo
2016-04-07
Genotyping-by-sequencing (GBS) has emerged as a useful genomic approach for exploring genome-wide genetic variation. However, GBS commonly samples a genome unevenly and can generate a substantial amount of missing data. These technical features would limit the power of various GBS-based genetic and genomic analyses. Here we present software called IgCoverage for in silico evaluation of genomic coverage through GBS with an individual or pair of restriction enzymes on one sequenced genome, and report a new set of 21 restriction enzyme combinations that can be applied to enhance GBS applications. These enzyme combinations were developed through an application of IgCoverage on 22 plant, animal, and fungus species with sequenced genomes, and some of them were empirically evaluated with different runs of Illumina MiSeq sequencing in 12 plant species. The in silico analysis of 22 organisms revealed up to eight times more genome coverage for the new combinations consisted of pairing four- or five-cutter restriction enzymes than the commonly used enzyme combination PstI + MspI. The empirical evaluation of the new enzyme combination (HinfI + HpyCH4IV) in 12 plant species showed 1.7-6 times more genome coverage than PstI + MspI, and 2.3 times more genome coverage in dicots than monocots. Also, the SNP genotyping in 12 Arabidopsis and 12 rice plants revealed that HinfI + HpyCH4IV generated 7 and 1.3 times more SNPs (with 0-16.7% missing observations) than PstI + MspI, respectively. These findings demonstrate that these novel enzyme combinations can be utilized to increase genome sampling and improve SNP genotyping in various GBS applications. Copyright © 2016 Fu et al.
The emergence of factor Xa inhibitors for the treatment of cardiovascular diseases: a patent review.
Pinto, Donald J P; Qiao, Jennifer X; Knabb, Robert M
2012-06-01
Factor Xa (FXa) is a critical enzyme in the coagulation cascade responsible for thrombin generation, the final enzyme that leads to fibrin clot formation. Significant success has recently been reported with compounds such as rivaroxaban, apixaban and edoxaban in the treatment and prevention of venous thromboembolism (VTE) and more recently in the prevention of stroke in atrial fibrillation (AF). The success these agents have demonstrated is now being reflected by a narrowing of new FXa patents over the past few years. The new patents appear to be structural modifications of previously published, small molecule inhibitors and bind in a similar manner to the FXa enzyme. SciFinder®, PubMed and Google websites were used as the main source of literature retrieval. Patent searches were conducted in the patent databases: HCAPlus, WPIX and the full text databases (USPAT2, USPATFULL, EPFULL, PCTFULL) using the following keywords: ((FXa) OR (F OR factor) (W) (Xa)) (S) (inhibit? or block? or modulat? or antagonist? or regulat?). The search was restricted to patent documents with the entry date on or after 1 January 2009. Literature and information related to clinical development was retrieved from Thomson Reuter's Pharma. A large body of Phase II and Phase III data is now available for FXa inhibitors such as rivaroxaban, apixaban, edoxaban and betrixaban. The clinical data demonstrate favorable benefit-risk profiles compared with the standards of care for short- and long-term anticoagulation (i.e., low molecular weight heparins (LMWHs) and wafarin). The potential exists that these agents will eventually be the agents of choice for the treatment of a host of cardiovascular disease states, offering improved efficacy, safety, and ease of use compared with existing anticoagulants.
2006-06-01
51 Appendix C. Promega Restriction Digest Protocol ....................................................53...Rsa1 Restriction Digest Results............................................................................180 9. DNA Base Pair Comparison...particular restriction endonuclease, the length of the fragments produced will differ when the DNA is digested with a restriction enzyme (Edwards
Dhanasekaran, A Ranjitha; Pearson, Jon L; Ganesan, Balasubramanian; Weimer, Bart C
2015-02-25
Mass spectrometric analysis of microbial metabolism provides a long list of possible compounds. Restricting the identification of the possible compounds to those produced by the specific organism would benefit the identification process. Currently, identification of mass spectrometry (MS) data is commonly done using empirically derived compound databases. Unfortunately, most databases contain relatively few compounds, leaving long lists of unidentified molecules. Incorporating genome-encoded metabolism enables MS output identification that may not be included in databases. Using an organism's genome as a database restricts metabolite identification to only those compounds that the organism can produce. To address the challenge of metabolomic analysis from MS data, a web-based application to directly search genome-constructed metabolic databases was developed. The user query returns a genome-restricted list of possible compound identifications along with the putative metabolic pathways based on the name, formula, SMILES structure, and the compound mass as defined by the user. Multiple queries can be done simultaneously by submitting a text file created by the user or obtained from the MS analysis software. The user can also provide parameters specific to the experiment's MS analysis conditions, such as mass deviation, adducts, and detection mode during the query so as to provide additional levels of evidence to produce the tentative identification. The query results are provided as an HTML page and downloadable text file of possible compounds that are restricted to a specific genome. Hyperlinks provided in the HTML file connect the user to the curated metabolic databases housed in ProCyc, a Pathway Tools platform, as well as the KEGG Pathway database for visualization and metabolic pathway analysis. Metabolome Searcher, a web-based tool, facilitates putative compound identification of MS output based on genome-restricted metabolic capability. This enables researchers to rapidly extend the possible identifications of large data sets for metabolites that are not in compound databases. Putative compound names with their associated metabolic pathways from metabolomics data sets are returned to the user for additional biological interpretation and visualization. This novel approach enables compound identification by restricting the possible masses to those encoded in the genome.
Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification
Slocum, Harvey; Boyer, Herbert W.
1973-01-01
The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605
Optimizing Restriction Site Placement for Synthetic Genomes
NASA Astrophysics Data System (ADS)
Montes, Pablo; Memelli, Heraldo; Ward, Charles; Kim, Joondong; Mitchell, Joseph S. B.; Skiena, Steven
Restriction enzymes are the workhorses of molecular biology. We introduce a new problem that arises in the course of our project to design virus variants to serve as potential vaccines: we wish to modify virus-length genomes to introduce large numbers of unique restriction enzyme recognition sites while preserving wild-type function by substitution of synonymous codons. We show that the resulting problem is NP-Complete, give an exponential-time algorithm, and propose effective heuristics, which we show give excellent results for five sample viral genomes. Our resulting modified genomes have several times more unique restriction sites and reduce the maximum gap between adjacent sites by three to nine-fold.
Pulsotype Diversity of Clostridium botulinum Strains Containing Serotypes A and/or B Genes
Halpin, Jessica L.; Joseph, Lavin; Dykes, Janet K.; McCroskey, Loretta; Smith, Elise; Toney, Denise; Stroika, Steven; Hise, Kelley; Maslanka, Susan; Lúquez, Carolina
2017-01-01
Clostridium botulinum strains are prevalent in the environment and produce a potent neurotoxin that causes botulism, a rare but serious paralytic disease. In 2010, a national PulseNet database was established to curate C. botulinum pulsotypes and facilitate epidemiological investigations, particularly for serotypes A and B strains frequently associated with botulism cases in the United States. Between 2010 and 2014 we performed pulsed-field gel electrophoresis (PFGE) using a PulseNet protocol, uploaded the resulting PFGE patterns into a national database, and analyzed data according to PulseNet criteria (UPGMA clustering, Dice coefficient, 1.5% position tolerance, and 1.5% optimization). A retrospective data analysis was undertaken on 349 entries comprised of type A and B strains isolated from foodborne and infant cases to determine epidemiological relevance, resolution of the method, and the diversity of the database. Most studies to date on the pulsotype diversity of C. botulinum have encompassed very small sets of isolates; this study, with over 300 isolates, is more comprehensive than any published to date. Epidemiologically linked isolates had indistinguishable patterns, except in four instances and there were no obvious geographic trends noted. Simpson’s Index of Diversity (D) has historically been used to demonstrate species diversity and abundance within a group, and is considered a standard descriptor for PFGE databases. Simpson’s Index was calculated for each restriction endonuclease (SmaI, XhoI), the pattern combination SmaI-XhoI, as well as for each toxin serotype. The D values indicate that both enzymes provided better resolution for serotype B isolates than serotype A. XhoI as the secondary enzyme provided little additional discrimination for C. botulinum. SmaI patterns can be used to exclude unrelated isolates during a foodborne outbreak, but pulsotypes should always be considered concurrently with available epidemiological data. PMID:28692343
A global characterization and identification of multifunctional enzymes.
Cheng, Xian-Ying; Huang, Wei-Juan; Hu, Shi-Chang; Zhang, Hai-Lei; Wang, Hao; Zhang, Jing-Xian; Lin, Hong-Huang; Chen, Yu-Zong; Zou, Quan; Ji, Zhi-Liang
2012-01-01
Multi-functional enzymes are enzymes that perform multiple physiological functions. Characterization and identification of multi-functional enzymes are critical for communication and cooperation between different functions and pathways within a complex cellular system or between cells. In present study, we collected literature-reported 6,799 multi-functional enzymes and systematically characterized them in structural, functional, and evolutionary aspects. It was found that four physiochemical properties, that is, charge, polarizability, hydrophobicity, and solvent accessibility, are important for characterization of multi-functional enzymes. Accordingly, a combinational model of support vector machine and random forest model was constructed, based on which 6,956 potential novel multi-functional enzymes were successfully identified from the ENZYME database. Moreover, it was observed that multi-functional enzymes are non-evenly distributed in species, and that Bacteria have relatively more multi-functional enzymes than Archaebacteria and Eukaryota. Comparative analysis indicated that the multi-functional enzymes experienced a fluctuation of gene gain and loss during the evolution from S. cerevisiae to H. sapiens. Further pathway analyses indicated that a majority of multi-functional enzymes were well preserved in catalyzing several essential cellular processes, for example, metabolisms of carbohydrates, nucleotides, and amino acids. What's more, a database of known multi-functional enzymes and a server for novel multi-functional enzyme prediction were also constructed for free access at http://bioinf.xmu.edu.cn/databases/MFEs/index.htm.
Zhang, Peifen; Dreher, Kate; Karthikeyan, A.; Chi, Anjo; Pujar, Anuradha; Caspi, Ron; Karp, Peter; Kirkup, Vanessa; Latendresse, Mario; Lee, Cynthia; Mueller, Lukas A.; Muller, Robert; Rhee, Seung Yon
2010-01-01
Metabolic networks reconstructed from sequenced genomes or transcriptomes can help visualize and analyze large-scale experimental data, predict metabolic phenotypes, discover enzymes, engineer metabolic pathways, and study metabolic pathway evolution. We developed a general approach for reconstructing metabolic pathway complements of plant genomes. Two new reference databases were created and added to the core of the infrastructure: a comprehensive, all-plant reference pathway database, PlantCyc, and a reference enzyme sequence database, RESD, for annotating metabolic functions of protein sequences. PlantCyc (version 3.0) includes 714 metabolic pathways and 2,619 reactions from over 300 species. RESD (version 1.0) contains 14,187 literature-supported enzyme sequences from across all kingdoms. We used RESD, PlantCyc, and MetaCyc (an all-species reference metabolic pathway database), in conjunction with the pathway prediction software Pathway Tools, to reconstruct a metabolic pathway database, PoplarCyc, from the recently sequenced genome of Populus trichocarpa. PoplarCyc (version 1.0) contains 321 pathways with 1,807 assigned enzymes. Comparing PoplarCyc (version 1.0) with AraCyc (version 6.0, Arabidopsis [Arabidopsis thaliana]) showed comparable numbers of pathways distributed across all domains of metabolism in both databases, except for a higher number of AraCyc pathways in secondary metabolism and a 1.5-fold increase in carbohydrate metabolic enzymes in PoplarCyc. Here, we introduce these new resources and demonstrate the feasibility of using them to identify candidate enzymes for specific pathways and to analyze metabolite profiling data through concrete examples. These resources can be searched by text or BLAST, browsed, and downloaded from our project Web site (http://plantcyc.org). PMID:20522724
Identification of Functionally Related Enzymes by Learning-to-Rank Methods.
Stock, Michiel; Fober, Thomas; Hüllermeier, Eyke; Glinca, Serghei; Klebe, Gerhard; Pahikkala, Tapio; Airola, Antti; De Baets, Bernard; Waegeman, Willem
2014-01-01
Enzyme sequences and structures are routinely used in the biological sciences as queries to search for functionally related enzymes in online databases. To this end, one usually departs from some notion of similarity, comparing two enzymes by looking for correspondences in their sequences, structures or surfaces. For a given query, the search operation results in a ranking of the enzymes in the database, from very similar to dissimilar enzymes, while information about the biological function of annotated database enzymes is ignored. In this work, we show that rankings of that kind can be substantially improved by applying kernel-based learning algorithms. This approach enables the detection of statistical dependencies between similarities of the active cleft and the biological function of annotated enzymes. This is in contrast to search-based approaches, which do not take annotated training data into account. Similarity measures based on the active cleft are known to outperform sequence-based or structure-based measures under certain conditions. We consider the Enzyme Commission (EC) classification hierarchy for obtaining annotated enzymes during the training phase. The results of a set of sizeable experiments indicate a consistent and significant improvement for a set of similarity measures that exploit information about small cavities in the surface of enzymes.
Type III restriction-modification enzymes: a historical perspective.
Rao, Desirazu N; Dryden, David T F; Bheemanaik, Shivakumara
2014-01-01
Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.
Restriction/modification polypeptides, polynucleotides, and methods
Westpheling, Janet; Chung, DaeHwan; Huddleston, Jennifer; Farkas, Joel A
2015-02-24
The present invention relates to the discovery of a novel restriction/modification system in Caldicellulosiruptor bescii. The discovered restriction enzyme is a HaeIII-like restriction enzyme that possesses a thermophilic activity profile. The restriction/modification system also includes a methyltransferase, M.CbeI, that methylates at least one cytosine residue in the CbeI recognition sequence to m.sup.4C. Thus, the invention provides, in various aspects, isolated CbeI or M.CbeI polypeptides, or biologically active fragments thereof; isolated polynucleotides that encode the CbeI or M.CbeI polypeptides or biologically active fragments thereof, including expression vectors that include such polynucleotide sequences; methods of digesting DNA using a CbeI polypeptide; methods of treating a DNA molecule using a M.CbeI polypeptide; and methods of transforming a Caldicellulosiruptor cell.
Using PCR-RFLP technology to teach single nucleotide polymorphism for undergraduates.
Zhang, Bo; Wang, Yan; Xu, Xiaofeng; Guan, Xingying; Bai, Yun
2013-01-01
Recent studies indicated that the aberrant gene expression of peroxiredoxin-6 (prdx6) was found in various kinds of cancers. Because of its biochemical function and gene expression pattern in cancer cells, the association between genetic polymorphism of Prdx6 and cancer onset is interesting. In this report, we have developed and implemented a serial experiment in molecular biology laboratory course to teach single nucleotide polymorphism (SNP) to undergraduate students majoring in molecular biology or genetics. The flanking sequence of rs4382766 was located in Prdx6 gene, which contained a restriction site of SspI, and was used as a target in this lab course. The students could mimic real research by integrating different techniques, such as database retrieving, genomic DNA isolation, PCR, and restriction enzyme assay. This serial experiment of PCR-RFLP helps students set up intact idea of molecular biology and understand the relation among individual experiments. Students were found to be more enthusiastic during the laboratory classes than those in the former curriculum. Copyright © 2013 Wiley Periodicals, Inc.
From sequence to enzyme mechanism using multi-label machine learning.
De Ferrari, Luna; Mitchell, John B O
2014-05-19
In this work we predict enzyme function at the level of chemical mechanism, providing a finer granularity of annotation than traditional Enzyme Commission (EC) classes. Hence we can predict not only whether a putative enzyme in a newly sequenced organism has the potential to perform a certain reaction, but how the reaction is performed, using which cofactors and with susceptibility to which drugs or inhibitors, details with important consequences for drug and enzyme design. Work that predicts enzyme catalytic activity based on 3D protein structure features limits the prediction of mechanism to proteins already having either a solved structure or a close relative suitable for homology modelling. In this study, we evaluate whether sequence identity, InterPro or Catalytic Site Atlas sequence signatures provide enough information for bulk prediction of enzyme mechanism. By splitting MACiE (Mechanism, Annotation and Classification in Enzymes database) mechanism labels to a finer granularity, which includes the role of the protein chain in the overall enzyme complex, the method can predict at 96% accuracy (and 96% micro-averaged precision, 99.9% macro-averaged recall) the MACiE mechanism definitions of 248 proteins available in the MACiE, EzCatDb (Database of Enzyme Catalytic Mechanisms) and SFLD (Structure Function Linkage Database) databases using an off-the-shelf K-Nearest Neighbours multi-label algorithm. We find that InterPro signatures are critical for accurate prediction of enzyme mechanism. We also find that incorporating Catalytic Site Atlas attributes does not seem to provide additional accuracy. The software code (ml2db), data and results are available online at http://sourceforge.net/projects/ml2db/ and as supplementary files.
PlantCAZyme: a database for plant carbohydrate-active enzymes
Ekstrom, Alexander; Taujale, Rahil; McGinn, Nathan; Yin, Yanbin
2014-01-01
PlantCAZyme is a database built upon dbCAN (database for automated carbohydrate active enzyme annotation), aiming to provide pre-computed sequence and annotation data of carbohydrate active enzymes (CAZymes) to plant carbohydrate and bioenergy research communities. The current version contains data of 43 790 CAZymes of 159 protein families from 35 plants (including angiosperms, gymnosperms, lycophyte and bryophyte mosses) and chlorophyte algae with fully sequenced genomes. Useful features of the database include: (i) a BLAST server and a HMMER server that allow users to search against our pre-computed sequence data for annotation purpose, (ii) a download page to allow batch downloading data of a specific CAZyme family or species and (iii) protein browse pages to provide an easy access to the most comprehensive sequence and annotation data. Database URL: http://cys.bios.niu.edu/plantcazyme/ PMID:25125445
PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases
Forrest, Alistair RR; Taylor, Darrin F; Fink, J Lynn; Gongora, M Milena; Flegg, Cameron; Teasdale, Rohan D; Suzuki, Harukazu; Kanamori, Mutsumi; Kai, Chikatoshi; Hayashizaki, Yoshihide; Grimmond, Sean M
2006-01-01
Background Protein kinases and protein phosphatases are the fundamental components of phosphorylation dependent protein regulatory systems. We have created a database for the protein kinase-like and phosphatase-like loci of mouse that integrates protein sequence, interaction, classification and pathway information with the results of a systematic screen of their sub-cellular localization and tissue specific expression data mined from the GNF tissue atlas of mouse. Results The database lets users query where a specific kinase or phosphatase is expressed at both the tissue and sub-cellular levels. Similarly the interface allows the user to query by tissue, pathway or sub-cellular localization, to reveal which components are co-expressed or co-localized. A review of their expression reveals 30% of these components are detected in all tissues tested while 70% show some level of tissue restriction. Hierarchical clustering of the expression data reveals that expression of these genes can be used to separate the samples into tissues of related lineage, including 3 larger clusters of nervous tissue, developing embryo and cells of the immune system. By overlaying the expression, sub-cellular localization and classification data we examine correlations between class, specificity and tissue restriction and show that tyrosine kinases are more generally expressed in fewer tissues than serine/threonine kinases. Conclusion Together these data demonstrate that cell type specific systems exist to regulate protein phosphorylation and that for accurate modelling and for determination of enzyme substrate relationships the co-location of components needs to be considered. PMID:16504016
Ishikawa, Ken; Watanabe, Miki; Kuroita, Toshihiro; Uchiyama, Ikuo; Bujnicki, Janusz M; Kawakami, Bunsei; Tanokura, Masaru; Kobayashi, Ichizo
2005-07-21
To search for restriction endonucleases, we used a novel plant-based cell-free translation procedure that bypasses the toxicity of these enzymes. To identify candidate genes, the related genomes of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii were compared. In line with the selfish mobile gene hypothesis for restriction-modification systems, apparent genome rearrangement around putative restriction genes served as a selecting criterion. Several candidate restriction genes were identified and then amplified in such a way that they were removed from their own translation signal. During their cloning into a plasmid, the genes became connected with a plant translation signal. After in vitro transcription by T7 RNA polymerase, the mRNAs were separated from the template DNA and translated in a wheat-germ-based cell-free protein synthesis system. The resulting solution could be directly assayed for restriction activity. We identified two deoxyribonucleases. The novel enzyme was denoted as PabI, purified and found to recognize 5'-GTAC and leave a 3'-TA overhang (5'-GTA/C), a novel restriction enzyme-generated terminus. PabI is active up to 90 degrees C and optimally active at a pH of around 6 and in NaCl concentrations ranging from 100 to 200 mM. We predict that it has a novel 3D structure.
Problem-Solving Test: Restriction Endonuclease Mapping
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2011-01-01
The term "restriction endonuclease mapping" covers a number of related techniques used to identify specific restriction enzyme recognition sites on small DNA molecules. A method for restriction endonuclease mapping of a 1,000-basepair (bp)-long DNA molecule is described in the fictitious experiment of this test. The most important fact needed to…
The interaction of the Eco R1 restriction enzyme E.coli with nucleotides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollis, Donald F.
1979-11-01
The Eco R1 restriction enzyme can be shown to be inhibited by nucleotides which correspond to any part of its known site of phosphodiesterase activity. A series of di-, tetra-, and hexa-nucleotide fragments were synthesized and their effect on the activity of the enzyme upon superhelical Co1 E1 DNA studied. The inhibition caused by the individual mononucleotides were also studied. In general all the nucleotide fragments showed some form of interaction with the enzyme system. Tetranucleotides were stronger inhibitors than dinucleotides, which in turn were stronger inhibitors than the mononucleotides. Within each category of inhibitors, those containing the phosphodiester bondmore » which is acted upon by the enzyme were the strongest inhibitors. Only those fragments which were consistent with the enzymes site of activity showed competitive inhibition kinetics. Nucleotides which do not fit within the site of phosphodiesterase activity show non-competitive inhibition kinetics.« less
Construction of a transfer vector for a clonal isolate of LdNPV
Shivanand T. Hiremath; Martha Fikes; Audrey Ichida
1991-01-01
Deoxyribonucleic acid from a clonal isolate of LdNPV (CI A2-1), obtained by in vivo cloning procedures, was used to construct genomic libraries in phage (lamda Gem 11) and cosmid (pHC79) vectors. Overlapping clones were selected to generate a restriction enzyme map. The restriction enzyme map, covering about 85% of the CI A2-1 genome, was determined...
One recognition sequence, seven restriction enzymes, five reaction mechanisms
Gowers, Darren M.; Bellamy, Stuart R.W.; Halford, Stephen E.
2004-01-01
The diversity of reaction mechanisms employed by Type II restriction enzymes was investigated by analysing the reactions of seven endonucleases at the same DNA sequence. NarI, KasI, Mly113I, SfoI, EgeI, EheI and BbeI cleave DNA at several different positions in the sequence 5′-GGCGCC-3′. Their reactions on plasmids with one or two copies of this sequence revealed five distinct mechanisms. These differ in terms of the number of sites the enzyme binds, and the number of phosphodiester bonds cleaved per turnover. NarI binds two sites, but cleaves only one bond per DNA-binding event. KasI also cuts only one bond per turnover but acts at individual sites, preferring intact to nicked sites. Mly113I cuts both strands of its recognition sites, but shows full activity only when bound to two sites, which are then cleaved concertedly. SfoI, EgeI and EheI cut both strands at individual sites, in the manner historically considered as normal for Type II enzymes. Finally, BbeI displays an absolute requirement for two sites in close physical proximity, which are cleaved concertedly. The range of reaction mechanisms for restriction enzymes is thus larger than commonly imagined, as is the number of enzymes needing two recognition sites. PMID:15226412
ORENZA: a web resource for studying ORphan ENZyme activities
Lespinet, Olivier; Labedan, Bernard
2006-01-01
Background Despite the current availability of several hundreds of thousands of amino acid sequences, more than 36% of the enzyme activities (EC numbers) defined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) are not associated with any amino acid sequence in major public databases. This wide gap separating knowledge of biochemical function and sequence information is found for nearly all classes of enzymes. Thus, there is an urgent need to explore these sequence-less EC numbers, in order to progressively close this gap. Description We designed ORENZA, a PostgreSQL database of ORphan ENZyme Activities, to collate information about the EC numbers defined by the NC-IUBMB with specific emphasis on orphan enzyme activities. Complete lists of all EC numbers and of orphan EC numbers are available and will be periodically updated. ORENZA allows one to browse the complete list of EC numbers or the subset associated with orphan enzymes or to query a specific EC number, an enzyme name or a species name for those interested in particular organisms. It is possible to search ORENZA for the different biochemical properties of the defined enzymes, the metabolic pathways in which they participate, the taxonomic data of the organisms whose genomes encode them, and many other features. The association of an enzyme activity with an amino acid sequence is clearly underlined, making it easy to identify at once the orphan enzyme activities. Interactive publishing of suggestions by the community would provide expert evidence for re-annotation of orphan EC numbers in public databases. Conclusion ORENZA is a Web resource designed to progressively bridge the unwanted gap between function (enzyme activities) and sequence (dataset present in public databases). ORENZA should increase interactions between communities of biochemists and of genomicists. This is expected to reduce the number of orphan enzyme activities by allocating gene sequences to the relevant enzymes. PMID:17026747
EFICAz2.5: application of a high-precision enzyme function predictor to 396 proteomes.
Kumar, Narendra; Skolnick, Jeffrey
2012-10-15
High-quality enzyme function annotation is essential for understanding the biochemistry, metabolism and disease processes of organisms. Previously, we developed a multi-component high-precision enzyme function predictor, EFICAz(2) (enzyme function inference by a combined approach). Here, we present an updated improved version, EFICAz(2.5), that is trained on a significantly larger data set of enzyme sequences and PROSITE patterns. We also present the results of the application of EFICAz(2.5) to the enzyme reannotation of 396 genomes cataloged in the ENSEMBL database. The EFICAz(2.5) server and database is freely available with a use-friendly interface at http://cssb.biology.gatech.edu/EFICAz2.5.
Suppression of APOBEC3-mediated restriction of HIV-1 by Vif
Feng, Yuqing; Baig, Tayyba T.; Love, Robin P.; Chelico, Linda
2014-01-01
The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-)DNA, APOBEC3 enzymes deaminate cytosines to form uracils in single-stranded (-)DNA regions. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite to the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but also by several degradation-independent mechanisms, such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective. PMID:25206352
Programmable DNA-Guided Artificial Restriction Enzymes.
Enghiad, Behnam; Zhao, Huimin
2017-05-19
Restriction enzymes are essential tools for recombinant DNA technology that have revolutionized modern biological research. However, they have limited sequence specificity and availability. Here we report a Pyrococcus furiosus Argonaute (PfAgo) based platform for generating artificial restriction enzymes (AREs) capable of recognizing and cleaving DNA sequences at virtually any arbitrary site and generating defined sticky ends of varying length. Short DNA guides are used to direct PfAgo to target sites for cleavage at high temperatures (>87 °C) followed by reannealing of the cleaved single stranded DNAs. We used this platform to generate over 18 AREs for DNA fingerprinting and molecular cloning of PCR-amplified or genomic DNAs. These AREs work as efficiently as their naturally occurring counterparts, and some of them even do not have any naturally occurring counterparts, demonstrating easy programmability, generality, versatility, and high efficiency for this new technology.
Diba, K; Mirhendi, H; Kordbacheh, P; Rezaie, S
2014-01-01
In this study we attempted to modify the PCR-RFLP method using restriction enzyme MwoI for the identification of medically important Aspergillus species. Our subjects included nine standard Aspergillus species and 205 Aspergillus isolates of approved hospital acquired infections and hospital indoor sources. First of all, Aspergillus isolates were identified in the level of species by using morphologic method. A twenty four hours culture was performed for each isolates to harvest Aspergillus mycelia and then genomic DNA was extracted using Phenol-Chloroform method. PCR-RFLP using single restriction enzyme MwoI was performed in ITS regions of rDNA gene. The electrophoresis data were analyzed and compared with those of morphologic identifications. Total of 205 Aspergillus isolates included 153 (75%) environmental and 52 (25%) clinical isolates. A. flavus was the most frequently isolate in our study (55%), followed by A. niger 65(31.7%), A. fumigatus 18(8.7%), A. nidulans and A. parasiticus 2(1% each). MwoI enabled us to discriminate eight medically important Aspergillus species including A. fumigatus, A. niger, A. flavus as the most common isolated species. PCR-RFLP method using the restriction enzyme MwoI is a rapid and reliable test for identification of at least the most medically important Aspergillus species.
Diba, K.; Mirhendi, H.; Kordbacheh, P.; Rezaie, S.
2014-01-01
In this study we attempted to modify the PCR-RFLP method using restriction enzyme MwoI for the identification of medically important Aspergillus species. Our subjects included nine standard Aspergillus species and 205 Aspergillus isolates of approved hospital acquired infections and hospital indoor sources. First of all, Aspergillus isolates were identified in the level of species by using morphologic method. A twenty four hours culture was performed for each isolates to harvest Aspergillus mycelia and then genomic DNA was extracted using Phenol-Chloroform method. PCR-RFLP using single restriction enzyme MwoI was performed in ITS regions of rDNA gene. The electrophoresis data were analyzed and compared with those of morphologic identifications. Total of 205 Aspergillus isolates included 153 (75%) environmental and 52 (25%) clinical isolates. A. flavus was the most frequently isolate in our study (55%), followed by A. niger 65(31.7%), A. fumigatus 18(8.7%), A. nidulans and A. parasiticus 2(1% each). MwoI enabled us to discriminate eight medically important Aspergillus species including A. fumigatus, A. niger, A. flavus as the most common isolated species. PCR-RFLP method using the restriction enzyme MwoI is a rapid and reliable test for identification of at least the most medically important Aspergillus species. PMID:25242934
2010-01-01
Background Papaver somniferum (opium poppy) is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. Results A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs) with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. Conclusions The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a system with a well-defined metabolite profile facilitates an improved linkage between genes, enzymes, and pathway components. The proteome database represents the most relevant alkaloid-producing enzymes, compared with the much deeper and more complete transcriptome library. The transcript database contained full-length mRNAs encoding most alkaloid biosynthetic enzymes, which is a key requirement for the functional characterization of novel gene candidates. PMID:21083930
ENZVU--An Enzyme Kinetics Computer Simulation Based upon a Conceptual Model of Enzyme Action.
ERIC Educational Resources Information Center
Graham, Ian
1985-01-01
Discusses a simulation on enzyme kinetics based upon the ability of computers to generate random numbers. The program includes: (1) enzyme catalysis in a restricted two-dimensional grid; (2) visual representation of catalysis; and (3) storage and manipulation of data. Suggested applications and conclusions are also discussed. (DH)
Elucidation of metabolic pathways from enzyme classification data.
McDonald, Andrew G; Tipton, Keith F
2014-01-01
The IUBMB Enzyme List is widely used by other databases as a source for avoiding ambiguity in the recognition of enzymes as catalytic entities. However, it was not designed for metabolic pathway tracing, which has become increasingly important in systems biology. A Reactions Database has been created from the material in the Enzyme List to allow reactions to be searched by substrate/product, and pathways to be traced from any selected starting/seed substrate. An extensive synonym glossary allows searches by many of the alternative names, including accepted abbreviations, by which a chemical compound may be known. This database was necessary for the development of the application Reaction Explorer ( http://www.reaction-explorer.org ), which was written in Real Studio ( http://www.realsoftware.com/realstudio/ ) to search the Reactions Database and draw metabolic pathways from reactions selected by the user. Having input the name of the starting compound (the "seed"), the user is presented with a list of all reactions containing that compound and then selects the product of interest as the next point on the ensuing graph. The pathway diagram is then generated as the process iterates. A contextual menu is provided, which allows the user: (1) to remove a compound from the graph, along with all associated links; (2) to search the reactions database again for additional reactions involving the compound; (3) to search for the compound within the Enzyme List.
Naveilhan, P; Baudet, C; Jabbour, W; Wion, D
1994-09-01
A model that may explain the limited division potential of certain cells such as human fibroblasts in culture is presented. The central postulate of this theory is that there exists, prior to certain key exons that code for materials needed for cell division, a unique sequence of specific repeating segments of DNA. One copy of such repeating segments is deleted during each cell cycle in cells that are not protected from such deletion through methylation of their cytosine residues. According to this theory, the means through which such repeated sequences are removed, one per cycle, is through the sequential action of enzymes that act much as bacterial restriction enzymes do--namely to produce scissions in both strands of DNA in areas that correspond to the DNA base sequence recognition specificities of such enzymes. After the first scission early in a replicative cycle, that enzyme becomes inhibited, but the cleavage of the first site exposes the closest site in the repetitive element to the action of a second restriction enzyme after which that enzyme also becomes inhibited. Then repair occurs, regenerating the original first site. Through this sequential activation and inhibition of two different restriction enzymes, only one copy of the repeating sequence is deleted during each cell cycle. In effect, the repeating sequence operates as a precise counter of the numbers of cell doubling that have occurred since the cells involved differentiated during development.
A simple procedure for parallel sequence analysis of both strands of 5'-labeled DNA.
Razvi, F; Gargiulo, G; Worcel, A
1983-08-01
Ligation of a 5'-labeled DNA restriction fragment results in a circular DNA molecule carrying the two 32Ps at the reformed restriction site. Double digestions of the circular DNA with the original enzyme and a second restriction enzyme cleavage near the labeled site allows direct chemical sequencing of one 5'-labeled DNA strand. Similar double digestions, using an isoschizomer that cleaves differently at the 32P-labeled site, allows direct sequencing of the now 3'-labeled complementary DNA strand. It is possible to directly sequence both strands of cloned DNA inserts by using the above protocol and a multiple cloning site vector that provides the necessary restriction sites. The simultaneous and parallel visualization of both DNA strands eliminates sequence ambiguities. In addition, the labeled circular molecules are particularly useful for single-hit DNA cleavage studies and DNA footprint analysis. As an example, we show here an analysis of the micrococcal nuclease-induced breaks on the two strands of the somatic 5S RNA gene of Xenopus borealis, which suggests that the enzyme may recognize and cleave small AT-containing palindromes along the DNA helix.
NASA Astrophysics Data System (ADS)
Mudaber, M. H.; Yusof, Y.; Mohamad, M. S.
2017-09-01
Predicting the existence of restriction enzymes sequences on the recombinant DNA fragments, after accomplishing the manipulating reaction, via mathematical approach is considered as a convenient way in terms of DNA recombination. In terms of mathematics, for this characteristic of the recombinant DNA strands, which involve the recognition sites of restriction enzymes, is called persistent and permanent. Normally differentiating the persistency and permanency of two stages recombinant DNA strands using wet-lab experiment is expensive and time-consuming due to running the experiment at two stages as well as adding more restriction enzymes on the reaction. Therefore, in this research, by using Yusof-Goode (Y-G) model the difference between persistent and permanent splicing language of some two stages is investigated. Two theorems were provided, which show the persistency and non-permanency of two stages DNA splicing language.
Four new type I restriction enzymes identified in Escherichia coli clinical isolates
Kasarjian, Julie K. A.; Kodama, Yoshiaki; Iida, Masatake; Matsuda, Katsura; Ryu, Junichi
2005-01-01
Using a plasmid transformation method and the RM search computer program, four type I restriction enzymes with new recognition sites and two isoschizomers (EcoBI and Eco377I) were identified in a collection of clinical Escherichia coli isolates. These new enzymes were designated Eco394I, Eco826I, Eco851I and Eco912I. Their recognition sequences were determined to be GAC(5N)RTAAY, GCA(6N)CTGA, GTCA(6N)TGAY and CAC(5N)TGGC, respectively. A methylation sensitivity assay, using various synthetic oligonucleotides, was used to identify the adenines that prevent cleavage when methylated (underlined). These results suggest that type I enzymes are abundant in E.coli and many other bacteria, as has been inferred from bacterial genome sequencing projects. PMID:16040596
Erwanto, Yuny; Abidin, Mohammad Zainal; Sugiyono, Eko Yasin Prasetyo Muslim; Rohman, Abdul
2014-01-01
This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment. PMID:25178301
Erwanto, Yuny; Abidin, Mohammad Zainal; Sugiyono, Eko Yasin Prasetyo Muslim; Rohman, Abdul
2014-10-01
This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment.
Mak, Wai Shun; Tran, Stephen; Marcheschi, Ryan; Bertolani, Steve; Thompson, James; Baker, David; Liao, James C; Siegel, Justin B
2015-11-24
The ability to biosynthetically produce chemicals beyond what is commonly found in Nature requires the discovery of novel enzyme function. Here we utilize two approaches to discover enzymes that enable specific production of longer-chain (C5-C8) alcohols from sugar. The first approach combines bioinformatics and molecular modelling to mine sequence databases, resulting in a diverse panel of enzymes capable of catalysing the targeted reaction. The median catalytic efficiency of the computationally selected enzymes is 75-fold greater than a panel of naively selected homologues. This integrative genomic mining approach establishes a unique avenue for enzyme function discovery in the rapidly expanding sequence databases. The second approach uses computational enzyme design to reprogramme specificity. Both approaches result in enzymes with >100-fold increase in specificity for the targeted reaction. When enzymes from either approach are integrated in vivo, longer-chain alcohol production increases over 10-fold and represents >95% of the total alcohol products.
BioFuelDB: a database and prediction server of enzymes involved in biofuels production.
Chaudhary, Nikhil; Gupta, Ankit; Gupta, Sudheer; Sharma, Vineet K
2017-01-01
In light of the rapid decrease in fossils fuel reserves and an increasing demand for energy, novel methods are required to explore alternative biofuel production processes to alleviate these pressures. A wide variety of molecules which can either be used as biofuels or as biofuel precursors are produced using microbial enzymes. However, the common challenges in the industrial implementation of enzyme catalysis for biofuel production are the unavailability of a comprehensive biofuel enzyme resource, low efficiency of known enzymes, and limited availability of enzymes which can function under extreme conditions in the industrial processes. We have developed a comprehensive database of known enzymes with proven or potential applications in biofuel production through text mining of PubMed abstracts and other publicly available information. A total of 131 enzymes with a role in biofuel production were identified and classified into six enzyme classes and four broad application categories namely 'Alcohol production', 'Biodiesel production', 'Fuel Cell' and 'Alternate biofuels'. A prediction tool 'Benz' was developed to identify and classify novel homologues of the known biofuel enzyme sequences from sequenced genomes and metagenomes. 'Benz' employs a hybrid approach incorporating HMMER 3.0 and RAPSearch2 programs to provide high accuracy and high speed for prediction. Using the Benz tool, 153,754 novel homologues of biofuel enzymes were identified from 23 diverse metagenomic sources. The comprehensive data of curated biofuel enzymes, their novel homologs identified from diverse metagenomes, and the hybrid prediction tool Benz are presented as a web server which can be used for the prediction of biofuel enzymes from genomic and metagenomic datasets. The database and the Benz tool is publicly available at http://metabiosys.iiserb.ac.in/biofueldb& http://metagenomics.iiserb.ac.in/biofueldb.
Ikeda, Shun; Abe, Takashi; Nakamura, Yukiko; Kibinge, Nelson; Hirai Morita, Aki; Nakatani, Atsushi; Ono, Naoaki; Ikemura, Toshimichi; Nakamura, Kensuke; Altaf-Ul-Amin, Md; Kanaya, Shigehiko
2013-05-01
Biology is increasingly becoming a data-intensive science with the recent progress of the omics fields, e.g. genomics, transcriptomics, proteomics and metabolomics. The species-metabolite relationship database, KNApSAcK Core, has been widely utilized and cited in metabolomics research, and chronological analysis of that research work has helped to reveal recent trends in metabolomics research. To meet the needs of these trends, the KNApSAcK database has been extended by incorporating a secondary metabolic pathway database called Motorcycle DB. We examined the enzyme sequence diversity related to secondary metabolism by means of batch-learning self-organizing maps (BL-SOMs). Initially, we constructed a map by using a big data matrix consisting of the frequencies of all possible dipeptides in the protein sequence segments of plants and bacteria. The enzyme sequence diversity of the secondary metabolic pathways was examined by identifying clusters of segments associated with certain enzyme groups in the resulting map. The extent of diversity of 15 secondary metabolic enzyme groups is discussed. Data-intensive approaches such as BL-SOM applied to big data matrices are needed for systematizing protein sequences. Handling big data has become an inevitable part of biology.
Busk, P K; Pilgaard, B; Lezyk, M J; Meyer, A S; Lange, L
2017-04-12
Carbohydrate-active enzymes are found in all organisms and participate in key biological processes. These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis for prediction of enzyme function. A fast and reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interest as demonstrated for the glycosyl hydrolase and the lytic polysaccharide monooxygenase families. This approach not only assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy. We identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition. The conserved peptides were matched to protein sequence for de novo annotation and functional prediction of carbohydrate-active enzymes with the Hotpep method. Annotation of protein sequences from 12 bacterial and 16 fungal genomes to families with Hotpep had an accuracy of 0.84 (measured as F1-score) compared to semiautomatic annotation by the CAZy database whereas the dbCAN HMM-based method had an accuracy of 0.77 with optimized parameters. Furthermore, Hotpep provided a functional prediction with 86% accuracy for the annotated genes. Hotpep is available as a stand-alone application for MS Windows. Hotpep is a state-of-the-art method for automatic annotation and functional prediction of carbohydrate-active enzymes.
Weiserová, Marie; Ryu, Junichi
2008-06-27
Type I restriction-modification (R-M) systems are the most complex restriction enzymes discovered to date. Recent years have witnessed a renaissance of interest in R-M enzymes Type I. The massive ongoing sequencing programmes leading to discovery of, so far, more than 1 000 putative enzymes in a broad range of microorganisms including pathogenic bacteria, revealed that these enzymes are widely represented in nature. The aim of this study was characterisation of a putative R-M system EcoA0ORF42P identified in the commensal Escherichia coli A0 34/86 (O83: K24: H31) strain, which is efficiently used at Czech paediatric clinics for prophylaxis and treatment of nosocomial infections and diarrhoea of preterm and newborn infants. We have characterised a restriction-modification system EcoA0ORF42P of the commensal Escherichia coli strain A0 34/86 (O83: K24: H31). This system, designated as EcoAO83I, is a new functional member of the Type IB family, whose specificity differs from those of known Type IB enzymes, as was demonstrated by an immunological cross-reactivity and a complementation assay. Using the plasmid transformation method and the RM search computer program, we identified the DNA recognition sequence of the EcoAO83I as GGA(8N)ATGC. In consistence with the amino acids alignment data, the 3' TRD component of the recognition sequence is identical to the sequence recognized by the EcoEI enzyme. The A-T (modified adenine) distance is identical to that in the EcoAI and EcoEI recognition sites, which also indicates that this system is a Type IB member. Interestingly, the recognition sequence we determined here is identical to the previously reported prototype sequence for Eco377I and its isoschizomers. Putative restriction-modification system EcoA0ORF42P in the commensal Escherichia coli strain A0 34/86 (O83: K24: H31) was found to be a member of the Type IB family and was designated as EcoAO83I. Combination of the classical biochemical and bacterial genetics approaches with comparative genomics might contribute effectively to further classification of many other putative Type-I enzymes, especially in clinical samples.
Bukowski, Michal; Polakowska, Klaudia; Ilczyszyn, Weronika M; Sitarska, Agnieszka; Nytko, Kinga; Kosecka, Maja; Miedzobrodzki, Jacek; Dubin, Adam; Wladyka, Benedykt
2015-01-01
Genetic methods based on PCR-restriction fragment length polymorphism (RFLP) are widely used for microbial species determination. In this study, we present the application of saoC gene as an effective tool for species determination and within-species diversity analysis for Staphylococcus genus. The unique sequence diversity of saoC allows us to apply four restriction enzymes to obtain RFLP patterns, which appear highly distinctive even among closely related species as well as atypical isolates of environmental origin. Such patterns were successfully obtained for 26 species belonging to Staphylococcus genus. What is more, tracing polymorphisms detected by different restriction enzymes allowed for basic phylogeny analysis for Staphylococcus aureus, which is potentially applicable for other staphylococcal species. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rovenko, B M; Lushchak, V I; Lushchak, O V
2013-01-01
The influence of 20 and 1% glucose and fructose, which were components of larval diet, on the level of oxidized proteins and lipids, low molecular mass antioxidant content as well as activities of antioxidant and associated enzymes in adult fruit fly Drosophila melanogaster were investigated. The restriction of carbohydrates in larval diet leads to oxidative stress in adult insects. It is supported by 40-50% increased content of protein carbonyl groups and by 60-70% decreased level of protein thiol groups as well as by a 4-fold increase of lipid peroxide content in 2-day-old flies of both sexes, developed on the diet with 1% carbohydrates. Oxidative stress, induced by carbohydrate restriction of the larval diet, caused the activation of antioxidant defence, differently exhibited in male and female fruit flies. Caloric restriction increased activity of superoxide dismutase and thioredoxin reductase associating only in males with 2-fold higher activity of NADPH-producing enzymes--glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase. Carbohydrate restriction in the larval diet caused the increase of uric acid content, but the decrease in catalase activity in males. In females the values of these parameters were changed in opposite direction compared with males. The obtained results let us conclude the different involvement of low molecular mass antioxidants, glutathione and uric acid, and antioxidant enzyme catalase in the protection of male and female fruit fly macromolecules against oxidative damages, caused by calorie restriction of larval diet.
BioWarehouse: a bioinformatics database warehouse toolkit
Lee, Thomas J; Pouliot, Yannick; Wagner, Valerie; Gupta, Priyanka; Stringer-Calvert, David WJ; Tenenbaum, Jessica D; Karp, Peter D
2006-01-01
Background This article addresses the problem of interoperation of heterogeneous bioinformatics databases. Results We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. Conclusion BioWarehouse embodies significant progress on the database integration problem for bioinformatics. PMID:16556315
BioWarehouse: a bioinformatics database warehouse toolkit.
Lee, Thomas J; Pouliot, Yannick; Wagner, Valerie; Gupta, Priyanka; Stringer-Calvert, David W J; Tenenbaum, Jessica D; Karp, Peter D
2006-03-23
This article addresses the problem of interoperation of heterogeneous bioinformatics databases. We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. BioWarehouse embodies significant progress on the database integration problem for bioinformatics.
Tools for evaluation of restriction on auditory participation: systematic review of the literature.
Souza, Valquíria Conceição; Lemos, Stela Maris Aguiar
2015-01-01
To systematically review studies that used questionnaires for the evaluation of restriction on auditory participation in adults and the elderly. Studies from the last five years were selected through a bibliographic collection of data in national and international journals in the following electronic databases: ISI Web of Science and Virtual Health Library - BIREME, which includes the LILACS and MEDLINE databases. Studies available fully; published in Portuguese, English, or Spanish; whose participants were adults and/or the elderly and that used questionnaires for the evaluation of restriction on auditory participation. Initially, the studies were selected based on the reading of titles and abstracts. Then, the articles were fully and the information was included in the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist. Three-hundred seventy studies were found in the researched databases; 14 of these studies were excluded because they were found in more than one database. The titles and abstracts of 356 articles were analyzed; 40 of them were selected for full reading, of which 26 articles were finally selected. In the present review, nine instruments were found for the evaluation of restriction on auditory participation. The most used questionnaires for the assessment of the restriction on auditory participation were the Hearing Handicap Inventory for the Elderly (HHIE), Hearing Handicap Inventory for Adults (HHIA), and Hearing Handicap Inventory for the Elderly - Screening (HHIE-S). The use of restriction on auditory participation questionnaires can assist in validating decisions in audiology practices and be useful in the fitting of hearing aids and results of aural rehabilitation.
National Institute of Standards and Technology Data Gateway
Biofuel Database (Web, free access) This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.
Song, Wen Jun; Qin, Qi Wei; Qiu, Jin; Huang, Can Hua; Wang, Fan; Hew, Choy Leong
2004-01-01
Here we report the complete genome sequence of Singapore grouper iridovirus (SGIV). Sequencing of the random shotgun and restriction endonuclease genomic libraries showed that the entire SGIV genome consists of 140,131 nucleotide bp. One hundred sixty-two open reading frames (ORFs) from the sense and antisense DNA strands, coding for lengths varying from 41 to 1,268 amino acids, were identified. Computer-assisted analyses of the deduced amino acid sequences revealed that 77 of the ORFs exhibited homologies to known virus genes, 23 of which matched functional iridovirus proteins. Forty-two putative conserved domains or signatures were detected in the National Center for Biotechnology Information CD-Search database and PROSITE database. An assortment of enzyme activities involved in DNA replication, transcription, nucleotide metabolism, cell signaling, etc., were identified. Viruses were cultured on a cell line derived from the embryonated egg of the grouper Epinephelus tauvina, isolated, and purified by sucrose gradient ultracentrifugation. The protein extract from the purified virions was analyzed by polyacrylamide gel electrophoresis followed by in-gel digestion of protein bands. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and database searching led to identification of 26 proteins. Twenty of these represented novel or previously unidentified genes, which were further confirmed by reverse transcription-PCR (RT-PCR) and DNA sequencing of their respective RT-PCR products. PMID:15507645
Mirhendi, H; Ghiasian, A; Vismer, Hf; Asgary, Mr; Jalalizand, N; Arendrup, Mc; Makimura, K
2010-01-01
Fusarium species are capable of causing a wide range of crop plants infections as well as uncommon human infections. Many species of the genus produce mycotoxins, which are responsible for acute or chronic diseases in animals and humans. Identification of Fusaria to the species level is necessary for biological, epidemiological, pathological, and toxicological purposes. In this study, we undertook a computer-based analysis of ITS1-5.8SrDNA-ITS2 in 192 GenBank sequences from 36 Fusarium species to achieve data for establishing a molecular method for specie-specific identification. Sequence data and 610 restriction enzymes were analyzed for choosing RFLP profiles, and subsequently designed and validated a PCR-restriction enzyme system for identification and typing of species. DNA extracted from 32 reference strains of 16 species were amplified using ITS1 and ITS4 universal primers followed by sequencing and restriction enzyme digestion of PCR products. The following 3 restriction enzymes TasI, ItaI and CfoI provide the best discriminatory power. Using ITS1 and ITS4 primers a product of approximately 550bp was observed for all Fusarium strains, as expected regarding the sequence analyses. After RFLP of the PCR products, some species were definitely identified by the method and some strains had different patterns in same species. Our profile has potential not only for identification of species, but also for genotyping of strains. On the other hand, some Fusarium species were 100% identical in their ITS-5.8SrDNA-ITS2 sequences, therefore differentiation of these species is impossible regarding this target alone. ITS-PCR-RFLP method might be useful for preliminary differentiation and typing of most common Fusarium species.
GALT protein database: querying structural and functional features of GALT enzyme.
d'Acierno, Antonio; Facchiano, Angelo; Marabotti, Anna
2014-09-01
Knowledge of the impact of variations on protein structure can enhance the comprehension of the mechanisms of genetic diseases related to that protein. Here, we present a new version of GALT Protein Database, a Web-accessible data repository for the storage and interrogation of structural effects of variations of the enzyme galactose-1-phosphate uridylyltransferase (GALT), the impairment of which leads to classic Galactosemia, a rare genetic disease. This new version of this database now contains the models of 201 missense variants of GALT enzyme, including heterozygous variants, and it allows users not only to retrieve information about the missense variations affecting this protein, but also to investigate their impact on substrate binding, intersubunit interactions, stability, and other structural features. In addition, it allows the interactive visualization of the models of variants collected into the database. We have developed additional tools to improve the use of the database by nonspecialized users. This Web-accessible database (http://bioinformatica.isa.cnr.it/GALT/GALT2.0) represents a model of tools potentially suitable for application to other proteins that are involved in human pathologies and that are subjected to genetic variations. © 2014 WILEY PERIODICALS, INC.
Miller, P B; Wakarchuk, W W; Warren, R A
1985-01-01
The modified base alpha-putrescinylthymine (putT) in phi W-14 DNA blocks cleavage of the DNA by 17 of 32 Type II restriction endonucleases. The enzymes cleaving the DNA do so to widely varying extents. The frequencies of cleavage of three altered forms of the DNA show that putT blocks recognition sites either when it occurs within the site or when it is in a sequence flanking the site. The blocking is dependent on both charge and steric factors. The charge effects can be greater than the steric effects for some of the enzymes tested. All the enzymes cleaving phi W-14 DNA release discrete fragments, showing that the distribution of putT is ordered. The cleavage frequencies for different enzymes suggest that the sequence CAputTG occurs frequently in the DNA. Only TaqI of the enzymes tested appeared not to be blocked by putT, but it was slowed down. TaqI generated fragments are joinable by T4 DNA ligase. PMID:2987859
Sequential cloning of chromosomes
Lacks, Sanford A.
1995-07-18
A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism's chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.
DB Dehydrogenase: an online integrated structural database on enzyme dehydrogenase.
Nandy, Suman Kumar; Bhuyan, Rajabrata; Seal, Alpana
2012-01-01
Dehydrogenase enzymes are almost inevitable for metabolic processes. Shortage or malfunctioning of dehydrogenases often leads to several acute diseases like cancers, retinal diseases, diabetes mellitus, Alzheimer, hepatitis B & C etc. With advancement in modern-day research, huge amount of sequential, structural and functional data are generated everyday and widens the gap between structural attributes and its functional understanding. DB Dehydrogenase is an effort to relate the functionalities of dehydrogenase with its structures. It is a completely web-based structural database, covering almost all dehydrogenases [~150 enzyme classes, ~1200 entries from ~160 organisms] whose structures are known. It is created by extracting and integrating various online resources to provide the true and reliable data and implemented by MySQL relational database through user friendly web interfaces using CGI Perl. Flexible search options are there for data extraction and exploration. To summarize, sequence, structure, function of all dehydrogenases in one place along with the necessary option of cross-referencing; this database will be utile for researchers to carry out further work in this field. The database is available for free at http://www.bifku.in/DBD/
Rodriguez, R.J.
1993-01-01
During the development of a procedure for the isolation of total genomic DNA from filamentous fungi (Rodriguez, R. J., and Yoder, 0. C., Exp. Mycol. 15, 232-242, 1991) a cell fraction was isolated which inhibited the digestion of DNA by restriction enzymes. After elimination of DNA, RNA, proteins, and lipids, the active compound was purified by gel filtration to yield a single fraction capable of complete inhibition of restriction enzyme activity. The inhibitor did not absorb uv light above 220 nm, and was resistant to alkali and acid at 25°C and to temperatures as high as 100°C. More extensive analyses demonstrated that the inhibitor was also capable of inhibiting T4 DNA ligase and TaqI DNA polymerase, but not DNase or RNase. Chemical analyses indicated that the inhibitor was devoid of carbohydrates, proteins, lipids, and nucleic acids but rich in phosphorus. A combination of nuclear magnetic resonance, metachromatic shift of toluidine blue, and gel filtration indicated that the inhibitor was a polyphosphate (polyP) containing approximately 60 phosphate molecules. The mechanism of inhibition appeared to involve complexing of polyP to the enzymatic proteins. All species of Colletotrichum analyzed produced polyP equivalent in chain length and concentration. A modification to the original DNA extraction procedure is described which eliminates polyP and reduces the time necessary to obtain DNA of sufficient purity for restriction enzyme digestion and TaqI polymerase amplification.
Caspi, Ron; Altman, Tomer; Dale, Joseph M.; Dreher, Kate; Fulcher, Carol A.; Gilham, Fred; Kaipa, Pallavi; Karthikeyan, Athikkattuvalasu S.; Kothari, Anamika; Krummenacker, Markus; Latendresse, Mario; Mueller, Lukas A.; Paley, Suzanne; Popescu, Liviu; Pujar, Anuradha; Shearer, Alexander G.; Zhang, Peifen; Karp, Peter D.
2010-01-01
The MetaCyc database (MetaCyc.org) is a comprehensive and freely accessible resource for metabolic pathways and enzymes from all domains of life. The pathways in MetaCyc are experimentally determined, small-molecule metabolic pathways and are curated from the primary scientific literature. With more than 1400 pathways, MetaCyc is the largest collection of metabolic pathways currently available. Pathways reactions are linked to one or more well-characterized enzymes, and both pathways and enzymes are annotated with reviews, evidence codes, and literature citations. BioCyc (BioCyc.org) is a collection of more than 500 organism-specific Pathway/Genome Databases (PGDBs). Each BioCyc PGDB contains the full genome and predicted metabolic network of one organism. The network, which is predicted by the Pathway Tools software using MetaCyc as a reference, consists of metabolites, enzymes, reactions and metabolic pathways. BioCyc PGDBs also contain additional features, such as predicted operons, transport systems, and pathway hole-fillers. The BioCyc Web site offers several tools for the analysis of the PGDBs, including Omics Viewers that enable visualization of omics datasets on two different genome-scale diagrams and tools for comparative analysis. The BioCyc PGDBs generated by SRI are offered for adoption by any party interested in curation of metabolic, regulatory, and genome-related information about an organism. PMID:19850718
Segment swapping aided the evolution of enzyme function: The case of uroporphyrinogen III synthase.
Szilágyi, András; Györffy, Dániel; Závodszky, Péter
2017-01-01
In an earlier study, we showed that two-domain segment-swapped proteins can evolve by domain swapping and fusion, resulting in a protein with two linkers connecting its domains. We proposed that a potential evolutionary advantage of this topology may be the restriction of interdomain motions, which may facilitate domain closure by a hinge-like movement, crucial for the function of many enzymes. Here, we test this hypothesis computationally on uroporphyrinogen III synthase, a two-domain segment-swapped enzyme essential in porphyrin metabolism. To compare the interdomain flexibility between the wild-type, segment-swapped enzyme (having two interdomain linkers) and circular permutants of the same enzyme having only one interdomain linker, we performed geometric and molecular dynamics simulations for these species in their ligand-free and ligand-bound forms. We find that in the ligand-free form, interdomain motions in the wild-type enzyme are significantly more restricted than they would be with only one interdomain linker, while the flexibility difference is negligible in the ligand-bound form. We also estimated the entropy costs of ligand binding associated with the interdomain motions, and find that the change in domain connectivity due to segment swapping results in a reduction of this entropy cost, corresponding to ∼20% of the total ligand binding free energy. In addition, the restriction of interdomain motions may also help the functional domain-closure motion required for catalysis. This suggests that the evolution of the segment-swapped topology facilitated the evolution of enzyme function for this protein by influencing its dynamic properties. Proteins 2016; 85:46-53. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
SSER: Species specific essential reactions database.
