ABSTRACT: Few studies have addressed the efficacy of composite sampling for measurement of indicator bacteria by QPCR. In this study, composite results were compared to single sample results for culture- and QPCR-based water quality monitoring. Composite results for both methods ...
A BASIS FOR MODIFYING THE TANK 12 COMPOSITE SAMPLING DESIGN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shine, G.
The SRR sampling campaign to obtain residual solids material from the Savannah River Site (SRS) Tank Farm Tank 12 primary vessel resulted in obtaining appreciable material in all 6 planned source samples from the mound strata but only in 5 of the 6 planned source samples from the floor stratum. Consequently, the design of the compositing scheme presented in the Tank 12 Sampling and Analysis Plan, Pavletich (2014a), must be revised. Analytical Development of SRNL statistically evaluated the sampling uncertainty associated with using various compositing arrays and splitting one or more samples for compositing. The variance of the simple meanmore » of composite sample concentrations is a reasonable standard to investigate the impact of the following sampling options. Composite Sample Design Option (a). Assign only 1 source sample from the floor stratum and 1 source sample from each of the mound strata to each of the composite samples. Each source sample contributes material to only 1 composite sample. Two source samples from the floor stratum would not be used. Composite Sample Design Option (b). Assign 2 source samples from the floor stratum and 1 source sample from each of the mound strata to each composite sample. This infers that one source sample from the floor must be used twice, with 2 composite samples sharing material from this particular source sample. All five source samples from the floor would be used. Composite Sample Design Option (c). Assign 3 source samples from the floor stratum and 1 source sample from each of the mound strata to each composite sample. This infers that several of the source samples from the floor stratum must be assigned to more than one composite sample. All 5 source samples from the floor would be used. Using fewer than 12 source samples will increase the sampling variability over that of the Basic Composite Sample Design, Pavletich (2013). Considering the impact to the variance of the simple mean of the composite sample concentrations, the recommendation is to construct each sample composite using four or five source samples. Although the variance using 5 source samples per composite sample (Composite Sample Design Option (c)) was slightly less than the variance using 4 source samples per composite sample (Composite Sample Design Option (b)), there is no practical difference between those variances. This does not consider that the measurement error variance, which is the same for all composite sample design options considered in this report, will further dilute any differences. Composite Sample Design Option (a) had the largest variance for the mean concentration in the three composite samples and should be avoided. These results are consistent with Pavletich (2014b) which utilizes a low elevation and a high elevation mound source sample and two floor source samples for each composite sample. Utilizing the four source samples per composite design, Pavletich (2014b) utilizes aliquots of Floor Sample 4 for two composite samples.« less
Size Effect on the Mechanical Properties of CF Winding Composite
NASA Astrophysics Data System (ADS)
Cui, Yuqing; Yin, Zhongwei
2017-12-01
Mechanical properties of filament winding composites are usually tested by NOL ring samples. Few people have studied the size effect of winding composite samples on the testing result of mechanical property. In this research, winding composite thickness, diameter, and geometry of NOL ring samples were prepared to investigate the size effect on the mechanical strength of carbon fiber (CF) winding composite. The CF T700, T1000, M40, and M50 were adopted for the winding composite, while the matrix was epoxy resin. Test results show that the tensile strength and ILSS of composites decreases monotonically with an increase of thickness from 1 mm to 4 mm. The mechanical strength of composite samples increases monotonically with the increase in diameter from 100 mm to 189 mm. The mechanical strength of composite samples with two flat sides are higher than those of cyclic annular samples.
Analysis of 2H-Evaporator Acid Cleaning Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Diprete, D.; Edwards, T.
The 2H-Evaporator acid cleaning solution samples were analyzed by SRNL to determine a composition for the scale present in the evaporator before recent acid cleaning. Composite samples were formed from the solution samples from the two acid cleaning cycles. The solution composition was converted to a weight percent scale solids basis under an assumed chemical composition. The scale composition produced from the acid cleaning solution samples indicates a concentration of 6.85 wt% uranium. An upper bound, onesided 95% confidence interval on the weight percent uranium value may be given as 6.9 wt% + 1.645 × 0.596 wt% = 7.9 wt%.more » The comparison of the composition from the current acid cleaning solutions with the composition of recent scale samples along with the thermodynamic modeling results provides reasonable assurance that the sample results provide a good representation of the overall scale composition in the evaporator prior to acid cleaning. The small amount of scale solids dissolved in the 1.5 M nitric acid during the evaporator cleaning process likely produced only a small amount of precipitation based on modeling results and the visual appearance of the samples.« less
Abed Kahnamouei, Mehdi; Gholizadeh, Sarah; Rikhtegaran, Sahand; Daneshpooy, Mehdi; Kimyai, Soodabeh; Alizadeh Oskoee, Parnian; Rezaei, Yashar
2017-01-01
Background. The aim of this study was to investigate the effect of preheating methacrylate- and silorane-based composite resins on their color stability up to 40 times at 55‒60°C. Methods. Seventy-six methacrylate and silorane-based composite resin samples, with a diameter of 10 mm and a height of 2 mm, were divided into 4 groups (n=19). After the samples were prepared, their color parameters were determined using a reflective spectrophotometer. The composite resin samples were separately stored in a solution of tea for 40 consecutive days. Then the samples underwent a color determination procedure again using a spectrophotometer and color changes were recorded. Finally two-way ANOVA was used to study the effect of composite temperature on its staining (P<0.05). Independent-samples t-test was used to evaluate changes in conversion rates of preheated composite resin samples compared to non-heated samples at P=0.005 and P=0.029 for silorane-based and Z250 composite resin samples, respectively. Results. Both composite resin type (P=0.014) and preheating (P<0.001) had significant effects on ΔE. Conclusion. Repeated preheating of methacrylate- and silorane-based composite resin samples, up to 55‒60°C for 40 rounds, resulted in more color changes compared with unheated composite resin samples. After storage in a solution of tea the color change rate in the composite resin samples of silorane-based was higher than the Z250 composite resin samples.
Effect of preheat repetition on color stability of methacrylate- and silorane-based composite resins
Abed Kahnamouei, Mehdi; Gholizadeh, Sarah; Rikhtegaran, Sahand; Daneshpooy, Mehdi; Kimyai, Soodabeh; Alizadeh Oskoee, Parnian; Rezaei, Yashar
2017-01-01
Background. The aim of this study was to investigate the effect of preheating methacrylate- and silorane-based composite resins on their color stability up to 40 times at 55‒60°C. Methods. Seventy-six methacrylate and silorane-based composite resin samples, with a diameter of 10 mm and a height of 2 mm, were divided into 4 groups (n=19). After the samples were prepared, their color parameters were determined using a reflective spectrophotometer. The composite resin samples were separately stored in a solution of tea for 40 consecutive days. Then the samples underwent a color determination procedure again using a spectrophotometer and color changes were recorded. Finally two-way ANOVA was used to study the effect of composite temperature on its staining (P<0.05). Independent-samples t-test was used to evaluate changes in conversion rates of preheated composite resin samples compared to non-heated samples at P=0.005 and P=0.029 for silorane-based and Z250 composite resin samples, respectively. Results. Both composite resin type (P=0.014) and preheating (P<0.001) had significant effects on ΔE. Conclusion. Repeated preheating of methacrylate- and silorane-based composite resin samples, up to 55‒60°C for 40 rounds, resulted in more color changes compared with unheated composite resin samples. After storage in a solution of tea the color change rate in the composite resin samples of silorane-based was higher than the Z250 composite resin samples. PMID:29354248
Estimating means and variances: The comparative efficiency of composite and grab samples.
Brumelle, S; Nemetz, P; Casey, D
1984-03-01
This paper compares the efficiencies of two sampling techniques for estimating a population mean and variance. One procedure, called grab sampling, consists of collecting and analyzing one sample per period. The second procedure, called composite sampling, collectsn samples per period which are then pooled and analyzed as a single sample. We review the well known fact that composite sampling provides a superior estimate of the mean. However, it is somewhat surprising that composite sampling does not always generate a more efficient estimate of the variance. For populations with platykurtic distributions, grab sampling gives a more efficient estimate of the variance, whereas composite sampling is better for leptokurtic distributions. These conditions on kurtosis can be related to peakedness and skewness. For example, a necessary condition for composite sampling to provide a more efficient estimate of the variance is that the population density function evaluated at the mean (i.e.f(μ)) be greater than[Formula: see text]. If[Formula: see text], then a grab sample is more efficient. In spite of this result, however, composite sampling does provide a smaller estimate of standard error than does grab sampling in the context of estimating population means.
Analytical test results for archived core composite samples from tanks 241-TY-101 and 241-TY-103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, M.A.
1993-07-16
This report describes the analytical tests performed on archived core composite samples form a 1.085 sampling of the 241-TY-101 (101-TY) and 241-TY-103 (103-TY) single shell waste tanks. Both tanks are suspected of containing quantities of ferrocyanide compounds, as a result of process activities in the late 1950`s. Although limited quantities of the composite samples remained, attempts were made to obtain as much analytical information as possible, especially regarding the chemical and thermal properties of the material.
Is it appropriate to composite fish samples for mercury trend monitoring and consumption advisories?
Gandhi, Nilima; Bhavsar, Satyendra P; Gewurtz, Sarah B; Drouillard, Ken G; Arhonditsis, George B; Petro, Steve
2016-03-01
Monitoring mercury levels in fish can be costly because variation by space, time, and fish type/size needs to be captured. Here, we explored if compositing fish samples to decrease analytical costs would reduce the effectiveness of the monitoring objectives. Six compositing methods were evaluated by applying them to an existing extensive dataset, and examining their performance in reproducing the fish consumption advisories and temporal trends. The methods resulted in varying amount (average 34-72%) of reductions in samples, but all (except one) reproduced advisories very well (96-97% of the advisories did not change or were one category more restrictive compared to analysis of individual samples). Similarly, the methods performed reasonably well in recreating temporal trends, especially when longer-term and frequent measurements were considered. The results indicate that compositing samples within 5cm fish size bins or retaining the largest/smallest individuals and compositing in-between samples in batches of 5 with decreasing fish size would be the best approaches. Based on the literature, the findings from this study are applicable to fillet, muscle plug and whole fish mercury monitoring studies. The compositing methods may also be suitable for monitoring Persistent Organic Pollutants (POPs) in fish. Overall, compositing fish samples for mercury monitoring could result in a substantial savings (approximately 60% of the analytical cost) and should be considered in fish mercury monitoring, especially in long-term programs or when study cost is a concern. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Factors affecting the shear strength behavior of municipal solid wastes.
Pulat, Hasan Firat; Yukselen-Aksoy, Yeliz
2017-11-01
In this study, the shear strength behavior of European (E-1), Turkey (T-1), and United States of America (U-1) average synthetic municipal solid waste (MSW) compositions were investigated. The large-scale direct shear tests were conducted using fresh and aged MSW samples collected from the Manisa Landfill. The natural samples' test results were compared with synthetic samples. The affecting factors such as ageing, waste composition, and waste type (synthetic and natural) on the shear strength of MSWs were investigated. The effect of composition was evaluated using three main and six modified synthetic MSW compositions. In addition to the synthetic fresh MSW samples, synthetic aged samples were also used. Angle of shearing resistance decreased with increasing organic content whereas cohesion intercept increased with increasing organic content. The fresh and aged wastes with higher coarse fraction lead to a higher angle of shearing resistance. The synthetic aged samples had higher internal friction angles but lower cohesion values than the synthetic fresh samples. Waste with average European composition had the highest internal friction angle as it has the highest fibrous content. On the other hand, the highest cohesion belonged to the Turkey composition, which had the highest organic matter ratio. The main differences between E-1, T-1 and U-1 samples in terms of compositions were observed. The results of this study indicated that shear strength of waste significantly depends on composition and hence a site specific evaluation is recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.
Elemental Analysis of Beryllium Samples Using a Microzond-EGP-10 Unit
NASA Astrophysics Data System (ADS)
Buzoverya, M. E.; Karpov, I. A.; Gorodnov, A. A.; Shishpor, I. V.; Kireycheva, V. I.
2017-12-01
Results concerning the structural and elemental analysis of beryllium samples obtained via different technologies using a Microzond-EGP-10 unit with the help of the PIXE and RBS methods are presented. As a result, the overall chemical composition and the nature of inclusions were determined. The mapping method made it possible to reveal the structural features of beryllium samples: to select the grains of the main substance having different size and chemical composition, to visualize the interfaces between the regions of different composition, and to describe the features of the distribution of impurities in the samples.
NASA Astrophysics Data System (ADS)
Kumar, Rohit; Chaubey, A. K.; Bathula, Sivaiah; Prashanth, K. G.; Dhar, Ajay
2018-03-01
Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness ( R a = 6.53 µm) compared to the sample sintered at 1500 °C ( R a = 0.66 µm) corroborating the abrasion wear test results.
Chemical Characterization of an Envelope A Sample from Hanford Tank 241-AN-103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.S.
2000-08-23
A whole tank composite sample from Hanford waste tank 241-AN-103 was received at the Savannah River Technology Center (SRTC) and chemically characterized. Prior to characterization the sample was diluted to {approximately}5 M sodium concentration. The filtered supernatant liquid, the total dried solids of the diluted sample, and the washed insoluble solids obtained from filtration of the diluted sample were analyzed. A mass balance calculation of the three fractions of the sample analyzed indicate the analytical results appear relatively self-consistent for major components of the sample. However, some inconsistency was observed between results where more than one method of determination wasmore » employed and for species present in low concentrations. A direct comparison to previous analyses of material from tank 241-AN-103 was not possible due to unavailability of data for diluted samples of tank 241-AN-103 whole tank composites. However, the analytical data for other types of samples from 241-AN-103 we re mathematically diluted and compare reasonably with the current results. Although the segments of the core samples used to prepare the sample received at SRTC were combined in an attempt to produce a whole tank composite, determination of how well the results of the current analysis represent the actual composition of the Hanford waste tank 241-AN-103 remains problematic due to the small sample size and the large size of the non-homogenized waste tank.« less
The determination of the energy values and the composition analysis of M-16 rifle black powders
NASA Astrophysics Data System (ADS)
Satee, R.; Dararutana, P.; Phutdhawong, W.
2017-09-01
The determination of the energy values, specifically the heat of combustion of various M-16 black powders was the important part of the bullet efficiency investigations. The calorimetric bomb is commonly used for these determinations. Four M-16 black powders from the different sources were used as samples for this research. It was found that, after using calorimetric bomb technique, the gross heating value in Joules/g of sample S1-S4 were 10,647, 10,416, 5,281 and 3,878 respectively. The chemical compositions of carbon (C), hydrogen (H), nitrogen (N) and sulfer (S) have also been determined. The results indicated that carbon and nitrogen compositions of sample S1 shown the highest values and provided little differences with sample S2 while sample S3 and S4 shown the lowest carbon and nitrogen percentage composition. The hydrogen composition of all samples was equally valued, however, only sample 3 and 4 displayed sulfur values while no sulfur values were detected from sample 1 and 2. From these results, the heat values and chemical composition of M-16 black powders were characterized their sources and the energy values might be estimated from the amount of carbon and nitrogen in the black powders. Thus, it would be possible to use this determination analysis in the forensic investigation.
Amino acid composition and antioxidant capacity of Spanish honeys.
Pérez, Rosa Ana; Iglesias, María Teresa; Pueyo, Encarnación; Gonzalez, Montserrat; de Lorenzo, Cristina
2007-01-24
The amino acid composition of 53 honey samples from Spain, consisting of 39 floral, 5 honeydew, and 9 blend honeys, has been determined. Physicochemical characteristics, polyphenolic content, amino acid composition, and estimation of the radical scavenging capacity against the stable free radical DPPH of the honey samples were analyzed. The resulting data have been statistically evaluated. The results showed that pH, acidity, net absorbance, electrical conductivity, and total polyphenolic contents of the honeys showed a strong correlation with the radical scavenging capacity. The correlation between the radical scavenging capacity of honey and amino acid contents was high with 18 of the 20 amino acids detected, with correlation values higher than those obtained for polyphenolic content. These results suggest that the amino acid composition of honey is an indicator of the sample's scavenging capacity.
Sadi, A Yari; Shokrgozar, M A; Homaeigohar, S Sh; Hosseinalipour, M; Khavandi, A; Javadpour, J
2006-05-01
The effect of partially stabilized zirconia (PSZ) on the biological properties of the hyroxyapatite - high density polyethylene (HA/HDPE) composites was studied by investigating the simultaneous effect of hydroxyapatite and PSZ volume fractions on the in vitro response of human osteoblast cells. The biocompatibility of composite samples with different volume fraction of HA and PSZ powders was assessed by proliferation, alkaline phosphatase (ALP) and cell attachment assays on the osteoblast cell line (G-292) in different time periods. The effect of composites on the behavior of G-292 cells was compared with those of HDPE and TPS (Tissue Culture Poly Styrene as negative control) samples. Results showed a higher proliferation rate of G-292 cells in the presence of composite samples as compared to the HDPE sample after 7 and 14 days of incubation period. ALP production rate in all composite samples was higher than HDPE and TPS samples. The number of adhered cells on the composite samples was higher than the number adhered on the HDPE and TPS samples after the above mentioned incubation periods. These findings indicates that the addition of PSZ does not have any adverse affect on the biocompatibility of HA/HDPE composites. In fact in some experiments PSZ added HA/HDPE composites performed better in proliferation, differentiation and attachment of osteoblastic cells.
Composite Sampling Approaches for Bacillus anthracis Surrogate Extracted from Soil
France, Brian; Bell, William; Chang, Emily; Scholten, Trudy
2015-01-01
Any release of anthrax spores in the U.S. would require action to decontaminate the site and restore its use and operations as rapidly as possible. The remediation activity would require environmental sampling, both initially to determine the extent of contamination (hazard mapping) and post-decon to determine that the site is free of contamination (clearance sampling). Whether the spore contamination is within a building or outdoors, collecting and analyzing what could be thousands of samples can become the factor that limits the pace of restoring operations. To address this sampling and analysis bottleneck and decrease the time needed to recover from an anthrax contamination event, this study investigates the use of composite sampling. Pooling or compositing of samples is an established technique to reduce the number of analyses required, and its use for anthrax spore sampling has recently been investigated. However, use of composite sampling in an anthrax spore remediation event will require well-documented and accepted methods. In particular, previous composite sampling studies have focused on sampling from hard surfaces; data on soil sampling are required to extend the procedure to outdoor use. Further, we must consider whether combining liquid samples, thus increasing the volume, lowers the sensitivity of detection and produces false negatives. In this study, methods to composite bacterial spore samples from soil are demonstrated. B. subtilis spore suspensions were used as a surrogate for anthrax spores. Two soils (Arizona Test Dust and sterilized potting soil) were contaminated and spore recovery with composites was shown to match individual sample performance. Results show that dilution can be overcome by concentrating bacterial spores using standard filtration methods. This study shows that composite sampling can be a viable method of pooling samples to reduce the number of analysis that must be performed during anthrax spore remediation. PMID:26714315
Human Body Odour Composites Are Not Perceived More Positively than the Individual Samples.
Fialová, Jitka; Sorokowska, Agnieszka; Roberts, S Craig; Kubicová, Lydie; Havlíček, Jan
2018-01-01
It is well established that composite facial images are perceived as more attractive compared with individual images, suggesting a preference for heterozygosity. Similarly, there is evidence that preferences for body odours might be linked to heterozygosity. Here, we tested whether blending individual body odours into composites would follow a similar pattern as observed in the perception of faces. We collected axillary odour samples from 38 individuals, which were subsequently assessed individually and as composites of two ( N = 19) or four ( N = 9) body odours regarding their pleasantness, attractiveness and intensity. We found no significant differences between mean ratings of individual odour samples or composites of two or four odour samples. Our results indicate that, in contrast to faces, composite body odours are not rated as more attractive. Composite body odours retain similar hedonic perceptual qualities as individual odours, thus highlighting differences in visual and chemosensory perceptual mechanisms.
Human Body Odour Composites Are Not Perceived More Positively than the Individual Samples
Fialová, Jitka; Sorokowska, Agnieszka; Roberts, S. Craig; Kubicová, Lydie; Havlíček, Jan
2018-01-01
It is well established that composite facial images are perceived as more attractive compared with individual images, suggesting a preference for heterozygosity. Similarly, there is evidence that preferences for body odours might be linked to heterozygosity. Here, we tested whether blending individual body odours into composites would follow a similar pattern as observed in the perception of faces. We collected axillary odour samples from 38 individuals, which were subsequently assessed individually and as composites of two (N = 19) or four (N = 9) body odours regarding their pleasantness, attractiveness and intensity. We found no significant differences between mean ratings of individual odour samples or composites of two or four odour samples. Our results indicate that, in contrast to faces, composite body odours are not rated as more attractive. Composite body odours retain similar hedonic perceptual qualities as individual odours, thus highlighting differences in visual and chemosensory perceptual mechanisms. PMID:29770184
Evaluating Composite Sampling Methods of Bacillus spores at Low Concentrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.
Restoring facility operations after the 2001 Amerithrax attacks took over three months to complete, highlighting the need to reduce remediation time. The most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite: a single cellulose sponge samples multiple coupons; 2) single medium multi-pass composite: a single cellulose sponge is used to sample multiple coupons; and 3) multi-medium post-samplemore » composite: a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155CFU/cm2, respectively). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p-value < 0.0001) and coupon material (p-value = 0.0008). Recovery efficiency (RE) was higher overall using the post-sample composite (PSC) method compared to single medium composite from both clean and grime coated materials. RE with the PSC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, painted wall board, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but significantly lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fountain, Matthew S.; Fiskum, Sandra K.; Baldwin, David L.
This data package contains the K Basin sludge characterization results obtained by Pacific Northwest National Laboratory during processing and analysis of four sludge core samples collected from Engineered Container SCS-CON-210 in 2010 as requested by CH2M Hill Plateau Remediation Company. Sample processing requirements, analytes of interest, detection limits, and quality control sample requirements are defined in the KBC-33786, Rev. 2. The core processing scope included reconstitution of a sludge core sample distributed among four to six 4-L polypropylene bottles into a single container. The reconstituted core sample was then mixed and subsampled to support a variety of characterization activities. Additionalmore » core sludge subsamples were combined to prepare a container composite. The container composite was fractionated by wet sieving through a 2,000 micron mesh and a 500-micron mesh sieve. Each sieve fraction was sampled to support a suite of analyses. The core composite analysis scope included density determination, radioisotope analysis, and metals analysis, including the Waste Isolation Pilot Plant Hazardous Waste Facility Permit metals (with the exception of mercury). The container composite analysis included most of the core composite analysis scope plus particle size distribution, particle density, rheology, and crystalline phase identification. A summary of the received samples, core sample reconstitution and subsampling activities, container composite preparation and subsampling activities, physical properties, and analytical results are presented. Supporting data and documentation are provided in the appendices. There were no cases of sample or data loss and all of the available samples and data are reported as required by the Quality Assurance Project Plan/Sampling and Analysis Plan.« less
Composite analysis for Escherichia coli at coastal beaches
Bertke, E.E.
2007-01-01
At some coastal beaches, concentrations of fecal-indicator bacteria can differ substantially between multiple points at the same beach at the same time. Because of this spatial variability, the recreational water quality at beaches is sometimes determined by stratifying a beach into several areas and collecting a sample from each area to analyze for the concentration of fecal-indicator bacteria. The average concentration of bacteria from those points is often used to compare to the recreational standard for advisory postings. Alternatively, if funds are limited, a single sample is collected to represent the beach. Compositing the samples collected from each section of the beach may yield equally accurate data as averaging concentrations from multiple points, at a reduced cost. In the study described herein, water samples were collected at multiple points from three Lake Erie beaches and analyzed for Escherichia coli on modified mTEC agar (EPA Method 1603). From the multiple-point samples, a composite sample (n = 116) was formed at each beach by combining equal aliquots of well-mixed water from each point. Results from this study indicate that E. coli concentrations from the arithmetic average of multiple-point samples and from composited samples are not significantly different (t = 1.59, p = 0.1139) and yield similar measures of recreational water quality; additionally, composite samples could result in a significant cost savings.
Nondestructive monitoring damage in composites using scanning laser acoustic microscopy
NASA Technical Reports Server (NTRS)
Wey, A. C.; Kessler, L. W.; Dos Reis, H. L. M.
1992-01-01
Several Nicalon fiber reinforced LAS (lithium alumino-silicate) glass matrix composites were tested to study the relation between the residual strength and the different amounts of damage. The samples were fatigued by four-point cyclic loading at a 5 Hz rate at 500 C for a different number of cycles. 10 MHz scanning laser acoustic microscope (SLAM) images were taken to monitor damage on the samples. Our SLAM results indicate that there were defects already existing throughout the sample before fatigue, and the resultant damage pattern from fatigue could be related to the initial defect distribution in the sample. Finally, the fatigued samples were fractured and the residual strength data could not be explained by the cyclic fatigue alone. Rather, the damage patterns evident in the SLAM images were needed to explain the scatter in the data. The results show that SLAM is useful in nondestructively monitoring damage and estimating residual strength of fatigued ceramic composites.
Graphene Nanoplatelet Reinforced Tantalum Carbide
2015-08-27
testing showed an increase in thermal conductivity in GNP reinforced composites resulting in a reduction of peak sample surface temperature. This study...showed an increase in thermal conductivity in GNP reinforced composites resulting in a reduction of peak sample surface temperature. This study resulted...Wetting angle measurements are conducted to demonstrate the effectiveness of the PLC coating . Mechanical properties of the GrF-PLC hybrid are
Investigation on Thermal Properties of Kenaf Fibre Reinforced Polyurethane Bio-Composites
NASA Astrophysics Data System (ADS)
Athmalingam, Mathan; Vicki, W. V.
2018-01-01
This research focuses on the effect of Kenaf fibre on thermal properties of Polyurethane (PU) reinforced kenaf bio-composites. The samples were prepared using the polymer casting method with different percentages of kenaf fibre content (5 wt%, 10 wt%, 15 wt%). The thermal properties of Kenaf/PU bio-composite are determined through the Thermogravimetric Analysis and Differential Scanning Calorimeter test. The TGA results revealed that 10 wt% Kenaf/PU bio-composite appeared to be more stable. DSC results show that the glass transition temperature (Tg) value of 10 wt% Kenaf/PU composite is significant to pure polyurethane. It can be said that the thermal stability of 10 wt% Kenaf/PU bio-composite exhibits higher thermal stability compared to other samples.
NASA Astrophysics Data System (ADS)
Ghaztar, Muhammad Mustakim Mohd; Romli, Ahmad Zafir; Ibrahim, Nik Noor Idayu Nik
2017-12-01
The level of fibre-matrix interaction and consolidation are essential aspects to determine the composite deformation but, less attention is given to the effect of small fibre weight increment (5 wt%), chemical treatment coalition (NaOH/ silane), fibre's length and aspect ratio to the physical and mechanical properties of the composite. Hence, this paper studies the correlation between these parameters towards hardness and tensile properties of Kenaf fibre and unsaturated polyester (UP) matrix. The study was carried out by fabricating the sample into two (2) types of fibre categories and fibre loadings and tested to determine its properties. The results showed that the hardness and tensile stress were significantly influenced by the fibre loading and dispersion of the fabricated samples. At low filler loading, the treated samples for both fibre sizes showed lower hardness property compared to the untreated samples. The chemical treatment coalition might diffuse out the pectin and hemicellulose which affect the ability of the fibre to absorb the force applied by the hardness indenter. Good fibre dispersion observed for the treated samples also resulted in the fibre-dominating composite system where the fibres were efficiently absorbed and distributed the indentation force. However, chemical treatments and good fibre dispersion contributed to the higher tensile stress of the treated fibre samples especially for smaller fibre length and aspect ratio compared to the untreated samples. At high fibre loading, treated fibre samples showed higher hardness property compared to the untreated samples since the treatment resulted in better fibre wetting by the matrix and the formation of pack structure. However, high fibre loading caused the mutual abrasion among the fibre which led to the lower tensile stress compared to the low fibre loading samples. In conclusion, by understanding the factors that influenced the reinforcing mechanism of the composite, the inconsistency of natural based composite strength can be resolved.
Characterization of Uranium Ore Concentrate Chemical Composition via Raman Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yin-Fong; Tonkyn, Russell G.; Sweet, Lucas E.
Uranium Ore Concentrate (UOC, often called yellowcake) is a generic term that describes the initial product resulting from the mining and subsequent milling of uranium ores en route to production of the U-compounds used in the fuel cycle. Depending on the mine, the ore, the chemical process, and the treatment parameters, UOC composition can vary greatly. With the recent advent of handheld spectrometers, we have chosen to investigate whether either commercial off-the-shelf (COTS) handheld devices or laboratory-grade Raman instruments might be able to i) identify UOC materials, and ii) differentiate UOC samples based on chemical composition and thus suggest themore » mining or milling process. Twenty-eight UOC samples were analyzed via FT-Raman spectroscopy using both 1064 nm and 785 nm excitation wavelengths. These data were also compared with results from a newly developed handheld COTS Raman spectrometer using a technique that lowers background fluorescence signal. Initial chemometric analysis was able to differentiate UOC samples based on mine location. Additional compositional information was obtained from the samples by performing XRD analysis on a subset of samples. The compositional information was integrated with chemometric analysis of the spectroscopic dataset allowing confirmation that class identification is possible based on compositional differences between the UOC samples, typically involving species such as U3O8, α-UO2(OH)2, UO4•2H2O (metastudtite), K(UO2)2O3, etc. While there are clearly excitation λ sensitivities, especially for dark samples, Raman analysis coupled with chemometric data treatment can nicely differentiate UOC samples based on composition and even mine origin.« less
Preliminary Investigation to Determine the Suitable Mixture Composition for Corn Starch Matrix
NASA Astrophysics Data System (ADS)
Huzaimi Zakaria, Nazri; Ngali, Zamani; Zulkefli Selamat, Mohd
2017-01-01
The use of natural fiber as reinforcement in polymeric composites has been seen a dramatically increase over the last decades. The surge in the interest of natural fiber composite or biodegradable composite is mainly due to the attractive cost of production, improved of hardness, better fatigue endurance and good thermal and mechanical resistivity. In this work, corn starch in the form of powder is utilized as the matrix of the composite. However, starch is brittle and has low strength make it inappropriate candidate for matrix binder. The main objective of this study is to modify the mechanical properties of pure corn starch by mixing it with water, glycerol and vinegar. The composition ratio of water is 60~80%, corn starch 10~35%, glycerol is 5~15% and vinegar is 0~5%, ten samples (A-J) have been manufactured and the best mixture composition is selected based on few selection criteria. The selection criteria are visual impaction, hardness and density. From the results, the samples without vinegar are not suitable to be used because of the fungus availability on the surface. Meanwhile the results from the samples with 5 ml vinegar have no fungus on their surface even has been exposed to the ambient air. While the sample C has shown the best sample based on the visual, hardness and density test.
Research on the Dielectric Properties of Nano-ZnO/Silicone Rubber Composites
NASA Astrophysics Data System (ADS)
Wang, Fei-feng; Yan, Dan-dan; Su, Yi; Lu, Yu-feng; Xia, Xiao-fei; Huang, Hui-min
2017-09-01
The samples of 1%, 2%, 3% and 4% Zinc Oxide (ZnO) nano-composite silicone rubber were prepared by mechanical method. The dielectric properties of each sample were measured by dielectric spectroscopy. The experimental results showed that the dielectric constant of the silicone rubber composite increases with the increase of the content of nano-ZnO. The breakdown test results showed that with the increase of the content of nano-ZnO, the breakdown strength of silicone rubber composites increased first and then decreased. The breakdown test results indicate that the nano-ZnO can reduce the breakdown strength of silicone rubber. The hydrophobic test results showed that nano-ZnO will reduce the hydrophobic of silicone rubber.
Takesh, Thair; Sargsyan, Anik; Lee, Matthew; Anbarani, Afarin; Ho, Jessica; Wilder-Smith, Petra
2017-01-01
Aims The aim of this project was to evaluate the effects of 2 different whitening strips on color, microstructure and roughness of tea stained porcelain and composite surfaces. Methods 54 porcelain and 72 composite chips served as samples for timed application of over-the-counter (OTC) test or control dental whitening strips. Chips were divided randomly into three groups of 18 porcelain and 24 composite chips each. Of these groups, 1 porcelain and 1 composite set served as controls. The remaining 2 groups were randomized to treatment with either Oral Essentials® Whitening Strips or Crest® 3D White Whitestrips™. Sample surface structure was examined by light microscopy, profilometry and Scanning Electron Microscopy (SEM). Additionally, a reflectance spectrophotometer was used to assess color changes in the porcelain and composite samples over 24 hours of whitening. Data points were analyzed at each time point using ANOVA. Results In the light microscopy and SEM images, no discrete physical defects were observed in any of the samples at any time points. However, high-resolution SEM images showed an appearance of increased surface roughness in all composite samples. Using profilometry, significantly increased post-whitening roughness was documented in the composite samples exposed to the control bleaching strips. Composite samples underwent a significant and equivalent shift in color following exposure to Crest® 3D White Whitestrips™ and Oral Essentials® Whitening Strips. Conclusions A novel commercial tooth whitening strip demonstrated a comparable beaching effect to a widely used OTC whitening strip. Neither whitening strip caused physical defects in the sample surfaces. However, the control strip caused roughening of the composite samples whereas the test strip did not. PMID:29226023
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to estimate the prevalence of Salmonella for individual, pooled, and composite fecal samples and to compare culture results from each sample type for determining herd Salmonella infection status and identifying Salmonella serotype(s). The USDA’s National Animal Hea...
Heat of combustion of tantalum-tungsten oxide thermite composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes, Octavio G.; Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616; Kuntz, Joshua D.
2010-12-15
The heat of combustion of two distinctly synthesized stoichiometric tantalum-tungsten oxide energetic composites was investigated by bomb calorimetry. One composite was synthesized using a sol-gel (SG) derived method in which micrometric-scale tantalum is immobilized in a tungsten oxide three-dimensional nanostructured network structure. The second energetic composite was made from the mixing of micrometric-scale tantalum and commercially available (CA) nanometric tungsten oxide powders. The energetic composites were consolidated using the spark plasma sintering (SPS) technique under a 300 MPa pressure and at temperatures of 25, 400, and 500 C. For samples consolidated at 25 C, the density of the CA compositemore » is 61.65 {+-} 1.07% in comparison to 56.41 {+-} 1.19% for the SG derived composite. In contrast, the resulting densities of the SG composite are higher than the CA composite for samples consolidated at 400 and 500 C. The theoretical maximum density for the SG composite consolidated to 400 and 500 C are 81.30 {+-} 0.58% and 84.42 {+-} 0.62%, respectively. The theoretical maximum density of the CA composite consolidated to 400 and 500 C are 74.54 {+-} 0.80% and 77.90 {+-} 0.79%, respectively. X-ray diffraction analyses showed an increase of pre-reaction of the constituents with an increase in the consolidation temperature. The increase in pre-reaction results in lower stored energy content for samples consolidated to 400 and 500 C in comparison to samples consolidated at 25 C. (author)« less
Yari Sadi, Amir; Shokrgozar, Mohammad Ali; Homaeigohar, Seyed Shahin; Khavandi, Alireza
2008-06-01
In the present study, the biocompatibility of partially stabilized zirconia (PSZ) added hydroxyapatite (HA)--high density polyethylene (HDPE) composites was evaluated by proliferation and cell attachment assays on two osteoblast cell lines (G-292, Saos-2) and a type of fibroblast cell isolated from bone tissue namely HBF in different time intervals. Cell-material interactions on the surface of the composites were observed by scanning electron microscopy (SEM). The effect of composites on the behavior of osteoblast and fibroblast cells was compared with those of HDPE and Tissue Culture Poly Styrene (TPS) (as negative control) samples. Results showed that the composite samples supported a higher proliferation rate of osteoblast cells in the presence of composite samples as compared to the HDPE and TPS samples after 3, 7 and 14 days of incubation period. It was showed that an equal or in some cases an even higher proliferation rate of G-292 and Saos-2 osteoblast cells on composite samples in compare to negative controls in culture period (P < 0.05). The number of adhered cells on the composite samples was equal and in some cases higher than the number adhered on the HDPE and TPS samples after the above mentioned incubation periods (P < 0.05). Adhered cells presented a normal morphology by SEM and many of the cells were seen to be undergoing cell division.
Considerations Regarding the Optical Properties of the Composite Resin Restorative Materials
Manolea, H.; Râcă, R.; Coleş, Evantia; Preotu, Gabriela; Mărăşescu, P.
2011-01-01
The purpose of this study has been to investigate the effects of certain substances frequently used in alimentation on the color stability of the composite resin restorative materials. The research hypothesis was that color stability of the composite resin is affected by the type of composite material used and by the polishing procedure. 14 samples of 5X15X2mm have been prepared from seven universal light curing restorative composite resins. The materials have manipulated and cured using LA 500 Blue Light lamp. A first color determination was done before the introduction of the samples in the dyeing agent with the help of an Easy Shade device. The samples have been splited into two lots each with seven samples. The samples from the first lot have been sectioned into three equal segments. The samples from the second lot have also been sectioned into three equal segments, and in addition to the previous group, their exterior surfaces were processed with a diamond burr. For each type of composite we have introduced a sample in one of the three chosen dyes: red alimentary colorant, coffee and red wine. The color of the samples has been determined again using the Vita Easy Shade device. From clinical point of view the results of this study shows that there are three important factors that matter when we talk about durable aesthetic results: the type of composite resin used for the restoration, the finishing and polishing procedures and the pacients’ alimentation habits. The composite resins with a good representation of the anorganic structure are easier to be polished, therefore they have only slight color modifications. Using plastic matrixes for shaping the exterior surface of the restoration is the best solution for obtaining a very smooth surface. The most significant color modifications have been done by the red wine. Coffee and to a smaller extent the red alimentary colorant have modified the color of the restoration material in a smaller degree. PMID:24778835
NASA Astrophysics Data System (ADS)
Pouya, M.; Balasubramaniam, S.; Sharafiev, S.; F-X Wagner, M.
2018-06-01
The interfaces between layered materials play an important role for the overall mechanical behavior of hybrid composites, particularly during dynamic loading. Moreover, in complex-shaped composites, interfacial failure is strongly affected by the geometry and size of these contact interfaces. As preliminary work for the design of a novel sample geometry that allows to analyze wave reflection phenomena at the interfaces of such materials, a series of experiments using a Split-Hopkinson Pressure Bar technique was performed on five different sample geometries made of a monomaterial steel. A complementary explicit finite element model of the Split-Hopkinson Pressure Bar system was developed and the same sample geometries were studied numerically. The simulated input, reflected and transmitted elastic wave pulses were analyzed for the different sample geometries and were found to agree well with the experimental results. Additional simulations using different composite layers of steel and aluminum (with the same sample geometries) were performed to investigate the effect of material variation on the propagated wave pulses. The numerical results show that the reflected and transmitted wave pulses systematically depend on the sample geometry, and that elastic wave pulse propagation is affected by the properties of individual material layers.
Laser-Marking Mechanism of Thermoplastic Polyurethane/Bi2O3 Composites.
Zhong, Wei; Cao, Zheng; Qiu, Pengfei; Wu, Dun; Liu, Chunlin; Li, Huili; Zhu, He
2015-11-04
Using bismuth oxide (Bi2O3) as a laser-marking additive and thermoplastic polyurethane (TPU) as the matrix, TPU/Bi2O3 composite materials were prepared by melt blending in a torque rheometer. The sheet samples prepared from the TPU/Bi2O3 composites were treated in air by scanning with a neodymium-doped yttrium aluminum garnet (Nd: YAG) pulsed laser beam at a wavelength of 1064 nm. Compared with the pure TPU sample, the laser-marked composite samples exhibited differences in marking contrast as the Bi2O3 content increased from 0.1% to 1.0% based on stereomicroscope analysis. Scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, thermogravimetry analysis, and X-ray diffraction were used to characterize the laser-marked surface material of the composite samples. Furthermore, a mechanism for the laser-effected darkening of the TPU/Bi2O3 composites was proposed. The results herein indicated that the addition of the Bi2O3 laser-sensitive additive to TPU resulted in laser darkening of the TPU/Bi2O3 composites. The marking contrast and visual appearance of the surface of the TPU/Bi2O3 composites after laser irradiation was due to a synergistic effect consisting of carbonization via TPU pyrolysis and reduction of Bi2O3 to black bismuth metal.
NASA Astrophysics Data System (ADS)
Simon, S. B.; Grossman, L.
2004-10-01
Analyses of coarse-grained refractory inclusions typically do not have the solar CaO/Al 2O 3 ratio, probably reflecting nonrepresentative sampling of them in the laboratory. Many previous studies, especially those done by instrumental neutron activation analysis (INAA), were based on very small amounts of material removed from those restricted portions of inclusions that happened to be exposed on surfaces of bulk meteorite samples. Here, we address the sampling problem by studying thin sections of large inclusions, and by analyzing much larger aliquots of powders of these inclusions by INAA than has typically been done in the past. These results do show convergence toward the solar CaO/Al 2O 3 ratio of 0.792. The bulk compositions of 15 coarse-grained inclusions determined by INAA of samples >2 mg have an average CaO/Al 2O 3 ratio of 0.80 ± 0.18. When bulk compositions are obtained by modal recombination based on analysis of thin sections with cross-sections of entire, large, unbroken inclusions, the average of 11 samples (0.79 ± 0.15) also matches the solar value. Among those analyzed by INAA and by modal recombination, there were no inclusions for which both techniques agreed on a CaO/Al 2O 3 ratio deviating by >˜15% from the solar value. These results suggest that: individual inclusions may have the solar CaO/Al 2O 3 ratio; departures from this value are due to sample heterogeneity and nonrepresentative sampling in the laboratory; and it is therefore valid to correct compositions to this value. We present a method for doing so by mathematical addition or subtraction of melilite, spinel, or pyroxene. This yields a set of multiple, usually slightly different, corrected compositions for each inclusion. The best estimate of the bulk composition of an inclusion is the average of these corrected compositions, which simultaneously accounts for errors in sampling of all major phases. Results show that Type B2 inclusions tend to be more SiO 2-rich and have higher normative Anorthite/Gehlenite component ratios than Type B1s. The inclusion bulk compositions lie in a field that can result from evaporation at 1700-2000K of CMAS liquids with solar CaO/Al 2O 3, but with a wide range of initial MgO (30-60 wt%) and SiO 2 (15-50 wt%) contents.
Application of Advanced Nondestructive Evaluation Techniques for Cylindrical Composite Test Samples
NASA Technical Reports Server (NTRS)
Martin, Richard E.; Roth, Donald J.; Salem, Jonathan A.
2013-01-01
Two nondestructive methods were applied to composite cylinder samples pressurized to failure in order to determine manufacturing quality and monitor damage progression under load. A unique computed tomography (CT) image processing methodology developed at NASA Glenn Research was used to assess the condition of the as-received samples while acoustic emission (AE) monitoring was used to identify both the extent and location of damage within the samples up to failure. Results show the effectiveness of both of these methods in identifying potentially critical fabrication issues and their resulting impact on performance.
Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations
Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.; Hutchison, Janine R.
2016-01-01
Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces. PMID:27736999
Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations.
Hess, Becky M; Amidan, Brett G; Anderson, Kevin K; Hutchison, Janine R
2016-01-01
Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.
NASA Astrophysics Data System (ADS)
Wang, Jasmine S.-H.; Whitehead, Shawn N.; Yeung, Ken K.-C.
2018-02-01
The use of MALDI MS as a fast and direct method to detect the Aβ oligomers of different masses is examined in this paper. Experimental results suggest that Aβ oligomers are ionized and detected as singly charged ions, and thus, the resulting mass spectrum directly reports the oligomer size distribution. Validation experiments were performed to verify the MS data against artifacts. Mass spectra collected from modified Aβ peptides with different propensities for aggregation were compared. Generally, the relative intensities of multimers were higher from samples where oligomerization was expected to be more favorable, and vice versa. MALDI MS was also able to detect the differences in oligomeric composition before and after the incubation/oligomerization step. Such differences in sample composition were also independently confirmed with an in vitro Aβ toxicity study on primary rat cortical neurons. An additional validation was accomplished through removal of oligomers from the sample using molecular weight cutoff filters; the resulting MS data correctly reflected the removal at the expected cutoff points. The results collectively validated the ability of MALDI MS to assess the monomeric/multimeric composition of Aβ samples. [Figure not available: see fulltext.
Investigation of digital encoding techniques for television transmission
NASA Technical Reports Server (NTRS)
Schilling, D. L.
1983-01-01
Composite color television signals are sampled at four times the color subcarrier and transformed using intraframe two dimensional Walsh functions. It is shown that by properly sampling a composite color signal and employing a Walsh transform the YIQ time signals which sum to produce the composite color signal can be represented, in the transform domain, by three component signals in space. By suitably zonal quantizing the transform coefficients, the YIQ signals can be processed independently to achieve data compression and obtain the same results as component coding. Computer simulations of three bandwidth compressors operating at 1.09, 1.53 and 1.8 bits/ sample are presented. The above results can also be applied to the PAL color system.
Kim, Hee-Young; Kim, Seung-Kyu; Kang, Dong-Mug; Hwang, Yong-Sik; Oh, Jeong-Eun
2014-02-01
Serum samples were collected from volunteers of various ages and both genders using a proportionate stratified sampling method, to assess the exposure of the general population in Busan, South Korea to perfluorinated compounds (PFCs). 16 PFCs were investigated in serum samples from 306 adults (124 males and 182 females) and one day composite diet samples (breakfast, lunch, and dinner) from 20 of the serum donors, to investigate the relationship between food and serum PFC concentrations. Perfluorooctanoic acid and perfluorooctanesulfonic acid were the dominant PFCs in the serum samples, with mean concentrations of 8.4 and 13 ng/mL, respectively. Perfluorotridecanoic acid was the dominant PFC in the composite food samples, ranging from
Ariyama, Kaoru; Horita, Hiroshi; Yasui, Akemi
2004-09-22
The composition of concentration ratios of 19 inorganic elements to Mg (hereinafter referred to as 19-element/Mg composition) was applied to chemometric techniques to determine the geographic origin (Japan or China) of Welsh onions (Allium fistulosum L.). Using a composition of element ratios has the advantage of simplified sample preparation, and it was possible to determine the geographic origin of a Welsh onion within 2 days. The classical technique based on 20 element concentrations was also used along with the new simpler one based on 19 elements/Mg in order to validate the new technique. Twenty elements, Na, P, K, Ca, Mg, Mn, Fe, Cu, Zn, Sr, Ba, Co, Ni, Rb, Mo, Cd, Cs, La, Ce, and Tl, in 244 Welsh onion samples were analyzed by flame atomic absorption spectroscopy, inductively coupled plasma atomic emission spectrometry, and inductively coupled plasma mass spectrometry. Linear discriminant analysis (LDA) on 20-element concentrations and 19-element/Mg composition was applied to these analytical data, and soft independent modeling of class analogy (SIMCA) on 19-element/Mg composition was applied to these analytical data. The results showed that techniques based on 19-element/Mg composition were effective. LDA, based on 19-element/Mg composition for classification of samples from Japan and from Shandong, Shanghai, and Fujian in China, classified 101 samples used for modeling 97% correctly and predicted another 119 samples excluding 24 nonauthentic samples 93% correctly. In discriminations by 10 times of SIMCA based on 19-element/Mg composition modeled using 101 samples, 220 samples from known production areas including samples used for modeling and excluding 24 nonauthentic samples were predicted 92% correctly.
Immiscible phase incorporation during directional solidification of hypermonotectics
NASA Technical Reports Server (NTRS)
Andrews, J. Barry; Merrick, Roger A.
1993-01-01
Solidification processes in immiscible samples were investigated by directly observing the events taking place at the solid-liquid interface during directional solidification. Visualization of these events was made possible through the use of a transparent metal analog system and a temperature gradient stage assembly fitted to an optical microscope. The immiscible transparent analog system utilized was the succinonitrile-glycerol system. This system has been shown to exhibit the same morphological transitions as observed in metallic alloys of monotectic composition. Both monotectic and hypermonotectic composition samples were directionally solidified in order to gain an improved understanding of the manner in which the excess hypermonotectic liquid is incorporated into the solidifying structure. The processing conditions utilized prevented sedimentation of the excess hypermonotectic liquid by directionally solidifying the samples in very thin (13 microns), horizontally oriented cells. High thermal gradient to growth rate ratios (G/R) were used in an effort to prevent constitutional supercooling and the subsequent formation of L(sub 2) droplets in advance of the solidification front during the growth of fibrous composite structures. Results demonstrated that hypermonotectic composites could be produced in samples up to two weight percent off of the monotectic composition by using a G/R ratio greater than or equal to 4.6 x 10(exp 4) C(s)/mm(sup 2) to avoid constitutional supercooling. For hypermonotectic samples processed with G/R ratios below 4.6 x 10(exp 4) C(s)/mm(sup 2), constitutional supercooling occurred and resulted in slight interfacial instability. For these samples, two methods of incorporation of the hypermonotectic liquid were observed and are reported. The correlation between the phase spacing, lambda, and the growth rate, R, was examined and was found to obey a relationship generally associated with a diffusion controlled coupled growth process. For samples with compositions ranging from the monotectic composition up to 2 percent off of the monotectic composition, data indicated that the square of the phase spacing (lambda) varied linearly with the inverse of the growth rate (R).
Real-scale comparison between simple and composite raw sewage sampling
NASA Astrophysics Data System (ADS)
Sergio Scalize, Paulo; Moraes Frazão, Juliana
2018-06-01
The present study performed a qualitative and quantitative characterization of the raw sewage collected at the entrance of the sewage treatment station of the city of Itumbiara, state of Goiás. Samples were collected every two hours over a period of seven consecutive days. Characterization of both point samples and composite samples was performed. The parameters analyzed were: temperature, pH, alkalinity, chemical oxygen demand, oil and grease, electric conductivity, total phosphorus, settleable solids, ammoniacal nitrogen, total suspended solids, volatile suspended solids, fixed suspended solids and turbidity. These results allowed us to verify that it is possible to perform the collection and analysis of a point sample, instead of a composite sample, as a way of monitoring the efficiency of a sewage treatment plant.
NASA Astrophysics Data System (ADS)
Hill, Kristina M.
Modified imbibition tests were performed on 69 subsurface samples from Monterey Formation reservoirs in the San Joaquin Valley to measure wettability variation as a result of composition and silica phase change. Contact angle tests were also performed on 6 chert samples from outcrop and 3 nearly pure mineral samples. Understanding wettability is important because it is a key factor in reservoir fluid distribution and movement, and its significance rises as porosity and permeability decrease and fluid interactions with reservoir grain surface area increase. Although the low permeability siliceous reservoirs of the Monterey Formation are economically important and prolific, a greater understanding of factors that alter their wettability will help better develop them. Imbibition results revealed a strong trend of decreased wettability to oil with increased detrital content in opal-CT phase samples. Opal-A phase samples exhibited less wettability to oil than both opal-CT and quartz phase samples of similar detrital content. Subsurface reservoir samples from 3 oil fields were crushed to eliminate the effect of capillary pressure and cleansed of hydrocarbons to eliminate wettability alterations by asphaltene, then pressed into discs of controlled density. Powder discs were tested for wettability by dispensing a controlled volume of water and motor oil onto the surface and measuring the time required for each fluid to imbibe into the sample. The syringe and software of a CAM101 tensiometer were used to control the amount of fluid dispensed onto each sample, and imbibition completion times were determined by high-speed photography for water drops; oil drop imbibition was significantly slower and imbibition was timed and determined visually. Contact angle of water and oil drops on polished chert and mineral sample surfaces was determined by image analysis and the Young-Laplace equation. Oil imbibition was significantly slower with increased detrital composition and faster with increased silica content in opal-CT and quartz phase samples, implying decreased wettability to oil with increased detrital (clay) content. However, contact angle tests showed that opal-CT is more wetting to oil with increased detritus and results for oil on quartz-phase samples were inconsistent between different proxies for detritus over their very small compositional range. Water contact angle trends also showed inconsistent wetting trends compared to imbibition tests. We believe this is because the small range in bulk detrital composition between the "pure" samples used in contact angle tests was close to analytical error and because small-scale spatial compositional variability may be significant enough to effect wettability. These experiments show that compositional variables significantly affect wettability, outweighing the effect of silica phase.
Polymerization shrinkage and spherical glass mega fillers: effects on cuspal deflection
BASSI, M. ANDREASI; SERRA, S.; ANDRISANI, C.; LICO, S.; BAGGI, L.; LAURITANO, D.
2016-01-01
SUMMARY Purpose The Authors analyzed the effect of spherical glass mega fillers (SGMF) on reducing contraction stress in dental composite resins, by means of a cavity model simulating the cuspal deflection which occurs on filled tooth cavity walls in clinical condition. Materials and methods 20 stylized MOD cavities (C-factor = 0.83) were performed in acrylic resin. The inner surface of each cavity was sand blasted and adhesively treated in order to ensure a valid bond with the composite resin. Three different diameter of SGMF were used (i.e. 1, 1,5, 2 mm). The samples were divided in 4 groups of 5 each: Group 1 samples filled with the composite only; Group 2 samples filled with composite added with SGMFs, Ø1mm (16 spheres for each sample); Group 3 samples filled with composite added with SGMFs, Ø1,5 mm (5 spheres for each sample); Group 4 samples filled with composite added with SGMFs, Ø2 mm (2 spheres for each sample). Digital pictures were taken, in standardized settings, before and immediately after the polymerization of the composite material, placed into the cavities. With a digital image analysis software the distances from the coronal reference points of the cavity walls were measured. Then the difference between the first and second measurement was calculated. The data were analyzed by means of the ANOVA test. Results A significative reduction on cavity walls deflection, when the composite resin is used in addiction with the SGMFs was observed. The SGMFs of smallest diameter (1mm) showed the better outcome. Conclusion The SGMFs are reliable in reducing contraction stress in dental composite resins. PMID:28280535
STATISTICAL ANALYSIS OF TANK 5 FLOOR SAMPLE RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shine, E.
2012-03-14
Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, radionuclide, inorganic, and anion concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte's measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogeneous across composite samples.« less
Statistical Analysis of Tank 5 Floor Sample Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shine, E. P.
2013-01-31
Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide1, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte's measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed, and the results of this analysis are reported. The data were generally found to follow a normal distribution, and to be homogenous across composite samples.« less
Statistical Analysis Of Tank 5 Floor Sample Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shine, E. P.
2012-08-01
Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte's measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogenous across composite samples.« less
Microstructure and Interfacial Shear Strength in W/(Zr55Cu30Al10Ni5)100- x Nb x Composites
NASA Astrophysics Data System (ADS)
Mahmoodan, M.; Gholamipour, R.; Mirdamadi, Sh.; Nategh, S.
2017-11-01
In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by a gas pressure infiltration process at temperature 950 °C for 5 min. Microstructural studies and mechanical behaviors of the materials have been investigated by scanning electron microscopy, transmission electron microscopy and pullout tests. The mechanical results showed that the interface shear strength in the composite sample with X = 2 increased more than twice compared to the composite sample with X = 0. Based on the microstructural results, the addition of two atomic percent Nb in the matrix composite causes an increase in the diffusion band thickness during the melt infiltration and change in the interface fracture mode as a result of pullout test.
The behavior of delaminations in composite materials - experimental results
NASA Astrophysics Data System (ADS)
Chermoshentseva, A. S.; Pokrovskiy, A. M.; Bokhoeva, L. A.
2016-02-01
Delamination is one of the most common failure modes of composite materials. It may occur as a consequence of imperfections in the production process or the effects of external factors during the operational life of the composite laminates, such as the impact by foreign objects. This paper presents the results of mechanical tests and the optimum degrees of filling the composite materials (CM) with hydrophobic powder (Tarkosil T-20) depending on the latter mass concentration. The results present test samples of the CM with the underlying interlayer defects. The samples were fabricated of twenty-ply pre-preg (fiberglass or carbon fiber). The industrial grade glass is T-25 (VM) specification 6-11-380-76. The composite materials have nanosized additives in structure. The volume concentration of nanopowders is varying from 0.1% to 0.5%. This kind of research has been done for the first time.
Analysis of Graphite Reinforced Cementitious Composites
NASA Technical Reports Server (NTRS)
Vaughan, Robert E.; Gilbert, John A.; Spanyer, Karen (Technical Monitor)
2001-01-01
This paper describes analytical methods that can be used to determine the deflections and stresses in highly compliant graphite-reinforced cementitious composites. It is demonstrated that the standard transform section fails to provide accurate results when the elastic modulus ratio exceeds 20. So an alternate approach is formulated by using the rule of mixtures to determine a set of effective material properties for the composite. Tensile tests are conducted on composite samples to verify this approach; and, when the effective material properties are used to characterize the deflections of composite beams subject to pure bending, an excellent agreement is obtained. Laminated composite plate theory is also investigated as a means for analyzing even more complex composites, consisting of multiple graphite layers oriented in different directions. In this case, composite beams are analyzed by incorporating material properties established from tensile tests. Finite element modeling is used to verity the results and, considering the complexity of the samples, a very good agreement is obtained.
Solar composition from the Genesis Discovery Mission
Burnett, D. S.; Team, Genesis Science
2011-01-01
Science results from the Genesis Mission illustrate the major advantages of sample return missions. (i) Important results not otherwise obtainable except by analysis in terrestrial laboratories: the isotopic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects. The N isotopic composition is the same as that of Jupiter. Genesis has resolved discrepancies in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments have been applied to Genesis samples, including some developed specifically for the mission. (iii) The N isotope result has been replicated with four different instruments. PMID:21555545
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anandakumar, U.; Webb, J.E.; Singh, R.N.
The matrix cracking behavior of a zircon matrix - uniaxial SCS 6 fiber composite was studied as a function of initial flaw size and temperature. The composites were fabricated by a tape casting and hot pressing technique. Surface flaws of controlled size were introduced using a vicker`s indenter. The composite samples were tested in three point flexure at three different temperatures to study the non steady state and steady state matrix cracking behavior. The composite samples exhibited steady state and non steady matrix cracking behavior at all temperatures. The steady state matrix cracking stress and steady state crack size increasedmore » with increasing temperature. The results of the study correlated well with the results predicted by the matrix cracking models.« less
Shahabi, Sima; Najafi, Farhood; Majdabadi, Abbas; Hooshmand, Tabassom; Haghbin Nazarpak, Masoumeh; Karimi, Batool
2014-01-01
Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC), thermal behavior (DSC), wettability (contact angle), cell viability (MTT assay), and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial. PMID:25574485
Rajan, Ginu; Shouha, Paul; Ellakwa, Ayman; Bhowmik, Kishore; Xi, Jiangtao; Prusty, Gangadhara
2016-09-01
The characterization of the physical properties of dental resin composites is fraught with difficulties relating to significant intra and inter test parameter variabilities and is relatively time consuming and expensive. The main aim of this study was to evaluate whether optical fiber Bragg grating (FBG) sensing system may become a viable tool to study dental material characteristics. Of particular focus was the potential for the system to demonstrate a multi parameter all-in-one feature. A miniature FBG was embedded in six different dental resin composites and employed as a sensor to evaluate linear polymerization shrinkage, thermal expansion and water sorption. Six commercially available dental composites with different filler types and volume are evaluated. The tests are repeated with three sets of samples. The curing characteristics and residual strain gradient exhibited by the cured dental composites were also observed and commented. Among the studied samples, SDR shows lowest polymerization shrinkage, while Beautifil FO3 shows the highest. The results also show clear distinction between particle filler type and fiber reinforcement based composites in their polymerization shrinkage properties. The agreement of the results with existing literatures show that FBG based system provides accurate results. Polymerization shrinkage rate of the samples are also obtained. Thermal expansion of the composites are measured using the FBG sensing method for the first time and is correlated with resin type, volume, filler type and glass transition temperature. The water sorption characteristics of the dental composite are also successfully measured using the FBG sensing method. The high level of repeatability and the low standard deviations shown in the results indicate good reliability with the use of FBG sensors. This study demonstrates how optical fiber technology can provide simple and reliable methods of measuring the critical physical properties of dental composites. In addition due to the embedding and preservation of the sensor within the samples multiple parameters can be tested for with the same sample. These features are expected to greatly assist material science researchers in dentistry as well as other biomedical fields. Of some interest the phenomenon of stress relaxation of dental composite at higher temperature was observed. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Wavelength dependencies of the Kerr rotation and ellipticity for the magneto-optical recording media
NASA Technical Reports Server (NTRS)
Zhou, Feng Lei; Erwin, J. Kevin; Mansuripur, M.
1991-01-01
Here we present wavelength dependence measurements of Co/Pd and Co/Pt superlattice samples with different compositions. We explore the relationship between the composition and the magneto-optical spectra. The induced magnetization in the Pt of Co/Pt or in the Pd of Co/Pd samples plays an important role in the magneto-optical activity, and is discussed for the samples measured. The experimental set-up and the samples used are described. The measurement results of one Co/Pt sample and a series of Co/Pd samples are discussed.
Zhang, Guangwu; Wang, Fuzhong; Huang, Zhixiong; Dai, Jing; Shi, Minxian
2016-08-24
Montmorillonite (MMT) was added to silicone rubber (SR) to improve the ablation resistance of the silicone. Following this, different quantities of silicon carbide whiskers (SiCw) were incorporated into the MMT/SR to yield a hybrid, ablative composite. The tensile strength and elongation at break of the composite increased after the addition of MMT. The ablation test results showed that MMT helped to form a covering layer by bonding with the silica and other components on the ablated surface. The linear and mass ablation rates exhibited decreases of 22.5% and 18.2%, respectively, in comparison to a control sample. After further incorporation of SiCw as the second filler, the resulting composites exhibited significantly higher tensile strength and ablation resistance, but not particularly lower elongation at break in comparison to the control sample. The SiCw/MMT fillers were beneficial in forming a dense and compact covering layer that delayed the heat and oxygen diffusion into the inner layers, which improved the ablation properties effectively. The remaining whiskers acted as a micro skeleton to maintain the composite's char strength. Compared to the control sample, the linear and mass ablation rates of the composite after incorporating 6 phr SiCw and 10 phr MMT decreased by 59.2% and 43.6%, respectively. These experimental results showed that the fabricated composites exhibited outstanding mechanical properties and excellent ablation resistance.
Fiber Reinforced Polyester Resins Polymerized by Microwave Source
NASA Astrophysics Data System (ADS)
Visco, A. M.; Calabrese, L.; Cianciafara, P.; Bonaccorsi, L.; Proverbio, E.
2007-12-01
Polyester resin based composite materials are widely used in the manufacture of fiberglass boats. Production time of fiberglass laminate components could be strongly reduced by using an intense energy source as well as microwaves. In this work a polyester resin was used with 2% by weight of catalyst and reinforced with chopped or woven glass fabric. Pure resin and composite samples were cured by microwaves exposition for different radiation times. A three point bending test was performed on all the cured samples by using an universal testing machine and the resulting fracture surfaces were observed by means of scanning electron microscopy (SEM). The results of mechanical and microscopy analyses evidenced that microwave activation lowers curing time of the composite while good mechanical properties were retained. Microwaves exposition time is crucial for mechanical performance of the composite. It was evidenced that short exposition times suffice for resin activation while long exposure times cause fast cross linking and premature matrix fracture. Furthermore high-radiation times induce bubbles growth or defects nucleation within the sample, decreasing composite performance. On the basis of such results microwave curing activation of polyester resin based composites could be proposed as a valid alternative method for faster processing of laminated materials employed for large-scale applications.
Characterization of waviness in wind turbine blades using air coupled ultrasonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrapani, Sunil Kishore; Dayal, Vinay; Hsu, David K.
2011-06-23
Waviness in glass fiber reinforced composite is of great interest in composite research, since it results in the loss of stiffness. Several NDE techniques have been used previously to detect waviness. This work is concerned with waves normal to the plies in a composite. Air-coupled ultrasonics was used to detect waviness in thick composites used in the manufacturing of wind turbine blades. Composite samples with different wave aspect ratios were studied. Different wavy samples were characterized, and a three step process was developed to make sure the technique is field implementable. This gives us a better understanding of the effectmore » of waviness in thick composites, and how it affects the life and performance of the composite.« less
Characterization of the Roman curse tablet
NASA Astrophysics Data System (ADS)
Liu, Wen; Zhang, Boyang; Fu, Lin
2017-08-01
The Roman curse tablet, produced in ancient Rome period, is a metal plate that inscribed with curses. In this research, several techniques were used to find out the physical structure and chemical composition of the Roman curse tablet, and testified the hypothesis that whether the tablet is made of pure lead or lead alloy. A sample of Roman Curse Tablet from the Johns Hopkins Archaeological Museum was analyzed using several different characterization techniques to determine the physical structure and chemical composition. The characterization techniques used were including optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Because of the small sample size, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF) cannot test the sample. Results from optical microscopy and SEM, enlarged images of the sample surface were studied. The result revealed that the sample surface has a rough, non-uniform, and grainy surface. AFM provides three-dimensional topography of the sample surface, studying the sample surface in atomic level. DSC studies the thermal property, which is most likely a lead-alloy, not a pure lead. However, none of these tests indicated anything about the chemical composition. Future work will be required due to the lack of measures finding out its chemical composition. Therefore, from these characterization techniques above, the Roman curse tablet sample is consisted of lead alloy, not pure lead.
Chen, Wen Hao; Yang, Sam Y. S.; Xiao, Ti Qiao; Mayo, Sherry C.; Wang, Yu Dan; Wang, Hai Peng
2014-01-01
Quantifying three-dimensional spatial distributions of pores and material compositions in samples is a key materials characterization challenge, particularly in samples where compositions are distributed across a range of length scales, and where such compositions have similar X-ray absorption properties, such as in coal. Consequently, obtaining detailed information within sub-regions of a multi-length-scale sample by conventional approaches may not provide the resolution and level of detail one might desire. Herein, an approach for quantitative high-definition determination of material compositions from X-ray local computed tomography combined with a data-constrained modelling method is proposed. The approach is capable of dramatically improving the spatial resolution and enabling finer details within a region of interest of a sample larger than the field of view to be revealed than by using conventional techniques. A coal sample containing distributions of porosity and several mineral compositions is employed to demonstrate the approach. The optimal experimental parameters are pre-analyzed. The quantitative results demonstrated that the approach can reveal significantly finer details of compositional distributions in the sample region of interest. The elevated spatial resolution is crucial for coal-bed methane reservoir evaluation and understanding the transformation of the minerals during coal processing. The method is generic and can be applied for three-dimensional compositional characterization of other materials. PMID:24763649
Determination of the Landau Lifshitz damping parameter of composite magnetic fluids
NASA Astrophysics Data System (ADS)
Fannin, P. C.; Malaescu, I.; Marin, C. N.
2007-01-01
Measurements of the frequency dependent, complex magnetic susceptibility, χ(ω)= χ‧( ω)- iχ″( ω), in the GHz range, are used to investigate the effect which the mixing of two different magnetic fluids has on the value of the damping parameter, α, of the Landau-Lifshitz equation. The magnetic fluid samples investigated in this study were three kerosene-based magnetic fluids, stabilised with oleic acid, denoted as MF1, MF2 and MF3. Sample MF1 was a magnetic fluid with Mn 0.6Fe 0.4Fe 2O 4 particles, sample MF2 was a magnetic fluid with Ni 0.4Zn 0.6Fe 2O 4 particles and sample MF3 was a composite magnetic fluid obtained by mixing a part of sample MF1 with a part of sample MF2, in proportion of 1:1. The experimental results revealed that the value of the damping parameter of the composite sample (sample MF3) is between the α values obtained for its constituents (samples MF1 and MF2). Based on the superposition principle, which states that the susceptibility of a magnetic fluid sample is a superposition of individual contributions of the magnetic particles, a theoretical model is proposed. The experimental results are shown to be in close agreement with the theoretical results. This result is potentially useful in the design of microwave-operating materials, in that it enables one to determine a particular value of damping parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.; Taylor-Pashow, K.
2014-08-05
SRNL received two sets of SHT samples (MCU-14-259/260/261 in April 2014 and MCU-14- 315/316/317 in May 2014) for analysis. The samples were analyzed for composition. Both samples have similar chemical composition. As with the previous solvent sample results, these analyses indicate that the solvent does not require Isopar® L trimming at this time. Since an addition of TiDG and MaxCalix to the SHT was added in early July 2014, the solvent does not require TiDG addition at this time. The current TiDG level (1.5 mM) is above the minimum recommended operating level of 1 mM.
NASA Astrophysics Data System (ADS)
Novriansyah, A.; Mursyidah, U.; Novrianti; Putri, S. S.; Riswati, S. S.
2018-04-01
This study provides an analysis of composite additive effect to concrete’s strength in the oil-well cementing job. The composite additive is originated from the nano-sized form of silica and charcoal from palm shell waste. The quality of the concrete will be determined from its porosity, compressive strength, and shear bond strength parameters. Those parameters must be reliable base on the most respectable standards in oil and gas industry, in this study we use the standard from American Petroleum Institute (API). Six concrete samples with different concentration will be tested to obtain these parameters. The result from the test shown a decrement trend of the porosity while the concentration is increased. In contrast, the highest values of compressive strength and shear bond strength are obtained from the sample with higher additive concentration. The optimum strength was obtained in sample with 0.02% The results become clearly proven through verification by scanning electron image where the additive has successfully fill the voids in the concrete’s sample, resulting in strength enhancement of the sample.
40 CFR 761.312 - Compositing of samples.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to composite surface wipe test samples and to use the composite measurement to represent the PCB concentration of the entire surface. Composite samples consist of more than one sample gauze extracted and... arithmetic mean of the composited samples. (a) Compositing samples from surfaces to be used or reused. For...
Preparation and study of (1 - x)CuFe2O4-xBaTiO3 (x = 0, 0.1 and 1) composite multiferroics
NASA Astrophysics Data System (ADS)
Murtaza, Tahir; Ali, Javid; Khan, M. S.
2018-07-01
The parent and mixed spinel-perovskite composite of (1 - x)CuFe2O4-xBaTiO3 (x = 0, 0.1 and 1) has been prepared by solid-state reaction method and studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, magnetometry and P-E lope tracer. The XRD results showed the formation of single phase tetragonal spinel CuFe2O4 and tetragonal perovskite BaTiO3 at room temperature, further XRD of composite 0.1CuFe2O4-0.9BaTiO3 reflects the two crystallographic phases with 1:9 ratio. The SEM micrographs show the homogeneous and uniform formation of the samples. Through EDAX analysis, the chemical composition of the sample is found to be same as the nominal composition. The high field Mossbauer data of CuFe2O4 sample shows the ferrimagnetic ordering in the sample. The observed M-H and P-E loops of the composite 0.1CuFe2O4-0.9BaTiO3 sample show the presence of spontaneous magnetization and spontaneous electric polarization indicating the multiferroic nature of the sample.
Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.L. Rovey
A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strainmore » measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.« less
External validity of the pediatric cardiac quality of life inventory
Marino, Bradley S.; Drotar, Dennis; Cassedy, Amy; Davis, Richard; Tomlinson, Ryan S.; Mellion, Katelyn; Mussatto, Kathleen; Mahony, Lynn; Newburger, Jane W.; Tong, Elizabeth; Cohen, Mitchell I.; Helfaer, Mark A.; Kazak, Anne E.; Wray, Jo; Wernovsky, Gil; Shea, Judy A.; Ittenbach, Richard
2012-01-01
Purpose The Pediatric Cardiac Quality of Life Inventory (PCQLI) is a disease-specific, health-related quality of life (HRQOL) measure for pediatric heart disease (HD). The purpose of this study was to demonstrate the external validity of PCQLI scores. Methods The PCQLI development site (Development sample) and six geographically diverse centers in the United States (Composite sample) recruited pediatric patients with acquired or congenital HD. Item response option variability, scores [Total (TS); Disease Impact (DI) and Psychosocial Impact (PI) subscales], patterns of correlation, and internal consistency were compared between samples. Results A total of 3,128 patients and parent participants (1,113 Development; 2,015 Composite) were analyzed. Response option variability patterns of all items in both samples were acceptable. Inter-sample score comparisons revealed no differences. Median item–total (Development, 0.57; Composite, 0.59) and item–subscale (Development, DI 0.58, PI 0.59; Composite, DI 0.58, PI 0.56) correlations were moderate. Subscale–subscale (0.79 for both samples) and subscale–total (Development, DI 0.95, PI 0.95; Composite, DI 0.95, PI 0.94) correlations and internal consistency (Development, TS 0.93, DI 0.90, PI 0.84; Composite, TS 0.93, DI 0.89, PI 0.85) were high in both samples. Conclusion PCQLI scores are externally valid across the US pediatric HD population and may be used for multi-center HRQOL studies. PMID:21188538
NASA Astrophysics Data System (ADS)
Linstrom, Elizabeth Jane
A new approach to the nondestructive evaluation of polymer matrix/graphite fiber composites is presented. This technique permits the determination of the top ply bond strength of a laminate based on the results of ultrasonic testing. This technique is designed to be used for the real-time, nondestructive evaluation of composites during tape laying. By separately bonding the top ply of thermoset and thermoplastic polymer composite laminates, a poor ply bond was achieved solely at the interface of the top ply and the rest of the laminate. Using angled incidence, a 5 MHz, 4 musecond ultrasonic pulse was induced into the composite samples. This created waves traveling along the surface of the composite samples that were picked up by a receiving transducer. The received signal was cross-correlated with an artificially constructed replica of the input signal. The maximum amplitude of the cross-correlated signal was recorded. The cross-correlated signal was then converted to the frequency spectra using a fast Fourier transform. The maximum amplitude of the frequency spectra was then recorded. These measurements were repeated at 18 to 30 different locations on each composite sample. The resulting collection of maximum amplitudes of cross-correlated signals and frequency spectra were fit to two parameter Weibull distributions. The composite samples were destructively evaluated using a flat-wise tensile test. The B-basis values of the ultrasonic data Weibull distributions were compared to the B-basis values of the Weibull distribution of the strength data. A good correlation was found.
Outgassing and dimensional changes of polymer matrix composites in space
NASA Technical Reports Server (NTRS)
Tennyson, R. C.; Matthews, R.
1993-01-01
A thermal-vacuum outgassing model and test protocol for predicting outgassing times and dimensional changes for polymer matrix composites is described. Experimental results derived from a 'control' sample are used to provide the basis for analytical predictions to compare with the outgassing response of Long Duration Exposure Facility (LDEF) flight samples.
Photocatalytic Performance of a Novel MOF/BiFeO₃ Composite.
Si, Yunhui; Li, Yayun; Zou, Jizhao; Xiong, Xinbo; Zeng, Xierong; Zhou, Ji
2017-10-10
In this study, MOF/BiFeO₃ composite (MOF, metal-organic framework) has been synthesized successfully through a one-pot hydrothermal method. The MOF/BiFeO₃ composite samples, pure MOF samples and BiFeO₃ samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and by UV-vis spectrophotometry. The results and analysis reveal that MOF/BiFeO₃ composite has better photocatalytic behavior for methylene blue (MB) compared to pure MOF and pure BiFeO₃. The enhancement of photocatalytic performance should be due to the introduction of MOF change the surface morphology of BiFeO 3, which will increase the contact area with MB. This composing strategy of MOF/BiFeO₃ composite may bring new insight into the designing of highly efficient photocatalysts.
NASA Astrophysics Data System (ADS)
Darwish, M. A.; Saafan, S. A.; El-Kony, D.; Salahuddin, N. A.
2015-07-01
Ferrite nanoparticles - having the compositions Li(x/2)(Ni0.5Zn0.5)(1-x)Fe(2+x/2)O4 (x=0, 0.2, 0.3) - have been prepared by the co-precipitation method. The prepared powders have been divided into groups and sintered at different temperatures (373 K, 1074 K and 1473 K). X-Ray diffraction analysis (XRD) for all samples has confirmed the formation of the desired ferrites with crystallite sizes within the nanoscale (<100 nm). The dc conductivity, the relative permeability and the magnetization of the ferrite samples have been investigated and according to the results, the sample Li0.15(Ni0.5Zn0.5)0.7 Fe2.15O4 sintered at 1473 K has been chosen to prepare the composites. The particle size of this sample has been recalculated by using JEOL JEM-100SX transmission electron microscope and it has been found about 64.7 nm. Then, a pure epoxy sample and four pristine epoxy resin /Li0.15(Ni0.5Zn0.5)0.7 Fe2.15O4 composites have been prepared using different ferrite contents (20%, 30%, 40%, and 50%) wt.%. These samples have been characterized by Fourier transform infrared (FTIR) spectroscopy and their dc conductivity, relative permeability and magnetization have also been investigated. The obtained results indicate that the investigated composites may be promising candidates for practical applications such as EMI suppressor and high frequency applications.
NASA Astrophysics Data System (ADS)
Mohammadi, M.; Ziaie, F.; Majdabadi, A.; Akhavan, A.; Shafaei, M.
2017-01-01
In this research work, the nano-composites of high density polyethylene/hydroxyapatite samples were manufactured via two methods: In the first method, the granules of high density polyethylene and nano-structure hydroxyapatite were processed in an internal mixer to prepare the nano-composite samples with a different weight percentage of the reinforcement phase. As for the second one, high density polyethylene was prepared in nano-powder form in boiling xylene. During this procedure, the hydroxyapatite nano-powder was added with different weight percentages to the solvent to obtain the nano-composite. In both of the procedures, the used hydroxyapatite nano-powder was synthesized via hydrolysis methods. The samples were irradiated under 10 MeV electron beam in 70-200 kGy of doses. Mechanical, thermal and morphological properties of the samples were investigated and compared. The results demonstrate that the nano-composites which we have prepared using nano-polyethylene, show better mechanical and thermal properties than the composites prepared from normal polyethylene granules, due to the better dispersion of nano-particles in the polymer matrix.
Contaminants in landfill soils - Reliability of prefeasibility studies.
Hölzle, Ingo
2017-05-01
Recent landfill mining studies have researched the potential for resource recovery using samples from core drilling or grab cranes. However, most studies used small sample numbers, which may not represent the heterogeneous landfill composition. As a consequence, there exists a high risk of an incorrect economic and/or ecological evaluation. The main objective of this work is to investigate the possibilities and limitations of preliminary investigations concerning the crucial soil composition. The preliminary samples of landfill investigations were compared to the excavation samples from three completely excavated landfills in Germany. In addition, the research compared the reliability of prediction of the two investigation methods, core drilling and grab crane. Sampling using a grab crane led to better results, even for smaller investigations of 10 samples. Analyses of both methods showed sufficiently accurate results to make predictions (standard error 5%, level of confidence 95%) for most heavy metals, cyanide and PAH in the dry substance and for sulphate, barium, Benzo[a]pyrene, pH and the electrical conductivity in leachate analyses of soil type waste. While chrome and nickel showed less accurate results, the concentrations of hydrocarbons, TOC, DOC, PCB and fluorine (leachate) were not predictable even for sample numbers of up to 59. Overestimations of pollutant concentrations were more frequently apparent in drilling, and underestimations when using a grab crane. The dispersion of the element and elemental composition had no direct impact on the reliability of prediction. Thus, an individual consideration of the particular element or elemental composition for dry substance and leachate analyses is recommended to adapt the sample strategy and calculate an optimum sample number. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Vander Kaaden, K. E.; McCubbin, F. M.; Harrington, A. D.
2017-01-01
Determining the bulk composition of precious materials with a finite mass (e.g., meteorite samples) is extremely important in the fields of Earth and Planetary Science. From meteorite studies we are able to place constraints on large scale planetary processes like global differentiation and subsequent volcanism, as well as smaller scale processes like crystallization in a magma chamber or sedimentary compaction at the surface. However, with meteorite samples in particular, far too often we are limited by how precious the sample is as well as its limited mass. In this study, we have utilized aliquots of samples previously studied for toxicological hazards, including both the fresh samples (lunar mare basalt NWA 4734, lunar regolith breccia NWA 7611, martian basalt Tissint, martian regolith breccia NWA 7034, a vestian basalt Berthoud, a vestian regolith breccia NWA 2060, and a terrestrial mid-ocean ridge basalt (MORB)), and those that underwent iron leaching (Tissint, NWA 7034, NWA 4734, MORB). With these small masses of material, we performed low pressure (approx. 0.75 GPa), high temperature (greater than 1600 degrees Celsius) melting experiments. Each sample was analyzed using a JEOL 8530F electron microprobe to determine the bulk composition of the materials that were previously examined. When available, the results of our microprobe data were compared with bulk rock compositions in the literature. The results of this study show that with this technique, only approx. 50 mg of sample is required to accurately determine the bulk composition of the materials of interest.
Durability of Intercalated Graphite Epoxy Composites in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Gaier, James R.; Davidson, Michelle L.; Shively, Rhonda
1996-01-01
The electrical conductivity of graphite epoxy composites can be substantially increased by intercalating (inserting guest atoms or molecules between the graphene planes) the graphite fibers before composite formation. The resulting high strength, low density, electrically conducting composites have been proposed for EMI shielding in spacecraft. Questions have been raised, however, about their durability in the space environment, especially with respect to outgassing of the intercalates, which are corrosive species such as bromine. To answer those concerns, six samples of bromine intercalated graphite epoxy composites were included in the third Evaluation of Oxygen Interaction with Materials (EOIM-3) experiment flown on the Space Shuttle Discovery (STS-46). Changes in electrical conductivity, optical reflectance, surface texture, and mass loss for SiO2 protected and unprotected samples were measured after being exposed to the LEO environment for 42 hours. SiO2 protected samples showed no degradation, verifying conventional protection strategies are applicable to bromine intercalated composites. The unprotected samples showed that bromine intercalation does not alter the degradation of graphite-epoxy composites. No bromine was detected to have been released by the fibers allaying fears that outgassing could be disruptive to the sensitive electronics the EMI shield is meant to protect.
NASA Astrophysics Data System (ADS)
Arsecularatne, J. A.; Hoffman, M.
2014-08-01
This paper describes the results of an in vitro investigation on the interrelations among microstructure, composition and mechanical properties of remineralizing human dental enamel. Polished enamel samples have been demineralized for 10 min in an acetic acid solution (at pH 3) followed by remineralization in human saliva for 30 and 120 min. Microstructure variations of sound, demineralized and remineralized enamel samples have been analysed using focused ion beam, scanning electron microscopy and transmission electron microscopy, while their compositions have been analysed using energy dispersive x-ray. Variations in the mechanical properties of enamel samples have been assessed using nanoindentation. The results reveal that, under the selected conditions, only partial remineralization of the softened enamel surface layer occurs where some pores remain unrepaired. As a result, while the nanoindentation elastic modulus shows an improvement following remineralization, hardness does not.
NASA Astrophysics Data System (ADS)
Flynn, George J.; Durda, Daniel D.