Labena, Abraham A; Ye, Yuan-Nong; Dong, Chuan; Zhang, Fa-Z; Guo, Feng-Biao
2017-04-19
Essential reactions are vital components of cellular networks. They are the foundations of synthetic biology and are potential candidate targets for antimetabolic drug design. Especially if a single reaction is catalyzed by multiple enzymes, then inhibiting the reaction would be a better option than targeting the enzymes or the corresponding enzyme-encoding gene. The existing databases such as BRENDA, BiGG, KEGG, Bio-models, Biosilico, and many others offer useful and comprehensive information on biochemical reactions. But none of these databases especially focus on essential reactions. Therefore, building a centralized repository for this class of reactions would be of great value. Here, we present a species-specific essential reactions database (SSER). The current version comprises essential biochemical and transport reactions of twenty-six organisms which are identified via flux balance analysis (FBA) combined with manual curation on experimentally validated metabolic network models. Quantitative data on the number of essential reactions, number of the essential reactions associated with their respective enzyme-encoding genes and shared essential reactions across organisms are the main contents of the database. SSER would be a prime source to obtain essential reactions data and related gene and metabolite information and it can significantly facilitate the metabolic network models reconstruction and analysis, and drug target discovery studies. Users can browse, search, compare and download the essential reactions of organisms of their interest through the website http://cefg.uestc.edu.cn/sser .
Gun policy and serious mental illness: priorities for future research and policy.
McGinty, Emma Elizabeth; Webster, Daniel W; Barry, Colleen L
2014-01-01
In response to recent mass shootings, policy makers have proposed multiple policies to prevent persons with serious mental illness from having guns. The political debate about these proposals is often uninformed by research. To address this gap, this review article summarizes the research related to gun restriction policies that focus on serious mental illness. Gun restriction policies were identified by researching the THOMAS legislative database, state legislative databases, prior review articles, and the news media. PubMed, PsycINFO, and Web of Science databases were searched for publications between 1970 and 2013 that addressed the relationship between serious mental illness and violence, the effectiveness of gun policies focused on serious mental illness, the potential for such policies to exacerbate negative public attitudes, and the potential for gun restriction policies to deter mental health treatment seeking. Limited research suggests that federal law restricting gun possession by persons with serious mental illness may prevent gun violence from this population. Promotion of policies to prevent persons with serious mental illness from having guns does not seem to exacerbate negative public attitudes toward this group. Little is known about how restricting gun possession among persons with serious mental illness affects suicide risk or mental health treatment seeking. Future studies should examine how gun restriction policies for serious mental illness affect suicide, how such policies are implemented by states, how persons with serious mental illness perceive policies that restrict their possession of guns, and how gun restriction policies influence mental health treatment seeking among persons with serious mental illness.
dbHiMo: a web-based epigenomics platform for histone-modifying enzymes
Choi, Jaeyoung; Kim, Ki-Tae; Huh, Aram; Kwon, Seomun; Hong, Changyoung; Asiegbu, Fred O.; Jeon, Junhyun; Lee, Yong-Hwan
2015-01-01
Over the past two decades, epigenetics has evolved into a key concept for understanding regulation of gene expression. Among many epigenetic mechanisms, covalent modifications such as acetylation and methylation of lysine residues on core histones emerged as a major mechanism in epigenetic regulation. Here, we present the database for histone-modifying enzymes (dbHiMo; http://hme.riceblast.snu.ac.kr/) aimed at facilitating functional and comparative analysis of histone-modifying enzymes (HMEs). HMEs were identified by applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 11 576 HMEs identified from 603 proteomes including 483 fungal, 32 plants and 51 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. With comprehensive data entries and associated web-based tools, our database will be a valuable resource for future epigenetics/epigenomics studies. Database URL: http://hme.riceblast.snu.ac.kr/ PMID:26055100
Gacesa, Ranko; Zucko, Jurica; Petursdottir, Solveig K; Gudmundsdottir, Elisabet Eik; Fridjonsson, Olafur H; Diminic, Janko; Long, Paul F; Cullum, John; Hranueli, Daslav; Hreggvidsson, Gudmundur O; Starcevic, Antonio
2017-06-01
The MEGGASENSE platform constructs relational databases of DNA or protein sequences. The default functional analysis uses 14 106 hidden Markov model (HMM) profiles based on sequences in the KEGG database. The Solr search engine allows sophisticated queries and a BLAST search function is also incorporated. These standard capabilities were used to generate the SCATT database from the predicted proteome of Streptomyces cattleya . The implementation of a specialised metagenome database (AMYLOMICS) for bioprospecting of carbohydrate-modifying enzymes is described. In addition to standard assembly of reads, a novel 'functional' assembly was developed, in which screening of reads with the HMM profiles occurs before the assembly. The AMYLOMICS database incorporates additional HMM profiles for carbohydrate-modifying enzymes and it is illustrated how the combination of HMM and BLAST analyses helps identify interesting genes. A variety of different proteome and metagenome databases have been generated by MEGGASENSE.
Şakalar, Çağrı; Kuk, Salih; Erensoy, Ahmet; Dağli, Adile Ferda; Özercan, İbrahim Hanifi; Çetınkaya, Ülfet; Yazar, Süleyman
2014-01-01
To develop a novel polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) protocol using a new genomic marker sequence and a novel set of restriction enzymes in order to detect and discriminate 2 Echinococcus species, E. granulosus and E. multilocularis, found in formalin-fixed paraffin-embedded (FFPE) human tissues. DNA was isolated from 11 FFPE human tissue samples positive for cystic echinococcosis or alveolar echinococcosis. A mitochondrial genomic marker region was amplified and sequenced using a novel primer pair and a new PCR-RFLP protocol was developed for the detection and discrimination of E. granulosus and E. multilocularis using a set of restriction enzymes including AccI, MboI, MboII, and TsoI. The selected marker region was amplified using DNA isolated from FFPE human tissue samples positive for cystic echinococcosis or alveolar echinococcosis and the discrimination of E. granulosus and E. multilocularis was accomplished by use of the novel PCR-RFLP method. In this PCR-RFLP protocol, use of any single restriction enzyme is enough for the discrimination of E. granulosus and E. multilocularis. The PCR-RFLP protocol can be potentially used for the discrimination of 5 other Echinococcus species: E. oligarthus, E. shiquicus, E. ortleppi, E. canadensis, and E. vogeli.
Centre-based restricted nearest feature plane with angle classifier for face recognition
NASA Astrophysics Data System (ADS)
Tang, Linlin; Lu, Huifen; Zhao, Liang; Li, Zuohua
2017-10-01
An improved classifier based on the nearest feature plane (NFP), called the centre-based restricted nearest feature plane with the angle (RNFPA) classifier, is proposed for the face recognition problems here. The famous NFP uses the geometrical information of samples to increase the number of training samples, but it increases the computation complexity and it also has an inaccuracy problem coursed by the extended feature plane. To solve the above problems, RNFPA exploits a centre-based feature plane and utilizes a threshold of angle to restrict extended feature space. By choosing the appropriate angle threshold, RNFPA can improve the performance and decrease computation complexity. Experiments in the AT&T face database, AR face database and FERET face database are used to evaluate the proposed classifier. Compared with the original NFP classifier, the nearest feature line (NFL) classifier, the nearest neighbour (NN) classifier and some other improved NFP classifiers, the proposed one achieves competitive performance.
González-Ruiz, Katherine; Ramírez-Vélez, Robinson; Correa-Bautista, Jorge Enrique; Peterson, Mark D; García-Hermoso, Antonio
2017-08-01
Despite the prevalence of obesity and the multiple position stands promoting exercise for the treatment of obesity and hepatic function, a meta-analytic approach has not previously been used to examine the effects in the pediatric population. The aim of the study was to determine the effectiveness of exercise interventions on abdominal fat, liver enzymes, and intrahepatic fat in overweight and obese youth. A computerized search was made using three databases. The analysis was restricted to studies that examined the effect of supervised exercise interventions on abdominal fat (visceral and subcutaneous fat), liver enzymes (alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase), and intrahepatic fat. Fourteen clinical trials (1231 youths) were eligible for inclusion in this systematic review and meta-analysis. Standardized mean difference [SMD] and 95% confidence intervals (CIs) were calculated. Exercise was associated with a significant reduction in visceral (SMD = -0.661; 95% CI, -0.976 to -0.346; p < 0.001), subcutaneous (SMD = -0.352; 95% CI, -0.517 to -0.186; p < 0.001) and intrahepatic fat (SMD = -0.802; 95% CI, -1.124 to -0.480; p < 0.001), as well as gamma-glutamyl transferase (SMD = -0.726; 95% CI, -1.203 to -0.249; p < 0.001), but did not alter any other liver enzyme. Subgroup analysis recommends exercise programs that involve aerobic exercise longer than three sessions per week. This meta-analysis supports current recommendation for physical exercise, mainly aerobic, as an effective intervention for nonalcoholic fatty liver disease progression by targeting hepatic lipid composition, visceral and subcutaneous adipose tissue. Systematic review registration: PROSPERO CRD42016042163.
The BRENDA enzyme information system-From a database to an expert system.
Schomburg, I; Jeske, L; Ulbrich, M; Placzek, S; Chang, A; Schomburg, D
2017-11-10
Enzymes, representing the largest and by far most complex group of proteins, play an essential role in all processes of life, including metabolism, gene expression, cell division, the immune system, and others. Their function, also connected to most diseases or stress control makes them interesting targets for research and applications in biotechnology, medical treatments, or diagnosis. Their functional parameters and other properties are collected, integrated, and made available to the scientific community in the BRaunschweig ENzyme DAtabase (BRENDA). In the last 30 years BRENDA has developed into one of the most highly used biological databases worldwide. The data contents, the process of data acquisition, data integration and control, the ways to access the data, and visualizations provided by the website are described and discussed. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Liu, Xiaomei; Qi, Ying; Gao, Hong; Jiao, Yisheng; Gu, Hui; Miao, Jianing; Yuan, Zhengwei
2013-01-01
It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.
Sequential cloning of chromosomes
Lacks, S.A.
1995-07-18
A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes. 9 figs.
Howland, Shanshan W; Poh, Chek-Meng; Rénia, Laurent
2011-09-01
Directional cloning of complementary DNA (cDNA) primed by oligo(dT) is commonly achieved by appending a restriction site to the primer, whereas the second strand is synthesized through the combined action of RNase H and Escherichia coli DNA polymerase I (PolI). Although random primers provide more uniform and complete coverage, directional cloning with the same strategy is highly inefficient. We report that phosphorothioate linkages protect the tail sequence appended to random primers from the 5'→3' exonuclease activity of PolI. We present a simple strategy for constructing a random-primed cDNA library using the efficient, size-independent, and seamless In-Fusion cloning method instead of restriction enzymes. Copyright © 2011 Elsevier Inc. All rights reserved.
Moens, U; Wold, I; Mathiesen, S D; Jørgensen, T; Sørensen, D; Traavik, T
1990-01-01
Since 1981 a domesticated muskoxen herd had been successfully vaccinated against papillomatosis with homogenated, glutaraldehyde inactivated papilloma tissue. In the fall of 1985 a new clinical outbreak of disease occurred, affecting previously infected as well as vaccinated animals. The purification of parapox virions directly from papilloma tissue and orf scabs collected in a local sheep farm was followed by restriction endonuclease analysis of viral DNA. The morphological identity of purified virus was controlled by electron microscopy. Comparison of restriction endonuclease digests (10 different enzymes) by gel electrophoresis demonstrated that the muskoxen parapoxvirus from the new outbreak 1985 differed considerably from the 2 other isolates (muskoxen 1981 and local orf). The latter viruses demonstrated a high degree of homology, but differences were evident after digestion with the enzyme EcoRI. During metrizamide gradient purification minor bands containing morphologically intact virions were isolated in addition to the major fractions. The restriction enzyme digests indicated that the virions of the minor bands differed from those in the major bands.
Klein, Günter
2011-07-01
Bacillus cereus var. toyoi strain NCIMB 40112 (Toyocerin), a probiotic authorized in the European Union as feed additive for swine, bovines, poultry, and rabbits, was characterized by DNA fingerprinting applying pulsed-field gel electrophoresis and multilocus sequence typing and was compared with reference strains (of clinical and environmental origins). The probiotic strain was clearly characterized by pulsed-field gel electrophoresis using the restriction enzymes Apa I and Sma I resulting in unique DNA patterns. The comparison to the clinical reference strain B. cereus DSM 4312 was done with the same restriction enzymes, and again a clear differentiation of the two strains was possible by the resulting DNA patterns. The use of the restriction enzymes Apa I and Sma I is recommended for further studies. Furthermore, multilocus sequence typing analysis revealed a sequence type (ST 111) that was different from all known STs of B. cereus strains from food poisoning incidents. Thus, a strain characterization and differentiation from food poisoning strains for the probiotic strain was possible. Copyright ©, International Association for Food Protection
Moreira, João Luiz S; Mota, Rodrigo M; Horta, Maria F; Teixeira, Santuza MR; Neumann, Elisabeth; Nicoli, Jacques R; Nunes, Álvaro C
2005-01-01
Background The accurate identification of Lactobacillus and other co-isolated bacteria during microbial ecological studies of ecosystems such as the human or animal intestinal tracts and food products is a hard task by phenotypic methods requiring additional tests such as protein and/or lipids profiling. Results Bacteria isolated in different probiotic prospecting studies, using de Man, Rogosa and Sharpe medium (MRS), were typed at species level by PCR amplification of 16S-23S rRNA intergenic spacers using universal primers that anneal within 16S and 23S genes, followed by restriction digestion analyses of PCR products. The set of enzymes chosen differentiates most species of Lactobacillus genus and also co-isolated bacteria such as Enterococcus, Streptococcus, Weissella, Staphylococcus, and Escherichia species. The in silico predictions of restriction patterns generated by the Lactobacillus shorter spacers digested with 11 restriction enzymes with 6 bp specificities allowed us to distinguish almost all isolates at the species level but not at the subspecies one. Simultaneous theoretical digestions of the three spacers (long, medium and short) with the same set of enzymes provided more complex patterns and allowed us to distinguish the species without purifying and cloning of PCR products. Conclusion Lactobacillus isolates and several other strains of bacteria co-isolated on MRS medium from gastrointestinal ecosystem and fermented food products could be identified using DNA fingerprints generated by restriction endonucleases. The methodology based on amplified ribosomal DNA restriction analysis (ARDRA) is easier, faster and more accurate than the current methodologies based on fermentation profiles, used in most laboratories for the purpose of identification of these bacteria in different prospecting studies. PMID:15788104
Appu, Abhilash P; Arun, Peethambaran; Krishnan, Jishnu K S; Moffett, John R; Namboodiri, Aryan M A
2016-02-01
The blood brain barrier (BBB) is critical for maintaining central nervous system (CNS) homeostasis by restricting entry of potentially toxic substances. However, the BBB is a major obstacle in the treatment of neurotoxicity and neurological disorders due to the restrictive nature of the barrier to many medications. Intranasal delivery of active enzymes to the brain has therapeutic potential for the treatment of numerous CNS enzyme deficiency disorders and CNS toxicity caused by chemical threat agents. The aim of this work is to provide a sensitive model system for analyzing the rapid delivery of active enzymes into various regions of the brain with therapeutic bioavailability. We tested intranasal delivery of chloramphenicol acetyltransferase (CAT), a relatively large (75kD) enzyme, in its active form into different regions of the brain. CAT was delivered intranasally to anaesthetized rats and enzyme activity was measured in different regions using a highly specific High Performance Thin Layer Chromatography (HP-TLC)-radiometry coupled assay. Active enzyme reached all examined areas of the brain within 15min (the earliest time point tested). In addition, the yield of enzyme activity in the brain was almost doubled in the brains of rats pre-treated with matrix metalloproteinase-9 (MMP-9). Intranasal administration of active enzymes in conjunction with MMP-9 to the CNS is both rapid and effective. The present results suggest that intranasal enzyme therapy is a promising method for counteracting CNS chemical threat poisoning, as well as for treating CNS enzyme deficiency disorders. Published by Elsevier B.V.
Keomanivong, F E; Camacho, L E; Lemley, C O; Kuemper, E A; Yunusova, R D; Borowicz, P P; Kirsch, J D; Vonnahme, K A; Caton, J S; Swanson, K C
2017-06-01
This study examined effects of stage of gestation and nutrient restriction with subsequent realimentation on maternal and foetal bovine pancreatic function. Dietary treatments were assigned on day 30 of pregnancy and included: control (CON; 100% requirements; n = 18) and restricted (R; 60% requirements; n = 30). On day 85, cows were slaughtered (CON, n = 6; R, n = 6), remained on control (CC; n = 12) and restricted (RR; n = 12), or realimented to control (RC; n = 11). On day 140, cows were slaughtered (CC, n = 6; RR, n = 6; RC, n = 5), remained on control (CCC, n = 6; RCC, n = 5) or realimented to control (RRC, n = 6). On day 254, the remaining cows were slaughtered and serum samples were collected from the maternal jugular vein and umbilical cord to determine insulin and glucose concentrations. Pancreases from cows and foetuses were removed, weighed, and subsampled for enzyme and histological analysis. As gestation progressed, maternal pancreatic α-amylase activity decreased and serum insulin concentrations increased (p ≤ 0.03). Foetal pancreatic trypsin activity increased (p < 0.001) with advancing gestation. Foetal pancreases subjected to realimentation (CCC vs. RCC and RRC) had increased protein and α-amylase activity at day 254 (p ≤ 0.02), while trypsin (U/g protein; p = 0.02) demonstrated the opposite effect. No treatment effects were observed for maternal or foetal pancreatic insulin-containing cell clusters. Foetal serum insulin and glucose levels were reduced with advancing gestation (p ≤ 0.03). The largest maternal insulin-containing cell cluster was not influenced by advancing gestation, while foetal clusters grew throughout (p = 0.01). These effects indicate that maternal digestive enzymes are influenced by nutrient restriction and there is a potential for programming of increased foetal digestive enzyme production resulting from previous maternal nutrient restriction. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Optimization and purification of l-asparaginase from fungi: A systematic review.
Souza, Paula Monteiro; de Freitas, Marcela Medeiros; Cardoso, Samuel Leite; Pessoa, Adalberto; Guerra, Eliete Neves Silva; Magalhães, Pérola Oliveira
2017-12-01
The purpose of this systematic review was to identify the available literature of the l-asparaginase producing fungi. This study followed the Preferred Reporting Items for Systematic Reviews. The search was conducted on five databases: LILACS, PubMed, Science Direct, Scopus and Web of Science up until July 20th, 2016, with no time or language restrictions. The reference list of the included studies was crosschecked and a partial gray literature search was undertaken. The methodology of the selected studies was evaluated using GRADE. Asparaginase production, optimization using statistical design, purification and characterization were the main evaluated outcomes. Of the 1686 initially gathered studies, 19 met the inclusion criteria after a two-step selection process. Nine species of fungi were reported in the selected studies, out of which 13 studies optimized the medium composition using statistical design for enhanced asparaginase production and six reported purification and characterization of the enzyme. The genera Aspergillus were identified as producers of asparaginase in both solid and submerged fermentation and l-asparagine was the amino acid most used as nitrogen source. This systematic review demonstrated that different fungi produce l-asparaginase, which possesses a potential in leukemia treatment. However, further investigations are required to confirm the promising effect of these fungal enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.
Maharaj, Ariana; Rampersad, Sephra N
2012-03-01
Members of the genus Colletotrichum include some of the most economically important fungal pathogens in the world. Accurate diagnosis is critical to devising disease management strategies. Two species, Colletotrichum gloeosporioides and C. truncatum, are responsible for anthracnose disease in papaya (Carica papaya L.) and bell pepper (Capsicum annuum L.) in Trinidad. The ITS1-5.8S-ITS2 region of 48 Colletotrichum isolates was sequenced, and the ITS PCR products were analyzed by PCR-RFLP analysis. Restriction site polymorphisms generated from 11 restriction enzymes enabled the identification of specific enzymes that were successful in distinguishing between C. gloeosporioides and C. truncatum isolates. Species-specific restriction fragment length polymorphisms generated by the enzymes AluI, HaeIII, PvuII, RsaI, and Sau3A were used to consistently resolve C. gloeosporioides and C. truncatum isolates from papaya. AluI, ApaI, PvuII, RsaI, and SmaI reliably separated isolates of C. gloeosporioides and C. truncatum from bell pepper. PvuII, RsaI, and Sau3A were also capable of distinguishing among the C. gloeosporioides isolates from papaya based on the different restriction patterns that were obtained as a result of intra-specific variation in restriction enzyme recognition sites in the ITS1-5.8S-ITS2 rDNA region. Of all the isolates tested, C. gloeosporioides from papaya also had the highest number of PCR-RFLP haplotypes. Cluster analysis of sequence and PCR-RFLP data demonstrated that all C. gloeosporioides and C. truncatum isolates clustered separately into species-specific clades regardless of host species. Phylograms also revealed consistent topologies which suggested that the genetic distances for PCR-RFLP-generated data were comparable to that of ITS sequence data. ITS PCR-RFLP fingerprinting is a rapid and reliable method to identify and differentiate between Colletotrichum species.
Six Online Periodical Databases: A Librarian's View.
ERIC Educational Resources Information Center
Willems, Harry
1999-01-01
Compares the following World Wide Web-based periodical databases, focusing on their usefulness in K-12 school libraries: EBSCO, Electric Library, Facts on File, SIRS, Wilson, and UMI. Search interfaces, display options, help screens, printing, home access, copyright restrictions, database administration, and making a decision are discussed. A…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.
2010-07-23
Research highlights: {yields} Successful fusion of GFP to M.EcoKI DNA methyltransferase. {yields} GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. {yields} FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerstermore » resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.« less
Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes
Chand, Mahesh Kumar; Nirwan, Neha; Diffin, Fiona M.; van Aelst, Kara; Kulkarni, Manasi; Pernstich, Christian; Szczelkun, Mark D.; Saikrishnan, Kayarat
2015-01-01
Endonucleolytic double-strand DNA break production requires separate strand cleavage events. Although catalytic mechanisms for simple dimeric endonucleases are available, there are many complex nuclease machines which are poorly understood in comparison. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide following convergent ATP-driven translocation. We report the 2.7 Angstroms resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are unexpectedly located upstream of the direction of translocation, inconsistent with simple nuclease domain-dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex where the nuclease domains are distal. Sequencing of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand nicking events combine to produce DNA scission. PMID:26389736
DockScreen: A database of in silico biomolecular interactions to support computational toxicology
We have developed DockScreen, a database of in silico biomolecular interactions designed to enable rational molecular toxicological insight within a computational toxicology framework. This database is composed of chemical/target (receptor and enzyme) binding scores calculated by...
Alugoju, Phaniendra; Swamy, Vkd Krishan; Periyasamy, Latha
2018-03-14
Aging is characterized by gradual accumulation of macromolecular damage leading to progressive loss of physiological function and increased susceptibility to diverse diseases. Effective anti-aging strategies involving caloric restriction or antioxidant supplementation are receiving growing attention to attenuate macromolecular damage in age associated pathology. In the present study, we for the first time investigated the effect of quercetin, caloric restriction and combined treatment (caloric restriction with quercetin) on oxidative stress parameters, acetylcholinesterase and ATPases enzyme activities in the cerebral cortex of aged male Wistar rats. 21 months aged rats were divided into four groups (n=6-8) such as group 1-fed ad libitum (AL); group 2-quercetin supplementation of 50 mg/kg b.w/day for 45 days fed ad libitum (QUER); group 3: caloric restricted (CR) (fed 40% reduced AL for 45 days); group 4-fed 40% CR and 50 mg/kg b.w/day QUER for 45 days (CR + QUER). Group 5-three month age old rats served as young control (YOUNG). Our results demonstrate that combined treatment of caloric restriction and quercetin significantly improved the age associated decline in the activities of endogenous antioxidant enzymes [such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)] and glutathione (GSH) content and attenuated elevated levels of protein carbonyl content (PCC), lipid peroxidation, lipofuscin, reactive oxygen species (ROS), and nitric oxide (NO). Furthermore, it is also observed that combined treatment ameliorated age associated alterations in acetylcholine esterase (AChE) and adenosine triphosphatases (ATPases) such as Na+/K+-ATPase and Ca+2-ATPase (but not Mg+2- ATPase) enzyme activities. Finally, we conclude that combined treatment of caloric restriction and quercetin (but not either treatment alone) in late life is an effective anti-aging therapy to counteract the age related accumulation of oxidative macromolecular damage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpinets, Tatiana V; Park, Byung; Syed, Mustafa H
2010-01-01
The Carbohydrate-Active Enzyme (CAZy) database provides a rich set of manually annotated enzymes that degrade, modify, or create glycosidic bonds. Despite rich and invaluable information stored in the database, software tools utilizing this information for annotation of newly sequenced genomes by CAZy families are limited. We have employed two annotation approaches to fill the gap between manually curated high-quality protein sequences collected in the CAZy database and the growing number of other protein sequences produced by genome or metagenome sequencing projects. The first approach is based on a similarity search against the entire non-redundant sequences of the CAZy database. Themore » second approach performs annotation using links or correspondences between the CAZy families and protein family domains. The links were discovered using the association rule learning algorithm applied to sequences from the CAZy database. The approaches complement each other and in combination achieved high specificity and sensitivity when cross-evaluated with the manually curated genomes of Clostridium thermocellum ATCC 27405 and Saccharophagus degradans 2-40. The capability of the proposed framework to predict the function of unknown protein domains (DUF) and of hypothetical proteins in the genome of Neurospora crassa is demonstrated. The framework is implemented as a Web service, the CAZymes Analysis Toolkit (CAT), and is available at http://cricket.ornl.gov/cgi-bin/cat.cgi.« less
Park, Byung H; Karpinets, Tatiana V; Syed, Mustafa H; Leuze, Michael R; Uberbacher, Edward C
2010-12-01
The Carbohydrate-Active Enzyme (CAZy) database provides a rich set of manually annotated enzymes that degrade, modify, or create glycosidic bonds. Despite rich and invaluable information stored in the database, software tools utilizing this information for annotation of newly sequenced genomes by CAZy families are limited. We have employed two annotation approaches to fill the gap between manually curated high-quality protein sequences collected in the CAZy database and the growing number of other protein sequences produced by genome or metagenome sequencing projects. The first approach is based on a similarity search against the entire nonredundant sequences of the CAZy database. The second approach performs annotation using links or correspondences between the CAZy families and protein family domains. The links were discovered using the association rule learning algorithm applied to sequences from the CAZy database. The approaches complement each other and in combination achieved high specificity and sensitivity when cross-evaluated with the manually curated genomes of Clostridium thermocellum ATCC 27405 and Saccharophagus degradans 2-40. The capability of the proposed framework to predict the function of unknown protein domains and of hypothetical proteins in the genome of Neurospora crassa is demonstrated. The framework is implemented as a Web service, the CAZymes Analysis Toolkit, and is available at http://cricket.ornl.gov/cgi-bin/cat.cgi.
USDA-ARS?s Scientific Manuscript database
The iPhyClassifier is an Internet-based research tool for quick identification and classification of diverse phytoplasmas. The iPhyClassifier simulates laboratory restriction enzyme digestions and subsequent gel electrophoresis and generates virtual restriction fragment length polymorphism (RFLP) p...
DomSign: a top-down annotation pipeline to enlarge enzyme space in the protein universe.
Wang, Tianmin; Mori, Hiroshi; Zhang, Chong; Kurokawa, Ken; Xing, Xin-Hui; Yamada, Takuji
2015-03-21
Computational predictions of catalytic function are vital for in-depth understanding of enzymes. Because several novel approaches performing better than the common BLAST tool are rarely applied in research, we hypothesized that there is a large gap between the number of known annotated enzymes and the actual number in the protein universe, which significantly limits our ability to extract additional biologically relevant functional information from the available sequencing data. To reliably expand the enzyme space, we developed DomSign, a highly accurate domain signature-based enzyme functional prediction tool to assign Enzyme Commission (EC) digits. DomSign is a top-down prediction engine that yields results comparable, or superior, to those from many benchmark EC number prediction tools, including BLASTP, when a homolog with an identity >30% is not available in the database. Performance tests showed that DomSign is a highly reliable enzyme EC number annotation tool. After multiple tests, the accuracy is thought to be greater than 90%. Thus, DomSign can be applied to large-scale datasets, with the goal of expanding the enzyme space with high fidelity. Using DomSign, we successfully increased the percentage of EC-tagged enzymes from 12% to 30% in UniProt-TrEMBL. In the Kyoto Encyclopedia of Genes and Genomes bacterial database, the percentage of EC-tagged enzymes for each bacterial genome could be increased from 26.0% to 33.2% on average. Metagenomic mining was also efficient, as exemplified by the application of DomSign to the Human Microbiome Project dataset, recovering nearly one million new EC-labeled enzymes. Our results offer preliminarily confirmation of the existence of the hypothesized huge number of "hidden enzymes" in the protein universe, the identification of which could substantially further our understanding of the metabolisms of diverse organisms and also facilitate bioengineering by providing a richer enzyme resource. Furthermore, our results highlight the necessity of using more advanced computational tools than BLAST in protein database annotations to extract additional biologically relevant functional information from the available biological sequences.
UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation.
Gao, Tianshun; Liu, Zexian; Wang, Yongbo; Cheng, Han; Yang, Qing; Guo, Anyuan; Ren, Jian; Xue, Yu
2013-01-01
In this work, we developed a family-based database of UUCD (http://uucd.biocuckoo.org) for ubiquitin and ubiquitin-like conjugation, which is one of the most important post-translational modifications responsible for regulating a variety of cellular processes, through a similar E1 (ubiquitin-activating enzyme)-E2 (ubiquitin-conjugating enzyme)-E3 (ubiquitin-protein ligase) enzyme thioester cascade. Although extensive experimental efforts have been taken, an integrative data resource is still not available. From the scientific literature, 26 E1s, 105 E2s, 1003 E3s and 148 deubiquitination enzymes (DUBs) were collected and classified into 1, 3, 19 and 7 families, respectively. To computationally characterize potential enzymes in eukaryotes, we constructed 1, 1, 15 and 6 hidden Markov model (HMM) profiles for E1s, E2s, E3s and DUBs at the family level, separately. Moreover, the ortholog searches were conducted for E3 and DUB families without HMM profiles. Then the UUCD database was developed with 738 E1s, 2937 E2s, 46 631 E3s and 6647 DUBs of 70 eukaryotic species. The detailed annotations and classifications were also provided. The online service of UUCD was implemented in PHP + MySQL + JavaScript + Perl.
BplI, a new BcgI-like restriction endonuclease, which recognizes a symmetric sequence.
Vitkute, J; Maneliene, Z; Petrusyte, M; Janulaitis, A
1997-01-01
Bcg I and Bcg I-like restriction endonucleases cleave double stranded DNA specifically on both sides of their asymmetric recognition sequences which are interrupted by several ambiguous base pairs. Their heterosubunit structure, bifunctionality and stimulation by AdoMet make them different from other classified restriction enzymes. Here we report on a new Bcg I-like restriction endonuclease, Bpl I from Bacillus pumilus , which in contrast to all other Bcg I-like enzymes, recognizes a symmetric interrupted sequence, and which, like Bcg I, cleaves double stranded DNA upstream and downstream of its recognition sequence (8/13)GAGN5CTC(13/8). Like Bcg I, Bpl I is a bifunctional enzyme revealing both DNA cleavage and methyltransferase activities. There are two polypeptides in the homogeneous preparation of Bpl I with molecular masses of approximately 74 and 37 kDa. The sizes of the Bpl I subunits are close to those of Bcg I, but the proportion 1:1 in the final preparation is different from that of 2:1 in Bcg I. Low activity observed with Mg2+increases >100-fold in the presence of AdoMet. Even with AdoMet though, specific cleavage is incomplete. S -adenosylhomocysteine (AdoHcy) or sinefungin can replace AdoMet in the cleavage reaction. AdoHcy activated Bpl I yields complete cleavage of DNA. PMID:9358150
Effect of dietary protein restriction on renal ammonia metabolism
Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Guo, Hui; Verlander, Jill W.
2015-01-01
Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252
COBRA-Seq: Sensitive and Quantitative Methylome Profiling
Varinli, Hilal; Statham, Aaron L.; Clark, Susan J.; Molloy, Peter L.; Ross, Jason P.
2015-01-01
Combined Bisulfite Restriction Analysis (COBRA) quantifies DNA methylation at a specific locus. It does so via digestion of PCR amplicons produced from bisulfite-treated DNA, using a restriction enzyme that contains a cytosine within its recognition sequence, such as TaqI. Here, we introduce COBRA-seq, a genome wide reduced methylome method that requires minimal DNA input (0.1–1.0 μg) and can either use PCR or linear amplification to amplify the sequencing library. Variants of COBRA-seq can be used to explore CpG-depleted as well as CpG-rich regions in vertebrate DNA. The choice of enzyme influences enrichment for specific genomic features, such as CpG-rich promoters and CpG islands, or enrichment for less CpG dense regions such as enhancers. COBRA-seq coupled with linear amplification has the additional advantage of reduced PCR bias by producing full length fragments at high abundance. Unlike other reduced representative methylome methods, COBRA-seq has great flexibility in the choice of enzyme and can be multiplexed and tuned, to reduce sequencing costs and to interrogate different numbers of sites. Moreover, COBRA-seq is applicable to non-model organisms without the reference genome and compatible with the investigation of non-CpG methylation by using restriction enzymes containing CpA, CpT, and CpC in their recognition site. PMID:26512698
Gerlt, John A
2017-08-22
The exponentially increasing number of protein and nucleic acid sequences provides opportunities to discover novel enzymes, metabolic pathways, and metabolites/natural products, thereby adding to our knowledge of biochemistry and biology. The challenge has evolved from generating sequence information to mining the databases to integrating and leveraging the available information, i.e., the availability of "genomic enzymology" web tools. Web tools that allow identification of biosynthetic gene clusters are widely used by the natural products/synthetic biology community, thereby facilitating the discovery of novel natural products and the enzymes responsible for their biosynthesis. However, many novel enzymes with interesting mechanisms participate in uncharacterized small-molecule metabolic pathways; their discovery and functional characterization also can be accomplished by leveraging information in protein and nucleic acid databases. This Perspective focuses on two genomic enzymology web tools that assist the discovery novel metabolic pathways: (1) Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST) for generating sequence similarity networks to visualize and analyze sequence-function space in protein families and (2) Enzyme Function Initiative-Genome Neighborhood Tool (EFI-GNT) for generating genome neighborhood networks to visualize and analyze the genome context in microbial and fungal genomes. Both tools have been adapted to other applications to facilitate target selection for enzyme discovery and functional characterization. As the natural products community has demonstrated, the enzymology community needs to embrace the essential role of web tools that allow the protein and genome sequence databases to be leveraged for novel insights into enzymological problems.
2017-01-01
The exponentially increasing number of protein and nucleic acid sequences provides opportunities to discover novel enzymes, metabolic pathways, and metabolites/natural products, thereby adding to our knowledge of biochemistry and biology. The challenge has evolved from generating sequence information to mining the databases to integrating and leveraging the available information, i.e., the availability of “genomic enzymology” web tools. Web tools that allow identification of biosynthetic gene clusters are widely used by the natural products/synthetic biology community, thereby facilitating the discovery of novel natural products and the enzymes responsible for their biosynthesis. However, many novel enzymes with interesting mechanisms participate in uncharacterized small-molecule metabolic pathways; their discovery and functional characterization also can be accomplished by leveraging information in protein and nucleic acid databases. This Perspective focuses on two genomic enzymology web tools that assist the discovery novel metabolic pathways: (1) Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST) for generating sequence similarity networks to visualize and analyze sequence–function space in protein families and (2) Enzyme Function Initiative-Genome Neighborhood Tool (EFI-GNT) for generating genome neighborhood networks to visualize and analyze the genome context in microbial and fungal genomes. Both tools have been adapted to other applications to facilitate target selection for enzyme discovery and functional characterization. As the natural products community has demonstrated, the enzymology community needs to embrace the essential role of web tools that allow the protein and genome sequence databases to be leveraged for novel insights into enzymological problems. PMID:28826221
Haggie, Peter M; Verkman, A S
2002-10-25
It has been proposed that enzymes in many metabolic pathways, including the tricarboxylic acid cycle in the mitochondrial matrix, are physically associated to facilitate substrate channeling and overcome diffusive barriers. We have used fluorescence recovery after photobleaching to measure the diffusional mobilities of chimeras consisting of green fluorescent protein (GFP) fused to the C terminus of four tricarboxylic acid cycle enzymes: malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, and succinyl-CoA synthetase. The GFP-enzyme chimeras were localized selectively in the mitochondrial matrix in transfected Chinese hamster ovary (CHO) and COS7 cells. Laser photobleaching using a 0.7-microm diameter spot demonstrated restricted diffusion of the GFP-enzyme chimeras. Interestingly, all four chimeras had similar diffusional characteristics, approximately 45% of each chimera was mobile and had a diffusion coefficient of 4 x 10(-8) cm(2)/s. In contrast, unconjugated GFP in the mitochondrial matrix (targeted using COX8 leader sequence) diffused freely (nearly 100% mobility) with a greater diffusion coefficient of 20 x 10(-8) cm(2)/s. The mobility of the GFP-enzyme chimeras was insensitive to substrate source, ATP depletion, or inhibition of the adenine nucleotide translocase. These results indicate similar mobility characteristics of unrelated tricarboxylic acid cycle enzymes having different sizes and physical properties, providing biophysical evidence for a diffusible multienzyme complex in the mitochondrial matrix.
Lipid peroxidation and antioxidant status in rat: effect of food restriction and wheel running.
Filaire, Edith; Rouveix, Matthieu; Massart, Alain; Gladine, Cécile; Davicco, Marie Jeanne; Durand, Denys
2009-09-01
Using the activity-based anorexia model, the aim of this investigation was to explore antioxidant enzyme activity (catalase, superoxide dismutase), total antioxidant status (TAS), and alpha-tocopherol in blood, liver, and gastrocnemius muscle associated with the food restriction and voluntary wheel running during 8 days. In addition, lipid peroxidation was measured by measurements of malondialdehyde (MDA). Wistars rats (n = 56) were randomly assigned to one of four groups: an ad lib sedentary group, a control wheel activity group, a food restriction-induced hyperactivity group (1 h/day ad lib food, 23 h/day ad lib wheel access), and a food-restricted sedentary group. The animals were killed when the rats in the food-restricted group had lost 25% of their free feeding weight. Antioxidant enzyme activities and TAS in blood, liver, and gastrocnemius muscle were unaffected by voluntary wheel running. A wheel activity effect (P < 0.05) was obtained for the MDA concentrations in plasma, with lower concentrations in trained animals. Food restriction effects were obtained for antioxidant capacity in liver, as well as for CAT activity in the gastrocnemius muscle and plasma MDA concentrations with lower values in the restricted animals. On the other hand, the food-restricted rats showed higher plasma TAS concentrations (P < 0.05) and higher alpha-tocopherol concentrations in the liver (P < 0.05) when compared to animals fed ad libitum. Our results also showed that food restriction coupled to wheel running decreased antioxidant parameters in liver, and plasmatic MDA concentrations and increased TAS plasma concentrations when compared to the ad libitum sedentary situation.
Using Restriction Mapping to Teach Basic Skills in the Molecular Biology Lab
ERIC Educational Resources Information Center
Walsh, Lauren; Shaker, Elizabeth; De Stasio, Elizabeth A.
2007-01-01
Digestion of DNA with restriction enzymes, calculation of volumes and concentrations of reagents for reactions, and the separation of DNA fragments by agarose gel electrophoresis are common molecular biology techniques that are best taught through repetition. The following open-ended, investigative laboratory exercise in plasmid restriction…
A new restriction endonuclease from Citrobacter freundii
Janulaitis, A.A.; Stakenas, P.S.; Lebedenko, E.N.; Berlin, Yu.A.
1982-01-01
CfrI, a new restriction endonuclease of unique substrate specificity, has been isolated from a Citrobacter freundii strain. The enzyme recognizes a degenerated sequence PyGGCCPu in double-strand DNA and cleaves it between Py and G residues to yield 5′ -protruding tetranucleotide ends GGCC. Images PMID:6294607
USDA-ARS?s Scientific Manuscript database
Previously we have shown increased concentrations of progesterone and decreased liver weight in mid to late pregnant ewes provided a nutrient restricted vs. adequate diet. This alteration in peripheral progesterone could be due to increased synthesis and/or decreased clearance of progesterone. There...
Altfeld, M A; Trocha, A; Eldridge, R L; Rosenberg, E S; Phillips, M N; Addo, M M; Sekaly, R P; Kalams, S A; Burchett, S A; McIntosh, K; Walker, B D; Goulder, P J
2000-09-01
Human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T-lymphocyte (CTL) responses play a major role in the antiviral immune response, but the relative contribution of CTL responses restricted by different HLA class I molecules is less well defined. HLA-B60 or the related allele B61 is expressed in 10 to 20% of Caucasoid populations and is even more highly prevalent in Asian populations, but yet no CTL epitopes restricted by these alleles have been defined. Here we report the definition of five novel HLA-B60-restricted HIV-1-specific CTL epitopes, using peripheral blood mononuclear cells in enzyme-linked immunospot (Elispot) assays and using CTL clones and lines in cytolytic assays. The dominant HLA-B60-restricted epitope, Nef peptide KEKGGLEGL, was targeted by all eight subjects with B60 and also by both subjects with B61 studied. This study additionally establishes the utility of the Elispot assay as a more rapid and efficient method of defining novel CTL epitopes. This approach will help to define new CTL epitopes that may play an important role in the immune control of HIV-1.
Kurian, P; Dunston, G; Lindesay, J
2016-02-21
Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.
Representing metabolic pathway information: an object-oriented approach.
Ellis, L B; Speedie, S M; McLeish, R
1998-01-01
The University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD) is a website providing information and dynamic links for microbial metabolic pathways, enzyme reactions, and their substrates and products. The Compound, Organism, Reaction and Enzyme (CORE) object-oriented database management system was developed to contain and serve this information. CORE was developed using Java, an object-oriented programming language, and PSE persistent object classes from Object Design, Inc. CORE dynamically generates descriptive web pages for reactions, compounds and enzymes, and reconstructs ad hoc pathway maps starting from any UM-BBD reaction. CORE code is available from the authors upon request. CORE is accessible through the UM-BBD at: http://www. labmed.umn.edu/umbbd/index.html.
Tóth, Júlia; Bollins, Jack; Szczelkun, Mark D.
2015-01-01
DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This ‘DNA sliding’ is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding. PMID:26538601
Ahmed, Haroon; Sousa, Sérgio Ramalho; Simsek, Sami; Anastácio, Sofia; Kilinc, Seyma Gunyakti
2017-12-01
Hypoderma spp. larvae cause subcutaneous myiasis in several animal species. The objective of the present investigation was to identify and characterize morphologically and molecularly the larvae of Hypoderma spp. collected from cattle (Bos taurus taurus) and red deer (Cervus elaphus) in the district of Castelo Branco, Portugal. For this purpose, a total of 8 larvae were collected from cattle (n=2) and red deer (n=6). After morphological identification of Hypoderma spp. larvae, molecular characterization was based on PCR-RFLP and mitochondrial CO1 gene sequence analysis. All larvae were morphologically characterized as the third instar larvae (L3) of H. actaeon. Two restriction enzymes were used for molecular identification of the larvae. TaqI restriction enzyme was not able to cut H. actaeon. However, MboII restriction enzyme differentiated Hypoderma species showing 210 and 450 bp bands in H. actaeon. Furthermore, according to the alignment of the mt-CO1 gene sequences of Hypoderma species and to PCR-RFLP findings, all the identified Hypoderma larvae were confirmed as H. actaeon. This is the first report of identification of Hypoderma spp. (Diptera; Oestridae) from cattle and red deer in Portugal, based on morphological and molecular analyses.
Miranda, Aracelis; Samudio, Franklyn; González, Kadir; Saldaña, Azael; Brandão, Adeilton; Calzada, Jose E.
2016-01-01
A precise identification of Leishmania species involved in human infections has epidemiological and clinical importance. Herein, we describe a preliminary validation of a restriction fragment length polymorphism assay, based on the calmodulin intergenic spacer region, as a tool for detecting and typing Leishmania species. After calmodulin amplification, the enzyme HaeIII yielded a clear distinction between reference strains of Leishmania mexicana, Leishmania amazonensis, Leishmania infantum, Leishmania lainsoni, and the rest of the Viannia reference species analyzed. The closely related Viannia species: Leishmania braziliensis, Leishmania panamensis, and Leishmania guyanensis, are separated in a subsequent digestion step with different restriction enzymes. We have developed a more accessible molecular protocol for Leishmania identification/typing based on the exploitation of part of the calmodulin gene. This methodology has the potential to become an additional tool for Leishmania species characterization and taxonomy. PMID:27352873
1985-09-01
pectinase . Lytic enzyme-positive isolates were successively subcultured on restrictive media in the laboratory to enhance enzyme production. Twenty-two...candidate microorganisms by testing isolates for produc- tion of cellulase and pectinase . c. Taxonomically characterize candidates. d. Enhance production of...present study, but could become necessary if results of this study indicate that cellulase-enhanced v ,isolates are capable of damaging hydrilla. Pectinase
Marsh, Terence L.; Saxman, Paul; Cole, James; Tiedje, James
2000-01-01
Rapid analysis of microbial communities has proven to be a difficult task. This is due, in part, to both the tremendous diversity of the microbial world and the high complexity of many microbial communities. Several techniques for community analysis have emerged over the past decade, and most take advantage of the molecular phylogeny derived from 16S rRNA comparative sequence analysis. We describe a web-based research tool located at the Ribosomal Database Project web site (http://www.cme.msu.edu/RDP/html/analyses.html) that facilitates microbial community analysis using terminal restriction fragment length polymorphism of 16S ribosomal DNA. The analysis function (designated TAP T-RFLP) permits the user to perform in silico restriction digestions of the entire 16S sequence database and derive terminal restriction fragment sizes, measured in base pairs, from the 5′ terminus of the user-specified primer to the 3′ terminus of the restriction endonuclease target site. The output can be sorted and viewed either phylogenetically or by size. It is anticipated that the site will guide experimental design as well as provide insight into interpreting results of community analysis with terminal restriction fragment length polymorphisms. PMID:10919828
Restriction fragment length polymorphism among Israeli Holstein-Friesian dairy bulls.
Beckmann, J S; Kashi, Y; Hallerman, E M; Nave, A; Soller, M
1986-01-01
Israeli Holstein-Friesian dairy bulls were screened for restriction fragment length polymorphisms by hybridizing cloned DNA probes for bovine growth hormone, for chymosin, and for rat muscle beta-actin to restriction endonuclease-digested DNA immobilized on nitrocellulose filters. The population proved to be polymorphic at the growth hormone locus, with evidence consistent with the phenotypes being inherited in allelic fashion. A low level of polymorphism was also observed at one of the beta-actin gene family loci. The chymosin locus was monomorphic with the restriction enzymes utilized. The results illustrate the power of restriction fragment length polymorphism methodology in visualizing genetic variability in dairy cattle populations.
Inquiry-Based Experiments for Large-Scale Introduction to PCR and Restriction Enzyme Digests
ERIC Educational Resources Information Center
Johanson, Kelly E.; Watt, Terry J.
2015-01-01
Polymerase chain reaction and restriction endonuclease digest are important techniques that should be included in all Biochemistry and Molecular Biology laboratory curriculums. These techniques are frequently taught at an advanced level, requiring many hours of student and faculty time. Here we present two inquiry-based experiments that are…
Serfiotis-Mitsa, Dimitra; Herbert, Andrew P.; Roberts, Gareth A.; Soares, Dinesh C.; White, John H.; Blakely, Garry W.; Uhrín, Dušan; Dryden, David T. F.
2010-01-01
Plasmids, conjugative transposons and phage frequently encode anti-restriction proteins to enhance their chances of entering a new bacterial host that is highly likely to contain a Type I DNA restriction and modification (RM) system. The RM system usually destroys the invading DNA. Some of the anti-restriction proteins are DNA mimics and bind to the RM enzyme to prevent it binding to DNA. In this article, we characterize ArdB anti-restriction proteins and their close homologues, the KlcA proteins from a range of mobile genetic elements; including an ArdB encoded on a pathogenicity island from uropathogenic Escherichia coli and a KlcA from an IncP-1b plasmid, pBP136 isolated from Bordetella pertussis. We show that all the ArdB and KlcA act as anti-restriction proteins and inhibit the four main families of Type I RM systems in vivo, but fail to block the restriction endonuclease activity of the archetypal Type I RM enzyme, EcoKI, in vitro indicating that the action of ArdB is indirect and very different from that of the DNA mimics. We also present the structure determined by NMR spectroscopy of the pBP136 KlcA protein. The structure shows a novel protein fold and it is clearly not a DNA structural mimic. PMID:20007596
dbHiMo: a web-based epigenomics platform for histone-modifying enzymes.
Choi, Jaeyoung; Kim, Ki-Tae; Huh, Aram; Kwon, Seomun; Hong, Changyoung; Asiegbu, Fred O; Jeon, Junhyun; Lee, Yong-Hwan
2015-01-01
Over the past two decades, epigenetics has evolved into a key concept for understanding regulation of gene expression. Among many epigenetic mechanisms, covalent modifications such as acetylation and methylation of lysine residues on core histones emerged as a major mechanism in epigenetic regulation. Here, we present the database for histone-modifying enzymes (dbHiMo; http://hme.riceblast.snu.ac.kr/) aimed at facilitating functional and comparative analysis of histone-modifying enzymes (HMEs). HMEs were identified by applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 11,576 HMEs identified from 603 proteomes including 483 fungal, 32 plants and 51 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. With comprehensive data entries and associated web-based tools, our database will be a valuable resource for future epigenetics/epigenomics studies. © The Author(s) 2015. Published by Oxford University Press.
Mikaeili, Fattaneh; Mathis, Alexander; Deplazes, Peter; Mirhendi, Hossein; Barazesh, Afshin; Ebrahimi, Sepideh; Kia, Eshrat Beigom
2017-09-26
The definitive genetic identification of Toxocara species is currently based on PCR/sequencing. The objectives of the present study were to design and conduct an in silico polymerase chain reaction-restriction fragment length polymorphism method for identification of Toxocara species. In silico analyses using the DNASIS and NEBcutter softwares were performed with rDNA internal transcribed spacers, and mitochondrial cox1 and nad1 sequences obtained in our previous studies along with relevant sequences deposited in GenBank. Consequently, RFLP profiles were designed and all isolates of T. canis and T. cati collected from dogs and cats in different geographical areas of Iran were investigated with the RFLP method using some of the identified suitable enzymes. The findings of in silico analyses predicted that on the cox1 gene only the MboII enzyme is appropriate for PCR-RFLP to reliably distinguish the two species. No suitable enzyme for PCR-RFLP on the nad1 gene was identified that yields the same pattern for all isolates of a species. DNASIS software showed that there are 241 suitable restriction enzymes for the differentiation of T. canis from T. cati based on ITS sequences. RsaI, MvaI and SalI enzymes were selected to evaluate the reliability of the in silico PCR-RFLP. The sizes of restriction fragments obtained by PCR-RFLP of all samples consistently matched the expected RFLP patterns. The ITS sequences are usually conserved and the PCR-RFLP approach targeting the ITS sequence is recommended for the molecular differentiation of Toxocara species and can provide a reliable tool for identification purposes particularly at the larval and egg stages.
Purification of Restriction Endonuclease EcoRII and its Co-Crystallization
NASA Technical Reports Server (NTRS)
Karpova, E. A.; Chen, L.; Meehan, E.; Pusey, M.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Restriction endonuclease EcoRII (EcoRII) is a homodimeric DNA-binding protein. It belongs to the type II family of restriction-modification enzymes (subclass IIe). EcoRII recognizes the nucleotide sequence 5'-CCWGG (W=A or T) and cleaves the phosphodiester bond preceding the first cytosine. Methylation at C5 of the second cytosine inhibits cleavage. The enzyme has a unique ability to search for the presence of two substrate sites before cleavage. To the best of our knowledge no other subclass IIe restriction endonuclease has been crystallized yet, without or with a DNA-substrate. We have recently grown and characterized the crystals of this enzyme (1) Here we report on the result of co-crystallization experiments of EcoRII with an 11 b.p. oligonucleotide substrate. The dissociation constant (Kd) EcoRII: 11 b.p. was determined earlier (unpublished results). The needle-like crystals of oligonucleotide-EcoRII protein complex were obtained with this substrate by the technique of vapor diffusion hanging drops. The crystals obtained were washed and dissolved in an aliquot of 10 mM Tris-HCl buffer, pH=7.5. Running a portion of this solution on the SDS-get indicated the presence of endonuclease in the solution. A UV-spectrophotometric test of a second portion confirmed the presence of DNA. We are now working on improvement of the DNA-EcoRII protein crystals. Results obtained from these and ongoing efforts will be reported.
IMANI BARAN, Abbas; CHERAGHI SARAY, Habib; KATIRAEE, Farzad
2017-01-01
Background: Fasciola species are the main causes for fascioliasis with great financial losses and are among the most important food/water-borne parasites worldwide. The basic proceedings such as epidemiology and effective control of fascioliasis rely mainly on precise identification of Fasciola species. The present study was conducted to determine the Fasciola species in ruminant fecal samples from East Azerbaijan Province in Iran. Methods: Overall, 2012 fecal samples were collected and processed initially for microscopic examination of Fasciola eggs in 2014–15. Then, recovered eggs were subjected to molecular identification. A fragment of 618 bp of the 28S rRNA gene pertaining to Fasciola genus was amplified under PCR. The amplified fragment was restricted by fast digest Ava II enzyme in order to a Restriction Fragment Length Polymorphism. Results: Based on microscopic examination, 72 samples were infected, from which, 10 and 62 cases pertained to cattle and sheep samples respectively. Based on RFLP, the PCR products restricted by the Ava II restriction enzyme produced 529 bp fragments only. According to the positive controls, all restriction patterns were related to Fasciola hepatica, while no restriction patterns were linked to F. gigantica. Conclusion: Based on PCR-RFLP, F. hepatica was dominant species in animals of the studied areas and no evidence of F. gigantica was observed. Therefore, further field studies to verify these results are suggested. PMID:28761485
Identification of Enzyme Genes Using Chemical Structure Alignments of Substrate-Product Pairs.
Moriya, Yuki; Yamada, Takuji; Okuda, Shujiro; Nakagawa, Zenichi; Kotera, Masaaki; Tokimatsu, Toshiaki; Kanehisa, Minoru; Goto, Susumu
2016-03-28
Although there are several databases that contain data on many metabolites and reactions in biochemical pathways, there is still a big gap in the numbers between experimentally identified enzymes and metabolites. It is supposed that many catalytic enzyme genes are still unknown. Although there are previous studies that estimate the number of candidate enzyme genes, these studies required some additional information aside from the structures of metabolites such as gene expression and order in the genome. In this study, we developed a novel method to identify a candidate enzyme gene of a reaction using the chemical structures of the substrate-product pair (reactant pair). The proposed method is based on a search for similar reactant pairs in a reference database and offers ortholog groups that possibly mediate the given reaction. We applied the proposed method to two experimentally validated reactions. As a result, we confirmed that the histidine transaminase was correctly identified. Although our method could not directly identify the asparagine oxo-acid transaminase, we successfully found the paralog gene most similar to the correct enzyme gene. We also applied our method to infer candidate enzyme genes in the mesaconate pathway. The advantage of our method lies in the prediction of possible genes for orphan enzyme reactions where any associated gene sequences are not determined yet. We believe that this approach will facilitate experimental identification of genes for orphan enzymes.
Dooley, John J; Sage, Helen D; Clarke, Marie-Anne L; Brown, Helen M; Garrett, Stephen D
2005-05-04
Identification of 10 white fish species associated with U.K. food products was achieved using PCR-RFLP of the mitochondrial cytochrome b gene. Use of lab-on-a-chip capillary electrophoresis for end-point analysis enabled accurate sizing of DNA fragments and identification of fish species at a level of 5% (w/w) in a fish admixture. One restriction enzyme, DdeI, allowed discrimination of eight species. When combined with NlaIII and HaeIII, specific profiles for all 10 species were generated. The method was applied to a range of products and subjected to an interlaboratory study carried out by five U.K. food control laboratories. One hundred percent correct identification of single species samples and six of nine admixture samples was achieved by all laboratories. The results indicated that fish species identification could be carried out using a database of PCR-RFLP profiles without the need for reference materials.
36 CFR 200.12 - Land status and title records.
Code of Federal Regulations, 2010 CFR
2010-07-01
... automated database which contains an accurate account of: acreage, condition of title, administrative jurisdiction, rights held by the United States, administrative and legal use restrictions, encumbrances, and... the Forest Service on other lands. (D) All use restrictions, withdrawals, and special designated areas...
A systematic review of administrative and clinical databases of infants admitted to neonatal units.