2004-10-01
We performed impact disruption experiments on pieces from eight different anhydrous chondritic meteorites - four weathered ordinary chondrite finds from North Africa (NWA791, NWA620, NWA869 and MOR001), three almost unweathered ordinary chondrite falls (Mbale, Gao, and Saratov), and an almost unweathered carbonaceous chondrite fall (Allende). In each case the impactor was a small (1/8 or 1/4 in) aluminum sphere fired at the meteorite target at ˜5km/s, comparable to the mean collision speed in the main-belt. Some of the ˜5 to ˜150μm debris from each disruption was collected in aerogel capture cells, and the captured particles were analyzed by in situ synchrotron-based X-ray fluorescence. For each meteorite, many of the smallest particles ( <10μm up to 35μm in size, depending on the meteorite) exhibit very high Ni/Fe ratios compared to the Ni/Fe ratios measured in the larger particles (>45μm), a composition consistent with the smallest debris being dominated by matrix material while the larger debris is dominated by fragments from olivine chondrules. These results may explain why the ˜10μm interplanetary dust particles (IDPs) collected from the Earth's stratosphere are C-rich and volatile-rich compared to the presumed solar nebula composition. The ˜10μm IDPs may simply sample the matrix of an inhomogeneous parent body, structurally and mineralogically similar to the chondritic meteorites, which are inhomogeneous assemblages of compact, strong, C- and volatile-poor chondrules that are distributed in a more porous, C- and volatile-rich matrix. In addition, these results may explain why the micrometeorites, which are ˜50μm to millimeters in size, recovered from the polar ices are Ni- and S-poor compared to chondritic meteorites, since these polar micrometeorites may preferentially sample fragments from the Ni- and S-poor olivine chondrules. These results indicate that the average composition of the IDPs may be biased towards the composition of the matrix of the parent body while the average composition of the polar micrometeorites may be more heavily weighted towards the composition of the chondrules and clasts. Thus, neither the IDPs nor the polar micrometeorites may sample the bulk composition of their respective parent bodies. We determined the threshold collisional specific energy (QD*) for these chondritic meteorites to be 1419 J/kg, about twice the value for terrestrial basalt. Comparison of the mass of the largest fragment produced in the disruption of an ˜100g sample of the porous ordinary chondrite Saratov with the largest fragment produced in the disruption of an ˜100g sample of the compact ordinary chondrite MOR001 when each was struck by an impactor having approximately the same kinetic energy confirms that it requires significantly more energy to disrupt a porous target than a non-porous target. These results may also have important implications for the design of spacecraft missions intended to sample the composition and mineralogy of the chondritic asteroids and other inhomogeneous bodies. A Stardust-like spacecraft intended to sample asteroids by collecting only the small debris from a man-made impact onto the asteroid may collect particles that over-sample the matrix of the target and do not provide a representative sample of the bulk composition. The impact collection technique to be employed by the Japanese HAYABUSA (formerly MUSES-C) spacecraft to sample the asteroid Itokawa may result in similar mineral segregation.
NASA Astrophysics Data System (ADS)
Kamalak, Hakan; Canbay, C. Aksu; Yiğit, Oktay; Altin, Serdar
2018-03-01
In this study, we investigated the structural stability, thermal conductivity, thermal analysis, materials' homogeneity of newly developed flowable composites. 6 different dental flowable composite resins; Grandio Flow (GF), Charisma Flow (CF), Tetric N Flow (TNF), Clearfil Majesty Flow (CMF),3M Filtek Ultimate Flow (3MFU), Voco Amaris Flow (VFA) were used. Restorations were made in standard teflon molds and the materials were light-cured for 20s in a 6 mm × 2 mm teflon mould. After polymerization, samples were kept in distilled water at 37 °C/24 h .It was found that the composites have multiphase component such as metallic dopant and organic binder. The XRD investigation showed that there was a broad halo in the pattern which indicates the organic section in the composites. The FTIR results indicate the bond structure of the composites. The temperature dependence of the thermal conductivity of the composites were found below to 5 mW/K value depending on the type of the composites, which are low enough for dental application. The micro-hardness of the samples was analyzed and the result was compared.
Weingarden, Alexa R; Chen, Chi; Bobr, Aleh; Yao, Dan; Lu, Yuwei; Nelson, Valerie M; Sadowsky, Michael J; Khoruts, Alexander
2014-02-15
Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for refractory, recurrent Clostridium difficile infection (CDI), which develops following antibiotic treatments. Intestinal microbiota play a critical role in the metabolism of bile acids in the colon, which in turn have major effects on the lifecycle of C. difficile bacteria. We hypothesized that fecal bile acid composition is altered in patients with recurrent CDI and that FMT results in its normalization. General metabolomics and targeted bile acid analyses were performed on fecal extracts from patients with recurrent CDI treated with FMT and their donors. In addition, 16S rRNA gene sequencing was used to determine the bacterial composition of pre- and post-FMT fecal samples. Taxonomic bacterial composition of fecal samples from FMT recipients showed rapid change and became similar to the donor after the procedure. Pre-FMT fecal samples contained high concentrations of primary bile acids and bile salts, while secondary bile acids were nearly undetectable. In contrast, post-FMT fecal samples contained mostly secondary bile acids, as did non-CDI donor samples. Therefore, our analysis showed that FMT resulted in normalization of fecal bacterial community structure and metabolic composition. Importantly, metabolism of bile salts and primary bile acids to secondary bile acids is disrupted in patients with recurrent CDI, and FMT corrects this abnormality. Since individual bile salts and bile acids have pro-germinant and inhibitory activities, the changes suggest that correction of bile acid metabolism is likely a major mechanism by which FMT results in a cure and prevents recurrence of CDI.
Sun, Jirun; Eidelman, Naomi; Lin-Gibson, Sheng
2009-03-01
The objectives of this study were to (1) demonstrate X-ray micro-computed tomography (microCT) as a viable method for determining the polymerization shrinkage and microleakage on the same sample accurately and non-destructively, and (2) investigate the effect of sample geometry (e.g., C-factor and volume) on polymerization shrinkage and microleakage. Composites placed in a series of model cavities of controlled C-factors and volumes were imaged using microCT to determine their precise location and volume before and after photopolymerization. Shrinkage was calculated by comparing the volume of composites before and after polymerization and leakage was predicted based on gap formation between composites and cavity walls as a function of position. Dye penetration experiments were used to validate microCT results. The degree of conversion (DC) of composites measured using FTIR microspectroscopy in reflectance mode was nearly identical for composites filled in all model cavity geometries. The shrinkage of composites calculated based on microCT results was statistically identical regardless of sample geometry. Microleakage, on the other hand, was highly dependent on the C-factor as well as the composite volume, with higher C-factors and larger volumes leading to a greater probability of microleakage. Spatial distribution of microleakage determined by microCT agreed well with results determined by dye penetration. microCT has proven to be a powerful technique in quantifying polymerization shrinkage and corresponding microleakage for clinically relevant cavity geometries.
NASA Astrophysics Data System (ADS)
Srivastava, Himanshu; Khooha, Ajay; Singh, Ajit; Ganguli, Tapas
2018-04-01
The study of the growth of nanowires on α-brass (Cu 65%, Zn 35%) substrate was done by annealing the substrates at different temperatures in air and varying flow of moist nitrogen. It was found that the surface composition of oxidized brass depended on the synthesis condition. Angle Dependent X-ray Fluorescence (ADXRF) measurements of the oxidized brass samples were done to study the variation of composition with the synthesis conditions and depth. The results showed that the cause of the compositional dependence on synthesis parameters is due to a process, inherent to the oxidation of brass.
Ziraki, Sahar; Zebarjad, Seyed Mojtaba; Hadianfard, Mohammad Jafar
2016-04-01
Metacarpophalangeal joint implants have been usually made of silicone rubber. In the current study, silica nano particles and polypropylene fibers were added to silicone rubber to improve silicone properties. The effect of the addition of silica nano particles and polypropylene fibers on the tensile behavior of the resultant composites were investigated. Composite samples with different content of PP fibers and Silica nano particles (i. e. 0, 1 and 2wt%) as well as the hybrid composite of silicone rubber with 1wt% SiO2 and 1wt% PP fiber were prepared. Tensile tests were done at constant cross head speed. To study the body fluid effect on the mechanical properties of silicone rubber composites, samples soaked in simulated body fluid (SBF) at 37°C were also tested. The morphology of the samples were studied by scanning electron microscope. Results of analysis revealed that an increase in PP fibers and silica nano particles content to 2wt%, increases the tensile strength of silicone rubber of about 75% and 42% respectively. It was found out that the strength of the samples decreases after being soaked in simulated body fluid, though composites with PP fibers as the reinforcement showed less property degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Guangwu; Wang, Fuzhong; Huang, Zhixiong; Dai, Jing; Shi, Minxian
2016-01-01
Montmorillonite (MMT) was added to silicone rubber (SR) to improve the ablation resistance of the silicone. Following this, different quantities of silicon carbide whiskers (SiCw) were incorporated into the MMT/SR to yield a hybrid, ablative composite. The tensile strength and elongation at break of the composite increased after the addition of MMT. The ablation test results showed that MMT helped to form a covering layer by bonding with the silica and other components on the ablated surface. The linear and mass ablation rates exhibited decreases of 22.5% and 18.2%, respectively, in comparison to a control sample. After further incorporation of SiCw as the second filler, the resulting composites exhibited significantly higher tensile strength and ablation resistance, but not particularly lower elongation at break in comparison to the control sample. The SiCw/MMT fillers were beneficial in forming a dense and compact covering layer that delayed the heat and oxygen diffusion into the inner layers, which improved the ablation properties effectively. The remaining whiskers acted as a micro skeleton to maintain the composite’s char strength. Compared to the control sample, the linear and mass ablation rates of the composite after incorporating 6 phr SiCw and 10 phr MMT decreased by 59.2% and 43.6%, respectively. These experimental results showed that the fabricated composites exhibited outstanding mechanical properties and excellent ablation resistance. PMID:28773846
Wanty, Richard B.; Shanks, Wayne C.; Lamothe, Paul; Meier, A.L.; Lichte, Fred; Briggs, Paul H.; Berger, Byron R.
2001-01-01
Water samples were collected in the Patagonia Mountains in February, 1997. Most of the samples were collected from portals of abandoned mines, or from stream drainages immediately downstream from abandoned mines. Most of the samples have low pH ( 1000 mg/L). Anion composition of the water samples is dominated by sulfate, while cation compositions range from calcium-dominated to mixed calcium-magnesium or calcium-sodium-dominated waters. Metals such as iron, manganese, copper, zinc, and aluminum contribute a significant portion (>10%) of the cation content to the water samples. Because of the low pH?s, protons contribute up to several percent of the cation character of the waters in some of the samples. The data are presented in tabular and graphical formats, with descriptions of data quality and brief descriptions of results.
Rapid, Contactless and Non-Destructive Testing of Chemical Composition of Samples
NASA Astrophysics Data System (ADS)
Ivanov, O.; Vaseashta, A.; Stoychev, L.
Our results demonstrate that a new effect can be induced in each solid in a wide spectral range of electromagnetic irradiation. In the present manuscript we prove experimentally that one of the possible applications of this effect is for an express contactless control of the chemical composition of a series of samples, in this case, coins. The method has wide applicability ranging from defense and homeland security to several applications requiring rapid and nondestructive identification of chemical composition.
Nasiri, F; Ajeli, S; Semnani, D; Jahanshahi, M; Emadi, R
2018-05-02
The present work investigates the mechanical properties of tubular carbon/Kevlar ® composite coated with poly(methyl methacrylate)/graphene nanoplates as used in the internal fixation of bones. Carbon fibers are good candidates for developing high-strength biomaterials and due to better stress transfer and electrical properties, they can enhance tissue formation. In order to improve carbon brittleness, ductile Kevlar ® was added to the composite. The tubular carbon/Kevlar ® composites have been prepared with tailorable braiding technology by changing the fiber pattern and angle in the composite structure and the number of composite layers. Fuzzy analyses are used for optimizing the tailorable parameters of 80 prepared samples and then mechanical properties of selected samples are discussed from the viewpoint of mechanical properties required for a bone fixation device. Experimental results showed that with optimizing braiding parameters the desired composite structure with mechanical properties close to bone properties could be produced. Results showed that carbon/Kevlar ® braid's physical properties, fiber composite distribution and diameter uniformity resulted in matrix uniformity, which enhanced strength and modulus due to better ability for distributing stress on the composite. Finally, as graphene nanoplates demonstrated their potential properties to improve wound healing intended for bone replacement, so reinforcing the PMMA matrix with graphene nanoplates enhanced the composite quality, for use as an implant.
NASA Astrophysics Data System (ADS)
Hosseini, Seyyedamirhossein; Farsi, Hossein; Moghiminia, Shokufeh; Zubkov, Tykhon; Lightcap, Ian V.; Riley, Andrew; Peters, Dennis G.; Li, Zhihai
2018-05-01
Nickel tungstate/graphene composite was synthesized in various compositions with application of a hydrothermal method. Chemical composition and morphology of each sample was studied via application of x-ray diffraction and transmission electron microscopy techniques. In the continuous, a photosystem was obtained by deposition of composite sample on a fluorine-doped tin oxide electrode with application of electrophoretic method. Electrode morphology was studied by employment of atomic force microscopy and SEM techniques. Eventually, light conversion properties and involved mechanism of fabricated photosystem was studied with application of the Mott–Schottky method. Our results confirmed that the optimum ratio between graphene and nickel tungstate is in the regime of 1:1.
Hageman, Philip L.; Briggs, Paul H.; Desborough, George A.; Lamothe, Paul J.; Theodorakos, Peter M.
2000-01-01
This report details chemistry data derived from leaching of mine-waste composite samples using a modification of E.P.A. Method 1312, Synthetic Precipitation Leaching Procedure (SPLP). In 1998, members of the U.S. Geological Survey Mine Waste Characterization Project collected four mine-waste composite samples from mining districts in southwestern New Mexico (CAR and PET) and near Leadville, Colorado (TUC and MII). Resulting leachate pH values for the four composites ranged from 5.45 to 8.84 and ranked in the following order: CAR < TUC < MII < PET. Specific conductivity values ranged from 85 uS/cm to 847 uS/cm in the following order: PET < MII < CAR < TUC. Geochemical data generated from this investigation reveal that leachate from the CAR composite contains the highest concentrations of Pb, Zn, Ni, Mn, Cu, Cd, and Al
Effect of bench time polymerization on depth of cure of dental composite resin
NASA Astrophysics Data System (ADS)
Harahap, K.; Yudhit, A.; Sari, F.
2017-07-01
The aim of this research was to investigate the effect of bench time before light cured polymerization on the depth of cure of dental composite resin. Nanofiller composite resin (Filtek Z350 XT,3M, ESPE,China) was used in this study. Sixty samples of nanofiller composite resin were made and divided into control and test groups with bench time for 0, 15, 30, 45, and 60 min. For the test group, composite resins were stored in refrigerator with 4°C temperatures. Meanwhile, for the control groups, the composite resin was stored at room temperature. The samples were prepared using metal mould with size diameter of 6 mm and 4 mm in thickness. Samples were cured for 20 s by using visible blue light curing unit. Part of samples that unpolymerized were removed by using a plastic spatula. The remaining parts of samples were measured by digital caliper and noted as depth of cure (mm). Data were analyzed to one-way ANOVA and LSD tests (p≤0.05). Results showed there was no significance differences between test groups (p=0.5). A 60 minutes bench time group showed the highest depth of cure value among test group, and it was almost similar with control group value. It can be concluded that longer bench time can increase the depth of cure of composite resin.
Analytical Results from Salt Solution Feed Tank (SSFT) Samples HTF-16-6 and HTF-16-40
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T.
Two samples from the Salt Solution Feed Tank (SSFT) were analyzed by SRNL, HTF-16-6 and HTF-16-40. Multiple analyses of these samples indicate a general composition almost identical to that of the Salt Batch 8-B feed and the Tank 21H sample results.
Santos, A; Ajbary, M; Morales-Flórez, V; Kherbeche, A; Piñero, M; Esquivias, L
2009-09-15
This paper presents the results of the carbonation reaction of two sample types: larnite (Ca(2)SiO(4)) powders and larnite/silica aerogel composites, the larnite acting as an active phase in a process of direct mineral carbonation. First, larnite powders were synthesized by the reaction of colloidal silica and calcium nitrate in the presence of ethylene glycol. Then, to synthesize the composites, the surface of the larnite powders was chemically modified with 3-aminopropyltriethoxysilane (APTES), and later this mixture was added to a silica sol previously prepared from tetraethylorthosilicate (TEOS). The resulting humid gel was dried in an autoclave under supercritical conditions for the ethanol. The textures and chemical compositions of the powders and composites were characterized.The carbonation reaction of both types of samples was evaluated by means of X-ray diffraction and thermogravimetric analysis. Both techniques confirm the high efficiency of the reaction at room temperature and atmospheric pressure. A complete transformation of the silicate into carbonate resulted after submitting the samples to a flow of pure CO(2) for 15 min. This indicates that for this reaction time, 1t of larnite could eliminate about 550 kg of CO(2). The grain size, porosity, and specific surface area are the factors controlling the reaction.
The composition of secondary amorphous phases under different environmental conditions
NASA Astrophysics Data System (ADS)
Smith, R.; Rampe, E. B.; Horgan, B. H. N.; Dehouck, E.; Morris, R. V.
2017-12-01
X-ray diffraction (XRD) patterns measured by the CheMin instrument on the Mars Science Laboratory Curiosity rover demonstrate that amorphous phases are major components ( 15-60 wt%) of all rock and soil samples in Gale Crater. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., silica, ferrihydrite) phases. Secondary amorphous phases are frequently found as weathering products in soils on Earth, but these materials remain poorly characterized. Here we study a diverse suite of terrestrial samples including: sediments from recently de-glaciated volcanoes (Oregon), modern volcanic soils (Hawaii), and volcanic paleosols (Oregon) in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of amorphous phases. We combine bulk XRD mineralogy with bulk chemical compositions (XRF) to calculate the abundance and bulk composition of the amorphous materials in our samples. We then utilize scanning transmission electron microscopy (STEM) and energy dispersive x-ray spectroscopy (EDS) to study the composition of individual amorphous phases at the micrometer scale. XRD analyses of 8 samples thus far indicate that the abundance of amorphous phases are: modern soils (20-80 %) > paleosols (15-40 %) > glacial samples (15-30 %). Initial calculations suggest that the amorphous components consist primarily of SiO2, Al2O3, TiO2, FeO and Fe2O3, with minor amounts of other oxides (e.g., MgO, CaO, Na2O). Compared to their respective crystalline counterparts, calculations indicate bulk amorphous components enriched in SiO2 for the glacial sample, and depleted in SiO2 for the modern soil and paleosol samples. STEM analyses reveal that the amorphous components consist of a number of different phases. Of the two samples analyzed using STEM thus far, the secondary amorphous phases have compositions with varying ratios of SiO2, Al2O3, TiO2, and Fe-oxides, consistent with mass balance calculation results, but inconsistent with well-known amorphous phase compositions (e.g., allophane, ferrihydrite). These results show that a number of secondary amorphous phases can form within a single soil environment. Continued analysis can help determine whether compositional trends can be linked to environmental factors.
Development of Botanical Composition in Maribaya Pasture, Brebes, Central Java
NASA Astrophysics Data System (ADS)
Umami, N.; Ngadiyono, N.; Panjono; Agus, F. N.; Shirothul, H. M.; Budisatria, I. G. S.; Hendrawati, Y.; Subroto, I.
2018-02-01
The research was aimed to observe the development of botanical composition in Maribaya pastures. The sampling method was cluster random sampling. The observed variables were the type of forages and the botanical composition in the pasture. Botanical composition was measured by using Line Intercept method and the production was measured by the estimation of botany production for each square meter using its dry matter measurement. The botani sampling was performed using square with size of 1×1 m2. The observation was performed before the pasture made (at 2015) and after the pasture made (at 2017). Based on the research result, it was found that there was significant difference between the forage type in the pasture at 2015 and at 2017. It happens due to the adjustment for the Jabres cattle feed.
Comparison of time-dependent changes in the surface hardness of different composite resins
Ozcan, Suat; Yikilgan, Ihsan; Uctasli, Mine Betul; Bala, Oya; Kurklu, Zeliha Gonca Bek
2013-01-01
Objective: The aim of this study was to evaluate the change in surface hardness of silorane-based composite resin (Filtek Silorane) in time and compare the results with the surface hardness of two methacrylate-based resins (Filtek Supreme and Majesty Posterior). Materials and Methods: From each composite material, 18 wheel-shaped samples (5-mm diameter and 2-mm depth) were prepared. Top and bottom surface hardness of these samples was measured using a Vicker's hardness tester. The samples were then stored at 37°C and 100% humidity. After 24 h and 7, 30 and 90 days, the top and bottom surface hardness of the samples was measured. In each measurement, the rate between the hardness of the top and bottom surfaces were recorded as the hardness rate. Statistical analysis was performed by one-way analysis of variance, multiple comparisons by Tukey's test and binary comparisons by t-test with a significance level of P = 0.05. Results: The highest hardness values were obtained from each two surfaces of Majesty Posterior and the lowest from Filtek Silorane. Both the top and bottom surface hardness of the methacrylate based composite resins was high and there was a statistically significant difference between the top and bottom hardness values of only the silorane-based composite, Filtek Silorane (P < 0.05). The lowest was obtained with Filtek Silorane. The hardness values of all test groups increased after 24 h (P < 0.05). Conclusion: Although silorane-based composite resin Filtek Silorane showed adequate hardness ratio, the use of incremental technic during application is more important than methacrylate based composites. PMID:24966724
2013-02-01
glass composites and 318.51±6.77 MPa for the basalt fibers . On average, the S2 glass composite had a higher modulus of elasticity of 12.94±0.84 GPa...5. The progression of strain on the tool side of the tensile sample. 9 The results of the tensile testing for the basalt fibers are shown in...reported modulus values shown in table 1. Figure 6. Results of the tensile testing of the basalt fiber composites. 3.1.2 Results of the Line
Solvent hold tank sample results for MCU-16-1247-1248-1249: August 2016 monthly sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F. F.; Jones, D. H.
Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-1247-1248-1249), pulled on 08/22/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1247-1248-1249 indicated the Isopar™L concentration is above its nominal level (101%). The extractant (MaxCalix) and the modifier (CS-7SB) are 7% and 9 % below their nominal concentrations. The suppressor (TiDG) is 63% below its nominal concentration. A summary of the concentration of the relevant solvent components is shown below.
Plutonium segregation in glassy aerodynamic fallout from a nuclear weapon test
Holliday, K. S.; Dierken, J. M.; Monroe, M. L.; ...
2017-01-11
Our study combines electron microscopy equipped with energy dispersive spectroscopy to probe major element composition and autoradiography to map plutonium in order to examine the spatial relationships between plutonium and fallout composition in aerodynamic glassy fallout from a nuclear weapon test. We interrogated a sample set of 48 individual fallout specimens in order to reveal that the significant chemical heterogeneity of this sample set could be described compositionally with a relatively small number of compositional endmembers. Furthermore, high concentrations of plutonium were never associated with several endmember compositions and concentrated with the so-called mafic glass endmember. Our result suggests thatmore » it is the physical characteristics of the compositional endmembers and not the chemical characteristics of the individual component elements that govern the un-burnt plutonium distribution with respect to major element composition in fallout.« less
Homaeigohar, S Sh; Shokrgozar, M A; Khavandi, A; Sadi, A Yari
2008-02-01
Beta-tricalcium phosphate reinforced high density polyethylene (beta-TCP/HDPE) was prepared to simulate bone composition and to study its capacity to act as bone tissue. This material was produced by replacing the mineral component and collagen soft tissue of the bone with beta-TCP and HDPE, respectively. The biocompatibility of the composite samples with different volume fractions of TCP (20, 30 and 40 vol %) was examined in vitro using two osteoblast cell lines G-292 and Saos-2, and also a type of fibroblast cell isolated from bone tissue, namely human bone fibroblast (HBF) by proliferation, and cell adhesion assays. Cell-material interaction with the surface of the composite samples was examined by scanning electron microscopy (SEM). The effect of beta-TCP/HDPE on the behavior of osteoblast and fibroblast cells was compared with those of composite and negative control samples; polyethylene (PE) and tissue culture polystyrene (TPS), respectively. In general, the results showed that the composite samples containing beta-TCP as reinforcement supported a higher rate of proliferation by various bone cells after 3, 7, and 14 days of incubation compared to the composite control sample. Furthermore, more osteoblast cells were attached to the surface of the composite samples when compared to the composite control samples after the above incubation periods (p < 0.05), while in the case of HBF an equal or even higher number of cells adhered to PE was observed. The number of adhered osteoblast cells was almost equal and in some days even higher than the number of adhered cells on negative control sample, while in the case of fibroblast this difference was significantly higher than TPS (p < 0.05). Adhered cells presented a normal morphology by SEM and many of the cells were observed to be undergoing cell division. These findings indicate that beta-TCP/HDPE composites are biocompatible, nontoxic, and act to stimulate proliferation and adhesion of the cells, whether osteoblast or fibroblast. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.
Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi
2013-11-01
In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular, lack of homogeneity of the meat samples influenced the accuracy of estimation of chemical components. In general the predicting results of intramuscular fat, fatty acid and moisture are best, the predicting results of crude protein and myoglobin are better, while the predicting results of ash and collagen are less accurate.
NASA Astrophysics Data System (ADS)
Pandey, Pankaj
The steady increase in corn based ethanol production has resulted in a dramatic rise in the supply of its co-product known as distillers' dried grain with solubles (DDGS). Currently, the main outlet for DDGS is the animal feed industry, but the presence of fibers makes them indigestible by non-ruminants such as swine and poultry. Separation of fiber from DDGS would increase the nutritional value of DDGS with higher protein and fat contents and reduced fiber content. The fiber from DDGS can be separated through a physical separation process known as elusieve. The DDGS fiber has the potential to be used as a fiber filler in thermoplastic composites. This research project evaluates DDGS fiber as a filler in thermoplastic composites. The fibers from corn hull and DDGS have been used as fillers at 30% and 50% fiber loading in high density polyethylene (HDPE) composites and compared against a standard oak fiber filler composites at a lab scale. DDGS and corn fiber composites showed comparable mechanical properties as the oak wood fiber HDPE composites. Further evaluation was completed on the performance of composite samples at commercial scale with six combinations of oak fiber, corn hull fiber and DDGS fiber with fiber loading maintained at 50%, and then samples were exposed to UV accelerated weathering for 2000 h. The UV weathering decreased the mechanical properties of all the exposed samples compared to the unexposed samples. Also, UV weathering resulted in a severe chain scission of the HDPE polymer, increasing their crystallinity. The performance of mercerized or sodium hydroxide (NaOH) treated DDGS fiber as filler was investigated by characterizing the effects of treated and untreated DDGS fibers on physical, mechanical, and thermal properties of HDPE composites. The NaOH treated DDGS fiber at 25% loading showed consistent improvement in flexural and tensile modulus of elasticities of the composites compared to the neat HDPE.
NASA Astrophysics Data System (ADS)
Abdal-hay, Abdalla; Amna, Touseef; Lim, Jae Kyoo
2013-04-01
The present study was aimed at designing a novel porous hydroxyapatite/poly(ɛ-caprolactone) (nHAp/PCL) hybrid nanocomposite matrix on a magnesium substrate with high and low porosity. The coated samples were prepared using a dip-coating technique in order to enhance the bioactivity and biocompatibility of the implant and to control the degradation rate of magnesium alloys. The mechanical and biocompatible properties of the coated and uncoated samples were investigated and an in vitro test for corrosion was conducted by electrochemical polarization and measurement of weight loss. The corrosion test results demonstrated that both the pristine PCL and nHAp/PCL composites showed good corrosion resistance in SBF. However, during the extended incubation time, the composite coatings exhibited more uniform and superior resistance to corrosion attack than pristine PCL, and were able to survive severe localized corrosion in physiological solution. Furthermore, the bioactivity of the composite film was determined by the rapid formation of uniform CaP nanoparticles on the sample surfaces during immersion in SBF. The mechanical integrity of the composite coatings displayed better performance (˜34% higher) than the uncoated samples. Finally, our results suggest that the nHAp incorporated with novel PCL composite membranes on magnesium substrates may serve as an excellent 3-D platform for cell attachment, proliferation, migration, and growth in bone tissue. This novel as-synthesized nHAp/PCL membrane on magnesium implants could be used as a potential material for orthopedic applications in the future.
2014-01-01
Background Previously, we evaluated a minimally invasive epidermal lipid sampling method called skin scrub, which achieved reproducible and comparable results to skin scraping. The present study aimed at investigating regional variations in canine epidermal lipid composition using the skin scrub technique and its suitability for collecting skin lipids in dogs suffering from certain skin diseases. Eight different body sites (5 highly and 3 lowly predisposed for atopic lesions) were sampled by skin scrub in 8 control dogs with normal skin. Additionally, lesional and non-lesional skin was sampled from 12 atopic dogs and 4 dogs with other skin diseases by skin scrub. Lipid fractions were separated by high performance thin layer chromatography and analysed densitometrically. Results No significant differences in total lipid content were found among the body sites tested in the control dogs. However, the pinna, lip and caudal back contained significantly lower concentrations of ceramides, whereas the palmar metacarpus and the axillary region contained significantly higher amounts of ceramides and cholesterol than most other body sites. The amount of total lipids and ceramides including all ceramide classes were significantly lower in both lesional and non-lesional skin of atopic dogs compared to normal skin, with the reduction being more pronounced in lesional skin. The sampling by skin scrub was relatively painless and caused only slight erythema at the sampled areas but no oedema. Histological examinations of skin biopsies at 2 skin scrubbed areas revealed a potential lipid extraction from the transition zone between stratum corneum and granulosum. Conclusions The present study revealed regional variations in the epidermal lipid and ceramide composition in dogs without skin abnormalities but no connection between lipid composition and predilection sites for canine atopic dermatitis lesions. The skin scrub technique proved to be a practicable sampling method for canine epidermal lipids, revealed satisfying results regarding alterations of skin lipid composition in canine atopic dermatitis and might be suitable for epidermal lipid investigations of further canine skin diseases. Although the ceramide composition should be unaffected by the deeper lipid sampling of skin scrub compared to other sampling methods, further studies are required to determine methodological differences. PMID:25012966
Cyclic Oxidation of FeCrAlY/Al2O3 Composites
NASA Technical Reports Server (NTRS)
Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.
1999-01-01
Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.
The Use of Natural Pozzolan in Concrete as an Additive or Substitute for Cement
2011-12-01
identified opal and chert as the common forms of reactive silica. ERDC/CERL TR-11-46 4 For cracking and expansion to result from the ASR, the following combi...chemical composition of three natural pozzolanic samples was deter- mined through XRD analysis. In addition to these analyses, several addi- tional tests...reflected angle, which results in an inaccurate plot. The correct angle is required to deter- mine the correct composition. A very finely ground sample
Influence of CoO Nanoparticles on Properties of Barium Zirconium Titanate Ceramics
NASA Astrophysics Data System (ADS)
Jarupoom, Parkpoom; Jaita, Pharatree; Boothrawong, Narongdetch; Phatungthane, Thanatep; Sanjoom, Ratabongkot; Rujijanagul, Gobwute; Cann, David P.
2017-07-01
Composites of Ba(Zr0.07Ti0.93)O3 ceramic and CoO nanoparticles (at 1.0 vol.% to 3.0 vol.%) have been fabricated to investigate the effects of the CoO nanoparticles on the properties of the composites. X-ray diffraction data revealed that the modified samples contained Ba(Zr0.07Ti0.93)O3 and CoO phases. Addition of CoO nanoparticles improved the magnetic behavior and resulted in slight changes in ferroelectric properties. The composites showed a magnetoelectric effect in which the negative value of the magnetocapacitance increased with increasing CoO concentration. Examination of the dielectric spectra showed that the two phase-transition temperatures as observed for unmodified Ba(Zr0.07Ti0.93)O3 merged into a single phase-transition temperature for the composite samples. The composite samples also showed broad relative permittivity versus temperature ( ɛ r - T) curves with frequency dispersion. This dielectric behavior can be explained in terms of the Maxwell-Wagner mechanism. In addition, the Vickers hardness ( H v) value of the samples increased with increasing CoO content.
Sorption Isotherm of Southern Yellow Pine-High Density Polyethylene Composites.
Liu, Feihong; Han, Guangping; Cheng, Wanli; Wu, Qinglin
2015-01-20
Temperature and relative humidity (RH) are two major external factors, which affect equilibrium moisture content (EMC) of wood-plastic composites (WPCs). In this study, the effect of different durability treatments on sorption and desorption isotherms of southern yellow pine (SYP)-high density polyethylene (HDPE) composites was investigated. All samples were equilibriumed at 20 °C and various RHs including 16%, 33%, 45%, 66%, 75%, 85%, 93%, and100%. EMCs obtained from desorption and absorption for different WPC samples were compared with Nelson's sorption isotherm model predictions using the same temperature and humidity conditions. The results indicated that the amount of moisture absorbed increased with the increases in RH at 20 °C. All samples showed sorption hysteresis at a fixed RH. Small difference between EMC data of WPC samples containing different amount of ultraviolet (UV) stabilizers were observed. Similar results were observed among the samples containing different amount of zinc borate (ZB). The experimental data of EMCs at various RHs fit to the Nelson's sorption isotherm model well. The Nelson's model can be used to predicate EMCs of WPCs under different RH environmental conditions.
Sorption Isotherm of Southern Yellow Pine—High Density Polyethylene Composites
Liu, Feihong; Han, Guangping; Cheng, Wanli; Wu, Qinglin
2015-01-01
Temperature and relative humidity (RH) are two major external factors, which affect equilibrium moisture content (EMC) of wood-plastic composites (WPCs). In this study, the effect of different durability treatments on sorption and desorption isotherms of southern yellow pine (SYP)-high density polyethylene (HDPE) composites was investigated. All samples were equilibriumed at 20 °C and various RHs including 16%, 33%, 45%, 66%, 75%, 85%, 93%, and100%. EMCs obtained from desorption and absorption for different WPC samples were compared with Nelson’s sorption isotherm model predictions using the same temperature and humidity conditions. The results indicated that the amount of moisture absorbed increased with the increases in RH at 20 °C. All samples showed sorption hysteresis at a fixed RH. Small difference between EMC data of WPC samples containing different amount of ultraviolet (UV) stabilizers were observed. Similar results were observed among the samples containing different amount of zinc borate (ZB). The experimental data of EMCs at various RHs fit to the Nelson’s sorption isotherm model well. The Nelson’s model can be used to predicate EMCs of WPCs under different RH environmental conditions. PMID:28787943
Dada, Toluwase A; Barber, Lucretia I; Ngoma, Lubanza; Mwanza, Mulunda
2018-03-01
The study developed an acceptable formula for the production of cassava strips (a deep fried product) using composite flour of cassava/cowpea at four different levels of cowpea substitutions (100:0, 90:10, 80:20, and 70:30). Sensory properties, proximate composition, and shelf life at ambient temperature were determined. Proximate composition, shelf life, and microbial analysis were further done on the most preferred sample (80:20) and the control (100:0). Results showed a significant difference between the tested sample and the control, except in their moisture (4.1%-4.2%) and fiber (5.0%) contents which were similar. Protein content increased from 0.9% to 2.6%, fat 24.6% to 28.5%, carbohydrate 59.7% to 61.1%, and ash 1.8% to 2.5% in both control and most preferred sample. Results showed no changes in their peroxide value (2.4 mEq/kg), moisture content (4.1%), and bacterial count of 0 × 10 2 CFU/g at ambient storage temperature for 4 weeks. The addition of cowpea flour increased the nutritional quality of the cassava strips.
Comparison of mine waste assessment methods at the Rattler mine site, Virginia Canyon, Colorado
Hageman, Phil L.; Smith, Kathleen S.; Wildeman, Thomas R.; Ranville, James F.
2005-01-01
In a joint project, the mine waste-piles at the Rattler Mine near Idaho Springs, Colorado, were sampled and analyzed by scientists from the U.S. Geological Survey (USGS) and the Colorado School of Mines (CSM). Separate sample collection, sample leaching, and leachate analyses were performed by both groups and the results were compared. For the study, both groups used the USGS sampling procedure and the USGS Field Leach Test (FLT). The leachates generated from these tests were analyzed for a suite of elements using ICP-AES (CSM) and ICP-MS (USGS). Leachate geochemical fingerprints produced by the two groups for composites collected from the same mine waste showed good agreement. In another set of tests, CSM collected another set of Rattler mine waste composite samples using the USGS sampling procedure. This set of composite samples was leached using the Colorado Division of Minerals and Geology (CDMG) leach test, and a modified Toxicity Characteristic Leaching Procedure (TCLP) leach test. Leachate geochemical fingerprints produced using these tests showed a variation of more than a factor of two from the geochemical fingerprints produced using the USGS FLT leach test. We have concluded that the variation in the results is due to the different parameters of the leaching tests and not due to the sampling or analytical methods.
NASA Astrophysics Data System (ADS)
Mahon, Brendan; Giorio, Chiara; Gallimore, Peter J.; Zielinski, Arthur T.; Tapparo, Andrea; Kalberer, Markus
2016-04-01
The Po Valley in Northern Italy represents one of the most polluted environments in Europe, with PM2.5 and ozone concentrations regularly exceeding 100μg/m3 and 50ppb respectively. Particularly during winter, prolonged inversion conditions together with biomass burning and anthropogenic emissions regularly lead to severe air pollution events. Over the course of several months in 2013-14, we carried out a sampling program at a city-centre site in Padova, Italy, collecting 24-hour high-volume aerosol filter samples, 18 in winter (mid December - mid March) and 20 in summer (late May - late July). Utilising high-resolution Orbitrap mass spectrometry techniques, we have characterised these sample sets to examine the long-term variation in aerosol composition over the sampling campaign and to determine the effect of anthropogenic gaseous pollutants such as NOx and SO2 on the composition of organic particle components. The results showed that between ca. 450-700 ions were measured in each sample in both the summer and winter sample sets, however the majority (90%) of ions in the winter samples were below 300m/z and below 380m/z in the summer samples. A much higher percentage of CHO-only ions were found in winter (ca. 27%) compared to the summer samples (ca. 6%), indicating a higher degree of photochemical reactions taking place involving pollutants such as NOx and SO2 in summer. Our results represent the first long term data set of high-resolution measurements of aerosol composition and demonstrate that this technique is an important tool in evaluating the composition of aerosol particles in complex polluted urban areas.
Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara
2016-01-01
Objectives: Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. Materials and Methods: DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). Results: The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Conclusion: Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively. PMID:27843507
Analysis of Graphite-Reinforced Cementitious Composites
NASA Technical Reports Server (NTRS)
Vaughan, R. E.
2002-01-01
Strategically embedding graphite meshes in a compliant cementitious matrix produces a composite material with relatively high tension and compressive properties as compared to steel-reinforced structures fabricated from a standard concrete mix. Although these composite systems are somewhat similar, the methods used to analyze steel-reinforced composites often fail to characterize the behavior of their more advanced graphite-reinforced counterparts. This Technical Memorandum describes some of the analytical methods being developed to determine the deflections and stresses in graphite-reinforced cementitious composites. It is initially demonstrated that the standard transform section method fails to provide accurate results when the elastic moduli ratio exceeds 20. An alternate approach is formulated by using the rule of mixtures to determine a set of effective material properties for the composite. Tensile tests are conducted on composite samples to verify this approach. When the effective material properties are used to characterize the deflections of composite beams subjected to pure bending, an excellent agreement is obtained. Laminated composite plate theory is investigated as a means for analyzing even more complex composites, consisting of multiple graphite layers oriented in different directions. In this case, composite beams are analyzed using the laminated composite plate theory with material properties established from tensile tests. Then, finite element modeling is used to verify the results. Considering the complexity of the samples, a very good agreement is obtained.
NHEXAS PHASE I MARYLAND STUDY--METALS IN SOIL ANALYTICAL RESULTS
The Metals in Soil data set contains analytical results for measurements of up to 4 metals in 277 soil samples over 75 households. Composite samples were obtained from up to 24 locations around the outside of the specific residence and combined into a single sample. The primary...
NHEXAS PHASE I MARYLAND STUDY--PESTICIDES IN SOIL ANALYTICAL RESULTS
The Pesticides in Soil data set contains analytical results for measurements of up to 9 pesticides in 60 soil samples over 41 households. Composite samples were obtained from up to 24 locations around the outside of the specific residence and combined into a single sample. Only...
Castaño, Carles; Parladé, Javier; Pera, Joan; Martínez de Aragón, Juan; Alday, Josu G; Bonet, José Antonio
2016-11-01
Drying soil samples before DNA extraction is commonly used for specific fungal DNA quantification and metabarcoding studies, but the impact of different drying procedures on both the specific fungal DNA quantity and the fungal community composition has not been analyzed. We tested three different drying procedures (freeze-drying, oven-drying, and room temperature) on 12 different soil samples to determine (a) the soil mycelium biomass of the ectomycorrhizal species Lactarius vinosus using qPCR with a specifically designed TaqMan® probe and (b) the fungal community composition and diversity using the PacBio® RS II sequencing platform. Mycelium biomass of L. vinosus was significantly greater in the freeze-dried soil samples than in samples dried at oven and room temperature. However, drying procedures had no effect on fungal community composition or on fungal diversity. In addition, there were no significant differences in the proportions of fungi according to their functional roles (moulds vs. mycorrhizal species) in response to drying procedures. Only six out of 1139 operational taxonomic units (OTUs) had increased their relative proportions after soil drying at room temperature, with five of these OTUs classified as mould or yeast species. However, the magnitude of these changes was small, with an overall increase in relative abundance of these OTUs of approximately 2 %. These results suggest that DNA degradation may occur especially after drying soil samples at room temperature, but affecting equally nearly all fungi and therefore causing no significant differences in diversity and community composition. Despite the minimal effects caused by the drying procedures at the fungal community composition, freeze-drying resulted in higher concentrations of L. vinosus DNA and prevented potential colonization from opportunistic species.