Statnikov, Yevgeniy; Ibrahim, Buthaina; Modi, Neena
2017-05-01
High quality information, increasingly captured in clinical databases, is a useful resource for evaluating and improving newborn care. We conducted a systematic review to identify neonatal databases, and define their characteristics. We followed a preregistered protocol using MesH terms to search MEDLINE, EMBASE, CINAHL, Web of Science and OVID Maternity and Infant Care Databases for articles identifying patient level databases covering more than one neonatal unit. Full-text articles were reviewed and information extracted on geographical coverage, criteria for inclusion, data source, and maternal and infant characteristics. We identified 82 databases from 2037 publications. Of the country-specific databases there were 39 regional and 39 national. Sixty databases restricted entries to neonatal unit admissions by birth characteristic or insurance cover; 22 had no restrictions. Data were captured specifically for 53 databases; 21 administrative sources; 8 clinical sources. Two clinical databases hold the largest range of data on patient characteristics, USA's Pediatrix BabySteps Clinical Data Warehouse and UK's National Neonatal Research Database. A number of neonatal databases exist that have potential to contribute to evaluating neonatal care. The majority is created by entering data specifically for the database, duplicating information likely already captured in other administrative and clinical patient records. This repetitive data entry represents an unnecessary burden in an environment where electronic patient records are increasingly used. Standardisation of data items is necessary to facilitate linkage within and between countries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Creation of a type IIS restriction endonuclease with a long recognition sequence
Lippow, Shaun M.; Aha, Patti M.; Parker, Matthew H.; Blake, William J.; Baynes, Brian M.; Lipovšek, Daša
2009-01-01
Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6 nt from the target site to generate homogeneous, 5′, four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases. PMID:19304757
Sotiropoulos, C; Coloe, P J; Smith, S C
1994-01-01
Chromosomal DNA restriction enzyme analysis and Southern blot hybridization were used to characterize Serpulina hyodysenteriae strains. When chromosomal DNAs from selected strains (reference serotypes) of S. hyodysenteriae were digested with the restriction endonuclease Sau3A and hybridized with a 1.1-kb S. hyodysenteriae-specific DNA probe, a common 3-kb band was always detected in S. hyodysenteriae strains but was absent from Serpulina innocens strains. When the chromosomal DNA was digested with the restriction endonuclease Asp 700 and hybridized with two S. hyodysenteriae-specific DNA probes (0.75 and 1.1 kb of DNA), distinct hybridization patterns for each S. hyodysenteriae reference strain and the Australian isolate S. hyodysenteriae 5380 were detected. Neither the 1.1-kb nor the 0.75-kb DNA probe hybridized with Asp 700- or Sau3A-digested S. innocens chromosomal DNA. The presence of the 3-kb Sau3A DNA fragment in S. hyodysenteriae reference strains from diverse geographical locations shows that this fragment is conserved among S. hyodysenteriae strains and can be used as a species-specific marker. Restriction endonuclease analysis and Southern blot hybridization with these well-defined DNA probes are reliable and accurate methods for species-specific and strain-specific identification of S. hyodysenteriae. Images PMID:7914209
Altfeld, Marcus A.; Trocha, Alicja; Eldridge, Robert L.; Rosenberg, Eric S.; Phillips, Mary N.; Addo, Marylyn M.; Sekaly, Rafick P.; Kalams, Spyros A.; Burchett, Sandra A.; McIntosh, Kenneth; Walker, Bruce D.; Goulder, Philip J. R.
2000-01-01
Human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T-lymphocyte (CTL) responses play a major role in the antiviral immune response, but the relative contribution of CTL responses restricted by different HLA class I molecules is less well defined. HLA-B60 or the related allele B61 is expressed in 10 to 20% of Caucasoid populations and is even more highly prevalent in Asian populations, but yet no CTL epitopes restricted by these alleles have been defined. Here we report the definition of five novel HLA-B60-restricted HIV-1-specific CTL epitopes, using peripheral blood mononuclear cells in enzyme-linked immunospot (Elispot) assays and using CTL clones and lines in cytolytic assays. The dominant HLA-B60-restricted epitope, Nef peptide KEKGGLEGL, was targeted by all eight subjects with B60 and also by both subjects with B61 studied. This study additionally establishes the utility of the Elispot assay as a more rapid and efficient method of defining novel CTL epitopes. This approach will help to define new CTL epitopes that may play an important role in the immune control of HIV-1. PMID:10954555
ERIC Educational Resources Information Center
Sharma, Prince; D'Souza, David R.; Bhandari, Deepali; Parashar, Vijay; Capalash, Neena
2003-01-01
Restriction enzymes are basic tools in recombinant DNA technology. To shape the molecular biology experiments, the students must know how to work with these molecular scissors. Here, we describe an integrated set of experiments, introduced in the "Advances in Molecular Biology and Biotechnology" postgraduate course, which covers the important…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... restrictions is set forth in CBP Dec. 06-09. The Designated List and accompanying image database may also be... reference to ``CBP Dec. 06-09'', the words ``extended by CBP Dec. 11-06''. Alan Bersin, Commissioner, U.S...
77 FR 17461 - Proposed Reinstatement; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
... forms of information technology. DATES: Consideration will be given to all comments received by May 25... of DD Form 2345. Affected Public: Individuals or households; businesses or other for profit; not-for... restricted databases and obstructs conference attendance where restricted data will be discussed. Dated...
Multi-Homologous Recombination-Based Gene Manipulation in the Rice Pathogen Fusarium fujikuroi
Hwang, In Sun; Ahn, Il-Pyung
2016-01-01
Gene disruption by homologous recombination is widely used to investigate and analyze the function of genes in Fusarium fujikuroi, a fungus that causes bakanae disease and root rot symptoms in rice. To generate gene deletion constructs, the use of conventional cloning methods, which rely on restriction enzymes and ligases, has had limited success due to a lack of unique restriction enzyme sites. Although strategies that avoid the use of restriction enzymes have been employed to overcome this issue, these methods require complicated PCR steps or are frequently inefficient. Here, we introduce a cloning system that utilizes multi-fragment assembly by In-Fusion to generate a gene disruption construct. This method utilizes DNA fragment fusion and requires only one PCR step and one reaction for construction. Using this strategy, a gene disruption construct for Fusarium cyclin C1 (FCC1 ), which is associated with fumonisin B1 biosynthesis, was successfully created and used for fungal transformation. In vivo and in vitro experiments using confirmed fcc1 mutants suggest that fumonisin production is closely related to disease symptoms exhibited by F. fujikuroi strain B14. Taken together, this multi-fragment assembly method represents a simpler and a more convenient process for targeted gene disruption in fungi. PMID:27298592
van Keulen, H; Campbell, S R; Erlandsen, S L; Jarroll, E L
1991-06-01
In an attempt to study Giardia at the DNA sequence level, the rRNA genes of three species, Giardia duodenalis, Giardia ardeae and Giardia muris were cloned and restriction enzyme maps were constructed. The rDNA repeats of these Giardia show completely different restriction enzyme recognition patterns. The size of the rDNA repeat ranges from approximately 5.6 kb in G. duodenalis to 7.6 kb in both G. muris and G. ardeae. These size differences are mainly attributable to the variation in length of the spacer. Minor differences exist among these Giardia in the sizes of their small subunit rRNA and the internal transcribed spacer between small and large subunit rRNA. The genetic maps were constructed by sequence analysis of the DNA around the 5' and 3' ends of the mature rRNA genes and between the rRNA covering the 5.8S rRNA gene and internal transcribed spacer. Comparison of the 5.8S rDNA and 3' end of large subunit rDNA from these three Giardia species showed considerable sequence variation, but the rDNA sequences of G. duodenalis and G. ardeae appear more closely related to each other than to G. muris.
AgeFactDB--the JenAge Ageing Factor Database--towards data integration in ageing research.
Hühne, Rolf; Thalheim, Torsten; Sühnel, Jürgen
2014-01-01
AgeFactDB (http://agefactdb.jenage.de) is a database aimed at the collection and integration of ageing phenotype data including lifespan information. Ageing factors are considered to be genes, chemical compounds or other factors such as dietary restriction, whose action results in a changed lifespan or another ageing phenotype. Any information related to the effects of ageing factors is called an observation and is presented on observation pages. To provide concise access to the complete information for a particular ageing factor, corresponding observations are also summarized on ageing factor pages. In a first step, ageing-related data were primarily taken from existing databases such as the Ageing Gene Database--GenAge, the Lifespan Observations Database and the Dietary Restriction Gene Database--GenDR. In addition, we have started to include new ageing-related information. Based on homology data taken from the HomoloGene Database, AgeFactDB also provides observation and ageing factor pages of genes that are homologous to known ageing-related genes. These homologues are considered as candidate or putative ageing-related genes. AgeFactDB offers a variety of search and browse options, and also allows the download of ageing factor or observation lists in TSV, CSV and XML formats.
Machnicka, Magdalena A; Kaminska, Katarzyna H; Dunin-Horkawicz, Stanislaw; Bujnicki, Janusz M
2015-10-23
GmrSD is a modification-dependent restriction endonuclease that specifically targets and cleaves glucosylated hydroxymethylcytosine (glc-HMC) modified DNA. It is encoded either as two separate single-domain GmrS and GmrD proteins or as a single protein carrying both domains. Previous studies suggested that GmrS acts as endonuclease and NTPase whereas GmrD binds DNA. In this work we applied homology detection, sequence conservation analysis, fold recognition and homology modeling methods to study sequence-structure-function relationships in the GmrSD restriction endonucleases family. We also analyzed the phylogeny and genomic context of the family members. Results of our comparative genomics study show that GmrS exhibits similarity to proteins from the ParB/Srx fold which can have both NTPase and nuclease activity. In contrast to the previous studies though, we attribute the nuclease activity also to GmrD as we found it to contain the HNH endonuclease motif. We revealed residues potentially important for structure and function in both domains. Moreover, we found that GmrSD systems exist predominantly as a fused, double-domain form rather than as a heterodimer and that their homologs are often encoded in regions enriched in defense and gene mobility-related elements. Finally, phylogenetic reconstructions of GmrS and GmrD domains revealed that they coevolved and only few GmrSD systems appear to be assembled from distantly related GmrS and GmrD components. Our study provides insight into sequence-structure-function relationships in the yet poorly characterized family of Type IV restriction enzymes. Comparative genomics allowed to propose possible role of GmrD domain in the function of the GmrSD enzyme and possible active sites of both GmrS and GmrD domains. Presented results can guide further experimental characterization of these enzymes.
Restriction fragment length polymorphism of the major histocompatibility complex of the dog.
Sarmiento, U M; Storb, R F
1988-01-01
Human major histocompatibility complex (HLA) cDNA probes were used to analyze the restriction fragment length polymorphism (RFLP) of the DLA-D region in dogs. Genomic DNA from peripheral blood leucocytes of 23 unrelated DLA-D-homozygous dogs representing nine DLA-D types (defined by mixed leucocyte reaction) was digested with restriction enzymes (Bam HI, Eco RI, Hind III, Pvu II, Taq I, Rsa I, Msp I, Pst I, and Bgl II), separated by agarose gel electrophoresis, and transferred onto Biotrace membrane. The Southern blots were successively hybridized with radiolabeled HLA cDNA probes corresponding to DR, DQ, DP, and DO beta genes. The autoradiograms for all nine enzyme digests displayed multiple bands with the DRb, DQb, and DPb probes while the DOb probe hybridized with one to two bands. The RFLP patterns were highly polymorphic but consistent within each DLA-D type. Standard RFLP patterns were established for nine DLA-D types which could be discriminated from each other by using two enzymes (Rsa I and Pst I) and the HLA-DPb probe. Cluster analysis of the polymorphic restriction fragments detected by the DRb probe revealed four closely related supertypic groups or DLA-DR families: Dw3 + Dw4 + D1, Dw8 + D10, D7 + D16 + D9, and Dw1. This study provides the basis for DLA-D genotyping at a population level by RFLP analysis. These results also suggest that the genetic organization of the DLA-D region may closely resemble that of the HLA complex.
A fine structure genomic map of the region of 12q13 containing SAS and CDK4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linder, C.Y.; Elkahloun, A.G.; Su, Y.A.
1994-09-01
We have recently adapted a method, originally described by Rackwitz, to the rapid restriction mapping of multiple cosmid DNA samples. Linearization of the cosmids at the lambda cohesive site using lambda terminase is followed by partial digestion with selected restriction enzymes and hybridization to oligonucleotides specific for the right or left hand termini. Partial digestions are performed in a microtiter plate thus allowing up to 12 cosmid clones to be digested with one restriction enzyme. We have applied this rapid restriction mapping method to cosmids derived from a region of chromosome 12q13 that has recently been shown to be amplifiedmore » in a variety of cancers including malignant fibrous histiocytoma, fibrosarcoma, liposarcoma, osteosarcoma and brain tumors. A small segment of this amplification unit containing three genes, SAS (a membrane protein), CDK4 (a cyclin dependent kinase) and OS-9 (a recently described cDNA) has been analyzed with the system described above. This fine structure genomic map will be useful for completing the expression map of this region as well as characterizing its pattern of amplification in tumor specimens.« less
Genotypic analysis of strains of mutans streptococci by pulsed-field gel electrophoresis.
Mineyama, R; Yoshino, S; Fukushima, K
2004-01-01
The species and serotypes of various strains of S. mutans and S. sobrinus were characterized by pulsed-field gel electrophoresis after the genomic DNA from the various strains had been digested with five restriction enzymes (EcoR I, Xba I, Hind III, Sfi I and BssH II) separately. Among these restriction enzymes, BssH II was very useful for the characterization of species and serotypes and, in particular, digestion discriminated between serotypes d and g. The restriction patterns obtained from the genomic DNA of isolates isolated from children's saliva were essentially identical to those from the genomic DNA of the standard laboratory strains. Patterns of BssH II digests of the genomic DNA of 10 isolates identified as S. sobrinus were characteristic of serotype g of the standard laboratory strains. Our results indicate that digestion with BssH II and subsequence analysis by pulsed-field gel electrophoresis should be useful for the characterization of species and serotypes and for epidemiological studies of mutans streptococci.
Kumar, Deepak; Singh, S P; Karabasanavar, Nagappa S; Singh, Rashmi; Umapathi, V
2014-11-01
Authentication of meat assumes significance in view of religious, quality assurance, food safety, public health, conservation and legal concerns. Here, we describe a PCR-RFLP (Polymerase Chain Reaction- Restriction Fragment Length Polymorphism) assay targeting mitochondrial cytochrome-b gene for the identification of meats of five most common food animals namely cattle, buffalo, goat, sheep and pig. A pair of forward and reverse primers (VPH-F & VPH-R) amplifying a conserved region (168-776 bp) of mitochondrial cytochrome-b (cytb) gene for targeted species was designed which yielded a 609 bp PCR amplicon. Further, restriction enzyme digestion of the amplicons with Alu1 and Taq1 restriction enzymes resulted in a distinctive digestion pattern that was able to discriminate each species. The repeatability of the PCR-RFLP assay was validated ten times with consistent results observed. The developed assay can be used in routine diagnostic laboratories to differentiate the meats of closely related domestic livestock species namely cattle from buffalo and sheep from goat.
Danso, Dominik; Schmeisser, Christel; Chow, Jennifer; Zimmermann, Wolfgang; Wei, Ren; Leggewie, Christian; Li, Xiangzhen; Hazen, Terry; Streit, Wolfgang R
2018-04-15
Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria , Proteobacteria , and Bacteroidetes Within the Proteobacteria , the Betaproteobacteria , Deltaproteobacteria , and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria , as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil. IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases. Copyright © 2018 Danso et al.
Danso, Dominik; Schmeisser, Christel; Chow, Jennifer; Wei, Ren; Leggewie, Christian; Li, Xiangzhen
2018-01-01
ABSTRACT Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria, Proteobacteria, and Bacteroidetes. Within the Proteobacteria, the Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria, as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil. IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases. PMID:29427431
Changes in U.S. Hospitalization and Mortality Rates following Smoking Bans
ERIC Educational Resources Information Center
Shetty, Kanaka D.; DeLeire, Thomas; White, Chapin; Bhattacharya, Jayanta
2011-01-01
U.S. state and local governments have increasingly adopted restrictions on smoking in public places. This paper analyzes nationally representative databases, including the Nationwide Inpatient Sample, to compare short-term changes in mortality and hospitalization rates in smoking-restricted regions with control regions. In contrast with smaller…
Artificial enzymes based on supramolecular scaffolds.
Dong, Zeyuan; Luo, Quan; Liu, Junqiu
2012-12-07
Enzymes are nanometer-sized molecules with three-dimensional structures created by the folding and self-assembly of polymeric chain-like components through supramolecular interactions. They are capable of performing catalytic functions usually accompanied by a variety of conformational states. The conformational diversities and complexities of natural enzymes exerted in catalysis seriously restrict the detailed understanding of enzymatic mechanisms in molecular terms. A supramolecular viewpoint is undoubtedly helpful in understanding the principle of enzyme catalysis. The emergence of supramolecular artificial enzymes therefore provides an alternative way to approach the structural complexity and thus to unravel the mystery of enzyme catalysis. This critical review covers the recent development of artificial enzymes designed based on supramolecular scaffolds ranging from the synthetic macrocycles to self-assembled nanometer-sized objects. Such findings are anticipated to facilitate the design of supramolecular artificial enzymes as well as their potential uses in important fields, such as manufacturing and food industries, environmental biosensors, pharmaceutics and so on.
Kurian, P.; Dunston, G.; Lindesay, J.
2015-01-01
Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme’s displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations—a possible signature of quantum entanglement—may be explained by such a mechanism. PMID:26682627
Transformable Rhodobacter strains, method for producing transformable Rhodobacter strains
Laible, Philip D.; Hanson, Deborah K.
2018-05-08
The invention provides an organism for expressing foreign DNA, the organism engineered to accept standard DNA carriers. The genome of the organism codes for intracytoplasmic membranes and features an interruption in at least one of the genes coding for restriction enzymes. Further provided is a system for producing biological materials comprising: selecting a vehicle to carry DNA which codes for the biological materials; determining sites on the vehicle's DNA sequence susceptible to restriction enzyme cleavage; choosing an organism to accept the vehicle based on that organism not acting upon at least one of said vehicle's sites; engineering said vehicle to contain said DNA; thereby creating a synthetic vector; and causing the synthetic vector to enter the organism so as cause expression of said DNA.
Evaluating Functional Annotations of Enzymes Using the Gene Ontology.
Holliday, Gemma L; Davidson, Rebecca; Akiva, Eyal; Babbitt, Patricia C
2017-01-01
The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25-29, 2000) is a powerful tool in the informatics arsenal of methods for evaluating annotations in a protein dataset. From identifying the nearest well annotated homologue of a protein of interest to predicting where misannotation has occurred to knowing how confident you can be in the annotations assigned to those proteins is critical. In this chapter we explore what makes an enzyme unique and how we can use GO to infer aspects of protein function based on sequence similarity. These can range from identification of misannotation or other errors in a predicted function to accurate function prediction for an enzyme of entirely unknown function. Although GO annotation applies to any gene products, we focus here a describing our approach for hierarchical classification of enzymes in the Structure-Function Linkage Database (SFLD) (Akiva et al., Nucleic Acids Res 42(Database issue):D521-530, 2014) as a guide for informed utilisation of annotation transfer based on GO terms.
Sorokina, Maria; Stam, Mark; Médigue, Claudine; Lespinet, Olivier; Vallenet, David
2014-06-06
The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called "orphan enzymes". The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to "local orphan enzymes" that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new activities.
Entamoeba histolytica: construction and applications of subgenomic databases.
Hofer, Margit; Duchêne, Michael
2005-07-01
Knowledge about the influence of environmental stress such as the action of chemotherapeutic agents on gene expression in Entamoeba histolytica is limited. We plan to use oligonucleotide microarray hybridization to approach these questions. As the basis for our array, sequence data from the genome project carried out by the Institute for Genomic Research (TIGR) and the Sanger Institute were used to annotate parts of the parasite genome. Three subgenomic databases containing enzymes, cytoskeleton genes, and stress genes were compiled with the help of the ExPASy proteomics website and the BLAST servers at the two genome project sites. The known sequences from reference species, mostly human and Escherichia coli, were searched against TIGR and Sanger E. histolytica sequence contigs and the homologs were copied into a Microsoft Access database. In a similar way, two additional databases of cytoskeletal genes and stress genes were generated. Metabolic pathways could be assembled from our enzyme database, but sometimes they were incomplete as is the case for the sterol biosynthesis pathway. The raw databases contained a significant number of duplicate entries which were merged to obtain curated non-redundant databases. This procedure revealed that some E. histolytica genes may have several putative functions. Representative examples such as the case of the delta-aminolevulinate synthase/serine palmitoyltransferase are discussed.
Keomanivong, F E; Lemley, C O; Camacho, L E; Yunusova, R; Borowicz, P P; Caton, J S; Meyer, A M; Vonnahme, K A; Swanson, K C
2016-03-01
Primiparous ewes (n=32) were assigned to dietary treatments in a 2×2 factorial arrangement to determine effects of nutrient restriction and melatonin supplementation on maternal and fetal pancreatic weight, digestive enzyme activity, concentration of insulin-containing clusters and plasma insulin concentrations. Treatments consisted of nutrient intake with 60% (RES) or 100% (ADQ) of requirements and melatonin supplementation at 0 (CON) or 5 mg/day (MEL). Treatments began on day 50 of gestation and continued until day 130. On day 130, blood was collected under general anesthesia from the uterine artery, uterine vein, umbilical artery and umbilical vein for plasma insulin analysis. Ewes were then euthanized and the pancreas removed from the ewe and fetus, trimmed of mesentery and fat, weighed and snap-frozen until enzyme analysis. In addition, samples of pancreatic tissue were fixed in 10% formalin solution for histological examination including quantitative characterization of size and distribution of insulin-containing cell clusters. Nutrient restriction decreased (P⩽0.001) maternal pancreatic mass (g) and α-amylase activity (U/g, kU/pancreas, U/kg BW). Ewes supplemented with melatonin had increased pancreatic mass (P=0.03) and α-amylase content (kU/pancreas and U/kg BW). Melatonin supplementation decreased (P=0.002) maternal pancreatic insulin-positive tissue area (relative to section of tissue), and size of the largest insulin-containing cell cluster (P=0.04). Nutrient restriction decreased pancreatic insulin-positive tissue area (P=0.03) and percent of large (32 001 to 512 000 µm2) and giant (⩾512 001 µm2) insulin-containing cell clusters (P=0.04) in the fetus. Insulin concentrations in plasma from the uterine vein, umbilical artery and umbilical vein were greater (P⩽0.01) in animals receiving 100% requirements. When comparing ewes to fetuses, ewes had a greater percentage of medium insulin-containing cell clusters (2001 to 32 000 µm2) while fetuses had more (P<0.001) pancreatic insulin-positive area (relative to section of tissue) and a greater percent of small, large and giant insulin-containing cell clusters (P⩽0.02). Larger insulin-containing clusters were observed in fetuses (P<0.001) compared with ewes. In summary, the maternal pancreas responded to nutrient restriction by decreasing pancreatic weight and activity of digestive enzymes while melatonin supplementation increased α-amylase content. Nutrient restriction decreased the number of pancreatic insulin-containing clusters in fetuses while melatonin supplementation did not influence insulin concentration. This indicated using melatonin as a therapeutic agent to mitigate reduced pancreatic function in the fetus due to maternal nutrient restriction may not be beneficial.
Fadda, M E; Pisano, M B; Scaccabarozzi, L; Mossa, V; Deplano, M; Moroni, P; Liciardi, M; Cosentino, S
2013-01-01
This study reports a rapid PCR-based technique using a one-enzyme RFLP for discrimination of yeasts isolated from bovine clinical and subclinical mastitis milk samples. We analyzed a total of 1,486 milk samples collected over 1 yr in south Sardinia and northern Italy, and 142 yeast strains were preliminarily grouped based on their cultural morphology and physiological characteristics. Assimilation tests were conducted using the identification kit API ID 32C and APILAB Plus software (bioMérieux, Marcy l'Etoile, France). For PCR-RFLP analysis, the 18S-ITS1-5.8S ribosomal(r)DNA region was amplified and then digested with HaeIII, and dendrogram analysis of RFLP fragments was carried out. Furthermore, within each of the groups identified by the API or PCR-RFLP methods, the identification of isolates was confirmed by sequencing of the D1/D2 region using an ABI Prism 310 automatic sequencer (Applied Biosystems, Foster City, CA). The combined phenotypic and molecular approach enabled the identification of 17 yeast species belonging to the genera Candida (47.9%), Cryptococcus (21.1%), Trichosporon (19.7%), Geotrichum (7.1%), and Rhodotorula (4.2%). All Candida species were correctly identified by the API test and their identification confirmed by sequencing. All strains identified with the API system as Geotrichum candidum, Cryptococcus uniguttulatus, and Rhodotorula glutinis also produced characteristic restriction patterns and were confirmed as Galactomyces geotrichum (a teleomorph of G. candidum), Filobasidium uniguttulatum (teleomorph of Crypt. uniguttulatus), and R. glutinis, respectively, by D1/D2 rDNA sequencing. With regard to the genus Trichosporon, preliminary identification by API was problematic, whereas the RFLP technique used in this study gave characteristic restriction profiles for each species. Moreover, sequencing of the D1/D2 region allowed not only successful identification of Trichosporon gracile where API could not, but also correct identification of misidentified isolates. In conclusion, the 18S-ITS1-5.8S region appears to be useful in detecting genetic variability among yeast species, which is valuable for taxonomic purposes and for species identification. We have established an RFLP database for yeast species identified in milk samples using the software GelCompar II and the RFLP database constitutes an initial method for veterinary yeast identification. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
An update on the Enzyme Portal: an integrative approach for exploring enzyme knowledge
Onwubiko, J.; Zaru, R.; Rosanoff, S.; Antunes, R.; Bingley, M.; Watkins, X.; O'Donovan, C.; Martin, M. J.
2017-01-01
Abstract Enzymes are a key part of life processes and are increasingly important for various areas of research such as medicine, biotechnology, bioprocessing and drug research. The goal of the Enzyme Portal is to provide an interface to all European Bioinformatics Institute (EMBL-EBI) data about enzymes (de Matos, P., et al., (2013), BMC Bioinformatics, 14 (1), 103). These data include enzyme function, sequence features and family classification, protein structure, reactions, pathways, small molecules, diseases and the associated literature. The sources of enzyme data are: the UniProt Knowledgebase (UniProtKB) (UniProt Consortium, 2015), the Protein Data Bank in Europe (PDBe), (Valenkar, S., et al., Nucleic Acids Res.2016; 44, D385–D395) Rhea—a database of enzyme-catalysed reactions (Morgat, A., et al., Nucleic Acids Res. 2015; 43, D459-D464), Reactome—a database of biochemical pathways (Fabregat, A., et al., Nucleic Acids Res. 2016; 44, D481–D487), IntEnz—a resource with enzyme nomenclature information (Fleischmann, A., et al., Nucleic Acids Res. 2004 32, D434–D437) and ChEBI (Hastings, J., et al., Nucleic Acids Res. 2013) and ChEMBL (Bento, A. P., et al., Nucleic Acids Res. 201442, 1083–1090)—resources which contain information about small-molecule chemistry and bioactivity. This article describes the redesign of Enzyme Portal and the increased functionality added to maximise integration and interpretation of these data. Use case examples of the Enzyme Portal and the versatile workflows its supports are illustrated. We welcome the suggestion of new resources for integration. PMID:28158609
An update on the Enzyme Portal: an integrative approach for exploring enzyme knowledge.
Pundir, S; Onwubiko, J; Zaru, R; Rosanoff, S; Antunes, R; Bingley, M; Watkins, X; O'Donovan, C; Martin, M J
2017-03-01
Enzymes are a key part of life processes and are increasingly important for various areas of research such as medicine, biotechnology, bioprocessing and drug research. The goal of the Enzyme Portal is to provide an interface to all European Bioinformatics Institute (EMBL-EBI) data about enzymes (de Matos, P., et al. , (2013), BMC Bioinformatics , (1), 103). These data include enzyme function, sequence features and family classification, protein structure, reactions, pathways, small molecules, diseases and the associated literature. The sources of enzyme data are: the UniProt Knowledgebase (UniProtKB) (UniProt Consortium, 2015), the Protein Data Bank in Europe (PDBe), (Valenkar, S., et al ., Nucleic Acids Res. 2016; , D385-D395) Rhea-a database of enzyme-catalysed reactions (Morgat, A., et al ., Nucleic Acids Res. 2015; , D459-D464), Reactome-a database of biochemical pathways (Fabregat, A., et al ., Nucleic Acids Res. 2016; , D481-D487), IntEnz-a resource with enzyme nomenclature information (Fleischmann, A., et al ., Nucleic Acids Res. 2004 , D434-D437) and ChEBI (Hastings, J., et al ., Nucleic Acids Res. 2013) and ChEMBL (Bento, A. P., et al ., Nucleic Acids Res. 2014 , 1083-1090)-resources which contain information about small-molecule chemistry and bioactivity. This article describes the redesign of Enzyme Portal and the increased functionality added to maximise integration and interpretation of these data. Use case examples of the Enzyme Portal and the versatile workflows its supports are illustrated. We welcome the suggestion of new resources for integration. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Jenkins, Frank J; Kerr, Charles M; Fouquerel, Elise; Bovbjerg, Dana H; Opresko, Patricia L
2017-07-10
There are several different techniques for measuring telomere length, each with their own advantages and disadvantages. The traditional approach, Telomere Restriction Fragment (TRF) analysis, utilizes a DNA hybridization technique whereby genomic DNA samples are digested with restriction enzymes, leaving behind telomere DNA repeats and some sub-telomeric DNA. These are separated by agarose gel electrophoresis, transferred to a filter membrane and hybridized to oligonucleotide probes tagged with either chemiluminescence or radioactivity to visualize telomere restriction fragments. This approach, while requiring a larger quantity of DNA than other techniques such as PCR, can measure the telomere length distribution of a population of cells and allows measurement expressed in absolute kilobases. This manuscript demonstrates a modified DNA hybridization procedure for determining telomere length. Genomic DNA is first digested with restriction enzymes (that do not cut telomeres) and separated by agarose gel electrophoresis. The gel is then dried and the DNA is denatured and hybridized in situ to a radiolabeled oligonucleotide probe. This in situ hybridization avoids loss of telomere DNA and improves signal intensity. Following hybridization, the gels are imaged utilizing phosphor screens and the telomere length is quantified using a graphing program. This procedure was developed by the laboratories of Drs. Woodring Wright and Jerry Shay at the University of Texas Southwestern 1 , 2 . Here, we present a detailed description of this procedure, with some modifications.
Phylogenetic relationships among anuran trypanosomes as revealed by riboprinting.
Clark, C G; Martin, D S; Diamond, L S
1995-01-01
Twenty trypanosome isolates from Anura (frogs and toads) assigned to several species were characterized by riboprinting-restriction enzyme digestion of polymerase chain reaction amplified small subunit ribosomal RNA genes. Restriction site polymorphisms allowed distinction of all the recognized species and no intraspecific variation in riboprint patterns was detected. Phylogenetic reconstruction using parsimony and distance estimates based on restriction fragment comigration showed Trypanosoma chattoni to be only distantly related to the other species, while T. ranarum and T. fallisi appear to be sister taxa despite showing non-overlapping host specificities.
Finding Sequences for over 270 Orphan Enzymes
Shearer, Alexander G.; Altman, Tomer; Rhee, Christine D.
2014-01-01
Despite advances in sequencing technology, there are still significant numbers of well-characterized enzymatic activities for which there are no known associated sequences. These ‘orphan enzymes’ represent glaring holes in our biological understanding, and it is a top priority to reunite them with their coding sequences. Here we report a methodology for resolving orphan enzymes through a combination of database search and literature review. Using this method we were able to reconnect over 270 orphan enzymes with their corresponding sequence. This success points toward how we can systematically eliminate the remaining orphan enzymes and prevent the introduction of future orphan enzymes. PMID:24826896
Mäkelä, Miia R; Dilokpimol, Adiphol; Koskela, Salla M; Kuuskeri, Jaana; de Vries, Ronald P; Hildén, Kristiina
2018-04-26
Feruloyl esterases (FAEs) are accessory enzymes for plant biomass degradation, which catalyse hydrolysis of carboxylic ester linkages between hydroxycinnamic acids and plant cell-wall carbohydrates. They are a diverse group of enzymes evolved from, e.g. acetyl xylan esterases (AXEs), lipases and tannases, thus complicating their classification and prediction of function by sequence similarity. Recently, an increasing number of fungal FAEs have been biochemically characterized, owing to their potential in various biotechnological applications and multitude of candidate FAEs in fungal genomes. However, only part of the fungal FAEs are included in Carbohydrate Esterase family 1 (CE1) of the carbohydrate-active enzymes (CAZy) database. In this work, we performed a phylogenetic analysis that divided the fungal members of CE1 into five subfamilies of which three contained characterized enzymes with conserved activities. Conservation within one of the subfamilies was confirmed by characterization of an additional CE1 enzyme from Aspergillus terreus. Recombinant A. terreus FaeD (AtFaeD) showed broad specificity towards synthetic methyl and ethyl esters, and released ferulic acid from plant biomass substrates, demonstrating its true FAE activity and interesting features as potential biocatalyst. The subfamily division of the fungal CE1 members enables more efficient selection of candidate enzymes for biotechnological processes. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Medium-sized tandem repeats represent an abundant component of the Drosophila virilis genome.
Abdurashitov, Murat A; Gonchar, Danila A; Chernukhin, Valery A; Tomilov, Victor N; Tomilova, Julia E; Schostak, Natalia G; Zatsepina, Olga G; Zelentsova, Elena S; Evgen'ev, Michael B; Degtyarev, Sergey K H
2013-11-09
Previously, we developed a simple method for carrying out a restriction enzyme analysis of eukaryotic DNA in silico, based on the known DNA sequences of the genomes. This method allows the user to calculate lengths of all DNA fragments that are formed after a whole genome is digested at the theoretical recognition sites of a given restriction enzyme. A comparison of the observed peaks in distribution diagrams with the results from DNA cleavage using several restriction enzymes performed in vitro have shown good correspondence between the theoretical and experimental data in several cases. Here, we applied this approach to the annotated genome of Drosophila virilis which is extremely rich in various repeats. Here we explored the combined approach to perform the restriction analysis of D. virilis DNA. This approach enabled to reveal three abundant medium-sized tandem repeats within the D. virilis genome. While the 225 bp repeats were revealed previously in intergenic non-transcribed spacers between ribosomal genes of D. virilis, two other families comprised of 154 bp and 172 bp repeats were not described. Tandem Repeats Finder search demonstrated that 154 bp and 172 bp units are organized in multiple clusters in the genome of D. virilis. Characteristically, only 154 bp repeats derived from Helitron transposon are transcribed. Using in silico digestion in combination with conventional restriction analysis and sequencing of repeated DNA fragments enabled us to isolate and characterize three highly abundant families of medium-sized repeats present in the D. virilis genome. These repeats comprise a significant portion of the genome and may have important roles in genome function and structural integrity. Therefore, we demonstrated an approach which makes possible to investigate in detail the gross arrangement and expression of medium-sized repeats basing on sequencing data even in the case of incompletely assembled and/or annotated genomes.
40 CFR 312.26 - Reviews of Federal, State, Tribal, and local government records.
Code of Federal Regulations, 2010 CFR
2010-07-01
... use restrictions, applicable to the subject property. (c) With regard to nearby or adjoining properties, the review of federal, tribal, state, and local government records or databases of government... records of reported releases or threatened releases. Such records or databases containing such records and...
Hanson, Andrew D; Pribat, Anne; Waller, Jeffrey C; de Crécy-Lagard, Valérie
2009-12-14
Like other forms of engineering, metabolic engineering requires knowledge of the components (the 'parts list') of the target system. Lack of such knowledge impairs both rational engineering design and diagnosis of the reasons for failures; it also poses problems for the related field of metabolic reconstruction, which uses a cell's parts list to recreate its metabolic activities in silico. Despite spectacular progress in genome sequencing, the parts lists for most organisms that we seek to manipulate remain highly incomplete, due to the dual problem of 'unknown' proteins and 'orphan' enzymes. The former are all the proteins deduced from genome sequence that have no known function, and the latter are all the enzymes described in the literature (and often catalogued in the EC database) for which no corresponding gene has been reported. Unknown proteins constitute up to about half of the proteins in prokaryotic genomes, and much more than this in higher plants and animals. Orphan enzymes make up more than a third of the EC database. Attacking the 'missing parts list' problem is accordingly one of the great challenges for post-genomic biology, and a tremendous opportunity to discover new facets of life's machinery. Success will require a co-ordinated community-wide attack, sustained over years. In this attack, comparative genomics is probably the single most effective strategy, for it can reliably predict functions for unknown proteins and genes for orphan enzymes. Furthermore, it is cost-efficient and increasingly straightforward to deploy owing to a proliferation of databases and associated tools.
HEMD: an integrated tool of human epigenetic enzymes and chemical modulators for therapeutics.
Huang, Zhimin; Jiang, Haiming; Liu, Xinyi; Chen, Yingyi; Wong, Jiemin; Wang, Qi; Huang, Wenkang; Shi, Ting; Zhang, Jian
2012-01-01
Epigenetic mechanisms mainly include DNA methylation, post-translational modifications of histones, chromatin remodeling and non-coding RNAs. All of these processes are mediated and controlled by enzymes. Abnormalities of the enzymes are involved in a variety of complex human diseases. Recently, potent natural or synthetic chemicals are utilized to establish the quantitative contributions of epigenetic regulation through the enzymes and provide novel insight for developing new therapeutics. However, the development of more specific and effective epigenetic therapeutics requires a more complete understanding of the chemical epigenomic landscape. Here, we present a human epigenetic enzyme and modulator database (HEMD), the database which provides a central resource for the display, search, and analysis of the structure, function, and related annotation for human epigenetic enzymes and chemical modulators focused on epigenetic therapeutics. Currently, HEMD contains 269 epigenetic enzymes and 4377 modulators in three categories (activators, inhibitors, and regulators). Enzymes are annotated with detailed description of epigenetic mechanisms, catalytic processes, and related diseases, and chemical modulators with binding sites, pharmacological effect, and therapeutic uses. Integrating the information of epigenetic enzymes in HEMD should allow for the prediction of conserved features for proteins and could potentially classify them as ideal targets for experimental validation. In addition, modulators curated in HEMD can be used to investigate potent epigenetic targets for the query compound and also help chemists to implement structural modifications for the design of novel epigenetic drugs. HEMD could be a platform and a starting point for biologists and medicinal chemists for furthering research on epigenetic therapeutics. HEMD is freely available at http://mdl.shsmu.edu.cn/HEMD/.
Akune, Yukie; Lin, Chi-Hung; Abrahams, Jodie L; Zhang, Jingyu; Packer, Nicolle H; Aoki-Kinoshita, Kiyoko F; Campbell, Matthew P
2016-08-05
Glycan structures attached to proteins are comprised of diverse monosaccharide sequences and linkages that are produced from precursor nucleotide-sugars by a series of glycosyltransferases. Databases of these structures are an essential resource for the interpretation of analytical data and the development of bioinformatics tools. However, with no template to predict what structures are possible the human glycan structure databases are incomplete and rely heavily on the curation of published, experimentally determined, glycan structure data. In this work, a library of 45 human glycosyltransferases was used to generate a theoretical database of N-glycan structures comprised of 15 or less monosaccharide residues. Enzyme specificities were sourced from major online databases including Kyoto Encyclopedia of Genes and Genomes (KEGG) Glycan, Consortium for Functional Glycomics (CFG), Carbohydrate-Active enZymes (CAZy), GlycoGene DataBase (GGDB) and BRENDA. Based on the known activities, more than 1.1 million theoretical structures and 4.7 million synthetic reactions were generated and stored in our database called UniCorn. Furthermore, we analyzed the differences between the predicted glycan structures in UniCorn and those contained in UniCarbKB (www.unicarbkb.org), a database which stores experimentally described glycan structures reported in the literature, and demonstrate that UniCorn can be used to aid in the assignment of ambiguous structures whilst also serving as a discovery database. Copyright © 2016 Elsevier Ltd. All rights reserved.
McClelland, M; Nelson, M; Raschke, E
1994-01-01
Restriction endonucleases have site-specific interactions with DNA that can often be inhibited by site-specific DNA methylation and other site-specific DNA modifications. However, such inhibition cannot generally be predicted. The empirically acquired data on these effects are tabulated for over 320 restriction endonucleases. In addition, a table of known site-specific DNA modification methyltransferases and their specificities is presented along with EMBL database accession numbers for cloned genes. PMID:7937074
Modification-dependent restriction endonuclease, MspJI, flips 5-methylcytosine out of the DNA helix
Horton, J. R.; Wang, H.; Mabuchi, M. Y.; ...
2014-09-27
MspJI belongs to a family of restriction enzymes that cleave DNA containing 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC). MspJI is specific for the sequence 5(h)mC-N-N-G or A and cleaves with some variability 9/13 nucleotides downstream. Earlier, we reported the crystal structure of MspJI without DNA and proposed how it might recognize this sequence and catalyze cleavage. Here we report its co-crystal structure with a 27-base pair oligonucleotide containing 5mC. This structure confirms that MspJI acts as a homotetramer and that the modified cytosine is flipped from the DNA helix into an SRA-like-binding pocket. We expected the structure to reveal two DNAmore » molecules bound specifically to the tetramer and engaged with the enzyme's two DNA-cleavage sites. A coincidence of crystal packing precluded this organization, however. We found that each DNA molecule interacted with two adjacent tetramers, binding one specifically and the other non-specifically. The latter interaction, which prevented cleavage-site engagement, also involved base flipping and might represent the sequence-interrogation phase that precedes specific recognition. MspJI is unusual in that DNA molecules are recognized and cleaved by different subunits. Such interchange of function might explain how other complex multimeric restriction enzymes act.« less
A virus-based single-enzyme nanoreactor
NASA Astrophysics Data System (ADS)
Comellas-Aragonès, Marta; Engelkamp, Hans; Claessen, Victor I.; Sommerdijk, Nico A. J. M.; Rowan, Alan E.; Christianen, Peter C. M.; Maan, Jan C.; Verduin, Benedictus J. M.; Cornelissen, Jeroen J. L. M.; Nolte, Roeland J. M.
2007-10-01
Most enzyme studies are carried out in bulk aqueous solution, at the so-called ensemble level, but more recently studies have appeared in which enzyme activity is measured at the level of a single molecule, revealing previously unseen properties. To this end, enzymes have been chemically or physically anchored to a surface, which is often disadvantageous because it may lead to denaturation. In a natural environment, enzymes are present in a confined reaction space, which inspired us to develop a generic method to carry out single-enzyme experiments in the restricted spatial environment of a virus capsid. We report here the incorporation of individual horseradish peroxidase enzymes in the inner cavity of a virus, and describe single-molecule studies on their enzymatic behaviour. These show that the virus capsid is permeable for substrate and product and that this permeability can be altered by changing pH.
Tacutu, Robi; Craig, Thomas; Budovsky, Arie; Wuttke, Daniel; Lehmann, Gilad; Taranukha, Dmitri; Costa, Joana; Fraifeld, Vadim E.; de Magalhães, João Pedro
2013-01-01
The Human Ageing Genomic Resources (HAGR, http://genomics.senescence.info) is a freely available online collection of research databases and tools for the biology and genetics of ageing. HAGR features now several databases with high-quality manually curated data: (i) GenAge, a database of genes associated with ageing in humans and model organisms; (ii) AnAge, an extensive collection of longevity records and complementary traits for >4000 vertebrate species; and (iii) GenDR, a newly incorporated database, containing both gene mutations that interfere with dietary restriction-mediated lifespan extension and consistent gene expression changes induced by dietary restriction. Since its creation about 10 years ago, major efforts have been undertaken to maintain the quality of data in HAGR, while further continuing to develop, improve and extend it. This article briefly describes the content of HAGR and details the major updates since its previous publications, in terms of both structure and content. The completely redesigned interface, more intuitive and more integrative of HAGR resources, is also presented. Altogether, we hope that through its improvements, the current version of HAGR will continue to provide users with the most comprehensive and accessible resources available today in the field of biogerontology. PMID:23193293
Cloud, Joann L; Conville, Patricia S; Croft, Ann; Harmsen, Dag; Witebsky, Frank G; Carroll, Karen C
2004-02-01
Identification of clinically significant nocardiae to the species level is important in patient diagnosis and treatment. A study was performed to evaluate Nocardia species identification obtained by partial 16S ribosomal DNA (rDNA) sequencing by the MicroSeq 500 system with an expanded database. The expanded portion of the database was developed from partial 5' 16S rDNA sequences derived from 28 reference strains (from the American Type Culture Collection and the Japanese Collection of Microorganisms). The expanded MicroSeq 500 system was compared to (i). conventional identification obtained from a combination of growth characteristics with biochemical and drug susceptibility tests; (ii). molecular techniques involving restriction enzyme analysis (REA) of portions of the 16S rRNA and 65-kDa heat shock protein genes; and (iii). when necessary, sequencing of a 999-bp fragment of the 16S rRNA gene. An unknown isolate was identified as a particular species if the sequence obtained by partial 16S rDNA sequencing by the expanded MicroSeq 500 system was 99.0% similar to that of the reference strain. Ninety-four nocardiae representing 10 separate species were isolated from patient specimens and examined by using the three different methods. Sequencing of partial 16S rDNA by the expanded MicroSeq 500 system resulted in only 72% agreement with conventional methods for species identification and 90% agreement with the alternative molecular methods. Molecular methods for identification of Nocardia species provide more accurate and rapid results than the conventional methods using biochemical and susceptibility testing. With an expanded database, the MicroSeq 500 system for partial 16S rDNA was able to correctly identify the human pathogens N. brasiliensis, N. cyriacigeorgica, N. farcinica, N. nova, N. otitidiscaviarum, and N. veterana.
A review of accessibility of administrative healthcare databases in the Asia-Pacific region.
Milea, Dominique; Azmi, Soraya; Reginald, Praveen; Verpillat, Patrice; Francois, Clement
2015-01-01
We describe and compare the availability and accessibility of administrative healthcare databases (AHDB) in several Asia-Pacific countries: Australia, Japan, South Korea, Taiwan, Singapore, China, Thailand, and Malaysia. The study included hospital records, reimbursement databases, prescription databases, and data linkages. Databases were first identified through PubMed, Google Scholar, and the ISPOR database register. Database custodians were contacted. Six criteria were used to assess the databases and provided the basis for a tool to categorise databases into seven levels ranging from least accessible (Level 1) to most accessible (Level 7). We also categorised overall data accessibility for each country as high, medium, or low based on accessibility of databases as well as the number of academic articles published using the databases. Fifty-four administrative databases were identified. Only a limited number of databases allowed access to raw data and were at Level 7 [Medical Data Vision EBM Provider, Japan Medical Data Centre (JMDC) Claims database and Nihon-Chouzai Pharmacy Claims database in Japan, and Medicare, Pharmaceutical Benefits Scheme (PBS), Centre for Health Record Linkage (CHeReL), HealthLinQ, Victorian Data Linkages (VDL), SA-NT DataLink in Australia]. At Levels 3-6 were several databases from Japan [Hamamatsu Medical University Database, Medi-Trend, Nihon University School of Medicine Clinical Data Warehouse (NUSM)], Australia [Western Australia Data Linkage (WADL)], Taiwan [National Health Insurance Research Database (NHIRD)], South Korea [Health Insurance Review and Assessment Service (HIRA)], and Malaysia [United Nations University (UNU)-Casemix]. Countries were categorised as having a high level of data accessibility (Australia, Taiwan, and Japan), medium level of accessibility (South Korea), or a low level of accessibility (Thailand, China, Malaysia, and Singapore). In some countries, data may be available but accessibility was restricted based on requirements by data custodians. Compared with previous research, this study describes the landscape of databases in the selected countries with more granularity using an assessment tool developed for this purpose. A high number of databases were identified but most had restricted access, preventing their potential use to support research. We hope that this study helps to improve the understanding of the AHDB landscape, increase data sharing and database research in Asia-Pacific countries.
Martínez-Núñez, Mario Alberto; Poot-Hernandez, Augusto Cesar; Rodríguez-Vázquez, Katya; Perez-Rueda, Ernesto
2013-01-01
In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected.
Martínez-Núñez, Mario Alberto; Poot-Hernandez, Augusto Cesar; Rodríguez-Vázquez, Katya; Perez-Rueda, Ernesto
2013-01-01
In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected. PMID:23922780
2014-01-01
The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new activities. Reviewers This article was reviewed by Michael Galperin, Daniel Haft and Daniel Kahn. PMID:24906382
Kurita, Ryoji; Yanagisawa, Hiroyuki; Kamata, Tomoyuki; Kato, Dai; Niwa, Osamu
2017-06-06
This paper reports an on-chip electrochemical assessment of the DNA methylation status in genomic DNA on a conductive nanocarbon film electrode realized with combined bisulfite restriction analysis (COBRA). The film electrode consists of sp 2 and sp 3 hybrid bonds and is fabricated with an unbalanced magnetron (UBM) sputtering method. First, we studied the effect of the sp 2 /sp 3 ratio of the UBM nanocarbon film electrode with p-aminophenol, which is a major electro-active product of the labeling enzyme from p-aminophenol phosphate. The signal current for p-aminophenol increases as the sp 2 content in the UBM nanocarbon film electrode increases because of the π-π interaction between aromatic p-aminophenol and the graphene-like sp 2 structure. Furthermore, the capacitative current at the UBM nanocarbon film electrode was successfully reduced by about 1 order of magnitude thanks to the angstrom-level surface flatness. Therefore, a high signal-to-noise ratio was achieved compared with that of conventional electrodes. Then, after performing an ELISA-like hybridization assay with a restriction enzyme, we undertook an electrochemical evaluation of the cytosine methylation status in DNA by measuring the oxidation current derived from p-aminophenol. When the target cytosine in the analyte sequence is methylated (unmethylated), the restriction enzyme of HpyCH4IV is able (unable) to cleave the sequence, that is, the detection probe cannot (can) hybridize. We succeeded in estimating the methylation ratio at a site-specific CpG site from the peak current of a cyclic voltammogram obtained from a PCR product solution ranging from 0.01 to 1 nM.
Collery, Mark M; Smyth, Cyril J
2007-02-01
The egc locus of Staphylococus aureus harbours two enterotoxin genes (seg and sei) and three enterotoxin-like genes (selm, seln and selo). Between the sei and seln genes are located two pseudogenes, psient1 and psient2, or the selu or seluv gene. While these two alternative sei-seln intergenic regions can be distinguished by PCR, to date, DNA sequencing has been the only confirmatory option because of the very high degree of sequence similarity between egc loci bearing the pseudogenes and the selu or seluv gene. In silico restriction enzyme digestion of genomic regions encompassing the egc locus from the 3' end of the sei gene through the 5' first quarter of the seln gene allowed pseudogene- and selu- or seluv-bearing egc loci to be distinguished by PCR-RFLP. Experimental application of these findings demonstrated that endonuclease HindIII cleaved PCR amplimers bearing pseudogenes but not those with a selu or seluv gene, while selu- or seluv-bearing amplimers were susceptible to cleavage by endonuclease HphI, but not by endonuclease HindIII. The restriction enzyme BccI cleaved selu- or seluv-harbouring amplimers at a unique restriction site created by their signature 15 bp insertion compared with pseudogene-bearing amplimers, thereby allowing distinction of these egc loci. PCR-RFLP analysis using these restriction enzymes provides a rapid, easy to interpret alternative to DNA sequencing for verification of PCR findings on the nature of an egc locus type, and can also be used for the primary identification of the intergenic sei-seln egc locus type.
Improved coverage of cDNA-AFLP by sequential digestion of immobilized cDNA.
Weiberg, Arne; Pöhler, Dirk; Morgenstern, Burkhard; Karlovsky, Petr
2008-10-13
cDNA-AFLP is a transcriptomics technique which does not require prior sequence information and can therefore be used as a gene discovery tool. The method is based on selective amplification of cDNA fragments generated by restriction endonucleases, electrophoretic separation of the products and comparison of the band patterns between treated samples and controls. Unequal distribution of restriction sites used to generate cDNA fragments negatively affects the performance of cDNA-AFLP. Some transcripts are represented by more than one fragment while other escape detection, causing redundancy and reducing the coverage of the analysis, respectively. With the goal of improving the coverage of cDNA-AFLP without increasing its redundancy, we designed a modified cDNA-AFLP protocol. Immobilized cDNA is sequentially digested with several restriction endonucleases and the released DNA fragments are collected in mutually exclusive pools. To investigate the performance of the protocol, software tool MECS (Multiple Enzyme cDNA-AFLP Simulation) was written in Perl. cDNA-AFLP protocols described in the literature and the new sequential digestion protocol were simulated on sets of cDNA sequences from mouse, human and Arabidopsis thaliana. The redundancy and coverage, the total number of PCR reactions, and the average fragment length were calculated for each protocol and cDNA set. Simulation revealed that sequential digestion of immobilized cDNA followed by the partitioning of released fragments into mutually exclusive pools outperformed other cDNA-AFLP protocols in terms of coverage, redundancy, fragment length, and the total number of PCRs. Primers generating 30 to 70 amplicons per PCR provided the highest fraction of electrophoretically distinguishable fragments suitable for normalization. For A. thaliana, human and mice transcriptome, the use of two marking enzymes and three sequentially applied releasing enzymes for each of the marking enzymes is recommended.
2016-05-04
IMESA) Access to Criminal Justice Information (CJI) and Terrorist Screening Databases (TSDB) References: See Enclosure 1 1. PURPOSE. In...CJI database mirror image files. (3) Memorandums of understanding with the FBI CJIS as the data broker for DoD organizations that need access ...not for access determinations. (3) Legal restrictions established by the Sex Offender Registration and Notification Act (SORNA) jurisdictions on
Maritime Situational Awareness Research Infrastructure (MSARI): Requirements and High Level Design
2013-03-01
Exchange Model (NIEM)-Maritime [16], • Rapid Environmental Assessment (REA) database [17], • 2009 United States AIS Database 3, • PASTA -MARE project...upper/lower cases, plural, etc.) is very consistent and is pertinent for MSARI. The 2009 United States AIS and PASTA -MARE project databases, exclusively...designed for AIS, were found too restrictive for MSARI where other types of data are stored. How- ever, some lessons learned of the PASTA -MARE
Cáceres, Tamar B; Thakur, Abhishek; Price, Owen M; Ippolito, Nicole; Li, Jun; Qu, Jun; Acevedo, Orlando; Hevel, Joan M
2018-02-27
Protein arginine methyltransferase 7 (PRMT7) is unique within the PRMT family as it is the only isoform known to exclusively make monomethylarginine (MMA). Given its role in epigenetics, the mechanistic basis for the strict monomethylation activity is under investigation. It is thought that PRMT7 enzymes are unable to add a second methyl group because of steric hindrance in the active site that restricts them to monomethylation. To test this, we probed the active site of trypanosomal PRMT7 (TbPRMT7) using accelerated molecular dynamics, site-directed mutagenesis, kinetic, binding, and product analyses. Both the dynamics simulations and experimental results show that the mutation of Phe71 to Ile converts the enzyme from a type III methyltransferase into a mixed type I/II, that is, an enzyme that can now perform dimethylation. In contrast, the serine and alanine mutants of Phe71 preserve the type III behavior of the native enzyme. These results are inconsistent with a sterics-only model to explain product specificity. Instead, molecular dynamics simulations of these variants bound to peptides show hydrogen bonding between would-be substrates and Glu172 of TbPRMT7. Only in the case of the Phe71 to Ile mutation is this interaction between MMA and the enzyme maintained, and the geometry for optimal S N 2 methyl transfer is obtained. The results of these studies highlight the benefit of combined computational and experimental methods in providing a better understanding for how product specificity is dictated by PRMTs.
Mechanisms Underlying the Breast Cancer Susceptibility Locus Mcs5a
2010-07-01
fixed using formaldehyde . The extracted fixed chromatin is digested with a restriction enzyme and religated in a strongly dilute fashion. In this...procedure the ligation of genetic elements that were glued together by formaldehyde fixation is favored over ligation of random elements. Following... digested and randomly ligated control template containing all restriction fragments of interest in equal molarity. To investigate the Mcs5a1-Mcs5a2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rayl, K.D.; Gaasterland, T.
This paper presents an overview of the purpose, content, and design of a subset of the currently available biological databases, with an emphasis on protein databases. Databases included in this summary are 3D-ALI, Berlin RNA databank, Blocks, DSSP, EMBL Nucleotide Database, EMP, ENZYME, FSSP, GDB, GenBank, HSSP, LiMB, PDB, PIR, PKCDD, ProSite, and SWISS-PROT. The goal is to provide a starting point for researchers who wish to take advantage of the myriad available databases. Rather than providing a complete explanation of each database, we present its content and form by explaining the details of typical entries. Pointers to more completemore » ``user guides`` are included, along with general information on where to search for a new database.« less
NASA Astrophysics Data System (ADS)
Li, Fenghui; Gao, Fei; Tan, Jie; Fan, Chaojing; Sun, Huiling; Yan, Jingping; Chen, Siqing; Wang, Xiaojun
2016-01-01
Gut microorganisms play an important role in the digestion of their host animals. The purpose of this research was to isolate and assess the enzyme-producing microbes from the Apostichopus japonicus gut. Thirty-nine strains that can produce at least one of the three digestive enzymes (protease, amylase, and cellulase) were qualitatively screened based on their extracellular enzyme-producing abilities. The enzyme-producing strains clustered into eight groups at the genetic similarity level of 100% by analyzing the restriction patterns of 16S rDNA amplified with Mbo I. Phylogenetic analysis revealed that 37 strains belonged to the genus Bacillus and two were members of the genus Virgibacillus. Enzyme-producing capability results indicate that the main enzyme-producing microflora in the A. japonicus gut was Bacillus, which can produce protease, amylase, and cellulase. Virgibacillus, however, can only produce protease. The high enzyme-producing capability of the isolates suggests that the gut microbiota play an important role in the sea cucumber digestive process.
Biocuration in the structure-function linkage database: the anatomy of a superfamily.
Holliday, Gemma L; Brown, Shoshana D; Akiva, Eyal; Mischel, David; Hicks, Michael A; Morris, John H; Huang, Conrad C; Meng, Elaine C; Pegg, Scott C-H; Ferrin, Thomas E; Babbitt, Patricia C
2017-01-01
With ever-increasing amounts of sequence data available in both the primary literature and sequence repositories, there is a bottleneck in annotating molecular function to a sequence. This article describes the biocuration process and methods used in the structure-function linkage database (SFLD) to help address some of the challenges. We discuss how the hierarchy within the SFLD allows us to infer detailed functional properties for functionally diverse enzyme superfamilies in which all members are homologous, conserve an aspect of their chemical function and have associated conserved structural features that enable the chemistry. Also presented is the Enzyme Structure-Function Ontology (ESFO), which has been designed to capture the relationships between enzyme sequence, structure and function that underlie the SFLD and is used to guide the biocuration processes within the SFLD. http://sfld.rbvi.ucsf.edu/. © The Author 2017. Published by Oxford University Press.
19F NMR measurements of the rotational mobility of proteins in vivo.
Williams, S P; Haggie, P M; Brindle, K M
1997-01-01
Three glycolytic enzymes, hexokinase, phosphoglycerate kinase, and pyruvate kinase, were fluorine labeled in the yeast Saccharomyces cerevisiae by biosynthetic incorporation of 5-fluorotryptophan. 19F NMR longitudinal relaxation time measurements on the labeled enzymes were used to assess their rotational mobility in the intact cell. Comparison with the results obtained from relaxation time measurements of the purified enzymes in vitro and from theoretical calculations showed that two of the labeled enzymes, phosphoglycerate kinase and hexokinase, were tumbling in a cytoplasm that had a viscosity approximately twice that of water. There were no detectable signals from pyruvate kinase in vivo, although it could be detected in diluted cell extracts, indicating that there was some degree of motional restriction of the enzyme in the intact cell. PMID:8994636
d'Acierno, Antonio; Facchiano, Angelo; Marabotti, Anna
2009-06-01
We describe the GALT-Prot database and its related web-based application that have been developed to collect information about the structural and functional effects of mutations on the human enzyme galactose-1-phosphate uridyltransferase (GALT) involved in the genetic disease named galactosemia type I. Besides a list of missense mutations at gene and protein sequence levels, GALT-Prot reports the analysis results of mutant GALT structures. In addition to the structural information about the wild-type enzyme, the database also includes structures of over 100 single point mutants simulated by means of a computational procedure, and the analysis to each mutant was made with several bioinformatics programs in order to investigate the effect of the mutations. The web-based interface allows querying of the database, and several links are also provided in order to guarantee a high integration with other resources already present on the web. Moreover, the architecture of the database and the web application is flexible and can be easily adapted to store data related to other proteins with point mutations. GALT-Prot is freely available at http://bioinformatica.isa.cnr.it/GALT/.
Zhou, Man; Guo, Peng; Wang, Tao; Gao, Lina; Yin, Huijun; Cai, Cheng; Gu, Jie; Lü, Xin
2017-01-01
Degradation of pectin in lignocellulosic materials is one of the key steps for biofuel production. Biological hydrolysis of pectin, i.e., degradation by pectinolytic microbes and enzymes, is an attractive paradigm because of its obvious advantages, such as environmentally friendly procedures, low in energy demand for lignin removal, and the possibility to be integrated in consolidated process. In this study, a metagenomics sequence-guided strategy coupled with enrichment culture technique was used to facilitate targeted discovery of pectinolytic microbes and enzymes. An apple pomace-adapted compost (APAC) habitat was constructed to boost the enrichment of pectinolytic microorganisms. Analyses of 16S rDNA high-throughput sequencing revealed that microbial communities changed dramatically during composting with some bacterial populations being greatly enriched. Metagenomics data showed that apple pomace-adapted compost microbial community (APACMC) was dominated by Proteobacteria and Bacteroidetes . Functional analysis and carbohydrate-active enzyme profiles confirmed that APACMC had been successfully enriched for the targeted functions. Among the 1756 putative genes encoding pectinolytic enzymes, 129 were predicted as novel (with an identity <30% to any CAZy database entry) and only 1.92% were more than 75% identical with proteins in NCBI environmental database, demonstrating that they have not been observed in previous metagenome projects. Phylogenetic analysis showed that APACMC harbored a broad range of pectinolytic bacteria and many of them were previously unrecognized. The immensely diverse pectinolytic microbes and enzymes found in our study will expand the arsenal of proficient degraders and enzymes for lignocellulosic biofuel production. Our study provides a powerful approach for targeted mining microbes and enzymes in numerous industries.
Integrating Variances into an Analytical Database
NASA Technical Reports Server (NTRS)
Sanchez, Carlos
2010-01-01
For this project, I enrolled in numerous SATERN courses that taught the basics of database programming. These include: Basic Access 2007 Forms, Introduction to Database Systems, Overview of Database Design, and others. My main job was to create an analytical database that can handle many stored forms and make it easy to interpret and organize. Additionally, I helped improve an existing database and populate it with information. These databases were designed to be used with data from Safety Variances and DCR forms. The research consisted of analyzing the database and comparing the data to find out which entries were repeated the most. If an entry happened to be repeated several times in the database, that would mean that the rule or requirement targeted by that variance has been bypassed many times already and so the requirement may not really be needed, but rather should be changed to allow the variance's conditions permanently. This project did not only restrict itself to the design and development of the database system, but also worked on exporting the data from the database to a different format (e.g. Excel or Word) so it could be analyzed in a simpler fashion. Thanks to the change in format, the data was organized in a spreadsheet that made it possible to sort the data by categories or types and helped speed up searches. Once my work with the database was done, the records of variances could be arranged so that they were displayed in numerical order, or one could search for a specific document targeted by the variances and restrict the search to only include variances that modified a specific requirement. A great part that contributed to my learning was SATERN, NASA's resource for education. Thanks to the SATERN online courses I took over the summer, I was able to learn many new things about computers and databases and also go more in depth into topics I already knew about.
Therapeutic modalities for cow's milk allergy.
Seidman, Ernest G; Singer, Sanford
2003-06-01
To discuss current therapeutic modalities for cow's milk allergy and its prevention. The sources of data include original clinical studies carried out at Ste. Justine Hospital, as well as a systematic search of the published English and French language scientific literature restricted to human subjects using computerized searches (National Public Library of Medicine, Cochrane Database Systems Review) from 1997 to 2002. Search terms for article retrieval included food allergy, milk allergy, therapy, and prevention. The therapy of food allergies depends upon an accurate diagnosis, which remains a challenge in non--IgE-mediated cases. Dietary exclusion remains the mainstay of therapy, with medications reserved for exceptional patients. Preliminary evidence suggests that pancreatic enzyme supplementation may be of benefit for cases with multiple food allergies and severe eczema. Hydrolysate formula use is currently recommended for dietary allergy prevention in infants at an increased risk when maternal milk is insufficient or unavailable. The use of partially hydrolyzed formulas to prevent allergic disorders, including atopic dermatitis, is supported by clinical studies, but cannot be used in the already sensitized, milk-allergic child. Probiotics show enormous potential in preventing food allergic disorders as well.
Transcription Factor Map Alignment of Promoter Regions
Blanco, Enrique; Messeguer, Xavier; Smith, Temple F; Guigó, Roderic
2006-01-01
We address the problem of comparing and characterizing the promoter regions of genes with similar expression patterns. This remains a challenging problem in sequence analysis, because often the promoter regions of co-expressed genes do not show discernible sequence conservation. In our approach, thus, we have not directly compared the nucleotide sequence of promoters. Instead, we have obtained predictions of transcription factor binding sites, annotated the predicted sites with the labels of the corresponding binding factors, and aligned the resulting sequences of labels—to which we refer here as transcription factor maps (TF-maps). To obtain the global pairwise alignment of two TF-maps, we have adapted an algorithm initially developed to align restriction enzyme maps. We have optimized the parameters of the algorithm in a small, but well-curated, collection of human–mouse orthologous gene pairs. Results in this dataset, as well as in an independent much larger dataset from the CISRED database, indicate that TF-map alignments are able to uncover conserved regulatory elements, which cannot be detected by the typical sequence alignments. PMID:16733547
Hagopian, Kevork; Ramsey, Jon J.; Weindruch, Richard
2009-01-01
The influence of caloric restriction (CR) on hepatic sorbitol-metabolizing enzyme activities was investigated in young and old mice. Aldose reductase and sorbitol dehydrogenase activities were significantly lower in old CR mice than in old controls. Young CR mice showed decreased aldose reductase activity and a trend towards decreased sorbitol dehydrogenase when compared to controls. Metabolites of the pathway, namely sorbitol, glucose and fructose were decreased by CR in young and old mice. Pyruvate levels were decreased by CR in both young and old mice, while lactate decreased only in old CR. Malate levels increased in old CR but remained unchanged in young CR, when compared with controls. Accordingly, the lactae/pyruvate and malate/pyruvate ratios in young and old CR mice were increased, indicating increased NADH/NAD and NADPH/NADP redox couples, respectively. The results indicate that decreased glucose levels under CR conditions lead to decreased sorbitol pathway enzyme activities and metabolite levels, and could contribute to the beneficial effects of long-term CR through decreased sorbitol levels and NADPH sparing. PMID:18953666
Mechanisms leading to increased risk of preterm birth in growth-restricted guinea pig pregnancies.
Palliser, Hannah K; Kelleher, Meredith A; Welsh, Toni N; Zakar, Tamas; Hirst, Jonathan J
2014-02-01
Intrauterine growth restriction (IUGR) is a risk factor for preterm labor; however, the mechanisms of the relationship remain unknown. Prostaglandin (PG), key stimulants of labor, availability is regulated by the synthetic enzymes, prostaglandin endoperoxidases 1 and 2 (PTGS1 and 2), and the metabolizing enzyme, 15-hydroxyprostaglandin dehydrogenase (HPGD). We hypothesized that IUGR increases susceptibility to preterm labor due to the changing balance of synthetic and metabolizing enzymes and hence greater PG availability. We have tested this hypothesis using a surgically induced IUGR model in guinea pigs, which results in significantly shorter gestation. Myometrium, amnion, chorion, and placentas were collected from sham operated or IUGR pregnancies, and PTGS1 and HPGD protein expression were quantified throughout late gestation (>62 days) and labor. The PTGS1 expression was significantly upregulated in the myometrium of IUGR animals, and chorionic HPGD expression was markedly decreased (P < .01 and P < .001, respectively). These findings suggest a shift in the balance of PG production over metabolism in IUGR pregnancies leads to a greater susceptibility to preterm birth.
Characterising Complex Enzyme Reaction Data
Rahman, Syed Asad; Thornton, Janet M.
2016-01-01
The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC) number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG). Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution. PMID:26840640
How-to-Do-It: Biotechnology in Three Days.
ERIC Educational Resources Information Center
Gardner, Alan M.
1988-01-01
Outlines a three-day unit for presenting biotechnology. States that the approach surveys the processes of enzyme restriction, ligation, transformations of recombinant plasmids, and gel electrophoresis. Diagrams accompany the article. (RT)
HIV Structural Database using Chem BLAST for all classes of AIDS inhibitors
National Institute of Standards and Technology Data Gateway
SRD 155 HIV Structural Database using Chem BLAST for all classes of AIDS inhibitors (Web, free access) The HIV structural database (HIVSDB) is a comprehensive collection of the structures of HIV protease, both of unliganded enzyme and of its inhibitor complexes. It contains abstracts and crystallographic data such as inhibitor and protein coordinates for 248 data sets, of which only 141 are from the Protein Data Bank (PDB).
Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ
Gray, Joe W.; Pinkel, Daniel
1991-01-01
A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. Probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations.
Purification and characterization of the restriction endonuclease RsrI, an isoschizomer of EcoRI.
Greene, P J; Ballard, B T; Stephenson, F; Kohr, W J; Rodriguez, H; Rosenberg, J M; Boyer, H W
1988-08-15
Rhodobacter sphaeroides strain 630 produces restriction enzyme RsrI which is an isoschizomer of EcoRI. We have purified this enzyme and initiated a comparison with the EcoRI endonuclease. The properties of RsrI are consistent with a reaction mechanism similar to that of EcoRI: the position of cleavage within the -GAATTC-site is identical, the MgCl2 optimum for the cleavage is identical, and the pH profile is similar. Methylation of the substrate sequence by the EcoRI methylase protects the site from cleavage by the RsrI endonuclease. RsrI cross-reacts strongly with anti-EcoRI serum indicating three-dimensional structural similarities. We have determined the sequence of 34 N terminal amino acids for RsrI and this sequence possesses significant similarity to the EcoRI N terminus.
Mechanisms of double-strand-break repair during gene targeting in mammalian cells.
Ng, P; Baker, M D
1999-01-01
In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism. PMID:10049929
Mymryk, J S; Berard, D; Hager, G L; Archer, T K
1995-01-01
We have stably introduced a reporter gene under the control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) into human T47D breast cancer cells to study the action of the progesterone receptor (PR) on transcription from a chromatin template. Unexpectedly, the chromatin organization of the MMTV LTR in these human breast cancer cells differed markedly from what we have observed previously. The region adjacent to the transcription start site (-221 to -75) was found to be constitutively hypersensitive to restriction enzyme cleavage in the absence of hormone. This region is normally encompassed within the second nucleosome of a phased array of six nucleosomes that is assembled when the MMTV LTR is stably maintained in mouse cells. Characteristically, in these rodent cells, the identical DNA sequences show increased restriction enzyme cleavage only in the presence of glucocorticoid. The increased access of restriction enzymes observed in the human PR+ cells was not observed in adjacent nucleosomes and was unaffected by treatment with the progesterone antagonist RU486. In addition, exonuclease III-dependent stops corresponding to the binding sites for nuclear factor 1 and the PR were observed before and after hormone treatment. These results indicate that MMTV chromatin replicated in these cells is organized into a constitutively open architecture and that this open chromatin state is accompanied by hormone-independent loading of a transcription factor complex that is normally excluded from uninduced chromatin. PMID:7799933
Mymryk, J S; Berard, D; Hager, G L; Archer, T K
1995-01-01
We have stably introduced a reporter gene under the control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) into human T47D breast cancer cells to study the action of the progesterone receptor (PR) on transcription from a chromatin template. Unexpectedly, the chromatin organization of the MMTV LTR in these human breast cancer cells differed markedly from what we have observed previously. The region adjacent to the transcription start site (-221 to -75) was found to be constitutively hypersensitive to restriction enzyme cleavage in the absence of hormone. This region is normally encompassed within the second nucleosome of a phased array of six nucleosomes that is assembled when the MMTV LTR is stably maintained in mouse cells. Characteristically, in these rodent cells, the identical DNA sequences show increased restriction enzyme cleavage only in the presence of glucocorticoid. The increased access of restriction enzymes observed in the human PR+ cells was not observed in adjacent nucleosomes and was unaffected by treatment with the progesterone antagonist RU486. In addition, exonuclease III-dependent stops corresponding to the binding sites for nuclear factor 1 and the PR were observed before and after hormone treatment. These results indicate that MMTV chromatin replicated in these cells is organized into a constitutively open architecture and that this open chromatin state is accompanied by hormone-independent loading of a transcription factor complex that is normally excluded from uninduced chromatin.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
... to publishing the final rule, three geographic coordinates along Arkansas State Highway 10 and three... areas R-2402A, R-2402B, and R- 2402C changed in the aeronautical database. This action corrects those... in the Federal Register to establish two restricted areas (R-2402B and R-2402C) and amend an existing...
Enzyme Mini-Test for Field Identification of Leishmania Isolates from U.S. Military Personnel.
1985-08-15
8217.*". .. , 00 ENZYME MINI-TEST FOR FIELD IDENTIFICATION OF ’ r LEISHMANIA ISOLATES FROM U.S. MILITARY la ...No 0704-0188% __REPORTDOCUMENTATION__PAGEExp Date Jun30, 1986 la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS Unclassified 2a SECURITY...Soc. Trop. Med. ’* Mcreevy, P. B., P. D. Kreutzer, E. D. Frank-, H. A. Stim- son , C. N. Oster and L. D. H-ndricks. 1983. Taxonomy, clinical pathology
Synakiewicz, Anna; Stachowicz-Stencel, Teresa; Adamkiewicz-Drozynska, Elzbieta
2014-11-01
The metabolic differences between normal, healthy cells and neoplastic cells have been exploited by anticancer therapies targeting metabolic pathways. Various studies of malignant processes have demonstrated disturbances in both arginine synthesis and metabolism that enhance or inhibit tumor cell growth. Consequently, there has been an increased interest in the arginine-depleting enzyme arginine deiminase (ADI) as a potential antineoplastic therapy. This review summarizes the literature on the potential anti-cancer therapeutics arginine and ADI, an arginine-catabolizing enzyme. The authors searched the MEDLINE database PubMed using the key words: 'arginine, 'ADI', 'arginine in cancer' and 'ADI and cancer'. The authors evaluate prospective randomized studies on cancer patients between 2004 and 2013 as well as ongoing research found through the US National Institutes of Health trial database. The results of current studies are promising but do not give unequivocal answers and so it is impossible to recommend arginine or its enzyme ADI as a therapeutic. In the opinion of the authors, further identification of arginine-dependent malignant tumors and their metabolism should be investigated. Furthermore, the use of these chemicals, in combination with other chemotherapeutics drugs, should be investigated and indeed may improve the success of arginine-depleting enzymes such as pegylated ADI (ADI-PEG20).
A review of accessibility of administrative healthcare databases in the Asia-Pacific region
Milea, Dominique; Azmi, Soraya; Reginald, Praveen; Verpillat, Patrice; Francois, Clement
2015-01-01
Objective We describe and compare the availability and accessibility of administrative healthcare databases (AHDB) in several Asia-Pacific countries: Australia, Japan, South Korea, Taiwan, Singapore, China, Thailand, and Malaysia. Methods The study included hospital records, reimbursement databases, prescription databases, and data linkages. Databases were first identified through PubMed, Google Scholar, and the ISPOR database register. Database custodians were contacted. Six criteria were used to assess the databases and provided the basis for a tool to categorise databases into seven levels ranging from least accessible (Level 1) to most accessible (Level 7). We also categorised overall data accessibility for each country as high, medium, or low based on accessibility of databases as well as the number of academic articles published using the databases. Results Fifty-four administrative databases were identified. Only a limited number of databases allowed access to raw data and were at Level 7 [Medical Data Vision EBM Provider, Japan Medical Data Centre (JMDC) Claims database and Nihon-Chouzai Pharmacy Claims database in Japan, and Medicare, Pharmaceutical Benefits Scheme (PBS), Centre for Health Record Linkage (CHeReL), HealthLinQ, Victorian Data Linkages (VDL), SA-NT DataLink in Australia]. At Levels 3–6 were several databases from Japan [Hamamatsu Medical University Database, Medi-Trend, Nihon University School of Medicine Clinical Data Warehouse (NUSM)], Australia [Western Australia Data Linkage (WADL)], Taiwan [National Health Insurance Research Database (NHIRD)], South Korea [Health Insurance Review and Assessment Service (HIRA)], and Malaysia [United Nations University (UNU)-Casemix]. Countries were categorised as having a high level of data accessibility (Australia, Taiwan, and Japan), medium level of accessibility (South Korea), or a low level of accessibility (Thailand, China, Malaysia, and Singapore). In some countries, data may be available but accessibility was restricted based on requirements by data custodians. Conclusions Compared with previous research, this study describes the landscape of databases in the selected countries with more granularity using an assessment tool developed for this purpose. A high number of databases were identified but most had restricted access, preventing their potential use to support research. We hope that this study helps to improve the understanding of the AHDB landscape, increase data sharing and database research in Asia-Pacific countries. PMID:27123180
Amber J. Vanden Wymelenberg; Grzegorz Sabat; Diego Martinez; Alex S. Rajangam; Tuula T. Teeri; Jill A. Gaskell; Philip J. Kersten; Daniel Cullen
2005-01-01
The white rot basidiomycete, Phanerochaete chrysosporium, employs an array of extracellular enzymes to completely degrade the major polymers of wood : cellulose, hemicellulose and lignin. Towards the identification of participating enzymes, 268 likely secreted proteins were predicted using SignalP and TargetP algorithms. To assess the reliability of secretome...
A review of legislation restricting the intersection of firearms and alcohol in the U.S.
Carr, Brendan G; Porat, Gali; Wiebe, Douglas J; Branas, Charles C
2010-01-01
In the United States, injury is a leading cause of alcohol-related death, and alcohol use is the leading risk factor for injury. We reviewed state and federal legislation regulating the intersection of alcohol and firearms. We examined the current criminal codes of all 50 states and the District of Columbia using the databases Westlaw and LexisNexis to review restrictions on firearm use while intoxicated. We found three types of laws in 26 states that restrict firearm use by intoxicated people: sales or transfers are restricted in six states, carrying of concealed weapons is restricted in four states, and possession or discharge of a firearm while intoxicated is restricted in 20 states. Regulation of the carrying and use of firearms by acutely intoxicated individuals may represent a public health opportunity to reduce firearm-related injury.
Suzuki, Tadashi; Yano, Keiichi; Sugimoto, Seiji; Kitajima, Ken; Lennarz, William J; Inoue, Sadako; Inoue, Yasuo; Emori, Yasufumi
2002-07-23
Formation of oligosaccharides occurs both in the cytosol and in the lumen of the endoplasmic reticulum (ER). Luminal oligosaccharides are transported into the cytosol to ensure that they do not interfere with proper functioning of the glycan-dependent quality control machinery in the lumen of the ER for newly synthesized glycoproteins. Once in the cytosol, free oligosaccharides are catabolized, possibly to maximize the reutilization of the component sugars. An endo-beta-N-acetylglucosaminidase (ENGase) is a key enzyme involved in the processing of free oligosaccharides in the cytosol. This enzyme activity has been widely described in animal cells, but the gene encoding this enzyme activity has not been reported. Here, we report the identification of the gene encoding human cytosolic ENGase. After 11 steps, the enzyme was purified 150,000-fold to homogeneity from hen oviduct, and several internal amino acid sequences were analyzed. Based on the internal sequence and examination of expressed sequence tag (EST) databases, we identified the human orthologue of the purified protein. The human protein consists of 743 aa and has no apparent signal sequence, supporting the idea that this enzyme is localized in the cytosol. By expressing the cDNA of the putative human ENGase in COS-7 cells, the enzyme activity in the soluble fraction was enhanced 100-fold over the basal level, confirming that the human gene identified indeed encodes for ENGase. Careful gene database surveys revealed the occurrence of ENGase homologues in Drosophila melanogaster, Caenorhabditis elegans, and Arabidopsis thaliana, indicating the broad occurrence of ENGase in higher eukaryotes. This gene was expressed in a variety of human tissues, suggesting that this enzyme is involved in basic biological processes in eukaryotic cells.
Simons, Michelle; Szczelkun, Mark D.
2011-01-01
The Type I restriction-modification enzymes comprise three protein subunits; HsdS and HsdM that form a methyltransferase (MTase) and HsdR that associates with the MTase and catalyses Adenosine-5′-triphosphate (ATP)-dependent DNA translocation and cleavage. Here, we examine whether the MTase and HsdR components can ‘turnover’ in vitro, i.e. whether they can catalyse translocation and cleavage events on one DNA molecule, dissociate and then re-bind a second DNA molecule. Translocation termination by both EcoKI and EcoR124I leads to HsdR dissociation from linear DNA but not from circular DNA. Following DNA cleavage, the HsdR subunits appear unable to dissociate even though the DNA is linear, suggesting a tight interaction with the cleaved product. The MTases of EcoKI and EcoAI can dissociate from DNA following either translocation or cleavage and can initiate reactions on new DNA molecules as long as free HsdR molecules are available. In contrast, the MTase of EcoR124I does not turnover and additional cleavage of circular DNA is not observed by inclusion of RecBCD, a helicase–nuclease that degrades the linear DNA product resulting from Type I cleavage. Roles for Type I restriction endonuclease subunit dynamics in restriction alleviation in the cell are discussed. PMID:21712244
Trinh, Quoclinh; Xu, Wentao; Shi, Hui; Luo, Yunbo; Huang, Kunlun
2012-06-01
A-T linker adapter polymerase chain reaction (PCR) was modified and employed for the isolation of genomic fragments adjacent to a known DNA sequence. The improvements in the method focus on two points. The first is the modification of the PO(4) and NH(2) groups in the adapter to inhibit the self-ligation of the adapter or the generation of nonspecific products. The second improvement is the use of the capacity of rTaq DNA polymerase to add an adenosine overhang at the 3' ends of digested DNA to suppress self-ligation in the digested DNA and simultaneously resolve restriction site clone bias. The combination of modifications in the adapter and in the digested DNA leads to T/A-specific ligation, which enhances the flexibility of this method and makes it feasible to use many different restriction enzymes with a single adapter. This novel A-T linker adapter PCR overcomes the inherent limitations of the original ligation-mediated PCR method such as low specificity and a lack of restriction enzyme choice. Moreover, this method also offers higher amplification efficiency, greater flexibility, and easier manipulation compared with other PCR methods for chromosome walking. Experimental results from 143 Arabidopsis mutants illustrate that this method is reliable and efficient in high-throughput experiments. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Feng; Yi, Zhenzhen; Gong, Jun; Al-Rasheid Khaled, A. S.; Song, Weibo
2010-05-01
To separate and redefine the ambiguous Holosticha-complex, a confusing group of hypotrichous ciliates, six strains belonging to five morphospecies of three genera, Holosticha heterofoissneri, Anteholosticha sp. pop1, Anteholosticha sp. pop2, A. manca, A. gracilis and Nothoholosticha fasciola, were analyzed using 12 restriction enzymes on the basis of amplified ribosomal DNA restriction analysis. Nine of the 12 enzymes could digest the DNA products, four ( Hinf I, Hind III, Msp I, Taq I) yielded species-specific restriction patterns, and Hind III and Taq I produced different patterns for two Anteholosticha sp. populations. Distinctly different restriction digestion haplotypes and similarity indices can be used to separate the species. The secondary structures of the five species were predicted based on the ITS2 transcripts and there were several minor differences among species, while two Anteholosticha sp. populations were identical. In addition, phylogenies based on the SSrRNA gene sequences were reconstructed using multiple algorithms, which grouped them generally into four clades, and exhibited that the genus Anteholosticha should be a convergent assemblage. The fact that Holosticha species clustered with the oligotrichs and choreotrichs, though with very low support values, indicated that the topology may be very divergent and unreliable when the number of sequence data used in the analyses is too low.
Ristaino, Jean B.; Madritch, Michael; Trout, Carol L.; Parra, Gregory
1998-01-01
We have developed a PCR procedure to amplify DNA for quick identification of the economically important species from each of the six taxonomic groups in the plant pathogen genus Phytophthora. This procedure involves amplification of the 5.8S ribosomal DNA gene and internal transcribed spacers (ITS) with the ITS primers ITS 5 and ITS 4. Restriction digests of the amplified DNA products were conducted with the restriction enzymes RsaI, MspI, and HaeIII. Restriction fragment patterns were similar after digestions with RsaI for the following species: P. capsici and P. citricola; P. infestans, P. cactorum, and P. mirabilis; P. fragariae, P. cinnamomi, and P. megasperma from peach; P. palmivora, P. citrophthora, P. erythroseptica, and P. cryptogea; and P. megasperma from raspberry and P. sojae. Restriction digests with MspI separated P. capsici from P. citricola and separated P. cactorum from P. infestans and P. mirabilis. Restriction digests with HaeIII separated P. citrophthora from P. cryptogea, P. cinnamomi from P. fragariae and P. megasperma on peach, P. palmivora from P. citrophthora, and P. megasperma on raspberry from P. sojae. P. infestans and P. mirabilis digests were identical and P. cryptogea and P. erythroseptica digests were identical with all restriction enzymes tested. A unique DNA sequence from the ITS region I in P. capsici was used to develop a primer called PCAP. The PCAP primer was used in PCRs with ITS 1 and amplified only isolates of P. capsici, P. citricola, and P. citrophthora and not 13 other species in the genus. Restriction digests with MspI separated P. capsici from the other two species. PCR was superior to traditional isolation methods for detection of P. capsici in infected bell pepper tissue in field samples. The techniques described will provide a powerful tool for identification of the major species in the genus Phytophthora. PMID:9501434
Einer-Jensen, Katja; Winton, James R.; Lorenzen, Niels
2005-01-01
The aim of this study was to develop a standardized molecular assay that used limited resources and equipment for routine genotyping of isolates of the fish rhabdovirus, viral haemorrhagic septicaemia virus (VHSV). Computer generated restriction maps, based on 62 unique full-length (1524 nt) sequences of the VHSV glycoprotein (G) gene, were used to predict restriction fragment length polymorphism (RFLP) patterns that were subsequently grouped and compared with a phylogenetic analysis of the G-gene sequences of the same set of isolates. Digestion of PCR amplicons from the full-lengthG-gene by a set of three restriction enzymes was predicted to accurately enable the assignment of the VHSV isolates into the four major genotypes discovered to date. Further sub-typing of the isolates into the recently described sub-lineages of genotype I was possible by applying three additional enzymes. Experimental evaluation of the method consisted of three steps: (i) RT-PCR amplification of the G-gene of VHSV isolates using purified viral RNA as template, (ii) digestion of the PCR products with a panel of restriction endonucleases and (iii) interpretation of the resulting RFLP profiles. The RFLP analysis was shown to approximate the level of genetic discrimination obtained by other, more labour-intensive, molecular techniques such as the ribonuclease protection assay or sequence analysis. In addition, 37 previously uncharacterised isolates from diverse sources were assigned to specific genotypes. While the assay was able to distinguish between marine and continental isolates of VHSV, the differences did not correlate with the pathogenicity of the isolates.
Arima, Hideaki; Miwa, Makiko; Kawahara, Kazuo
2007-03-01
To determine the prevalence of comorbid depression among people with type 2 diabetes using the integrated health database. A total of 6543 people aged 18-65 years were selected from the employees of a Japanese corporation. Using the corporation's integrated health database, which consisted of medical claims data and a self-reported questionnaire from the fiscal year 2000, this study was undertaken to identify the prevalence, the odds ratio and some related factors. The prevalence of co-morbid depression among people with type 2 diabetes was 2.6%. The crude odds ratio of co-morbid depression among those with type 2 diabetes was 2.20 (95% CI 0.88-5.50). After adjustment for covariates (gender, age, alcohol drinking, smoking, exercise, and dietary restriction), the odds ratio of co-morbid depression among those with type 2 diabetes was 2.33 (0.86-6.33). Using the integrated health database, it was suggested that patients with type 2 diabetes were more likely to suffer from depression and there was a relationship between depression and dietary restriction of portion control.
A Systems Biology Framework for Modeling Metabolic Enzyme Inhibition of Mycobacterium Tuberculosis
2009-09-15
Quadri LE: Assembly of aryl-capped siderophores by modular peptide synthetases and polyketide synthases . Mol Microbiol 2000, 37:1-12. 51. Chou CJ...opportunities for therapeutic intervention. Results: We developed a mathematical framework to simulate the effects on the growth of a pathogen when enzymes in... on the growth of M. tuberculosis in a medium whose carbon source was restricted to fatty acids, and that of the 5’-O-(N-salicylsulfamoyl) adenosine
TIM Barrel Protein Structure Classification Using Alignment Approach and Best Hit Strategy
NASA Astrophysics Data System (ADS)
Chu, Jia-Han; Lin, Chun Yuan; Chang, Cheng-Wen; Lee, Chihan; Yang, Yuh-Shyong; Tang, Chuan Yi
2007-11-01
The classification of protein structures is essential for their function determination in bioinformatics. It has been estimated that around 10% of all known enzymes have TIM barrel domains from the Structural Classification of Proteins (SCOP) database. With its high sequence variation and diverse functionalities, TIM barrel protein becomes to be an attractive target for protein engineering and for the evolution study. Hence, in this paper, an alignment approach with the best hit strategy is proposed to classify the TIM barrel protein structure in terms of superfamily and family levels in the SCOP. This work is also used to do the classification for class level in the Enzyme nomenclature (ENZYME) database. Two testing data sets, TIM40D and TIM95D, both are used to evaluate this approach. The resulting classification has an overall prediction accuracy rate of 90.3% for the superfamily level in the SCOP, 89.5% for the family level in the SCOP and 70.1% for the class level in the ENZYME. These results demonstrate that the alignment approach with the best hit strategy is a simple and viable method for the TIM barrel protein structure classification, even only has the amino acid sequences information.
Metabolic pathway reconstruction of eugenol to vanillin bioconversion in Aspergillus niger
Srivastava, Suchita; Luqman, Suaib; Khan, Feroz; Chanotiya, Chandan S; Darokar, Mahendra P
2010-01-01
Identification of missing genes or proteins participating in the metabolic pathways as enzymes are of great interest. One such class of pathway is involved in the eugenol to vanillin bioconversion. Our goal is to develop an integral approach for identifying the topology of a reference or known pathway in other organism. We successfully identify the missing enzymes and then reconstruct the vanillin biosynthetic pathway in Aspergillus niger. The procedure combines enzyme sequence similarity searched through BLAST homology search and orthologs detection through COG & KEGG databases. Conservation of protein domains and motifs was searched through CDD, PFAM & PROSITE databases. Predictions regarding how proteins act in pathway were validated experimentally and also compared with reported data. The bioconversion of vanillin was screened on UV-TLC plates and later confirmed through GC and GC-MS techniques. We applied a procedure for identifying missing enzymes on the basis of conserved functional motifs and later reconstruct the metabolic pathway in target organism. Using the vanillin biosynthetic pathway of Pseudomonas fluorescens as a case study, we indicate how this approach can be used to reconstruct the reference pathway in A. niger and later results were experimentally validated through chromatography and spectroscopy techniques. PMID:20978605
Yadav, Ajar Nath; Sachan, Shashwati Ghosh; Verma, Priyanka; Kaushik, Rajeev; Saxena, Anil Kumar
2016-03-01
The diversity of culturable, cold-active enzymes producing Bacilli was investigated from three sub-glacial lakes of north western Indian Himalayas. Amplified ribosomal DNA restriction analysis (ARDRA) using three restriction enzymes Alu I, Msp I, and Hae III led to the clustering of 136 Bacilli into 26, 23, and 22 clusters at 75% similarity index from Chandratal Lake, Dashair Lake, and Pangong Lake, respectively. Phylogenetic analysis based on 16S rRNA gene sequencing led to the identification of 35 Bacilli that could be grouped in seven families viz.: Bacillaceae (48%), Staphylococcaceae (14%), Bacillales incertae sedis (13%), Planococcaceae (12%), Paenibacillaceae (9%), Sporolactobacillaceae (3%), and Carnobacteriaceae (1%), which included twelve different genera Bacillus, Desemzia, Exiguobacterium, Jeotgalicoccus, Lysinibacillus, Paenibacillus, Planococcus, Pontibacillus, Sinobaca, Sporosarcina, Staphylococcus, and Virgibacillus. Based on their optimal temperature for growth, 35 Bacilli were grouped as psychrophilic (11 strains), psychrotrophic (17 strains), or psychrotolerant (7 strains), respectively. The representative isolates from each cluster were screened for cold-active enzyme activities. Amylase, β-glucosidase, pectinase, and protease activities at 4 °C were detected in more than 80% of the strains while approximately 40, 31, 23, 14, 11, and 9% of strains possessed cellulase, xylanase, β-galactosidase, laccase, chitinase, and lipase activity, respectively. Among 35 Bacilli, Bacillus amyloliquefaciens, Bacillus marisflavi, Exiguobacterium indicum, Paenibacillus terrae, Pontibacillus sp., Sporosarcina globispora, and Sporosarcina psychrophila were efficient producers of different cold-active enzymes. These cold-adapted Bacilli could play an important role in industrial and agricultural processes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparison of camelpox viruses isolated in Dubai.
Pfeffer, M; Meyer, H; Wernery, U; Kaaden, O R
1996-03-01
Between October 1993 and March 1994, outbreaks of pox-like exanthemas were observed in several camel raising farms in Dubai. Scabs from twenty camels with either local or generalized lesions were examined, seven of them had previously been vaccinated with a modified live camelpox virus vaccine. Inspection of scabs by electron microscopy confirmed an infection with orthopox viruses (OPV) in 10 animals and with parapox virus in one camel. Investigation of the scabs by polymerase chain reaction and dot blot assay revealed the presence of OPV in 15 or 13 samples, respectively. OPV could be isolated in cell culture in 14 cases. Restriction enzyme profiles characterized all isolates as camelpox virus. Their DNA patterns were virtually identical displaying only slight variations in the terminal fragments. In contrast, the vaccine strain showed a distinct restriction enzyme profile, indicating that it was not involved in the infections.
Determination of ABO genotypes with DNA extracted from formalin-fixed, paraffin-embedded tissues.
Yamada, M; Yamamoto, Y; Tanegashima, A; Kane, M; Ikehara, Y; Fukunaga, T; Nishi, K
1994-01-01
The gene encoding the specific glycosyltransferases which catalyze the conversion of the H antigen to A or B antigens shows a slight but distinct variation in its allelic nucleotide sequence and can be divided into 6 genotypes when digested with specific restriction enzymes. We extracted DNA from formalin-fixed, paraffin-embedded tissues using SDS/proteinase K treatment followed by phenol/chloroform extraction. The sequence of nucleotides for the A, B and O genes was amplified by the polymerase chain reaction (PCR). DNA fragments of 128 bp and 200 bp could be amplified in the second round of PCR, using an aliquot of the first round PCR product as template. Degraded DNA from paraffin blocks stored for up to 10.7 years could be successfully typed. The ABO genotype was deduced from the digestion patterns with an appropriate combination of restriction enzymes and was compatible with the phenotype obtained from the blood sample.
Genotype identification of human cystic echinococcosis in Isfahan, central Iran.
Kia, Eshrat Bigom; Rahimi, Hamidreza; Sharbatkhori, Mitra; Talebi, Ardeshir; Fasihi Harandi, Majid; Mirhendi, Hossein
2010-08-01
Echinococcosis/hydatidosis is one of the most important zoonotic diseases commonly found in different regions of Iran with a major economic and public health importance. In the current study, Echinococcus granulosus isolates were collected from hospitalized patients in Isfahan, central Iran. The genotypes of 30 samples were determined by polymerase chain reaction amplification of internal transcribed spacer-1 region of ribosomal DNA, followed by restriction fragment length polymorphism (RFLP) with two restriction enzymes namely AluI and MspI. As expected, each isolate yielded an approximately 1-kbp DNA fragment on the electrophoresis gel. According to RFLP results for both enzymes, all isolates had an equal pattern indicating the G1 genotype. Our findings confirmed that G1 is the dominant genotype of cystic echinococcosis in human in central Iran, with predilection to different organs including liver, lung, and brain, and warrants the importance of sheep dog cycle in public health.
Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ
Gray, J.W.; Pinkel, D.
1991-07-02
A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. The probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations. No Drawings
An efficient and rapid influenza gene cloning strategy for reverse genetics system.
Shao, Hongxia; Fan, Zhonglei; Wan, Zhimin; Tian, Xiaoyan; Chen, Hongjun; Perez, Daniel R; Qin, Aijian; Ye, Jianqiang
2015-09-15
Influenza reverse genetics plays vital roles in understanding influenza molecular characteristics and vaccine development. However, current influenza reverse genetics heavily depends on restriction enzyme and ligation for gene cloning. The traditional cloning process of influenza eight fragments for virus rescuing generally requires considerable work. To simplify and increase the pace of gene cloning for influenza reverse genetics system, we developed a rapid restriction enzyme-free ExnaseTM II-based in vitro recombination approach for influenza gene cloning. We used this strategy rapidly and successfully to clone influenza eight genes both from viruses PR8 and H9N2 for virus rescuing. Our data demonstrate that the strategy developed here can accelerate the process of influenza gene cloning into reverse genetics system, and shows high potential for applications in both influenza basic and applied research. Copyright © 2015 Elsevier B.V. All rights reserved.
Methyl-CpG island-associated genome signature tags
Dunn, John J
2014-05-20
Disclosed is a method for analyzing the organismic complexity of a sample through analysis of the nucleic acid in the sample. In the disclosed method, through a series of steps, including digestion with a type II restriction enzyme, ligation of capture adapters and linkers and digestion with a type IIS restriction enzyme, genome signature tags are produced. The sequences of a statistically significant number of the signature tags are determined and the sequences are used to identify and quantify the organisms in the sample. Various embodiments of the invention described herein include methods for using single point genome signature tags to analyze the related families present in a sample, methods for analyzing sequences associated with hyper- and hypo-methylated CpG islands, methods for visualizing organismic complexity change in a sampling location over time and methods for generating the genome signature tag profile of a sample of fragmented DNA.
Todoroki, Yasushi; Kobayashi, Kyotaro; Shirakura, Minaho; Aoyama, Hikaru; Takatori, Kokichi; Nimitkeatkai, Hataitip; Jin, Mei-Hong; Hiramatsu, Saori; Ueno, Kotomi; Kondo, Satoru; Mizutani, Masaharu; Hirai, Nobuhiro
2009-09-15
To develop a specific inhibitor of abscisic acid (ABA) 8'-hydroxylase, a key enzyme in the catabolism of ABA, a plant hormone involved in stress tolerance, seed dormancy, and other various physiological events, we designed and synthesized conformationally restricted analogues of uniconazole (UNI), a well-known plant growth retardant, which inhibits a biosynthetic enzyme (ent-kaurene oxidase) of gibberellin as well as ABA 8'-hydroxylase. Although most of these analogues were less effective than UNI in inhibition of ABA 8'-hydroxylase and rice seedling growth, we found that a lactol-bridged analogue with an imidazole is a potent inhibitor of ABA 8'-hydroxylase but not of plant growth. This compound, abscinazole-F1, induced drought tolerance in apple seedlings upon spray treatment with a 10 microM solution.
Li, Yi; Sun, Hong-chen; Guo, Xue-jun; Feng, Shu-zhang
2005-02-01
To clone the recombinant fusion gene of Escherichia coli heat-liable enterotoxin B subunit (Ltb) and Actinobacillus actinomycetemcomitans fimbria associative protein (Fap). Two couples of primers were designed for PCR according to the known sequence of ltb and fap. The ltb and fap gene were obtained by amplification PCR technique from plasmid EWD299 of Escherichia coli and Actinobacillus actinomycetemcomitans 310 DNA respectively, and fused them by PCR. The fusion gene ltb-fap were cloning into plasmid pET28a(+). The recombined plasmid pET28a ltb-fap was transformed into Escherichia coli DH5alpha. The recombinant was screened and identified by restriction enzyme and PCR. The cloned gene was sequenced. The ltb-fap about 531bp in size was obtained successfully, and identified by PCR, restrictive enzyme and sequence analysis. The vector of pET28a ltb-fap was obtained.
Single Day Construction of Multigene Circuits with 3G Assembly.
Halleran, Andrew D; Swaminathan, Anandh; Murray, Richard M
2018-05-18
The ability to rapidly design, build, and test prototypes is of key importance to every engineering discipline. DNA assembly often serves as a rate limiting step of the prototyping cycle for synthetic biology. Recently developed DNA assembly methods such as isothermal assembly and type IIS restriction enzyme systems take different approaches to accelerate DNA construction. We introduce a hybrid method, Golden Gate-Gibson (3G), that takes advantage of modular part libraries introduced by type IIS restriction enzyme systems and isothermal assembly's ability to build large DNA constructs in single pot reactions. Our method is highly efficient and rapid, facilitating construction of entire multigene circuits in a single day. Additionally, 3G allows generation of variant libraries enabling efficient screening of different possible circuit constructions. We characterize the efficiency and accuracy of 3G assembly for various construct sizes, and demonstrate 3G by characterizing variants of an inducible cell-lysis circuit.
Fukunaga, Ryuya; Zamore, Phillip D
2014-01-01
The enzyme Dicer is central to the production of small silencing RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs). Like other insects, Drosophila melanogaster uses different Dicers to make siRNAs and miRNAs: Dicer-1 produces miRNAs from pre-miRNAs, whereas Dicer-2 generates siRNAs from long double-stranded RNA (dsRNA). How do the 2 Dicers achieve their substrate specificity? Here, we review recent findings that inorganic phosphate restricts the substrate specificity of Dicer-2 to long dsRNA. Inorganic phosphate inhibits Dicer-2 from binding and cleaving pre-miRNAs, without affecting the processing of long dsRNA. Crystal structures of a fragment of human Dicer in complex with an RNA duplex identify a phosphate-binding pocket that recognizes both the 5′-monophosphate of a substrate RNA and inorganic phosphate. We propose that inorganic phosphate occupies the phosphate-binding pocket in the fly Dicer-2, blocking binding of pre-miRNA and restricting pre-miRNA processing to Dicer-1. Thus, a small molecule can alter the substrate specificity of a nucleic acid-processing enzyme. PMID:24787225
The Epigenomic Landscape of Prokaryotes
Blow, Matthew J.; Clark, Tyson A.; Daum, Chris G.; ...
2016-02-12
DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities ofmore » 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.« less
The Epigenomic Landscape of Prokaryotes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blow, Matthew J.; Clark, Tyson A.; Daum, Chris G.
DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities ofmore » 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.« less
Java Web Simulation (JWS); a web based database of kinetic models.
Snoep, J L; Olivier, B G
2002-01-01
Software to make a database of kinetic models accessible via the internet has been developed and a core database has been set up at http://jjj.biochem.sun.ac.za/. This repository of models, available to everyone with internet access, opens a whole new way in which we can make our models public. Via the database, a user can change enzyme parameters and run time simulations or steady state analyses. The interface is user friendly and no additional software is necessary. The database currently contains 10 models, but since the generation of the program code to include new models has largely been automated the addition of new models is straightforward and people are invited to submit their models to be included in the database.
Ben Chobba, Ines; Elleuch, Amine; Ayadi, Imen; Khannous, Lamia; Namsi, Ahmed; Cerqueira, Frederique; Drira, Noureddine; Gharsallah, Néji; Vallaeys, Tatiana
2013-01-01
Endophytic flora plays a vital role in the colonization and survival of host plants, especially in harsh environments, such as arid regions. This flora may, however, contain pathogenic species responsible for various troublesome host diseases. The present study is aimed at investigating the diversity of both cultivable and non-cultivable endophytic fungal floras in the internal tissues (roots and leaves) of Tunisian date palm trees (Phoenix dactylifera). Accordingly, 13 isolates from both root and leaf samples, exhibiting distinct colony morphology, were selected from potato dextrose agar (PDA) medium and identified by a sequence match search wherein their 18S–28S internal transcribed spacer (ITS) sequences were compared to those available in public databases. These findings revealed that the cultivable root and leaf isolates fell into two groups, namely Nectriaceae and Pleosporaceae. Additionally, total DNA from palm roots and leaves was further extracted and ITS fragments were amplified. Restriction fragment length polymorphism (RFLP) analysis of the ITS from 200 fungal clones (leaves: 100; roots: 100) using HaeIII restriction enzyme revealed 13 distinct patterns that were further sequenced and led to the identification of Alternaria, Cladosporium, Davidiella (Cladosporium teleomorph), Pythium, Curvularia, and uncharacterized fungal endophytes. Both approaches confirmed that while the roots were predominantly colonized by Fusaria (members of the Nectriaceae family), the leaves were essentially colonized by Alternaria (members of the Pleosporaceae family). Overall, the findings of the present study constitute, to the authors’ knowledge, the first extensive report on the diversity of endophytic fungal flora associated with date palm trees (P. dactylifera). PMID:24302709
Gauthier, Charles; Campbell, Peter G C; Couture, Patrice
2011-09-01
Enzymes representing a variety of metabolic pathways were examined in yellow perch (Perca flavescens) collected from a metal-contaminated region (Rouyn-Noranda, Québec, Canada) to determine which were most closely related to fish condition factor, pyloric caeca weight, and visceral lipid accumulation, as well to seek a better understanding of the influence of metal contamination on the physiology and biometrics of perch. Compared to laboratory fish, wild perch were under important energy restrictions. The condition factor of wild fish was correlated with indicators of aerobic metabolism (citrate synthase, cytochrome C oxidase), protein anabolism (nucleoside diphosphokinase), and indicators of lipid accumulation (glucose-6-phosphate dehydrogenase, visceral lipid index). Pyloric caeca weights were well correlated with indicators of protein anabolism, but only when both seasons were examined together, possibly indicating a lag in the response of enzymes to changes in diet. The addition of contaminant stress to existing energy restrictions led to changes in the relationships between enzymes and biometrics, reducing the predictive power of the models for perch in contaminated lakes. The present study broadens our knowledge of the impact of metal contamination on energy accumulation and tissue metabolic capacities in wild perch. Copyright © 2011 SETAC.
Ramírez-López, María T; Arco, Rocío; Decara, Juan; Vázquez, Mariam; Rivera, Patricia; Blanco, Rosario Noemi; Alén, Francisco; Gómez de Heras, Raquel; Suárez, Juan; Rodríguez de Fonseca, Fernando
2016-01-01
Maternal malnutrition causes long-lasting alterations in feeding behavior and energy homeostasis in offspring. It is still unknown whether both, the endocannabinoid (eCB) machinery and the lipid metabolism are implicated in long-term adaptive responses to fetal reprogramming caused by maternal undernutrition. We investigated the long-term effects of maternal exposure to a 20% standard diet restriction during preconceptional and gestational periods on the metabolically-relevant tissues hypothalamus, liver, and perirenal fat (PAT) of male and female offspring at adulthood. The adult male offspring from calorie-restricted dams (RC males) exhibited a differential response to the CB1 antagonist AM251 in a chocolate preference test as well as increased body weight, perirenal adiposity, and plasma levels of triglycerides, LDL, VLDL, bilirubin, and leptin. The gene expression of the cannabinoid receptors Cnr1 and Cnr2 was increased in RC male hypothalamus, but a down-expression of most eCBs-metabolizing enzymes ( Faah, Dagl α , Dagl β , Mgll ) and several key regulators of fatty-acid β-oxidation ( Cpt1b, Acox1 ), mitochondrial respiration ( Cox4i1 ), and lipid flux ( Ppar γ) was found in their PAT. The female offspring from calorie-restricted dams exhibited higher plasma levels of LDL and glucose as well as a reduction in chocolate and caloric intake at post-weaning periods in the feeding tests. Their liver showed a decreased gene expression of Cnr1, Ppar α, Ppar γ, the eCBs-degrading enzymes Faah and Mgll , the de novo lipogenic enzymes Acaca and Fasn , and the liver-specific cholesterol biosynthesis regulators Insig1 and Hmgcr . Our results suggest that the long-lasting adaptive responses to maternal caloric restriction affected cannabinoid-regulated mechanisms involved in feeding behavior, adipose β-oxidation, and hepatic lipid and cholesterol biosynthesis in a sex-dependent manner.
Ramírez-López, María T.; Arco, Rocío; Decara, Juan; Vázquez, Mariam; Rivera, Patricia; Blanco, Rosario Noemi; Alén, Francisco; Gómez de Heras, Raquel; Suárez, Juan; Rodríguez de Fonseca, Fernando
2016-01-01
Maternal malnutrition causes long-lasting alterations in feeding behavior and energy homeostasis in offspring. It is still unknown whether both, the endocannabinoid (eCB) machinery and the lipid metabolism are implicated in long-term adaptive responses to fetal reprogramming caused by maternal undernutrition. We investigated the long-term effects of maternal exposure to a 20% standard diet restriction during preconceptional and gestational periods on the metabolically-relevant tissues hypothalamus, liver, and perirenal fat (PAT) of male and female offspring at adulthood. The adult male offspring from calorie-restricted dams (RC males) exhibited a differential response to the CB1 antagonist AM251 in a chocolate preference test as well as increased body weight, perirenal adiposity, and plasma levels of triglycerides, LDL, VLDL, bilirubin, and leptin. The gene expression of the cannabinoid receptors Cnr1 and Cnr2 was increased in RC male hypothalamus, but a down-expression of most eCBs-metabolizing enzymes (Faah, Daglα, Daglβ, Mgll) and several key regulators of fatty-acid β-oxidation (Cpt1b, Acox1), mitochondrial respiration (Cox4i1), and lipid flux (Pparγ) was found in their PAT. The female offspring from calorie-restricted dams exhibited higher plasma levels of LDL and glucose as well as a reduction in chocolate and caloric intake at post-weaning periods in the feeding tests. Their liver showed a decreased gene expression of Cnr1, Pparα, Pparγ, the eCBs-degrading enzymes Faah and Mgll, the de novo lipogenic enzymes Acaca and Fasn, and the liver-specific cholesterol biosynthesis regulators Insig1 and Hmgcr. Our results suggest that the long-lasting adaptive responses to maternal caloric restriction affected cannabinoid-regulated mechanisms involved in feeding behavior, adipose β-oxidation, and hepatic lipid and cholesterol biosynthesis in a sex-dependent manner. PMID:28082878
Salt-dependent properties of proteins from extremely halophilic bacteria
NASA Technical Reports Server (NTRS)
Lanyi, J. K.
1974-01-01
Based on information concerning the interaction of salts and macromolecules the literature of the enzymes of halophilic bacteria and their constituents is examined. Although in halophilic systems the salt requirement of enzyme activity is variable the enzymes investigated show a time-dependent inactivation at lower salt concentrations especially in the absence of salt. The studies described show that in some halophilic systems the effect of salt may be restricted to a small region on the protein molecule. The concept of the hydrophobic bond to consider certain solvent-dependent phenomena is introduced. It is shown that some halophilic enzymes are unable to maintain their structure without the involvement of hydrophobic interactions that are usually not supported by water. A table lists indices of hydrophobicity and polarity for various halophilic and nonhalophilic proteins.
Characterization of the Origin of DNA Replication of the Coxiella burnetii Chromosome
1990-01-26
chromosomal DNAs (FIG. IB): the 19.4-kb EcoR I fragment of Salmonella typhimurium DNA (lane 4),9 the 17.5-kb Sal I fragment of Enterobacter aerogenes ...IacZYA-argF) U 1694680d IacZAM15 Salmonella typhimurium Wild type WVUd Kiebsiella pneumoniae Wild type WVUd Enterobacter aero genes Wild type WVUd... aerogenes and K. pneumoniae were digested with appropriate restriction enzymes. The restriction fragments were separated on a 0.9% agarose gel, transferred to
Molecular identification of house dust mites and storage mites.
Wong, Shew Fung; Chong, Ai Ling; Mak, Joon Wah; Tan, Jessie; Ling, Suk Jiun; Ho, Tze Ming
2011-10-01
Mites are known causes of allergic diseases. Currently, identification of mites based on morphology is difficult if only one mite is isolated from a (dust) sample, or when only one gender is found, or when the specimen is not intact especially with the loss of the legs. The purpose of this study was to use polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of the ITS2 gene, to complement the morphological data for the identification of mites to the species level. For this, six species were cultured: Dermatophagoides pteronyssinus, D. farinae, Blomia tropicalis, Tyrophagus putrescentiae, Aleuroglyphus ovatus and Glycycometus malaysiensis. Genomic DNA of the mites was extracted, quantified, amplified and digested individually with restriction enzymes. Hinf I and Ple I differentiated the restriction patterns of D. pteronyssinus and D. farinae. Bfa I and Alu I enzymes differentiated B. tropicalis and G. malaysiensis. Ple I enzyme was useful for the differentiation between T. putrescentiae and A. ovatus. Bfa I was useful for the differentiation of G. malaysiensis from the rest of the species. In conclusion, different species of mites can be differentiated using PCR-RFLP of ITS2 region. With the established PCR-RFLP method in this study, identification of these mites to the species level is possible even if complete and intact adult specimens of both sexes are not available. As no study to date has reported PCR-RFLP method for the identification of domestic mites, the established method should be validated for the identification of other species of mites that were not included in this study.
Linkage map of the fragments of herpesvirus papio DNA.
Lee, Y S; Tanaka, A; Lau, R Y; Nonoyama, M; Rabin, H
1981-01-01
Herpesvirus papio (HVP), an Epstein-Barr-like virus, causes lymphoblastoid disease in baboons. The physical map of HVP DNA was constructed for the fragments produced by cleavage of HVP DNA with restriction endonucleases EcoRI, HindIII, SalI, and PvuI, which produced 12, 12, 10, and 4 fragments, respectively. The total molecular size of HVP DNA was calculated as close to 110 megadaltons. The following methods were used for construction of the map; (i) fragments near the ends of HVP DNA were identified by treating viral DNA with lambda exonuclease before restriction enzyme digestion; (ii) fragments containing nucleotide sequences in common with fragments from the second enzyme digest of HVP DNA were examined by Southern blot hybridization; and (iii) the location of some fragments was determined by isolating individual fragments from agarose gels and redigesting the isolated fragments with a second restriction enzyme. Terminal heterogeneity and internal repeats were found to be unique features of HVP DNA molecule. One to five repeats of 0.8 megadaltons were found at both terminal ends. Although the repeats of both ends shared a certain degree of homology, it was not determined whether they were identical repeats. The internal repeat sequence of HVP DNA was found in the EcoRI-C region, which extended from 8.4 to 23 megadaltons from the left end of the molecule. The average number of the repeats was calculated to be seven, and the molecular size was determined to be 1.8 megadaltons. Similar unique features have been reported in EBV DNA (D. Given and E. Kieff, J. Virol. 28:524-542, 1978). Images PMID:6261015
NASA Astrophysics Data System (ADS)
Shi, Ce; Liu, Ying; Yi, Mengmeng; Zheng, Jimeng; Tian, Huiqin; Du, Yishuai; Li, Xian; Sun, Guoxiang
2017-07-01
Although it has been hypothesized that a predictable feeding regime in animals allows physiological variables to be adjusted to maximize nutrient utilization and, hence, better growth performance, the assumption has rarely been tested. This study compares the effects of time-restricted versus free access self-feeding on the growth, feeding behavior and daily digestive enzyme rhythms of Atlantic salmon ( Salmo salar). In an experiment that lasted 6 weeks, fish (109.9 g) were divided into two groups: group 1 had free access to a self-feeder (FA); group 2 received three meals per day (2 h per meal) at dawn, midday and dusk via a time-restricted self-feeder (TR). At the end of the experiment, the fish were sampled every 3 h over a 24-h period. The results showed that the TR fish quickly synchronized their feeding behavior to the feeding window and their blood glucose showed a significant postprandial increase, while FA fish displayed no statistically significant rhythms ( P>0.05). Pepsin activity of TR fish also showed a significant daily rhythm ( P<0.05) with the acrophase at the second feed and a decrease over the next 12 h. Average daily trypsin, lipase and amylase levels of FA fish were significantly lower than those of TR fish ( P<0.01); however, the growth performance of both groups was similar ( P>0.05). In conclusion, the study failed to confirm a link between the entrainment of daily digestive enzyme profiles and growth performance, with the TR group showing comparatively poor blood glucose regulation.