NASA Astrophysics Data System (ADS)
Soltani, Zahra; Beigzadeh, Amirmohammad; Ziaie, Farhood; Asadi, Eskandar
2016-10-01
In this paper the effects of particle size and weight percentage of the reinforcement phase on the absorption ability of thermal neutron by HDPE/B4C composites were investigated by means of Monte-Carlo simulation method using MCNP code and experimental studies. The composite samples were prepared using the HDPE filled with different weight percentages of Boron carbide powder in the form of micro and nano particles. Micro and nano composite were prepared under the similar mixing and moulding processes. The samples were subjected to thermal neutron radiation. Neutron shielding efficiency in terms of the neutron transmission fractions of the composite samples were investigated and compared with simulation results. According to the simulation results, the particle size of the radiation shielding material has an important role on the shielding efficiency. By decreasing the particle size of shielding material in each weight percentages of the reinforcement phase, better radiation shielding properties were obtained. It seems that, decreasing the particle size and homogeneous distribution of nano forms of B4C particles, cause to increase the collision probability between the incident thermal neutron and the shielding material which consequently improve the radiation shielding properties. So, this result, propose the feasibility of nano composite as shielding material to have a high performance shielding characteristic, low weight and low thick shielding along with economical benefit.
A biosensor based on graphite epoxy composite electrode for aspartame and ethanol detection.
Kirgöz, Ulkü Anik; Odaci, Dilek; Timur, Suna; Merkoçi, Arben; Alegret, Salvador; Beşün, Nurgün; Telefoncu, Azmi
2006-06-16
A gelatin membrane with carboxyl esterase and alcohol oxidase was subsequently integrated onto the surface of a graphite epoxy composite electrode (GECE). The developed biosensors showed linearity in the range of 2.5-400 microM for aspartame and 2.5-25 microM for ethanol with response times of 170 and 70s for each analyte, respectively. The resulting bienzyme biosensor was used for aspartame detection in diet coke samples and ethanol detection in beer and wine samples. From the obtained results, it can be concluded that the developed biosensor is a selective, practical and economic tool for aspartame and ethanol detection in real samples.
Lawson, Chris A
2018-09-01
Two experiments examined the extent to which category status influences children's attention to the composition of evidence samples provided by different informants. Children were told about two informants, each of whom presented different samples of evidence, and then were asked to judge which informant they would trust to help them learn something new. The composition of evidence samples was manipulated such that one sample included either a large number (n = 5) or a diverse range of exemplars relative to the other sample, which included either a small number (n = 2) or a homogeneous range of exemplars. Experiment 1 revealed that participants (N = 37; M age = 4.76 years) preferred to place their trust in the informant who presented the large or diverse sample when each informant was labeled "teacher" but exhibited no preference when each informant was labeled "child." Experiment 2 revealed developmental differences in responses when labels and sample composition were pitted against each other. Younger children (n = 32; M age = 3.42 years) consistently trusted the "teacher" regardless of the composition of the sample the informant was said to have provided, whereas older children (n = 30; M age = 5.54 years) consistently trusted the informant who provided the large or diverse sample regardless of whether it was provided by a "teacher" or a "child." These results have important implications for understanding the interplay between children's category knowledge and their evaluation of evidence. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Soltani, Z.; Ziaie, F.; Ghaffari, M.; Afarideh, H.; Ehsani, M.
2013-02-01
In this work the nano-composite samples were prepared using the LDPE filled with different weight percentages of hydroxyapatite powder which was synthesized via hydrolysis method. The samples were subjected to irradiation under 10 MeV electron beam in 75-250 kGy doses. Mechanical and thermal properties as well as the morphology of the nano-composite samples were investigated and compared. The hot-set and swelling tests confirmed the radiation crosslinking induced in the polymer matrix especially between the matrix and reinforcement phase. The result indicates that the mechanical and thermal parameters are strongly dependent on the hydroxyapatite content in comparison to radiation.
Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Christenson, Scott C.; Jaeschke, Jeanne B.; Fey, David L.; Berry, Cyrus J.
2005-01-01
Results of physical and chemical analyses of sediment and water collected near a closed municipal landfill at Norman, Oklahoma are presented in this report. Sediment analyses are from 40 samples obtained by freeze-shoe coring at 5 sites, and 14 shallow (depth <1.3 m) sediment samples. The sediment was analyzed to determine grain size, the abundance of extractable iron species and the abundances and isotopic compositions of forms of sulfur. Water samples included pore water from the freeze-shoe core, ground water, and surface water. Pore water from 23 intervals of the core was collected and analyzed for major and trace dissolved species. Thirteen ground-water samples obtained from wells within a few meters of the freeze-shoe core sites and one from the landfill were analyzed for major and trace elements as well as the sulfur and oxygen isotope composition of dissolved sulfate. Samples of surface water were collected at 10 sites along the Canadian River from New Mexico to central Oklahoma. These river-water samples were analyzed for major elements, trace elements, and the isotopic composition of dissolved sulfate.
Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites
NASA Technical Reports Server (NTRS)
Sun, Keun J.; Wincheski, Russell A.; Park, Cheol
2008-01-01
Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.
NASA Astrophysics Data System (ADS)
Luo, B.; Chen, Z.
2017-11-01
Most ionic polymer mental composites employ Nafion as the polymer matrix, Aquivion can also manufactured as ionic polymer mental composite while research was little. This paper researched on two kinds of ionic polymer mental composite based on Aquivion and Nafion matrix with palladium electrode called Aquivion-IPMC and Nafion-IPMC. The samples were fabricated by the same preparation process. The current and deformation responses of the samples were measured at voltage to characterize the mechano-electrical properties. The experimental observations revealed that shorter flexible side chains in Aquivion-IPMC provide a larger force than Nafion-IPMC, while the displacement properties were similar in two different samples. The results also showed that Aquivion membrane can also replace Nafion to reproduce IPMC application in soft robots, MEMS, and so on.
Metal-composite adhesion based on diazonium chemistry.
Oweis, Yara; Alageel, Omar; Kozak, Paige; Abdallah, Mohamed-Nur; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh
2017-11-01
Composite resins do not adhere well to dental alloys. This weak bond can result in failure at the composite-metal interface in fixed dental prostheses and orthodontic brackets. The aim of this study was to develop a new adhesive, based on diazonium chemistry, to facilitate chemical bonding between dental alloys and composite resin. Samples of two types of dental alloys, stainless steel and cobalt chromium were primed with a diazonium layer in order to create a surface coating favorable for composite adhesion. Untreated metal samples served as controls. The surface chemical composition of the treated and untreated samples was analyzed by X-ray photoelectron spectroscopy (XPS) and the tensile strength of the bond with composite resin was measured. The diazonium adhesive was also tested for shear bond strength between stainless steel orthodontic brackets and teeth. XPS confirmed the presence of a diazonium coating on the treated metals. The coating significantly increased the tensile and shear bond strengths by three and four folds respectively between the treated alloys and composite resin. diazonium chemistry can be used to develop composite adhesives for dental alloys. Diazonium adhesion can effectively achieve a strong chemical bond between dental alloys and composite resin. This technology can be used for composite repair of fractured crowns, for crown cementation with resin based cements, and for bracket bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Fabiniak, R. C.; Fabiniak, T. J.
1971-01-01
The results of experiments 1, 2, and 10 of the Apollo 14 composite casting demonstration are discussed. The purpose of the demonstration, with regard to samples 1 and 2, was to obtain preliminary data on the liquid phase sintering process in a weightless environment. With regard to sample 10, the purpose was to obtain preliminary information on how to achieve uniform dispersion of dense particles on a metal matrix by employing shaking modes or forces in the system when the metal matrix is molten. Results of the demonstrations were interpreted in a quantitative and qualitative manner. For experiment 1 it was found that the tungsten particles were redistributed more uniformly in the flight sample than in the control sample. Experiment 2 results indicate that complete melting may not have occured and thus a high degree of significance cannot be associated with the qualitative results relating to particle redistribution data. The particle-matrix system of experiment 10 was found to be nonwetting.
Patnana, Arun Kumar; Vanga, V Narsimha Rao; Chandrabhatla, Srinivas Kumar
2017-06-01
Over the past years, composites in aesthetic dentistry are showing a considerable progress, but mechanical strength and polymerization shrinkage are the two main drawbacks, which limit their use in high stress bearing areas. To evaluate the marginal integrity of short glass fibre reinforced composite restorations, fibre reinforced composites with composite superficial layer, and fibre reinforced composites with underlying flowable composite layer. This study was done on twenty eight sound premolar teeth with standardized class V cavities restored under four groups as Group I: Particulate filler composite (Filtek Z 250 XT, 3M ESPE); Group II: Short glass fibre reinforced composite (everX Posterior, GC); Group III: Short glass fibre reinforced composite with an overlying layer of particulate filler composite; Group IV: Short glass fibre reinforced composite with an underlying layer of flowable composite (Filtek Z 250 XT, 3M ESPE). Test samples were immersed in a 2% methylene blue dye for 24 hours at 37°C and each tooth was sectioned bucco-lingually. Staining along the tooth restoration interface was recorded and results were analysed statistically using Independent sample t-test and Tukey's post-hoc one-way ANOVA. The results showed significant difference in the dye penetration between the restorative materials in the occlusal and gingival margins (p=0.02). Short fibre reinforced composites showed a statistically significant difference in the microleakage scores when compared with the particulate filler composites (p=0.01). Short glass fibre reinforced composite restorations showed an improved marginal integrity when compared to the traditional particulate filler composite restorations.
NASA Astrophysics Data System (ADS)
Straková, Petra; Laiho, Raija
2016-04-01
In this presentation, we assess the merits of using Fourier transform infrared (FTIR) spectra to estimate the organic matter composition in different plant biomass and peat soil samples. Infrared spectroscopy has a great potential in large-scale peatland studies that require low cost and high throughput techniques, as it gives a unique "chemical overview" of a sample, with all the chemical compounds present contributing to the spectrum produced. Our extensive sample sets include soil samples ranging from boreal to tropical peatlands, including sites under different environmental and/or land-use changes; above- and below-ground biomass of different peatland plant species; plant root mixtures. We mainly use FTIR to estimate (1) chemical composition of the samples (e.g., total C and N, C:N ratio, holocellulose, lignin and ash content), (2) proportion of each plant species in root mixtures, and (3) respiration of surface peat. The satisfactory results of our predictive models suggest that this experimental approach can, for example, be used as a screening tool in the evaluation of organic matter composition in peatlands during monitoring of their degradation and/or restoration success.
Li, Li; Qin, Lei; Wang, Li-Kun; Wan, Yuan-Yuan; Sun, Bai-Sheng
2008-05-01
The 1-3-2 composite is made of 1-3 composite and ceramic base. Its effective properties are calculated based on the linear piezoelectric theory and uniform field theory. The influence of piezoelectric phase volume fraction and composite aspect (thickness/width) on resonance characteristic of square 1-3-2 piezoelectric composite plate has been researched. In addition, some 1-3-2 composite samples were fabricated by dice-fill technology. The resonance frequency of samples was investigated. The results show that the experiment agrees well with the calculation. The pure thickness resonance mode of 1-3-2 composite will be gained when the volume fraction of ceramic bottom is less than 30%; that of ceramic rods is in the range of 30 approximately 80% and the ratio of thickness to width is less than 0.35.
Solvent hold tank sample results for MCU-16-1317-1318-1319: September 2016 monthly sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F. F.; Jones, D. H.
Savannah River National Laboratory (SRNL) received one set of three Solvent Hold Tank (SHT) samples (MCU-16-1317-1318-1319), pulled on 09/12/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1317-1318-1319 indicated the Isopar™L concentration is above its nominal level (102%). The extractant (MaxCalix) and the modifier (CS-7SB) are 5% and 9% below their nominal concentrations. The suppressor (TiDG) is 76% below its nominal concentration. A summary of the concentration of the relevant solvent components is shown below.
Solvent hold tank sample results for MCU-16-1363-1364-1365: November 2016 monthly sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F. F.; Jones, D. H.
Savannah River National Laboratory (SRNL) received one set of three Solvent Hold Tank (SHT) samples (MCU-16-1363-1364-1365), pulled on 11/15/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1363-1364-1365 indicated the Isopar™L concentration is at its nominal level (100%). The extractant (MaxCalix) and the modifier (CS- 7SB) are 8% and 2 % below their nominal concentrations. The suppressor (TiDG) is 7% below its nominal concentration. A summary of the concentration of the relevant solvent components is shown below.
Antonson, Sibel A; Yazici, A Rüya; Kilinc, Evren; Antonson, Donald E; Hardigan, Patrick C
2011-07-01
The aim of this study was to compare four finishing/polishing systems (F/P) on surface roughness and gloss of different resin composites. A total of 40 disc samples (15 mm × 3 mm) were prepared from a nanofill - Filtek Supreme Plus (FS) and a micro-hybrid resin composite - Esthet-X (EX). Following 24h storage in 37°C water, the top surfaces of each sample were roughened using 120-grit sandpaper. Baseline measurements of surface roughness (Ra, μm) and gloss were recorded. Each composite group was divided into four F/P disk groups: Astropol[AP], Enhance/PoGo[EP], Sof-Lex[SL], and an experimental disk system, EXL-695[EXL] (n=5). The same operator finished/polished all samples. One sample from each group was evaluated under SEM. Another blinded-operator conducted postoperative measurements. Results were analysed by two-way ANOVA, two interactive MANOVA and Tukey's t-test (p<0.05). In surface roughness, the baseline of two composites differed significantly from each other whereas postoperatively there was no significance. The Sof-Lex F/P system provided the smoothest surface although there were no statistical significance differences between F/P systems (p>0.01). In gloss, FS composite with the EXL-695 system provided a significantly higher gloss (p<0.01). EX treated by Soflex revealed the least gloss (p<0.05). SEM images revealed comparable results for F/P systems but EX surfaces included more air pockets. Four different finishing/polishing systems provided comparable surface smoothness for both composites, whereas EXL with FS provided significantly higher gloss. SEM evaluations revealed that the EX surface contained more air pockets but F/P systems were compatible. Copyright © 2011 Elsevier Ltd. All rights reserved.
40 CFR 761.350 - Subsampling from composite samples.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Subsampling from composite samples...-Site Disposal, in Accordance With § 761.61 § 761.350 Subsampling from composite samples. (a) Preparing the composite. Composite the samples (eight from a flattened pile; eight or more from a conical pile...
Schicks, J M; Ziemann, M A; Lu, H; Ripmeester, J A
2010-12-01
Natural gas hydrates usually are found in the form of structure I, encasing predominantly methane in the hydrate lattices as guest molecules, sometimes also minor amount of higher hydrocarbons, CO2 or H2S. Raman spectroscopy is an approved tool to determine the composition of the hydrate phase. Thus, in this study Raman spectroscopic analyses have been applied to hydrate samples obtained from Integrated Ocean Drilling Program (IODP) Expedition 311 in two different approaches: studying the samples randomly taken from the hydrate core, and--as a new application--mapping small areas on the surface of clear hydrate crystals. The results obtained imply that the gas composition of hydrate, in terms of relative concentrations of CH4 and H2S, is not homogeneous over a core or even within a crystal. The mapping method yielded results with very high lateral resolution, indicating the coexistence of different phases with the same structure but different compositions within a hydrate crystal. Copyright © 2010 Elsevier B.V. All rights reserved.
X-ray tomography investigation of intensive sheared Al–SiC metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Giovanni, Mario; Warnett, Jason M.; Williams, Mark A.
2015-12-15
X-ray computed tomography (XCT) was used to characterise three dimensional internal structure of Al–SiC metal matrix composites. The alloy composite was prepared by casting method with the application of intensive shearing to uniformly disperse SiC particles in the matrix. Visualisation of SiC clusters as well as porosity distribution were evaluated and compared with non-shearing samples. Results showed that the average particle size as well as agglomerate size is smaller in sheared sample compared to conventional cast samples. Further, it was observed that the volume fraction of porosity was reduced by 50% compared to conventional casting, confirming that the intensive shearingmore » helps in deagglomeration of particle clusters and decrease in porosity of Al–SiC metal matrix composites. - Highlights: • XCT was used to visualise 3D internal structure of Al-SiC MMC. • Al-SiC MMC was prepared by casting with the application of intensive shearing. • SiC particles and porosity distribution were evaluated. • Results show shearing deagglomerates particle clusters and reduces porosity in MMC.« less
A bio-material: mechanical behaviour of LDPE-Al2O3-TiO2
NASA Astrophysics Data System (ADS)
Dhabale, R.; Jatti, V. S.
2016-09-01
Polymer composites are prominent candidate for polymeric bio-composites due to its low cost, high strength and ease of manufacturing. However, they suffer from low mechanical properties such as high wear rate and low hardness. In view of this, present study focuses on the synthesis of hybrid bio polymer matrix composites using low density polyethylene as matrix material with reinforcing material namely, alumina and titanium oxide. The samples were fabricated as per ASTM standard by varying the percentage of reinforcing particles using injection moulding machine. Various tests namely, tensile, flexural, impact, hardness, wear, SEM and corrosion were conducted on the prepared samples. On the basis of the experimental results, it can be concluded that injection moulding process can fabricate defect free cast samples. Polymer matrix composites of 70%LDPE +10% TiO2 +20% Al2O3 composition is biocompatible and a good candidate for biomaterial. Thus based on the inference of this study the above polymer matrix composite is suitable for orthopaedic applications and can be applied on hard and soft tissues of implantable materials in a human body.
Lunar Regolith Characterization for Simulant Design and Evaluation using Figure of Merit Algorithms
NASA Technical Reports Server (NTRS)
Schrader, Christian M.; Rickman, Douglas L.; Melemore, Carole A.; Fikes, John C.; Stoeser, Douglas B.; Wentworth, Susan J.; McKay, David S.
2009-01-01
NASA's Marshall Space Flight Center (MSFC), in conjunction with the United States Geological Survey (USGS) and aided by personnel from the Astromaterials Research and Exploration Science group at Johnson Space Center (ARES-JSC), is implementing a new data acquisition strategy to support the development and evaluation of lunar regolith simulants. The first analyses of lunar regolith samples by the simulant group were carried out in early 2008 on samples from Apollo 16 core 64001/64002. The results of these analyses are combined with data compiled from the literature to generate a reference composition and particle size distribution (PSD)) for lunar highlands regolith. In this paper we present the specifics of particle type composition and PSD for this reference composition. Furthermore. we use Figure-of-Merit (FoM) routines to measure the characteristics of a number of lunar regolith simulants against this reference composition. The lunar highlands regolith reference composition and the FoM results are presented to guide simulant producers and simulant users in their research and development processes.
Ferraris, Federico; Diamantopoulou, Sofia; Acunzo, Raffaele; Alcidi, Renato
2014-01-01
To evaluate the influence of thickness on the optical properties of two enamel shade composites, one with a high refractive index and one traditional. A medium value enamel shade was selected from the resin composites Enamel Plus HRi (UE2) and Enamel Plus HFO (GE2). Enamel Plus HRi is a high refractive index composite. Samples were fabricated in five different thicknesses: 0.3, 0.5, 1, 1.5 and 2 mm. Three specimens per material and thickness were fabricated. Three measurements per sample, over white, black and dentin composite background were generated with a spectrophotometer (Spectroshade Micro, MHT). Value, chroma, translucency and color differences (ΔE) of the specimens were calculated. RESULTS were analyzed by the Pearson correlation test, ANOVA and a post-hoc Tukey test. Increasing the thickness of the enamel layers decreased the translucency and the chroma of the substrate for both materials tested. For HRi the increase of the thickness resulted in an increase of the value, whereas for HFO it resulted in a reduction of the value. The two composites showed a significant difference in value for each thickness, but not in translucency and chroma. Color difference between them was perceptible in layers equal or higher than 0.5 mm. The high refractive index enamel (HRi) composite exhibits different optical behavior compared to the traditional one (HFO). HRi enamel composite behaves more like natural enamel as by increasing the thickness of the enamel layer, the value also increases.
Some functional properties of composite material based on scrap tires
NASA Astrophysics Data System (ADS)
Plesuma, Renate; Malers, Laimonis
2013-09-01
The utilization of scrap tires still obtains a remarkable importance from the aspect of unloading the environment from non-degradable waste [1]. One of the most prospective ways for scrap tires reuse is a production of composite materials [2] This research must be considered as a continuation of previous investigations [3, 4]. It is devoted to the clarification of some functional properties, which are considered important for the view of practical applications, of the composite material. Some functional properties of the material were investigated, for instance, the compressive stress at different extent of deformation of sample (till 67% of initial thickness) (LVS EN 826) [5] and the resistance to UV radiation (modified method based on LVS EN 14836) [6]. Experiments were realized on the purposefully selected samples. The results were evaluated in the correlation with potential changes of Shore C hardness (Shore scale, ISO 7619-1, ISO 868) [7, 8]. The results showed noticeable resistance of the composite material against the mechanical influence and ultraviolet (UV) radiation. The correlation with the composition of the material, activity of binder, definite technological parameters, and the conditions supported during the production, were determined. It was estimated that selected properties and characteristics of the material are strongly dependent from the composition and technological parameters used in production of the composite material, and from the size of rubber crumb. Obtained results show possibility to attain desirable changes in the composite material properties by changing both the composition and technological parameters of examined material.
Bajwa, Navroop Kaur; Pathak, Anuradha
2014-01-01
Context. An in vitro study carried out to evaluate and compare the effect of Cola drink on surface roughness of esthetic restorative materials. Purpose. To compare the effect of different immersion regimes in a Cola drink on surface roughness of esthetic restorative materials. Method. Two hundred samples were grouped into 4 equal groups of 50 samples each: Group I: conventional glass ionomer, Group II: resin modified glass ionomer, Group III: polyacid-modified resin composite, Group IV: Composite resin. Each group was further subdivided into 5 subgroups of 10 samples each. Subgroup A (Control Subgroup). Samples were kept immersed in artificial saliva. Subgroup B. Samples were immersed in Cola drink once a day. Subgroup C. Samples were immersed in Cola drink, 3 times a day. Subgroup D. Samples were immersed in Cola drink 5 times a day. Subgroup E. Samples were immersed in Cola drink 10 times a day. Each immersion lasted 5 minutes. The immersion protocol was repeated for 7 days. Results. Maximum surface roughness was seen in Group I conventional glass ionomer cement, followed by Group II resin modified glass ionomer, Group III polyacid modified resin composite, and Group IV composite resin samples. Conclusion. Resistance to change in surface roughness is more in resin based restorative materials as compared to glass ionomer based materials.
Bajwa, Navroop Kaur; Pathak, Anuradha
2014-01-01
Context. An in vitro study carried out to evaluate and compare the effect of Cola drink on surface roughness of esthetic restorative materials. Purpose. To compare the effect of different immersion regimes in a Cola drink on surface roughness of esthetic restorative materials. Method. Two hundred samples were grouped into 4 equal groups of 50 samples each: Group I: conventional glass ionomer, Group II: resin modified glass ionomer, Group III: polyacid-modified resin composite, Group IV: Composite resin. Each group was further subdivided into 5 subgroups of 10 samples each. Subgroup A (Control Subgroup). Samples were kept immersed in artificial saliva. Subgroup B. Samples were immersed in Cola drink once a day. Subgroup C. Samples were immersed in Cola drink, 3 times a day. Subgroup D. Samples were immersed in Cola drink 5 times a day. Subgroup E. Samples were immersed in Cola drink 10 times a day. Each immersion lasted 5 minutes. The immersion protocol was repeated for 7 days. Results. Maximum surface roughness was seen in Group I conventional glass ionomer cement, followed by Group II resin modified glass ionomer, Group III polyacid modified resin composite, and Group IV composite resin samples. Conclusion. Resistance to change in surface roughness is more in resin based restorative materials as compared to glass ionomer based materials. PMID:25006464
NASA Astrophysics Data System (ADS)
Li, XueAi; Han, XiJiang; Du, YunChen; Xu, Ping
2011-01-01
Magnetic and electromagnetic properties were investigated on the composites of iron oxide and Co-B alloy, which were prepared by a modified chemical reduction method. The composites are characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDXA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometry (VSM). The complex electromagnetic parameters (permittivity ɛr= ɛr'+j ɛr″ and permeability μr= μr'+j μr″) of paraffin mixed composite samples (paraffin:composites=1:1 in mass ratio) were measured in the frequency range 2-18 GHz by vector network analyzer. The measured real part ( ɛr') and imaginary part ( ɛr″) of the relative permittivity show two resonant peaks in the range of 2-18 GHz. The imaginary parts of relative permeability ( μr″) of all samples exhibited one broad resonant peak over the 2-8 GHz range. The μr″ of samples with higher molar ratio of Co to Fe (C and D) shows negative values within 13-18 GHz, which exhibit resonant and antiresonant permeabilities simultaneously. Calculation results indicated that the reflection loss values of the composites and paraffin wax mixtures are less than -10 dB with frequency width of about 6 GHz at the matching thickness.
Ninomiya, Kazuaki; Abe, Megumi; Tsukegi, Takayuki; Kuroda, Kosuke; Tsuge, Yota; Ogino, Chiaki; Taki, Kentaro; Taima, Tetsuya; Saito, Joji; Kimizu, Mitsugu; Uzawa, Kiyoshi; Takahashi, Kenji
2018-02-15
In the present study, we examined the efficacy of choline acetate (ChOAc, a cholinium ionic liquid))-assisted pretreatment of bagasse powder for subsequent mechanical nanofibrillation to produce lignocellulose nanofibers. Bagasse sample with ChOAc pretreatment and subsequent nanofibrillation (ChOAc/NF-bagasse) was prepared and compared to untreated control bagasse sample (control bagasse), bagasse sample with nanofibrillation only (NF-bagasse) and with ChOAc pretreatment only (ChOAc-bagasse). The specific surface area was 0.83m 2 /g, 3.1m 2 /g, 6.3m 2 /g, and 32m 2 /g for the control bagasse, ChOAc-bagasse, NF-bagasse, and the ChOAc/NF-bagasse, respectively. Esterified bagasse/polypropylene composites were prepared using the bagasse samples. ChOAc/NF-bagasse exhibited the best dispersion in the composites. The tensile toughness of the composites was 0.52J/cm 3 , 0.73J/cm 3 , 0.92J/cm 3 , and 1.29J/cm 3 for the composites prepared using control bagasse, ChOAc-bagasse, NF-bagasse, and ChOAc/NF-bagasse, respectively. Therefore, ChOAc pretreatment and subsequent nanofibrillation of bagasse powder resulted in enhanced tensile toughness of esterified bagasse/polypropylene composites. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Dong-Xu; Chen, Shu-Sen; Jin, Shao-Hua; Shu, Qing-Hai; Jiang, Zhen-Ming; Shang, Feng-Qin; Li, Jin-Xin
2016-01-01
2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW) was bonded by fluorine rubber and then desensitized by paraffin wax (PW), stearic acid (SA), and a PW/SA composite system using an aqueous suspension method. The coating and desensitization effects of the composite systems on HNIW and the influence of the addition of SA on the mechanical properties of the coated HNIW samples were studied. In addition, the PW/SA composite solution was simulated using a molecular dynamics method, and the relationship between the desensitization effect on HNIW and the properties of the composite solution was investigated. The results showed that the PW/SA composite system, of which the desensitization effect on HNIW was between those of the two desensitizers, could effectively coat HNIW and that the composite solution had the most stable and well-distributed state when using benzene as solvent with the mass ratio of PW/SA equal to 7/3 or 3/7, thus resulting in the best desensitization effect on HNIW. Moreover, the addition of stearic acid was successful in enhancing the mechanical properties of the coated HNIW samples.
Analysis of a Uranium Oxide Sample Interdicted in Slovakia (FSC 12-3-1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borg, Lars E.; Dai, Zurong; Eppich, Gary R.
2014-01-17
We provide a concise summary of analyses of a natural uranium sample seized in Slovakia in November 2007. Results are presented for compound identification, water content, U assay, trace element abundances, trace organic compounds, isotope compositions for U, Pb, Sr and O, and age determination using the 234U – 230Th and 235U – 231Pa chronometers. The sample is a mixture of two common uranium compounds - schoepite and uraninite. The uranium isotope composition is indistinguishable from natural; 236U was not detected. The O, Sr and Pb isotope compositions and trace element abundances are unremarkable. The 234U – 230Th chronometer givesmore » an age of 15.5 years relative to the date of analysis, indicating the sample was produced in January 1997. A comparison of the data for this sample with data in the Uranium Sourcing database failed to find a match, indicating the sample was not produced at a facility represented in the database.« less
COMPARISON OF USEPA FIELD SAMPLING METHODS FOR BENTHIC MACROINVERTEBRATE STUDIES
Two U.S. Environmental Protection Agency (USEPA) macroinvertebrate sampling protocols were compared in the Mid-Atlantic Highlands region. The Environmental Monitoring and Assessment Program (EMAP) wadeable streams protocol results in a single composite sample from nine transects...
Piezoelectric and Electrostrictive Materials for Transducer Applications. Volume 1.
1988-03-01
3 Composites for Hydrophone Applications ...................... 2 2.3.1 Lead Bismuth Titanate Ferrate Compositions ................. 2 2.3.2...external variables are considered. 2.3 0:3 Composites for Hydrophone Applications 2.3.1 Lead Bismuth Titanate Ferrate Compositions the-"Following up...34" Even for doped samples however, the best results were obtained at the 50% bismuth ferrate composition. 0.. W* . - ’ w-w~-,wn~ , 7WI W W PP7W-w7WnM
The uniformity and imaging properties of some new ceramic scintillators
NASA Astrophysics Data System (ADS)
Chac, George T. L.; Miller, Brian W.; Shah, Kanai; Baldoni, Gary; Domanik, Kenneth J.; Bora, Vaibhav; Cherepy, Nerine J.; Seeley, Zachary; Barber, H. Bradford
2012-10-01
Results are presented of investigations into the composition, uniformity and gamma-ray imaging performance of new ceramic scintillators with synthetic garnet structure. The ceramic scintillators were produced by a process that uses flame pyrolysis to make nanoparticles which are sintered into a ceramic and then compacted by hot isostatic compression into a transparent material. There is concern that the resulting ceramic scintillator might not have the uniformity of composition necessary for use in gamma-ray spectroscopy and gamma-ray imaging. The compositional uniformity of four samples of three ceramic scintillator types (GYGAG:Ce, GLuGAG:Ce and LuAG:Pr) was tested using an electron microprobe. It was found that all samples were uniform in elemental composition to the limit of sensitivity of the microprobe (few tenths of a percent atomic) over distance scales from ~ 1 cm to ~ 1 um. The light yield and energy resolution of all ceramic scintillator samples were mapped with a highly collimated 57Co source (122 keV) and performance was uniform at mapping scale of 0.25 mm. Good imaging performance with single gamma-ray photon detection was demonstrated for all samples using a BazookaSPECT system, and the imaging spatial resolution, measured as the FWHM of a LSF was 150 um.
Developmental and Individual Differences in Chinese Writing
Guan, Connie Qun; Ye, Feifei; Wagner, Richard K.; Meng, Wanjin
2015-01-01
The goal of the present study was to examine the generalizability of a model of the underlying dimensions of written composition across writing systems (Chinese Mandarin vs. English) and level of writing skill. A five-factor model of writing originally developed from analyses of 1st and 4th grade English writing samples was applied to Chinese writing samples obtained from 4th and 7th grade students. Confirmatory factor analysis was used to compare the fits of alternative models of written composition. The results suggest that the five-factor model of written composition generalizes to Chinese writing samples and applies to both less skilled (Grade 4) and more skilled (Grade 7) writing, with differences in factor means between grades that vary in magnitude across factors. PMID:26038631
Bossong, Clifford R.; Fleming, Andrea C.
2008-01-01
Stormwater in the Denver area was sampled by the U.S. Geological Survey, in cooperation with the Urban Drainage and Flood Control District, in a network of five monitoring stations - three on the South Platte River and two on tributary streams, beginning in October 2001 and continuing through October 11, 2005. Composite samples of stormwater were analyzed at the U.S. Geological Survey National Water Quality Laboratory during water years 2003-2005 and the Metro Wastewater Reclamation District Laboratory during water year 2002 for water-quality properties such as pH, specific conductance, hardness, and residue on evaporation at 105 degrees Celsius; and for constituents such as major ions (calcium, chloride, fluoride, magnesium, potassium, sodium, and sulfate) in 2005, organic carbon and nutrients, including ammonia, nitrite plus nitrate, ammonia plus organic nitrogen, phosphorus, and orthophosphate; and for metals, including total and dissolved phases of copper, lead, manganese, and zinc. Samples analyzed for bacteriological indicators such as Escherichia coli and fecal coliform collected during selected storms also were analyzed at the Metro Wastewater Reclamation Laboratory. Discrete samples collected during selected storms were analyzed at the U.S. Geological Survey National Water Quality Laboratory for a suite of water-quality properties and constituents similar to those analyzed in the composite samples but that did not include determinations for total phases of metals. Streamflow characteristics associated with 176 composite stormwater samples indicate that most samples were collected from hydrographs classified as falling or event hydrographs and that only a few samples were collected from rising hydrographs. Results from laboratory analyses of the composite samples indicate spatial patterns in which concentrations for some constituents increase with contributing drainage area in the South Platte River and Sand Creek, but no well-defined relation with the amount of urban land cover was identified using data available from the U.S. Geological Survey National Land Cover data. Results from 22 discrete samples collected during two storms and used to obtain composited results with various weighting methods indicate that correlation coefficients between time-weighted and volume-weighted concentrations were generally at least 0.65, indicating a strong direct correlation between the two weighting methods for the stations involved in this study. In addition, the central tendency for relative percent differences between the time- and volume-weighting methods typically has an absolute value of about 10 or less, indicating good agreement for these weighting methods for data collected as part of this study. Comparison of stormwater results to numeric standards for streams developed by the Colorado Department of Public Health and Environment on the basis of use classifications indicates that, for water-quality properties and constituents other than bacteriological indicators, there were very few exceptions to numeric standards. Bacteriological indicators, however, such as Escherichia coli and fecal coliform consistently exceeded numeric standards in all bacteriological samples. An evaluation of laboratory results from composite samples on the basis of annual means indicates the presence of some simple upward and downward temporal trends in concentrations. In general, for annual means of results for all stations, hardness, ammonia plus organic nitrogen, total phosphorus, most dissolved metals (lead, manganese, and zinc), and all total metals (copper, lead, manganese, and zinc) all indicate annual means that decrease each year, or downward trends. Some trends were indicated only at individual stations in the network rather than at all stations. Ammonia as nitrogen at Union, Denver, and Henderson, orthophosphate at Sand Creek, and nitrite plus nitrate at Denver and Henderson all indicate decreasing annual means, or downward tr
Zhu, Xinxin; Jin, Hui; Gao, Cuili; Gui, Rijun; Wang, Zonghua
2017-01-01
In this article, a facile aqueous synthesis of carbon dots (CDs) was developed by using natural kelp as a new carbon source. Through hydrothermal carbonization of kelp juice, fluorescent CDs were prepared and the CDs' surface was modified with polyethylenimine (PEI). The PEI-modified CDs were conjugated with fluorescein isothiocyanate (FITC) to fabricate CDs-FITC composites. To exploit broad applications, the CDs-FITC composites were developed as fluorescent sensing or imaging platforms of pH and Cu 2+ . Analytical performances of the composites-based fluorescence (FL) sensors were evaluated, including visual FL imaging of pH in glass bottle, ratiometric FL sensing of pH in yogurt samples, visual FL latent fingerprint and leaf imaging detection of [Cu 2+ ], dual-signal FL sensing of [Cu 2+ ] in yogurt and human serum samples. Experimental results from ratiometric, visual, dual-signal FL sensing and imaging applications confirmed the high feasibility, accuracy, stabilization and simplicity of CDs-FITC composites-based FL sensors for the detection of pH and Cu 2+ ions in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Geochemical Comparison of Four Cores from the Manson Impact Structure
NASA Technical Reports Server (NTRS)
Korotev, Randy L.; Rockow, Kaylynn M.; Jolliff, Bradley L.; Haskin, Larry A.; McCarville, Peter; Crossey, Laura J.
1996-01-01
Concentrations of 33 elements were determined in relatively unaltered, matrix-rich samples of impact breccia at approximately 3-m-depth intervals in the M-1 core from the Manson impact structure, Iowa. In addition, 46 matrix-rich samples from visibly altered regions of the M-7, M-8, and M-10 cores were studied, along with 42 small clasts from all four cores. Major element compositions were determined for a subset of impact breccias from the M-1 core, including matrix-rich impact-melt breccia. Major- and trace-element compositions were also determined for a suite of likely target rocks. In the M-1 core, different breccia units identified from lithologic examination of cores are compositionally distinct. There is a sharp compositional discontinuity at the boundary between the Keweenawan-shale-clast breccia and the underlying unit of impact-melt breccia (IMB) for most elements, suggesting minimal physical mixing between the two units during emplacement. Samples from the 40-m-thick IMB (M-1) are all similar to each other in composition, although there are slight increases in concentration with depth for those elements that have high concentrations in the underlying fragmental-matrix suevite breccia (SB) (e.g., Na, Ca, Fe, Sc), presumably as a result of greater clast proportions at the bottom margin of the unit of impact-melt breccia. The high degree of compositional similarity we observe in the impact-melt breccias supports the interpretation that the matrix of this unit represents impact melt. That our analyses show such compositional similarity results in part from our technique for sampling these breccias: for each sample we analyzed a few small fragments (total mass: approximately 200 mg) selected to be relatively free of large clasts and visible signs of alteration instead of subsamples of powders prepared from a large mass of breccia. The mean composition of the matrix-rich part of impact-melt breccia from the M-1 core can be modeled as a mixture of approximately 35% shale and siltstone (Proterozoic "Red Clastics"), 23% granite, 40% hornblende-biotite gneiss, and a small component (less than 2%) of mafic-dike rocks.
Novel ternary composites: Preparation, performance and application of ZnFe2O4/TiO2/polyaniline
NASA Astrophysics Data System (ADS)
Li, Juanbi; Xiao, Qiushi; Li, Liangchao; Shen, Junhai; Hu, Diqiong
2015-03-01
A series of ZnFe2O4/TiO2/polyaniline ternary composites with excellent photocatalytic activity were successfully synthesized by chemical method. The phase composition, morphology, conductivity, electrical and magnetic performances of the as-samples were characterized by means of modern measurement technology. And the photocatalytic degradation activity tests for the samples were estimated using rhodamine B (RhB) and methyl orange (MO) as targeted pollutants. The results indicated that there existed some interactions between each component in the ternary composites, and the electrical conductivities and photocatalytic degradation activities of the ternary composites were improved due to the coating of polyaniline. Moreover, when the mass fraction of aniline was up to 50%, the ternary composite exhibited a great decontaminating (including photocatalytic degradation and adsorption) activity of on both MO and RhB and displayed an excellent reusability.
Composite outcomes in randomized clinical trials: arguments for and against.
Ross, Sue
2007-02-01
Composite outcomes that combine a number of individual outcomes (such as types of morbidity) are frequently used as primary outcomes in obstetrical trials. The main argument for their use is to ensure that trials can answer important clinical questions in a timely fashion, without needing huge sample sizes. Arguments against their use are that composite outcomes may be difficult to use and interpret, leading to errors in sample size estimation, possible contradictory trial results, and difficulty in interpreting findings. Such problems may reduce the credibility of the research, and may impact on the implementation of findings. Composite outcomes are an attractive solution to help to overcome the problem of limited available resources for clinical trials. However, future studies should carefully consider both the advantages and disadvantages before using composite outcomes. Rigorous development and reporting of composite outcomes is essential if the research is to be useful.
Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties
NASA Astrophysics Data System (ADS)
Gayathri, S.; Jayabal, P.; Kottaisamy, M.; Ramakrishnan, V.
2014-05-01
Zinc oxide/Graphene (GZ) composites with different concentrations of ZnO were successfully synthesized through simple chemical precipitation method. The X-ray diffraction pattern and the micro-Raman spectroscopic technique revealed the formation of GZ composite, and the energy dispersive X-ray spectrometry analysis showed the purity of the prepared samples. The ZnO nanoparticles decorated graphene sheets were clearly visible in the field emission scanning electron micrograph. Raman mapping was employed to analyze the homogeneity of the prepared samples. The diffuse-reflectance spectra clearly indicated that the formation of GZ composites promoted the absorption in the visible region also. The photocatalytic activity of ZnO and GZ composites was studied by the photodegradation of Methylene blue dye. The results revealed that the GZ composites exhibited a higher photocatalytic activity than pristine ZnO. Hence, we proposed a simple wet chemical method to synthesize GZ composite and its application on photocatalysis was demonstrated.
Smits, Marianne; Vanpachtenbeke, Floris; Horemans, Benjamin; De Wael, Karolien; Hauchecorne, Birger; Van Langenhove, Herman; Demeestere, Kristof; Lenaerts, Silvia
2012-01-01
Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results. PMID:22442670
NASA Astrophysics Data System (ADS)
Saleem Mirza, Muhammad; Yasin, Tariq; Ikram, Masroor; Altaf, Muhammad; Mushtaq, Zahir; Nasir Khan, Muhammad
2016-03-01
Underwater characterizations of (Pb0.94Sr0.04)(Zr0.52Ti0.48)O3 (PZT) and PZT/araldite-F 1-3 composite were carried out through a self-designed transducer. Disc-shaped samples of bulk PZT and PZT/araldite-F composite were first characterized in air and then were assembled in the transducer individually. The transducer's underwater voltage receiving sensitivity (Sh) and transmitting voltage response (Sv) were investigated in the frequency range of 10-200 kHz (well below thickness mode resonance) using a calibrated projector and receiver method with pulse technique. Results revealed that the transducer made with composite sample exhibited better (Sh) values (-214 dB ref 1 V/µPa) due to ~295% higher piezoelectric voltage coefficient gh (30 × 10-3 Vm/N) of the composite compared to PZT. In addition, the transducer with the PZT sample showed better Sv values (80 dB ref 1 µPa/1 V at 1 m) due to the presence of planar mode peaks in the frequency range of 10-200 kHz. These results indicate that the monolithic piezoceramic can exhibit underwater Sv response in both planar and thickness resonance modes owing to the admittance peaks in these frequency regions.
NASA Astrophysics Data System (ADS)
Sangmala, A.; Limsuwan, P.; Kaewwiset, W.; Naemchanthara, K.