Microbial expression of alkaloid biosynthetic enzymes for characterization of their properties.
Minami, Hiromichi; Ikezawa, Nobuhiro; Sato, Fumihiko
2010-01-01
A wide variety of secondary metabolites are produced in higher plants. These metabolites are synthesized in specific organs/cells at certain developmental stages and/or under specific environmental conditions. Since these biosynthetic activities are rather restricted and difficult to detect, the biochemical characterization of biosynthetic enzymes involved in secondary metabolism has been limited compared to those involved in primary metabolism. Recently, however, progress in tissue culture and molecular biology has made it easier to study biosynthetic enzymes. Here we describe protocols for expressing some biosynthetic enzymes in Escherichia coli expression systems, since this system is both efficient and cost-effective. First, we describe a standard system for expressing biosynthetic enzymes as a soluble protein under the T7 promoter of the pET expression system in E. coli. In addition, the successful expression of cytochrome P450 in E. coli in an active soluble form with N-terminal modification is discussed, since P450 is the critical enzyme in secondary metabolite biosynthesis.
Ascertainment of acute liver injury in two European primary care databases.
Ruigómez, A; Brauer, R; Rodríguez, L A García; Huerta, C; Requena, G; Gil, M; de Abajo, Francisco; Downey, G; Bate, A; Tepie, M Feudjo; de Groot, M; Schlienger, R; Reynolds, R; Klungel, O
2014-10-01
The purpose of this study was to ascertain acute liver injury (ALI) in primary care databases using different computer algorithms. The aim of this investigation was to study and compare the incidence of ALI in different primary care databases and using different definitions of ALI. The Clinical Practice Research Datalink (CPRD) in UK and the Spanish "Base de datos para la Investigación Farmacoepidemiológica en Atención Primaria" (BIFAP) were used. Both are primary care databases from which we selected individuals of all ages registered between January 2004 and December 2009. We developed two case definitions of idiopathic ALI using computer algorithms: (i) restrictive definition (definite cases) and (ii) broad definition (definite and probable cases). Patients presenting prior liver conditions were excluded. Manual review of potential cases was performed to confirm diagnosis, in a sample in CPRD (21%) and all potential cases in BIFAP. Incidence rates of ALI by age, sex and calendar year were calculated. In BIFAP, all cases considered definite after manual review had been detected with the computer algorithm as potential cases, and none came from the non-cases group. The restrictive definition of ALI had a low sensitivity but a very high specificity (95% in BIFAP) and showed higher rates of agreement between computer search and manual review compared to the broad definition. Higher incidence rates of definite ALI in 2008 were observed in BIFAP (3.01 (95% confidence interval (CI) 2.13-4.25) per 100,000 person-years than CPRD (1.35 (95% CI 1.03-1.78)). This study shows that it is feasible to identify ALI cases if restrictive selection criteria are used and the possibility to review additional information to rule out differential diagnoses. Our results confirm that idiopathic ALI is a very rare disease in the general population. Finally, the construction of a standard definition with predefined criteria facilitates the timely comparison across databases.
Biotechnology Outlines for Classroom Use.
ERIC Educational Resources Information Center
Paolella, Mary Jane
1991-01-01
Presents a course outline for the study of biotechnology at the high school or college level. The outline includes definitions, a history, and the vocabulary of biotechnology. Presents a science experiment to analyze the effects of restriction enzymes on DNA. (MDH)
Molecular Determinants of Antiestrogen and Drug Sensitivity in Breast Carcinoma Cells
1996-08-01
00 ~cd -olC CC) 00, COq -6 0 00d C5 kr0) C~U, 23l Effects of infection rate and selection pressure on gene expression from an internal promoter of a...Hybridization probes were prepared by restriction enzyme digestion of the LNCIuc plasmid, followed by the isolation of the desired fragments by...sensitivity to this drug. The bacterial neo gene encodes neomycin phosphotransferase, an enzyme that metabolically inactivates G418, with the extent of
Facile Site-Directed Mutagenesis of Large Constructs Using Gibson Isothermal DNA Assembly.
Yonemoto, Isaac T; Weyman, Philip D
2017-01-01
Site-directed mutagenesis is a commonly used molecular biology technique to manipulate biological sequences, and is especially useful for studying sequence determinants of enzyme function or designing proteins with improved activity. We describe a strategy using Gibson Isothermal DNA Assembly to perform site-directed mutagenesis on large (>~20 kbp) constructs that are outside the effective range of standard techniques such as QuikChange II (Agilent Technologies), but more reliable than traditional cloning using restriction enzymes and ligation.
Thakar, Sambhaji B; Ghorpade, Pradnya N; Kale, Manisha V; Sonawane, Kailas D
2015-01-01
Fern plants are known for their ethnomedicinal applications. Huge amount of fern medicinal plants information is scattered in the form of text. Hence, database development would be an appropriate endeavor to cope with the situation. So by looking at the importance of medicinally useful fern plants, we developed a web based database which contains information about several group of ferns, their medicinal uses, chemical constituents as well as protein/enzyme sequences isolated from different fern plants. Fern ethnomedicinal plant database is an all-embracing, content management web-based database system, used to retrieve collection of factual knowledge related to the ethnomedicinal fern species. Most of the protein/enzyme sequences have been extracted from NCBI Protein sequence database. The fern species, family name, identification, taxonomy ID from NCBI, geographical occurrence, trial for, plant parts used, ethnomedicinal importance, morphological characteristics, collected from various scientific literatures and journals available in the text form. NCBI's BLAST, InterPro, phylogeny, Clustal W web source has also been provided for the future comparative studies. So users can get information related to fern plants and their medicinal applications at one place. This Fern ethnomedicinal plant database includes information of 100 fern medicinal species. This web based database would be an advantageous to derive information specifically for computational drug discovery, botanists or botanical interested persons, pharmacologists, researchers, biochemists, plant biotechnologists, ayurvedic practitioners, doctors/pharmacists, traditional medicinal users, farmers, agricultural students and teachers from universities as well as colleges and finally fern plant lovers. This effort would be useful to provide essential knowledge for the users about the adventitious applications for drug discovery, applications, conservation of fern species around the world and finally to create social awareness.
Chatonnet, A; Hotelier, T; Cousin, X
1999-05-14
Cholinesterases are targets for organophosphorus compounds which are used as insecticides, chemical warfare agents and drugs for the treatment of disease such as glaucoma, or parasitic infections. The widespread use of these chemicals explains the growing of this area of research and the ever increasing number of sequences, structures, or biochemical data available. Future advances will depend upon effective management of existing information as well as upon creation of new knowledge. The ESTHER database goal is to facilitate retrieval and comparison of data about structure and function of proteins presenting the alpha/beta hydrolase fold. Protein engineering and in vitro production of enzymes allow direct comparison of biochemical parameters. Kinetic parameters of enzymatic reactions are now included in the database. These parameters can be searched and compared with a table construction tool. ESTHER can be reached through internet (http://www.ensam.inra.fr/cholinesterase). The full database or the specialised X-window Client-server system can be downloaded from our ftp server (ftp://ftp.toulouse.inra.fr./pub/esther). Forms can be used to send updates or corrections directly from the web.
Collaborative WiFi Fingerprinting Using Sensor-Based Navigation on Smartphones.
Zhang, Peng; Zhao, Qile; Li, You; Niu, Xiaoji; Zhuang, Yuan; Liu, Jingnan
2015-07-20
This paper presents a method that trains the WiFi fingerprint database using sensor-based navigation solutions. Since micro-electromechanical systems (MEMS) sensors provide only a short-term accuracy but suffer from the accuracy degradation with time, we restrict the time length of available indoor navigation trajectories, and conduct post-processing to improve the sensor-based navigation solution. Different middle-term navigation trajectories that move in and out of an indoor area are combined to make up the database. Furthermore, we evaluate the effect of WiFi database shifts on WiFi fingerprinting using the database generated by the proposed method. Results show that the fingerprinting errors will not increase linearly according to database (DB) errors in smartphone-based WiFi fingerprinting applications.
Collaborative WiFi Fingerprinting Using Sensor-Based Navigation on Smartphones
Zhang, Peng; Zhao, Qile; Li, You; Niu, Xiaoji; Zhuang, Yuan; Liu, Jingnan
2015-01-01
This paper presents a method that trains the WiFi fingerprint database using sensor-based navigation solutions. Since micro-electromechanical systems (MEMS) sensors provide only a short-term accuracy but suffer from the accuracy degradation with time, we restrict the time length of available indoor navigation trajectories, and conduct post-processing to improve the sensor-based navigation solution. Different middle-term navigation trajectories that move in and out of an indoor area are combined to make up the database. Furthermore, we evaluate the effect of WiFi database shifts on WiFi fingerprinting using the database generated by the proposed method. Results show that the fingerprinting errors will not increase linearly according to database (DB) errors in smartphone-based WiFi fingerprinting applications. PMID:26205269
Shao, Ying; Chernaya, Valeria; Johnson, Candice; Yang, William Y.; Cueto, Ramon; Sha, Xiaojin; Zhang, Yi; Qin, Xuebin; Sun, Jianxin; Choi, Eric T.; Wang, Hong; Yang, Xiao-feng
2016-01-01
To determine whether the expression of histone modification enzymes is regulated in physiological and pathological conditions, we took an experimental database mining approach pioneered in our labs to determine a panoramic expression profile of 164 enzymes in 19 human and 17 murine tissues. We have made the following significant findings: 1) Histone enzymes are differentially expressed in cardiovascular, immune and other tissues; 2) Our new pyramid model showed that heart and T cells are among a few tissues in which histone acetylation/deacetylation, histone methylation/demethylation are in the highest varieties; and 3) Histone enzymes are more downregulated than upregulated in metabolic diseases and Treg polarization/differentiation, but not in tumors. These results have demonstrated a new working model of “sand out and gold stays,” where more downregulation than upregulation of histone enzymes in metabolic diseases makes a few upregulated enzymes the potential novel therapeutic targets in metabolic diseases and Treg activity. PMID:26746407
Shao, Ying; Chernaya, Valeria; Johnson, Candice; Yang, William Y; Cueto, Ramon; Sha, Xiaojin; Zhang, Yi; Qin, Xuebin; Sun, Jianxin; Choi, Eric T; Wang, Hong; Yang, Xiao-feng
2016-02-01
To determine whether the expression of histone modification enzymes is regulated in physiological and pathological conditions, we took an experimental database mining approach pioneered in our labs to determine a panoramic expression profile of 164 enzymes in 19 human and 17 murine tissues. We have made the following significant findings: (1) Histone enzymes are differentially expressed in cardiovascular, immune, and other tissues; (2) our new pyramid model showed that heart and T cells are among a few tissues in which histone acetylation/deacetylation, and histone methylation/demethylation are in the highest varieties; and (3) histone enzymes are more downregulated than upregulated in metabolic diseases and regulatory T cell (Treg) polarization/ differentiation, but not in tumors. These results have demonstrated a new working model of "Sand out and Gold stays," where more downregulation than upregulation of histone enzymes in metabolic diseases makes a few upregulated enzymes the potential novel therapeutic targets in metabolic diseases and Treg activity.
Nayak, Prasunpriya; Chatterjee, Ajay K
2003-01-01
Background Alteration of glutamate and γ-aminobutyrate system have been reported to be associated with neurodegenerative disorders and have been postulated to be involved in aluminum-induced neurotoxicity as well. Aluminum, an well known and commonly exposed neurotoxin, was found to alter glutamate and γ-aminobutyrate levels as well as activities of associated enzymes with regional specificity. Protein malnutrition also reported to alter glutamate level and some of its metabolic enzymes. Thus the region-wise study of levels of brain glutamate and γ-aminobutyrate system in protein adequacy and inadequacy may be worthwhile to understand the mechanism of aluminum-induced neurotoxicity. Results Protein restriction does not have any significant impact on regional aluminum and γ-aminobutyrate contents of rat brain. Significant interaction of dietary protein restriction and aluminum intoxication to alter regional brain glutamate level was observed in the tested brain regions except cerebellum. Alteration in glutamate α-decarboxylase and γ-aminobutyrate transaminase activities were found to be significantly influenced by interaction of aluminum intoxication and dietary protein restriction in all the tested brain regions. In case of regional brain succinic semialdehyde content, this interaction was significant only in cerebrum and thalamic area. Conclusion The alterations of regional brain glutamate and γ-aminobutyrate levels by aluminum are region specific as well as dependent on dietary protein intake. The impact of aluminum exposure on the metabolism of these amino acid neurotransmitters are also influenced by dietary protein level. Thus, modification of dietary protein level or manipulation of the brain amino acid homeostasis by any other means may be an useful tool to find out a path to restrict amino acid neurotransmitter alterations in aluminum-associated neurodisorders. PMID:12657166
Anekthanakul, Krittima; Hongsthong, Apiradee; Senachak, Jittisak; Ruengjitchatchawalya, Marasri
2018-04-20
Bioactive peptides, including biological sources-derived peptides with different biological activities, are protein fragments that influence the functions or conditions of organisms, in particular humans and animals. Conventional methods of identifying bioactive peptides are time-consuming and costly. To quicken the processes, several bioinformatics tools are recently used to facilitate screening of the potential peptides prior their activity assessment in vitro and/or in vivo. In this study, we developed an efficient computational method, SpirPep, which offers many advantages over the currently available tools. The SpirPep web application tool is a one-stop analysis and visualization facility to assist bioactive peptide discovery. The tool is equipped with 15 customized enzymes and 1-3 miscleavage options, which allows in silico digestion of protein sequences encoded by protein-coding genes from single, multiple, or genome-wide scaling, and then directly classifies the peptides by bioactivity using an in-house database that contains bioactive peptides collected from 13 public databases. With this tool, the resulting peptides are categorized by each selected enzyme, and shown in a tabular format where the peptide sequences can be tracked back to their original proteins. The developed tool and webpages are coded in PHP and HTML with CSS/JavaScript. Moreover, the tool allows protein-peptide alignment visualization by Generic Genome Browser (GBrowse) to display the region and details of the proteins and peptides within each parameter, while considering digestion design for the desirable bioactivity. SpirPep is efficient; it takes less than 20 min to digest 3000 proteins (751,860 amino acids) with 15 enzymes and three miscleavages for each enzyme, and only a few seconds for single enzyme digestion. Obviously, the tool identified more bioactive peptides than that of the benchmarked tool; an example of validated pentapeptide (FLPIL) from LC-MS/MS was demonstrated. The web and database server are available at http://spirpepapp.sbi.kmutt.ac.th . SpirPep, a web-based bioactive peptide discovery application, is an in silico-based tool with an overview of the results. The platform is a one-stop analysis and visualization facility; and offers advantages over the currently available tools. This tool may be useful for further bioactivity analysis and the quantitative discovery of desirable peptides.
Tracing the Repertoire of Promiscuous Enzymes along the Metabolic Pathways in Archaeal Organisms.
Martínez-Núñez, Mario Alberto; Rodríguez-Escamilla, Zuemy; Rodríguez-Vázquez, Katya; Pérez-Rueda, Ernesto
2017-07-13
The metabolic pathways that carry out the biochemical transformations sustaining life depend on the efficiency of their associated enzymes. In recent years, it has become clear that promiscuous enzymes have played an important role in the function and evolution of metabolism. In this work we analyze the repertoire of promiscuous enzymes in 89 non-redundant genomes of the Archaea cellular domain. Promiscuous enzymes are defined as those proteins with two or more different Enzyme Commission (E.C.) numbers, according the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. From this analysis, it was found that the fraction of promiscuous enzymes is lower in Archaea than in Bacteria. A greater diversity of superfamily domains is associated with promiscuous enzymes compared to specialized enzymes, both in Archaea and Bacteria, and there is an enrichment of substrate promiscuity rather than catalytic promiscuity in the archaeal enzymes. Finally, the presence of promiscuous enzymes in the metabolic pathways was found to be heterogeneously distributed at the domain level and in the phyla that make up the Archaea. These analyses increase our understanding of promiscuous enzymes and provide additional clues to the evolution of metabolism in Archaea.
Allosteric dynamics of SAMHD1 studied by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Patra, K. K.; Bhattacharya, A.; Bhattacharya, S.
2016-10-01
SAMHD1 is a human cellular enzyme that blocks HIV-1 infection in myeloid cells and non-cycling CD4+T cells. The enzyme is an allosterically regulated triphosphohydrolase that modulates the level of cellular dNTP. The virus restriction is attributed to the lowering of the pool of dNTP in the cell to a point where reverse-transcription is impaired. Mutations in SAMHD1 are also implicated in Aicardi-Goutieres syndrome. A mechanistic understanding of the allosteric activation of the enzyme is still elusive. We have performed molecular dynamics simulations to examine the allosteric site dynamics of the protein and to examine the connection between the stability of the tetrameric complex and the Allosite occupancy.
Safe and Successful Treatment With Agalsidase Beta During Pregnancy in Fabry Disease.
Senocak Tasci, Elif; Bicik, Zerrin
2015-09-01
Fabry disease, an X-linked lysosomal storage disorder, is caused by α-galactosidase A deficiency and leads to accumulation of glycospinhgolipids in most tissues, with life-theratening consequences in the kidney, heart, and cerebrovascular system. Enzyme replacement therapy is available as 2 different preparations: agalsidase alfa and agalsidase beta. Enzyme replacement therapy is started as soon as the diagnosis is confirmed, but there is no data available in the literature about its safety during preganacy. Herein, we described 2 patients with Fabry disease who received agalsidase beta during their pregnancy. This report is important as the data about enzyme replacement therapy during pregnancy is restricted with case reports.
Zinc finger nuclease technology: advances and obstacles in modelling and treating genetic disorders.
Jabalameli, Hamid Reza; Zahednasab, Hamid; Karimi-Moghaddam, Amin; Jabalameli, Mohammad Reza
2015-03-01
Zinc finger nucleases (ZFNs) are engineered restriction enzymes designed to target specific DNA sequences within the genome. Assembly of zinc finger DNA-binding domain to a DNA-cleavage domain enables the enzyme machinery to target unique locus in the genome and invoke endogenous DNA repair mechanisms. This machinery offers a versatile approach in allele editing and gene therapy. Here we discuss the architecture of ZFNs and strategies for generating targeted modifications within the genome. We review advances in gene therapy and modelling of the disease using these enzymes and finally, discuss the practical obstacles in using this technology. Copyright © 2014 Elsevier B.V. All rights reserved.
Design Considerations for a Web-based Database System of ELISpot Assay in Immunological Research
Ma, Jingming; Mosmann, Tim; Wu, Hulin
2005-01-01
The enzyme-linked immunospot (ELISpot) assay has been a primary means in immunological researches (such as HIV-specific T cell response). Due to huge amount of data involved in ELISpot assay testing, the database system is needed for efficient data entry, easy retrieval, secure storage, and convenient data process. Besides, the NIH has recently issued a policy to promote the sharing of research data (see http://grants.nih.gov/grants/policy/data_sharing). The Web-based database system will be definitely benefit to data sharing among broad research communities. Here are some considerations for a database system of ELISpot assay (DBSEA). PMID:16779326
Chen, X; Yang, L; Wang, H J; Wu, B B; Lu, Y L; Dong, X R; Zhou, W H
2018-05-02
Objective: To analyze the hotspots of known pathogenic disease-causing variants of glucose-6-phosphate dehydrogenase (G6PD) and the phenotype spectrum of neonatal patients with known pathogenic disease-causing variants of G6PD. Methods: The known pathogenic disease-causing variants of G6PD were collected from Human Gene Mutation Database. Screening was performed for these variants among the 7 966 cases (2 357 neonatal, 5 609 non-neonatal) in the database of sequencing at Molecular Diagnosis Center, Children's Hospital of Fudan University. All these samples were from patients suspected with genetic disorder. The database contained Whole Exon Sequencing data and Clinical Exon Sequencing data. We screened out the patients with known pathogenic disease-causing variants of G6PD, analyzed the hotspot of G6PD and the phenotype spectrum of neonatal patients with known pathogenic disease-causing variants of G6PD. Results: (1) Among the next generation sequencing data of the 7 966 samples, 86 samples (1.1%) were detected as positive for the known pathogenic disease-causing variants of G6PD (positive samples set). In the positive sample set, 51 patients (33 males, 18 females) were newborn babies. Forty-three patients (26 males, 17 females) had the enzyme activity data of G6PD. (2) Among the 86 samples, Arg463His, Arg459Leu, Leu342Phe, Val291Met were the leading 4 disease-causing variants found in 72 samples (84%). (3) Male neonatal patients with the same variants had the statistically significant differences in enzyme activity: among 13 patients with Arg463His, enzyme activity of 9 patients was ranked as grade Ⅲ, 1 case ranked as Ⅳ, 3 cases had no activity data;among 10 patients with Arg459Leu, enzyme activity of 4 patients was ranked as Ⅱ, 4 cases ranked as Ⅲ, 2 cases had no activity data;among 2 patients with His32Arg, enzyme activity of one patient was ranked as Ⅱ, another was Ⅲ. Male neonatal patients with the same mutation and enzyme activity also had the statistically significant differences in phenotype spectrum: among 9 patients with Arg463His and level Ⅲ enzyme activity, 6 presented hyperbilirubinemia, 2 met the criteria for exchange transfusion therapy, 2 showed hemolysis;among 4 patients with Arg459Leu and level Ⅱ enzyme activity, 3 presented hyperbilirubinemia;among 4 patients with Arg459Leu and level Ⅲ enzyme activity, 2 presented hyperbilirubinemia, 1 met the standard of exchange transfusion therapy;among 3 patients with Val291Met and level Ⅲ enzyme activity, 1 presented hyperbilirubinemia. Conclusions: Arg463His, Arg459Leu, Leu342Phe, Val291Met were the hotspots variants for the G6PD. Patients with the same G6PD variants and sex present different phenotype, patients with the same G6PD variants, sex and enzyme activity also present different phenotype .
HOWDY: an integrated database system for human genome research
Hirakawa, Mika
2002-01-01
HOWDY is an integrated database system for accessing and analyzing human genomic information (http://www-alis.tokyo.jst.go.jp/HOWDY/). HOWDY stores information about relationships between genetic objects and the data extracted from a number of databases. HOWDY consists of an Internet accessible user interface that allows thorough searching of the human genomic databases using the gene symbols and their aliases. It also permits flexible editing of the sequence data. The database can be searched using simple words and the search can be restricted to a specific cytogenetic location. Linear maps displaying markers and genes on contig sequences are available, from which an object can be chosen. Any search starting point identifies all the information matching the query. HOWDY provides a convenient search environment of human genomic data for scientists unsure which database is most appropriate for their search. PMID:11752279
Enzyme activities in parotid saliva of patients with the restrictive type of anorexia nervosa.
Paszynska, Elzbieta; Slopien, Agnieszka; Dmitrzak-Weglarz, Monika; Hannig, Christian
2017-04-01
In patients with anorexia nervosa (AN) specific signs may occur in the oral cavity, but there are conflicting reports about their significance, especially concerning changes in salivary composition. The aim of this clinical study was to evaluate the resting parotid flow rate (PFR) and the activity of the following enzymes in parotid saliva: amylase, aspartate amino transferase (AST), lysozyme, peroxidase, serine and acidic proteases in the acute phase of the restrictive type of AN and to compare the findings with those in healthy controls. Forty-one subjects participated (20 patients with AN, 21 matched healthy controls), parotid saliva was collected using a modified Lashley cap at rest. Enzyme activities were measured with fluorimetric and photometric assays. The unstimulated PFR was significantly lower than in the controls, lysozyme and AST activity was significantly lower, and amylase showed a high inter-individual variability. A positive correlation for amylase and lysozyme and negative ones for lysozyme and BMI, lysozyme and IBW%, serine protease and salivary flow were observed. The reduced PFR and enzyme activities levels suggest that AN does not only affect the quantity of the saliva but also its quality and, its biological functions. The results obtained should help to provide a better understanding of the effect of AN disease on the pathogenesis of at least some oral diseases. Further research is needed on any possible role of reduced lysozyme and transaminase activity in maintaining oral protection against external toxic agents and bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D.
2015-01-01
The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1–2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855
Huberman, Lori B; Murray, Andrew W
2014-01-01
Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.
Huberman, Lori B.; Murray, Andrew W.
2014-01-01
Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Tomoaki; Nakamura, Kento; Masaoka, Keisuke
Various viruses infect animals and humans and cause a variety of diseases, including cancer. However, effective methodologies to prevent virus infection have not yet been established. Therefore, development of technologies to inactivate viruses is highly desired. We have already demonstrated that cleavage of a DNA virus genome was effective to prevent its replication. Here, we expanded this methodology to RNA viruses. In the present study, we used staphylococcal nuclease (SNase) instead of the PIN domain (PilT N-terminus) of human SMG6 as an RNA-cleavage domain and fused the SNase to a human Pumilio/fem-3 binding factor (PUF)-based artificial RNA-binding protein to constructmore » an artificial RNA restriction enzyme with enhanced RNA-cleavage rates for influenzavirus. The resulting SNase-fusion nuclease cleaved influenza RNA at rates 120-fold greater than the corresponding PIN-fusion nuclease. The cleaving ability of the PIN-fusion nuclease was not improved even though the linker moiety between the PUF and RNA-cleavage domain was changed. Gel shift assays revealed that the RNA-binding properties of the PUF derivative used was not as good as wild type PUF. Improvement of the binding properties or the design method will allow the SNase-fusion nuclease to cleave an RNA target in mammalian animal cells and/or organisms. - Highlights: • A novel RNA restriction enzyme using SNase was developed tor cleave viral RNA. • Our enzyme cleaved influenza RNA with rates >120-fold higher rates a PIN-fusion one. • Our artificial enzyme with the L5 linker showed the highest RNA cleavage rate. • Our artificial enzyme site-selectively cleaved influenza RNA in vitro.« less
A Methodology for Benchmarking Relational Database Machines,
1984-01-01
user benchmarks is to compare the multiple users to the best-case performance The data for each query classification coll and the performance...called a benchmark. The term benchmark originates from the markers used by sur - veyors in establishing common reference points for their measure...formatted databases. In order to further simplify the problem, we restrict our study to those DBMs which support the relational model. A sur - vey
AgeFactDB—the JenAge Ageing Factor Database—towards data integration in ageing research
Hühne, Rolf; Thalheim, Torsten; Sühnel, Jürgen
2014-01-01
AgeFactDB (http://agefactdb.jenage.de) is a database aimed at the collection and integration of ageing phenotype data including lifespan information. Ageing factors are considered to be genes, chemical compounds or other factors such as dietary restriction, whose action results in a changed lifespan or another ageing phenotype. Any information related to the effects of ageing factors is called an observation and is presented on observation pages. To provide concise access to the complete information for a particular ageing factor, corresponding observations are also summarized on ageing factor pages. In a first step, ageing-related data were primarily taken from existing databases such as the Ageing Gene Database—GenAge, the Lifespan Observations Database and the Dietary Restriction Gene Database—GenDR. In addition, we have started to include new ageing-related information. Based on homology data taken from the HomoloGene Database, AgeFactDB also provides observation and ageing factor pages of genes that are homologous to known ageing-related genes. These homologues are considered as candidate or putative ageing-related genes. AgeFactDB offers a variety of search and browse options, and also allows the download of ageing factor or observation lists in TSV, CSV and XML formats. PMID:24217911
Is retinoic acid genetic machinery a chordate innovation?
Cañestro, Cristian; Postlethwait, John H; Gonzàlez-Duarte, Roser; Albalat, Ricard
2006-01-01
Development of many chordate features depends on retinoic acid (RA). Because the action of RA during development seems to be restricted to chordates, it had been previously proposed that the "invention" of RA genetic machinery, including RA-binding nuclear hormone receptors (Rars), and the RA-synthesizing and RA-degrading enzymes Aldh1a (Raldh) and Cyp26, respectively, was an important step for the origin of developmental mechanisms leading to the chordate body plan. We tested this hypothesis by conducting an exhaustive survey of the RA machinery in genomic databases for twelve deuterostomes. We reconstructed the evolution of these genes in deuterostomes and showed for the first time that RA genetic machinery--that is Aldh1a, Cyp26, and Rar orthologs--is present in nonchordate deuterostomes. This finding implies that RA genetic machinery was already present during early deuterostome evolution, and therefore, is not a chordate innovation. This new evolutionary viewpoint argues against the hypothesis that the acquisition of gene families underlying RA metabolism and signaling was a key event for the origin of chordates. We propose a new hypothesis in which lineage-specific duplication and loss of RA machinery genes could be related to the morphological radiation of deuterostomes.
Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures
Park, Paul J.; Fuchs, Robert; Wei, Lai; Jorgensen, Brian G.; Redelman, Doug; Ward, Sean M.; Sanders, Kenton M.
2017-01-01
Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC), which serve as slow-wave electrical pacemakers for gastrointestinal (GI) smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome) based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies. PMID:28426719
Kejnovský, E; Vrána, J; Matsunaga, S; Soucek, P; Siroký, J; Dolezel, J; Vyskot, B
2001-07-01
The dioecious white campion Silene latifolia (syn. Melandrium album) has heteromorphic sex chromosomes, XX in females and XY in males, that are larger than the autosomes and enable their separation by flow sorting. The group of MROS genes, the first male-specifically expressed genes in dioecious plants, was recently identified in S. latifolia. To localize the MROS genes, we used the flow-sorted X chromosomes and autosomes as a template for PCR with internal primers. Our results indicate that the MROS3 gene is located in at least two copies tandemly arranged on the X chromosome with additional copy(ies) on the autosome(s), while MROS1, MROS2, and MROS4 are exclusively autosomal. The specificity of PCR products was checked by digestion with a restriction enzyme or reamplification using nested primers. Homology search of databases has shown the presence of five MROS3 homologues in A. thaliana, four of them arranged in two tandems, each consisting of two copies. We conclude that MROS3 is a low-copy gene family, connected with the proper pollen development, which is present not only in dioecious but also in other dicot plant species.
Singh, Raghvendra Pratap; Singh, Ram Nageena; Srivastava, Manish K; Srivastava, Alok Kumar; Kumar, Sudheer; Dubey, Ramesh Chandra; Sharma, Arun Kumar
2012-01-01
Methylobacteria are ubiquitous in the biosphere which are capable of growing on C1 compounds such as formate, formaldehyde, methanol and methylamine as well as on a wide range of multi-carbon growth substrates such as C2, C3 and C4 compounds due to the methylotrophic enzymes methanol dehydrogenase (MDH). MDH is performing these functions with the help of a key protein mxaF. Unfortunately, detailed structural analysis and homology modeling of mxaF is remains undefined. Hence, the objective of this research is the characterization and three dimensional modeling of mxaF protein from three different methylotrophs by using I-TASSER server. The predicted model were further optimize and validate by Profile 3D, Errat, Verifiy3-D and PROCHECK server. Predicted and best evaluated models have been successfully deposited to PMDB database with PMDB ID PM0077505, PM0077506 and PM0077507. Active site identification revealed 11, 13 and 14 putative functional site residues in respected models. It may play a major role during protein-protein, and protein-cofactor interactions. This study can provide us an ab-initio and detail information to understand the structure, mechanism of action and regulation of mxaF protein.
Singh, Raghvendra Pratap; Singh, Ram Nageena; Srivastava, Manish K; Srivastava, Alok Kumar; Kumar, Sudheer; Dubey, Ramesh Chandra; Sharma, Arun Kumar
2012-01-01
Methylobacteria are ubiquitous in the biosphere which are capable of growing on C1 compounds such as formate, formaldehyde, methanol and methylamine as well as on a wide range of multi-carbon growth substrates such as C2, C3 and C4 compounds due to the methylotrophic enzymes methanol dehydrogenase (MDH). MDH is performing these functions with the help of a key protein mxaF. Unfortunately, detailed structural analysis and homology modeling of mxaF is remains undefined. Hence, the objective of this research is the characterization and three dimensional modeling of mxaF protein from three different methylotrophs by using I-TASSER server. The predicted model were further optimize and validate by Profile 3D, Errat, Verifiy3-D and PROCHECK server. Predicted and best evaluated models have been successfully deposited to PMDB database with PMDB ID PM0077505, PM0077506 and PM0077507. Active site identification revealed 11, 13 and 14 putative functional site residues in respected models. It may play a major role during protein-protein, and protein-cofactor interactions. This study can provide us an ab-initio and detail information to understand the structure, mechanism of action and regulation of mxaF protein. PMID:23275704
Functional Evolution of PLP-dependent Enzymes based on Active-Site Structural Similarities
Catazaro, Jonathan; Caprez, Adam; Guru, Ashu; Swanson, David; Powers, Robert
2014-01-01
Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on active-site structural similarities has not yet been undertaken. Pyridoxal-5’-phosphate (PLP) dependent enzymes are primordial enzymes that diversified in the last universal ancestor. Using the Comparison of Protein Active Site Structures (CPASS) software and database, we show that the active site structures of PLP-dependent enzymes can be used to infer evolutionary relationships based on functional similarity. The enzymes successfully clustered together based on substrate specificity, function, and three-dimensional fold. This study demonstrates the value of using active site structures for functional evolutionary analysis and the effectiveness of CPASS. PMID:24920327
Functional evolution of PLP-dependent enzymes based on active-site structural similarities.
Catazaro, Jonathan; Caprez, Adam; Guru, Ashu; Swanson, David; Powers, Robert
2014-10-01
Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on active-site structural similarities has not yet been undertaken. Pyridoxal-5'-phosphate (PLP) dependent enzymes are primordial enzymes that diversified in the last universal ancestor. Using the comparison of protein active site structures (CPASS) software and database, we show that the active site structures of PLP-dependent enzymes can be used to infer evolutionary relationships based on functional similarity. The enzymes successfully clustered together based on substrate specificity, function, and three-dimensional-fold. This study demonstrates the value of using active site structures for functional evolutionary analysis and the effectiveness of CPASS. © 2014 Wiley Periodicals, Inc.
Kobayashi, I
2001-09-15
Restriction-modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and function of RM enzymes.
ELISA-BASE: An Integrated Bioinformatics Tool for Analyzing and Tracking ELISA Microarray Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Amanda M.; Collett, James L.; Seurynck-Servoss, Shannon L.
ELISA-BASE is an open-source database for capturing, organizing and analyzing protein enzyme-linked immunosorbent assay (ELISA) microarray data. ELISA-BASE is an extension of the BioArray Soft-ware Environment (BASE) database system, which was developed for DNA microarrays. In order to make BASE suitable for protein microarray experiments, we developed several plugins for importing and analyzing quantitative ELISA microarray data. Most notably, our Protein Microarray Analysis Tool (ProMAT) for processing quantita-tive ELISA data is now available as a plugin to the database.
Jones, Hannah B L; Wells, Stephen A; Prentice, Erica J; Kwok, Anthony; Liang, Liyin L; Arcus, Vickery L; Pudney, Christopher R
2017-09-01
Our understanding of how enzymes work is coloured by static structure depictions where the enzyme scaffold is presented as either immobile, or in equilibrium between well-defined static conformations. Proteins, however, exhibit a large degree of motion over a broad range of timescales and magnitudes and this is defined thermodynamically by the enzyme free energy landscape (FEL). The role and importance of enzyme motion is extremely contentious. Much of the challenge is in the experimental detection of so called 'conformational sampling' involved in enzyme turnover. Herein we apply combined pressure and temperature kinetics studies to elucidate the full suite of thermodynamic parameters defining an enzyme FEL as it relates to enzyme turnover. We find that the key thermodynamic parameters governing vibrational modes related to enzyme turnover are the isobaric expansivity term and the change in heat capacity for enzyme catalysis. Variation in the enzyme FEL affects these terms. Our analysis is supported by a range of biophysical and computational approaches that specifically capture information on protein vibrational modes and the FEL (all atom flexibility calculations, red edge excitation shift spectroscopy and viscosity studies) that provide independent evidence for our findings. Our data suggest that restricting the enzyme FEL may be a powerful strategy when attempting to rationally engineer enzymes, particularly to alter thermal activity. Moreover, we demonstrate how rational predictions can be made with a rapid computational approach. © 2017 Federation of European Biochemical Societies.
Wang, Jiayi; Shaban, Nadine M; Land, Allison M; Brown, William L; Harris, Reuben S
2018-06-15
Several members of the APOBEC3 DNA cytosine deaminase family can potently inhibit Vif-deficient human immunodeficiency virus type 1 (HIV-1) by catalyzing cytosine deamination in viral cDNA and impeding reverse transcription. HIV-1 counteracts restriction with the virally encoded Vif protein, which targets relevant APOBEC3 proteins for proteasomal degradation. HIV-1 Vif is optimized for degrading the restrictive human APOBEC3 repertoire, and, in general, lentiviral Vif proteins specifically target the restricting APOBEC3 enzymes of each host species. However, simian immunodeficiency virus SIV mac239 Vif elicits a curiously wide range of APOBEC3 degradation capabilities that include degradation of several human APOBEC3s and even human APOBEC3B, a non-HIV-1-restricting APOBEC3 enzyme. To better understand the molecular determinants of the interaction between SIV mac239 Vif and human APOBEC3B, we analyzed an extensive series of mutants. We found that SIV mac239 Vif interacts with the N-terminal domain of human APOBEC3B and, interestingly, that this occurs within a structural region homologous to the HIV-1 Vif interaction surface of human APOBEC3G. An alanine scan of SIV mac239 Vif revealed several residues required for human APOBEC3B degradation activity. These residues overlap HIV-1 Vif surface residues that interact with human APOBEC3G and are distinct from those that engage APOBEC3F or APOBEC3H. Overall, these studies indicate that the molecular determinants of the functional interaction between human APOBEC3B and SIV mac239 Vif resemble those between human APOBEC3G and HIV-1 Vif. These studies contribute to the growing knowledge of the APOBEC-Vif interaction and may help guide future efforts to disrupt this interaction as an antiviral therapy or exploit the interaction as a novel strategy to inhibit APOBEC3B-dependent tumor evolution. IMPORTANCE Primate APOBEC3 proteins provide innate immunity against retroviruses such as HIV and SIV. HIV-1, the primary cause of AIDS, utilizes its Vif protein to specifically counteract restrictive human APOBEC3 enzymes. SIV mac239 Vif exhibits a much wider range of anti-APOBEC3 activities that includes several rhesus macaque enzymes and extends to multiple proteins in the human APOBEC3 repertoire, including APOBEC3B. Understanding the molecular determinants of the interaction between SIV mac239 Vif and human APOBEC3B adds to existing knowledge on the APOBEC3-Vif interaction and has potential to shed light on what processes may have shaped Vif functionality over evolutionary time. An intimate understanding of this interaction may also lead to a novel cancer therapy because, for instance, creating a derivative of SIV mac239 Vif that specifically targets human APOBEC3B could be used to suppress tumor genomic DNA mutagenesis by this enzyme, slow ongoing tumor evolution, and help prevent poor clinical outcomes. Copyright © 2018 American Society for Microbiology.
Hoppe-Seyler, T S; Jaeger, B; Bockelmann, W; Noordman, W H; Geis, A; Heller, K J
2003-09-01
ARDRA (Amplified Ribosomal-DNA Restriction Analysis) was used to differentiate among species and genera of Arthrobacter and Microbacteria. Species-specific restriction patterns of PCR-products were obtained with NciI for Arthrobacter citreus (DSM 20133T), A. sulfureus (DSM 20167T), A. globiformis (DSM 20124T) and A. nicotianae strains (DSM 20123T, MGE 10D, CA13, CA14, isolate 95293, 95294, and 95299), A. rhombi CCUG 38813T, and CCUG 38812, and Microbacterium barkeri strains (DSM 30123T, MGE 10D, CA12 and CA15, isolate 95292, and isolate 95207). All yellow pigmented coryneforme bacteria isolated from the smear of surface ripened cheeses were identified as either A. nicotianae or M. barkeri strains. Using pulsed field gel electrophoresis (PFGE) strain specific restriction pattern for all Arthrobacter species and Microbacteria tested were obtained with restriction enzymes AscI and SpeI.
Jeffryes, James G; Colastani, Ricardo L; Elbadawi-Sidhu, Mona; Kind, Tobias; Niehaus, Thomas D; Broadbelt, Linda J; Hanson, Andrew D; Fiehn, Oliver; Tyo, Keith E J; Henry, Christopher S
2015-01-01
In spite of its great promise, metabolomics has proven difficult to execute in an untargeted and generalizable manner. Liquid chromatography-mass spectrometry (LC-MS) has made it possible to gather data on thousands of cellular metabolites. However, matching metabolites to their spectral features continues to be a bottleneck, meaning that much of the collected information remains uninterpreted and that new metabolites are seldom discovered in untargeted studies. These challenges require new approaches that consider compounds beyond those available in curated biochemistry databases. Here we present Metabolic In silico Network Expansions (MINEs), an extension of known metabolite databases to include molecules that have not been observed, but are likely to occur based on known metabolites and common biochemical reactions. We utilize an algorithm called the Biochemical Network Integrated Computational Explorer (BNICE) and expert-curated reaction rules based on the Enzyme Commission classification system to propose the novel chemical structures and reactions that comprise MINE databases. Starting from the Kyoto Encyclopedia of Genes and Genomes (KEGG) COMPOUND database, the MINE contains over 571,000 compounds, of which 93% are not present in the PubChem database. However, these MINE compounds have on average higher structural similarity to natural products than compounds from KEGG or PubChem. MINE databases were able to propose annotations for 98.6% of a set of 667 MassBank spectra, 14% more than KEGG alone and equivalent to PubChem while returning far fewer candidates per spectra than PubChem (46 vs. 1715 median candidates). Application of MINEs to LC-MS accurate mass data enabled the identity of an unknown peak to be confidently predicted. MINE databases are freely accessible for non-commercial use via user-friendly web-tools at http://minedatabase.mcs.anl.gov and developer-friendly APIs. MINEs improve metabolomics peak identification as compared to general chemical databases whose results include irrelevant synthetic compounds. Furthermore, MINEs complement and expand on previous in silico generated compound databases that focus on human metabolism. We are actively developing the database; future versions of this resource will incorporate transformation rules for spontaneous chemical reactions and more advanced filtering and prioritization of candidate structures. Graphical abstractMINE database construction and access methods. The process of constructing a MINE database from the curated source databases is depicted on the left. The methods for accessing the database are shown on the right.
Honarmand Ebrahimi, Kourosh
2018-04-25
RSAD2 (cig-5), also known as viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible), is a member of the radical S-adenosylmethionine (SAM) superfamily of enzymes. Since the discovery of this enzyme more than a decade ago, numerous studies have shown that it exhibits antiviral activity against a wide range of viruses. However, there is no clear picture demonstrating the mechanism by which RSAD2 restricts the replication process of different viruses, largely because there is no direct evidence describing its in vivo enzymatic activity. As a result, a multifunctionality model has emerged. According to this model the mechanism by which RSAD2 restricts replication of different viruses varies and in many cases is not dependent on the radical-SAM chemistry of RSAD2. If the radical-SAM activity of RSAD2 is not required for its antiviral function, the question worth asking is: why does the cellular defence mechanism induce the expression of the radical-SAM enzyme RSAD2, which is metabolically expensive due to the requirement for a [4Fe-4S] cluster and usage of SAM? Here, in contrast to the multifunctionality view, I put forward a unifying model. I postulate that the radical-SAM activity of RSAD2 modulates cellular metabolic pathways essential for viral replication and/or cell proliferation and survival. As a result, its catalytic activity restricts the replication of a wide range of viruses via a common cellular function. This view is based on recent discoveries hinting towards possible substrates of RSAD2, re-evaluation of previous studies regarding the antiviral activity of RSAD2, and accumulating evidence suggesting a role of human RSAD2 in the metabolic reprogramming of cells.
Francischini, J H M B; Kemper, E L; Costa, J B; Manechini, J R V; Pinto, L R
2017-05-04
Micropropagation is an important tool for large-scale multiplication of plant superior genotypes. However, somaclonal variation is one of the drawbacks of this process. Changes in DNA methylation have been widely reported as one of the main causes of somaclonal variations in plants. In order to investigate the occurrence of changes in the methylation pattern of sugarcane somaclonal variants, the MSAP (methylation-sensitive amplified polymorphism) technique was applied to micro-propagated plantlets sampled at the third subculture phase. The mother plant, in vitro normal plantlets, and in vitro abnormal plantlets (somaclonal variants) of four sugarcane clones were screened against 16 MSAP selective primers for EcoRI/MspI and EcoRI/HpaII restriction enzymes. A total of 1005 and 1200 MSAP-derived markers with polymorphism percentages of 28.36 and 40.67 were obtained for EcoRI/HpaII and EcoRI/MspI restriction enzyme combinations, respectively. The genetic similarity between the mother plant and the somaclonal variants ranged from 0.877 to 0.911 (EcoRI/MspI) and from 0.928 to 0.955 (EcoRI/HpaII). Most of the MASPs among mother plant and micro-propagated plantlets were derived from EcoRI/MspI restriction enzymes suggesting alteration due to gain or loss of internal cytosine methylation. A higher rate of loss of methylation (hypomethylation) than gain of methylation (hypermethylation) was observed in the abnormal in vitro sugarcane plantlets. Although changes in the methylation pattern were also observed in the in vitro normal plantlets, they were lower than those observed for the in vitro abnormal plantlets. The MASP technique proved to be a promising tool to early assessment of genetic fidelity of micro-propagated sugarcane plants.
A Rapid Method to Test for Chloroplast DNA Involvement in Atrazine Resistance
McNally, Sheila; Bettini, Priscilla; Sevignac, Mireille; Darmency, Henry; Gasquez, Jacques; Dron, Michel
1987-01-01
A point mutation in the chloroplast psbA gene at codon 264 resulting in an animo acid substitution (ser-gly) manifests itself as atrazine resistance in all recognized weed species studied to date. The single base substitution overlaps a highly conserved Mae1 restriction site which is present in susceptible but not in resistant plants. This restriction enzyme, recently commercialized, has been used to show that it is now possible to discriminate rapidly between the two biotypes without the need for DNA sequencing. Images Fig. 1 PMID:16665229
Mojo Hand, a TALEN design tool for genome editing applications.
Neff, Kevin L; Argue, David P; Ma, Alvin C; Lee, Han B; Clark, Karl J; Ekker, Stephen C
2013-01-16
Recent studies of transcription activator-like (TAL) effector domains fused to nucleases (TALENs) demonstrate enormous potential for genome editing. Effective design of TALENs requires a combination of selecting appropriate genetic features, finding pairs of binding sites based on a consensus sequence, and, in some cases, identifying endogenous restriction sites for downstream molecular genetic applications. We present the web-based program Mojo Hand for designing TAL and TALEN constructs for genome editing applications (http://www.talendesign.org). We describe the algorithm and its implementation. The features of Mojo Hand include (1) automatic download of genomic data from the National Center for Biotechnology Information, (2) analysis of any DNA sequence to reveal pairs of binding sites based on a user-defined template, (3) selection of restriction-enzyme recognition sites in the spacer between the TAL monomer binding sites including options for the selection of restriction enzyme suppliers, and (4) output files designed for subsequent TALEN construction using the Golden Gate assembly method. Mojo Hand enables the rapid identification of TAL binding sites for use in TALEN design. The assembly of TALEN constructs, is also simplified by using the TAL-site prediction program in conjunction with a spreadsheet management aid of reagent concentrations and TALEN formulation. Mojo Hand enables scientists to more rapidly deploy TALENs for genome editing applications.
Using ITS2 PCR-RFLP to generate molecular markers for authentication of Sophora flavescens Ait.
Lin, Tzu Che; Yeh, Mau Shing; Cheng, Ya Ming; Lin, Li Chang; Sung, Jih Min
2012-03-15
Dried root of Sophora flavescens Ait. is a medicinal material occasionally misused or adulterated by other species similar in appearance. In this study the internal transcribed spacer (ITS) regions of DNA samples of S. flavescens Ait. collected from different areas of Taiwan were amplified by polymerase chain reaction (PCR) and compared. The effectiveness of using ITS2 PCR restriction fragment length polymorphism (RFLP)-generated markers to differentiate S. flavescens Ait. from possible adulterants was also evaluated. The S. flavescens Ait. samples collected from different areas were extremely low in ITS sequence variability at species level. ITS2 PCR-RFLP coupled with restriction enzymes Sac I, Sac II, Xho I or Pvu I produced specific fragments for all tested variants. ITS2 PCR-RFLP coupled with Sac II was further performed to identify mixtures of DNA extracts of S. flavescens Ait. and Sophora tomentosa L. in various ratios. The developed ITS2 PCR-RFLP markers could detect mixed DNA samples of S. flavescens Ait./S. tomentosa L. up to a ratio of 10:1. The present study demonstrates the usefulness of ITS2 PCR-RFLP coupled with pre-selected restriction enzymes for practical and accurate authentication of S. flavescens Ait. The technique is also suitable for analysing S. flavescens Ait. mixed with other adulterants.
Feline APOBEC3s, Barriers to Cross-Species Transmission of FIV?
Zhang, Zeli; Gu, Qinyong; Marino, Daniela; Lee, Kyeong-Lim; Kong, Il-Keun; Häussinger, Dieter; Münk, Carsten
2018-01-01
The replication of lentiviruses highly depends on host cellular factors, which defines their species-specific tropism. Cellular restriction factors that can inhibit lentiviral replication were recently identified. Feline immunodeficiency virus (FIV) was found to be sensitive to several feline cellular restriction factors, such as apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) and tetherin, but FIV evolved to counteract them. Here, we describe the molecular mechanisms by which feline APOBEC3 restriction factors inhibit FIV replication and discuss the molecular interaction of APOBEC3 proteins with the viral antagonizing protein Vif. We speculate that feline APOBEC3 proteins could explain some of the observed FIV cross-species transmissions described in wild Felids. PMID:29642583
Immunolocalization of two hydrogenosomal enzymes of Trichomonas vaginalis.
Brugerolle, G; Bricheux, G; Coffe, G
2000-01-01
Three monoclonal antibodies specific for malic enzyme and for the alpha- and beta-subunits, respectively, of the succinyl-coenzyme A (CoA) synthetase of Trichomonas vaginalis were used to immunolocalize these proteins in the cell. All antibodies labeled the hydrogenosome matrix as determined both by immunofluorescence and by immunogold staining. There was no labeling on the cell surface or in any other cell compartment. These results support the idea that these proteins are restricted to a hydrogenosomal function and do not play a role as adhesins at the plasma membrane surface.
Aromatase in the brain: not just for reproduction anymore.
Garcia-Segura, L M
2008-06-01
Aromatase, the enzyme that synthesises oestrogens from androgen precursors, is expressed in the brain, where it has been classically associated with the regulation of neuroendocrine events and behaviours linked with reproduction. Recent findings, however, have revealed new unexpected roles for brain aromatase, indicating that the enzyme regulates synaptic activity, synaptic plasticity, neurogenesis and the response of neural tissue to injury, and may contribute to control nonreproductive behaviours, mood and cognition. Therefore, the function of brain aromatase is not restricted to the regulation of reproduction as previously thought.
Unexplained high thyroid stimulating hormone: a "BIG" problem.
Mendoza, Heidi; Connacher, Alan; Srivastava, Rajeev
2009-01-01
Macro-hormones and macro-enzymes are high molecular weight conjugates of hormones or enzymes, respectively, often with immunoglobulins. These are referred to as macromolecular complexes, and may cause artefactually elevated biochemical tests results. Macro enzymes of the most commonly measured serum enzymes have been identified and are recognised as a source of elevated measurements that may cause diagnostic confusion; macro-creatine kinase and macro-amylase are the two better known macro-enzymes in clinical practice. Literature on macro-hormones is largely restricted to macro-prolactin. We present a case of a clinically euthyroid patient, who had persistently elevated thyroid stimulating hormone (TSH) but free thyroxine within the reference limits. She underwent repeated thyroid investigations and thyroid hormone interference studies, until macro-TSH was identified as the most likely cause of unexplained elevated TSH. Following the identification and characterisation of this biochemical abnormality, she is no longer subject to repeated blood tests for assessment of thyroid function; the patient currently remains clinically euthyroid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akinosho, Hannah; Yee, Kelsey; Rodriguez, Miguel
Because cellulosic ethanol production remains cost-prohibitive„ advances in consolidated bioprocessing (CBP) have been directed towards lifting this restriction. CBP reduces the need for added enzymes and can potentially slash ethanol production costs through process integration. Clostridium thermocellum, a CBP microorganism, organizes its enzymes in a multi-enzyme complex - a stark contrast to fungal enzymes. Nonetheless, recalcitrance may limit the extent of biomass deconstruction. Here in this study, six Populus were treated with C. thermocellum (ATCC 27405) and characterized to determine structural changes that resulted from CBP. The 2D HSQC NMR spectra of lignin-enriched residues revealed that higher S/G ratio (2.6)more » and fewer carbon-carbon interunit linkages (generally 2–5%) were present in the top performing poplar. Furthermore, cellulose degree of polymerization data suggests that C. thermocellum likely circumvents long chain cellulose, while cellulose crystallinity and hemicellulose molecular weight data do not provide a direct indication of features connected to recalcitrance. Hence, C. thermocellum is similarly impacted by the proposed lignin properties that negatively impact biomass deconstruction using fungal enzymes.« less
biochem4j: Integrated and extensible biochemical knowledge through graph databases.
Swainston, Neil; Batista-Navarro, Riza; Carbonell, Pablo; Dobson, Paul D; Dunstan, Mark; Jervis, Adrian J; Vinaixa, Maria; Williams, Alan R; Ananiadou, Sophia; Faulon, Jean-Loup; Mendes, Pedro; Kell, Douglas B; Scrutton, Nigel S; Breitling, Rainer
2017-01-01
Biologists and biochemists have at their disposal a number of excellent, publicly available data resources such as UniProt, KEGG, and NCBI Taxonomy, which catalogue biological entities. Despite the usefulness of these resources, they remain fundamentally unconnected. While links may appear between entries across these databases, users are typically only able to follow such links by manual browsing or through specialised workflows. Although many of the resources provide web-service interfaces for computational access, performing federated queries across databases remains a non-trivial but essential activity in interdisciplinary systems and synthetic biology programmes. What is needed are integrated repositories to catalogue both biological entities and-crucially-the relationships between them. Such a resource should be extensible, such that newly discovered relationships-for example, those between novel, synthetic enzymes and non-natural products-can be added over time. With the introduction of graph databases, the barrier to the rapid generation, extension and querying of such a resource has been lowered considerably. With a particular focus on metabolic engineering as an illustrative application domain, biochem4j, freely available at http://biochem4j.org, is introduced to provide an integrated, queryable database that warehouses chemical, reaction, enzyme and taxonomic data from a range of reliable resources. The biochem4j framework establishes a starting point for the flexible integration and exploitation of an ever-wider range of biological data sources, from public databases to laboratory-specific experimental datasets, for the benefit of systems biologists, biosystems engineers and the wider community of molecular biologists and biological chemists.
biochem4j: Integrated and extensible biochemical knowledge through graph databases
Batista-Navarro, Riza; Dunstan, Mark; Jervis, Adrian J.; Vinaixa, Maria; Ananiadou, Sophia; Faulon, Jean-Loup; Kell, Douglas B.
2017-01-01
Biologists and biochemists have at their disposal a number of excellent, publicly available data resources such as UniProt, KEGG, and NCBI Taxonomy, which catalogue biological entities. Despite the usefulness of these resources, they remain fundamentally unconnected. While links may appear between entries across these databases, users are typically only able to follow such links by manual browsing or through specialised workflows. Although many of the resources provide web-service interfaces for computational access, performing federated queries across databases remains a non-trivial but essential activity in interdisciplinary systems and synthetic biology programmes. What is needed are integrated repositories to catalogue both biological entities and–crucially–the relationships between them. Such a resource should be extensible, such that newly discovered relationships–for example, those between novel, synthetic enzymes and non-natural products–can be added over time. With the introduction of graph databases, the barrier to the rapid generation, extension and querying of such a resource has been lowered considerably. With a particular focus on metabolic engineering as an illustrative application domain, biochem4j, freely available at http://biochem4j.org, is introduced to provide an integrated, queryable database that warehouses chemical, reaction, enzyme and taxonomic data from a range of reliable resources. The biochem4j framework establishes a starting point for the flexible integration and exploitation of an ever-wider range of biological data sources, from public databases to laboratory-specific experimental datasets, for the benefit of systems biologists, biosystems engineers and the wider community of molecular biologists and biological chemists. PMID:28708831
Small heat shock protein AgsA: an effective stabilizer of enzyme activities.
Tomoyasu, Toshifumi; Tabata, Atsushi; Ishikawa, Yoko; Whiley, Robert A; Nagamune, Hideaki
2013-01-01
A small heat shock protein, AgsA, possesses chaperone activity that can reduce the amount of heat-aggregated protein in vivo, and suppress the aggregation of chemical- and heat-denatured proteins in vitro. Therefore, we examined the ability of AgsA to stabilize the activity of several enzymes by using this chaperone activity. We observed that AgsA can stabilize the enzymatic activities of Renilla (Renilla reniformis) luciferase, firefly (Photinus pyralis) luciferase, and β-galactosidase, and showed comparable or greater stabilization of these enzymes than bovine serum albumin (BSA), a well-known stabilizer of enzyme activities. In particular, AgsA revealed better stabilization of Renilla luciferase and β-galactosidase than BSA under disulfide bond-reducing conditions with dithiothreitol. In addition, AgsA also increased the enzymatic performance of β-galactosidase and various restriction enzymes to a comparable or greater extent than BSA. These data indicate that AgsA may be useful as a general stabilizer of enzyme activities. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Adjustment of Conformational Flexibility is a Key Event in the Thermal Adaptation of Proteins
NASA Astrophysics Data System (ADS)
Zavodszky, Peter; Kardos, Jozsef; Svingor, Adam; Petsko, Gregory A.