2017-09-01
Hydroxyapatite-ZrO2 composite ceramic were synthesized using a thermal precipitation techniques. The chemical precursors were prepared from di-ammonium hydrogen orthophosphate, calcium oxide (CaO) derived from chicken eggshell, zirconium dioxide (ZrO2) and distilled water. The mixture were heated at the various temperatures from 100 to 700 °C in the furnace with an incremental temperature of 100 °C. The ZrO2 contents in the composite ceramic were varied from 0 to 15 percent weight of CaO. The prepared composites were then annealed at 300, 600 and 700 °C for 4 h in air. The crystal structure, function group and morphology of all samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and universal testing machine (UTM), respectively. The results indicated that the undoped-ZrO2 samples hydroxyapatite phase with a hexagonal structure. However, the hydroxyapatite was transformed to the tri-calcium phosphate after thermal treatment at 700 °C. For the doped-ZrO2 samples, the hydroxyapatite and ZrO2 phases were found. Moreover, the result showed that the compressive strength of hydroxyapatite-ZrO2 composite ceramic increased with increasing the ZrO2 content.
Photoelectron studies of machined brass surfaces
NASA Astrophysics Data System (ADS)
Potts, A. W.; Merrison, J. P.; Tournas, A. D.; Yacoot, A.
UV photoelectron spectroscopy has been used to determine the surface composition of machined brass. The results show a considerable change between the photoelectron surface composition and the bulk composition of the same sample determined by energy-dispersive X-ray fluorescence. On the surface the lead composition is increased by ˜900 G. This is consistent with the important part that lead is believed to play in improving the machinability of this alloy.
PIXE study on the provenance of Chinese ancient porcelain
NASA Astrophysics Data System (ADS)
Zhu, D.; Cheng, H. S.; Lin, J. W.; Yang, F. J.
2006-08-01
This paper reports the PIXE study on the provenance of Chinese ancient porcelain made in 7-10th century. The chemical compositions of Jun celadon samples made at Juntai, Linru and Hunyuan kilns, the white-glazed porcelain samples made at Ding, Huangye and Dangyangyu kilns, and the Ru celadon samples made at Qiangliang Temple were measured by external-beam PIXE, and the factor analysis was applied for identifying their provenances. Experimental results show that the porcelain products made at different kilns can be distinguished according to the compositional differences measured by PIXE.
Darst, Melanie R.; Light, Helen M.
2007-01-01
Floodplain forests of the Apalachicola River, Florida, are drier in composition today (2006) than they were before 1954, and drying is expected to continue for at least the next 50 years. Drier forest composition is probably caused by water-level declines that occurred as a result of physical changes in the main channel after 1954 and decreased flows in spring and summer months since the 1970s. Forest plots sampled from 2004 to 2006 were compared to forests sampled in the late 1970s (1976-79) using a Floodplain Index (FI) based on species dominance weighted by the Floodplain Species Category, a value that represents the tolerance of tree species to inundation and saturation in the floodplain and consequently, the typical historic floodplain habitat for that species. Two types of analyses were used to determine forest changes over time: replicate plot analysis comparing present (2004-06) canopy composition to late 1970s canopy composition at the same locations, and analyses comparing the composition of size classes of trees on plots in late 1970s and in present forests. An example of a size class analysis would be a comparison of the composition of the entire canopy (all trees greater than 7.5 cm (centimeter) diameter at breast height (dbh)) to the composition of the large canopy tree size class (greater than or equal to 25 cm dbh) at one location. The entire canopy, which has a mixture of both young and old trees, is probably indicative of more recent hydrologic conditions than the large canopy, which is assumed to have fewer young trees. Change in forest composition from the pre-1954 period to approximately 2050 was estimated by combining results from three analyses. The composition of pre-1954 forests was represented by the large canopy size class sampled in the late 1970s. The average FI for canopy trees was 3.0 percent drier than the average FI for the large canopy tree size class, indicating that the late 1970s forests were 3.0 percent drier than pre-1954 forests. The change from the late 1970s to the present was based on replicate plot analysis. The composition of 71 replicate plots sampled from 2004 to 2006 averaged 4.4 percent drier than forests sampled in the late 1970s. The potential composition of future forests (2050 or later) was estimated from the composition of the present subcanopy tree size class (less than 7.5 cm and greater than or equal to 2.5 cm dbh), which contains the greatest percentage of young trees and is indicative of recent hydrologic conditions. Subcanopy trees are the driest size class in present forests, with FIs averaging 31.0 percent drier than FIs for all canopy trees. Based on results from all three sets of data, present floodplain forests average 7.4 percent drier in composition than pre-1954 forests and have the potential to become at least 31.0 percent drier in the future. An overall total change in floodplain forests to an average composition 38.4 percent drier than pre-1954 forests is expected within approximately 50 years. The greatest effects of water-level decline have occurred in tupelo-cypress swamps where forest composition has become at least 8.8 percent drier in 2004-06 than in pre-1954 years. This change indicates that a net loss of swamps has already occurred in the Apalachicola River floodplain, and further losses are expected to continue over the next 50 years. Drying of floodplain forests will result in some low bottomland hardwood forests changing in composition to high bottomland hardwood forests. The composition of high bottomland hardwoods will also change, although periodic flooding is still occurring and will continue to limit most of the floodplain to bottomland hardwood species that are adapted to at least short periods of inundation and saturation.
Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Berry, Cyrus J.; Christenson, Scott C.; Jaeschke, Jeanne B.
2008-01-01
Analytical results on sediment and associated ground water from the Canadian River alluvium collected subsequent to those described in Breit and others (2005) are presented in this report. The data presented herein were collected primarily to evaluate the iron and sulfur species within the sediment at well sites IC 36, IC 54, and IC South located at the USGS Norman Landfill study site. Cored sediment and water samples were collected during October 2004 and April 2005. The 52 sediment samples collected by coring were analyzed to determine grain size, the abundance of extractable iron species, and the abundance of sulfur forms and their isotopic compositions. Ground water was collected from cluster wells that sampled ground water from 11 to 15 screened intervals at each of the three sites. The depth range of the wells overlapped the interval of cored sediment. Concentrations of major ions, dissolved organic carbon (DOC), ammonium, and iron are reported with pH, specific conductance, and the isotopic composition of the water for the 75 water samples analyzed. Dissolved sulfate in selected water samples was analyzed to determine its sulfur and oxygen isotope composition.
Optimization the composition of sand-lime products modified of diabase aggregate
NASA Astrophysics Data System (ADS)
Komisarczyk, K.; Stępień, A.
2017-10-01
The problem of optimizing the composition of building materials is currently of great importance due to the increasing competitiveness and technological development in the construction industry. This phenomenon also applies to catalog sand-lime. The respective arrangement of individual components or their equivalents, and linking them with the main parameters of the composition of the mixture, i.e. The lime/sand/water should lead to the intended purpose. The introduction of sand-lime diabase aggregate is concluded with a positive effect of final products. The paper presents the results of optimization with the addition of diabase aggregate. The constant value was the amount of water, variable - the mass of the dry ingredients. The program of experimental studies was taken for 6 series of silicates made in industrial conditions. Final samples were tested for mechanical and physico-chemical expanding the analysis of the mercury intrusion porosimetry, SEM and XRD. The results show that, depending on the aggregate’s contribution, exhibit differences. The sample in an amount of 10% diabase aggregate the compressive strength was higher than in the case of reference sample, while modified samples absorbed less water.
Solvent Hold Tank Sample Results for MCU-15-129-130-131: January 2015 Monthly Sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F. F.; Taylor-Pashow, K. M. L.
2015-02-19
SRNL received one set of SHT samples (MCU-15-129, MCU-15-130, and MCU-15-131), pulled on 01/25/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-129-130-131 indicated low concentrations of the suppressor (TiDG), of the extractant (MaxCalix), and of the modifier (CS-7SB) in the solvent relative to their nominal values. This analysis confirms a downward trend of these components. No impurities were found in this solvent. The laboratory will continue to monitor the quality of the solvent in particular for any new impurity or degradation of the solvent components.
Estimated content percentages of volatile liquids and fat extractables in ready-to-eat foods.
Daft, J L; Cline, J K; Palmer, R E; Sisk, R L; Griffitt, K R
1996-01-01
Content percentages of volatile liquids and fat extractables in 340 samples of ready-to-eat foods were determined gravimetrically. Volatile liquids were determined by drying samples in a microwave oven with a self-contained balance; results were printed out automatically. Fat extractables were extracted from the samples with mixed ethers; extracts were dried and weighed manually. The samples, 191 nonfat and 149 fatty (containing ca 2% or more fat) foods, represent about 5000 different food items and include infant and toddler, ethnic, fast, and imported items. Samples were initially prepared for screening of essential and toxic elements and chemical contamination by chopping and mixing into homogenous composites. Content determinations were then made on separate portions from each composite. Content results were put into a database for evaluation. Overall, mean results from both determinations agree with published data for moisture and fat contents of similar food items. Coefficients of variation, however, were lower for determination of volatile liquids than for that of fat extractables.
Effect of somatic cell count and mastitis pathogens on milk composition in Gyr cows
2013-01-01
Background Gyr cows are well adapted to tropical conditions, resistant to some tropical diseases and have satisfactory milk production. However, Gyr dairy herds have a high prevalence of subclinical mastitis, which negatively affects their milk yield and composition. The objectives of this study were (i) to evaluate the effects of seasonality, mammary quarter location (rear x front), mastitis-causing pathogen species, and somatic cell count (SCC) on milk composition in Gyr cows with mammary quarters as the experimental units and (ii) to evaluate the effects of seasonality and somatic cell count (SCC) on milk composition in Gyr cows with cows as the experimental units. A total of 221 lactating Gyr cows from three commercial dairy farms were selected for this study. Individual foremilk quarter samples and composite milk samples were collected once a month over one year from all lactating cows for analysis of SCC, milk composition, and bacteriological culture. Results Subclinical mastitis reduced lactose, nonfat solids and total solids content, but no difference was found in the protein and fat content between infected and uninfected quarters. Seasonality influenced milk composition both in mammary quarters and composite milk samples. Nevertheless, there was no effect of mammary quarter position on milk composition. Mastitis-causing pathogens affected protein, lactose, nonfat solids, and total solids content, but not milk fat content. Somatic cell count levels affected milk composition in both mammary quarters and composite samples of milk. Conclusions Intramammary infections in Gyr cows alter milk composition; however, the degree of change depends on the mastitis-causing pathogen. Somatic cell count is negatively associated with reduced lactose and nonfat solids content in milk. Seasonality significantly affects milk composition, in which the concentration of lactose, fat, protein, nonfat solids and total solids differs between dry and wet seasons in Gyr cows. PMID:23566405
Spectroscopy Measurements on Ablation Testing in High Enthalpy Plasma Flows
2010-11-01
sample as well as the recession rate. Further, the chemical composition of the free- stream and the surrounding gas layer in front of the sample...of the samples due to ablation (mass loss & surface recession ), different temperature measurements (surface & inside) and spectroscopic results...25 5 MEASUREMENT RESULTS AND DISCUSSIONS ................................................................ 26 5.1 MASS LOSS AND RECESSION
NASA Astrophysics Data System (ADS)
Vander Kaaden, K. E.; McCubbin, F. M.; Harrington, A.
2017-12-01
Determining the bulk composition of precious materials with a finite mass (e.g., meteorite samples) is extremely important in the fields of Earth and Planetary Science. From meteorite studies we are able to place constraints on large scale planetary processes like global differentiation and subsequent volcanism, as well as smaller scale processes like crystallization in a magma chamber or sedimentary compaction at the surface. However, with meteorite samples in particular, far too often we are limited by how precious the sample is as well as its limited mass. In this study, we have utilized aliquots of samples previously studied for toxicological hazards [1] including both the fresh samples (lunar mare basalt NWA 4734, lunar regolith breccia NWA 7611, martian basalt Tissint, martian regolith breccia NWA 7034, a vestian basalt Berthoud, a vestian regolith breccia NWA 2060, and a terrestrial mid-ocean ridge basalt (MORB)), and those that underwent iron leaching (Tissint, NWA 7034, NWA 4734, MORB). With these small masses of material, we performed low pressure ( 0.75 GPa), high temperature (>1600°C) melting experiments. Each sample was analyzed using a JEOL 8530F electron microprobe to determine the bulk composition of the materials that were previously examined in [1]. When available, the results of our microprobe data were compared with bulk rock compositions in the literature. The results of this study show that with this technique, only 50 mg of sample is required to accurately determine the bulk composition of the materials of interest. [1] Harrington, A.D., McCubbin, F.M., Kaur, J., Smirnov, A., Galdanes, K., Schoonen, M.A.A., Chen, L.C., Tsirka, S.E., and Gordon, T. (2017) Pulmonary inflammatory responses to acute meteroite dust exposures - Implications for human space exploration. 48th Lunar and Planetary Science Conference, The Woodlands, TX, #2922.
Optimization of SEM-EDS to determine the C–A–S–H composition in matured cement paste samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossen, J.E., E-mail: john.rossen@alumni.epfl.ch
Microanalysis of characteristic X-rays in the SEM is a powerful method to assess the chemical composition of phases in cement pastes, in particular the calcium silicate hydrate containing aluminium (C–A–S–H). Nevertheless, many variables may influence the results obtained, due mainly to the intimate mixing of C–A–S–H with other hydrate phases and the susceptibility of this phase to damage by the electron beam. In this study the effect of various acquisition parameters was examined, along with methods to determine an “average” C–A–S–H composition. The results acquired in the SEM were compared with the analysis of the same samples in the TEM,more » where phases can be analyzed without intermixing. A simple method was used to obtain compositions from SEM based analysis that are very close to those which can be obtained in the TEM. - Highlights: •The intermixing of phases is the limiting factor in the analysis of C–A–S–H composition by SEM-EDS •Guidelines to limit beam damage and properly analyze C–A–S–H composition by SEM-EDS are given •SEM-EDS and TEM-EDS give similar results when proper data treatment is made.« less
Molding of strength testing samples using modern PDCPD material for purpose of automotive industry
NASA Astrophysics Data System (ADS)
Grabowski, L.; Baier, A.; Sobek, M.
2017-08-01
The casting of metal materials is widely known but the molding of composite polymer materials is not well-known method still. The initial choice of method for producing composite bodies was the method of casting of PDCPD material. For purpose of performing casting of polymer composite material, a special mold was made. Firstly, the 3D printed, using PLA material, mold was used. After several attempts of casting PDCPD many problems were encountered. The second step was to use mold milled from a firm and dense isocyanate foam. After several attempts research shown that this solution is more resistant to high-temperature peak, but this material is too fragile to use it several times. This solution also prevents mold from using external heating, which can be necessary for performing correct molding process. The last process was to use the aluminum mold, which is dedicated to PDCPD polymer composite, because of low adhesiveness. This solution leads to perform correct PDCPD polymer composite material injection. After performing casting operation every PDCPD testing samples were tested. These results were compared together. The result of performed work was to archive correct properties of injection of composite material. Research and results were described in detail in this paper.
Comparison of the nutrient composition of commercial dog milk replacers with that of dog milk
Heinze, Cailin R.; Freeman, Lisa M.; Martin, Camilia R.; Power, Michael L.; Fascetti, Andrea J.
2015-01-01
Objective To compare the nutrient composition of commercially available dog milk replacers with that of dog milk. Design Prospective, cross-sectional study. Sample 5 dog milk samples and 15 samples of commercial dog milk replacers. Procedures Dog milk and milk replacers were analyzed for concentrations of total protein, essential amino acids, sugars, total fat, essential fatty acids, calcium, and phosphorus. Energy density was calculated. Results from milk replacers were compared with the range of the concentration of each nutrient in milk samples from mature dogs as well as the National Research Council (NRC) recommendations for puppy growth. Results Milk replacers varied widely in caloric density and concentration of nutrients such as calcium, protein, and fat. Calcium concentration was lower in 14 of 15 milk replacers than in the dog milk samples. Docosahexaenoic acid was undetectable in 12 of 15 milk replacers but present in all dog milk samples. All milk replacers had numerous essential nutrients outside of the range of the dog milk samples, and many had concentrations of amino acids, essential fatty acids, calcium, and phosphorus less than the NRC minimal requirement or recommended allowance. Compared with NRC recommendations, some dog milk samples had concentrations of total protein, linoleic acid, calcium, or phosphorus less than the recommended allowance. Conclusions and Clinical Relevance Results suggested that there was substantial variation in nutrient composition of 15 dog milk replacers and that some products were closer approximations of dog milk than others. Nearly all products would benefit from more appropriate calcium, amino acids, and essential fatty acids concentrations and better feeding directions. PMID:24871064
Normal composite face effects in developmental prosopagnosia.
Biotti, Federica; Wu, Esther; Yang, Hua; Jiahui, Guo; Duchaine, Bradley; Cook, Richard
2017-10-01
Upright face perception is thought to involve holistic processing, whereby local features are integrated into a unified whole. Consistent with this view, the top half of one face appears to fuse perceptually with the bottom half of another, when aligned spatially and presented upright. This 'composite face effect' reveals a tendency to integrate information from disparate regions when faces are presented canonically. In recent years, the relationship between susceptibility to the composite effect and face recognition ability has received extensive attention both in participants with normal face recognition and participants with developmental prosopagnosia. Previous results suggest that individuals with developmental prosopagnosia may show reduced susceptibility to the effect suggestive of diminished holistic face processing. Here we describe two studies that examine whether developmental prosopagnosia is associated with reduced composite face effects. Despite using independent samples of developmental prosopagnosics and different composite procedures, we find no evidence for reduced composite face effects. The experiments yielded similar results; highly significant composite effects in both prosopagnosic groups that were similar in magnitude to the effects found in participants with normal face processing. The composite face effects exhibited by both samples and the controls were greatly diminished when stimulus arrangements were inverted. Our finding that the whole-face binding process indexed by the composite effect is intact in developmental prosopagnosia indicates that other factors are responsible for developmental prosopagnosia. These results are also inconsistent with suggestions that susceptibility to the composite face effect and face recognition ability are tightly linked. While the holistic process revealed by the composite face effect may be necessary for typical face perception, it is not sufficient; individual differences in face recognition ability likely reflect variability in multiple sequential processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact of enzymatic digestion on bacterial community composition in CF airway samples.
Williamson, Kayla M; Wagner, Brandie D; Robertson, Charles E; Johnson, Emily J; Zemanick, Edith T; Harris, J Kirk
2017-01-01
Previous studies have demonstrated the importance of DNA extraction methods for molecular detection of Staphylococcus, an important bacterial group in cystic fibrosis (CF). We sought to evaluate the effect of enzymatic digestion (EnzD) prior to DNA extraction on bacterial communities identified in sputum and oropharyngeal swab (OP) samples from patients with CF. DNA from 81 samples (39 sputum and 42 OP) collected from 63 patients with CF was extracted in duplicate with and without EnzD. Bacterial communities were determined by rRNA gene sequencing, and measures of alpha and beta diversity were calculated. Principal Coordinate Analysis (PCoA) was used to assess differences at the community level and Wilcoxon Signed Rank tests were used to compare relative abundance (RA) of individual genera for paired samples with and without EnzD. Shannon Diversity Index (alpha-diversity) decreased in sputum and OP samples with the use of EnzD. Larger shifts in community composition were observed for OP samples (beta-diversity, measured by Morisita-Horn), whereas less change in communities was observed for sputum samples. The use of EnzD with OP swabs resulted in significant increase in RA for the genera Gemella ( p < 0.01), Streptococcus ( p < 0.01), and Rothia ( p < 0.01). Staphylococcus ( p < 0.01) was the only genus with a significant increase in RA from sputum, whereas the following genera decreased in RA with EnzD: Veillonella ( p < 0.01), Granulicatella ( p < 0.01), Prevotella ( p < 0.01), and Gemella ( p = 0.02). In OP samples, higher RA of Gram-positive taxa was associated with larger changes in microbial community composition. We show that the application of EnzD to CF airway samples, particularly OP swabs, results in differences in microbial communities detected by sequencing. Use of EnzD can result in large changes in bacterial community composition, and is particularly useful for detection of Staphylococcus in CF OP samples. The enhanced identification of Staphylococcus aureus is a strong indication to utilize EnzD in studies that use OP swabs to monitor CF airway communities.
Corrosive effect of environmental change on selected properties of polymer composites
NASA Astrophysics Data System (ADS)
Markovičová, L.; Zatkalíková, V.
2017-11-01
The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, micro-organisms and other atmospheric factors. The present article deals with monitoring the changes in the mechanical properties of composites with polymer matrix. The composite was formed from the PA matrix and glass fibers (GF). The composite contains 10, 20 and 30 % of glass fibers. The mechanical properties were evaluated on samples of the composite before and after UV radiation on the sample. Light microscopy was evaluated distribution of glass fibers in the polymer matrix and the presence of cracks caused by UV radiation.
40 CFR 761.289 - Compositing samples.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.289 Compositing samples. Compositing is a method of combining several samples of a specific type of bulk PCB remediation waste or... compositing bulk PCB remediation waste samples. These procedures are based on the method for selecting...
40 CFR 761.289 - Compositing samples.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.289 Compositing samples. Compositing is a method of combining several samples of a specific type of bulk PCB remediation waste or... compositing bulk PCB remediation waste samples. These procedures are based on the method for selecting...
Studies on crosslinked hydroxyapatite-polyethylene composite as a bone-analogue material
NASA Astrophysics Data System (ADS)
Smolko, E.; Romero, G.
2007-08-01
The paper examines the use of different types of polymeric matrix composites in hard-tissue replacement applications. The composite samples were prepared with hydroxyapatite (HA) powder and polyethylenes of different densities. The raw material was first compounded in the extruder and the resulting composite pre-forms were compression molded into desired plates and irradiated with different doses. Modulus of elasticity in tension, tensile strength, tensile fracture strain, elongation at break and gel content were obtained for all composites. Ceramic filler distribution was investigated under scanning electron microscopy (SEM). With HA incorporated in the samples an increase in the values of Young's Modulus, (stiffness) was observed, while elongation at break decreased with the amount of filler, showing increase of brittleness. Tensile strengths at yield and at break decreased with the filler content for LD and MDPE and stayed constant for HDPE.
NASA Astrophysics Data System (ADS)
Galeev, A. I.; Berdnikova, V. M.; Ivanova, D. V.; Kudryavtsev, D. O.; Shimanskaya, N. N.; Shimansky, V. V.; Balashova, M. O.
2017-06-01
The results of a study of a sample of δ Scuti-type stars obtained from the observations with the BTA and RTT-150 are presented. Based on photometric data, we measured and analyzed the fundamental parameters of all the studied stars. For eight stars (for two of them for the first time), the fundamental parameters of the atmospheres (Teff, log g, [Fe/H]) and the chemical composition for 29 elements in the LTE-approximation are received using spectroscopic observations. The chemical composition analysis demonstrates both the solar abundances of chemical elements and the anomalies of chemical composition typical of Am stars in the studied sample of δ Scuti-type stars.
Thermal Diffusivity and Conductivity in Ceramic Matrix Fiber Composite Materials - Literature Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.G. Quinn
A technical literature review was conducted to gain an understanding of the state of the art method, problems, results, and future of thermal diffusivity/conductivity of matrix-fiber composites for high temperature applications. This paper summarizes the results of test method development and theory. Results from testing on various sample types are discussed with concentration on the anisotropic characteristics of matrix-fiber composites, barriers to heat flow, and notable microstructure observations. The conclusion presents some observations from the technical literature, drawbacks of current information and discusses potential needs for future testing.
Establishment of an evaluation model for human milk fat substitutes.
Wang, Yong-Hua; Mai, Qing-Yun; Qin, Xiao-Li; Yang, Bo; Wang, Zi-Lian; Chen, Hai-Tian
2010-01-13
Fatty acid composition and distribution of human milk fat (HMF), from mothers over different lactating periods in Guangzhou, China, were analyzed. The universal characteristics were consistent with previously reported results although the fatty acid content was within a different range and dependent on the local population (low saturated fatty acid and high oleic acid for Guangdong mothers' milk fat). Based on the composition of the total and sn-2 fatty acids of mature milk fat, an efficient evaluation model was innovatively established by adopting the "deducting score" principle. The model showed good agreement between the scores and the degree of similarity by assessing 15 samples from different sources including four samples of HMF, eight samples of human milk fat substitutes (HMFSs) and infant formulas, and three samples of fats and oils. This study would allow for the devolvement of individual human milk fat substitutes with different and specific fatty acid compositions for local infants.
Andersen, Keld Ejdrup; Bjergegaard, Charlotte; Møller, Peter; Sørensen, Jens Christian; Sørensen, Hilmer
2005-07-13
The contents of raffinose family oligosaccharides (RFO) and sucrose in Brassica, Lupinus, Pisum, and Hordeum species were investigated by chemometric principal component analysis (PCA). Hordeum samples contained sucrose and raffinose, and Brassica samples all contained sucrose, raffinose, and stachyose. In addition to these, the Pisum samples contained verbascose and the Lupinus samples also contained ajugose. High stachyose and low ajugose contents were found in Lupinus albus in contrast to Lupinus angustifolius, having low stachyose and high ajugose contents. Lupinus luteus had average stachyose and ajugose contents, whereas large amounts of verbascose were accumulated in these seeds. Lupinus mutabilis had high stachyose and low ajugose contents, similar to the composition in L. albus but showing higher raffinose content. The Brassica samples also showed compositional RFO variations within the species, and subgroup formations were discovered within the investigated Brassica napus varieties. PCA results indicated compositional variations between the investigated genera and within the various species of value as chemotaxonomic defined parameters and as tools in evaluations of authenticity/falsifications when RFO-containing plants are used as, for example, feed and food additives.
Quantifying Uncertainties in the Thermo-Mechanical Properties of Particulate Reinforced Composites
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Murthy, Pappu L. N.
1999-01-01
The present paper reports results from a computational simulation of probabilistic particulate reinforced composite behavior. The approach consists use of simplified micromechanics of particulate reinforced composites together with a Fast Probability Integration (FPI) technique. Sample results are presented for a Al/SiC(sub p)(silicon carbide particles in aluminum matrix) composite. The probability density functions for composite moduli, thermal expansion coefficient and thermal conductivities along with their sensitivity factors are computed. The effect of different assumed distributions and the effect of reducing scatter in constituent properties on the thermal expansion coefficient are also evaluated. The variations in the constituent properties that directly effect these composite properties are accounted for by assumed probabilistic distributions. The results show that the present technique provides valuable information about the scatter in composite properties and sensitivity factors, which are useful to test or design engineers.
Synthesis of Composit From Bamboo Fiber, Zeolite and Epoxy for Room Separation
NASA Astrophysics Data System (ADS)
Raihan Muhammad, Dhany; Basuki, Kris Tri; Wasito, Bangun; Suroso
2018-01-01
This research aims is to search a subtitute of the asbestos for the separator rontgen room using bamboo fiber filled with zeolite; which harden using epoxy it is all caused because the hazard of the asbestos to the human body. Bamboo stem degenerated using NaOH (20%) to get the bamboo fiber. Bamboo fiber added with CS2 (10 mL) to form xanthate cellulose. Xanthate Cellulose mixed with filler zeolite and harden of epoxy, layer by layer until getting the right width. The variant of the mass composition is 3: 0:1; 3: 0.25:0.75; 3 :0.5:0.5; 3: 0.75:0.25; 3: 1:0, and the variant of the temperature 28 °C 40 °C 60 °C 80 °C and 100 °C. The sample tested using microscopic method, impact test with Charpy method, corrosivity method, Electricity conduct method, thermal conduct method, and radiation resistance or attenuation method. The result shown the optimum composition of the composite it is at the variant 3 :0.5:0.5, with the optimum temperature is 40°C with the density of the sample is 1.5789 g/cm3. Impact resistance of the sample is 44 Joule. The Radiation resistance is 0.46, with the thermal conductivity of the sample is 0.016 Kkal/m.s.c. it shown that the sample is isolator. From the result is shown that the sample is can be a substitute for asbestos as material of the separator in the Rontgen room.
Microbiological characterization and effect of resin composites in cervical lesions
Carlo, Bonfanti; Piccinelli, Giorgio; Faus-Matoses, Vicente; Cerutti, Antonio
2017-01-01
Background Non carious cervical lesions associated to muscle hyperfunctions are increasing. Microhybrid resin composites are used to restore cervical abfractions. The purpose of this study was to investigate if resin composites modify tooth plaque, inducing an increment of cariogenic microflora and evaluate their effect, in vivo and in vitro, against S. mutans. Material and Methods Eight abfractions were restored with two microhybrid resin composites (Venus, Heraeus-Kulzer® and Esthet-X, Dentsply®), after gnatological therapy, in three patients with muscle hyperfunctions. For each abfraction three samples of plaque were taken from the cervical perimeter: before the restoration, one week and three months after restoration. The samples were evaluated both by traditional microbiological methods and by Polymerase Chain Reaction (PCR). In vitro, disk-shaped specimens of the two composites were prepared to estimate the effects against pre-cultured S. mutans, after incubation at 37°C for 24h and assessed by a turbidimetric technique. Results In vivo no differences were found in plaque growth, for all samples, before and after restoration with both composites; in vitro, instead, a significant reduction of S. mutans growth was found between specimens of two composites (Mann-Whitney U-test p>0,06). Conclusions In this study a relevant consideration was elicited: composite materials, in vivo, do not modify plaque composition of non carious cervical lesions to a potential cariogenic plaque. Key words:Abfraction, restoration, S. mutans, composite, class V. PMID:28149461
NASA Astrophysics Data System (ADS)
Abolkassem, Shimaa A.; Elkady, Omayma A.; Elsayed, Ayman H.; Hussein, Walaa A.; Yehya, Hosam M.
2018-06-01
Al /Ni-SiC composite was prepared via powder metallurgy technique. SiC particles were coated with 10 wt% nano nickel by electroless deposition, then mixed by three percents (5, 10 and 15 wt%) with Al powder in a ball mill using 10:1 ball to powder ratio for 5 h. Three types of sintering techniques were used to prepare the composite. Uniaxial cold compacted samples were sintered in a vacuum furnace at 600 °C for 1 h. The second group was the vacuum sintered samples which were post-processed by hot isostatic press (HIP) at 600 °C for 1hr under the pressure of 190 MPa. The third group was the hot pressed samples that were consolidated at 550 °C under the uniaxial pressure of 840 MPa. The results showed that the hot pressed samples have the highest densification values (97-100%), followed by the HIP samples (94-98%), then come the vacuum sintered ones (92-96%). X-ray diffraction analysis (XRD) indicated the presence of Al and Al3Ni, which means that all SiC particles were encapsulated with nickel as short peaks for SiC were observed. Hardness results revealed that HIP samples have the highest hardness values. The magnetization properties were improved by increasing SiC/Ni percent, and HIP samples showed the highest magnetization parameter values.
Qazi, Taimoor H; Rai, Ranjana; Dippold, Dirk; Roether, Judith E; Schubert, Dirk W; Rosellini, Elisabetta; Barbani, Niccoletta; Boccaccini, Aldo R
2014-06-01
Cardiovascular diseases, especially myocardial infarction, are the leading cause of morbidity and mortality in the world, also resulting in huge economic burdens on national economies. A cardiac patch strategy aims at regenerating an infarcted heart by providing healthy functional cells to the injured region via a carrier substrate, and providing mechanical support, thereby preventing deleterious ventricular remodeling. In the present work, polyaniline (PANI) was doped with camphorsulfonic acid and blended with poly(glycerol-sebacate) at ratios of 10, 20 and 30vol.% PANI content to produce electrically conductive composite cardiac patches via the solvent casting method. The composites were characterized in terms of their electrical, mechanical and physicochemical properties. The in vitro biodegradability of the composites was also evaluated. Electrical conductivity increased from 0Scm(-1) for pure PGS to 0.018Scm(-1) for 30vol.% PANI-PGS samples. Moreover, the conductivities were preserved for at least 100h post fabrication. Tensile tests revealed an improvement in the elastic modulus, tensile strength and elasticity with increasing PANI content. The degradation products caused a local drop in pH, which was higher in all composite samples compared with pure PGS, hinting at a buffering effect due to the presence of PANI. Finally, the cytocompatibility of the composites was confirmed when C2C12 cells attached and proliferated on samples with varying PANI content. Furthermore, leaching of acid dopants from the developed composites did not have any deleterious effect on the viability of C2C12 cells. Taken together, these results confirm the potential of PANI-PGS composites for use as substrates to modulate cellular behavior via electrical stimulation, and as biocompatible scaffolds for cardiac tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Sample storage conditions significantly influence faecal microbiome profiles
Choo, Jocelyn M; Leong, Lex EX; Rogers, Geraint B
2015-01-01
Sequencing-based studies of the human faecal microbiota are increasingly common. Appropriate storage of sample material is essential to avoid the introduction of post-collection bias in microbial community composition. Rapid freezing to −80 °C is commonly considered to be best-practice. However, this is not feasible in many studies, particularly those involving sample collection in participants’ homes. We determined the extent to which a range of stabilisation and storage strategies maintained the composition of faecal microbial community structure relative to freezing to −80 °C. Refrigeration at 4 °C, storage at ambient temperature, and the use of several common preservative buffers (RNAlater, OMNIgene.GUT, Tris-EDTA) were assessed relative to freezing. Following 72 hours of storage, faecal microbial composition was assessed by 16 S rRNA amplicon sequencing. Refrigeration was associated with no significant alteration in faecal microbiota diversity or composition. However, samples stored using other conditions showed substantial divergence compared to −80 °C control samples. Aside from refrigeration, the use of OMNIgene.GUT resulted in the least alteration, while the greatest change was seen in samples stored in Tris-EDTA buffer. The commercially available OMNIgene.GUT kit may provide an important alternative where refrigeration and cold chain transportation is not available. PMID:26572876
Sample storage conditions significantly influence faecal microbiome profiles.
Choo, Jocelyn M; Leong, Lex E X; Rogers, Geraint B
2015-11-17
Sequencing-based studies of the human faecal microbiota are increasingly common. Appropriate storage of sample material is essential to avoid the introduction of post-collection bias in microbial community composition. Rapid freezing to -80 °C is commonly considered to be best-practice. However, this is not feasible in many studies, particularly those involving sample collection in participants' homes. We determined the extent to which a range of stabilisation and storage strategies maintained the composition of faecal microbial community structure relative to freezing to -80 °C. Refrigeration at 4 °C, storage at ambient temperature, and the use of several common preservative buffers (RNAlater, OMNIgene.GUT, Tris-EDTA) were assessed relative to freezing. Following 72 hours of storage, faecal microbial composition was assessed by 16 S rRNA amplicon sequencing. Refrigeration was associated with no significant alteration in faecal microbiota diversity or composition. However, samples stored using other conditions showed substantial divergence compared to -80 °C control samples. Aside from refrigeration, the use of OMNIgene.GUT resulted in the least alteration, while the greatest change was seen in samples stored in Tris-EDTA buffer. The commercially available OMNIgene.GUT kit may provide an important alternative where refrigeration and cold chain transportation is not available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina, J.M., E-mail: jmmj@ua.es; Departamento de Física Aplicada, Universidad de Alicante, Ap. 99, E-03080 Alicante; Departamento de Química Inorgánica, Universidad de Alicante, Ap. 99, | E-03080 Alicante
2015-11-15
Within the frame of heat dissipation for electronics, a very interesting family of anisotropic composite materials, fabricated by liquid infiltration of a matrix into preforms of oriented graphite flakes and SiC particles, has been recently proposed. Aiming to investigate the implications of the inherent anisotropy of these composites on their thermal conductivity, and hence on their potential applications, materials with matrices of Al–12 wt.% Si alloy and epoxy polymer have been fabricated. Samples have been cut at a variable angle with respect to the flakes plane and thermal conductivity has been measured by means of two standard techniques, namely, steadymore » state technique and laser flash method. Experimental results are presented and discussed in terms of current models, from which important technological implications for heat sinking design can be derived. - Highlights: • Anisotropy in thermal conductivity of graphite flakes-based composites is evaluated. • Samples are cut in a direction forming a variable angle with the oriented flakes. • For angles 0° and 90°, thermal conductivity does not depend on sample geometry. • For intermediate angles, thermal conductivity strongly depends on sample geometry. • “Thin” samples must be thicker than 600 μm, “thick” samples must be encapsulated.« less
Study of 0.1Ni0.8Zn0.2Fe2O4-0.9Pb1-3x/2LaxZr0.65Ti0.35O3 magnetoelectric composites
NASA Astrophysics Data System (ADS)
Rani, Rekha; Juneja, J. K.; Singh, Sangeeta; Raina, K. K.; Prakash, Chandra
2013-01-01
Magnetoelectric composites of nickel zinc ferrite (NZF) and La substituted lead zirconate titanate (PLZT) having representative formula 0.1Ni0.8Zn0.2Fe2O4-0.9Pb1-3x/2LaxZr0.65Ti0.35O3 (x=0, 0.01, 0.02 and 0.03) were synthesized by a conventional solid state route. X-ray diffraction analysis was carried out to confirm the coexistence of individual phases. Scanning electron microscope micrographs were taken for microstructural study of the samples. Dielectric properties were studied as a function of temperature and frequency. To study ferroelectric and magnetic ordering in composite samples, P-E and M-H hysteresis loops were recorded respectively. M-H hysteresis loops were taken for electrically poled and unpoled samples to confirm magnetoelectric coupling between the two phases (NZF and PLZT). La substitution results in significant improvement in dielectric, ferroelectric and piezoelectric properties of composite samples.
Cyclic mechanical loading promotes bacterial penetration along composite restoration marginal gaps
Khvostenko, D.; Salehi, S.; Naleway, S. E.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.
2015-01-01
Objectives Secondary caries is the most common reason for composite restoration replacement and usually forms between dentin and the filling. The objective of this study was to investigate the combined effect of cyclic loading and bacterial exposure on bacterial penetration into gaps at the interface between dentin and resin composite restorative material using a novel bioreactor system and test specimen design. Methods Human molars were machined into 3 mm thick disks with 2 mm deep × 5 mm diameter cavity preparations into which composite restorations were placed. A ∼15-30 micrometer (small) or ∼300 micrometer wide (large) dentin-restoration gap was introduced along half of the interface between the dentin and restoration. Streptococcus mutans UA 159 biofilms were grown on each sample prior to testing in a bioreactor both with and without cyclic loading. Both groups of samples were tested for 2 weeks and post-test biofilm viability was confirmed with a live-dead assay. Samples were fixed, mounted and cross-sectioned to reveal the gaps and observe the depth of bacterial penetration. Results It was shown that for large gap samples the bacteria easily penetrated to the full depth of the gap independent of loading or non-loading conditions. The results for all cyclically loaded small gap samples show a consistently deep bacterial penetration down 100% of the gap while the average penetration depth was only 67% for the non-loaded samples with only two of six samples reaching 100%. Significance A new bioreactor was developed that allows combining cyclic mechanical loading and bacterial exposure of restored teeth for bacterial biofilm and demineralization studies. Cyclic loading was shown to aid bacterial penetration into narrow marginal gaps, which could ultimately promote secondary caries formation. PMID:25900624
NASA Astrophysics Data System (ADS)
Baldi, Alfonso; Jacquot, Pierre
2003-05-01
Graphite-epoxy laminates are subjected to the "incremental hole-drilling" technique in order to investigate the residual stresses acting within each layer of the composite samples. In-plane speckle interferometry is used to measure the displacement field created by each drilling increment around the hole. Our approach features two particularities (1) we rely on the precise repositioning of the samples in the optical set-up after each new boring step, performed by means of a high precision, numerically controlled milling machine in the workshop; (2) for each increment, we acquire three displacement fields, along the length, the width of the samples, and at 45°, using a single symmetrical double beam illumination and a rotary stage holding the specimens. The experimental protocol is described in detail and the experimental results are presented, including a comparison with strain gages. Speckle interferometry appears as a suitable method to respond to the increasing demand for residual stress determination in composite samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolotilov, Sergey V.; Shvets, Oleksiy; Cador, Olivier
2006-08-15
Porous magnetic composites were prepared by the synthesis of molecular sieve MCM-41 in the presence of Fe{sub 3}O{sub 4} nanoparticles with average diameter of 15 nm. Nanoparticles were captured by porous silica matrix MCM-41, which resulted in their incorporation, as it was confirmed by TEM, SEM and X-ray diffraction. The materials possessed high surface area (392-666 m{sup 2} g{sup -1}), high pore volume (0.39-0.73 cm{sup 3} g{sup -1}) along with high magnetic response (M {sub S} up to 28.4 emu g{sup -1} at 300 K). Calcination of samples resulted in partial oxidation of Fe{sub 3}O{sub 4} to {alpha}-Fe{sub 2}O{sub 3}.more » The influence of nanoparticles content on sorption and magnetic properties of the composites was shown. No hysteresis was found for the samples at 300 K; at 5 K, H {sub C} was in the range 370-385 G for non-calcinated samples and 350-356 G for calcinated ones. - Graphical abstract: Schematic presentation of MCM-41/Fe{sub 3}O{sub 4} composite.« less
Airborne particles released by crushing CNT composites
NASA Astrophysics Data System (ADS)
Ogura, I.; Okayama, C.; Kotake, M.; Ata, S.; Matsui, Y.; Gotoh, K.
2017-06-01
We investigated airborne particles released as a result of crushing carbon nanotube (CNT) composites using a laboratory scale crusher with rotor blades. For each crushing test, five pellets (approximately 0.1 g) of a polymer (polystyrene, polyamide, or polycarbonate) containing multiwall CNTs (Nanocyl NC7000 or CNano Flotube9000) or no CNTs were placed in the container of the crusher. The airborne particles released by the crushing of the samples were measured. The real-time aerosol measurements showed increases in the concentration of nanometer- and micrometer-sized particles, regardless of the sample type, even when CNT-free polymers were crushed. The masses of the airborne particles collected on filters were below the detection limit, which indicated that the mass ratios of the airborne particles to the crushed pellets were lower than 0.02%. In the electron microscopic analysis, particles with protruding CNTs were observed. However, free-standing CNTs were not found, except for a poorly dispersed CNT-polystyrene composite. This study demonstrated that the crushing test using a laboratory scale crusher is capable of evaluating the potential release of CNTs as a result of crushing CNT composites. The advantage of this method is that only a small amount of sample (several pieces of pellets) is required.
The translucency of dental composites investigated by UV-VIS spectroscopy
NASA Astrophysics Data System (ADS)
Dumitrescu, L. Silaghi; Pastrav, O.; Prejmerean, C.; Prodan, D.; Boboia, S.; Codruta, S.; Moldovan, M.
2013-11-01
Translucency is the property of a material to partially transmit and diffuse incident light, and can be described as a partial opacity or a state between complete opacity and complete transparency. The purpose of this study is to evaluate the translucency index of resin composites according to their chemical structure and to the light source used for curing. Our study was achieved on four commercial composite samples (30 mm × 2 mm) cured with two different lamps (Optilux - halogen bulb and Ultralight - LED). Measurements were made with a UV-VIS spectrophotometer, and the reflection spectrum was recorded in the 380-770 nm region on white and black, compared with a SPECTRALON standard white. For all materials cured with the LED lamp on the glossy sides, the best results were given by Tetric Evo Ceram followed by Filtek Supreme, RestacrilRO and Premise. The measurements made on samples cured with an Optilux lamp, to the smooth and rough sides of the samples, revealed that the highest index of translucency is provided by Tetric Evo Ceram on the smooth side, followed by Filtek Supreme, RestacrilRO and Premises. We can say that the translucency of the composites is mostly determined by the chemical composition of the material, which is observed from transmittance values recorded for each sample, and by the source of radiation applied on the sample.
The translucency of dental composites investigated by UV-VIS spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrescu, L. Silaghi; Pastrav, O.; Prejmerean, C.
Translucency is the property of a material to partially transmit and diffuse incident light, and can be described as a partial opacity or a state between complete opacity and complete transparency. The purpose of this study is to evaluate the translucency index of resin composites according to their chemical structure and to the light source used for curing. Our study was achieved on four commercial composite samples (30 mm × 2 mm) cured with two different lamps (Optilux - halogen bulb and Ultralight - LED). Measurements were made with a UV-VIS spectrophotometer, and the reflection spectrum was recorded in themore » 380-770 nm region on white and black, compared with a SPECTRALON standard white. For all materials cured with the LED lamp on the glossy sides, the best results were given by Tetric Evo Ceram followed by Filtek Supreme, Restacril{sup RO} and Premise. The measurements made on samples cured with an Optilux lamp, to the smooth and rough sides of the samples, revealed that the highest index of translucency is provided by Tetric Evo Ceram on the smooth side, followed by Filtek Supreme, Restacril{sup RO} and Premises. We can say that the translucency of the composites is mostly determined by the chemical composition of the material, which is observed from transmittance values recorded for each sample, and by the source of radiation applied on the sample.« less
Khan, Aftab Ahmed; Siddiqui, Adel Zia; Al-Kheraif, Abdulaziz A; Zahid, Ambreen; Divakar, Darshan Devang
2015-01-01
Objective: Erosion of tooth surface is attributed to recent shift in diet pattern and frequent use of beverages. The aim of this research was to evaluate the effects of different beverages on surface topography and hardness of nano-filled composite material. Methods: Sixty flat disc shaped resin composite samples were fabricated and placed in distilled water for 24 hours. After 24 hours test samples were dried and divided into 4 groups. Group A (n=15) specimens were placed in tight amber bottle comprising 25 ml of artificial saliva. Similarly Group B, C and D were stored in equal amounts of orange juice, milk and coca cola drink respectively. Samples were checked for hardness and surface changes were evaluated with scanning electron microscopy. Results: There were strong significant difference observed in samples immersed in orange juice and artificial saliva. A strong significant difference was seen between Group D and Group A. Group A and Group C showed no significant difference. The micro-hardness test showed reduced values among all samples. Conclusion: Beverages consumed daily have a negative influence on hardness and surface degradation of nano-filled dental composite. Comparatively, nano-filled composites possess higher surface area to volume ratio of their fillers particle size may lead to higher surface roughness than other resin based dental biomaterials. PMID:26430417
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Y.M.; Lim, S.H.; Tay, B.Y.
Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous andmore » tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology.« less
Carbon fiber based composites stress analysis. Experimental and computer comparative studies
NASA Astrophysics Data System (ADS)
Sobek, M.; Baier, A.; Buchacz, A.; Grabowski, Ł.; Majzner, M.
2015-11-01
Composite materials used nowadays for the production of composites are the result of advanced research. This allows assuming that they are among the most elaborate tech products of our century. That fact is evidenced by the widespread use of them in the most demanding industries like aerospace and space industry. But the heterogeneous materials and their advantages have been known to mankind in ancient times and they have been used by nature for millions of years. Among the fibers used in the industry most commonly used are nylon, polyester, polypropylene, boron, metal, glass, carbon and aramid. Thanks to their physical properties last three fiber types deserve special attention. High strength to weight ratio allow the use of many industrial solutions. Composites based on carbon and glass fibers are widely used in the automotive. Aramid fibers ideal for the fashion industry where the fabric made from the fibers used to produce the protective clothing. In the paper presented issues of stress analysis of composite materials have been presented. The components of composite materials and principles of composition have been discussed. Particular attention was paid to the epoxy resins and the fabrics made from carbon fibers. The article also includes basic information about strain measurements performed on with a resistance strain gauge method. For the purpose of the laboratory tests a series of carbon - epoxy composite samples were made. For this purpose plain carbon textile was used with a weight of 200 g/mm2 and epoxy resin LG730. During laboratory strain tests described in the paper Tenmex's delta type strain gauge rosettes were used. They were arranged in specific locations on the surface of the samples. Data acquisition preceded using HBM measurement equipment, which included measuring amplifier and measuring head. Data acquisition was performed using the Easy Catman. In order to verify the results of laboratory tests numerical studies were carried out in a computing environment, Siemens PLM NX 9.0. For this purpose, samples were modeled composite corresponding to real samples. Tests were made for boundary conditions compatible with the laboratory tests boundary conditions.
ElMasry, Gamal; Nakauchi, Shigeki
2016-03-01
A simulation method for approximating spectral signatures of minced meat samples was developed depending on concentrations and optical properties of the major chemical constituents. Minced beef samples of different compositions scanned on a near-infrared spectroscopy and on a hyperspectral imaging system were examined. Chemical composition determined heuristically and optical properties collected from authenticated references were simulated to approximate samples' spectral signatures. In short-wave infrared range, the resulting spectrum equals the sum of the absorption of three individual absorbers, that is, water, protein, and fat. By assuming homogeneous distributions of the main chromophores in the mince samples, the obtained absorption spectra are found to be a linear combination of the absorption spectra of the major chromophores present in the sample. Results revealed that developed models were good enough to derive spectral signatures of minced meat samples with a reasonable level of robustness of a high agreement index value more than 0.90 and ratio of performance to deviation more than 1.4.
NASA Astrophysics Data System (ADS)
Neuland, M. B.; Grimaudo, V.; Mezger, K.; Moreno-García, P.; Riedo, A.; Tulej, M.; Wurz, P.
2016-03-01
A key interest of planetary space missions is the quantitative determination of the chemical composition of the planetary surface material. The chemical composition of surface material (minerals, rocks, soils) yields fundamental information that can be used to answer key scientific questions about the formation and evolution of the planetary body in particular and the Solar System in general. We present a miniature time-of-flight type laser ablation/ionization mass spectrometer (LMS) and demonstrate its capability in measuring the elemental and mineralogical composition of planetary surface samples quantitatively by using a femtosecond laser for ablation/ionization. The small size and weight of the LMS make it a remarkable tool for in situ chemical composition measurements in space research, convenient for operation on a lander or rover exploring a planetary surface. In the laboratory, we measured the chemical composition of four geological standard reference samples USGS AGV-2 Andesite, USGS SCo-l Cody Shale, NIST 97b Flint Clay and USGS QLO-1 Quartz Latite with LMS. These standard samples are used to determine the sensitivity factors of the instrument. One important result is that all sensitivity factors are close to 1. Additionally, it is observed that the sensitivity factor of an element depends on its electron configuration, hence on the electron work function and the elemental group in agreement with existing theory. Furthermore, the conformity of the sensitivity factors is supported by mineralogical analyses of the USGS SCo-l and the NIST 97b samples. With the four different reference samples, the consistency of the calibration factors can be demonstrated, which constitutes the fundamental basis for a standard-less measurement-technique for in situ quantitative chemical composition measurements on planetary surface.
Dargatz, David A; Marshall, Katherine L; Fedorka-Cray, Paula J; Erdman, Matthew M; Kopral, Christine A
2015-12-01
Salmonella is a major cause of foodborne illness and can cause clinical disease in animals. Understanding the on-farm ecology of Salmonella will be helpful in decreasing the risk of foodborne transmission. An objective of this study was to determine the prevalence of Salmonella among fecal samples collected on sheep operations in the United States. Another objective was to compare the use of composite fecal samples with fecal samples collected from individual sheep as a tool for screening sheep flocks for Salmonella. Sheep fecal samples (individual and composite) were collected on operations in 22 states. Salmonella isolates were characterized with regard to species, serotype, and antimicrobial susceptibility profile. Most operations (72.1%) had at least one positive sample and overall 26.9% of samples were positive. The percentage of positive samples varied by animal age class. Composite and individual samples gave similar results. The majority of the isolates (94%) were Salmonella enterica subspecies diarizonae serotype 61:-:1,5,7. Nearly all of the isolates (91.2%) tested for antimicrobial susceptibility were susceptible to all antimicrobials in the panel. The findings suggest that salmonellae typically associated with foodborne disease transmission are infrequently found on sheep operations in the United States.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Ming, D. W.; Gellert, R.; Vaniman, D. T.; Bish, D. L.; Blake, D. F.; Chipera, S. J.; Morrison, S. M.; Downs, R. T.; Rampe, E. B.;
2015-01-01
We have previously calculated the chemical compositions of the X-ray-diffraction (XRD) amorphous component of three solid samples (Rocknest (RN) soil, John Klein (JK) drill fines, and Cumberland (CB) drill fines) using major-element chemistry (APXS), volatile-element chemistry (SAM), and crystalline- phase mineralogy (CheMin) obtained by the Curiosity rover as a part of the ongoing Mars Science Laboratory mission in Gale Crater. According to CheMin analysis, the RN and the JK and CB samples are mineralogically distinct in that RN has no detectable clay minerals and both JK and CB have significant concentrations of high-Fe saponite. The chemical composition of the XRD amorphous component is the composition remaining after mathematical removal of the compositions of crystalline components, including phyllosilicates if present. Subsequent to, we have improved the unit cell parameters for Fe-forsterite, augite, and pigeonite, resulting in revised chemical compositions for the XRD-derived crystalline component (excluding clay minerals). We update here the calculated compositions of amorphous components using these revised mineral compositions.
Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks.
Hale, Vanessa L; Tan, Chia L; Knight, Rob; Amato, Katherine R
2015-06-01
Studies of the gut microbiome have become increasingly common with recent technological advances. Gut microbes play an important role in human and animal health, and gut microbiome analysis holds great potential for evaluating health in wildlife, as microbiota can be assessed from non-invasively collected fecal samples. However, many common fecal preservation protocols (e.g. freezing at -80 °C) are not suitable for field conditions, or have not been tested for long-term (greater than 2 weeks) storage. In this study, we collected fresh fecal samples from captive spider monkeys (Ateles geoffroyi) at the Columbian Park Zoo (Lafayette, IN, USA). The samples were pooled, homogenized, and preserved for up to 8 weeks prior to DNA extraction and sequencing. Preservation methods included: freezing at -20 °C, freezing at -80 °C, immersion in 100% ethanol, application to FTA cards, and immersion in RNAlater. At 0 (fresh), 1, 2, 4, and 8 weeks from fecal collection, DNA was extracted and microbial DNA was amplified and sequenced. DNA concentration, purity, microbial diversity, and microbial composition were compared across all methods and time points. DNA concentration and purity did not correlate with microbial diversity or composition. Microbial composition of frozen and ethanol samples were most similar to fresh samples. FTA card and RNAlater-preserved samples had the least similar microbial composition and abundance compared to fresh samples. Microbial composition and diversity were relatively stable over time within each preservation method. Based on these results, if freezers are not available, we recommend preserving fecal samples in ethanol (for up to 8weeks) prior to microbial extraction and analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Kexin; Li, Zhenrong; Guo, Haisheng; Xu, Zhuo; Fan, Shiji
2018-04-01
A Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 relaxor ferroelectric single crystal boule of 3 in. diameter was grown using [001]- and [011]-oriented co-growth crystals as seeds by the modified Bridgman method. The as-grown crystal boule was divided into two growth regions [001] and [011]. The composition and the electrical properties of samples of the two regions were characterized in detail along the growth direction in the whole crystal boule. The PT content of [001]-grown samples increased from 27.7 to 36.8 mol. % along the growth direction, especially they are averagely higher about 0.7 mol. % than those of [011]-grown samples at the same growth position. The PMN content of [001]-grown samples decreased from 43.0 to 34.8 mol. %, which is lower than that of the corresponding [011]-grown samples. The compositional segregation behavior along [001] and [011] growth directions was discussed based on the crystal growth theories. Variations in the rhombohedral to tetragonal phase transition temperature (TRT), the piezoelectric properties, the coercive electric field and the remnant polarization of [001] samples were discussed according to changes in compositional segregation and crystal anisotropy. Under the exact same growth conditions, the [011]-grown crystal has a larger composition segregation effect than that of the [001]-grown crystal. This result provides a positive effect on analysing the nature and reducing the effect of compositional segregation.
Description of the containerless melting of glass in low gravity
NASA Technical Reports Server (NTRS)
Ray, C. S.; Day, D. E.
1983-01-01
A brief description is given of a single-axis, acoustic levitator/furnace apparatus used to position, heat, melt, and quench multicomponent oxide, glass-forming compositions in low gravity. This apparatus is capable of processing eight approximately spherical samples (about 6 mm diameter) at temperatures up to 1550 C in a dry air atmosphere. Results are also presented for a containerless melting experiment conducted on SPAR VI where a ternary CaO-Ga2O3-SiO2 composition was levitated and quenched to a glass. Selected properties of the glass prepared on SPAR VI are compared with the properties of glass samples of identical composition prepared on earth.
Geology of Lunar Landing Sites and Origin of Basin Ejecta from a Clementine Perspective
NASA Technical Reports Server (NTRS)
Jolliff, Bradley L.; Haskin, Larry A.
1998-01-01
The goals of this research were to examine Clementine multispectral data covering the Apollo landing sites in order to: (1) provide ground truth for the remotely sensed observations, (2) extend our understanding of the Apollo landing sites to the surrounding regions using the empirically calibrated Clementine data, and (3) investigate the composition and distribution of impact-basin ejecta using constraints based upon the remotely sensed data and the Apollo samples. Our initial efforts (in collaboration with P. Lucey and coworkers) to use the Apollo soil compositions to "calibrate" information derived from the remotely sensed data resulted in two extremely useful algorithms for computing estimates of the concentrations of FeO and TiO2 from the UV-VIS 5-band data. In this effort, we used the average surface soil compositions from 37 individual Apollo and 3 Luna sample stations that could be resolved using the Clementine data. We followed this work with a detailed investigation of the Apollo 17 landing site, where the sampling traverses were extensive and the spectral and compositional contrast between different soils covers a wide range. We have begun to investigate the nature and composition of basin ejecta by comparing the thick deposits on the rim of Imbrium in the vicinity of the Apollo 15 site and those occurring southeast of the Serenitatis basin, in the Apollo 17 region. We continue this work under NAG5-6784, "Composition, Lithology, and Heterogeneity of the lunar crust using remote sensing of impact-basin uplift structures and ejecta as probes. The main results of our work are given in the following brief summaries of major tasks. Detailed accounts of these results are given in the attached papers, manuscripts, and extended abstracts.
Investigation of bioactive CaO-P2O5-MgO-SiO2 ceramic composition for orthopedic applications
NASA Astrophysics Data System (ADS)
Kaur, Pardeep; Singh, K. J.; Sood, Henna; Arora, Daljit Singh
2017-05-01
Bioactive sample of the composition 41CaO-8P2O5-17MgO-34SiO2 has been prepared in the laboratory by quick alkali mediated sol-gel method. 1M ammonia solution has been used to form the gel. Bioactivity of the sample has been analyzed by soaking the samples in simulated body fluid. Degradation study has also undertaken to check the degradation behavior of the sample. MTT cytotoxic test has also been done to know the toxicity of the sample and results show that samples has good percentage of cell viability in the cell culture media. Formation of the hydroxyapatite has been confirmed by the XRD, Raman spectroscopy and FESEM-EDX study.
NASA Technical Reports Server (NTRS)
Jabs, Heinrich
1991-01-01
The experiment objectives are: to detect a variation of the coefficient of thermal expansion (CTE) of composite samples; to detect an evolution of mechanical properties; to compare the behavior of two epoxy resins. The CTE is measured by interferometric method in a vacuum chamber. The following mechanical tests are achieved on the samples: interlaminar shear strength; flexural strength; flatwise tensile strength. The results are reported.
NASA Astrophysics Data System (ADS)
Shukurova, L. M.; Gruzdev, A. N.
2010-06-01
The temporal variability of the chemical composition of surface aerosol with particle diameters of 0.7-2 μm is analyzed. This analysis is based on the results of measurements of infrared transmission spectra of aerosol samples collected with the use of a cascade impactor at the Zvenigorod Scientific Station of the Institute of Atmospheric Physics (IAP) in 1999-2005. Seasonal features of the aerosol chemical composition and its dependence on the particle size are revealed. The interdiurnal variability of the aerosol composition depends on the season, and it manifests itself more strongly in winter and spring. Air-mass changes lead to changes in the relation of sulfates and nitrates in the micron fraction of aerosol. The enrichment of samples in nitrates is especially characteristic of the winter and spring seasons. Compounds containing the NO2 group are often met in the samples of aerosol with particle sizes of 0.7-1.3 μm during the cold time of the year. The estimates of the optical thickness of micron aerosol in the sulfate absorption band are obtained, and optical-thickness variations of some scales are detected. The quantitative characteristics of statistical relations between different chemical components of aerosol inside individual fractions and between chemical components of the micron and submicron fractions are obtained and analyzed.
Structural properties of GaAsN grown on (001) GaAs by metalorganic molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Ok, Young-Woo; Choi, Chel-Jong; Seong, Tae-Yeon; Uesugi, K.; Suemune, I.
2001-07-01
Detailed transmission electron microscopy (TEM) and transmission electron diffraction (TED) examination has been made of metalorganic molecular beam epitaxial GaAsN layers grown on (001) GaAs substrates. TEM results show that lateral composition modulation occurs in the GaAs1-xNx layer (x 6.75%). It is shown that increasing N composition and Se (dopant) concentration leads to poor crystallinity. It is also shown that the addition of Se increases N composition. Atomic force microscopy (AFM) results show that the surfaces of the samples experience a morphological change from faceting to islanding, as the N composition and Se concentration increase. Based on the TEM and AFM results, a simple model is given to explain the formation of the lateral composition modulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Wong Swee; Hassan, Jumiah; Hashim, Mansor
Ceramic matrix composites (CMC) combine reinforcing ceramic phases, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) with a ceramic matrix, kaolinite to create materials with new and superior properties. 10% and 20% CCTO were prepared by using a conventional solid state reaction method. CMC samples were pre-sintered at 800 deg. C and sintered at 1000 deg. C. The dielectric properties of samples were measured using HP 4192A LF Impedance Analyzer. Microstructures of the samples were observed using an optical microscope. XRD was used to determine the crystalline structure of the samples. The AFM showed the morphology of the samples. The results showed thatmore » the dielectric constant and dielectric loss factor of both samples are frequency dependent. At 10 Hz, the dielectric constant is 10{sup 11} for both samples. The CMC samples were independent with temperature with low dielectric constant in the frequency range of 10{sup 4}-10{sup 6} Hz. Since the CMC samples consist of different amount of kaolinite, so each sample exhibit different defect mechanism. Different reaction may occur for different composition of material. The effects of processing conditions on the microstructure and electrical properties of CMC are also discussed.« less
Bacáková, L; Starý, V; Kofronová, O; Lisá, V
2001-03-15
Carbon fiber-reinforced carbon composites (CFRC) are considered to be promising materials for orthopedic and dental surgery. Their mechanical properties can be tailored to be similar to those of bone, and their chemical composition (close to pure carbon) promises that they will be tolerated well by the surrounding tissue. In this study, CFRC composites were fabricated from phenolic resin and unidirectionally oriented Torayca carbon fibers by carbonization (1000 degrees C) and graphitization (2500 degrees C). The material then was cut with a diamond saw into sheets of 8 x 10 x 3 mm, and the upper surface was polished by colloidal SiO2 and/or covered with a carbon-titanium (C:Ti) layer (3.3 microm) using the plasma-enhanced physical vapor deposition method. Three different kinds of modified samples were prepared: polished only, covered only, and polished + covered. Untreated samples served as a control. The surface roughness of these samples, measured by a Talysurf profilometer, decreased significantly after polishing but usually did not decrease after coating with a C:Ti layer. On all three modified surfaces, human osteoblast-like cells of the MG63 line and rat vascular smooth muscle cells (both cultured in a Dulbecco's minimum essential medium with 10% fetal bovine serum) adhered at higher numbers (by 21-87% on day 1 after seeding) and exhibited a shorter population doubling time (by 13-40%). On day 4 after seeding, these cells attained higher population densities (by 61-378%), volume (by 18-37%), and protein content (by 16-120%). These results were more pronounced in VSMC than in MG63 cells and in both groups of C:Ti-covered samples than in the polished only samples. The release of carbon particles from the CFRC composites was significantly decreased--by 8 times in the polished only, 24 times in the covered only, and 42 times in the polished + covered samples. These results show that both polishing and carbon-titanium covering significantly improve the biocompatibility of CFRC composites in vitro, especially when these two modifications are combined.
NASA Astrophysics Data System (ADS)
Ujianto, O.; Noviyanti, R.; Wijaya, R.; Ramadhoni, B.
2017-07-01
Natural rubber (NR)/coconut coir (CF) composites were fabricated using co-rotating twin screw extruder with maleated NR (MNR) used as compatibilizer. The MNR was produced at three level of maleic anhydride (MA), and analyzed qualitative and quantitatively using FTIR and titration technique. Analysis on MNR using FTIR and titration methods showed that MA was grafted on NR chain at different percentage (0.76, 2.23, 4.79%) depended on MA concentration. Tensile strength data showed the best tensile strength was produced at 7 phr of MNR with 1 phr of MA level in MNR resulting 16.4 MPa. The improvement of compatibilized samples were more than 300% compare to uncompatibilized composite attributed to better interfacial bonding. The improvement on tensile strength was significantly influenced by MNR level and amount of MA added to produce MNR, as well as their interaction. The optimum conditions for producing NR-CF composite were predicted at 6.5 phr of MNR level with 1 phr of MA concentration added in MNR production, regardless screw rotation settings. Results from verification experiments confirm that developed model was capable of describing phenomena during composite preparation. Morphology analysis using scanning electron microscopy shows smooth covered fiber in compatibilized samples than that of without MNR. The morphology also showed less voids on compatibilized samples attributed to better interfacial bonding leading to tensile strength improvement.
Guo, Jingfei; He, Kanglai; Bai, Shuxiong; Zhang, Tiantao; Liu, Yunjun; Wang, Fuxin; Wang, Zhenying
2016-12-01
Non-lepidopteran pests are exposed to, and may be influenced by, Bt toxins when feeding on Bt maize that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt). In order to assess the potential effects of transgenic cry1Ie maize on non-lepidopteran pest species and ecological communities, a 2-year field study was conducted to compare the non-lepidopteran pest abundance, diversity and community composition between transgenic cry1Ie maize (Event IE09S034, Bt maize) and its near isoline (Zong 31, non-Bt maize) by whole plant inspections. Results showed that Bt maize had no effects on non-lepidopteran pest abundance and diversity (Shannon-Wiener diversity index, Simpson's diversity index, species richness, and Pielou's index). There was a significant effect of year and sampling time on those indices analyzed. Redundancy analysis indicated maize type, sampling time and year totally explained 20.43 % of the variance in the non-lepidopteran pest community composition, but no association was presented between maize type (Bt maize and non-Bt maize) and the variance. Nonmetric multidimensional scaling analysis showed that sampling time and year, rather than maize type had close relationship with the non-lepidopteran pest community composition. These results corroborated the hypothesis that, at least in the short-term, the transgenic cry1Ie maize had negligible effects on the non-lepidopteran pest abundance, diversity and community composition.
The Effect of Remin Pro and MI Paste Plus on Bleached Enamel Surface Roughness
Ahmad Akhoundi, Mohammad Sadegh; Aghajani, Farzaneh; Chalipa, Javad; Sadrhaghighi, Amir Hooman
2014-01-01
Objective Increased number of adult patients requesting orthodontic treatment result in bonding bracket to ceramic restorations more than before. The aim of this study was to evaluate and compare the shear bond strength of orthodontic brackets bonded to two types of ceramic bases with conventional orthodontic bonding resin and a new nano-filled composite resin. Materials and Methods: Twenty four feldespathic porcelain and 24 lithium disilicate ceramic disks were fabricated. All of the samples were conditioned by sandblasting, hydrofluoric acid and silane. Maxillary incisor metal brackets were bonded to half of the disks in each group by conventional orthodontic bonding resin and the other half bonded with a nano-filled composite. The samples then were thermocycled for 2000 cycle between 5–55° C. Shear bond strength was measured and the mode of failure was examined. Randomly selected samples were also evaluated by SEM. Results: The lowest bond strength value was found infeldespathic ceramic bonded by nano-filled composite (p<0.05). There was not any statistically significant difference between other groups regarding bond strength. The mode of failure in the all groups except group 1 was cohesive and porcelain damages were detected. Conclusion: Since less damages to feldspathic porcelain was observed when the nano-filled composite was used to bond brackets, the use of nano-filled composite resins can be suggested for bonding brackets to feldspathic porcelain restorations. PMID:24910698
On the Impact Origin of Phobos and Deimos. III. Resulting Composition from Different Impactors
NASA Astrophysics Data System (ADS)
Pignatale, Francesco C.; Charnoz, Sébastien; Rosenblatt, Pascal; Hyodo, Ryuki; Nakamura, Tomoki; Genda, Hidenori
2018-02-01
The origin of Phobos and Deimos in a giant impact-generated disk is gaining larger attention. Although this scenario has been the subject of many studies, an evaluation of the chemical composition of the Mars’s moons in this framework is missing. The chemical composition of Phobos and Deimos is unconstrained. The large uncertainties about the origin of the mid-infrared features; the lack of absorption bands in the visible and near-infrared spectra; and the effects of secondary processes on the moons’ surfaces make the determination of their composition very difficult using remote sensing data. Simulations suggest a formation of a disk made of gas and melt with their composition linked to the nature of the impactor and Mars. Using thermodynamic equilibrium, we investigate the composition of dust (condensates from gas) and solids (from a cooling melt) that result from different types of Mars impactors (Mars-, CI-, CV-, EH-, and comet-like). Our calculations show a wide range of possible chemical compositions and noticeable differences between dust and solids, depending on the considered impactors. Assuming that Phobos and Deimos resulted from the accretion and mixing of dust and solids, we find that the derived assemblage (dust-rich in metallic iron, sulfides and/or carbon, and quenched solids rich in silicates) can be compatible with the observations. The JAXA’s Martian Moons eXploration (MMX) mission will investigate the physical and chemical properties of Phobos and Deimos, especially sampling from Phobos, before returning to Earth. Our results could be then used to disentangle the origin and chemical composition of the pristine body that hit Mars and suggest guidelines for helping in the analysis of the returned samples.
NASA Astrophysics Data System (ADS)
Yavuz, Hande; Bai, Jinbo
2018-06-01
This paper deals with the dielectric barrier discharge assisted continuous plasma polypyrrole deposition on CNT-grafted carbon fibers for conductive composite applications. The simultaneous effects of three controllable factors have been studied on the electrical resistivity (ER) of these two material systems based on multivariate experimental design methodology. A posterior probability referring to Benjamini-Hochberg (BH) false discovery rate was explored as multiple testing corrections of the t-test p values. BH significance threshold of 0.05 was produced truly statistically significant coefficients to describe ER of two material systems. A group of plasma modified samples was chosen to be used for composite manufacturing to drive an assessment of interlaminar shear properties under static loading. Transversal and longitudinal electrical resistivity (DC, ω =0) of composite samples were studied to compare both the effects of CNT grafting and plasma modification on ER of resultant composites.
NASA Astrophysics Data System (ADS)
Yavuz, Hande; Bai, Jinbo
2017-09-01
This paper deals with the dielectric barrier discharge assisted continuous plasma polypyrrole deposition on CNT-grafted carbon fibers for conductive composite applications. The simultaneous effects of three controllable factors have been studied on the electrical resistivity (ER) of these two material systems based on multivariate experimental design methodology. A posterior probability referring to Benjamini-Hochberg (BH) false discovery rate was explored as multiple testing corrections of the t-test p values. BH significance threshold of 0.05 was produced truly statistically significant coefficients to describe ER of two material systems. A group of plasma modified samples was chosen to be used for composite manufacturing to drive an assessment of interlaminar shear properties under static loading. Transversal and longitudinal electrical resistivity (DC, ω =0) of composite samples were studied to compare both the effects of CNT grafting and plasma modification on ER of resultant composites.
Giant dielectric constant in CaCu3Ti4O12-MgB2 composites near the percolation threshold
NASA Astrophysics Data System (ADS)
Mukherjee, Rupam; Fernandez, Lucia; Lawes, Gavin; Nadgorny, Boris
2013-03-01
We have investigated the enhancement of the dielectric constant K in CaCu3Ti4O12 (CCTO)-MgB2 composite near the percolation threshold. To optimize the dielectric properties of pure CCTO we have sintered the samples at variuos temperatures. We will present the results of the measurements of K in a broad frequency for pure CCTO for the samples sintered at 1100°C and 500°C. Commercially available MgB2 powder was mixed with different weight fractions of CCTO and the pressure of 1GPa was applied to form composite pellets. Near the percolation threshold PC, CCTO/MgB2 composite system exhibit a dramatic increase of the dielectric constant K by several orders of magnitude, compared to pure CCTO. We will also discuss the magnetic field dependence of the capacitance of CCTO composite powders.
Synthesis and characterization of MOF-aminated graphite oxide composites for CO2 capture
NASA Astrophysics Data System (ADS)
Zhao, Yunxia; Ding, Huiling; Zhong, Qin
2013-11-01
A kind of metal-organic frameworks (MOF-5) and aminated graphite oxide (AGO) composites were prepared for CO2 capture to mitigate global warming. MOF-5, MOF-5/GO (composite of MOF-5 and graphite oxide) and MOF-5/AGO samples were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscope (SEM), nitrogen adsorption as well as thermogravimetric analysis to figure out their chemistry and structure information. Three types of samples with suitable specific surface area and pore diameter were chosen to test CO2 adsorption performance and stability under humidity conditions. The results indicate that high surface area and pore volume, pore similar in size to the size of gas adsorbate, and extra reactive sites modified in the composites contributes to the high CO2 capacity. Besides, the composites involved by GO or AGO show better anti-moisture performance than the parent MOF.
NASA Astrophysics Data System (ADS)
Kord, B.; Hosseinihashemi, S. Kh.
2014-01-01
The influence of fungal decay on the hygroscopic thickness swelling rate of lignocellulosic filler-polyolefin biocomposites has been investigated. Composites based on polypropylene (PP), bagasse fiber (BF), and a coupling agent (PP-g-MA) were made by melt compounding and injection molding. The weigt ratio of BF to PP was controlled at 60/40 for all blends. The amount of coupling agent was fixed at 2% for all formulations. The samples obtained were exposed to the action of brown-rot (Coniophora puteana) and white-rot (Trametes versicolor) fungi for 8, 12, and 16 weeks according to the Kolle-flask method. The thickness swelling of the samples was evaluated by immersing them in water at room temperature for several weeks. The morphology of the composites was characterized using the scanning electron microscopy (SEM). The results indicated that the fungal decay had an adverse affect on the dimensional stability of BF/PP composites due to an increase in the thickness swelling rate. The thickness swelling of white-rotted samples was higher than that of brown-rotted ones and control samples. Also, the thickness swelling of BF/PP composites increased with increasing time of fungal decay. In addition, after 16 weeks of exposure to white-rot fungi, the composites exhibited a higher parameter of swelling rate K SR than control samples. The K SR of the composites was influenced both by the type of rooting and the exposure time. Furthermore, the SEM micrographs showed that the extent of degradation increased with growing exposure time to fungi.
Ramezani, Gholam H; Moghadam, Mona-Momeni; Saghiri, Mohammad-Ali; Garcia-Godoy, Franklin; Asatourian, Armen; Aminsobhani, Mohsen; Scarbecz, Mark; Sheibani, Nader
2017-01-01
To evaluate the effect of dental amalgam and composite restorations on total antioxidant capacity (TAC) and calcium (Ca) ion concentration of unstimulated saliva. Forty-eight children aged 6-10 years selected and divided into three groups of sixteen (8 males, 8 females). In group A and B, samples consisted of two class II dental composite or amalgam restorations, while in group C samples were caries-free (control group). Unstimulated saliva from all samples was collected and TAC was measured by spectrophotometry using an adaptation of 2, 2'-azino-di-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) assay. The Ca ion level was estimated by an auto- analyzer. Data were analyzed with one- and two-way ANOVA test, at a p <.05 level of significance. Composite samples showed significantly higher TAC and lower Ca ion levels compared to amalgam and caries-free samples ( p <.05). The TAC values showed only significant difference between groups ( p <.05), while the Ca ion results showed significant differences within and between groups ( p <.05). Dental composite restorations increased TAC and decreased Ca ion levels more than amalgam restorations in saliva. Gender is an effective factor in changes induced in oral cavity as females showed more emphatic reaction to dental filling materials than males. Patients who have dental restorations, especially dental composites, should pay more attention to their dental hygiene, because dental restorations can increase oxidative stress and decrease Ca ion level in saliva, which might jeopardize remineralization process of tooth structures after demineralization. Key words: Amalgam, caries, composite, saliva, total antioxidant capacity.
NASA Astrophysics Data System (ADS)
Hemond, C.; Brunelli, D.; Maia, M.; Prigent, S.; Sichel, S. E.
2017-12-01
The St Paul Transform System offsets by 630 km the Equatorial Mid Atlantic Ridge at 1° N. It consists of four Major faults separating three intra transform ridge axes. Volcanic glassy samples were collected inside two intratransform ridge (ITR) segments during the COLMEIA cruise (Maia et al ; 2016) and samples from the third ITR available from a previous cruise ST PAUL (Hékinian et al. 2000). Major, trace elements and Hf, Pb, Sr and Nd isotopes were determined on selected hand picked glass chips. Few glassy samples recovered and analysed from abyssal hill samples open a time window of about 4.5 million years in the chemistry of the northern ITR. Results show that all samples are basaltic in composition but trace elements display contrasting images for the three ITR. The northern ITR samples are all light REE and highly incompatible enriched and are E-MORB; the central ITR samples display rather flat REE pattern with a level on enrichment of the HREE higher than the other two ITR and are T-MORB. Southern ITR samples are more heterogeneous N-MORB to T-MORB with a lower level of HREE. Isotopes reveal that the ITRs sample distinct mantle sources. In various isotope plans, the northern ITR samples plot together with published results from the MAR directly north of the St Paul F.Z. Therefore they exhibit some flavor of the Sierra Leone hotspot interacting with the MAR at 1.7°N. Central and southern ITR samples have very distinct composition from the northern ITR but resemble each other. However, for identical 206Pb/204Pb ratios, central ITR has slightly but significantly higher 207Pb/204Pb and 208Pb/204Pb, also higher 143Nd/144Nd for a given 87Sr/86Sr. Southern ITR is in chemical continuity of the MAR southward. So that central ITR samples display a rather specific composition. Off axis samples corresponding to the activity of the northern ITR up to 4.6 m.y. show that the hotspot contribution was even bigger on the spreading axis than today and might be fading with time as the MAR gets away from the Hotspot. It remains to explain how the flow of enriched material derived from the Sierra Leone hotspot passed through the large transform fault that limits the St Paul zone to the north. It is also of interest to explain the peculiar compositions of the central ITR samples that reflect neither the northern adjacent MAR composition nor the southern one.
U-Pb systematics in iron meteorites - Uniformity of primordial lead
NASA Astrophysics Data System (ADS)
Gopel, C.; Manhes, G.; Allegre, C. J.
1985-08-01
Pb isotopic compositions and U-Pb abundances were determined in the metal phase of six iron meteorites: Canyon Diablo IA, Toluca IA, Odessa IA, Youndegin IA, Deport IA, and Mundrabilla An. Prior to complete dissolution, samples were subjected to a series of leachings and partial dissolutions. Isotopic compositions and abundances of the etched Pb indicate a contamination by terrestrial Pb which is attributable to previous cutting of the meteorite. Pb isotopic compositions measured in the decontaminated samples are identical within 0.2 percent and essentially confirm the primordial Pb value defined by Tatsumoto et al. (1973). These data invalidate more radiogenic Pb isotopic compositions published for iron meteorites, which are the result of terrestrial Pb contamination introduced mainly by analytical procedure. The results of this study support the idea of a solar nebula which was isotopically homogeneous for Pb 4.55 Ga ago. The new upper limit for U-abundance in iron meteorites, 0.001 ppb, is in agreement with its expected thermodynamic solubility in the metal phase.
Micro-Laser-Induced Breakdown Spectroscopy (Micro-LIBS) Study on Ancient Roman Mortars.
Pagnotta, Stefano; Lezzerini, Marco; Ripoll-Seguer, Laura; Hidalgo, Montserrat; Grifoni, Emanuela; Legnaioli, Stefano; Lorenzetti, Giulia; Poggialini, Francesco; Palleschi, Vincenzo
2017-04-01
The laser-induced breakdown spectroscopy (LIBS) technique was used for analyzing the composition of an ancient Roman mortar (5th century A.D.), exploiting an experimental setup which allows the determination of the compositions of binder and aggregate in few minutes, without the need for sample treatment. Four thousand LIBS spectra were acquired from an area of 10 mm 2 , with a 50 µm lateral resolution. The elements of interest in the mortar sample (H, C, O, Na, Mg, Al, Si, K, Ca, Ti, Mn, Fe) were detected and mapped. The collected data graphically shown as compositional images were interpreted using different statistical approaches for the determination of the chemical composition of the binder and aggregate fraction. The methods of false color imaging, blind separation, and self-organizing maps were applied and their results are discussed in this paper. In particular, the method based on the use of self-organizing maps gives well interpretable results in very short times, without any reduction in the dimensionality of the system.
Surface characterization of LDEF carbon fiber/polymer matrix composites
NASA Technical Reports Server (NTRS)
Grammer, Holly L.; Wightman, James P.; Young, Philip R.; Slemp, Wayne S.
1995-01-01
XPS (x-ray photoelectron spectroscopy) and SEM (scanning electron microscopy) analysis of both carbon fiber/epoxy matrix and carbon fiber/polysulfone matrix composites revealed significant changes in the surface composition as a result of exposure to low-earth orbit. The carbon 1s curve fit XPS analysis in conjunction with the SEM photomicrographs revealed significant erosion of the polymer matrix resins by atomic oxygen to expose the carbon fibers of the composite samples. This erosion effect on the composites was seen after 10 months in orbit and was even more obvious after 69 months.
Radiation Transport Properties of Polyethylene-Fiber Composites
NASA Technical Reports Server (NTRS)
Kaul, Raj K.; Barghouty, A. F.; Dahche, H. M.
2003-01-01
Composite materials that can both serve as effective shielding materials against cosmic-ray and energetic solar particles in deep space as well as structural materials for habitat and spacecraft remain a critical and mission enabling piece in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density coupled with high hydrogen content. Polyethylene fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of Polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at NASA's Marshall Space Flight Center and tested against 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.
Space radiation transport properties of polyethylene-based composites.
Kaul, R K; Barghouty, A F; Dahche, H M
2004-11-01
Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.
Space radiation transport properties of polyethylene-based composites
NASA Technical Reports Server (NTRS)
Kaul, R. K.; Barghouty, A. F.; Dahche, H. M.
2004-01-01
Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.
Corrosion Behavior of Ceramic Cup of Blast Furnace Hearth by Liquid Iron and Slag
NASA Astrophysics Data System (ADS)
Li, Yanglong; Cheng, Shusen; Wang, Zhifeng
2016-10-01
Three kinds of sample bricks of ceramic cups for blast furnace hearth were studied by dynamic corrosion tests based on different corrosion systems, i.e., liquid iron system, liquid slag system and liquid iron-slag system. Considering the influence of temperature and sample rotational speed, the corrosion profiles and mass loss of the samples were analyzed. In addition, the microstructure of the corroded samples was observed by optical microscope (OM) and scanning electron microscope (SEM). It was found that the corrosion profiles could be divided into iron corrosion region, slag corrosion region and iron-slag corrosion region via corrosion degree after iron-slag corrosion experiment. The most serious corrosion occurred in iron-slag corrosion region. This is due to Marangoni effect, which promotes a slag film formed between liquid iron and ceramic cup and results in local corrosion. The corrosion of the samples deepened with increasing temperature of liquid iron and slag from 1,623 K to 1,823 K. The variation of slag composition had greater influence on the erosion degree than that of rotational speed in this experiment. Taking these results into account the ceramic cup composition should be close to slag composition to decrease the chemical reaction. A microporous and strong material should be applied for ceramic cup.