1998-06-01
3-Isopropylmalate dehydrogenase (IPMDH, E.C. 1.1.1.85) from the thermophilic bacterium Thermus thermophilus HB8 is homologous to IPMDH from the mesophilic Escherichia coli, but has an approximately 17 degrees C higher melting temperature. Its temperature optimum is 22-25 degrees C higher than that of the E. coli enzyme; however, it is hardly active at room temperature. The increased conformational rigidity required to stabilize the thermophilic enzyme against heat denaturation might explain its different temperature-activity profile. Hydrogen/deuterium exchange studies were performed on this thermophilic-mesophilic enzyme pair to compare their conformational flexibilities. It was found that Th. thermophilus IPMDH is significantly more rigid at room temperature than E. coli IPMDH, whereas the enzymes have nearly identical flexibilities under their respective optimal working conditions, suggesting that evolutionary adaptation tends to maintain a ``corresponding state'' regarding conformational flexibility. These observations confirm that conformational fluctuations necessary for catalytic function are restricted at room temperature in the thermophilic enzyme, suggesting a close relationship between conformational flexibility and enzyme function.
Determining mutation density using Restriction Enzyme Sequence Comparative Analysis (RESCAN)
USDA-ARS?s Scientific Manuscript database
The average mutation density of a mutant population is a major consideration when developing resources for the efficient, cost-effective implementation of reverse genetics methods such as Targeting of Induced Local Lesions in Genomes (TILLING). Reliable estimates of mutation density can be achieved ...
Fernandez-Tajes, Juan; Méndez, Josefina
2007-09-05
Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis of the 5S ribosomal DNA region has been applied to the establishment of DNA-based molecular markers for the identification of five razor clam species: Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus. PCR amplifications were carried out using a pair of universal primers from the coding region of 5S rDNA. S. marginatus was simply distinguished by the different size of the amplicons obtained. Species-specific restriction endonuclease patterns were found with the enzymes Hae III for E. arcuatus, E. siliqua, and E. directus, and Acs I for E. macha, and when two enzymes were combined, the four species were also identified. Thus, this work provides a simple, reliable, and rapid protocol for the accurate identification of Ensis and Solen species in fresh and canned products, which is very useful for traceability and to enforce labeling regulations.
Dutra, Márcio Ferreira; Bristot, Ivi Juliana; Batassini, Cristiane; Cunha, Núbia Broetto; Vizuete, Adriana Fernanda Kuckartz; de Souza, Daniela Fraga; Moreira, José Cláudio Fonseca; Gonçalves, Carlos-Alberto
2012-01-01
Caloric restriction (CR) has been associated with health benefits and these effects have been attributed, in part, to modulation of oxidative status by CR; however, data are still controversial. Here, we investigate the effects of seventeen weeks of chronic CR on parameters of oxidative damage/modification of proteins and on antioxidant enzyme activities in cardiac and kidney tissues. Our results demonstrate that CR induced an increase in protein carbonylation in the heart without changing the content of sulfhydryl groups or the activities of superoxide dismutase and catalase (CAT). Moreover, CR caused an increase in CAT activity in kidney, without changing other parameters. Protein carbonylation has been associated with oxidative damage and functional impairment; however, we cannot exclude the possibility that, under our conditions, this alteration indicates a different functional meaning in the heart tissue. In addition, we reinforce the idea that CR can increase CAT activity in the kidney. [BMB Reports 2012; 45(11): 671-676] PMID:23187008
Structure of the EndoMS-DNA Complex as Mismatch Restriction Endonuclease.
Nakae, Setsu; Hijikata, Atsushi; Tsuji, Toshiyuki; Yonezawa, Kouki; Kouyama, Ken-Ichi; Mayanagi, Kouta; Ishino, Sonoko; Ishino, Yoshizumi; Shirai, Tsuyoshi
2016-11-01
Archaeal NucS nuclease was thought to degrade the single-stranded region of branched DNA, which contains flapped and splayed DNA. However, recent findings indicated that EndoMS, the orthologous enzyme of NucS, specifically cleaves double-stranded DNA (dsDNA) containing mismatched bases. In this study, we determined the structure of the EndoMS-DNA complex. The complex structure of the EndoMS dimer with dsDNA unexpectedly revealed that the mismatched bases were flipped out into binding sites, and the overall architecture most resembled that of restriction enzymes. The structure of the apo form was similar to the reported structure of Pyrococcus abyssi NucS, indicating that movement of the C-terminal domain from the resting state was required for activity. In addition, a model of the EndoMS-PCNA-DNA complex was preliminarily verified with electron microscopy. The structures strongly support the idea that EndoMS acts in a mismatch repair pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.
Overview of post Cohen-Boyer methods for single segment cloning and for multisegment DNA assembly
Sands, Bryan; Brent, Roger
2016-01-01
In 1973, Cohen and coworkers published a foundational paper describing the cloning of DNA fragments into plasmid vectors. In it, they used DNA segments made by digestion with restriction enzymes and joined these in vitro with DNA ligase. These methods established working recombinant DNA technology and enabled the immediate start of the biotechnology industry. Since then, “classical” recombinant DNA technology using restriction enzymes and DNA ligase has matured. At the same time, researchers have developed numerous ways to generate large, complex, multisegment DNA constructions that offer advantages over classical techniques. Here, we provide an overview of “post-Cohen-Boyer” techniques used for cloning single segments into vectors (T/A, Topo cloning, Gateway and Recombineering) and for multisegment DNA assembly (Biobricks, Golden Gate, Gibson, Yeast homologous recombination in vivo, and Ligase Cycling Reaction). We compare and contrast these methods and also discuss issues that researchers should consider before choosing a particular multisegment DNA assembly method. PMID:27152131
Jeffryes, James G.; Colastani, Ricardo L.; Elbadawi-Sidhu, Mona; ...
2015-08-28
Metabolomics have proven difficult to execute in an untargeted and generalizable manner. Liquid chromatography–mass spectrometry (LC–MS) has made it possible to gather data on thousands of cellular metabolites. However, matching metabolites to their spectral features continues to be a bottleneck, meaning that much of the collected information remains uninterpreted and that new metabolites are seldom discovered in untargeted studies. These challenges require new approaches that consider compounds beyond those available in curated biochemistry databases. Here we present Metabolic In silico Network Expansions (MINEs), an extension of known metabolite databases to include molecules that have not been observed, but are likelymore » to occur based on known metabolites and common biochemical reactions. We utilize an algorithm called the Biochemical Network Integrated Computational Explorer (BNICE) and expert-curated reaction rules based on the Enzyme Commission classification system to propose the novel chemical structures and reactions that comprise MINE databases. Starting from the Kyoto Encyclopedia of Genes and Genomes (KEGG) COMPOUND database, the MINE contains over 571,000 compounds, of which 93% are not present in the PubChem database. However, these MINE compounds have on average higher structural similarity to natural products than compounds from KEGG or PubChem. MINE databases were able to propose annotations for 98.6% of a set of 667 MassBank spectra, 14% more than KEGG alone and equivalent to PubChem while returning far fewer candidates per spectra than PubChem (46 vs. 1715 median candidates). Application of MINEs to LC–MS accurate mass data enabled the identity of an unknown peak to be confidently predicted. MINE databases are freely accessible for non-commercial use via user-friendly web-tools at http://minedatabase.mcs.anl.gov and developer-friendly APIs. MINEs improve metabolomics peak identification as compared to general chemical databases whose results include irrelevant synthetic compounds. MINEs complement and expand on previous in silico generated compound databases that focus on human metabolism. We are actively developing the database; future versions of this resource will incorporate transformation rules for spontaneous chemical reactions and more advanced filtering and prioritization of candidate structures.« less
Chen, Y. C.; Eisner, J. D.; Kattar, M. M.; Rassoulian-Barrett, S. L.; LaFe, K.; Yarfitz, S. L.; Limaye, A. P.; Cookson, B. T.
2000-01-01
Identification of medically relevant yeasts can be time-consuming and inaccurate with current methods. We evaluated PCR-based detection of sequence polymorphisms in the internal transcribed spacer 2 (ITS2) region of the rRNA genes as a means of fungal identification. Clinical isolates (401), reference strains (6), and type strains (27), representing 34 species of yeasts were examined. The length of PCR-amplified ITS2 region DNA was determined with single-base precision in less than 30 min by using automated capillary electrophoresis. Unique, species-specific PCR products ranging from 237 to 429 bp were obtained from 92% of the clinical isolates. The remaining 8%, divided into groups with ITS2 regions which differed by ≤2 bp in mean length, all contained species-specific DNA sequences easily distinguishable by restriction enzyme analysis. These data, and the specificity of length polymorphisms for identifying yeasts, were confirmed by DNA sequence analysis of the ITS2 region from 93 isolates. Phenotypic and ITS2-based identification was concordant for 427 of 434 yeast isolates examined using sequence identity of ≥99%. Seven clinical isolates contained ITS2 sequences that did not agree with their phenotypic identification, and ITS2-based phylogenetic analyses indicate the possibility of new or clinically unusual species in the Rhodotorula and Candida genera. This work establishes an initial database, validated with over 400 clinical isolates, of ITS2 length and sequence polymorphisms for 34 species of yeasts. We conclude that size and restriction analysis of PCR-amplified ITS2 region DNA is a rapid and reliable method to identify clinically significant yeasts, including potentially new or emerging pathogenic species. PMID:10834993
Two-dimensional enzyme diffusion in laterally confined DNA monolayers.
Castronovo, Matteo; Lucesoli, Agnese; Parisse, Pietro; Kurnikova, Anastasia; Malhotra, Aseem; Grassi, Mario; Grassi, Gabriele; Scaggiante, Bruna; Casalis, Loredana; Scoles, Giacinto
2011-01-01
Addressing the effects of confinement and crowding on biomolecular function may provide insight into molecular mechanisms within living organisms, and may promote the development of novel biotechnology tools. Here, using molecular manipulation methods, we investigate restriction enzyme reactions with double-stranded (ds)DNA oligomers confined in relatively large (and flat) brushy matrices of monolayer patches of controlled, variable density. We show that enzymes from the contacting solution cannot access the dsDNAs from the top-matrix interface, and instead enter at the matrix sides to diffuse two-dimensionally in the gap between top- and bottom-matrix interfaces. This is achieved by limiting lateral access with a barrier made of high-density molecules that arrest enzyme diffusion. We put forward, as a possible explanation, a simple and general model that relates these data to the steric hindrance in the matrix, and we briefly discuss the implications and applications of this strikingly new phenomenon.
Kimura, Richard; Mandrell, Robert E.; Galland, John C.; Hyatt, Doreene; Riley, Lee W.
2000-01-01
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important food-borne pathogen in industrialized countries. We developed a rapid and simple test for detecting E. coli O157:H7 using a method based on restriction site polymorphisms. Restriction-site-specific PCR (RSS-PCR) involves the amplification of DNA fragments using primers based on specific restriction enzyme recognition sequences, without the use of endonucleases, to generate a set of amplicons that yield “fingerprint” patterns when resolved electrophoretically on an agarose gel. The method was evaluated in a blinded study of E. coli isolates obtained from environmental samples collected at beef cattle feedyards. The 54 isolates were all initially identified by a commonly used polyclonal antibody test as belonging to O157:H7 serotype. They were retested by anti-O157 and anti-H7 monoclonal antibody enzyme-linked immunosorbent assay (ELISA). The RSS-PCR method identified all 28 isolates that were shown to be E. coli O157:H7 by the monoclonal antibody ELISA as belonging to the O157:H7 serotype. Of the remaining 26 ELISA-confirmed non-O157:H7 strains, the method classified 25 strains as non-O157:H7. The specificity of the RSS-PCR results correlated better with the monoclonal antibody ELISA than with the polyclonal antibody latex agglutination tests. The RSS-PCR method may be a useful test to distinguish E. coli O157:H7 from a large number of E. coli isolates from environmental samples. PMID:10831431
Chromosome map of the thermophilic archaebacterium Thermococcus celer
NASA Technical Reports Server (NTRS)
Noll, K. M.; Woese, C. R. (Principal Investigator)
1989-01-01
A physical map for the chromosome of the thermophilic archaebacterium Thermococcus celer Vu13 has been constructed. Thirty-four restriction endonucleases were tested for their ability to generate large restriction fragments from the chromosome of T. celer. Of these, the enzymes NheI, SpeI, and XbaI yielded the fewest fragments when analyzed by pulsed-field electrophoresis. NheI and SpeI each gave 5 fragments, while XbaI gave 12. The size of the T. celer chromosome was determined from the sum of the apparent sizes of restriction fragments derived from single and double digests by using these enzymes and was found to be 1,890 +/- 27 kilobase pairs. Partial and complete digests allowed the order of all but three small (less than 15 kilobase pairs) fragments to be deduced. These three fragments were assigned positions by using hybridization probes derived from these restriction fragments. The positions of the other fragments were confirmed by using hybridization probes derived in the same manner. The positions of the 5S, 16S, and 23S rRNA genes as well as the 7S RNA gene were located on this map by using cloned portions of these genes as hybridization probes. The 5S rRNA gene was localized 48 to 196 kilobases from the 5' end of the 16S gene. The 7S RNA gene was localized 190 to 504 kilobases from the 3' end of the 23S gene. These analyses demonstrated that the chromosome of T. celer is a single, circular DNA molecule. This is the first such demonstration of the structure of an archaebacterial chromosome.
Wang, J; Yang, S; Guo, F H; Mao, X; Zhou, H; Dong, Y Q; Wang, Z M; Luo, F
2015-11-13
The angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism has been reported to be associated with digestive system cancer; however, the results from previous studies have been conflicting. The present study aimed to investigate the association between the ACE I/D polymorphism and the risk of digestive system cancer using a meta-analysis of previously published studies. Databases were systematically searched to identify relevant studies published prior to December 2014. We estimated the pooled OR with its 95%CI to assess the association. The meta-analysis consisted of thirteen case-control studies that included 2557 patients and 4356 healthy controls. Meta-analysis results based on all the studies showed no significant association between the ACE I/D polymorphism and the risk of digestive system cancer (DD vs II: OR = 0.85, 95%CI = 0.59-1.24; DI vs II: OR = 0.94, 95%CI = 0.78-1.15; dominant model: OR = 0.96, 95%CI = 0.81- 1.15; recessive model: OR = 1.06, 95%CI = 0.76-1.48). Subgroup analyses by race and cancer type did not detect an association between the ACE I/D polymorphism and digestive system cancer risk. However, when the analyses were restricted to smaller studies (N < 500 patients), the summary OR of DI vs II was 0.80 (95%CI = 0.66-0.97). Our analyses detected a possibility of publication bias with a misestimate of the true association by smaller studies. Overall, meta-analysis results suggest the ACE I/D polymorphism might not be associated with susceptibility to digestive system cancer. Further large and well-designed studies are needed to confirm these conclusions.
Clement, Cristina C.; Becerra, Aniuska; Yin, Liusong; Zolla, Valerio; Huang, Liling; Merlin, Simone; Follenzi, Antonia; Shaffer, Scott A.; Stern, Lawrence J.; Santambrogio, Laura
2016-01-01
The repertoire of peptides displayed in vivo by MHC II molecules derives from a wide spectrum of proteins produced by different cell types. Although intracellular endosomal processing in dendritic cells and B cells has been characterized for a few antigens, the overall range of processing pathways responsible for generating the MHC II peptidome are currently unclear. To determine the contribution of non-endosomal processing pathways, we eluted and sequenced over 3000 HLA-DR1-bound peptides presented in vivo by dendritic cells. The processing enzymes were identified by reference to a database of experimentally determined cleavage sites and experimentally validated for four epitopes derived from complement 3, collagen II, thymosin β4, and gelsolin. We determined that self-antigens processed by tissue-specific proteases, including complement, matrix metalloproteases, caspases, and granzymes, and carried by lymph, contribute significantly to the MHC II self-peptidome presented by conventional dendritic cells in vivo. Additionally, the presented peptides exhibited a wide spectrum of binding affinity and HLA-DM susceptibility. The results indicate that the HLA-DR1-restricted self-peptidome presented under physiological conditions derives from a variety of processing pathways. Non-endosomal processing enzymes add to the number of epitopes cleaved by cathepsins, altogether generating a wider peptide repertoire. Taken together with HLA-DM-dependent and-independent loading pathways, this ensures that a broad self-peptidome is presented by dendritic cells. This work brings attention to the role of “self-recognition” as a dynamic interaction between dendritic cells and the metabolic/catabolic activities ongoing in every parenchymal organ as part of tissue growth, remodeling, and physiological apoptosis. PMID:26740625
ERIC Educational Resources Information Center
Mayo, Ellen S.; Bertino, Anthony J.
1991-01-01
Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)
Cercosporin-deficient mutants by plasmid tagging in the asexual fungus Cercospora nicotianae.
Chung, K-R; Ehrenshaft, M; Wetzel, D K; Daub, M E
2003-11-01
We have successfully adapted plasmid insertion and restriction enzyme-mediated integration (REMI) to produce cercosporin toxin-deficient mutants in the asexual phytopathogenic fungus Cercospora nicotianae. The use of pre-linearized plasmid or restriction enzymes in the transformation procedure significantly decreased the transformation frequency, but promoted a complicated and undefined mode of plasmid integration that leads to mutations in the C. nicotianae genome. Vector DNA generally integrated in multiple copies, and no increase in single-copy insertion was observed when enzymes were added to the transformation mixture. Out of 1873 transformants tested, 39 putative cercosporin toxin biosynthesis ( ctb) mutants were recovered that showed altered levels of cercosporin production. Seven ctb mutants were recovered using pre-linearized plasmids without the addition of enzymes, and these were considered to be non-REMI mutants. The correlation between a specific insertion and a mutant phenotype was confirmed using rescued plasmids as gene disruption vectors in the wild-type strain. Six out of fifteen rescued plasmids tested yielded cercosporin-deficient transformants when re-introduced into the wild-type strain, suggesting a link between the insertion site and the cercosporin-deficient phenotype. Sequence analysis of a fragment flanking the insert site recovered from one insertion mutant showed it to be disrupted in sequences with high homology to the acyl transferase domain of polyketide synthases from other fungi. Disruption of this polyketide synthase gene ( CTB1) using a rescued plasmid resulted in mutants that were defective in cercosporin production. Thus, we provide the first molecular evidence that cercosporin is synthesized via a polyketide pathway as previously hypothesized.
Development of a SNOMED CT based national medication decision support system.
Greibe, Kell
2013-01-01
Physicians often lack the time to familiarize themselves with the details of particular allergies or other drug restrictions. Clinical Decision Support (CDS), based on a structured terminology as SNOMED CT (SCT), can help physicians get an overview, by automatically alerting allergy, interactions and other important information. The centralized CDS platform based on SCT, controls Allergy, Interactions, Risk Situation Drugs and Max Dose restrictions by the help of databases developed for these specific purposes. The CDS will respond to automatic web service requests from the hospital or GP electronic medication system (EMS) during prescription, and return alerts and information. The CDS also contains a Physicians Preference Database where the physicians individually can set which kind of alerts they want to see. The result is clinically useful information physicians can use as a base for a more effective and safer treatment, without developing alert fatigue.
1984-12-01
52242 Prepared for the AIR FORCE OFFICE OF SCIENTIFIC RESEARCH Under Grant No. AFOSR 82-0322 December 1984 ~ " ’w Unclassified SECURITY CLASSIFICATION4...OF THIS PAGE REPORT DOCUMENTATION PAGE is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS Unclassified None 20 SECURITY CLASSIFICATION...designer .and computer- are 20 DIiRIBUTION/AVAILABI LIT Y 0P ABSTR4ACT 21 ABSTRACT SECURITY CLASSIFICA1ONr UNCLASSIFIED/UNLIMITED SAME AS APT OTIC USERS
2014-01-01
Background In order to understand the effects of FeS cluster attachment in [NiFe] hydrogenase, we undertook a study to substitute all 12 amino acid positions normally ligating the three FeS clusters in the hydrogenase small subunit. Using the hydrogenase from Alteromonas macleodii “deep ecotype” as a model, we substituted one of four amino acids (Asp, His, Asn, Gln) at each of the 12 ligating positions because these amino acids are alternative coordinating residues in otherwise conserved-cysteine positions found in a broad survey of NiFe hydrogenase sequences. We also hoped to discover an enzyme with elevated hydrogen evolution activity relative to a previously reported “G1” (H230C/P285C) improved enzyme in which the medial FeS cluster Pro and the distal FeS cluster His were each substituted for Cys. Results Among all the substitutions screened, aspartic acid substitutions were generally well-tolerated, and examination suggests that the observed deficiency in enzyme activity may be largely due to misprocessing of the small subunit of the enzyme. Alignment of hydrogenase sequences from sequence databases revealed many rare substitutions; the five substitutions present in databases that we tested all exhibited measurable hydrogen evolution activity. Select substitutions were purified and tested, supporting the results of the screening assay. Analysis of these results confirms the importance of small subunit processing. Normalizing activity to quantity of mature small subunit, indicative of total enzyme maturation, weakly suggests an improvement over the “G1” enzyme. Conclusions We have comprehensively screened 48 amino acid substitutions of the hydrogenase from A. macleodii “deep ecotype”, to understand non-canonical ligations of amino acids to FeS clusters and to improve hydrogen evolution activity of this class of hydrogenase. Our studies show that non-canonical ligations can be functional and also suggests a new limiting factor in the production of active enzyme. PMID:24934472
Experiences of restrictiveness in forensic psychiatric care: Systematic review and concept analysis.
Tomlin, Jack; Bartlett, Peter; Völlm, Birgit
Mentally disordered offenders may be sent to secure psychiatric hospitals. These settings can resemble carceral spaces, employing high levels of security restricting resident autonomy, expression and social interaction. However, research exploring the restrictiveness of forensic settings is sparse. A systematic review was therefore undertaken to conceptualize this restrictiveness. Eight databases were searched for papers that address restrictive elements of secure forensic care in a non-cursory way. Fifty sources (empirical articles and policy documents) were included and subject to thematic analysis to identify 1) antecedent conditions to, 2) characteristic attributes, 3) consequences and 4) 'deviant' cases of the developing concept. The restrictiveness of forensic care was experienced across three levels: individual, institutional and systemic. Restrictiveness was subjective and included such disparate elements as limited leave and grounds access, ownership of personal belongings and staff attitudes. The manner and extent to which these are experienced as restrictive was influenced by two antecedent conditions; whether the purpose of forensic care was to be more caring or custodial and the extent to which residents were perceived to be risky. We argue that there must be a reflexivity from stakeholders between the level of restrictiveness needed to safely provide care in a therapeutic milieu and enable the maximum amount of resident autonomy. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montz, W.E.; Card, W.C.; Kirkpatrick, R.L.
1982-05-01
Hepatic microsomal enzyme activity was induced in wild-trapped raccoons (Procyon lotor) and selected blood characteristics were measured in an effort to detect responses due to PCB ingestion, nutritional restriction, and their interactions. Barbiturate-induced sleeping times were used as an index of hepatic microsomal activity because they have been used reliably by other workers. Blood characteristics examined in the study were nonesterified fatty acids (NEFA), cholesterol, and three ketone bodies (D-(-)-3-hydroxybutyrate, acetoacetate, and acetone). Results show a reduction in sleeping times, elevated NEFA and D-(-)-3-hydroxybutyrate concentrations, and lower cholesterol concentrations in PCB-treated groups. A highly significant interaction between PCB treatment andmore » nutritional restriction was observed in acetoacetate concentrations. (JMT)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafreniere, R.G.; Rouleau, G.A.; De Jong, P.J.
1995-09-01
As a step toward identifying the molecular defect in patients afflicted with progressive myoclonus epilepsy type 1 (EPM1), we have assembled a cosmid contig of the candidate EPM1 region in 21q22.3. The contig constitutes a collection of 87 different cosmids spanning 405 kb based on a derived HindIII restriction map. Potential CpG-rich islands have been identified based on the restriction map generated from eight different rare-cutting enzymes. This contig contains the genetic material required for the isolation of expressed sequences and the identification of the gene defective in EPM1 and possibly other disorders mapping to this region. 15 refs., 1more » fig.« less
How-to-Do-It. An Exercise in Gene Mapping.
ERIC Educational Resources Information Center
Seidel-Rogol, Bonnie L.
1990-01-01
Described is a laboratory exercise designed to introduce students to the theory and practice of gene mapping including RNA extraction, sucrose density gradient centrifugation, labelling of nucleic acids in vitro, DNA extraction, digestion of DNA with restriction enzymes, and the southern hybridization analysis. Procedures and sample results are…
The "Frankenplasmid" Lab: An Investigative Exercise for Teaching Recombinant DNA Methods
ERIC Educational Resources Information Center
Dean, Derek M.; Wilder, Jason A.
2011-01-01
We describe an investigative laboratory module designed to give college undergraduates strong practical and theoretical experience with recombinant DNA methods within 3 weeks. After deducing restriction enzyme maps for two different plasmids, students ligate the plasmids together in the same reaction, transform "E. coli" with this mixture of…
Microbial genome sequencing using optical mapping and Illumina sequencing
USDA-ARS?s Scientific Manuscript database
Introduction Optical mapping is a technique in which strands of genomic DNA are digested with one or more restriction enzymes, and a physical map of the genome constructed from the resulting image. In outline, genomic DNA is extracted from a pure culture, linearly arrayed on a specialized glass sli...
USDA-ARS?s Scientific Manuscript database
Rice seeds of the temperate japonica cultivar Kitaake were mutagenized with sodium azide alone and in combination with methyl nitrosourea. Using the reduced representation sequencing method Restriction Enzyme Sequence Comparative Analysis (RESCAN), the mutation densities, types and local sequence co...
Evans, Ben A; Smith, Olivia L; Pickerill, Ethan S; York, Mary K; Buenconsejo, Kristen J P; Chambers, Antonio E; Bernstein, Douglas A
2018-01-01
Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn 2+ -binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans . Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest.
The effects of beta-adrenergic blockade on body composition in free-fed and diet-restricted rats.
Ji, L L; Doan, T D; Lennon, D L; Nagle, F J; Lardy, H A
1987-04-01
The effects of the non-selective beta-adrenergic blocking agent propranolol (known for its anti-lipolytic activity) on body composition were investigated in growing male rats on normal unrestricted diet (N = 7) and on diet restriction (N = 7, 95% of controls). Three animals in each group were injected i.p. with 30 mg propranolol per kg body weight (bw) dissolved in saline, 5 days/week. This dose attenuates exercising heart rate by 25% and exercise training-induced enzyme activity. The remaining animals received saline. Fat, glycogen, moisture and non-ether extractable residue were determined in the homogenized residue of the whole animal. After 9 weeks on the experimental regimen, bw gain was significantly lower in the diet restricted rats, whereas propranolol had no effect on the bw gain. The percentage of fat, moisture and non-ether extractable residue were unchanged by either propranolol or diet restriction. However, glycogen content was significantly lower in the beta-blocked rats either with or without diet restriction. These data indicated that neither beta-adrenergic blockade nor minimal diet restriction influences the percentage body fat, whereas body glycogen content is decreased under both conditions.
Minkiewicz, Piotr; Darewicz, Małgorzata; Iwaniak, Anna; Bucholska, Justyna; Starowicz, Piotr; Czyrko, Emilia
2016-01-01
Internet databases of small molecules, their enzymatic reactions, and metabolism have emerged as useful tools in food science. Database searching is also introduced as part of chemistry or enzymology courses for food technology students. Such resources support the search for information about single compounds and facilitate the introduction of secondary analyses of large datasets. Information can be retrieved from databases by searching for the compound name or structure, annotating with the help of chemical codes or drawn using molecule editing software. Data mining options may be enhanced by navigating through a network of links and cross-links between databases. Exemplary databases reviewed in this article belong to two classes: tools concerning small molecules (including general and specialized databases annotating food components) and tools annotating enzymes and metabolism. Some problems associated with database application are also discussed. Data summarized in computer databases may be used for calculation of daily intake of bioactive compounds, prediction of metabolism of food components, and their biological activity as well as for prediction of interactions between food component and drugs. PMID:27929431
Minkiewicz, Piotr; Darewicz, Małgorzata; Iwaniak, Anna; Bucholska, Justyna; Starowicz, Piotr; Czyrko, Emilia
2016-12-06
Internet databases of small molecules, their enzymatic reactions, and metabolism have emerged as useful tools in food science. Database searching is also introduced as part of chemistry or enzymology courses for food technology students. Such resources support the search for information about single compounds and facilitate the introduction of secondary analyses of large datasets. Information can be retrieved from databases by searching for the compound name or structure, annotating with the help of chemical codes or drawn using molecule editing software. Data mining options may be enhanced by navigating through a network of links and cross-links between databases. Exemplary databases reviewed in this article belong to two classes: tools concerning small molecules (including general and specialized databases annotating food components) and tools annotating enzymes and metabolism. Some problems associated with database application are also discussed. Data summarized in computer databases may be used for calculation of daily intake of bioactive compounds, prediction of metabolism of food components, and their biological activity as well as for prediction of interactions between food component and drugs.
Porphyromonas endodontalis: prevalence and distribution of restriction enzyme patterns in families.
Petit, M D; van Winkelhoff, A J; van Steenbergen, T J; de Graaff, J
1993-08-01
In this study we determined the prevalence and distribution of Porphyromonas endodontalis in 26 families consisting of 107 subjects. P. endodontalis was present in 24% of the investigated subjects and was recovered most often from the dorsum of the tongue (50%). Isolation was also possible from the tonsils, the buccal mucosa, the saliva and the periodontal pocket. The usefulness of restriction endonuclease analysis as a typing method for this particular species was investigated by typing 19 isolates from unrelated individuals. All these isolates had unique restriction endonuclease patterns. The observed heterogeneity indicates that restriction endonuclease analysis is a sensitive measure of genetic dissimilarity between P. endodontalis isolates and is able to characterize individual isolates. Application of restriction endonuclease analysis to the obtained clinical isolates in this study shows the possibility of the presence of multiple clonal types within one subject. The DNA patterns of all P. endodontalis isolates from unrelated individuals were found to be distinct. In 3 families the DNA patterns of isolates from the mother and her child were indistinguishable. These data indicate the possibility of intrafamilial transmission of P. endodontalis.
PhosphoBase: a database of phosphorylation sites.
Blom, N; Kreegipuu, A; Brunak, S
1998-01-01
PhosphoBase is a database of experimentally verified phosphorylation sites. Version 1.0 contains 156 entries and 398 experimentally determined phosphorylation sites. Entries are compiled and revised from the literature and from major protein sequence databases such as SwissProt and PIR. The entries provide information about the phosphoprotein and the exact position of its phosphorylation sites. Furthermore, part of the entries contain information about kinetic data obtained from enzyme assays on specific peptides. To illustrate the use of data extracted from PhosphoBase we present a sequence logo displaying the overall conservation of positions around serines phosphorylated by protein kinase A (PKA). PhosphoBase is available on the WWW at http://www.cbs.dtu.dk/databases/PhosphoBase/ PMID:9399879
Databases in the Area of Pharmacogenetics
Sim, Sarah C.; Altman, Russ B.; Ingelman-Sundberg, Magnus
2012-01-01
In the area of pharmacogenetics and personalized health care it is obvious that databases, providing important information of the occurrence and consequences of variant genes encoding drug metabolizing enzymes, drug transporters, drug targets, and other proteins of importance for drug response or toxicity, are of critical value for scientists, physicians, and industry. The primary outcome of the pharmacogenomic field is the identification of biomarkers that can predict drug toxicity and drug response, thereby individualizing and improving drug treatment of patients. The drug in question and the polymorphic gene exerting the impact are the main issues to be searched for in the databases. Here, we review the databases that provide useful information in this respect, of benefit for the development of the pharmacogenomic field. PMID:21309040
Haynos, Ann F; Berg, Kelly C; Cao, Li; Crosby, Ross D; Lavender, Jason M; Utzinger, Linsey M; Wonderlich, Stephen A; Engel, Scott G; Mitchell, James E; Le Grange, Daniel; Peterson, Carol B; Crow, Scott J
2017-07-01
Despite robust support for the role of affect in the maintenance of binge eating and purging, the relationship between affect and restrictive eating remains poorly understood. To investigate the relationship between restrictive eating and affect, ecological momentary assessment data from 118 women with anorexia nervosa (AN) were used to examine trajectories of higher-order dimensions of negative affect (NA) and positive affect (PA), as well as lower-order dimensions of NA (Fear, Guilt) and PA (Joviality, Self-Assurance) relative to restrictive eating. Affect trajectories were modeled before and after restrictive eating episodes and AN subtype was examined as a moderator of these trajectories. Across the sample, Guilt significantly increased before and decreased after restrictive eating episodes. Global NA, Global PA, Fear, Joviality, and Self-Assurance did not vary relative to restrictive eating episodes across the sample. However, significant subtype by trajectory interactions were detected for PA indices. Among individuals with AN restricting subtype, Global PA, Joviality, and Self-Assurance decreased prior to and Self-Assurance increased following restrictive eating episodes. In contrast, Global PA and Self-Assurance increased prior to, but did not change following, restrictive eating episodes among individuals with AN binge eating/purging subtype. Results suggest that dietary restriction may function to mitigate guilt across AN subtypes and to enhance self-assurance among individuals with AN restricting subtype. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
TRIM5α requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription
Fletcher, Adam J; Christensen, Devin E; Nelson, Chad; Tan, Choon Ping; Schaller, Torsten; Lehner, Paul J; Sundquist, Wesley I; Towers, Greg J
2015-01-01
TRIM5α is an antiviral, cytoplasmic, E3 ubiquitin (Ub) ligase that assembles on incoming retroviral capsids and induces their premature dissociation. It inhibits reverse transcription of the viral genome and can also synthesize unanchored polyubiquitin (polyUb) chains to stimulate innate immune responses. Here, we show that TRIM5α employs the E2 Ub-conjugating enzyme Ube2W to anchor the Lys63-linked polyUb chains in a process of TRIM5α auto-ubiquitination. Chain anchoring is initiated, in cells and in vitro, through Ube2W-catalyzed monoubiquitination of TRIM5α. This modification serves as a substrate for the elongation of anchored Lys63-linked polyUb chains, catalyzed by the heterodimeric E2 enzyme Ube2N/Ube2V2. Ube2W targets multiple TRIM5α internal lysines with Ub especially lysines 45 and 50, rather than modifying the N-terminal amino group, which is instead αN-acetylated in cells. E2 depletion or Ub mutation inhibits TRIM5α ubiquitination in cells and restores restricted viral reverse transcription, but not infection. Our data indicate that the stepwise formation of anchored Lys63-linked polyUb is a critical early step in the TRIM5α restriction mechanism and identify the E2 Ub-conjugating cofactors involved. PMID:26101372
Gusella, Milena; Bertolaso, Laura; Bolzonella, Caterina; Pasini, Felice; Padrini, Roberto
2011-10-01
Uridine monophosphate synthase (UMPS) is a fundamental enzyme in pyrimidine synthesis. A single-nucleotide polymorphism, a G-C transversion at the 638th nucleotide, was demonstrated to increase UMPS activity and suggested to have clinical effects. The aims of this study were to set up simple genotyping methods and investigate the UMPS 638G>C polymorphism in the Caucasian population. Two hundred forty-one patients with gastrointestinal cancers and 189 healthy subjects were enrolled. Genomic DNA was extracted from peripheral blood. A polymerase chain reaction-restriction fragment length polymorphism (RFLP) method was implemented using a forward primer incorporating a mismatched base to produce an artificial restriction site and BsrI restriction enzyme digestion; a denaturing high performance liquid chromatography (DHPLC) method was developed to further speed up UMPS genotyping. A 153 bp UMPS gene fragment was successfully amplified and analyzed in all samples. RFLP and DHPLC results showed a 100% match and where confirmed by direct sequencing. UMPS genotype distribution was similar in patients with cancer and control subjects. Although no association was detected between UMPS variants and gastrointestinal cancer risk in Caucasians, polymerase chain reaction-RFLP with BsrI digestion and DHPLC set up at 59°C are reliable and cost-effective methods to genotype UMPS.
Ovalle-Bracho, Clemencia; Camargo, Carolina; Díaz-Toro, Yira; Parra-Muñoz, Marcela
2018-03-15
Multilocus enzyme electrophoresis (MLEE) is the reference standard for the characterization of Leishmania species. The test is restricted to specialized laboratories due to its technical complexity, cost, and time required to obtain results. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) is used to identify Leishmania species. To establish the concordance between the two tests as identifying methods for circulating species in Colombia. A total of 96 isolates from patients with cutaneous or mucosal leishmaniasis were selected and identified by MLEE and PCR-RFLP with miniexon and hsp70 as the molecular targets, which were used sequentially. Restriction enzymes HaeIII and BccI were similarly applied. Cohen's kappa coefficient and the 95% confidence interval (CI) were calculated. The kappa coefficient and the 95% CI between MLEE and PCR-RFLP displayed "very good" concordance with a coefficient of 0.98 (CI95%: 0.98 to 1.00). The identified species were Leishmania Viannia braziliensis, Leishmania Viannia panamensis, Leishmania Viannia guyanensis and Leishmania Leishmania amazonensis. A total of 80 of the 96 isolates were sequenced and the results obtained by PCR-RFLP were confirmed. Due to the concordance obtained between tests results with the amplification of the genes miniexon and hsp70, PCR-RFLP is proposed as an alternative for identifying circulating Leishmania species in Colombia.
The role of molecular testing and enzyme analysis in the management of hypomorphic citrullinemia.
Dimmock, David P; Trapane, Pamela; Feigenbaum, Annette; Keegan, Catherine E; Cederbaum, Stephen; Gibson, James; Gambello, Michael J; Vaux, Keith; Ward, Patricia; Rice, Gregory M; Wolff, Jon A; O'Brien, William E; Fang, Ping
2008-11-15
Expanded newborn screening detects patients with modest elevations in citrulline; however it is currently unclear how to treat these patients and how to counsel their parents. In order to begin to address these issues, we compared the clinical, biochemical, and molecular features of 10 patients with mildly elevated citrulline levels. Three patients presented with clinical illness whereas seven came to attention as a result of expanded newborn screening. One patient presented during pregnancy and responded promptly to IV sodium phenylacetate/sodium benzoate and arginine therapy with no long-term adverse effects on mother or fetus. Two children presented with neurocognitive dysfunction, one of these responded dramatically to dietary protein reduction. ASS enzyme activity was not deficient in all patients with biallelic mutations suggesting this test cannot exclude the ASS1 locus in patients with mildly elevated plasma citrulline. Conversely, all symptomatic patients who were tested had deficient activity. We describe four unreported mutations (p.Y291S, p.R272H, p.F72L, and p.L88I), as well as the common p.W179R mutation. In silico algorithms were inconsistent in predicting the pathogenicity of mutations. The cognitive benefit in one patient of protein restriction and the lack of adverse outcome in seven others restricted from birth, suggest a role for protein restriction and continued monitoring to prevent neurocognitive dysfunction. (c) 2008 Wiley-Liss, Inc.
McKinney, Garrett J; Larson, Wesley A; Seeb, Lisa W; Seeb, James E
2017-05-01
In their recently corrected manuscript, "Breaking RAD: An evaluation of the utility of restriction site associated DNA sequencing for genome scans of adaptation", Lowry et al. argue that genome scans using RADseq will miss many loci under selection due to a combination of sparse marker density and low levels of linkage disequilibrium in most species. We agree that marker density and levels of LD are important considerations when designing a RADseq study; however, we dispute that RAD-based genome scans are as prone to failure as Lowry et al. suggest. Their arguments ignore the flexible nature of RADseq; the availability of different restriction enzymes and capacity for combining restriction enzymes ensures that a well-designed study should be able to generate enough markers for efficient genome coverage. We further believe that simplifying assumptions about linkage disequilibrium in their simulations are invalid in many species. Finally, it is important to note that the alternative methods proposed by Lowry et al. have limitations equal to or greater than RADseq. The wealth of studies with positive impactful findings that have used RAD genome scans instead supports the argument that properly conducted RAD genome scans are an effective method for gaining insight into ecology and evolution, particularly for non-model organisms and those with large or complex genomes. © 2016 John Wiley & Sons Ltd.
Phylogenetic analysis of the envelope protein (domain lll) of dengue 4 viruses
Mota, Javier; Ramos-Castañeda, José; Rico-Hesse, Rebeca; Ramos, Celso
2011-01-01
Objective To evaluate the genetic variability of domain III of envelope (E) protein and to estimate phylogenetic relationships of dengue 4 (Den-4) viruses isolated in Mexico and from other endemic areas of the world. Material and Methods A phylogenetic study of domain III of envelope (E) protein of Den-4 viruses was conducted in 1998 using virus strains from Mexico and other parts of the world, isolated in different years. Specific primers were used to amplify by RT-PCR the domain III and to obtain nucleotide sequence. Based on nucleotide and deduced aminoacid sequence, genetic variability was estimated and a phylogenetic tree was generated. To make an easy genetic analysis of domain III region, a Restriction Fragment Length Polymorphism (RFLP) assay was performed, using six restriction enzymes. Results Study results demonstrate that nucleotide and aminoacid sequence analysis of domain III are similar to those reported from the complete E protein gene. Based on the RFLP analysis of domain III using the restriction enzymes Nla III, Dde I and Cfo I, Den-4 viruses included in this study were clustered into genotypes 1 and 2 previously reported. Conclusions Study results suggest that domain III may be used as a genetic marker for phylogenetic and molecular epidemiology studies of dengue viruses. The English version of this paper is available too at: http://www.insp.mx/salud/index.html PMID:12132320
Kent, Angela D.; Smith, Dan J.; Benson, Barbara J.; Triplett, Eric W.
2003-01-01
Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restriction fragment (T-RF) sizes through the use of web-based resources that predict T-RF sizes for known bacteria. The process quickly becomes computationally intensive due to the need to analyze profiles produced by multiple restriction digests and the complexity of profiles generated by natural microbial communities. A web-based tool is described here that rapidly generates phylogenetic assignments from submitted community T-RFLP profiles based on a database of fragments produced by known 16S rRNA gene sequences. Users have the option of submitting a customized database generated from unpublished sequences or from a gene other than the 16S rRNA gene. This phylogenetic assignment tool allows users to employ T-RFLP to simultaneously analyze microbial community diversity and species composition. An analysis of the variability of bacterial species composition throughout the water column in a humic lake was carried out to demonstrate the functionality of the phylogenetic assignment tool. This method was validated by comparing the results generated by this program with results from a 16S rRNA gene clone library. PMID:14602639
Yamak, F; Peever, T L; Grove, G G; Boal, R J
2002-11-01
ABSTRACT Seven hundred forty-nine isolates of Phytophthora spp. were obtained from irrigation canals in eastern Washington State during the 1992 to 1995 and 1999 growing seasons. Isolates were retrieved using pear baiting techniques. All isolates were pathogenic to pear and were present in irrigation water beginning early in fruit development. Over the course of the 5 year study, 10 and 5% of isolates were identified as P. cactorum and P. citricola, respectively, using morphological criteria. The remaining isolates could not be identified using morphological criteria. Colony morphology of these isolates was characterized during all years of the study. In 1999, more detailed studies utilizing polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis of entire internal transcribed spacer (ITS) regions (ITS1, 5.8S, and ITS2) of ribosomal DNA for 180 isolates, and sequence analysis of ITS2 for 50 isolates, were used to investigate genetic variation and phylogenetic relationships among isolates. Isolates were divided into 12 groups based on their growth type on corn meal agar. Restriction digestion of the entire ITS region with three enzymes revealed 11 restriction digestion patterns among 180 isolates. PCR-RFLP and sequence data were obtained for 12 reference Phytophthora spp. (two species in each of Waterhouse's six morphological groups). Phylogenetic analysis of ITS2 regions revealed nine clades, each with strong bootstrap support. Molecular analyses revealed 23 isolates that were in the P. gonapodyides clade, 9 in the P. parasitica clade, 1 in the P. cactorum clade, 7 in the P. citricola/capsici clade, and 4 in the P. cambivora/pseudotsugae clade. The three isolates comprising clade 5 were significantly distinct from all other Phytophthora spp. in the databases and may represent a new Phytophthora sp. Colony morphology was not consistently correlated to PCR-RFLP pattern or ITS2 phylogeny, suggesting that the former criterion is insufficient for species identification. The results of this study indicate that at least nine phylogenetically distinct taxa of Phytophthora pathogenic to pear are present in irrigation water in North Central Washington.
Easy preparation of a large-size random gene mutagenesis library in Escherichia coli.
You, Chun; Percival Zhang, Y-H
2012-09-01
A simple and fast protocol for the preparation of a large-size mutant library for directed evolution in Escherichia coli was developed based on the DNA multimers generated by prolonged overlap extension polymerase chain reaction (POE-PCR). This protocol comprised the following: (i) a linear DNA mutant library was generated by error-prone PCR or shuffling, and a linear vector backbone was prepared by regular PCR; (ii) the DNA multimers were generated based on these two DNA templates by POE-PCR; and (iii) the one restriction enzyme-digested DNA multimers were ligated to circular plasmids, followed by transformation to E. coli. Because the ligation efficiency of one DNA fragment was several orders of magnitude higher than that of two DNA fragments for typical mutant library construction, it was very easy to generate a mutant library with a size of more than 10(7) protein mutants per 50 μl of the POE-PCR product. Via this method, four new fluorescent protein mutants were obtained based on monomeric cherry fluorescent protein. This new protocol was simple and fast because it did not require labor-intensive optimizations in restriction enzyme digestion and ligation, did not involve special plasmid design, and enabled constructing a large-size mutant library for directed enzyme evolution within 1 day. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nor, Nooraisyah Mohamad; Bakar, Farah Diba Abu; Mahadi, Nor Muhammad; Murad, Abdul Munir Abdul
2015-09-01
A beta-1,3-xylanase (EC 3.2.1.32) gene from psychrophilic yeast, Glaciozyma antarctica has been identified via genome data mining. The enzyme was grouped into GH26 family based on Carbohydrate Active Enzyme (CaZY) database. The molecular weight of this protein was predicted to be 42 kDa and is expected to be soluble for expression. The presence of signal peptide suggested that this enzyme may be released extracellularly into the marine environment of the host's habitat. This supports the theory that such enzymatic activity is required for degradation of nutrients of polysaccharide origins into simpler carbohydrates outside the environment before it could be taken up inside the cell. The sequence for this protein showed very little conservation (< 30%) with other beta-1,3-xylanases from available databases. Based on the phylogenetic analysis, this protein also showed distant relationship to other xylanases from eukaryotic origin. The protein may have undergone major substitution in its gene sequence order to adapt to the cold climate. This is the first report of beta-1,3-xylanase gene isolated from a psychrophilic yeast.
Molecular Interaction Map of the Mammalian Cell Cycle Control and DNA Repair Systems
Kohn, Kurt W.
1999-01-01
Eventually to understand the integrated function of the cell cycle regulatory network, we must organize the known interactions in the form of a diagram, map, and/or database. A diagram convention was designed capable of unambiguous representation of networks containing multiprotein complexes, protein modifications, and enzymes that are substrates of other enzymes. To facilitate linkage to a database, each molecular species is symbolically represented only once in each diagram. Molecular species can be located on the map by means of indexed grid coordinates. Each interaction is referenced to an annotation list where pertinent information and references can be found. Parts of the network are grouped into functional subsystems. The map shows how multiprotein complexes could assemble and function at gene promoter sites and at sites of DNA damage. It also portrays the richness of connections between the p53-Mdm2 subsystem and other parts of the network. PMID:10436023
Krassowski, Michal; Paczkowska, Marta; Cullion, Kim; Huang, Tina; Dzneladze, Irakli; Ouellette, B F Francis; Yamada, Joseph T; Fradet-Turcotte, Amelie
2018-01-01
Abstract Interpretation of genetic variation is needed for deciphering genotype-phenotype associations, mechanisms of inherited disease, and cancer driver mutations. Millions of single nucleotide variants (SNVs) in human genomes are known and thousands are associated with disease. An estimated 21% of disease-associated amino acid substitutions corresponding to missense SNVs are located in protein sites of post-translational modifications (PTMs), chemical modifications of amino acids that extend protein function. ActiveDriverDB is a comprehensive human proteo-genomics database that annotates disease mutations and population variants through the lens of PTMs. We integrated >385,000 published PTM sites with ∼3.6 million substitutions from The Cancer Genome Atlas (TCGA), the ClinVar database of disease genes, and human genome sequencing projects. The database includes site-specific interaction networks of proteins, upstream enzymes such as kinases, and drugs targeting these enzymes. We also predicted network-rewiring impact of mutations by analyzing gains and losses of kinase-bound sequence motifs. ActiveDriverDB provides detailed visualization, filtering, browsing and searching options for studying PTM-associated mutations. Users can upload mutation datasets interactively and use our application programming interface in pipelines. Integrative analysis of mutations and PTMs may help decipher molecular mechanisms of phenotypes and disease, as exemplified by case studies of TP53, BRCA2 and VHL. The open-source database is available at https://www.ActiveDriverDB.org. PMID:29126202
A Kinetic Modelling of Enzyme Inhibitions in the Central Metabolism of Yeast Cells
NASA Astrophysics Data System (ADS)
Kasbawati; Kalondeng, A.; Aris, N.; Erawaty, N.; Azis, M. I.
2018-03-01
Metabolic regulation plays an important role in the metabolic engineering of a cellular process. It is conducted to improve the productivity of a microbial process by identifying the important regulatory nodes of a metabolic pathway such as fermentation pathway. Regulation of enzymes involved in a particular pathway can be held to improve the productivity of the system. In the central metabolism of yeast cell, some enzymes are known as regulating enzymes that can be inhibited to increase the production of ethanol. In this research we study the kinetic modelling of the enzymes in the central pathway of yeast metabolism by taking into consideration the enzyme inhibition effects to the ethanol production. The existence of positive steady state solution and the stability of the system are also analysed to study the property and dynamical behaviour of the system. One stable steady state of the system is produced if some conditions are fulfilled. The conditions concern to the restriction of the maximum reactions of the enzymes in the pyruvate and acetaldehyde branch points. There exists a certain time of fermentation reaction at which a maximum and a minimum ethanol productions are attained after regulating the system. Optimal ethanol concentration is also produced for a certain initial concentration of inhibitor.
Akinosho, Hannah; Yee, Kelsey; Rodriguez, Miguel; ...
2017-11-21
Because cellulosic ethanol production remains cost-prohibitive„ advances in consolidated bioprocessing (CBP) have been directed towards lifting this restriction. CBP reduces the need for added enzymes and can potentially slash ethanol production costs through process integration. Clostridium thermocellum, a CBP microorganism, organizes its enzymes in a multi-enzyme complex - a stark contrast to fungal enzymes. Nonetheless, recalcitrance may limit the extent of biomass deconstruction. Here in this study, six Populus were treated with C. thermocellum (ATCC 27405) and characterized to determine structural changes that resulted from CBP. The 2D HSQC NMR spectra of lignin-enriched residues revealed that higher S/G ratio (2.6)more » and fewer carbon-carbon interunit linkages (generally 2–5%) were present in the top performing poplar. Furthermore, cellulose degree of polymerization data suggests that C. thermocellum likely circumvents long chain cellulose, while cellulose crystallinity and hemicellulose molecular weight data do not provide a direct indication of features connected to recalcitrance. Hence, C. thermocellum is similarly impacted by the proposed lignin properties that negatively impact biomass deconstruction using fungal enzymes.« less
Fu, Zidong Donna; Klaassen, Curtis D
2014-01-01
Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. Copyright © 2013 Elsevier Inc. All rights reserved.
A Web-based Tool for SDSS and 2MASS Database Searches
NASA Astrophysics Data System (ADS)
Hendrickson, M. A.; Uomoto, A.; Golimowski, D. A.
We have developed a web site using HTML, Php, Python, and MySQL that extracts, processes, and displays data from the Sloan Digital Sky Survey (SDSS) and the Two-Micron All-Sky Survey (2MASS). The goal is to locate brown dwarf candidates in the SDSS database by looking at color cuts; however, this site could also be useful for targeted searches of other databases as well. MySQL databases are created from broad searches of SDSS and 2MASS data. Broad queries on the SDSS and 2MASS database servers are run weekly so that observers have the most up-to-date information from which to select candidates for observation. Observers can look at detailed information about specific objects including finding charts, images, and available spectra. In addition, updates from previous observations can be added by any collaborators; this format makes observational collaboration simple. Observers can also restrict the database search, just before or during an observing run, to select objects of special interest.
Vaneechoutte, M; Riegel, P; de Briel, D; Monteil, H; Verschraegen, G; De Rouck, A; Claeys, G
1995-10-01
The 16S rRNA genes (rDNA) of 50 strains belonging to 26 different coryneform bacterial species and genomospecies and of the type strain of Rhodococcus equi were enzymatically amplified. Amplified rDNA restriction analysis (ARDRA) with the enzymes AluI, CfoI and RsaI was carried out. The combination of the ARDRA patterns obtained after restriction with these three different enzymes enabled the differentiation between the following species: Corynebacterium accolens (number of strains = 2), C. afermentans subsp. afermentans (2), C. afermentans subsp. lipophilum (2), C. amycolatum (3), CDC coryneform group ANF-1-like (1), CDC coryneform group ANF-3-like (1), C. cystitidis (1), C. diphtheriae (4), C. jeikeium (3), C. macginleyi (2), C. minutissimum (1), C. pilosum (1), C. pseudotuberculosis (2), C. renale (2), C. striatum (2), C. urealyticum (3), C. xerosis (1), CDC coryneform groups B-1 (2), B-3 (2), F-1, genomospecies 1 and 2 (6), G, genomospecies 1 (1) and G, genomospecies 2 (2). The following strains or species could not be differentiated from each other: C. pseudodiphtheriticum (2) from C. propinquum (former CDC coryneform group ANF-3) (2), CDC coryneform group F-1, genomospecies 1 (4) from genomospecies 2 (2) and C. jeikeium genomospecies A (1) from genomospecies C (2). ARDRA may represent a possible alternative for identification of coryneforms, since this technique enabled the identification of most coryneforms tested and since DNA extraction (i.e. cell lysis by boiling), amplification, restriction and electrophoresis can be carried out within 8 hours. This might allow quick identification of C. diphtheriae and other possible pathogens of the genus Corynebacterium.
2010-01-01
Background The order Carnivora is well represented in India, with 58 of the 250 species found globally, occurring here. However, small carnivores figure very poorly in research and conservation policies in India. This is mainly due to the dearth of tested and standardized techniques that are both cost effective and conducive to small carnivore studies in the field. In this paper we present a non-invasive genetic technique standardized for the study of Indian felids and canids with the use of PCR amplification and restriction enzyme digestion of scat collected in the field. Findings Using existing sequences of felids and canids from GenBank, we designed primers from the 16S rRNA region of the mitochondrial genome and tested these on ten species of felids and five canids. We selected restriction enzymes that would cut the selected region differentially for various species within each family. We produced a restriction digestion profile for the potential differentiation of species based on fragment patterns. To test our technique, we used felid PCR primers on scats collected from various habitats in India, representing varied environmental conditions. Amplification success with field collected scats was 52%, while 86% of the products used for restriction digestion could be accurately assigned to species. We verified this through sequencing. A comparison of costs across the various techniques currently used for scat assignment showed that this technique was the most practical and cost effective. Conclusions The species-specific key developed in this paper provides a means for detailed investigations in the future that focus on elusive carnivores in India and this approach provides a model for other studies in areas of Asia where many small carnivores co-occur. PMID:20525407
Wallace, A. C.; Borkakoti, N.; Thornton, J. M.
1997-01-01
It is well established that sequence templates such as those in the PROSITE and PRINTS databases are powerful tools for predicting the biological function and tertiary structure for newly derived protein sequences. The number of X-ray and NMR protein structures is increasing rapidly and it is apparent that a 3D equivalent of the sequence templates is needed. Here, we describe an algorithm called TESS that automatically derives 3D templates from structures deposited in the Brookhaven Protein Data Bank. While a new sequence can be searched for sequence patterns, a new structure can be scanned against these 3D templates to identify functional sites. As examples, 3D templates are derived for enzymes with an O-His-O "catalytic triad" and for the ribonucleases and lysozymes. When these 3D templates are applied to a large data set of nonidentical proteins, several interesting hits are located. This suggests that the development of a 3D template database may help to identify the function of new protein structures, if unknown, as well as to design proteins with specific functions. PMID:9385633
DESHARKY: automatic design of metabolic pathways for optimal cell growth.
Rodrigo, Guillermo; Carrera, Javier; Prather, Kristala Jones; Jaramillo, Alfonso
2008-11-01
The biological solution for synthesis or remediation of organic compounds using living organisms, particularly bacteria and yeast, has been promoted because of the cost reduction with respect to the non-living chemical approach. In that way, computational frameworks can profit from the previous knowledge stored in large databases of compounds, enzymes and reactions. In addition, the cell behavior can be studied by modeling the cellular context. We have implemented a Monte Carlo algorithm (DESHARKY) that finds a metabolic pathway from a target compound by exploring a database of enzymatic reactions. DESHARKY outputs a biochemical route to the host metabolism together with its impact in the cellular context by using mathematical models of the cell resources and metabolism. Furthermore, we provide the sequence of amino acids for the enzymes involved in the route closest phylogenetically to the considered organism. We provide examples of designed metabolic pathways with their genetic load characterizations. Here, we have used Escherichia coli as host organism. In addition, our bioinformatic tool can be applied for biodegradation or biosynthesis and its performance scales with the database size. Software, a tutorial and examples are freely available and open source at http://soft.synth-bio.org/desharky.html
A proteomics study of barley powdery mildew haustoria.