Thermal loading in the laser holography nondestructive testing of a composite structure
NASA Technical Reports Server (NTRS)
Liu, H. K.; Kurtz, R. L.
1975-01-01
A laser holographic interferometry method that has variable sensitivity to surface deformation was applied to the investigation of composite test samples under thermal loading. A successful attempt was made to detect debonds in a fiberglass-epoxy-ceramic plate. Experimental results are presented along with the mathematical analysis of the physical model of the thermal loading and current conduction in the composite material.
Lamb Wave Response of Fatigued Composite Samples
NASA Technical Reports Server (NTRS)
Seale, Michael; Smith, Barry T.; Prosser, William H.; Masters, John E.
1994-01-01
Composite materials are being more widely used today by aerospace, automotive, sports equipment, and a number of other commercial industries because of their advantages over conventional metals. Composites have a high strength-to-weight ratio and can be constructed to meet specific design needs. Composite structures are already in use in secondary parts of the Douglas MD-11 and are planned to be used in the new MD-12X. Plans also exist for their use in primary and secondary structures on the Boeing 777. Douglas proposed MD-XX may also incorporate composite materials into primary structures such as the wings and tail. Use of composites in these structures offers weight savings, corrosion resistance, and improved aerodynamics. Additionally, composites have been used to repair cracks in many B-1Bs where traditional repair techniques were not very effective. Plans have also been made to reinforce all of the remaining B-1s with composite materials. Verification of the structural integrity of composite components is needed to insure safe operation of these aerospace vehicles. One aspect of the use of these composites is their response to fatigue. To track this progression of fatigue in aerospace structures, a convenient method to nondestructively monitor this damage needs to be developed. Traditional NDE techniques used on metals are not easily adaptable to composites due to the inhomogeneous and anisotropic nature of these materials. Finding an effective means of nondestructively monitoring fatigue damage is extremely important to the safety and reliability of such structures. Lamb waves offer one method of evaluating these composite materials. As a material is fatigued, the modulus degrades. Since the Lamb wave velocity can be related to the modulus of the material, an effective tool can be developed to monitor fatigue damage in composites by measuring the velocity of these waves. In this work, preliminary studies have been conducted which monitor fatigue damage in composite samples using strain gage measurements as well as Lamb wave velocity measurements. A description of the test samples is followed by the results of two different measurements of Lamb wave velocity. The first technique is a contact measurement done at a single frequency, while the second involves an immersion study of Lamb waves in which dispersion curves are obtained. The results of the Lamb wave monitoring of fatigue damage is compared to the damage progression measured by strain gages. The final section discusses the results and conclusions.
Polymer matrix composites on LDEF experiments M0003-9 and M0003-10
NASA Technical Reports Server (NTRS)
Steckel, Gary L.; Cookson, Thomas; Blair, Christopher
1992-01-01
Over 250 polymer matrix composites were exposed to the natural space environment on Long Duration Exposure Facility (LDEF) experiments M0003-9 and 10. The experiments included a wide variety of epoxy, thermoplastic, polyimide, and bismalimide matrix composites reinforced with graphite, glass, or organic fibers. A review of the significant observations and test results obtained to date is presented. Estimated recession depths from atomic oxygen exposure are reported and the resulting surface morphologies are discussed. The effects of the LDEF exposure on the flexural strength and modulus, short beam shear strength, and coefficient of thermal expansion of several classes of bare and coated composites are reviewed. Lap shear data are presented for composite-to-composite and composite-to-aluminum alloy samples that were prepared using different bonding techniques and subsequently flown on LDEF.
NASA Astrophysics Data System (ADS)
Yang, Kai; Jiao, Mingli; Yu, Yuanyuan; Zhu, Xueying; Liu, Rangtong; Cao, Jian
2017-07-01
Phase change material (PCM) is increasingly being applied in the manufacturing of functional thermo-regulated textiles and garments. This paper investigated the thermal buffering performance of different composite PCMs which are suitable for the application in functional low-temperature protective garments. First, according to the criteria selecting PCM for functional textiles/garments, three kinds of pure PCM were selected as samples, which were n-hexadecane, n-octadecane and n-eicosane. To get the adjustable phase change temperature range and higher phase change enthalpy, three kinds of composite PCM were prepared using the above pure PCM. To evaluate the thermal buffering performance of different composite PCM samples, the simulated low-temperature experiments were performed in the climate chamber, and the skin temperature variation curves in three different low temperature conditions were obtained. Finally composite PCM samples’ thermal buffering time, thermal buffering capacity and thermal buffering efficiency were calculated. Results show that the comprehensive thermal buffering performance of n-octadecane and n-eicosane composite PCM is the best.
Influence of Water on Tribological Properties of Wood-Polymer Composites
NASA Astrophysics Data System (ADS)
Mysiukiewicz, Olga; Sterzyński, Tomasz
2017-08-01
Utilization of ecological materials for appliances and products is one of the ways to achieve the goal of sustainability.Wood-polymer composites as a cheap, lightweight, durable and esthetic material has gained attention of scientists, engineers and consumers alike. Different kinds of polymeric matrices, plants used as the fillers, chemical of physical modifiers and processing technologies have already been widely studied. Nonetheless, surprisingly few information on Wood-Polymer Composites' tribology can be found. This paper is an attempt to fill this gap. Polypropylene-and poly(lactic acid)-based composites with varying wood flour content have been analyzed. The Brinell's hardness and coefficient of friction of the samples have been determined. In order to evaluate the influence of the moisture content on the tribological and mechanical properties of the composites, the samples have also been aged in water. The investigation revealed that polymeric composites filled with wood flour can present favorable coefficient of friction, compared to the neat resins. The results of our study can establish a good starting point for further investigation.
NASA Astrophysics Data System (ADS)
Malik, Neetu; Shrivastava, Sharad; Bandhu Ghosh, Subrata
2018-04-01
Bio composite materials were fabricated using mixing biodegradable polymer polycaptalactone (PCL) and Organo Modified Montmorillonite Clay (OMMT) through solution casting. Various samples of bio composite films were prepared by varying the OMMT wt% composition by 0.1%, 0.5%, 1% and 1.5%. Thereafter, the density and water absorption of the composites were investigated with respect to immersion time in water. The moisture absorption results show that with an increase in weight percentage (from 0.1 to wt 1.5%) of OMMT within the bio polymer films, the absorption value of bio-nanocomposite films reduced rapidly from 34.4% to 22.3%. The density of hybrid composites also increased with increase in weight percentage of OMMT. The swelling characteristic of PCL increased with increasing % of OMMT clay. These results indicate that the optimized composition of constituents in composite membrane could effectively reduce the anhydrous conditions of bio-composite film.
A Discriminant Distance Based Composite Vector Selection Method for Odor Classification
Choi, Sang-Il; Jeong, Gu-Min
2014-01-01
We present a composite vector selection method for an effective electronic nose system that performs well even in noisy environments. Each composite vector generated from a electronic nose data sample is evaluated by computing the discriminant distance. By quantitatively measuring the amount of discriminative information in each composite vector, composite vectors containing informative variables can be distinguished and the final composite features for odor classification are extracted using the selected composite vectors. Using the only informative composite vectors can be also helpful to extract better composite features instead of using all the generated composite vectors. Experimental results with different volatile organic compound data show that the proposed system has good classification performance even in a noisy environment compared to other methods. PMID:24747735
Effects of high energy radiation on the mechanical properties of epoxy/graphite fiber composites
NASA Technical Reports Server (NTRS)
Fornes, R. E.; Memory, J. D.
1981-01-01
Studies on the effects of high energy radiation on graphite fiber reinforced composites are summarized. Studies of T300/5208 and C6000/PMR15 composites, T300 fibers and the resin system MY720/DDS (tetraglycidyl-4,4'-diaminodiphenyl methane cured with diaminodiphenyl sulfone) are included. Radiation dose levels up to 8000 Mrads were obtained with no deleterious effects on the breaking stress or modulus. The effects on the structure and morphology were investigated using mechanical tests, electron spin resonance, X-ray diffraction, and electron spectroscopy for chemical analysis (ESCA or X-ray photoelectron spectroscopy). Details of the experiments and results are given. Studies of the fracture surfaces of irradiated samples were studied with scanning electron microscopy; current results indicate no differences in the morphology of irradiated and control samples.
Analysis of pollen load based on color, physicochemical composition and botanical source.
Modro, Anna F H; Silva, Izabel C; Luz, Cynthia F P; Message, Dejair
2009-06-01
Pollen load samples from 10 hives of Apis mellifera (L.) were analyzed based on their physicochemical composition and botanical source, considering color as a parameter for quality control. In seven samples it was possible to establish the occurrence of more than 80% of a single pollen type, characterizing them as unifloral but with protein content variation. One of the samples was exclusively composed of saprophytic fungi (Cladosporium sp.). Comparing the mean results of the fungi loads with those of the nutritional components of pollen load, the former presented higher protein, mineral matter and dry matter and lower organic matter, ethereal extract and total carbohydrate values. The monochromatic samples met the physicochemical specifications regulating pollen load quality. The results showed that homogeneous coloration of the pollen load was not found to be a good indication of unifloral pollen, confirming the importance of physicochemical analysis and melissopalynological analysis for characterization of the quality of commercial pollen load.
Regolith compositions from the Apollo 17 mission
NASA Technical Reports Server (NTRS)
Mason, B.; Jacobson, S.; Nelen, J. A.; Melson, W. G.; Simkin, T.; Thompson, G.
1974-01-01
An investigation of the chemical, mineralogical, and petrographic data from six Apollo 17 regolith samples is summarized. The samples from the center of the Taurus-Littrow valley are very similar in composition and consist of mare basalt and a minor admixture (about 25%) of plagioclase-rich material. The material from Station 9 (Van Serg Crater) contains much less basalt and more breccia and are higher in Al2O3 and lower in TiO2 and FeO than the other mare sites. The chemical compositions of the samples from the North Massif, the South Massif, and the light mantle believed to be of landslide origin, are very similar and correspond to an olivine norite; the relatively high K2O and P2O5 content indicate the presence of a KREEP component. Additional results are described in detail.
Kiesler, Kevin M; Coble, Michael D; Hall, Thomas A; Vallone, Peter M
2014-01-01
A set of 711 samples from four U.S. population groups was analyzed using a novel mass spectrometry based method for mitochondrial DNA (mtDNA) base composition profiling. Comparison of the mass spectrometry results with Sanger sequencing derived data yielded a concordance rate of 99.97%. Length heteroplasmy was identified in 46% of samples and point heteroplasmy was observed in 6.6% of samples in the combined mass spectral and Sanger data set. Using discrimination capacity as a metric, Sanger sequencing of the full control region had the highest discriminatory power, followed by the mass spectrometry base composition method, which was more discriminating than Sanger sequencing of just the hypervariable regions. This trend is in agreement with the number of nucleotides covered by each of the three assays. Published by Elsevier Ireland Ltd.
Karacan, C Özgen; Olea, Ricardo A
2018-03-01
Chemical properties of coal largely determine coal handling, processing, beneficiation methods, and design of coal-fired power plants. Furthermore, these properties impact coal strength, coal blending during mining, as well as coal's gas content, which is important for mining safety. In order for these processes and quantitative predictions to be successful, safer, and economically feasible, it is important to determine and map chemical properties of coals accurately in order to infer these properties prior to mining. Ultimate analysis quantifies principal chemical elements in coal. These elements are C, H, N, S, O, and, depending on the basis, ash, and/or moisture. The basis for the data is determined by the condition of the sample at the time of analysis, with an "as-received" basis being the closest to sampling conditions and thus to the in-situ conditions of the coal. The parts determined or calculated as the result of ultimate analyses are compositions, reported in weight percent, and pose the challenges of statistical analyses of compositional data. The treatment of parts using proper compositional methods may be even more important in mapping them, as most mapping methods carry uncertainty due to partial sampling as well. In this work, we map the ultimate analyses parts of the Springfield coal from an Indiana section of the Illinois basin, USA, using sequential Gaussian simulation of isometric log-ratio transformed compositions. We compare the results with those of direct simulations of compositional parts. We also compare the implications of these approaches in calculating other properties using correlations to identify the differences and consequences. Although the study here is for coal, the methods described in the paper are applicable to any situation involving compositional data and its mapping.
System and process for dissolution of solids
Liezers, Martin; Farmer, III, Orville T.
2017-10-10
A system and process are disclosed for dissolution of solids and "difficult-to-dissolve" solids. A solid sample may be ablated in an ablation device to generate nanoscale particles. Nanoparticles may then swept into a coupled plasma device operating at atmospheric pressure where the solid nanoparticles are atomized. The plasma exhaust may be delivered directly into an aqueous fluid to form a solution containing the atomized and dissolved solids. The composition of the resulting solution reflects the composition of the original solid sample.
Spacecraft materials studies on the Aerospace Corporation tray on EOIM-3
NASA Technical Reports Server (NTRS)
Stuckey, Wayne K.; Hemminger, Carol S.; Steckel, Gary L.; Hills, Malina M.; Hilton, Michael R.
1995-01-01
A passive tray was flown on the Effects of Oxygen Interaction with Materials experiment on STS-46 (EOIM-3) with 82 samples from The Aerospace Corporation. A variety of advanced materials related to potential uses on future spacecraft were included for evaluation representing optical coatings, lubricants, polymers, composites, carbon-carbon composite protective coatings, graphite protective coatings, thermal-control materials, and some samples of current materials. An overview of the available results from the investigations of these materials is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Keri; Judge, Elizabeth J.; Dirmyer, Matthew R.
Surrogate nuclear explosive debris was synthesized and characterized for major, minor, and trace elemental composition as well as uranium isotopics. The samples consisted of an urban glass matrix, equal masses soda lime and cement, doped with 500 ppm uranium with varying enrichments. The surface and cross section morphology were measured with SEM, and the major elemental composition was determined by XPS. LA-ICP-MS was used to measure the uranium isotopic abundance comparing different sampling techniques. Furthermore, the results provide an example of the utility of LA-ICP-MS for forensics applications.
Thermal-vacuum response of polymer matrix composites in space
NASA Technical Reports Server (NTRS)
Tennyson, R. C.; Matthews, R.
1993-01-01
This report describes a thermal-vacuum outgassing model and test protocol for predicting outgassing times and dimensional changes for polymer matrix composites. Experimental results derived from 'control' samples are used to provide the basis for analytical predictions to compare with the outgassing response of Long Duration Exposure Facility (LDEF) flight samples. Coefficient of thermal expansion (CTE) data are also presented. In addition, an example is given illustrating the dimensional change of a 'zero' CTE laminate due to moisture outgassing.
NASA Astrophysics Data System (ADS)
Lemasle, B.; Groenewegen, M. A. T.; Grebel, E. K.; Bono, G.; Fiorentino, G.; François, P.; Inno, L.; Kovtyukh, V. V.; Matsunaga, N.; Pedicelli, S.; Primas, F.; Pritchard, J.; Romaniello, M.; da Silva, R.
2017-12-01
Context. Cepheids are excellent tracers of young stellar populations. They play a crucial role in astrophysics as standard candles. The chemistry of classical Cepheids in the Milky Way is now quite well-known, however despite a much larger sample, the chemical composition of Magellanic Cepheids has been only scarcely investigated. Aims: For the first time, we study the chemical composition of several Cepheids located in the same populous cluster: NGC 1866, in the Large Magellanic Cloud (LMC). To also investigate the chemical composition of Cepheids at lower metallicity, we look at four targets located in the Small Magellanic Cloud (SMC). Our sample allows us to increase the number of Cepheids with known metallicities in the LMC/SMC by 20%/25% and the number of Cepheids with detailed chemical composition in the LMC/SMC by 46%/50%. Methods: We use canonical spectroscopic analysis to determine the chemical composition of Cepheids and provide abundances for a good number of α, iron-peak, and neutron-capture elements. Results: We find that six Cepheids in the LMC cluster NGC 1866 have a very homogeneous chemical composition, also consistent with red giant branch (RGB) stars in the cluster. Period-age relations that include no or average rotation indicate that all the Cepheids in NGC 1866 have a similar age and therefore belong to the same stellar population. Our results are in good agreement with theoretical models accounting for luminosity and radial velocity variations. Using distances based on period-luminosity relations in the near- or mid-infrared, we investigate for the first time the metallicity distribution of the young population in the SMC in the depth direction. Preliminary results show no metallicity gradient along the SMC main body, but our sample is small and does not contain Cepheids in the inner few degrees of the SMC. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 082.D-0792(B).
Evaluation of the impact of dental prophylaxis on the oral microbiota of dogs.
Flancman, Rebecca; Singh, Ameet; Weese, J Scott
2018-01-01
Periodontal disease is one of the most commonly diagnosed oral diseases in dogs and can result from undisturbed dental plaque. Dental prophylaxis is a routinely practiced veterinary procedure, but its effects on both the plaque and oral microbiota is not fully understood. The objectives of this study were to evaluate the impact of dental prophylaxis on the composition of the supragingival plaque and composite oral microbiota in clinically healthy dogs and to determine if composite sampling could be used in lieu of sampling the plaque microbiota directly. Thirty dogs received a dental prophylaxis. Supragingival plaque and composite oral samples were collected just prior to, and one week after dental prophylaxis. A subsample of 10 dogs was followed, and additional samples were collected two and five weeks post-prophylaxis. The V4 region of the 16S rRNA gene was used for Illumina MiSeq next-generation sequencing. Results demonstrate that decreases in Treponema as well as increases in Moraxella and Neisseria distinguished the plaque pre- and one week post-prophylaxis timepoints (all P<0.05). Within the oral microbiota, the initially dominant Psychrobacter (20% relative abundance) disappeared one week later (P<0.0001), and Pseudomonas became the dominant taxon one week after treatment (80% relative abundance, P<0.0001). A rapid transition back towards the pre-dental prophylaxis microbiota by five weeks post-treatment was seen for both niches, suggesting the canine oral microbiota is resilient. Direct comparison of the two environments yielded striking differences, with complete separation of groups. Firmicutes (40%) and Spirochaetes (22%) predominated in the plaque while Proteobacteria (58%) was predominant in the oral microbiota. Greater richness was also seen in the plaque microbiota. This study reveals that prophylaxis had a profound impact on both the plaque and oral microbiota, and the longitudinal results help elucidate the pathophysiology of periodontal disease. The results suggest that oral swabs are a poor proxy for plaque samples and highlight the need to study specific oral niches.
Laboratory Testing of Volcanic Gas Sampling Techniques
NASA Astrophysics Data System (ADS)
Kress, V. C.; Green, R.; Ortiz, M.; Delmelle, P.; Fischer, T.
2003-12-01
A series of laboratory experiments were performed designed to calibrate several commonly used methods for field measurement of volcanic gas composition. H2, CO2, SO2 and CHCl2F gases were mixed through carefully calibrated rotameters to form mixtures representative of the types of volcanic compositions encountered at Kilauea and Showa-Shinzan. Gas mixtures were passed through a horizontal furnace at 700oC to break down CHCl2F and form an equilibrium high-temperature mixture. With the exception of Giggenbach bottle samples, all gas sampling was performed adjacent to the furnace exit in order to roughly simulate the air-contaminated samples encountered in Nature. Giggenbach bottle samples were taken from just beyond the hot-spot 10cm down the furnace tube to minimize atmospheric contamination. Alkali-trap measurements were performed by passing gases over or bubbling gases through 6N KOH, NaOH or LiOH solution for 10 minutes. Results were highly variable with errors in measured S/Cl varying from +1600% to -19%. In general reduced Kilauea compositions showed smaller errors than the more oxidized Showa-Shinzan compositions. Results were not resolvably different in experiments where gas was bubbled through the alkaline solution. In a second set of experiments, 25mm circles of Whatman 42 filter paper were impregnated with NaHCO3or KHCO3 alkaline solutions stabilized with glycerol. Some filters also included Alizarin (5.6-7.2) and neutral red (6.8-8.0) Ph indicator to provide a visual monitor of gas absorption. Filters were mounted in individual holders and used in stacks of 3. Durations were adjusted to maximize reaction in the first filter in the stack and minimize reaction in the final filter. Errors in filter pack measurements were smaller and more systematic than the alkali trap measurements. S/Cl was overestimated in oxidized gas mixtures and underestimated in reduced mixtures. Alkali-trap methods allow extended unattended monitoring of volcanic gasses, but our results suggest that they are poor recorders of gas composition. Filter pack methods are somewhat better, but are more difficult to interpret than previously recognized. We suggest several refinements to the filter-pack technique that can improve accuracy. Giggenbach bottles remain the best method for volcanic gas sampling, despite the inherent difficulty and danger of obtaining samples in active volcanic environments. Relative merits of different alkali solutions and indicators are discussed.
Sonnenfeld, Camille; Sulejmani, Sanne; Geernaert, Thomas; Eve, Sophie; Lammens, Nicolas; Luyckx, Geert; Voet, Eli; Degrieck, Joris; Urbanczyk, Waclaw; Mergo, Pawel; Becker, Martin; Bartelt, Hartmut; Berghmans, Francis; Thienpont, Hugo
2011-01-01
Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures. PMID:22163755
Ntakatsane, M P; Yang, X Q; Lin, M; Liu, X M; Zhou, P
2011-11-01
Thirteen milk brands comprising 76 pasteurized and UHT milk samples of various compositions (whole, reduced fat, skimmed, low lactose, and high protein) were obtained from local supermarkets, and milk samples manufactured in various countries were discriminated using front-face fluorescence spectroscopy (FFFS) coupled with chemometric tools. The emission spectra of Maillard reaction products and riboflavin (MRP/RF; 400 to 600 nm) and tryptophan (300 to 400 nm) were recorded using FFFS, and the excitation wavelengths were set at 360 nm for MRP/RF and 290 nm for tryptophan. Principal component analysis (PCA) was applied to analyze the normalized spectra. The PCA of spectral information from MRP/RF discriminated the milk samples originating in different countries, and PCA of spectral information from tryptophan discriminated the samples according to composition. The fluorescence spectral data were compared with liquid chromatography-mass spectrometry results for the glycation extent of the milk samples, and a positive association (R(2)=0.84) was found between the degree of glycation of α-lactalbumin and the MRP/RF spectral data. This study demonstrates the ability and sensitivity of FFFS to rapidly discriminate and classify commercial milk with various compositions and processing conditions. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wan, Yiqun; Wang, Xiaofen; Gu, Yun; Guo, Lan; Xu, Zhaodi
2016-03-01
A kind of novel composite ZnS/In(OH)3/In2S3 is synthesized using zinc oxide nanoplates as zinc raw material during hydrothermal process. Although the obtained samples are composited of ZnS and In(OH)3 and In2S3 phase, the samples possess different structure, morphology and optical absorption property depending on molar ratio of raw materials. Zeta potential analysis indicates different surface electrical property since various content and particle size of the phases. The equilibrium adsorption study confirms the composite ZnS/In(OH)3/In2S3 with surface negative charge is good adsorbent for Rhodamine B (Rh B) dye. In addition, the degradation of Rh B over the samples with surface negative charge under visible light (λ ≥ 420 nm) is more effective than the samples with surface positive charge. The samples before and after adsorbing Rh B molecule are examined by FTIR spectra and Zetasizer. It is found that the three function groups of Rh B molecule, especially carboxyl group anchors to surface of the sample through electrostatic adsorption, coordination and hydrogen-bond. It contributes to rapid transformation of photogenerated electron to conduction band of In(OH)3 and suppresses the recombination of photogenerated carrier. The possible adsorption modes of Rh B are discussed on the basis of the experiment results.
Martian carbon dioxide: Clues from isotopes in SNC meteorites
NASA Technical Reports Server (NTRS)
Karlsson, H. R.; Clayton, R. N.; Mayeda, T. K.; Jull, A. J. T.; Gibson, E. K., Jr.
1993-01-01
Attempts to unravel the origin and evolution of the atmosphere and hydrosphere on Mars from isotopic data have been hampered by the impreciseness of the measurements made by the Viking Lander and by Earth-based telescopes. The SNC meteorites which are possibly pieces of the Martian surface offer a unique opportunity to obtain more precise estimates of the planet's volatile inventory and isotopic composition. Recently, we reported results on oxygen isotopes of water extracted by pyrolysis from samples of Shergotty, Zagami, Nakhla, Chassigny, Lafayette, and EETA-79001. Now we describe complementary results on the stable isotopic composition of carbon dioxide extracted simultaneously from those same samples. We will also report on C-14 abundances obtained by accelerator mass spectrometry (AMS) for some of these CO2 samples.
Abral, Hairul; Putra, Genda J; Asrofi, Mohammad; Park, Ji-Won; Kim, Hyun-Joong
2018-01-01
This article reports effect of vibration duration of high ultrasound applied to bio-composite while gelatinized on its properties. The bio-composite consists of mixing of both the tapioca starch based bioplastic and oil palm empty fruit bunch (OPEFB) fibers with high volume fraction. Gelatinization of the bio-composite sample was poured into a rectangular glass mold placed then in an ultrasonic bath with 40kHz, and 250watt in different duration for 0, 15, 30, 60min respectively. The results show that vibration during gelatinization has changed the characterisation of the bio-composite. SEM photograph displayed different fracture surface of tensile sample. For vibration duration of 60min, tensile strength (TM), and tensile modulus (TM) was improved to 64.4, 277.4%, respectively, meanwhile strain was decreased to 35.1% in comparison without vibration. Fourier Transform Infrared Spectroscopy (FTIR), and XRD diffraction of the bio-composite has changed due to various vibration duration. Moisture absorption of the vibrated bio-composite was lower than that of the untreated one. Copyright © 2017 Elsevier B.V. All rights reserved.
Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.
2000-10-17
Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.
NASA Technical Reports Server (NTRS)
Seale, Michael D.; Madaras, Eric I.
2000-01-01
The introduction of new, advanced composite materials into aviation systems requires it thorough understanding of the long-term effects of combined thermal and mechanical loading. As part of a study to evaluate the effects of thermal-mechanical cycling, it guided acoustic (Lamb) wave measurement system was used to measure the bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the velocity dispersion curve. A series of 16 and 32-ply composite laminates were subjected to it thermal-mechanical loading profile in load frames equipped with special environmental chambers. The composite systems studied were it graphite fiber reinforced amorphous thermoplastic polyimide and it graphite fiber reinforced bismaleimide thermoset. The samples were exposed to both high and low temperature extremes its well as high and low strain profiles. The bending and out-of-plane stiffnesses for composite sample that have undergone over 6,000 cycles of thermal-mechanical loading are reported. The Lamb wave generated elastic stiffness results have shown decreases of up to 20% at 4,936 loading cycles for the graphite/thermoplastic samples and up to 64% at 4,706 loading cycles for the graphite/thermoset samples.
Use of intumescent compounds in fire curtains
NASA Astrophysics Data System (ADS)
Nedryshkin, Oleg; Gravit, Marina; Mukhamedzhanova, Olga
2017-10-01
Automatic fire curtains are designed to divide sections of premises and structures into fire compartments for the purpose of localizing a fire, as well as filling openings in fire barriers. If a fire occurs due to a signal from a fire alarm sensor or a signal from a fire station, the blind automatically falls and locates the source of ignition. The paper presents the results of testing nine samples of fire curtains with an applied intumescent composition. Tests were conducted for 60 minutes before loss of sample integrity. The average temperature from the heated side of the sample reached 800 ∼ 1000 ° C. Depending on the sample, the temperature from the unheated side ranged from 70 ° C to 294 ° C. The best result was shown by a sample from a layer of needle-punched heat-insulating material with a thermal conductivity of 0.036 W/(m×K) placed between layers of foil and treated with water-based intumescent composition of silica material.
Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G
2015-10-01
The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.
Tribological properties of thermally sprayed TiAl-Al2O3 composite coating
NASA Astrophysics Data System (ADS)
Salman, A.; Gabbitas, B.; Li, J.; Zhang, D.
2009-08-01
The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The results showed that the composite coating has lower wear rate at high temperature (700°C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.
The Effect of a Receding Saline Lake (The Salton Sea) on Airborne Particulate Matter Composition.
Frie, Alexander L; Dingle, Justin H; Ying, Samantha C; Bahreini, Roya
2017-08-01
The composition of ambient particulate matter (PM) and its sources were investigated at the Salton Sea, a shrinking saline lake in California. To investigate the influence of playa exposure on PM composition, PM samples were collected during two seasons and at two sites around the Salton Sea. To characterize source composition, soil samples were collected from local playa and desert surfaces. PM and soil samples were analyzed for 15 elements using mass spectrometry and X-ray diffraction. The contribution of sources to PM mass and composition was investigated using Al-referenced enrichment factors (EFs) and source factors resolved from positive matrix factorization (PMF). Playa soils were found to be significantly enriched in Ca, Na, and Se relative to desert soils. PMF analysis resolved the PM 10 data with four source factors, identified as Playa-like, Desert-like, Ca-rich, and Se. Playa-like and desert-like sources were estimated to contribute to a daily average of 8.9% and 45% of PM 10 mass, respectively. Additionally, playa sources were estimated to contribute to 38-68% of PM 10 Na. PM 10 Se concentrations showed strong seasonal variations, suggesting a seasonal cycle of Se volatilization and recondensation. These results support the importance of playas as a source of PM mass and a controlling factor of PM composition.
Hong, Xutao; Chen, Jing; Liu, Lin; Wu, Huan; Tan, Haiqin; Xie, Guangfa; Xu, Qian; Zou, Huijun; Yu, Wenjing; Wang, Lan; Qin, Nan
2016-01-01
Chinese Rice Wine (CRW) is a common alcoholic beverage in China. To investigate the influence of microbial composition on the quality of CRW, high throughput sequencing was performed for 110 wine samples on bacterial 16S rRNA gene and fungal Internal Transcribed Spacer II (ITS2). Bioinformatic analyses demonstrated that the quality of yeast starter and final wine correlated with microbial taxonomic composition, which was exemplified by our finding that wine spoilage resulted from a high proportion of genus Lactobacillus. Subsequently, based on Lactobacillus abundance of an early stage, a model was constructed to predict final wine quality. In addition, three batches of 20 representative wine samples selected from a pool of 110 samples were further analyzed in metagenomics. The results revealed that wine spoilage was due to rapid growth of Lactobacillus brevis at the early stage of fermentation. Gene functional analysis indicated the importance of some pathways such as synthesis of biotin, malolactic fermentation and production of short-chain fatty acid. These results led to a conclusion that metabolisms of microbes influence the wine quality. Thus, nurturing of beneficial microbes and inhibition of undesired ones are both important for the mechanized brewery. PMID:27241862
Hong, Xutao; Chen, Jing; Liu, Lin; Wu, Huan; Tan, Haiqin; Xie, Guangfa; Xu, Qian; Zou, Huijun; Yu, Wenjing; Wang, Lan; Qin, Nan
2016-05-31
Chinese Rice Wine (CRW) is a common alcoholic beverage in China. To investigate the influence of microbial composition on the quality of CRW, high throughput sequencing was performed for 110 wine samples on bacterial 16S rRNA gene and fungal Internal Transcribed Spacer II (ITS2). Bioinformatic analyses demonstrated that the quality of yeast starter and final wine correlated with microbial taxonomic composition, which was exemplified by our finding that wine spoilage resulted from a high proportion of genus Lactobacillus. Subsequently, based on Lactobacillus abundance of an early stage, a model was constructed to predict final wine quality. In addition, three batches of 20 representative wine samples selected from a pool of 110 samples were further analyzed in metagenomics. The results revealed that wine spoilage was due to rapid growth of Lactobacillus brevis at the early stage of fermentation. Gene functional analysis indicated the importance of some pathways such as synthesis of biotin, malolactic fermentation and production of short-chain fatty acid. These results led to a conclusion that metabolisms of microbes influence the wine quality. Thus, nurturing of beneficial microbes and inhibition of undesired ones are both important for the mechanized brewery.
Xin Zhao; Geng, Rong -Li; Tyagi, P. V.; ...
2010-12-30
Here, we report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granulesmore » with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.« less
Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.
2016-01-01
The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall. PMID:27680878
Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P; Jansson, Janet K; Hopkins, David W; Aspray, Thomas J; Seely, Mary; Trindade, Marla I; Cowan, Don A
2016-09-29
The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO 2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.
Ni, Li-Jun; Luan, Shao-Rong; Zhang, Li-Guo
2016-10-01
Because of the numerous varieties of herbal species and active ingredients in the traditional Chinese medicine(TCM),the traditional methods employed could hardly satisfy the current determination requirements of TCM.The present work proposed an idea to realize rapid determination of the quality of TCM based on near infrared(NIR)spectroscopy and internet sharing mode. Low cost and portable multi-source composite spectrometer was invented by our group for in-site fast measurement of spectra of TCM samples. The database could be set up by sharing spectra and quality detection data of TCM samples among TCM enterprises based on the internet platform.A novel method called as keeping same relationship between X and Y space based on K nearest neighbors(KNN-KSR for short)was applied to predict the contents of effective compounds of the samples. In addition,a comparative study between KNN-KSR and partial least squares(PLS)was conducted. Two datasets were applied to validate above idea:one was about 58 Ginkgo Folium samples samples measured with four near-infrared spectroscopy instruments and two multi-source composite spectrometers,another one was about 80 corn samples available online measured with three NIR instruments. The results show that the KNN-KSR method could obtain more reliable outcomes without correcting spectrum.However transforming the PLS models to other instruments could hardly acquire better predictive results until spectral calibration is performed. Meanwhile,the similar analysis results of total flavonoids and total lactones of Ginkgo Folium samples are achieved on the multi-source composite spectrometers and near-infrared spectroscopy instruments,and the prediction results of KNN-KSR are better than PLS. The idea proposed in present study is in urgent need of more samples spectra, and then to be verified by more case studies. Copyright© by the Chinese Pharmaceutical Association.
Application of a Fiber Optic Distributed Strain Sensor System to Woven E-Glass Composite
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Lopatin, Craig
2001-01-01
A distributed strain sensing system utilizing a series of identically written Bragg gratings along an optical fiber is examined for potential application to Composite Armored Vehicle health monitoring. A vacuum assisted resin transfer molding process was used to fabricate a woven fabric E-glass/composite panel with an embedded fiber optic strain sensor. Test samples machined from the panel were mechanically tested in 4-point bending. Experimental results are presented that show the mechanical strain from foil strain gages comparing well to optical strain from the embedded sensors. Also, it was found that the distributed strain along the sample length was consistent with the loading configuration.
A high-throughput core sampling device for the evaluation of maize stalk composition
2012-01-01
Background A major challenge in the identification and development of superior feedstocks for the production of second generation biofuels is the rapid assessment of biomass composition in a large number of samples. Currently, highly accurate and precise robotic analysis systems are available for the evaluation of biomass composition, on a large number of samples, with a variety of pretreatments. However, the lack of an inexpensive and high-throughput process for large scale sampling of biomass resources is still an important limiting factor. Our goal was to develop a simple mechanical maize stalk core sampling device that can be utilized to collect uniform samples of a dimension compatible with robotic processing and analysis, while allowing the collection of hundreds to thousands of samples per day. Results We have developed a core sampling device (CSD) to collect maize stalk samples compatible with robotic processing and analysis. The CSD facilitates the collection of thousands of uniform tissue cores consistent with high-throughput analysis required for breeding, genetics, and production studies. With a single CSD operated by one person with minimal training, more than 1,000 biomass samples were obtained in an eight-hour period. One of the main advantages of using cores is the high level of homogeneity of the samples obtained and the minimal opportunity for sample contamination. In addition, the samples obtained with the CSD can be placed directly into a bath of ice, dry ice, or liquid nitrogen maintaining the composition of the biomass sample for relatively long periods of time. Conclusions The CSD has been demonstrated to successfully produce homogeneous stalk core samples in a repeatable manner with a throughput substantially superior to the currently available sampling methods. Given the variety of maize developmental stages and the diversity of stalk diameter evaluated, it is expected that the CSD will have utility for other bioenergy crops as well. PMID:22548834
Photothermal method for in situ microanalysis of the chemical composition of coal samples
Amer, Nabil M.
1986-01-01
Successive minute regions (13) along a scan path on a coal sample (11) are individually analyzed, at a series of different depths if desired, to determine chemical composition including the locations, sizes and distributions of different maceral inclusions (12). A sequence of infrared light pulses (17) of progressively changing wavelengths is directed into each minute region (13) and a probe light beam (22) is directed along the sample surface (21) adjacent the region (13). Infrared wavelengths at which strong absorption occurs in the region (13) are identified by detecting the resulting deflections (.phi.) of the probe beam (22) caused by thermally induced index of refraction changes in the air or other medium (19) adjacent the region (13). The detected peak absorption wavelengths are correlated with known characteristic peak absorption wavelengths of specific coal constituents to identify the composition of each such minute region (13) of the sample (11). The method enables rapid, convenient and non-destructive analyses of coal specimens to facilitate mining, processing and utilization of coals.
Photothermal method for in situ microanalysis of the chemical composition of coal samples
Amer, N.M.
1983-10-25
Successive minute regions along a scan path on a coal sample are individually analyzed, at a series of different depths if desired, to determine chemical composition including the locations, sizes and distributions of different maceral inclusions. A sequence of infrared light pulses of progressively changing wavelengths is directed into each minute region and a probe light beam is directed along the sample surface adjacent the region. Infrared wavelengths at which strong absorption occurs in the region are identified by detecting the resulting deflections of the probe beam caused by thermally induced index of refraction changes in the air or other medium adjacent the region. The detected peak absorption wavelengths are correlated with known characteristic peak absorption wavelengths of specific coal constituents to identify the composition of each such minute region of the sample. The method enables rapid, convenient and non-destructive analyses of coal specimens to facilitate mining, processing and utilization of coals. 2 figures.
NASA Astrophysics Data System (ADS)
Colomer, M. T.; Kilner, J. A.
2015-08-01
This work reports the effect of two different sintering times, 6 and 48 h on the structural, microstructural, and chemical features of Ni-doped La0.90Sr0.10GaO3.00-δ. Independently of the sintering time, La0.90Sr0.10Ga1-xNixO3.00-δ (where x=0.10, and 0.20 (mol)) presents a rhombohedral symmetry with a lattice volume that decreases when NiO dopant increases. Besides the perovskite, LaSrGa3.00O7.00 (nominal composition) is present as second phase in all cases. When the samples are doped with NiO, the peaks of this second phase are shifted with respect to the peaks of the pure phase. These shifts suggest that this second phase could admit some Ni ions in its structure. According to the XRD patterns, the amount of the latter phase is larger when sintering time is increased. Electron probe microanalysis (EPMA) indicated that the matrix of the samples sintered for 6 h is constituted by a perovskite with an experimental composition very close to the nominal one. However, when the samples are sintered for 48 h the matrix of each sample is constituted by two perovskites; both with compositional deviations with respect to their nominal one. In particular, a significant Sr depletion compensated by a La increment in the A site is observed. Those compositional deviations could be mainly due to the diffusion of the cations in the bulk and/or from the bulk to the surface of the samples. That diffusion can favour the formation, not only, of a second perovskite with a different composition in relation with the first one formed, but also, the formation of second phases. In addition, a very slight broadening of Bragg peaks of the perovskites sintered for 48 h is observed by XRD and can be related to the presence of two different perovskites in each sample according to EPMA results. By BSEM and EPMA analyses La4.00Ga2.00O9.00 (nominal composition) is also observed as second phase when samples are treated for 48 h.
Nicole M. Stark; Laurent M. Matuana
2004-01-01
The use of wood-derived fillers by the thermoplastic industry has been growing, fueled in part by the use of wood-fiberâthermoplastic composites by the construction industry. As a result, the durability of wood-fiberâ thermoplastic composites after ultraviolet exposure has become a concern. Samples of 100% high-density polyethylene (HDPE) and HDPE filled with 50% wood-...
NASA Astrophysics Data System (ADS)
Caicedo-Eraso, J. C.; González-Correa, C. H.; González-Correa, C. A.
2013-04-01
A previous study showed that reported BIA equations for body composition are not suitable for Colombian population. The purpose of this study was to develop and validate a preliminary BIA equation for body composition assessment in young females from Colombia, using hydrodensitometry as reference method. A sample of 30 young females was evaluated. Inclusion and exclusion criteria were defined to minimize the variability of BIA. Height, weight, BIA, residual lung volume (RV) and underwater weight (UWW) were measured. A preliminary BIA equation was developed (r2 = 0.72, SEE = 2.48 kg) by stepwise multiple regression with fat-free mass (FFM) as dependent variable and weight, height and impedance measurements as independent variables. The quality of regression was evaluated and a cross-validation against 50% of sample confirmed that results obtained with the preliminary BIA equation is interchangeable with results obtained with hydrodensitometry (r2 = 0.84, SEE = 2.62 kg). The preliminary BIA equation can be used for body composition assessment in young females from Colombia until a definitive equation is developed. The next step will be increasing the sample, including a second reference method, as deuterium oxide dilution (D2O), and using multi-frequency BIA (MF-BIA). It would also be desirable to develop equations for males and other ethnic groups in Colombia.
Comparison of W-VC-C composites against Co-60, Se-75 and Sb-125 for gamma radioisotope sources
NASA Astrophysics Data System (ADS)
Demir, Ertugrul; Tugrul, A. Beril; Buyuk, Bulent; Yilmaz, Ozan; Ovecoglu, Lutfi
2018-02-01
Tungsten based materials are considered to be the promising materials for nuclear applications due to the good properties. The tungsten composite materials have so many advantages in nuclear technological applications especially fusion reactor systems. In this paper, Tungsten-Vanadium carbide-Graphite (W-VC-C) which include 93% tungsten (W), 6% vanadium carbide (VC) and 1% graphite (C) also which has three different alloying time (6-12-24 hours) were produced by mechanical alloying method. Co-60, Se-75 and Sb-125 gamma radioisotopeswere used as a gamma sources in order to determine behavior of gamma attenuation properties of the composite materials. The experimental results were compared with each other to clarify effects of varying gamma energies on the tungsten based composite materials. The mass attenuation coefficients of the samples were obtained by using XCOM computer code and compared with experimental data. The gamma linear attenuation, the mass attenuation coefficients and half value thickness (HVL) of the samples were evaluated and compared with Co-60, Se-75 and Sb-125 for gamma radioisotopes. Results showed that gamma attenuation coefficients of the samples depend on gamma energies and mechanical alloying time has negatively effect on the gamma shielding properties for the all studied W-VC-C.