Godfrey, Dale; Zhang, Ziguo; Saalbach, Gerhard; Thordal-Christensen, Hans
2009-06-01
A number of fungal and oomycete plant pathogens of major economic importance feed on their hosts by means of haustoria, which they place inside living plant cells. The underlying mechanisms are poorly understood, partly due to difficulty in preparing haustoria. We have therefore developed a procedure for isolating haustoria from the barley powdery mildew fungus (Blumeria graminis f.sp. hordei, Bgh). We subsequently aimed to understand the molecular mechanisms of haustoria through a study of their proteome. Extracted proteins were digested using trypsin, separated by LC, and analysed by MS/MS. Searches of a custom Bgh EST sequence database and the NCBI-NR fungal protein database, using the MS/MS data, identified 204 haustoria proteins. The majority of the proteins appear to have roles in protein metabolic pathways and biological energy production. Surprisingly, pyruvate decarboxylase (PDC), involved in alcoholic fermentation and commonly abundant in fungi and plants, was absent in our Bgh proteome data set. A sequence encoding this enzyme was also absent in our EST sequence database. Significantly, BLAST searches of the recently available Bgh genome sequence data also failed to identify a sequence encoding this enzyme, strongly indicating that Bgh does not have a gene for PDC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Zidong Donna; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu
2014-01-01
Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors.more » In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. - Highlights: • Utilized a graded CR model in male mice • The mRNA profiles of xenobiotic processing genes (XPGs) in liver were investigated. • CR up-regulates many phase-II enzymes. • CR tends to feminize the mRNA profiles of XPGs.« less
Somyoonsap, Peechapack; Kitpreechavanich, Vichein
2013-01-01
A sequence-specific nicking endonuclease from Streptomyces designated as DC13 was purified to near homogeneity. Starting with 30 grams of wet cells, the enzyme was purified by ammonium sulfate fractionation, DEAE cellulose, and phenyl-Sepharose chromatography. The purified protein had a specific activity 1000 units/mg and migrated on SDS-PAGE gel with an estimated molecular weight of 71 kDa. Determination of subunit composition by gel filtration chromatography indicated that the native enzyme is a monomer. When incubated with different DNA substrates including pBluescript II KS, pUC118, pET-15b, and pET-26b, the enzyme converted these supercoiled plasmids to a mixture of open circular and linear DNA products, with the open circular DNA as the major cleavage product. Analysis of the kinetic of DNA cleavage showed that the enzyme appeared to cleave super-coiled plasmid in two distinct steps: a rapid cleavage of super-coiled plasmid to an open circular DNA followed a much slower step to linear DNA. The DNA cleavage reaction of the enzyme required Mg2+ as a cofactor. Based on the monomeric nature of the enzyme, the kinetics of DNA cleavage exhibited by the enzyme, and cofactor requirement, it is suggested here that the purified enzyme is a sequence-specific nicking endonuclease that is similar to type IIS restriction endonuclease. PMID:25937959
Flexible ligand docking using a genetic algorithm
NASA Astrophysics Data System (ADS)
Oshiro, C. M.; Kuntz, I. D.; Dixon, J. Scott
1995-04-01
Two computational techniques have been developed to explore the orientational and conformational space of a flexible ligand within an enzyme. Both methods use the Genetic Algorithm (GA) to generate conformationally flexible ligands in conjunction with algorithms from the DOCK suite of programs to characterize the receptor site. The methods are applied to three enzyme-ligand complexes: dihydrofolate reductase-methotrexate, thymidylate synthase-phenolpthalein and HIV protease-thioketal haloperidol. Conformations and orientations close to the crystallographically determined structures are obtained, as well as alternative structures with low energy. The potential for the GA method to screen a database of compounds is also examined. A collection of ligands is evaluated simultaneously, rather than docking the ligands individually into the enzyme.
Molecular Cloning and Analysis of a DNA Repetitive Element from the Mouse Genome
ERIC Educational Resources Information Center
Geisinger, Adriana; Cossio, Gabriela; Wettstein, Rodolfo
2006-01-01
We report the development of a 3-week laboratory activity for an undergraduate molecular biology course. This activity introduces students to the practice of basic molecular techniques such as restriction enzyme digestion, agarose gel electrophoresis, cloning, plasmid DNA purification, Southern blotting, and sequencing. Students learn how to carry…
Linguini Models of Molecular Genetic Mapping and Fingerprinting.
ERIC Educational Resources Information Center
Thompson, James N., Jr.; Gray, Stanton B.; Hellack, Jenna J.
1997-01-01
Presents an exercise using linguini noodles to demonstrate an aspect of DNA fingerprinting. DNA maps that show genetic differences can be produced by digesting a certain piece of DNA with two or more restriction enzymes both individually and in combination. By rearranging and matching linguini fragments, students can recreate the original pattern…
USDA-ARS?s Scientific Manuscript database
Genotyping by sequencing (GBS) has been developed as an affordable application of next-generation sequencing for the purposes of discovering and genotyping SNPs in a variety of crop species and populations. In this study we employed a double restriction enzyme digestion protocol (HindIII and NlaIII)...
ERIC Educational Resources Information Center
Mahgoub, Melissa; Monteggia, Lisa M.
2014-01-01
Histone deacetylases (HDACs) are a family of chromatin remodeling enzymes that restrict access of transcription factors to the DNA, thereby repressing gene expression. In contrast, histone acetyltransferases (HATs) relax the chromatin structure allowing for an active chromatin state and promoting gene transcription. Accumulating data have…
Genetic fingerprinting of longleaf pine seed orchard clones following Hurricane Hugo
K. D. Jermstad; P.A. Guge; E.R. Carroll; S.T. Friedman; D.B. Neale
1993-01-01
Isozyme and restriction fragment length polymorphism (RFLP) markers were used to determine the genetic identities of 12 longleaf pine (Pinus palustrus Mill.) ramets whose identities came into question after Hurricane Hugo. Isozyme assays were performed for 12 enzyme systems representing 15 loci. Variation at 6 loci revealed unique identities for 6...
Evitt, Andrew S; Cox, Russell J
2011-05-01
Inhibitors of the enzyme aspartate semialdehyde dehydrogenase, a key biological target for the generation of a new class of antibiotic compounds, have been developed. To investigate improvements to binding within an inhibitor series, the lowering of the entropic barrier to binding through conformational restriction was investigated. A library of linear and cyclic substrate analogues was generated and computational docking used to aid in structure selection. The cyclic phosphonate inhibitor 18 was thus identified as complimentary to the enzyme active-site. Synthesis and in vitro inhibition assay revealed a K(i) of 3.8 mM against natural substrate, where the linear analogue of 18, compound 15, had previously shown no inhibitory activity. Two further inhibitors, phosphate analogue diastereoisomers 17a and 17b, were synthesised and also found to have low millimolar K(i) values. As a result of the computational docking investigations, a novel substrate binding interaction was discovered: hydrogen bonding between the substrate (phosphate hydroxy-group as the hydrogen bond donor) and the NADPH cofactor (2'-oxygen as the hydrogen bond acceptor).
Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.
Lakshmikumaran, M S; D'Ambrosio, E; Laimins, L A; Lin, D T; Furano, A V
1985-09-01
The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this.
Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami.
Jiang, Qiao; Liu, Qing; Shi, Yuefeng; Wang, Zhen-Gang; Zhan, Pengfei; Liu, Jianbing; Liu, Chao; Wang, Hui; Shi, Xinghua; Zhang, Li; Sun, Jiashu; Ding, Baoquan; Liu, Minghua
2017-11-08
In response to environmental variations, living cells need to arrange the conformational changes of macromolecules to achieve the specific biofunctions. Inspired by natural molecular machines, artificial macromolecular assemblies with controllable nanostructures and environmentally responsive functions can be designed. By assembling macromolecular nanostructures with noble metal nanoparticles, environmental information could be significantly amplified and modulated. However, manufacturing dynamic plasmonic nanostructures that are efficiently responsive to different stimuli is still a challenging task. Here we demonstrate a stimulus-responsive plasmonic nanosystem based on DNA origami-organized gold nanorods (GNRs). L-shaped GNR dimers were assembled on rhombus-shaped DNA origami templates. The geometry and chiral signals of the GNR nanoarchitectures respond to multiple stimuli, including glutathione reduction, restriction enzyme action, pH change, or photoirradiation. While the glutathione reduction or restriction enzyme caused irreversible changes in the plasmonic circular dichroism (CD) signals, both pH and light irradiation triggered reversible changes in the plasmonic CD. Our system transduces external stimuli into conformational changes and circular dichroism responses in near-infrared (NIR) wavelengths. By this approach, programmable optical reporters for essential biological signals can be fabricated.
Li, Xinxin; Wu, Zhihao; Zhang, Chuanfu; Jia, Leili; Song, Hongbin; Xu, Yuanyong
2014-01-01
To construct a eukaryotic expression vector containing human complement receptor 2 (CR2)-Fc and express the CR2-Fc fusion protein in Chinese hamster ovary (CHO) cells. The extracellular domain of human CR2 and IgG1 Fc were respectively amplified, ligated and inserted into the eukaryotic expression vector PCI-neo. After verified by restriction enzyme digestion and sequencing, the recombinant plasmid was transfected into CHO K1 cells. The ones with stable expression of the fusion protein were obtained by means of G418 selection. The expression of the CR2-Fc fusion protein was detected and confirmed by SDS-PAGE and Western blotting. Restriction enzyme digestion and sequencing demonstrated that the recombinant plasmid was valid. SDS-PAGE showed that relative molecular mass (Mr;) of the purified product was consistent with the expected value. Western blotting further proved the single band at the same position. We constructed the eukaryotic expression vector of CR2-Fc/PCI-neo successfully. The obtained fusion protein was active and can be used for the further study of the role in HIV control.
Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.
Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo
2015-11-01
Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. Copyright © 2015 Elsevier B.V. All rights reserved.
Human Ageing Genomic Resources: new and updated databases
Tacutu, Robi; Thornton, Daniel; Johnson, Emily; Budovsky, Arie; Barardo, Diogo; Craig, Thomas; Diana, Eugene; Lehmann, Gilad; Toren, Dmitri; Wang, Jingwei; Fraifeld, Vadim E
2018-01-01
Abstract In spite of a growing body of research and data, human ageing remains a poorly understood process. Over 10 years ago we developed the Human Ageing Genomic Resources (HAGR), a collection of databases and tools for studying the biology and genetics of ageing. Here, we present HAGR’s main functionalities, highlighting new additions and improvements. HAGR consists of six core databases: (i) the GenAge database of ageing-related genes, in turn composed of a dataset of >300 human ageing-related genes and a dataset with >2000 genes associated with ageing or longevity in model organisms; (ii) the AnAge database of animal ageing and longevity, featuring >4000 species; (iii) the GenDR database with >200 genes associated with the life-extending effects of dietary restriction; (iv) the LongevityMap database of human genetic association studies of longevity with >500 entries; (v) the DrugAge database with >400 ageing or longevity-associated drugs or compounds; (vi) the CellAge database with >200 genes associated with cell senescence. All our databases are manually curated by experts and regularly updated to ensure a high quality data. Cross-links across our databases and to external resources help researchers locate and integrate relevant information. HAGR is freely available online (http://genomics.senescence.info/). PMID:29121237
Restriction fragment length polymorphism and allozyme linkage map of Cuphea lanceolata.
Webb, D M; Knapp, S J; Tagliani, L A
1992-02-01
Cuphea lanceolata Ait. has had a significant role in the domestication of Cuphea and is a useful experimental organism for investigating how medium-chain lipids are synthesized in developing seeds. To expand the genetics of this species, a linkage map of the C. lanceolata genome was constructed using five allozyme and 32 restriction-fragment-length-polymorphism (RFLP) marker loci. These loci were assigned to six linkage groups that correspond to the six chromosomes of this species. Map length is 288 cM. Levels of polymorphism were estimated for three inbred lines of C. lanceolata and an inbred line of C. viscosissima using 84 random genomic clones and two restriction enzymes, EcoRI and HindIII. Of the probes 29% detected RFLPs between C. lanceolata and C. viscosissima lines. Crosses between these species can be exploited to expand the map.
Joint Transformation and the Decision to Use Force
2007-03-09
and visitors necessary for detecting terrorists. Business interests would oppose the cost increases associated with restricting the international...Channels: The Inteligence Community; Drug Plant Attack on Target, Says CIA Chief,” The Washington Post, 21 October 1999 [database on-line]; available from
76 FR 35197 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... access to the database is restricted to authorized System Administrators (SAs) only. Server access is..., examination and lesson grades, student academic status, curricula, course description. Authority for... student academic status; course and sub-course descriptions; produce course completion certificates and...
Ritter, Holger; Schulz, Georg E.
2004-01-01
Because of its key role in secondary phenylpropanoid metabolism, Phe ammonia-lyase is one of the most extensively studied plant enzymes. To provide a basis for detailed structure–function studies, the enzyme from parsley (Petroselinum crispum) was crystallized, and the structure was elucidated at 1.7-Å resolution. It contains the unusual electrophilic 4-methylidene-imidazole-5-one group, which is derived from a tripeptide segment in two autocatalytic dehydration reactions. The enzyme resembles His ammonia-lyase from the general His degradation pathway but contains 207 additional residues, mainly in an N-terminal extension rigidifying a domain interface and in an inserted α-helical domain restricting the access to the active center. Presumably, Phe ammonia-lyase developed from His ammonia-lyase when fungi and plants diverged from the other kingdoms. A pathway of the catalyzed reaction is proposed in agreement with established biochemical data. The inactivation of the enzyme by a nucleophile is described in detail. PMID:15548745
Buttet, Géraldine F.; Holliger, Christof
2013-01-01
Reductive dehalogenases are the key enzymes involved in the anaerobic respiration of organohalides such as the widespread groundwater pollutant tetrachloroethene. The increasing number of available bacterial genomes and metagenomes gives access to hundreds of new putative reductive dehalogenase genes that display a high level of sequence diversity and for which substrate prediction remains very challenging. In this study, we present the development of a functional genotyping method targeting the diverse reductive dehalogenases present in Sulfurospirillum spp., which allowed us to unambiguously identify a new reductive dehalogenase from our tetrachloroethene-dechlorinating SL2 bacterial consortia. The new enzyme, named PceATCE, shows 92% sequence identity with the well-characterized PceA enzyme of Sulfurospirillum multivorans, but in contrast to the latter, it is restricted to tetrachloroethene as a substrate. Its apparent higher dechlorinating activity with tetrachloroethene likely allowed its selection and maintenance in the bacterial consortia among other enzymes showing broader substrate ranges. The sequence-substrate relationships within tetrachloroethene reductive dehalogenases are also discussed. PMID:23995945
Moreo, Michael T.; Justet, Leigh
2008-01-01
Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913-1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.
Molecular typing of Staphylococcus aureus based on coagulase gene.
Javid, Faizan; Taku, Anil; Bhat, Mohd Altaf; Badroo, Gulzar Ahmad; Mudasir, Mir; Sofi, Tanveer Ahmad
2018-04-01
This study was conducted to study the coagulase gene-based genetic diversity of Staphylococcus aureus , isolated from different samples of cattle using restriction fragment length polymorphism (RFLP) and their sequence-based phylogenetic analysis. A total of 192 different samples from mastitic milk, nasal cavity, and pus from skin wounds of cattle from Military Dairy Farm, Jammu, India, were screened for the presence of S. aureus . The presumptive isolates were confirmed by nuc gene-based polymerase chain reaction (PCR). The confirmed S. aureus isolates were subjected to coagulase ( coa ) gene PCR. Different coa genotypes observed were subjected to RFLP using restriction enzymes Hae111 and Alu1 , to obtain the different restriction patterns. One isolate from each restriction pattern was sequenced. These sequences were aligned for maximum homology using the Bioedit softwareandsimilarity in the sequences was inferred with the help of sequence identity matrix. Of 192 different samples,39 (20.31%) isolates of S. aureus were confirmed by targeting nuc gene using PCR. Of 39 S. aureus isolates, 25 (64.10%) isolates carried coa gene. Four different genotypes of coa gene, i.e., 514 bp, 595 bp, 757 bp, and 802 bp were obtained. Two coa genotypes, 595 bp (15 isolates) and 802 bp (4 isolates), were observed in mastitic milk. 514 bp (2 isolates) and 757 bp (4 isolates) coa genotypes were observed from nasal cavity and pus from skin wounds, respectively. On RFLP using both restriction enzymes, four different restriction patterns P1, P2, P3, and P4 were observed. On sequencing, four different sequences having unique restriction patterns were obtained. The most identical sequences with the value of 0.810 were found between isolate S. aureus 514 (nasal cavity) and S. aureus 595 (mastitic milk), and thus, they are most closely related. While as the most distant sequences with the value of 0.483 were found between S. aureus 514 and S. aureus 802 isolates. The study, being localized to only one farm, yielded different RFLP patterns as observed from different sampling sites, which indicates that different S . aureus coagulase typeshave a site-specific predilection. Two coa patterns were observed in mastitic milk indicating multiple origins of infection, with 595 bp coa genotype being predominant in mastitic milk. The coa genotypes and their restriction patterns observed in the present study are novel, not published earlier. 514 and 595 coa variants of S. aureus are genetically most related.
Gangoiti, Joana; van Leeuwen, Sander S; Meng, Xiangfeng; Duboux, Stéphane; Vafiadi, Christina; Pijning, Tjaard; Dijkhuizen, Lubbert
2017-08-30
The Glycoside hydrolase (GH) family 70 originally was established for glucansucrases of lactic acid bacteria (LAB) converting sucrose into α-glucan polymers. In recent years we have identified 3 subfamilies of GH70 enzymes (designated GtfB, GtfC and GtfD) as 4,6-α-glucanotransferases, cleaving (α1 → 4)-linkages in maltodextrins/starch and synthesizing new (α1 → 6)-linkages. In this work, 106 putative GtfBs were identified in the Nestlé Culture Collection genome database with ~2700 genomes, and the L. reuteri NCC 2613 one was selected for further characterization based on variations in its conserved motifs. Using amylose the L. reuteri NCC 2613 GtfB synthesizes a low-molecular-mass reuteran-like polymer consisting of linear (α1 → 4) sequences interspersed with (α1 → 6) linkages, and (α1 → 4,6) branching points. This product specificity is novel within the GtfB subfamily, mostly comprising 4,6-α-glucanotransferases synthesizing consecutive (α1 → 6)-linkages. Instead, its activity resembles that of the GtfD 4,6-α-glucanotransferases identified in non-LAB strains. This study demonstrates the potential of large-scale genome sequence data for the discovery of enzymes of interest for the food industry. The L. reuteri NCC 2613 GtfB is a valuable addition to the starch-converting GH70 enzyme toolbox. It represents a new evolutionary intermediate between families GH13 and GH70, and provides further insights into the structure-function relationships of the GtfB subfamily enzymes.
Amber Vanden Wymelenberg; Patrick Minges; Grzegorz Sabat; Diego Martinez; Andrea Aerts; Asaf Salamov; Igor Grigoriev; Harris Shapiro; Nik Putnam; Paula Belinky; Carlos Dosoretz; Jill Gaskell; Phil Kersten; Dan Cullen
2006-01-01
The white-rot basidiomycete Phanerochaete chrysosporium employs extracellular enzymes to completely degrade the major polymers of wood: cellulose, hemicellulose, and lignin. Analysis of a total of 10,048 v2.1 gene models predicts 769 secreted proteins, a substantial increase over the 268 models identified in the earlier database (v1.0). Within the v2.1 âcomputational...
Mateus, Ana L P; Otete, Harmony E; Beck, Charles R; Dolan, Gayle P; Nguyen-Van-Tam, Jonathan S
2014-12-01
To assess the effectiveness of internal and international travel restrictions in the rapid containment of influenza. We conducted a systematic review according to the requirements of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Health-care databases and grey literature were searched and screened for records published before May 2014. Data extraction and assessments of risk of bias were undertaken by two researchers independently. Results were synthesized in a narrative form. The overall risk of bias in the 23 included studies was low to moderate. Internal travel restrictions and international border restrictions delayed the spread of influenza epidemics by one week and two months, respectively. International travel restrictions delayed the spread and peak of epidemics by periods varying between a few days and four months. Travel restrictions reduced the incidence of new cases by less than 3%. Impact was reduced when restrictions were implemented more than six weeks after the notification of epidemics or when the level of transmissibility was high. Travel restrictions would have minimal impact in urban centres with dense populations and travel networks. We found no evidence that travel restrictions would contain influenza within a defined geographical area. Extensive travel restrictions may delay the dissemination of influenza but cannot prevent it. The evidence does not support travel restrictions as an isolated intervention for the rapid containment of influenza. Travel restrictions would make an extremely limited contribution to any policy for rapid containment of influenza at source during the first emergence of a pandemic virus.
Mateus, Ana LP; Otete, Harmony E; Beck, Charles R; Dolan, Gayle P; Nguyen-Van-Tam, Jonathan S
2014-01-01
Abstract Objective To assess the effectiveness of internal and international travel restrictions in the rapid containment of influenza. Methods We conducted a systematic review according to the requirements of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Health-care databases and grey literature were searched and screened for records published before May 2014. Data extraction and assessments of risk of bias were undertaken by two researchers independently. Results were synthesized in a narrative form. Findings The overall risk of bias in the 23 included studies was low to moderate. Internal travel restrictions and international border restrictions delayed the spread of influenza epidemics by one week and two months, respectively. International travel restrictions delayed the spread and peak of epidemics by periods varying between a few days and four months. Travel restrictions reduced the incidence of new cases by less than 3%. Impact was reduced when restrictions were implemented more than six weeks after the notification of epidemics or when the level of transmissibility was high. Travel restrictions would have minimal impact in urban centres with dense populations and travel networks. We found no evidence that travel restrictions would contain influenza within a defined geographical area. Conclusion Extensive travel restrictions may delay the dissemination of influenza but cannot prevent it. The evidence does not support travel restrictions as an isolated intervention for the rapid containment of influenza. Travel restrictions would make an extremely limited contribution to any policy for rapid containment of influenza at source during the first emergence of a pandemic virus. PMID:25552771
Luo, Kaiju; Chen, Pingyang; Li, Suping; Li, Wen; He, Mingfeng; Wang, Tao; Chen, Juncao
2017-01-01
The present study aimed to investigate the response of the phosphatidylinositol 3-kinase (PI3K) signaling pathway and gluconeogenic enzymes in intrauterine growth-restricted rats to dietary L-arginine (L-Arg) supplementation during the lactation period early in life. Pregnant Sprague-Dawley rats were randomly divided into a control group (CON), an intrauterine growth restriction group (IUGR) and an L-Arg group (LA). The pregnant rats in the CON group were fed a 21% protein diet, and those in the IUGR and LA groups were fed a 10% low protein diet, and all rats were fed a 21% protein diet after delivery. Water was available ad libitum to the pregnant rats during the 21-day lactation period, and the water provided to the LA group included 200 mg/kg/day L-Arg. Blood glucose, serum insulin, homeostasis model of assessment for insulin resistance (HOMA-IR), PI3K and protein kinase B (PKB) protein expression, and phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase) mRNA expression in the offspring rats were measured postnatally at 1, 3 and 8 weeks. No significant difference in blood glucose, serum insulin and HOMA-IR were identified at any time point among the three groups. PI3K and PKB expression was lower in the IUGR group offspring compared with that in the CON group offspring, but both were increased by dietary L-Arg supplementation. PEPCK mRNA and G-6-Pase mRNA expression levels in the offspring of the IUGR group were higher compared with those in the CON group but were downregulated following L-Arg supplementation. These results suggest that dietary L-Arg supplementation during the early lactation period promoted catch-up growth and reversed abnormalities in hepatic insulin signaling and gene expression of gluconeogenic enzymes in IUGR offspring rats. PMID:28962167
Microorganism mediated liquid fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troiano, Richard
Herein disclosed is a method for producing liquid hydrocarbon product, the method comprising disintegrating a hydrocarbon source; pretreating the disintegrated hydrocarbon source; solubilizing the disintegrated hydrocarbon source to form a slurry comprising a reactant molecule of the hydrocarbon source; admixing a biochemical liquor into the slurry, wherein the biochemical liquor comprises at least one conversion enzyme configured to facilitate bond selective photo-fragmentation of said reactant molecule of the hydrocarbon source, to form liquid hydrocarbons via enzyme assisted bond selective photo-fragmentation, wherein said conversion enzyme comprises reactive sites configured to restrict said reactant molecule such that photo-fragmentation favorably targets a preselectedmore » internal bond of said reactant molecule; separating the liquid hydrocarbons from the slurry, wherein contaminants remain in the slurry; and enriching the liquid hydrocarbons to form a liquid hydrocarbon product. Various aspects of such method/process are also discussed.« less
Watzinger, Franz; Hörth, Elfriede; Lion, Thomas
2001-01-01
Despite the recent introduction of real-time PCR methods, competitive PCR techniques continue to play an important role in nucleic acid quantification because of the significantly lower cost of equipment and consumables. Here we describe a shifted restriction-site competitive PCR (SRS-cPCR) assay based on a modified type of competitor. The competitor fragments are designed to contain a recognition site for a restriction endonuclease that is also present in the target sequence to be quantified, but in a different position. Upon completion of the PCR, the amplicons are digested in the same tube with a single restriction enzyme, without the need to purify PCR products. The generated competitor- and target-specific restriction fragments display different sizes, and can be readily separated by electrophoresis and quantified by image analysis. Suboptimal digestion affects competitor- and target-derived amplicons to the same extent, thus eliminating the problem of incorrect quantification as a result of incomplete digestion of PCR products. We have established optimized conditions for a panel of 20 common restriction endonucleases permitting efficient digestion in PCR buffer. It is possible, therefore, to find a suitable restriction site for competitive PCR in virtually any sequence of interest. The assay presented is inexpensive, widely applicable, and permits reliable and accurate quantification of nucleic acid targets. PMID:11376164
Harris, L; McGarty, A; Hutchison, L; Ells, L; Hankey, C
2018-01-01
This systematic review synthesized the available evidence on the effect of short-term periods of intermittent energy restriction (weekly intermittent energy restriction; ≥7-d energy restriction) in comparison with usual care (daily continuous energy restriction), in the treatment of overweight and obesity in adults. Six electronic databases were searched from inception to October 2016. Only randomized controlled trials of interventions (≥12 weeks) in adults with overweight and obesity were included. Five studies were included in this review. Weekly intermittent energy restriction periods ranged from an energy intake between 1757 and 6276 kJ/d -1 . The mean duration of the interventions was 26 (range 14 to 48) weeks. Meta-analysis demonstrated no significant difference in weight loss between weekly intermittent energy restriction and continuous energy restriction post-intervention (weighted mean difference: -1.36 [-3.23, 0.51], p = 0.15) and at follow-up (weighted mean difference: -0.82 [-3.76, 2.11], p = 0.58). Both interventions achieved comparable weight loss of >5 kg and therefore were associated with clinical benefits to health. The findings support the use of weekly intermittent energy restriction as an alternative option for the treatment of obesity. Currently, there is insufficient evidence to support the long-term sustainable effects of weekly intermittent energy restriction on weight management. © 2017 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity.
Chromosomal changes during experimental evolution in laboratory populations of Escherichia coli.
Bergthorsson, U; Ochman, H
1999-02-01
Short-term rates of chromosome evolution were analyzed in experimental populations of Escherichia coli B that had been propagated for 2,000 generations under four thermal regimens. Chromosome alterations were monitored in 24 independent populations by pulsed-field gel electrophoresis of DNA treated with five rare-cutting restriction enzymes. A total of 11 changes, 8 affecting chromosome size and 3 altering restriction sites, were observed in these populations, with none occurring in strains cultured at 37 degreesC. Considering the changes detected in these experimental populations, the rate of chromosome alteration of E. coli is estimated to be half of that observed in experimental populations of yeast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Kousuke; Emoto, Noriko; Sunohara, Mitsuhiro
2010-08-27
Research highlights: {yields} Incubating PCR products at a high temperature causes smears in gel electrophoresis. {yields} Smears interfere with the interpretation of methylation analysis using COBRA. {yields} Treatment with exonuclease I and heat-labile alkaline phosphatase eliminates smears. {yields} The elimination of smears improves the visibility of COBRA. -- Abstract: DNA methylation plays a vital role in the regulation of gene expression. Abnormal promoter hypermethylation is an important mechanism of inactivating tumor suppressor genes in human cancers. Combined bisulfite restriction analysis (COBRA) is a widely used method for identifying the DNA methylation of specific CpG sites. Here, we report that exonucleasemore » I and heat-labile alkaline phosphatase can be used for PCR purification for COBRA, improving the visibility of gel electrophoresis after restriction digestion. This improvement is observed when restriction digestion is performed at a high temperature, such as 60 {sup o}C or 65 {sup o}C, with BstUI and TaqI, respectively. This simple method can be applied instead of DNA purification using spin columns or phenol/chloroform extraction. It can also be applied to other situations when PCR products are digested by thermophile-derived restriction enzymes, such as PCR restriction fragment length polymorphism (RFLP) analysis.« less
Evans, Ben A.; Smith, Olivia L.; Pickerill, Ethan S.; York, Mary K.; Buenconsejo, Kristen J.P.; Chambers, Antonio E.
2018-01-01
Introduction of point mutations to a gene of interest is a powerful tool when determining protein function. CRISPR-mediated genome editing allows for more efficient transfer of a desired mutation into a wide range of model organisms. Traditionally, PCR amplification and DNA sequencing is used to determine if isolates contain the intended mutation. However, mutation efficiency is highly variable, potentially making sequencing costly and time consuming. To more efficiently screen for correct transformants, we have identified restriction enzymes sites that encode for two identical amino acids or one or two stop codons. We used CRISPR to introduce these restriction sites directly upstream of the Candida albicans UME6 Zn2+-binding domain, a known regulator of C. albicans filamentation. While repair templates coding for different restriction sites were not equally successful at introducing mutations, restriction digest screening enabled us to rapidly identify isolates with the intended mutation in a cost-efficient manner. In addition, mutated isolates have clear defects in filamentation and virulence compared to wild type C. albicans. Our data suggest restriction digestion screening efficiently identifies point mutations introduced by CRISPR and streamlines the process of identifying residues important for a phenotype of interest. PMID:29892505
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Minjing; Qian, Wei-jun; Gao, Yuqian
The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes asmore » time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates« less
Colombo, Lívia Tavares; de Oliveira, Marcelo Nagem Valério; Carneiro, Deisy Guimarães; de Souza, Robson Assis; Alvim, Mariana Caroline Tocantins; Dos Santos, Josenilda Carlos; da Silva, Cynthia Canêdo; Vidigal, Pedro Marcus Pereira; da Silveira, Wendel Batista; Passos, Flávia Maria Lopes
2016-09-01
Environments where lignocellulosic biomass is naturally decomposed are sources for discovery of new hydrolytic enzymes that can reduce the high cost of enzymatic cocktails for second-generation ethanol production. Metagenomic analysis was applied to discover genes coding carbohydrate-depleting enzymes from a microbial laboratory subculture using a mix of sugarcane bagasse and cow manure in the thermophilic composting phase. From a fosmid library, 182 clones had the ability to hydrolyse carbohydrate. Sequencing of 30 fosmids resulted in 12 contigs encoding 34 putative carbohydrate-active enzymes belonging to 17 glycosyl hydrolase (GH) families. One third of the putative proteins belong to the GH3 family, which includes β-glucosidase enzymes known to be important in the cellulose-deconstruction process but present with low activity in commercial enzyme preparations. Phylogenetic analysis of the amino acid sequences of seven selected proteins, including three β-glucosidases, showed low relatedness with protein sequences deposited in databases. These findings highlight microbial consortia obtained from a mixture of decomposing biomass residues, such as sugar cane bagasse and cow manure, as a rich resource of novel enzymes potentially useful in biotechnology for saccharification of lignocellulosic substrate.
Rudi, Knut; Kleiberg, Gro H; Heiberg, Ragnhild; Rosnes, Jan T
2007-08-01
The aim of this work was to evaluate restriction fragment melting curve analyses (RFMCA) as a novel approach for rapid classification of bacteria during food production. RFMCA was evaluated for bacteria isolated from sous vide food products, and raw materials used for sous vide production. We identified four major bacterial groups in the material analysed (cluster I-Streptococcus, cluster II-Carnobacterium/Bacillus, cluster III-Staphylococcus and cluster IV-Actinomycetales). The accuracy of RFMCA was evaluated by comparison with 16S rDNA sequencing. The strains satisfying the RFMCA quality filtering criteria (73%, n=57), with both 16S rDNA sequence information and RFMCA data (n=45) gave identical group assignments with the two methods. RFMCA enabled rapid and accurate classification of bacteria that is database compatible. Potential application of RFMCA in the food or pharmaceutical industry will include development of classification models for the bacteria expected in a given product, and then to build an RFMCA database as a part of the product quality control.
One-step random mutagenesis by error-prone rolling circle amplification
Fujii, Ryota; Kitaoka, Motomitsu; Hayashi, Kiyoshi
2004-01-01
In vitro random mutagenesis is a powerful tool for altering properties of enzymes. We describe here a novel random mutagenesis method using rolling circle amplification, named error-prone RCA. This method consists of only one DNA amplification step followed by transformation of the host strain, without treatment with any restriction enzymes or DNA ligases, and results in a randomly mutated plasmid library with 3–4 mutations per kilobase. Specific primers or special equipment, such as a thermal-cycler, are not required. This method permits rapid preparation of randomly mutated plasmid libraries, enabling random mutagenesis to become a more commonly used technique. PMID:15507684
Weinreb, Jeffrey H; Yoshida, Ryu; Cote, Mark P; O'Sullivan, Michael B; Mazzocca, Augustus D
2017-01-01
The purpose of this study was to evaluate how database use has changed over time in Arthroscopy: The Journal of Arthroscopic and Related Surgery and to inform readers about available databases used in orthopaedic literature. An extensive literature search was conducted to identify databases used in Arthroscopy and other orthopaedic literature. All articles published in Arthroscopy between January 1, 2006, and December 31, 2015, were reviewed. A database was defined as a national, widely available set of individual patient encounters, applicable to multiple patient populations, used in orthopaedic research in a peer-reviewed journal, not restricted by encounter setting or visit duration, and with information available in English. Databases used in Arthroscopy included PearlDiver, the American College of Surgeons National Surgical Quality Improvement Program, the Danish Common Orthopaedic Database, the Swedish National Knee Ligament Register, the Hospital Episodes Statistics database, and the National Inpatient Sample. Database use increased significantly from 4 articles in 2013 to 11 articles in 2015 (P = .012), with no database use between January 1, 2006, and December 31, 2012. Database use increased significantly between January 1, 2006, and December 31, 2015, in Arthroscopy. Level IV, systematic review of Level II through IV studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Laskowska, Marzena; Laskowska, Katarzyna; Oleszczuk, Jan
2013-01-01
The aim of our study was to investigate the association between homocysteine and asymmetric dimethylarginine in preeclamptic women with and without intrauterine growth restriction compared with normal healthy uncomplicated pregnancies and normotensive pregnancies complicated by idiopathic isolated intrauterine fetal growth restriction. The maternal serum homocysteine and asymmetric dimethylarginine concentrations were determined using a sandwich enzyme-linked immunosorbent assays. A statistically significant positive correlation of maternal serum homocysteine levels with the serum asymmetric dimethylarginine levels was observed in healthy normotensive uncomplicated pregnant women from the control group and in preeclamptic patients with appropriate-for-gestational-age fetuses (R = 0.380079, p-value = 0.002311* and R = 0.455797, p-value = 0.004030* for the control and the P groups, respectively). However, this correlation was not significant in women with pregnancy complicated by intrauterine growth restriction, both isolated and in the course of severe preeclampsia. These findings provide support for the hypothesis that elevated levels of asymmetric dimethylarginine in pregnancy complicated by preeclampsia are associated with elevated homocysteine levels. But our results also demonstrate that in pregnancies complicated by intrauterine growth restriction, this mechanism is important, although not the only one.
Miller, Clint T.; Fraser, Steve F.; Levinger, Itamar; Straznicky, Nora E.; Dixon, John B.; Reynolds, John; Selig, Steve E.
2013-01-01
Background Obesity is associated with impairments of physical function, cardiovascular fitness, muscle strength and the capacity to perform activities of daily living. This review examines the specific effects of exercise training in relation to body composition and physical function demonstrated by changes in cardiovascular fitness, and muscle strength when obese adults undergo energy restriction. Methods Electronic databases were searched for randomised controlled trials comparing energy restriction plus exercise training to energy restriction alone. Studies published to May 2013 were included if they used multi-component methods for analysing body composition and assessed measures of fitness in obese adults. Results Fourteen RCTs met the inclusion criteria. Heterogeneity of study characteristics prevented meta-analysis. Energy restriction plus exercise training was more effective than energy restriction alone for improving cardiovascular fitness, muscle strength, and increasing fat mass loss and preserving lean body mass, depending on the type of exercise training. Conclusion Adding exercise training to energy restriction for obese middle-aged and older individuals results in favourable changes to fitness and body composition. Whilst weight loss should be encouraged for obese individuals, exercise training should be included in lifestyle interventions as it offers additional benefits. PMID:24409219
ERIC Educational Resources Information Center
Kaposvari-Danyi, Eva, Comp.; Lorincz, Judit, Comp.
This 175-item bibliography was compiled as the Hungarian contribution to an international database. It includes books, chapters of books, periodical articles, manuscripts, and dissertations that deal with bibliology (i.e., the sociology and psychology of book and library use). Citations are restricted to works of Hungarian authors published in…
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Phylogenomic Relationships between Amylolytic Enzymes from 85 Strains of Fungi
Chen, Wanping; Xie, Ting; Shao, Yanchun; Chen, Fusheng
2012-01-01
Fungal amylolytic enzymes, including α-amylase, gluocoamylase and α-glucosidase, have been extensively exploited in diverse industrial applications such as high fructose syrup production, paper making, food processing and ethanol production. In this paper, amylolytic genes of 85 strains of fungi from the phyla Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota were annotated on the genomic scale according to the classification of glycoside hydrolase (GH) from the Carbohydrate-Active enZymes (CAZy) Database. Comparisons of gene abundance in the fungi suggested that the repertoire of amylolytic genes adapted to their respective lifestyles. Amylolytic enzymes in family GH13 were divided into four distinct clades identified as heterologous α- amylases, eukaryotic α-amylases, bacterial and fungal α-amylases and GH13 α-glucosidases. Family GH15 had two branches, one for gluocoamylases, and the other with currently unknown function. GH31 α-glucosidases showed diverse branches consisting of neutral α-glucosidases, lysosomal acid α-glucosidases and a new clade phylogenetically related to the bacterial counterparts. Distribution of starch-binding domains in above fungal amylolytic enzymes was related to the enzyme source and phylogeny. Finally, likely scenarios for the evolution of amylolytic enzymes in fungi based on phylogenetic analyses were proposed. Our results provide new insights into evolutionary relationships among subgroups of fungal amylolytic enzymes and fungal evolutionary adaptation to ecological conditions. PMID:23166747
Sola-Carvajal, Agustín; García-García, María Inmaculada; Sánchez-Carrón, Guiomar; García-Carmona, Francisco; Sánchez-Ferrer, Alvaro
2012-11-01
Short-chain dehydrogenases/reductases (SDR) constitute one of the largest enzyme superfamilies with over 60,000 non-redundant sequences in the database, many of which need a correct functional assignment. Among them, the gene AAC16202.1 (NCBI) from Rhodobacter capsulatus SB1003 has been assigned in Uniprot both as a sorbitol dehydrogenase (#D5AUY1) and, as an N-acetyl-d-mannosamine dehydrogenase (#O66112), both enzymes being of biotechnological interest. When the gene was overexpressed in Escherichia coli Rosetta (DE3)pLys, the purified enzyme was not active toward N-acetyl-d-mannosamine, whereas it was active toward d-sorbitol and d-fructose. However, the relative activities toward xylitol and l-iditol (0.45 and 6.9%, respectively) were low compared with that toward d-sorbitol. Thus, the enzyme could be considered sorbitol dehydrogenase (SDH) with very low activity toward xylitol, which could increase its biotechnological interest for determining sorbitol without the unspecific cross-determination of added xylitol in food and pharma compositions. The tetrameric enzyme (120 kDa) showed similar catalytic efficiency (2.2 × 10(3) M(-1) s(-1)) to other sorbitol dehydrogenases for d-sorbitol, with an optimum pH of 9.0 and an optimum temperature of 37 °C. The enzyme was also more thermostable than other reported SDH, ammonium sulfate being the best stabilizer in this respect, increasing the melting temperature (T(m)) up to 52.9 °C. The enzyme can also be considered as a new member of the Zn(2+) independent SDH family since no effect on activity was detected in the presence of divalent cations or chelating agents. Finally, its in silico analysis enabled the specific conserved sequence blocks that are the fingerprints of bacterial sorbitol dehydrogenases and mainly located at C-terminal of the protein, to be determined for the first time. This knowledge will facilitate future data curation of present databases and a better functional assignment of newly described sequences. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomatsu, Shunji; Fukuda, Seiji; Yamagishi, Atsushi
1996-05-01
We report four new mutations in Japanese patients with mucopolysaccharidosis IVA (MPSIVA) who were heterozygous for a common double gene deletion. A nonsense mutation of CAG to TAG at codon 148 in exon 4 was identified, resulting in a change of Q to a stop codon and three missense mutations: V (GTC) to A (GCC) at codon 138 in exon 4, P (CCC) to S (TCC) at codon 151 in exon 5, and P (CCC) to L (CTC) at codon 151 in exon 5. Introduction of these mutations into the normal GALNS cDNA and transient expression in cultured fibroblasts resultedmore » in a significant decrease in the enzyme activity. V138A and Q148X mutations result in changes of restriction site, which were analyzed by restriction-enzyme assay. P151S and P151L mutations that did not alter the restriction site were detected by direct sequencing or allele specific oligohybridization. Detection of the double gene deletion was initially done using Southern blots and was confirmed by PCR. Haplotypes were determined using seven polymorphisms to the GALNS locus in families with the double gene deletion. Haplotype analysis showed that the common double gene deletion occurred on a single haplotype, except for some variation in a VNTR-like polymorphism. This finding is consistent with a common founder for all individuals with this mutation. 48 refs., 5 figs., 1 tab.« less
Kizis, Dimosthenis; Natskoulis, Pantelis; Nychas, George-John E.; Panagou, Efstathios Z.
2014-01-01
A study on the occurrence of Aspergillus section Nigri species on grapes from four traditional grape-producing areas in Greece during the 2011/2012 vintage, and their capability to produce OTA was conducted. One hundred and twenty-eight black aspergilli isolates were characterised at the species level initially by the use of morphological criteria in accordance with appropriate keys, followed by molecular characterisation performed with Polymerase Chain Reaction–Restriction Fragment Length Polymorphism (PCR-RFLP) of the 5.8 ribosomal RNA gene Internal Transcribed Spacer region (5.8 rRNA ITS). Restriction enzyme digestion of the ITS amplicons using the HhaI, HinfI and RsaI, endonucleases distinguished eleven different patterns of restriction fragment length polymorphism (RFLP), four for each of the HhaI and RsaI digests and three for HinfI. From a total number of 128 individual isolates, 124 were classified into four Aspergillus species corresponding to A. carbonarius, A. tubingensis, A. japonicus and A. ibericus, and the remaining 4 were classified as members of the A. niger aggregate. A. carbonarius and A. tubingensis being the main representative species were equally counted, with higher geographical representation of the former in southern and the latter in northern regions, respectively. All isolates were tested for their ochratoxigenic potential by use of High Performance Liquid Chromatography (HPLC) and Enzyme Linked Immuno Sorbent Assay (ELISA), resulting in significant interspecies differences in OTA production. PMID:24710283
Shahsavarian, Melody A; Le Minoux, Damien; Matti, Kalyankumar M; Kaveri, Srini; Lacroix-Desmazes, Sébastien; Boquet, Didier; Friboulet, Alain; Avalle, Bérangère; Padiolleau-Lefèvre, Séverine
2014-05-01
Phage display antibody libraries have proven to have a significant role in the discovery of therapeutic antibodies and polypeptides with desired biological and physicochemical properties. Obtaining a large and diverse phage display antibody library, however, is always a challenging task. Various steps of this technique can still undergo optimization in order to obtain an efficient library. In the construction of a single chain fragment variable (scFv) phage display library, the cloning of the scFv fragments into a phagemid vector is of crucial importance. An efficient restriction enzyme digestion of the scFv DNA leads to its proper ligation with the phagemid followed by its successful cloning and expression. Here, we are reporting a different approach to enhance the efficiency of the restriction enzyme digestion step. We have exploited rolling circle amplification (RCA) to produce a long strand of DNA with tandem repeats of scFv sequences, which is found to be highly susceptible to restriction digestion. With this important modification, we are able to construct a large phage display antibody library of naive SJL/J mice. The size of the library is estimated as ~10(8) clones. The number of clones containing a scFv fragment is estimated at 90%. Hence, the present results could considerably aid the utilization of the phage-display technique in order to get an efficiently large antibody library. Copyright © 2014 Elsevier B.V. All rights reserved.
Darai, G; Anders, K; Koch, H G; Delius, H; Gelderblom, H; Samalecos, C; Flügel, R M
1983-04-30
Virions of fish lymphocystis disease virus (FLDV), a member of the iridovirus family, were isolated directly from lymphocystis disease lesions of individual flatfishes and purified by sucrose and subsequent cesium chloride gradient centrifugation to homogeneity as judged by electron microscopy. The isolated FLDV DNAs appear to be heterogeneous in size. Contour length measurements of 43 DNA molecules gave an average length of 49 +/- 23 microns, corresponding to 93 +/- 44 X 10(6) D. Molecular weight estimations of FLDV DNA by restriction enzyme analysis resulted in only 64.8 X 10(6) D indicating an excess length of the DNA of about 50%. FLDV DNA was sensitive to lambda 5'-exonuclease and to E. coli 3'-exonuclease III without preference of any one terminal DNA restriction fragment. Denaturation and reannealing experiments of FLDV DNA resulted in the formation of circular DNA molecules of 34.25 microns contour length (= 65.22 X 10(6) D). This result suggests that FLDV DNA contains directly repeated sequences at both ends and that it is terminally redundant. FLDV DNA is methylated in cytosine. FLDV DNA did not hybridize with frog virus DNA indicating that the two iridoviruses are not closely related to each other. Restriction enzyme analysis and Southern blot hybridizations revealed that FLDV isolates can be classified into two different strains: FLDV strain 1 occurs in flounders and plaice, whereas strain 2 is usually found in lesions of dabs.
USDA-ARS?s Scientific Manuscript database
For map-based cloning of genes conferring important traits in the hexaploid wheat line 92R137, a bacterial artificial chromosome (BAC) library, including two sub libraries, was constructed using the genomic DNA of 92R137 digested with restriction enzymes HindIII and BamHI. The BAC library was compos...
Endothelial Targeting of Semi-permeable Polymer Nanocarriers for Enzyme Therapies
Dziubla, Thomas D; Shuvaev, Vladimir V.; Hong, Nan Kang; Hawkins, Brian; Muniswamy, Madesh; Takano, Hajime; Simone, Eric; Nakada, Marian T.; Fisher, Aron; Albelda, Steven M.; Muzykantov, Vladimir R.
2007-01-01
The medical utility of proteins, e.g. therapeutic enzymes, is greatly restricted by their liable nature and inadequate delivery. Most therapeutic enzymes do not accumulate in their targets and are inactivated by proteases. Targeting of enzymes encapsulated into substrate-permeable Polymeric Nano-Carriers (PNC) impermeable for proteases might overcome these limitations. To test this hypothesis, we designed endothelial targeted PNC loaded with catalase, the H2O2-detoxifying enzyme, and tested if this approach protects against vascular oxidative stress, a pathological process implicated in ischemia-reperfusion and other disease conditions. Encapsulation of catalase (MW 240KD), peroxidase (MW 42kD) and xanthine oxidase (XO, MW 300 kD) into ~300nm diameter PNC composed of co-polymers of PEG-PLGA (polyethylene glycol and poly-lactic/poly-glycolic acid) was in the range ~10% for all enzymes. PNC/catalase and PNC/peroxidase were protected from external proteolysis and exerted the enzymatic activity on their PNC diffusible substrates, H2O2 and ortho-phenylendiamine, whereas activity of encapsulated XO was negligible due to polymer impermeability to the substrate. PNC targeted to platelet-endothelial cell adhesion molecule-1 delivered active encapsulated catalase to endothelial cells and protected the endothelium against oxidative stress in cell culture and animal studies. Vascular targeting of PNC-loaded detoxifying enzymes may find wide medical applications including management of oxidative stress and other toxicities. PMID:17950837
Review of State Laws Restricting Local Authority to Impose Alcohol Taxes in the United States
Mosher, James F.; Adler, Sabrina S.; Pamukcu, Aysha M.; Treffers, Ryan D.
2017-01-01
Objective: Building on the extensive research literature demonstrating that increasing alcohol prices reduces excessive alcohol consumption and related harms, this article presents the results of a 50-state review of local authority to tax alcohol in the United States. Method: Between 2013 and 2015, legal databases and government websites were reviewed to collect and analyze relevant statutes, ordinances, and case law. Results reflect laws in effect as of January 1, 2015. Results: Nineteen states allow local alcohol taxation, although 15 of those have one or more major restrictions on local authority to tax. The types of major restrictions are (a) restrictions on the type of beverage and alcohol content that can be taxed, (b) caps on local alcohol taxes, (c) restrictions on the type of retailer where taxes can be imposed,(a) restrictions on jurisdictions within the state that can levy taxes, and (b) requirements for how tax revenue can be spent. Conclusions: The number and severity of restrictions on local authority to tax alcohol vary across states. Previous research has shown that increases in alcohol taxes can lead to reduced excessive alcohol consumption, which provides public health and economic benefits. Taxes can also provide funds to support local prevention and treatment services. Local alcohol taxes therefore present an important policy opportunity, both in states that restrict local authority and in states where local authority exists but is underused. PMID:28317504
Review of State Laws Restricting Local Authority to Impose Alcohol Taxes in the United States.
Mosher, James F; Adler, Sabrina S; Pamukcu, Aysha M; Treffers, Ryan D
2017-03-01
Building on the extensive research literature demonstrating that increasing alcohol prices reduces excessive alcohol consumption and related harms, this article presents the results of a 50-state review of local authority to tax alcohol in the United States. Between 2013 and 2015, legal databases and government websites were reviewed to collect and analyze relevant statutes, ordinances, and case law. Results reflect laws in effect as of January 1, 2015. Nineteen states allow local alcohol taxation, although 15 of those have one or more major restrictions on local authority to tax. The types of major restrictions are (a) restrictions on the type of beverage and alcohol content that can be taxed, (b) caps on local alcohol taxes, (c) restrictions on the type of retailer where taxes can be imposed, (d) restrictions on jurisdictions within the state that can levy taxes, and (e) requirements for how tax revenue can be spent. The number and severity of restrictions on local authority to tax alcohol vary across states. Previous research has shown that increases in alcohol taxes can lead to reduced excessive alcohol consumption, which provides public health and economic benefits. Taxes can also provide funds to support local prevention and treatment services. Local alcohol taxes therefore present an important policy opportunity, both in states that restrict local authority and in states where local authority exists but is underused.
Isolation of a new herpes virus from human CD4 sup + T cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frenkel, N.; Schirmer, E.C.; Wyatt, L.S.
1990-01-01
A new human herpes virus has been isolated from CD4{sup +} T cells purified from peripheral blood mononuclear cells of a healthy individual (RK), following incubation of the cells under conditions promoting T-cell activation. The virus could not be recovered from nonactivated cells. Cultures of lymphocytes infected with the RK virus exhibited a cytopathic effect, and electron microscopic analyses revealed a characteristic herpes virus structure. RK virus DNA did not hybridize with large probes derived from herpes simplex virus, Epstein-Barr virus, varicella-zoster virus, and human cytomegalovirus. The genetic relatedness of the RK virus to the recently identified T-lymphotropic human herpesmore » virus 6 (HHV-6) was investigated by restriction enzyme analyses using 21 different enzymes and by blot hydridization analyses using 11 probes derived from two strains of HHV-6 (Z29 and U1102). Whereas the two HHV-6 strains exhibited only limited restriction enzyme polymorphism, cleavage of the RK virus DNA yielded distinct patterns. Of the 11 HHV-6 DNA probes tested, only 6 cross-hybridized with DNA fragments derived from the RK virus. Taken together, the maximal homology amounted to 31 kilobases of the 75 kilobases tested. The authors conclude that the RK virus is distinct from previously characterized human herpesviruses. The authors propose to designate it as the prototype of a new herpes virus, the seventh human herpes virus identified to date.« less
Metabolic adaptations to short-term every-other-day feeding in long-living Ames dwarf mice.
Brown-Borg, Holly M; Rakoczy, Sharlene
2013-09-01
Restrictive dietary interventions exert significant beneficial physiological effects in terms of aging and age-related disease in many species. Every other day feeding (EOD) has been utilized in aging research and shown to mimic many of the positive outcomes consequent with dietary restriction. This study employed long living Ames dwarf mice subjected to EOD feeding to examine the adaptations of the oxidative phosphorylation and antioxidative defense systems to this feeding regimen. Every other day feeding lowered liver glutathione (GSH) concentrations in dwarf and wild type (WT) mice but altered GSH biosynthesis and degradation in WT mice only. The activities of liver OXPHOS enzymes and corresponding proteins declined in WT mice fed EOD while in dwarf animals, the levels were maintained or increased with this feeding regimen. Antioxidative enzymes were differentially affected depending on the tissue, whether proliferative or post-mitotic. Gene expression of components of liver methionine metabolism remained elevated in dwarf mice when compared to WT mice as previously reported however, enzymes responsible for recycling homocysteine to methionine were elevated in both genotypes in response to EOD feeding. The data suggest that the differences in anabolic hormone levels likely affect the sensitivity of long living and control mice to this dietary regimen, with dwarf mice exhibiting fewer responses in comparison to WT mice. These results provide further evidence that dwarf mice may be better protected against metabolic and environmental perturbations which may in turn, contribute to their extended longevity. © 2013.
Hall, A G; Hamilton, P; Minto, L; Coulthard, S A
2001-01-30
The level of expression of the enzyme thiopurine methyltransferase (TPMT) is an important determinant of the metabolism of drugs used both in the treatment of acute leukaemia (6-mercaptopurine and 6-thioguanine) and as an immunosuppressant in patients with autoimmune diseases or following organ transplantation (azathioprine). Studies of enzyme activity in red blood cells have shown that TPMT expression displays genetic polymorphism with 11% of individuals having intermediate and one in 300 undetectable levels. Patients with biallelic mutations and undetectable enzyme activity suffer life-threatening myelosuppression when treated with conventional doses of these drugs. Patients with intermediate activity have an increased risk of drug-associated toxicity. In the Caucasian populations studied to date, intermediate activity is associated with mutations at two sites of the TPMT gene, G460A and A719G (designated TPMT*3A), in 80% of cases. Detection of these mutations has, to date, been based on the analysis of restriction digests of PCR products. In order to simplify this process we have investigated the ability of denaturing high pressure liquid chromatography (DHPLC) to detect the A719G mutation. DHPLC of PCR products from 15 known heterozygotes (TPMT*3A/TPMT*1) and 18 known homozygotes (TPMT*1/TPMT*1) gave a clear pattern difference between the groups and 100% concordance with the results of restriction digests. These results suggest DHPLC represents a valuable technique for accurate and rapid detection of pharmacologically important mutations in the TPMT gene.
Szemiako, Kasjan; Śledzińska, Anna; Krawczyk, Beata
2017-08-01
Candida sp. have been responsible for an increasing number of infections, especially in patients with immunodeficiency. Species-specific differentiation of Candida sp. is difficult in routine diagnosis. This identification can have a highly significant association in therapy and prophylaxis. This work has shown a new application of the terminal restriction fragment length polymorphism (t-RFLP) method in the molecular identification of six species of Candida, which are the most common causes of fungal infections. Specific for fungi homocitrate synthase gene was chosen as a molecular target for amplification. The use of three restriction enzymes, DraI, RsaI, and BglII, for amplicon digestion can generate species-specific fluorescence labeled DNA fragment profiles, which can be used to determine the diagnostic algorithm. The designed method can be a cost-efficient high-throughput molecular technique for the identification of six clinically important Candida species.
Ellis, W A; Montgomery, J M; Thiermann, A B
1991-01-01
Restriction endonuclease analysis was performed on DNAs from the type strains of the Australis serogroup of Leptospira interrogans by using 20 restriction enzymes, and the electrophoretic patterns obtained were compared with patterns obtained from 162 Australis serogroup isolates from pigs. It proved to be a quick and reliable method for typing such strains. All of the pig isolates were identified as either serovar bratislava or muenchen. It also showed differences at the subserovar level which may be important in (i) understanding the epidemiology of the Australis serogroup, (ii) the development of suitable vaccines, and (iii) pathogenesis and pathogenicity studies. Two genotypes (B2b and M2) accounted for 92% of isolates from aborted or stillborn piglets, while a third genotype (B2a) was the only one recovered from the brains of piglets with meningitis. Images PMID:1647408
Ellis, W A; Montgomery, J M; Thiermann, A B
1991-05-01
Restriction endonuclease analysis was performed on DNAs from the type strains of the Australis serogroup of Leptospira interrogans by using 20 restriction enzymes, and the electrophoretic patterns obtained were compared with patterns obtained from 162 Australis serogroup isolates from pigs. It proved to be a quick and reliable method for typing such strains. All of the pig isolates were identified as either serovar bratislava or muenchen. It also showed differences at the subserovar level which may be important in (i) understanding the epidemiology of the Australis serogroup, (ii) the development of suitable vaccines, and (iii) pathogenesis and pathogenicity studies. Two genotypes (B2b and M2) accounted for 92% of isolates from aborted or stillborn piglets, while a third genotype (B2a) was the only one recovered from the brains of piglets with meningitis.
NASA Astrophysics Data System (ADS)
Nugraha, Fitra Arya Dwi; Holil, Kholifah; Kurniawan, Nia
2017-05-01
Ecological damages to the Lagoon of Segara Anakan, Central Java, as well as large-scale and continuous exploitation are threatening the sustainability of fine shrimp, Metapenaeus elegans, and resources. Information in regards to genetic resources is crucial to establish long-term conservation programs and to preserve germplasm quality. This study aims to evaluate the number and size of the fragment which is digested with restriction enzyme Hind III. Seven individuals of Metapenaeus elegans from the Lagoon of Segara Anakan were examined using Hind III. Amplification of mitochondrial DNA resulted in 950 bp, and the digestion using Hind III generated four fragments consisting of 114 bp, 200 bp, 250 bp, and 386 bp, which formed a monomorphic pattern. The restriction pattern showed the probability of homozygosity of alleles that restricted using Hind III. Homozygosity indicates no variation of DNA sequence.
Homology between Escherichia coli plasmids ColE1 and p15A.
Bird, R E
1981-01-01
The location and extent of the homology between plasmids ColE1 and p15A were determined by analysis of heteroduplexes formed between them as well as with a related plasmid, pBR322, and by hybridization of radioactive deoxyribonucleic acids to restriction fragments of p15A and ColE1. The homology between the plasmids contained the entire region of ColE1 required for its replication as well as an additional 400 base pairs downstream from the origin of replication. This region on p15A, which was 980 +/- 43 base pairs, started at 0.1 of the molecular length from one end formed by cleavage with the restriction endonuclease BglI and extended to 0.54 of the molecular length from the same end. Restriction cleavage maps for the enzymes BglI, HpaI, HaeII, HaeIII, and HincII are also presented. Images PMID:6259130
USDA-ARS?s Scientific Manuscript database
Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...
Parenting Interventions for Indigenous Child Psychosocial Functioning: A Scoping Review
ERIC Educational Resources Information Center
Macvean, Michelle; Shlonsky, Aron; Mildon, Robyn; Devine, Ben
2017-01-01
Objectives: To scope evaluations of Indigenous parenting programs designed to improve child psychosocial outcomes. Methods: Electronic databases, gray literature, Indigenous websites and journals, and reference lists were searched. The search was restricted to high-income countries with a history of colonialism. Results: Sixteen studies describing…
NASA Astrophysics Data System (ADS)
Yusuf, Y.; Hidayati, W.
2018-01-01
The process of identifying bacterial recombination using PCR, and restriction, and then sequencing process was done after identifying the bacteria. This research aimed to get a yeast cell of Pichia pastoris which has an encoder gene of stem bromelain enzyme. The production of recombinant stem bromelain enzymes using yeast cells of P. pastoris can produce pure bromelain rod enzymes and have the same conformation with the enzyme’s conformation in pineapple plants. This recombinant stem bromelain enzyme can be used as a therapeutic protein in inflammatory, cancer and degenerative diseases. This study was an early stage of a step series to obtain bromelain rod protein derived from pineapple made with genetic engineering techniques. This research was started by isolating the RNA of pineapple stem which was continued with constructing cDNA using reserve transcriptase-PCR technique (RT-PCR), doing the amplification of bromelain enzyme encoder gene with PCR technique using a specific premiere couple which was designed. The process was continued by cloning into bacterium cells of Escherichia coli. A vector which brought the encoder gene of stem bromelain enzyme was inserted into the yeast cell of P. pastoris and was continued by identifying the yeast cell of P. pastoris which brought the encoder gene of stem bromelain enzyme. The research has not found enzyme gene of stem bromelain in yeast cell of P. pastoris yet. The next step is repeating the process by buying new reagent; RNase inhibitor, and buying liquid nitrogen.
pH-dependent immobilization of urease on glutathione-capped gold nanoparticles.
Garg, Seema; De, Arnab; Mozumdar, Subho
2015-05-01
Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea to form ammonia and carbon dioxide. Although the enzyme serves a significant role in several detoxification and analytical processes, its usability is restricted due to high cost, availability in small amounts, instability, and a limited possibility of economic recovery from a reaction mixture. Hence, there is a need to develop an efficient, simple, and reliable immobilization strategy for the enzyme. In this study, the carboxyl terminated surface of glutathione-capped gold nanoparticles have been utilized as a solid support for the covalent attachment of urease. The immobilization has been carried out at different pH conditions so as to elucidate its effect on the immobilization efficiency and enzyme bioactivity. The binding of the enzyme has been quantitatively and qualitatively analyzed through techniques like ultraviolet-visible spectroscopy, intrinsic steady state fluorescence, and circular dichorism. The bioactivity of the immobilized enzyme was investigated with respect to the native enzyme under different thermal conditions. Recyclability and shelf life studies of the immobilized enzyme have also been carried out. Results reveal that the immobilization is most effective at pH of 7.4 followed by that in an acidic medium and is least in alkaline environment. The immobilized enzyme also exhibits enhance activity in comparison to the native form at physiological temperature. The immobilized urease (on gold glutathione nanoconjugates surface) can be effectively employed for biosensor fabrication, immunoassays and as an in vivo diagnostic tool in the future. © 2014 Wiley Periodicals, Inc.
PrenDB, a Substrate Prediction Database to Enable Biocatalytic Use of Prenyltransferases.
Gunera, Jakub; Kindinger, Florian; Li, Shu-Ming; Kolb, Peter
2017-03-10
Prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily catalyze the attachment of prenyl or prenyl-like moieties to diverse acceptor compounds. These acceptor molecules are generally aromatic in nature and mostly indole or indole-like. Their catalytic transformation represents a major skeletal diversification step in the biosynthesis of secondary metabolites, including the indole alkaloids. DMATS enzymes thus contribute significantly to the biological and pharmacological diversity of small molecule metabolites. Understanding the substrate specificity of these enzymes could create opportunities for their biocatalytic use in preparing complex synthetic scaffolds. However, there has been no framework to achieve this in a rational way. Here, we report a chemoinformatic pipeline to enable prenyltransferase substrate prediction. We systematically catalogued 32 unique prenyltransferases and 167 unique substrates to create possible reaction matrices and compiled these data into a browsable database named PrenDB. We then used a newly developed algorithm based on molecular fragmentation to automatically extract reactive chemical epitopes. The analysis of the collected data sheds light on the thus far explored substrate space of DMATS enzymes. To assess the predictive performance of our virtual reaction extraction tool, 38 potential substrates were tested as prenyl acceptors in assays with three prenyltransferases, and we were able to detect turnover in >55% of the cases. The database, PrenDB (www.kolblab.org/prendb.php), enables the prediction of potential substrates for chemoenzymatic synthesis through substructure similarity and virtual chemical transformation techniques. It aims at making prenyltransferases and their highly regio- and stereoselective reactions accessible to the research community for integration in synthetic work flows. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Acupuncture for treating sciatica: a systematic review protocol
Qin, Zongshi; Liu, Xiaoxu; Yao, Qin; Zhai, Yanbing; Liu, Zhishun
2015-01-01
Introduction This systematic review aims to assess the effectiveness and safety of acupuncture for treating sciatica. Methods The following nine databases will be searched from their inception to 30 October 2014: MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), the Chinese Biomedical Literature Database (CBM), the Chinese Medical Current Content (CMCC), the Chinese Scientific Journal Database (VIP database), the Wan-Fang Database, the China National Knowledge Infrastructure (CNKI) and Citation Information by National Institute of Informatics (CiNii). Randomised controlled trials (RCTs) of acupuncture for sciatica in English, Chinese or Japanese without restriction of publication status will be included. Two researchers will independently undertake study selection, extraction of data and assessment of study quality. Meta-analysis will be conducted after screening of studies. Data will be analysed using risk ratio for dichotomous data, and standardised mean difference or weighted mean difference for continuous data. Dissemination This systematic review will be disseminated electronically through a peer-reviewed publication or conference presentations. Trial registration number PROSPERO CRD42014015001. PMID:25922105
Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika
2012-01-01
Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471
Protein-linked Ubiquitin Chain Structure Restricts Activity of Deubiquitinating Enzymes*
Schaefer, Jonathan B.; Morgan, David O.
2011-01-01
The attachment of lysine 48 (Lys48)-linked polyubiquitin chains to proteins is a universal signal for degradation by the proteasome. Here, we report that long Lys48-linked chains are resistant to many deubiquitinating enzymes (DUBs). Representative enzymes from this group, Ubp15 from yeast and its human ortholog USP7, rapidly remove mono- and diubiquitin from substrates but are slow to remove longer Lys48-linked chains. This resistance is lost if the structure of Lys48-linked chains is disrupted by mutation of ubiquitin or if chains are linked through Lys63. In contrast to Ubp15 and USP7, Ubp12 readily cleaves the ends of long chains, regardless of chain structure. We propose that the resistance to many DUBs of long, substrate-attached Lys48-linked chains helps ensure that proteins are maintained free from ubiquitin until a threshold of ubiquitin ligase activity enables degradation. PMID:22072716
Hypermutation by intersegmental transfer of APOBEC3G cytidine deaminase.
Nowarski, Roni; Britan-Rosich, Elena; Shiloach, Tamar; Kotler, Moshe
2008-10-01
Deamination of cytidine residues in single-stranded DNA (ssDNA) is an important mechanism by which apolipoprotein B mRNA-editing, catalytic polypeptide-like (APOBEC) enzymes restrict endogenous and exogenous viruses. The dynamic process underlying APOBEC-induced hypermutation is not fully understood. Here we show that enzymatically active APOBEC3G can be detected in wild-type Vif(+) HIV-1 virions, albeit at low levels. In vitro studies showed that single enzyme-DNA encounters result in distributive deamination of adjacent cytidines. Nonlinear translocation of APOBEC3G, however, directed scattered deamination of numerous targets along the DNA. Increased ssDNA concentrations abolished enzyme processivity in the case of short, but not long, DNA substrates, emphasizing the key role of rapid intersegmental transfer in targeting the deaminase. Our data support a model by which APOBEC3G intersegmental transfer via monomeric binding to two ssDNA segments results in dispersed hypermutation of viral genomes.
Taylor, Gregory K.; Stoddard, Barry L.
2012-01-01
Homing endonucleases (HEs) are highly specific DNA-cleaving enzymes that are encoded by invasive DNA elements (usually mobile introns or inteins) within the genomes of phage, bacteria, archea, protista and eukaryotic organelles. Six unique structural HE families, that collectively span four distinct nuclease catalytic motifs, have been characterized to date. Members of each family display structural homology and functional relationships to a wide variety of proteins from various organisms. The biological functions of those proteins are highly disparate and include non-specific DNA-degradation enzymes, restriction endonucleases, DNA-repair enzymes, resolvases, intron splicing factors and transcription factors. These relationships suggest that modern day HEs share common ancestors with proteins involved in genome fidelity, maintenance and gene expression. This review summarizes the results of structural studies of HEs and corresponding proteins from host organisms that have illustrated the manner in which these factors are related. PMID:22406833
SorghumFDB: sorghum functional genomics database with multidimensional network analysis.
Tian, Tian; You, Qi; Zhang, Liwei; Yi, Xin; Yan, Hengyu; Xu, Wenying; Su, Zhen
2016-01-01
Sorghum (Sorghum bicolor [L.] Moench) has excellent agronomic traits and biological properties, such as heat and drought-tolerance. It is a C4 grass and potential bioenergy-producing plant, which makes it an important crop worldwide. With the sorghum genome sequence released, it is essential to establish a sorghum functional genomics data mining platform. We collected genomic data and some functional annotations to construct a sorghum functional genomics database (SorghumFDB). SorghumFDB integrated knowledge of sorghum gene family classifications (transcription regulators/factors, carbohydrate-active enzymes, protein kinases, ubiquitins, cytochrome P450, monolignol biosynthesis related enzymes, R-genes and organelle-genes), detailed gene annotations, miRNA and target gene information, orthologous pairs in the model plants Arabidopsis, rice and maize, gene loci conversions and a genome browser. We further constructed a dynamic network of multidimensional biological relationships, comprised of the co-expression data, protein-protein interactions and miRNA-target pairs. We took effective measures to combine the network, gene set enrichment and motif analyses to determine the key regulators that participate in related metabolic pathways, such as the lignin pathway, which is a major biological process in bioenergy-producing plants.Database URL: http://structuralbiology.cau.edu.cn/sorghum/index.html. © The Author(s) 2016. Published by Oxford University Press.
Peach, Megan L; Zakharov, Alexey V; Liu, Ruifeng; Pugliese, Angelo; Tawa, Gregory; Wallqvist, Anders; Nicklaus, Marc C
2012-10-01
Metabolism has been identified as a defining factor in drug development success or failure because of its impact on many aspects of drug pharmacology, including bioavailability, half-life and toxicity. In this article, we provide an outline and descriptions of the resources for metabolism-related property predictions that are currently either freely or commercially available to the public. These resources include databases with data on, and software for prediction of, several end points: metabolite formation, sites of metabolic transformation, binding to metabolizing enzymes and metabolic stability. We attempt to place each tool in historical context and describe, wherever possible, the data it was based on. For predictions of interactions with metabolizing enzymes, we show a typical set of results for a small test set of compounds. Our aim is to give a clear overview of the areas and aspects of metabolism prediction in which the currently available resources are useful and accurate, and the areas in which they are inadequate or missing entirely.
FragariaCyc: A Metabolic Pathway Database for Woodland Strawberry Fragaria vesca
Naithani, Sushma; Partipilo, Christina M.; Raja, Rajani; Elser, Justin L.; Jaiswal, Pankaj
2016-01-01
FragariaCyc is a strawberry-specific cellular metabolic network based on the annotated genome sequence of Fragaria vesca L. ssp. vesca, accession Hawaii 4. It was built on the Pathway-Tools platform using MetaCyc as the reference. The experimental evidences from published literature were used for supporting/editing existing entities and for the addition of new pathways, enzymes, reactions, compounds, and small molecules in the database. To date, FragariaCyc comprises 66 super-pathways, 488 unique pathways, 2348 metabolic reactions, 3507 enzymes, and 2134 compounds. In addition to searching and browsing FragariaCyc, researchers can compare pathways across various plant metabolic networks and analyze their data using Omics Viewer tool. We view FragariaCyc as a resource for the community of researchers working with strawberry and related fruit crops. It can help understanding the regulation of overall metabolism of strawberry plant during development and in response to diseases and abiotic stresses. FragariaCyc is available online at http://pathways.cgrb.oregonstate.edu. PMID:26973684
METscout: a pathfinder exploring the landscape of metabolites, enzymes and transporters.
Geffers, Lars; Tetzlaff, Benjamin; Cui, Xiao; Yan, Jun; Eichele, Gregor
2013-01-01
METscout (http://metscout.mpg.de) brings together metabolism and gene expression landscapes. It is a MySQL relational database linking biochemical pathway information with 3D patterns of gene expression determined by robotic in situ hybridization in the E14.5 mouse embryo. The sites of expression of ∼1500 metabolic enzymes and of ∼350 solute carriers (SLCs) were included and are accessible as single cell resolution images and in the form of semi-quantitative image abstractions. METscout provides several graphical web-interfaces allowing navigation through complex anatomical and metabolic information. Specifically, the database shows where in the organism each of the many metabolic reactions take place and where SLCs transport metabolites. To link enzymatic reactions and transport, the KEGG metabolic reaction network was extended to include metabolite transport. This network in conjunction with spatial expression pattern of the network genes allows for a tracing of metabolic reactions and transport processes across the entire body of the embryo.
Novel hits for acetylcholinesterase inhibition derived by docking-based screening on ZINC database.
Doytchinova, Irini; Atanasova, Mariyana; Valkova, Iva; Stavrakov, Georgi; Philipova, Irena; Zhivkova, Zvetanka; Zheleva-Dimitrova, Dimitrina; Konstantinov, Spiro; Dimitrov, Ivan
2018-12-01
The inhibition of the enzyme acetylcholinesterase (AChE) increases the levels of the neurotransmitter acetylcholine and symptomatically improves the affected cognitive function. In the present study, we searched for novel AChE inhibitors by docking-based virtual screening of the standard lead-like set of ZINC database containing more than 6 million small molecules using GOLD software. The top 10 best-scored hits were tested in vitro for AChE affinity, neurotoxicity, GIT and BBB permeability. The main pharmacokinetic parameters like volume of distribution, free fraction in plasma, total clearance, and half-life were predicted by previously derived models. Nine of the compounds bind to the enzyme with affinities from 0.517 to 0.735 µM, eight of them are non-toxic. All hits permeate GIT and BBB and bind extensively to plasma proteins. Most of them are low-clearance compounds. In total, seven of the 10 hits are promising for further lead optimisation. These are structures with ZINC IDs: 00220177, 44455618, 66142300, 71804814, 72065926, 96007907, and 97159977.
Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen.
Stewart, Robert D; Auffret, Marc D; Warr, Amanda; Wiser, Andrew H; Press, Maximilian O; Langford, Kyle W; Liachko, Ivan; Snelling, Timothy J; Dewhurst, Richard J; Walker, Alan W; Roehe, Rainer; Watson, Mick
2018-02-28
The cow rumen is adapted for the breakdown of plant material into energy and nutrients, a task largely performed by enzymes encoded by the rumen microbiome. Here we present 913 draft bacterial and archaeal genomes assembled from over 800 Gb of rumen metagenomic sequence data derived from 43 Scottish cattle, using both metagenomic binning and Hi-C-based proximity-guided assembly. Most of these genomes represent previously unsequenced strains and species. The draft genomes contain over 69,000 proteins predicted to be involved in carbohydrate metabolism, over 90% of which do not have a good match in public databases. Inclusion of the 913 genomes presented here improves metagenomic read classification by sevenfold against our own data, and by fivefold against other publicly available rumen datasets. Thus, our dataset substantially improves the coverage of rumen microbial genomes in the public databases and represents a valuable resource for biomass-degrading enzyme discovery and studies of the rumen microbiome.
[Convulsions due to an interaction between anti-epileptic drugs and rifampicin].
Hanrath, Maarten A; Swart, Eleonora L
2014-01-01
Anti-epileptic drugs (AEDs) have a small therapeutic window, so it is important to monitor plasma levels. Inadequate plasma levels may lead to convulsions. Many AEDs are cleared hepatically, and there are many drug interactions that are known to lead to changes in plasma levels. A 54-year-old woman with known epilepsy developed convulsions after using rifampicin and flucloxacillin, despite the use of maintenance treatment in the form of carbamazepine, valproic acid and clonazepam. Since rifampicin is known to induce several cytochrome P450 enzymes and clearance of the anti-epileptic drug used may be affected by this, it can be assumed that the convulsions were caused by rifampicin. This interaction is however not mentioned in the Dutch 'G-standard' database. Rifampicin is known to be a strong inducer of various cytochrome P450 enzymes. This case description shows that the use of rifampicin may lead to convulsions. For this reason, these interactions should be included in the Dutch G-standard database.
Helms, Eric R; Zinn, Caryn; Rowlands, David S; Brown, Scott R
2014-04-01
Caloric restriction occurs when athletes attempt to reduce body fat or make weight. There is evidence that protein needs increase when athletes restrict calories or have low body fat. The aims of this review were to evaluate the effects of dietary protein on body composition in energy-restricted resistance-trained athletes and to provide protein recommendations for these athletes. Database searches were performed from earliest record to July 2013 using the terms protein, and intake, or diet, and weight, or train, or restrict, or energy, or strength, and athlete. Studies (N = 6) needed to use adult (≥ 18 yrs), energy-restricted, resistance-trained (> 6 months) humans of lower body fat (males ≤ 23% and females ≤ 35%) performing resistance training. Protein intake, fat free mass (FFM) and body fat had to be reported. Body fat percentage decreased (0.5-6.6%) in all study groups (N = 13) and FFM decreased (0.3-2.7kg) in nine of 13. Six groups gained, did not lose, or lost nonsignificant amounts of FFM. Five out of these six groups were among the highest in body fat, lowest in caloric restriction, or underwent novel resistance training stimuli. However, the one group that was not high in body fat that underwent substantial caloric restriction, without novel training stimuli, consumed the highest protein intake out of all the groups in this review (2.5-2.6g/kg). Protein needs for energy-restricted resistance-trained athletes are likely 2.3-3.1g/kg of FFM scaled upwards with severity of caloric restriction and leanness.
Yang, Yi-Chieh; Chien, Ming-Hsien; Liu, Hsin-Yi; Chang, Yu-Chan; Chen, Chi-Kuan; Lee, Wei-Jiunn; Kuo, Tsang-Chih; Hsiao, Michael; Hua, Kuo-Tai; Cheng, Tsu-Yao
2018-05-01
Cancer cells encounter metabolic stresses such as hypoxia and nutrient limitations because they grow and divide more quickly than their normal counterparts. In response to glucose restriction, we found that nuclear translocation of the glycolic enzyme, pyruvate kinase M2 (PKM2), helped cancer cells survive under the metabolic stress. Restriction of glucose stimulated AMPK activation and resulted in co-translocation of AMPK and PKM2 through Ran-mediated nuclear transport. Nuclear PKM2 subsequently bound to Oct4 and promoted the expression of cancer stemness-related genes, which might enrich the cancer stem cell population under the metabolic stress. Nuclear PKM2 was also capable of promoting cancer metastasis in an orthotopic xenograft model. In summary, we found that cytosolic AMPK helped PKM2 carry out its nonmetabolic functions in the nucleus under glucose restriction and that nuclear PKM2 promoted cancer stemness and metastasis. These findings suggested a potential new targeting pathway for cancer therapy in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
Truncation Without Shape Constraints: The Latter Stages of Prosodic Acquisition.
ERIC Educational Resources Information Center
Kehoe, Margaret M.
2000-01-01
Evaluates the claim of uniform size and shape restrictions in prosodic development using a cross-sectional database of English-speaking children's multisyllabic word productions. Suggests children's increasing faithfulness to unstressed syllables can be explained by different constraint rankings that relate to edge alignment, syllable structure,…
Granular Security in a Graph Database
2016-03-01
have a presence in more than one layer. For example, a single social media user may have an account in Twitter, Facebook, and Instagram with... Instagram layers. This restriction re- flects the reality that user A’s Facebook account cannot connect directly to user B’s Twitter account. A security
76 FR 61680 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-05
..., and date of birth. Training Data to Include: Class number, scheduling, testing, academic, graduation... ID and password (which has to be changed each 90 days). Direct access to the database is restricted... academic records are transferred to the RHA/AEA, and are retired to National Records Personnel Center (NRPC...
Questions to Answer before You Branch out on a CD-ROM Network.
ERIC Educational Resources Information Center
Simpson, Carol Mann
1992-01-01
Examines issues that librarians must address when purchasing databases on CD-ROM for networking. Highlights include network licenses; costs; restrictions on network rights; ownership of CD-ROMs; hardware requirements; fees for upgrading software; CD-ROM servers; pricing options; training materials; and disk drives. (LRW)
Making Materials Science and Engineering Data More Valuable Research Products (Postprint)
2014-09-12
uncertainties in the publishing market - place.b Also, there is a possibility that some for-profit publishers could try to restrict access to digital...Kaufman JG, Glatzman JS (eds) Computerization and networking of materials databases: Second Volume, ASTM STP 1106. American Society for Testing and
USDA-ARS?s Scientific Manuscript database
Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...
Query Monitoring and Analysis for Database Privacy - A Security Automata Model Approach
Kumar, Anand; Ligatti, Jay; Tu, Yi-Cheng
2015-01-01
Privacy and usage restriction issues are important when valuable data are exchanged or acquired by different organizations. Standard access control mechanisms either restrict or completely grant access to valuable data. On the other hand, data obfuscation limits the overall usability and may result in loss of total value. There are no standard policy enforcement mechanisms for data acquired through mutual and copyright agreements. In practice, many different types of policies can be enforced in protecting data privacy. Hence there is the need for an unified framework that encapsulates multiple suites of policies to protect the data. We present our vision of an architecture named security automata model (SAM) to enforce privacy-preserving policies and usage restrictions. SAM analyzes the input queries and their outputs to enforce various policies, liberating data owners from the burden of monitoring data access. SAM allows administrators to specify various policies and enforces them to monitor queries and control the data access. Our goal is to address the problems of data usage control and protection through privacy policies that can be defined, enforced, and integrated with the existing access control mechanisms using SAM. In this paper, we lay out the theoretical foundation of SAM, which is based on an automata named Mandatory Result Automata. We also discuss the major challenges of implementing SAM in a real-world database environment as well as ideas to meet such challenges. PMID:26997936
Query Monitoring and Analysis for Database Privacy - A Security Automata Model Approach.
Kumar, Anand; Ligatti, Jay; Tu, Yi-Cheng
2015-11-01
Privacy and usage restriction issues are important when valuable data are exchanged or acquired by different organizations. Standard access control mechanisms either restrict or completely grant access to valuable data. On the other hand, data obfuscation limits the overall usability and may result in loss of total value. There are no standard policy enforcement mechanisms for data acquired through mutual and copyright agreements. In practice, many different types of policies can be enforced in protecting data privacy. Hence there is the need for an unified framework that encapsulates multiple suites of policies to protect the data. We present our vision of an architecture named security automata model (SAM) to enforce privacy-preserving policies and usage restrictions. SAM analyzes the input queries and their outputs to enforce various policies, liberating data owners from the burden of monitoring data access. SAM allows administrators to specify various policies and enforces them to monitor queries and control the data access. Our goal is to address the problems of data usage control and protection through privacy policies that can be defined, enforced, and integrated with the existing access control mechanisms using SAM. In this paper, we lay out the theoretical foundation of SAM, which is based on an automata named Mandatory Result Automata. We also discuss the major challenges of implementing SAM in a real-world database environment as well as ideas to meet such challenges.
Ortiz-Espejo, M; Gil-Campos, M; Mesa, M D; García-Rodríguez, C E; Muñoz-Villanueva, M C; Pérez-Navero, J L
2014-01-01
The role of oxidative stress is well known in the pathogenesis of acquired malnutrition. Intrauterine growth restriction has been associated with an imbalance in oxidative stress/antioxidant system. Therefore, early postnatal environment and, consequently, extrauterine growth restriction might be associated with alterations in the antioxidant defense system, even in the prepubertal stage. This is a descriptive, analytical, and observational case-control study. The study included two groups; 38 Caucasian prepubertal children born prematurely and with a history of extrauterine growth restriction as the case group, and 123 gender- and age-matched controls. Plasma exogenous antioxidant (retinol, β-carotene, and α-tocopherol) concentrations were measured by HPLC; antioxidant enzyme activities of catalase, glutathione reductase, glutathione peroxidase, and superoxide dismutase were determined in lysed erythrocytes by spectrophotometric techniques. Catalase and glutathione peroxidase concentrations were significantly lower in extrauterine growth restriction children than in controls (P < 0.001). Lower plasma retinol concentrations were found in the case group (P = 0.029), while concentrations of β-carotene and α-tocopherol were higher (P < 0.001) in extrauterine growth restriction prepubertal children as compared with controls. After correction by gestational age, birth weight, and length, statistically significant differences were also found, except for retinol. Prepubertal children with a history of extrauterine growth restriction present alterations in their antioxidant defense system. Knowing these alterations may be important in establishing pharmacological and nutritional treatments as this situation might be associated with higher metabolic disorders in adulthood.
Madani, S A; Peighambari, S M
2013-02-01
Chlamydiosis is one of the most important infectious diseases of birds. In this study, 253 clinical samples were taken from 27 bird species belonging to seven orders. Thirty-two (12.6%) samples were positive for Chlamydia psittaci major outer membrane gene (ompA) DNA by a nested polymerase chain reaction (PCR). Twelve nested PCR-positive specimens were typed by ompA gene-based PCR-restricted fragment length polymorphism, using CTU/CTL primers and AluI restriction enzyme. Four restriction patterns were identified, including genotype A (two specimens from an African grey parrot [Psittacus erithacus] and a lorikeet [Trichoglossus haematodus]), genotype B (two specimens from a rock dove [Columbia livia] and a canary [Serinus canaria]), a third new restriction pattern (six specimens from African grey parrots), and a fourth new restriction pattern (two specimens from a ring-necked parakeet [Psittacula krameri] and an Alexandrine parakeet [Psittacula eupatria]). The third and the fourth restriction patterns are suggested to be provisional genotypes I and J, respectively. Partial sequencing of the ompA gene of seven specimens completely correlated with the results of PCR-restricted fragment length polymorphism and confirmed the presence of genotypes A and B and the two new provisional genotypes I and J. The two new genotypes have the closest identity with C. psittaci genotype F and Chlamydia abortus, respectively. From an evolutionary perspective, both new genotypes, particularly genotype J, are intermediate between the two species, C. psittaci and C. abortus.
Bullas, L R; Colson, C; Neufeld, B
1980-01-01
With the use of four different phages, Salmonella strains representing 85 different serotypes were examined to determine their restriction-modification phenotype. They fell into one of three groups on this basis: group 1, those which lacked the common LT system; group 2, those in which only the LT system could be recognized; and group 3. those which possessed the LT system and at least one other system shown with some serotypes to be closely linked to serB. The specificity of the serB-linked restriction-modification system was unique for each serotype, but different strains of the same serotype expressed the same specificity. Two of the systems were shown to behave in genetic crosses as functional alleles of the S. typhimurium SB system. It is possible that these serB-linked restriction-modification systems constitute a large multiallelic series of genes extending throughout the Salmonella genus and Escherichia coli. We suggest that the division of the Salmonella into the three restriction-modification groups may be significant in defining a "biological grouping" of the different serotypes within the genus which may ultimately be useful in describing the Salmonella species. From the genetic relatedness between the genes of some of the Salmonella restriction-modification systems with those of the E. coli systems, we deduce that the restriction endonuclases produced by the Salmonella serB-linked systems are of type 1. Determination of the nucleotide sequences of the recognition sites of the restriction endonucleases of selected Salmonella systems should further our understanding of specificity with these enzymes. PMID:6243623
Hagberg, Katrina Wilcox; Sahasrabuddhe, Vikrant V; McGlynn, Katherine A; Jick, Susan S
2016-02-01
It has been suggested that use of the antihypertensive drugs angiotensin-converting enzyme (ACE) inhibitors and β-blockers may decrease the risk of primary liver cancer; thus, the objective of this study was to evaluate whether use of ACE inhibitors and/or β-blockers is associated with a lower risk of liver cancer. Nested case-control study. United Kingdom Clinical Practice Research Datalink. We identified 490 cases with hypertension and a first-time (incident) diagnosis of primary liver cancer between 1988 and 2011. To account for an induction period, the index date was defined as the date of the first recorded liver cancer diagnosis minus 1 year. Controls were selected from patients with hypertension in the CPRD during the study period with a recorded diagnosis of hypertension who had no diagnosis of liver cancer and were free of any other cancer (except nonmelanoma skin cancer) before the index date; they were matched up to a 4:1 ratio to cases based on index date (same index date as that of their matched case), age (same year of birth), sex, general practice, and number of years of recorded history in the CPRD before the index date (1909 controls). Both cases and controls were required to have at least 2 years of recorded activity in the database before the index date. Exposure was defined as receipt of two or more prescriptions for ACE inhibitors and/or β-blockers before the index date; the reference group was nonuse (0-1 prescription) of ACE or β-blocker prescriptions before the index date. We also examined the effect of duration of use and, separately, the effect of individual drugs within each medication class on risk of liver cancer, and conducted analyses restricted to patients without liver disease or diabetes mellitus. Conditional logistic regression analysis was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). No association was found between use of ACE inhibitors and/or β-blockers and the risk of liver cancer compared with nonuse (adjusted OR 1.14, 95% CI 0.85-1.55). No significant differences were noted in risk by duration of use or by individual drugs, or after restricting the analyses to patients without diabetes or liver disease. Use of ACE inhibitors and/or β-blockers was not associated with reduced risk of primary liver cancer compared with nonuse of these drugs in persons with hypertension. © 2016 Pharmacotherapy Publications, Inc.
Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from 'Kombucha tea'.
Kurtzman, C P; Robnett, C J; Basehoar-Powers, E
2001-07-01
A new ascosporogenous yeast, Zygosaccharomyces kombuchaensis sp. n. (type strain NRRL YB-4811, CBS 8849), is described; it was isolated from Kombucha tea, a popular fermented tea-based beverage. The four known strains of the new species have identical nucleotide sequences in domain D1/D2 of 26S rDNA. Phylogenetic analysis of D1/D2 and 18S rDNA sequences places Z. kombuchaensis near Zygosaccharomyces lentus. The two species are indistinguishable on standard physiological tests used for yeast identification, but can be recognized from differences in restriction fragment length polymorphism patterns obtained by digestion of 18S-ITS1 amplicons with the restriction enzymes DdeI and MboI.
Meat species identification and Halal authentication analysis using mitochondrial DNA.
Murugaiah, Chandrika; Noor, Zainon Mohd; Mastakim, Maimunah; Bilung, Lesley Maurice; Selamat, Jinap; Radu, Son
2009-09-01
A method utilizing PCR-restriction fragment length polymorphism (RFLP) in the mitochondrial genes was developed for beef (Bos taurus), pork (Sus scrofa), buffalo (Bubalus bubali), quail (Coturnix coturnix), chicken (Gallus gallus), goat (Capra hircus), rabbit (Oryctolagus cuniculus) species identification and Halal authentication. PCR products of 359-bp were successfully obtained from the cyt b gene of these six meats. AluI, BsaJI, RsaI, MseI, and BstUI enzymes were identified as potential restriction endonucleases to differentiate the meats. The genetic differences within the cyt b gene among the meat were successfully confirmed by PCR-RFLP. A reliable typing scheme of species which revealed the genetic differences among the species was developed.
Ara, Anjuman; Love, Robin P; Follack, Tyson B; Ahmed, Khawaja A; Adolph, Madison B; Chelico, Linda
2017-02-01
The APOBEC3 (A3) enzymes, A3G and A3F, are coordinately expressed in CD4 + T cells and can become coencapsidated into HIV-1 virions, primarily in the absence of the viral infectivity factor (Vif). A3F and A3G are deoxycytidine deaminases that inhibit HIV-1 replication by inducing guanine-to-adenine hypermutation through deamination of cytosine to form uracil in minus-strand DNA. The effect of the simultaneous presence of both A3G and A3F on HIV-1 restriction ability is not clear. Here, we used a single-cycle infectivity assay and biochemical analyses to determine if coencapsidated A3G and A3F differ in their restriction capacity from A3G or A3F alone. Proviral DNA sequencing demonstrated that compared to each A3 enzyme alone, A3G and A3F, when combined, had a coordinate effect on hypermutation. Using size exclusion chromatography, rotational anisotropy, and in vitro deamination assays, we demonstrate that A3F promotes A3G deamination activity by forming an A3F/G hetero-oligomer in the absence of RNA which is more efficient at deaminating cytosines. Further, A3F caused the accumulation of shorter reverse transcripts due to decreasing reverse transcriptase efficiency, which would leave single-stranded minus-strand DNA exposed for longer periods of time, enabling more deamination events to occur. Although A3G and A3F are known to function alongside each other, these data provide evidence for an A3F/G hetero-oligomeric A3 with unique properties compared to each individual counterpart. The APOBEC3 enzymes APOBEC3F and APOBEC3G act as a barrier to HIV-1 replication in the absence of the HIV-1 Vif protein. After APOBEC3 enzymes are encapsidated into virions, they deaminate cytosines in minus-strand DNA, which forms promutagenic uracils that induce transition mutations or proviral DNA degradation. Even in the presence of Vif, footprints of APOBEC3-catalyzed deaminations are found, demonstrating that APOBEC3s still have discernible activity against HIV-1 in infected individuals. We undertook a study to better understand the activity of coexpressed APOBEC3F and APOBEC3G. The data demonstrate that an APOBEC3F/APOBEC3G hetero-oligomer can form that has unique properties compared to each APOBEC3 alone. This hetero-oligomer has increased efficiency of virus hypermutation, raising the idea that we still may not fully realize the antiviral mechanisms of endogenous APOBEC3 enzymes. Hetero-oligomerization may be a mechanism to increase their antiviral activity in the presence of Vif. Copyright © 2017 American Society for Microbiology.
Databases as policy instruments. About extending networks as evidence-based policy.
de Bont, Antoinette; Stoevelaar, Herman; Bal, Roland
2007-12-07
This article seeks to identify the role of databases in health policy. Access to information and communication technologies has changed traditional relationships between the state and professionals, creating new systems of surveillance and control. As a result, databases may have a profound effect on controlling clinical practice. We conducted three case studies to reconstruct the development and use of databases as policy instruments. Each database was intended to be employed to control the use of one particular pharmaceutical in the Netherlands (growth hormone, antiretroviral drugs for HIV and Taxol, respectively). We studied the archives of the Dutch Health Insurance Board, conducted in-depth interviews with key informants and organized two focus groups, all focused on the use of databases both in policy circles and in clinical practice. Our results demonstrate that policy makers hardly used the databases, neither for cost control nor for quality assurance. Further analysis revealed that these databases facilitated self-regulation and quality assurance by (national) bodies of professionals, resulting in restrictive prescription behavior amongst physicians. The databases fulfill control functions that were formerly located within the policy realm. The databases facilitate collaboration between policy makers and physicians, since they enable quality assurance by professionals. Delegating regulatory authority downwards into a network of physicians who control the use of pharmaceuticals seems to be a good alternative for centralized control on the basis of monitoring data.
hisT is part of a multigene operon in Escherichia coli K-12.
Marvel, C C; Arps, P J; Rubin, B C; Kammen, H O; Penhoet, E E; Winkler, M E
1985-01-01
The Escherichia coli K-12 hisT gene has been cloned, and its organization and expression have been analyzed on multicopy plasmids. The hisT gene, which encodes tRNA pseudouridine synthase I (PSUI), was isolated on a Clarke-Carbon plasmid known to contain the purF gene. The presence of the hisT gene on this plasmid was suggested by its ability to restore both production of PSUI enzymatic activity and suppression of amber mutations in a hisT mutant strain. A 2.3-kilobase HindIII-ClaI restriction fragment containing the hisT gene was subcloned into plasmid pBR322, and the resulting plasmid (designated psi 300) was mapped with restriction enzymes. Complementation analysis with different kinds of hisT mutations and tRNA structural analysis confirmed that plasmid psi 300 contained the hisT structural gene. Enzyme assays showed that plasmid psi 300 overproduced PSUI activity by ca. 20-fold compared with the wild-type level. Subclones containing restriction fragments from plasmid psi 300 inserted downstream from the lac promoter established that the hisT gene is oriented from the HindIII site toward the ClaI site. Other subclones and derivatives of plasmid psi 300 containing insertion or deletion mutations were constructed and assayed for production of PSUI activity and production of proteins in minicells. These experiments showed that: (i) the proximal 1.3-kilobase HindIII-BssHII restriction fragment contains a promoter for the hisT gene and encodes a 45,000-dalton polypeptide that is not PSUI; (ii) the distal 1.0-kilobase BssHII-ClaI restriction fragment encodes the 31,000-dalton PSUI polypeptide; (iii) the 45,000-dalton polypeptide is synthesized in an approximately eightfold excess compared with PSUI; and (iv) synthesis of the two polypeptides is coupled, suggesting that the two genes are part of an operon. Insertion of mini-Mu d1 (lac Km) phage into plasmid psi 300 confirmed that the hisT gene is the downstream gene in the operon. Images PMID:2981810
Harris, Leanne; Hamilton, Sharon; Azevedo, Liane B; Olajide, Joan; De Brún, Caroline; Waller, Gillian; Whittaker, Vicki; Sharp, Tracey; Lean, Mike; Hankey, Catherine; Ells, Louisa
2018-02-01
To examine the effectiveness of intermittent energy restriction in the treatment for overweight and obesity in adults, when compared to usual care treatment or no treatment. Intermittent energy restriction encompasses dietary approaches including intermittent fasting, alternate day fasting, and fasting for two days per week. Despite the recent popularity of intermittent energy restriction and associated weight loss claims, the supporting evidence base is limited. This review included overweight or obese (BMI ≥25 kg/m) adults (≥18 years). Intermittent energy restriction was defined as consumption of ≤800 kcal on at least one day, but no more than six days per week. Intermittent energy restriction interventions were compared to no treatment (ad libitum diet) or usual care (continuous energy restriction ∼25% of recommended energy intake). Included interventions had a minimum duration of 12 weeks from baseline to post outcome measurements. The types of studies included were randomized and pseudo-randomized controlled trials. The primary outcome of this review was change in body weight. Secondary outcomes included: i) anthropometric outcomes (change in BMI, waist circumference, fat mass, fat free mass); ii) cardio-metabolic outcomes (change in blood glucose and insulin, lipoprotein profiles and blood pressure); and iii) lifestyle outcomes: diet, physical activity, quality of life and adverse events. A systematic search was conducted from database inception to November 2015. The following electronic databases were searched: MEDLINE, Embase, CINAHL, Cochrane Library, ClinicalTrials.gov, ISRCTN registry, and anzctr.org.au for English language published studies, protocols and trials. Two independent reviewers evaluated the methodological quality of included studies using the standardized critical appraisal instruments from the Joanna Briggs Institute. Data were extracted from papers included in the review by two independent reviewers using the standardized data extraction tool from the Joanna Briggs Institute. Effect sizes were expressed as weighted mean differences and their 95% confidence intervals were calculated for meta-analyses. Six studies were included in this review. The intermittent energy restriction regimens varied across studies and included alternate day fasting, fasting for two days, and up to four days per week. The duration of studies ranged from three to 12 months. Four studies included continuous energy restriction as a comparator intervention and two studies included a no treatment control intervention. Meta-analyses showed that intermittent energy restriction was more effective than no treatment for weight loss (-4.14 kg; 95% CI -6.30 kg to -1.99 kg; p ≤ 0.001). Although both treatment interventions achieved similar changes in body weight (approximately 7 kg), the pooled estimate for studies that investigated the effect of intermittent energy restriction in comparison to continuous energy restriction revealed no significant difference in weight loss (-1.03 kg; 95% CI -2.46 kg to 0.40 kg; p = 0.156). Intermittent energy restriction may be an effective strategy for the treatment of overweight and obesity. Intermittent energy restriction was comparable to continuous energy restriction for short term weight loss in overweight and obese adults. Intermittent energy restriction was shown to be more effective than no treatment, however, this should be interpreted cautiously due to the small number of studies and future research is warranted to confirm the findings of this review.
ERIC Educational Resources Information Center
Pazhani, Yogitha; Horn, Abigail E.; Grado, Lizbeth; Kugel, Jennifer F.
2016-01-01
FRET (Fo¨rster resonance energy transfer) involves the transfer of energy from an excited donor fluorophore to an acceptor molecule in a manner that is dependent on the distance between the two. A biochemistry laboratory experiment is described that teaches students how to use FRET to evaluate distance changes in biological molecules. Students…
ERIC Educational Resources Information Center
Dimitrov, Valentin V.
2009-01-01
This work focuses on studying properties of DNA molecules and DNA-protein interactions using synthetic nanopores, and it examines the prospects of sequencing DNA using synthetic nanopores. We have developed a method for discriminating between alleles that uses a synthetic nanopore to measure the binding of a restriction enzyme to DNA. There exists…
Marinko Sremac; Joseph Elkinton; Adam Porter
2011-01-01
Elkinton et. al. recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which consists of a single compound also used by Bruce spanworm, O. bruceata (Hulst), the North American congener of winter moth. Our...
Glucocorticoid Regulation of Rat Renal Sodium Potassium Adenosine Triphosphatase
1990-03-29
sequences; restriction enzymes fluorescein isothiocyanate glomerular filtration rate Horseradish Peroxidase immunoglobulin G kllodalton Magnesium...studies were conducted, in this project , to determine whether the observed changes in NaK-ATPase activity occurred after, and possibly as the result of...excitable tissue required for nerve impulse transmission and 6 muscle contraction (Skou, 1957), the functioning of hepatic amino acid and bile acid
Guarnieri, Douglas J; Brayton, Catherine E; Richards, Sarah M; Maldonado-Aviles, Jaime; Trinko, Joseph R; Nelson, Jessica; Taylor, Jane R; Gourley, Shannon L; DiLeone, Ralph J
2012-02-15
Food restriction is known to enhance learning and motivation. The neural mechanisms underlying these responses likely involve alterations in gene expression in brain regions mediating the motivation to feed. Analysis of gene expression profiles in male C57BL/6J mice using whole-genome microarrays was completed in the medial prefrontal cortex, nucleus accumbens, ventral tegmental area, and the hypothalamus following a 5-day food restriction. Quantitative polymerase chain reaction was used to validate these findings and determine the time course of expression changes. Plasma levels of the stress hormone corticosterone (CORT) were measured by enzyme-linked immunosorbent assay. Expression changes were measured in adrenalectomized animals that underwent food restriction, as well as in animals receiving daily injections of CORT. Progressive ratio responding for food, a measure of motivated behavior, was assessed after CORT treatment in restricted and fed animals. Brief food restriction results in an upregulation of peripheral stress responsive genes in the mammalian brain. Time-course analysis demonstrated rapid and persistent expression changes in all four brain regions under study. Administration of CORT to nonrestricted animals was sufficient to induce a subset of the genes, and alterations in gene expression after food restriction were dependent on intact adrenal glands. CORT can increase the motivation to work for food only in the restricted state. These data demonstrate a central role for CORT in mediating both molecular and behavioral responses to food restriction. The stress hormone-induced alterations in gene expression described here may be relevant for both adaptive and pathological responses to stress. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Novel host restriction factors implicated in HIV-1 replication.
Ghimire, Dibya; Rai, Madhu; Gaur, Ritu
2018-04-01
Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.
Mori, A; Kenyon, P R; Mori, N; Yamamoto, I; Tanaka, Y; Suzuki, N; Tazaki, H; Ozawa, T; Hayashi, T; Hickson, R E; Morris, S T; Blair, H; Arai, T
2008-02-01
Metabolite and immunoreactive insulin (IRI) concentrations, energy metabolism related enzymes activities and peripheral blood mononuclear cell (PBMC) populations were measured in blood of pregnant Angus heifers with differing liveweight change profiles (gaining or losing), in New Zealand to investigate the meanings of those parameters in the restricted feeding beef heifers. Beef heifers losing liveweight (-412 g/day) showed significantly lower concentrations of plasma IRI, and higher concentrations of plasma free fatty acid (FFA) than heifers gaining liveweight (483 g/day). The cytosolic and mitochondrial malate dehydrogenase (MDH) activities and MDH/lactate dehydrogenase (M/L) ratio in leukocytes of the liveweight losing heifers were significantly higher than those the liveweight gaining heifers. Percentages of cluster of differentiation (CD) 3 positive cells and natural killer (NK) cells in PBMC decreased significantly in the liveweight losing heifers compared to those in the liveweight gaining heifers. Plasma IRI and FFA concentrations, leukocyte cytosolic and mitochondrial MDH activities and CD3 positive and NK cell populations may be useful markers to evaluate metabolic conditions and immunity in the restricted feeding beef heifers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshiro, Chikara; Takasu, Nobuyuki; Wakugami, Tamio
1995-08-01
Mutation of the cytochrome P450c17 (CYP17) gene causes 17{alpha}-hydroxylase deficiency (170HD). Recently, several researchers have elucidated the molecular basis of 170HD by gene analysis. We experienced a case of 170HD and intended to reveal the abnormality of the CYP17 gene in this Japanese female with 170HD. Leukocytes were obtained from the patient, her mother and sister, and normal control subjects. We amplified the CYP17 gene using polymerase chain reaction and performed the sequence analysis using the dideoxy terminator method and restriction enzyme analysis. We found that the patient had one base-pair deletion at the position of amino acid 438. Anmore » indentical result was obtained with restriction enzyme analysis. This G deletion altered the reading frame and resulted in a premature stop codon at position 443; the ligand of heme iron (Cys: cystine 442) was absent. This small mutation may account for the patient`s clinical manifestations of 170HD. This is the first case of 170HD with only one base pair deletion of the CYP17 gene. 18 refs., 3 figs.« less
Yegnasubramanian, Srinivasan; Lin, Xiaohui; Haffner, Michael C; DeMarzo, Angelo M; Nelson, William G
2006-02-09
Hypermethylation of CpG island (CGI) sequences is a nearly universal somatic genome alteration in cancer. Rapid and sensitive detection of DNA hypermethylation would aid in cancer diagnosis and risk stratification. We present a novel technique, called COMPARE-MS, that can rapidly and quantitatively detect CGI hypermethylation with high sensitivity and specificity in hundreds of samples simultaneously. To quantitate CGI hypermethylation, COMPARE-MS uses real-time PCR of DNA that was first digested by methylation-sensitive restriction enzymes and then precipitated by methyl-binding domain polypeptides immobilized on a magnetic solid matrix. We show that COMPARE-MS could detect five genome equivalents of methylated CGIs in a 1000- to 10,000-fold excess of unmethylated DNA. COMPARE-MS was used to rapidly quantitate hypermethylation at multiple CGIs in >155 prostate tissues, including benign and malignant prostate specimens, and prostate cell lines. This analysis showed that GSTP1, MDR1 and PTGS2 CGI hypermethylation as determined by COMPARE-MS could differentiate between malignant and benign prostate with sensitivities >95% and specificities approaching 100%. This novel technology could significantly improve our ability to detect CGI hypermethylation.
Sanz, Alberto; Soikkeli, Mikko; Portero-Otín, Manuel; Wilson, Angela; Kemppainen, Esko; McIlroy, George; Ellilä, Simo; Kemppainen, Kia K.; Tuomela, Tea; Lakanmaa, Matti; Kiviranta, Essi; Stefanatos, Rhoda; Dufour, Eric; Hutz, Bettina; Naudí, Alba; Jové, Mariona; Zeb, Akbar; Vartiainen, Suvi; Matsuno-Yagi, Akemi; Yagi, Takao; Rustin, Pierre; Pamplona, Reinald; Jacobs, Howard T.
2010-01-01
Mutations in mitochondrial oxidative phosphorylation complex I are associated with multiple pathologies, and complex I has been proposed as a crucial regulator of animal longevity. In yeast, the single-subunit NADH dehydrogenase Ndi1 serves as a non-proton-translocating alternative enzyme that replaces complex I, bringing about the reoxidation of intramitochondrial NADH. We have created transgenic strains of Drosophila that express yeast NDI1 ubiquitously. Mitochondrial extracts from NDI1-expressing flies displayed a rotenone-insensitive NADH dehydrogenase activity, and functionality of the enzyme in vivo was confirmed by the rescue of lethality resulting from RNAi knockdown of complex I. NDI1 expression increased median, mean, and maximum lifespan independently of dietary restriction, and with no change in sirtuin activity. NDI1 expression mitigated the aging associated decline in respiratory capacity and the accompanying increase in mitochondrial reactive oxygen species production, and resulted in decreased accumulation of markers of oxidative damage in aged flies. Our results support a central role of mitochondrial oxidative phosphorylation complex I in influencing longevity via oxidative stress, independently of pathways connected to nutrition and growth signaling. PMID:20435911
Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.
Lakshmikumaran, M S; D'Ambrosio, E; Laimins, L A; Lin, D T; Furano, A V
1985-01-01
The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this. Images PMID:3016521
[Analysis of gene mutation in a Chinese family with Norrie disease].
Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue
2012-09-01
To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.
Lin, Che-Hsin; Wang, Yao-Nan; Fu, Lung-Ming
2012-01-01
An integrated microfluidic chip is proposed for rapid DNA digestion and time-resolved capillary electrophoresis (CE) analysis. The chip comprises two gel-filled chambers for DNA enrichment and purification, respectively, a T-form micromixer for DNA/restriction enzyme mixing, a serpentine channel for DNA digestion reaction, and a CE channel for on-line capillary electrophoresis analysis. The DNA and restriction enzyme are mixed electroomostically using a pinched-switching DC field. The experimental and numerical results show that a mixing performance of 97% is achieved within a distance of 1 mm from the T-junction when a driving voltage of 90 V/cm and a switching frequency of 4 Hz are applied. Successive mixing digestion and capillary electrophoresis operation clearly present the changes on digesting φx-174 DNA in different CE runs. The time-resolved electropherograms show that the proposed device enables a φx-174 DNA sample comprising 11 fragments to be concentrated and analyzed within 24 min. Overall, the results presented in this study show that the proposed microfluidic chip provides a rapid and effective tool for DNA digestion and CE analysis applications. PMID:22662085
Lamson Bs, Daryl M; Kajon, Adriana E; Shudt, Matthew; Quinn, Monica; Newman, Alexandra; Whitehouse, Joan; Greenko, Jane; Adams, Eleanor; St George, Kirsten
2018-05-11
Ocular infections caused by human adenovirus (HAdV) are highly contagious. The most severe are usually caused by members of species HAdV-D (types HAdV8, 19, 37, 53, 54, and 56) and can manifest as epidemic keratoconjunctivitis (EKC), often resulting in prolonged impairment of vision. During the early months of 2012, EKC outbreaks occurred in neonatal intensive care units (NICUs) in 3 hospitals in New York State (New York and Suffolk Counties). A total of 32 neonates were affected. For 14 of them, HAdV8 was laboratory-confirmed as the causative agent. Nine healthcare workers were also affected with 3 laboratory-confirmed, HAdV-positive EKC. A fourth EKC outbreak was documented among patients attending a private ophthalmology practice in Ulster County involving a total of 35 cases. Epidemiological linkage between the neonatal intensive care unit outbreaks was demonstrated by molecular typing of virus isolates with restriction enzyme analysis and next generation whole genome sequencing. The strain isolated from the ophthalmology clinic was easily distinguishable from the others by restriction enzyme analysis. © 2018 Wiley Periodicals, Inc.
Butterer, Annika; Pernstich, Christian; Smith, Rachel M.; Sobott, Frank; Szczelkun, Mark D.; Tóth, Júlia
2014-01-01
Fundamental aspects of the biochemistry of Type III restriction endonucleases remain unresolved despite being characterized by numerous research groups in the past decades. One such feature is the subunit stoichiometry of these hetero-oligomeric enzyme complexes, which has important implications for the reaction mechanism. In this study, we present a series of results obtained by native mass spectrometry and size exclusion chromatography with multi-angle light scattering consistent with a 1:2 ratio of Res to Mod subunits in the EcoP15I, EcoPI and PstII complexes as the main holoenzyme species and a 1:1 stoichiometry of specific DNA (sDNA) binding by EcoP15I and EcoPI. Our data are also consistent with a model where ATP hydrolysis activated by recognition site binding leads to release of the enzyme from the site, dissociation from the substrate via a free DNA end and cleavage of the DNA. These results are discussed critically in the light of the published literature, aiming to resolve controversies and discuss consequences in terms of the reaction mechanism. PMID:24510100
Optimization of cDNA-AFLP experiments using genomic sequence data.
Kivioja, Teemu; Arvas, Mikko; Saloheimo, Markku; Penttilä, Merja; Ukkonen, Esko
2005-06-01
cDNA amplified fragment length polymorphism (cDNA-AFLP) is one of the few genome-wide level expression profiling methods capable of finding genes that have not yet been cloned or even predicted from sequence but have interesting expression patterns under the studied conditions. In cDNA-AFLP, a complex cDNA mixture is divided into small subsets using restriction enzymes and selective PCR. A large cDNA-AFLP experiment can require a substantial amount of resources, such as hundreds of PCR amplifications and gel electrophoresis runs, followed by manual cutting of a large number of bands from the gels. Our aim was to test whether this workload can be reduced by rational design of the experiment. We used the available genomic sequence information to optimize cDNA-AFLP experiments beforehand so that as many transcripts as possible could be profiled with a given amount of resources. Optimization of the selection of both restriction enzymes and selective primers for cDNA-AFLP experiments has not been performed previously. The in silico tests performed suggest that substantial amounts of resources can be saved by the optimization of cDNA-AFLP experiments.
Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii.
Boyle, Nanette R; Morgan, John A
2009-01-07
Photosynthetic organisms convert atmospheric carbon dioxide into numerous metabolites along the pathways to make new biomass. Aquatic photosynthetic organisms, which fix almost half of global inorganic carbon, have great potential: as a carbon dioxide fixation method, for the economical production of chemicals, or as a source for lipids and starch which can then be converted to biofuels. To harness this potential through metabolic engineering and to maximize production, a more thorough understanding of photosynthetic metabolism must first be achieved. A model algal species, C. reinhardtii, was chosen and the metabolic network reconstructed. Intracellular fluxes were then calculated using flux balance analysis (FBA). The metabolic network of primary metabolism for a green alga, C. reinhardtii, was reconstructed using genomic and biochemical information. The reconstructed network accounts for the intracellular localization of enzymes to three compartments and includes 484 metabolic reactions and 458 intracellular metabolites. Based on BLAST searches, one newly annotated enzyme (fructose-1,6-bisphosphatase) was added to the Chlamydomonas reinhardtii database. FBA was used to predict metabolic fluxes under three growth conditions, autotrophic, heterotrophic and mixotrophic growth. Biomass yields ranged from 28.9 g per mole C for autotrophic growth to 15 g per mole C for heterotrophic growth. The flux balance analysis model of central and intermediary metabolism in C. reinhardtii is the first such model for algae and the first model to include three metabolically active compartments. In addition to providing estimates of intracellular fluxes, metabolic reconstruction and modelling efforts also provide a comprehensive method for annotation of genome databases. As a result of our reconstruction, one new enzyme was annotated in the database and several others were found to be missing; implying new pathways or non-conserved enzymes. The use of FBA to estimate intracellular fluxes also provides flux values that can be used as a starting point for rational engineering of C. reinhardtii. From these initial estimates, it is clear that aerobic heterotrophic growth on acetate has a low yield on carbon, while mixotrophically and autotrophically grown cells are significantly more carbon efficient.