Torchio, Fabrizio; Giacosa, Simone; Vilanova, Mar; Río Segade, Susana; Gerbi, Vincenzo; Giordano, Manuela; Rolle, Luca
2016-12-01
The changes in the volatile composition of Moscato bianco grapes were evaluated during ripening. Grape berries were sampled for five weeks (16-20 °Brix) and sorted for each date in ten density classes (1.05-1.12g/cm(3)). The highest total concentration of free terpenes was found at 19.3 °Brix; however, total concentration of the bound fraction increased significantly throughout ripening. Response surface methodology was used to assess the simultaneous effect of sampling time and berry density on the volatile composition, which was satisfactorily fitted to regression models for some key terpene compounds. Total free and bound terpenes were more affected by grape density than by sampling date. The same behaviour was observed for free and bound linalool and bound nerol, whereas the stronger effect of sampling date was exhibited for bound t-rose oxide, c-rose oxide and geraniol. The results showed that the sampling strategy impacted strongly on the aroma quality of berries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ionic liquid-based reagents improve the stability of midterm fecal sample storage.
Hao, Lilan; Xia, Zhongkui; Yang, Huanming; Wang, Jian; Han, Mo
2017-08-01
Fecal samples are widely used in metagenomic research, which aims to elucidate the relationship between human health and the intestinal microbiota. However, the best conditions for stable and reliable storage and transport of these samples at room temperature are still unknown, and whether samples stored at room temperature for several days will maintain their microbiota composition is still unknown. Here, we established and tested a preservation method using reagents containing imidazolium- or pyridinium-based ionic liquids. We stored human fecal samples in these reagents for up to 7 days at different temperatures. Subsequently, all samples were sequenced and compared with fresh samples and/or samples treated under other conditions. The 16S rRNA sequencing results suggested that ionic liquid-based reagents could stabilize the composition of the microbiota in fecal samples during a 7-day storage period, particularly when stored at room temperature. Thus, this method may have implications in the storage of fecal samples for metagenomic research. Copyright © 2017 Elsevier B.V. All rights reserved.
40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.
Code of Federal Regulations, 2011 CFR
2011-07-01
... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...
40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.
Code of Federal Regulations, 2013 CFR
2013-07-01
... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...
40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.
Code of Federal Regulations, 2014 CFR
2014-07-01
... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...
40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.
Code of Federal Regulations, 2012 CFR
2012-07-01
... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...
Characterization and processing of heat treated aluminium matrix composite
NASA Astrophysics Data System (ADS)
Doifode, Yogesh; Kulkarni, S. G.
2018-05-01
The present study is carried out to determine density and porosity of Aluminium bagasse ash reinforced composite produced by powder metallurgy method. Bagasse ash is used as reinforcement material having high silica and alumina contents and varied from 5 weight % to 40 weight%. The manufactured composite is heat treated, the main objective of heat treatment is to prepare the material structurally and physically fit for engineering application. The results showed that the density decreases with percentage increase in reinforcement of bagasse ash from 2.6618 gm/cm3 to 1.9830 gm/cm3 with the minimum value at 40 weight% bagasse ash without heat treatment whereas after heat treatment density of composite increases due filling up of voids and porous holes. Heat treatment processing is the key to this improvement, with the T6 heat treated composite to convene the reduced porosity of composite. Consequently aluminium metal matrix composite combines the strength of the reinforcement to achieve a combination of desirable properties not available in any single material. It may observe that porosity in case of powder metallurgy samples showed more porosity portions compare to the casting samples. In order to achieve optimality in structure and properties of Bagasse ash-reinforcement heat treatment techniques have evolved. Generally, the ceramic reinforcements increase the density of the base alloy during fabrication of composites. However, the addition of lightweight reinforcements reduces the density of the hybrid composites. The results also showed that, the density varies from to with minimum value at 40 wt. % BA. The results of the statistical analysis showed that there are significant differences among the means of each property of the composites at various levels of BA replacement .It was concluded that bagasse ash can be used as reinforcement and the produced composites have low density and heat treatment reduces porosity which could be used in automobile industry for the production of engine parts.
Bioactive lipids in the butter production chain from Parmigiano Reggiano cheese area.
Verardo, Vito; Gómez-Caravaca, Ana M; Gori, Alessandro; Losi, Giuseppe; Caboni, Maria F
2013-11-01
Bovine milk contains hundreds of diverse components, including proteins, peptides, amino acids, lipids, lactose, vitamins and minerals. Specifically, the lipid composition is influenced by different variables such as breed, feed and technological process. In this study the fatty acid and phospholipid compositions of different samples of butter and its by-products from the Parmigiano Reggiano cheese area, produced by industrial and traditional churning processes, were determined. The fatty acid composition of samples manufactured by the traditional method showed higher levels of monounsaturated and polyunsaturated fatty acids compared with industrial samples. In particular, the contents of n-3 fatty acids and conjugated linoleic acids were higher in samples produced by the traditional method than in samples produced industrially. Sample phospholipid composition also varied between the two technological processes. Phosphatidylethanolamine was the major phospholipid in cream, butter and buttermilk samples obtained by the industrial process as well as in cream and buttermilk samples from the traditional process, while phosphatidylcholine was the major phospholipid in traditionally produced butter. This result may be explained by the different churning processes causing different types of membrane disruption. Generally, samples produced traditionally had higher contents of total phospholipids; in particular, butter produced by the traditional method had a total phospholipid content 33% higher than that of industrially produced butter. The samples studied represent the two types of products present in the Parmigiano Reggiano cheese area, where the industrial churning process is widespread compared with the traditional processing of Reggiana cow's milk. This is because Reggiana cow's milk production is lower than that of other breeds and the traditional churning process is time-consuming and economically disadvantageous. However, its products have been demonstrated to contain more bioactive lipids compared with products obtained from other breeds and by the industrial process. © 2013 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Bharat, K. R.; Abhishek, S.; Palanikumar, K.
2017-06-01
Natural fibre composites find wide range of applications and usage in the automobile and manufacturing industries. They find lack in desired properties, which are required for present applications. In current scenario, many developments in composite materials involve the synthesis of Hybrid composite materials to overcome some of the lacking properties. In this present investigation, two sandwich structured hybrid composite materials have been made by reinforcing Aloe Vera-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and Sisal fibre-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and its mechanical properties such as Tensile, Flexural and Impact are tested and analyzed. The test results from the two samples are compared and the results show that sisal fibre reinforced hybrid composite has better mechanical properties than aloe vera reinforced hybrid composite.
Magnetization of small iron-nickel spheres
NASA Technical Reports Server (NTRS)
Wasilewski, P.
1981-01-01
Magnetic properties of small iron-nickel alloy spheres, having compositions which cover the entire Fe-Ni binary, are presented. The spheres were formed during solidification in free fall following the melting of electropolished wires of appropriate composition. The spheres with Ni not greater than 25% acquired a martensitic thermal remanence while those with Ni not less than 30% acquired a thermoremanent magnetization. A magnetic remanence-composition diagram and a coercive force-composition diagram are constructed. Magnetic hysteresis loops and derived parameters demonstrate the difference between metal-bearing and oxide-bearing natural samples. The magnetic remanence varies as the sphere size in conjunction with the microstructure. These results help to explain why coercive force is generally low, remanent coercive force is generally high, and their ratio (R/C) is always large in fine metal dispersions, such as lunar samples and chondrite meteorites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes, O
2010-06-01
Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3more » or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.« less
Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara
2016-01-01
Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively.
NASA Astrophysics Data System (ADS)
Ujianto, O.; Putri, D. B.; Jayatin; AWinarto, D.
2017-07-01
Devulcanization of ground tire rubber (GTR) was done using twin screw extruder (TSE) and internal mixer (IM). Processing parameters were varied to analyze its effect on gel content. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed as qualitative technique to confirm structural change. The devulcanized rubbers with the least gel content percentage produced in both TSE and IM were then used as filler in natural rubber (NR)/coconut coir (CC) composite preparation. Effects of gel content percentage on NR/CC composite tensile strength and elongation at break were analyzed. The results show that the gel content decreased by 41% for sample processed in TSE and 50% in IM compared to control sample. Overall, the devulcanization is influenced by high energy generated by thermal or thermo-mechanical process. FTIR spectra show chemically structural changes of GTR as C=C, CH2, CH3 with higher intensity for IM sample than its counterpart indicated devulcanization. The replacement of GTR to DGTR on NR/CC/GTR composites provided less network structures and resulted better tensile strength and elongation at break.
Estimation of pyrethroid pesticide intake using regression ...
Population-based estimates of pesticide intake are needed to characterize exposure for particular demographic groups based on their dietary behaviors. Regression modeling performed on measurements of selected pesticides in composited duplicate diet samples allowed (1) estimation of pesticide intakes for a defined demographic community, and (2) comparison of dietary pesticide intakes between the composite and individual samples. Extant databases were useful for assigning individual samples to composites, but they could not provide the breadth of information needed to facilitate measurable levels in every composite. Composite sample measurements were found to be good predictors of pyrethroid pesticide levels in their individual sample constituents where sufficient measurements are available above the method detection limit. Statistical inference shows little evidence of differences between individual and composite measurements and suggests that regression modeling of food groups based on composite dietary samples may provide an effective tool for estimating dietary pesticide intake for a defined population. The research presented in the journal article will improve community's ability to determine exposures through the dietary route with a less burdensome and costly method.
Crack healing in cross-ply composites observed by dynamic mechanical analysis
NASA Astrophysics Data System (ADS)
Nielsen, Christian; Nemat-Nasser, Sia
2015-03-01
Cross-ply composites with healable polymer matrices are characterized using dynamic mechanical analysis (DMA). The [90,0]s samples are prepared by embedding layers of unidirectional glass or carbon fibers in 2MEP4FS, a polymer with thermally reversible covalent cross-links, which has been shown to be capable of healing internal cracks and fully recovering fracture toughness when the crack surfaces are kept in contact. After fabrication, cracks in the composites' transverse plies are observed due to residual thermal stresses introduced during processing. Single cantilever bending DMA measurements show the samples exhibit periods of increasing storage moduli with increasing temperature. These results are accurately modeled as a one-dimensional composite, which captures the underlying physics of the phenomenon. The effect of cracks on the stiffness is accounted for by a shear-lag model. The predicted crack density of the glass fiber composite is shown to fall within a range observed from microscopy images. Crack healing occurs as a function of temperature, with chemistry and mechanics-based rationales given for the onset and conclusion of healing. The model captures the essential physics of the phenomenon and yields results in accord with experimental observations.
Measurement of natural carbon isotopic composition of acetone in human urine.
Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko
2016-02-01
The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease.
Saini, Lokesh; Patra, Manoj Kumar; Jani, Raj Kumar; Gupta, Goutam Kumar; Dixit, Ambesh; Vadera, Sampat Raj
2017-01-01
The gel to carbonate precipitate route has been used for the synthesis of Ni1−xZnxFe2O4 (x = 0, 0.25, 0.5 and 0.75) bulk inverse spinel ferrite powder samples. The optimal zinc (50%) substitution has shown the maximum saturation magnetic moment and resulted into the maximum magnetic loss tangent (tanδm) > −1.2 over the entire 2–10 GHz frequency range with an optimum value ~−1.75 at 6 GHz. Ni0.5Zn0.5Fe2O4- Acrylo-Nitrile Butadiene Rubber (NBR) composite samples are prepared at different weight percentage (wt%) of ferrite loading fractions in rubber for microwave absorption evaluation. The 80 wt% loaded Ni0.5Zn0.5Fe2O4/NBR composite (FMAR80) sample has shown two reflection loss (RL) peaks at 5 and 10 GHz. Interestingly, a single peak at 10 GHz for 3.25 mm thickness, can be scaled down to 5 GHz by increasing the thickness up to 4.6 mm. The onset of such twin matching frequencies in FMAR80 composite sample is attributed to the spin resonance relaxation at ~5 GHz (fm1) and destructive interference at λm/4 matched thickness near ~10 GHz (fm2) in these composite systems. These studies suggest the potential of tuning the twin frequencies in Ni0.5Zn0.5Fe2O4/NBR composite samples for possible microwave absorption applications. PMID:28294151
Saini, Lokesh; Patra, Manoj Kumar; Jani, Raj Kumar; Gupta, Goutam Kumar; Dixit, Ambesh; Vadera, Sampat Raj
2017-03-15
The gel to carbonate precipitate route has been used for the synthesis of Ni 1-x Zn x Fe 2 O 4 (x = 0, 0.25, 0.5 and 0.75) bulk inverse spinel ferrite powder samples. The optimal zinc (50%) substitution has shown the maximum saturation magnetic moment and resulted into the maximum magnetic loss tangent (tanδ m ) > -1.2 over the entire 2-10 GHz frequency range with an optimum value ~-1.75 at 6 GHz. Ni 0.5 Zn 0.5 Fe 2 O 4 - Acrylo-Nitrile Butadiene Rubber (NBR) composite samples are prepared at different weight percentage (wt%) of ferrite loading fractions in rubber for microwave absorption evaluation. The 80 wt% loaded Ni 0.5 Zn 0.5 Fe 2 O 4 /NBR composite (FMAR80) sample has shown two reflection loss (RL) peaks at 5 and 10 GHz. Interestingly, a single peak at 10 GHz for 3.25 mm thickness, can be scaled down to 5 GHz by increasing the thickness up to 4.6 mm. The onset of such twin matching frequencies in FMAR80 composite sample is attributed to the spin resonance relaxation at ~5 GHz (f m1 ) and destructive interference at λ m /4 matched thickness near ~10 GHz (f m2 ) in these composite systems. These studies suggest the potential of tuning the twin frequencies in Ni 0.5 Zn 0.5 Fe 2 O 4 /NBR composite samples for possible microwave absorption applications.
NASA Astrophysics Data System (ADS)
Saini, Lokesh; Patra, Manoj Kumar; Jani, Raj Kumar; Gupta, Goutam Kumar; Dixit, Ambesh; Vadera, Sampat Raj
2017-03-01
The gel to carbonate precipitate route has been used for the synthesis of Ni1-xZnxFe2O4 (x = 0, 0.25, 0.5 and 0.75) bulk inverse spinel ferrite powder samples. The optimal zinc (50%) substitution has shown the maximum saturation magnetic moment and resulted into the maximum magnetic loss tangent (tanδm) > -1.2 over the entire 2-10 GHz frequency range with an optimum value ~-1.75 at 6 GHz. Ni0.5Zn0.5Fe2O4- Acrylo-Nitrile Butadiene Rubber (NBR) composite samples are prepared at different weight percentage (wt%) of ferrite loading fractions in rubber for microwave absorption evaluation. The 80 wt% loaded Ni0.5Zn0.5Fe2O4/NBR composite (FMAR80) sample has shown two reflection loss (RL) peaks at 5 and 10 GHz. Interestingly, a single peak at 10 GHz for 3.25 mm thickness, can be scaled down to 5 GHz by increasing the thickness up to 4.6 mm. The onset of such twin matching frequencies in FMAR80 composite sample is attributed to the spin resonance relaxation at ~5 GHz (fm1) and destructive interference at λm/4 matched thickness near ~10 GHz (fm2) in these composite systems. These studies suggest the potential of tuning the twin frequencies in Ni0.5Zn0.5Fe2O4/NBR composite samples for possible microwave absorption applications.
NASA Astrophysics Data System (ADS)
Czas, Janina; Stachel, Thomas; Pearson, D. Graham; Stern, Richard A.; Read, George H.
2018-05-01
We studied eclogite xenoliths (diamond-free n = 28; diamondiferous n = 22) from the Cretaceous Fort à la Corne Kimberlite Field in Western Canada for their major element, trace element and oxygen isotope compositions to assess their origin and metasomatic history, and possible relationships between metasomatism and diamond formation. All eclogites have major element and oxygen isotope compositions consistent with a derivation from different levels of subducted, seawater altered oceanic crust. While barren xenoliths are more likely to be of gabbroic origin, diamond-bearing samples commonly have signatures consistent with shallow basaltic protoliths. The mineral chemistry in bimineralic diamond-free eclogites spans a wide compositional range, yet it is typically homogenous within individual xenoliths. Temperatures calculated from Mg-Fe exchange between garnet and clinopyroxene range widely for these eclogites, from 740 to 1300 °C, indicating the presence of eclogite through most of the lithospheric mantle. Diamondiferous samples are restricted to high temperatures (1180-1390 °C), consistent with derivation from the zone of diamond stability. Compositionally, diamond-bearing eclogites span a broad range similar to their barren counterparts, but there is also heterogeneity in mineral chemistry on the intra-sample level and in particular garnets are characterised by strong internal chemical gradients. This intra-sample heterogeneity is interpreted as the result of intense melt metasomatism, which occurred in temporal proximity to host kimberlite magmatism, strongly affected major, trace and even oxygen isotope values and resulted in diamond brecciation and annealing.
Uses and misuses of compositional data in sedimentology
NASA Astrophysics Data System (ADS)
Tolosana-Delgado, Raimon
2012-12-01
This paper serves two goals. The first part shows how mass evolution processes of different nature become undistinguishable once we take a size-limited, noisy sample of its compositional fingerprint: processes of exponential decay, mass mixture and complementary accumulation are simulated, and then samples contaminated with noise are extracted. The aim of this exercise is to illustrate the limitations of typical graphical representations and statistical methods when dealing with compositional data, i.e. data in percentages, concentrations or proportions. The second part presents a series of concepts, tools and methods to represent and statistically treat a compositional data set attending to these limitations. The aim of this second part is to offer a state-of-the-art Compositional Data Analysis. This includes: descriptive statistics and graphics (the biplot); ternary diagrams with confidence regions for the mean; regression and ANalysis-Of-VAriance models to explain compositional variability; and the use of compositional information to predict environmental covariables or discriminate between groups. All these tools share a four-step algorithm: (1) transform compositions with an invertible log-ratio transformation; (2) apply a statistical method to the transformed scores; (3) back-transform the results to compositions; and (4) interpret results in relative terms. Using these techniques, a data set of sand petrographic composition has been analyzed, highlighting that: finer sands are richer in single-crystal grains in relation to polycrystalline grains, and that grain-size accounts for almost all compositional variability; a stronger water flow (river discharge) favors mica grains against quartz or rock fragment grains, possibly due to hydrodynamic sorting effects; a higher relief ratio implies shorter residence times, which may favor survival of micas and rock fragments, relatively more labile grains.
Petrini, Morena; Ferrante, Maurizio; Su, Bo
2013-04-01
Conventional dental composites with randomly dispersed inorganic particles within a polymer matrix fail to recapitulate the aligned and anisotropic structure of the dentin and enamel. The aim of the study was to produce a biomimetic composite consisting of a ceramic preform with graded and continuously aligned open pores, infiltrated with epoxy resin. The freeze casting technique was used to obtain the hierarchically structured architecture of the ceramic preforms. Optical and scanning electron microscopy (SEM) and differential thermal analysis and thermogravimetry (TG-DTA) were used to characterize the samples. Three point bending test and compression test were also performed. All analysis confirmed that the biomimetic composite was characterized by a multi-level hierarchical structure along the freezing direction. In the bottom layers close to the cooling plate (up to 2mm thick), a randomly packed ceramic with closed pores were formed, which resulted in incomplete infiltration with resin and resultant poor mechanical propertiesof the composite. Above 2mm, all ceramic samples showed an aligned structure with an increasing lamellae spacing (wavelength) and a decreasing wall thickness. Mechanical tests showed that the properties of the composites made from ceramic preforms above 2mm from cooling plate are similar to those of the dentin. The fabrication processing reported in this work offers a viable route for the fabrication of biomimetic composites, which could be potentially used in a range of dental restorations to compete with the current dental composites and ceramics. Copyright © 2012 Academy of Dental Materials. All rights reserved.
Li, Wenjuan; Zhu, Limin; Yu, Ziheng; Xie, Lingling; Cao, Xiaoyu
2017-01-01
LiV3O8/polytriphenylamine composites are synthesized by a chemical oxidative polymerization process and applied as cathode materials for rechargeable lithium batteries (RLB). The structure, morphology, and electrochemical performances of the composites are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, galvanostatic discharge/charge tests, and electrochemical impedance spectroscopy. It was found that the polytriphenylamine particles were composited with LiV3O8 nanorods which acted as a protective barrier against the side reaction of LiV3O8, as well as a conductive network to reduce the reaction resistance among the LiV3O8 particles. Among the LiV3O8/polytriphenylamine composites, the 17 wt % LVO/PTPAn composite showed the largest d100 spacing. The electrochemical results showed that the 17 wt % LVO/PTPAn composite maintained a discharge capacity of 271 mAh·g−1 at a current density of 60 mA·g−1, as well as maintaining 236 mAh·g−1 at 240 mA·g−1 after 50 cycles, while the bare LiV3O8 sample retained only 169 and 148 mAh·g−1, respectively. Electrochemical impedance spectra (EIS) results implied that the 17 wt % LVO/PTPAn composite demonstrated a decreased charge transfer resistance and increased Li+ ion diffusion ability, therefore manifesting better rate capability and cycling performance compared to the bare LiV3O8 sample. PMID:28772705
Fused Bead Analysis of Diogenite Meteorites
NASA Technical Reports Server (NTRS)
Mittlefehldt, D.W.; Beck, B.W.; McSween, H.Y.; Lee, C.T. A.
2009-01-01
Bulk rock chemistry is an essential dataset in meteoritics and planetary science [1]. A common method used to obtain the bulk chemistry of meteorites is ICP-MS. While the accuracy, precision and low detection limits of this process are advantageous [2], the sample size used for analysis (approx.70 mg) can be a problem in a field where small and finite samples are the norm. Fused bead analysis is another bulk rock analytical technique that has been used in meteoritics [3]. This technique involves forming a glass bead from 10 mg of sample and measuring its chemistry using a defocused beam on a microprobe. Though the ICP-MS has lower detection limits than the microprobe, the fused bead method destroys a much smaller sample of the meteorite. Fused bead analysis was initially designed for samples with near-eutectic compositions and low viscosities. Melts generated of this type homogenize at relatively low temperatures and produce primary melts near the sample s bulk composition [3]. The application of fused bead analysis to samples with noneutectic melt compositions has not been validated. The purpose of this study is to test if fused bead analysis can accurately determine the bulk rock chemistry of non-eutectic melt composition meteorites. To determine this, we conduct two examinations of the fused bead. First, we compare ICP-MS and fused bead results of the same samples using statistical analysis. Secondly, we inspect the beads for the presence of crystals and chemical heterogeneity. The presence of either of these would indicate incomplete melting and quenching of the bead.
NASA Technical Reports Server (NTRS)
Morris, Richard; Anderson, R.; Clegg, S. M.; Bell, J. F., III
2010-01-01
Laser-induced breakdown spectroscopy (LIBS) uses pulses of laser light to ablate a material from the surface of a sample and produce an expanding plasma. The optical emission from the plasma produces a spectrum which can be used to classify target materials and estimate their composition. The ChemCam instrument on the Mars Science Laboratory (MSL) mission will use LIBS to rapidly analyze targets remotely, allowing more resource- and time-intensive in-situ analyses to be reserved for targets of particular interest. ChemCam will also be used to analyze samples that are not reachable by the rover's in-situ instruments. Due to these tactical and scientific roles, it is important that ChemCam-derived sample compositions are as accurate as possible. We have compared the results of partial least squares (PLS), multilayer perceptron (MLP) artificial neural networks (ANNs), and cascade correlation (CC) ANNs to determine which technique yields better estimates of quantitative element abundances in rock and mineral samples. The number of hidden nodes in the MLP ANNs was optimized using a genetic algorithm. The influence of two data preprocessing techniques were also investigated: genetic algorithm feature selection and averaging the spectra for each training sample prior to training the PLS and ANN algorithms. We used a ChemCam-like laboratory stand-off LIBS system to collect spectra of 30 pressed powder geostandards and a diverse suite of 196 geologic slab samples of known bulk composition. We tested the performance of PLS and ANNs on a subset of these samples, choosing to focus on silicate rocks and minerals with a loss on ignition of less than 2 percent. This resulted in a set of 22 pressed powder geostandards and 80 geologic samples. Four of the geostandards were used as a validation set and 18 were used as the training set for the algorithms. We found that PLS typically resulted in the lowest average absolute error in its predictions, but that the optimized MLP ANN and the CC ANN often gave results comparable to PLS. Averaging the spectra for each training sample and/or using feature selection to choose a small subset of wavelengths to use for predictions gave mixed results, with degraded performance in some cases and similar or slightly improved performance in other cases. However, training time was significantly reduced for both PLS and ANN methods by implementing feature selection, making this a potentially appealing method for initial, rapid-turn-around analyses necessary for Chemcam's tactical role on MSL. Choice of training samples has a strong influence on the accuracy of predictions. We are currently investigating the use of clustering algorithms (e.g. k-means, neural gas, etc.) to identify training sets that are spectrally similar to the unknown samples that are being predicted, and therefore result in improved predictions
Seifert, Anne-Gret; Roth, Vanessa-Nina; Dittmar, Thorsten; Gleixner, Gerd; Breuer, Lutz; Houska, Tobias; Marxsen, Jürgen
2016-11-15
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) was used to examine the molecular composition of dissolved organic matter (DOM) from soils under different land use regimes and how the DOM composition in the catchment is reflected in adjacent streams. The study was carried out in a small area of the Schwingbach catchment, an anthropogenic-influenced landscape in central Germany. We investigated 30 different soil water samples from 4 sites and different depths (managed meadow (0-5cm, 40-50cm), deciduous forest (0-5cm), mixed-coniferous forest (0-5cm) and agricultural land (0-5cm, 40-50cm)) and 8 stream samples. 6194 molecular formulae and their magnitude-weighted parameters ((O/C)w, (H/C)w, (N/C)w, (AI-mod)w, (DBE/C)w, (DBE/O)w, (DBE-O)w, (C#)w, (MW)w) were used to describe the molecular composition of the samples. The samples can be roughly divided in three groups. Group 1 contains samples from managed meadow 40-50cm and stream water, which are characterized by high saturation compared to samples from group 2 including agricultural samples and samples from the surface meadow (0-5cm), which held more nitrogen containing and aromatic compounds. Samples from both forested sites (group 3) are characterized by higher molecular weight and O/C ratio. Environmental parameters vary between sites and among these parameters pH and nitrate significantly affect chemical composition of DOM. Results indicate that most DOM in streams is of terrestrial origin. However, 120 molecular formulae were detected only in streams and not in any of the soil samples. These compounds share molecular formulae with peptides, unsaturated aliphatics and saturated FA-CHO/FA-CHOX. Compounds only found in soil samples are much more aromatic, have more double bonds and a much lower H/C ratio but higher oxygen content, which indicates the availability of fresh plant material and less microbial processed material compared to stream samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Diamond and Carbon Nanotube Composites for Supercapacitor Devices
NASA Astrophysics Data System (ADS)
Moreira, João Vitor Silva; May, Paul William; Corat, Evaldo José; Peterlevitz, Alfredo Carlos; Pinheiro, Romário Araújo; Zanin, Hudson
2017-02-01
We report on the synthesis and electrochemical properties of diamond grown onto vertically aligned carbon nanotubes with high surface areas as a template, resulting in a composite material exhibiting high double-layer capacitance as well as low electrochemical impedance electrodes suitable for applications as supercapacitor devices. We contrast results from devices fabricated with samples which differ in both their initial substrates (Si and Ti) and their final diamond coatings, such as boron-doped diamond and diamond-like carbon (DLC). We present for first time a conducting model for non-doped DLC thin-films. All samples were characterized by scanning and transmission electron microscopy and Fourier transform infrared and Raman spectroscopy. Our results show specific capacitance as high as 8.25 F g-1 (˜1 F cm-2) and gravimetric specific energy and power as high as 0.7 W h kg-1 and 176.4 W kg-1, respectively, which suggest that these diamond/carbon nanotube composite electrodes are excellent candidates for supercapacitor fabrication.
Vallet-Coulomb, Christine; Cartapanis, Olivier; Radakovitch, Olivier; Sonzogni, Corinne; Pichaud, Marc
2010-03-01
A continuous record of atmospheric vapour isotopic composition (delta(A)) can be derived from the isotope mass balance of a water body submitted to natural evaporation. In this paper, we present preliminary results of the application of this method to a drying evaporation pan, located in a Mediterranean wetland, during a two-month summer period. Results seem consistent with few atmospheric vapour data based on the assumption of isotopic equilibrium with precipitation, but we observed a shift between pan-derived delta(A) and the composition of vapour samples collected by cold trapping. These results suggest that further investigations are necessary to evaluate the effect of diurnal variations of atmospheric conditions on the applicability of the pan-evaporation method, and on the representative of grab atmospheric samples. We also propose a sensitivity analysis for evaluating the impact of the different measured components on delta(A) calculation, and show an improvement in the method efficiency as the pan is drying.
Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid
2012-01-01
The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity. PMID:22389373
Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid; Höfle, Manfred G
2012-05-01
The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.
Physical and thermal behavior of cement composites reinforced with recycled waste paper fibers
NASA Astrophysics Data System (ADS)
Hospodarova, Viola; Stevulova, Nadezda; Vaclavik, Vojtech; Dvorsky, Tomas
2017-07-01
In this study, three types of recycled waste paper fibers were used to manufacture cement composites reinforced with recycled cellulosic fibers. Waste cellulosic fibers in quantity of 0.2, 0.3, and 0.5 wt.% were added to cement mixtures. Physical properties such as density, water capillarity, water absorbability and thermal conductivity of fiber cement composites were studied after 28 days of hardening. However, durability of composites was tested after their water storage up to 90 days. Final results of tested properties of fiber cement composites were compared with cement reference sample without cellulosic fibers.
NASA Astrophysics Data System (ADS)
SzelÄ g, M.; Lesiak, P.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.
2013-05-01
Results of our research on embedded highly birefringent polymer microstructured fibers are presented. A composite material sample with fibers embedded between two layers of a multi-layer composite structure is fabricated and characterized. Temperature sensitivities of the polymer fibers are measured in a free space and compared with the fibers embedded in the composite material. It appeared that highly birefringent polymer microstructured fibers exhibit a strong increase in temperature sensitivity when embedded in the composite material, which is due to the stress-induced changes in birefringence created by thermally-induced strain.
APXS Data from Mars and MSR Samples: How Can They Be Combined and Benefit from Each Other?
NASA Astrophysics Data System (ADS)
Gellert, R.
2018-04-01
The APXS has returned the chemical composition of more than 1000 samples on four rover missions along the combined traverse of >70km. Combining Mars data with terrestrial lab results of martian samples will be important, but it has to be done right.
Characteristics of hydrocarbons in sediment core samples from the northern Okinawa Trough.
Huang, Xin; Chen, Shuai; Zeng, Zhigang; Pu, Xiaoqiang; Hou, Qinghua
2017-02-15
Sediment core samples from the northern Okinawa Trough (OT) were analyzed to determine abundances and distributions of hydrocarbons by gas chromatography-mass spectrometer (GC-MS). The results show that the n-alkanes in this sediment core conform to a bimodal distribution, and exhibit an odd-to-even predominance of high molecular weights compared to an even-to-odd predominance in low molecular weight n-alkanes with maxima at C 16 and C 18 . The concentrations of bitumen, alkanes and polyaromatic hydrocarbons (PAHs) were higher in samples S10-07 than all others. Three maturity parameters as well as the ratios between parent phenanthrenes (Ps) and methylphenanthrenes (MPs) in samples S10-07 and S10-17 were higher. The distribution and composition of hydrocarbons in sample S10-07 suggest that one, or several, undetected hydrothermal fields may be present in the region of this sediment core. Results also suggest that volcanism may be the main reason for the observed distribution and composition of hydrocarbons in S10-17 sample. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stelescu, Maria-Daniela; Craciun, Gabriela; Dumitrascu, Maria
2014-01-01
A new polymeric composite based on natural rubber reinforced with hemp has been processed by electron beam irradiation and characterized by several methods. The mechanical characteristics: gel fraction, crosslink density, water uptake, swelling parameters, and FTIR of natural rubber/hemp fiber composites have been investigated as a function of the hemp content and absorbed dose. Physical and mechanical properties present a significant improvement as a result of adding hemp fibres in blends. Our experiments showed that the hemp fibers have a reinforcing effect on natural rubber similar to mineral fillers (chalk, carbon black, silica). The crosslinking rates of samples, measured using the Flory-Rehner equation, increase as a result of the amount of hemp in blends and the electron beam irradiation dose increasing. The swelling parameters of samples significantly depend on the amount of hemp in blends, because the latter have hydrophilic characteristics. PMID:24688419
Lamb wave propagation in a restricted geometry composite pi-joint specimen
NASA Astrophysics Data System (ADS)
Blackshire, James L.; Soni, Som
2012-05-01
The propagation of elastic waves in a material can involve a number of complex physical phenomena, resulting in both subtle and dramatic effects on detected signal content. In recent years, the use of advanced methods for characterizing and imaging elastic wave propagation and scattering processes has increased, where for example the use of scanning laser vibrometry and advanced computational models have been used very effectively to identify propagating modes, scattering phenomena, and damage feature interactions. In the present effort, the propagation of Lamb waves within a narrow, constrained geometry composite pi-joint structure are studied using 3D finite element models and scanning laser vibrometry measurements, where the effects of varying sample thickness, complex joint curvatures, and restricted structure geometries are highlighted, and a direct comparison of computational and experimental results are provided for simulated and realistic geometry composite pi-joint samples.
Stelescu, Maria-Daniela; Manaila, Elena; Craciun, Gabriela; Dumitrascu, Maria
2014-01-01
A new polymeric composite based on natural rubber reinforced with hemp has been processed by electron beam irradiation and characterized by several methods. The mechanical characteristics: gel fraction, crosslink density, water uptake, swelling parameters, and FTIR of natural rubber/hemp fiber composites have been investigated as a function of the hemp content and absorbed dose. Physical and mechanical properties present a significant improvement as a result of adding hemp fibres in blends. Our experiments showed that the hemp fibers have a reinforcing effect on natural rubber similar to mineral fillers (chalk, carbon black, silica). The crosslinking rates of samples, measured using the Flory-Rehner equation, increase as a result of the amount of hemp in blends and the electron beam irradiation dose increasing. The swelling parameters of samples significantly depend on the amount of hemp in blends, because the latter have hydrophilic characteristics.
NASA Astrophysics Data System (ADS)
Gaaz, Tayser Sumer; Luaibi, Hasan Mohammed; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.
2018-06-01
The high aspect ratio of nanoscale reinforcements enhances the tensile properties of pure polymer matrix. The composites were first made by adding halloysite nanotubes (HNTs) at low weight percentages of 1, 2, and 3 wt% to thermoplastic polyurethane (TPU). Then, HNTs were phosphoric acid-treated before adding to TPU at same weight percentage to create phosphoric acid HNTs-TPU composites. The samples were fabricated using injection moulding. The HNTs-TPU composites were characterized according to the tensile properties including tensile strength, tensile strain and Young's modulus. The loading has shown its highest tensile values at 2 wt% HNTs loading and same findings are shown with the samples that treated with phosphoric acid. The tensile strength increased to reach 24.65 MPa compare with the 17.7 MPa of the neat TPU showing about 26% improvement. For the phosphoric acid-treated composites, the improvement has reached 35% compared to the neat sample. Regarding the tensile stain, the improvement was about 83% at 2 wt% HNTs loading. For Young's modulus, the results obtained in this study have shown that Young's modulus is linearly improved with either the loading content or the phosphoric acid treated achieving its highest values at 3 wt% HNTs of 14.53 MPa and 16.27 MPa for untreated and treated, respectively. FESEM results showed that HNTs were well dispersed in TPU matrix. Thus, HNTs-TPU has improved tensile properties compared with pure TPU due to the addition of nanofiller.
Hydrocarbon group type determination in jet fuels by high performance liquid chromatography
NASA Technical Reports Server (NTRS)
Antoine, A. C.
1977-01-01
Thirty-two jet and diesel fuel samples of varying chemical composition and physical properties were prepared from oil shale and coal syncrudes. Hydrocarbon types in these samples were determined by a fluorescent indicator adsorption analysis, and the results from three laboratories are presented and compared. Two methods of rapid high performance liquid chromatography were used to analyze some of the samples, and these results are also presented and compared. Two samples of petroleum-based Jet A fuel are similarly analyzed.
Kondou, Youichi; Manickavelu, Alagu; Komatsu, Kenji; Arifi, Mujiburahman; Kawashima, Mika; Ishii, Takayoshi; Hattori, Tomohiro; Iwata, Hiroyoshi; Tsujimoto, Hisashi; Ban, Tomohiro; Matsui, Minami
2016-01-01
This study was carried out with the aim of developing the methodology to determine elemental composition in wheat and identify the best germplasm for further research. Orphan and genetically diverse Afghan wheat landraces were chosen and EDXRF was used to measure the content of some of the elements to establish elemental composition in grains of 266 landraces using 10 reference lines. Four elements, K, Mg, P, and Fe, were measured by standardizing sample preparation. The results of hierarchical cluster analysis using elemental composition data sets indicated that the Fe content has an opposite pattern to the other elements, especially that of K. By systematic analysis the best wheat germplasms for P content and Fe content were identified. In order to compare the sensitivity of EDXRF, the ICP method was also used and the similar results obtained confirmed the EDXRF methodology. The sampling method for measurement using EDXRF was optimized resulting in high-throughput profiling of elemental composition in wheat grains at low cost. Using this method, we have characterized the Afghan wheat landraces and isolated the best genotypes that have high-elemental content and have the potential to be used in crop improvement. PMID:28163583
The variability of ecstasy tablets composition in Brazil.
Togni, Loraine R; Lanaro, Rafael; Resende, Rodrigo R; Costa, Jose L
2015-01-01
The content of ecstasy tablets has been changing over the years, and nowadays 3,4-methylenedioxymethamphetamine (MDMA) is not always present in the tablets. The aim of this study was to investigate the chemical composition in the seized tablets labeled as ecstasy. We analyzed samples from 150 different seizures made by Sao Paulo's State Police by gas chromatography-mass spectrometry. MDMA was present in 44.7% of the analyzed samples, and another twenty different active substances were identified in these tablets, such as caffeine, 2C-B, piperazines, amphetamines, phencyclidine, and others. Methamphetamine was present in 22% of these samples. The results demonstrate a huge shift in the pattern of trafficking of synthetic drugs, where MDMA has been replaced in tablets mostly by illicit psychoactive substances, in a clear attempt to bypass the law. The great variability in the tablets composition may lead to an increased risk of drug poisoning. © 2014 American Academy of Forensic Sciences.
Mechanical Degradation of Graphite/PVDF Composite Electrodes: A Model-Experimental Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Kenji; Higa, Kenneth; Mair, Sunil
2015-12-11
Mechanical failure modes of a graphite/polyvinylidene difluoride (PVDF) composite electrode for lithium-ion batteries were investigated by combining realistic stress-stain tests and mathematical model predictions. Samples of PVDF mixed with conductive additive were prepared in a similar way to graphite electrodes and tested while submerged in electrolyte solution. Young's modulus and tensile strength values of wet samples were found to be approximately one-fifth and one-half of those measured for dry samples. Simulations of graphite particles surrounded by binder layers given the measured material property values suggest that the particles are unlikely to experience mechanical damage during cycling, but that the fatemore » of the surrounding composite of PVDF and conductive additive depends completely upon the conditions under which its mechanical properties were obtained. Simulations using realistic property values produced results that were consistent with earlier experimental observations.« less
Electromagnetic characterization of strontium ferrite powders in series 2000, SU8 polymer
NASA Astrophysics Data System (ADS)
Sholiyi, Olusegun; Williams, John
2014-12-01
In this article, electromagnetic characterization of strontium hexaferrite powders and composites with SU8 was carried out to determine their compatibility with micro and millimeter wave fabrications. The structures of both powders and their composites were scanned with electron microscope to produce the SEM images. Two powder sizes (0.8-1.0 μm and 3-6 μm), were mixed with SU8, spin cast and patterned on wafer, and then characterized using energy dispersive x-ray spectrometry, ferromagnetic resonance (FMR) and vibrating sample magnetometry. In this investigation, FMRs of the samples were determined at 60 GHz while their complex permittivity and permeability were determined using rectangular waveguide method of characterization between 26.5 and 40 GHz frequency range. The results obtained show no adverse effects on the electromagnetic properties of the composites except some slight shift in the resonant frequencies due to anisotropic field of the samples.
Alizadeh Oskoee, Parnian; Savadi Oskoee, Siavash; Rikhtegaran, Sahand; Pournaghi-Azar, Fatemeh; Gholizadeh, Sarah; Aleyasin, Yasaman; Kasrae, Shahin
2017-01-01
Introduction: Successful repair of composite restorations depends on a strong bond between the old composite and the repair composite. This study sought to assess the repair shear bond strength of aged silorane-based composite following surface treatment with Nd:YAG, Er,Cr:YSGG and CO2 lasers. Methods: Seventy-six Filtek silorane composite cylinders were fabricated and aged by 2 months of water storage at 37°C. The samples were randomly divided into 4 groups (n=19) of no surface treatment (group 1) and surface treatment with Er,Cr:YSGG (group 2), Nd:YAG (group 3) and CO2 (group 4) lasers. The repair composite was applied and the shear bond strength was measured. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey posthoc test. Prior to the application of the repair composite, 2 samples were randomly selected from each group and topographic changes on their surfaces following laser irradiation were studied using a scanning electron microscope (SEM). Seventeen other samples were also fabricated for assessment of cohesive strength of composite. Results: The highest and the lowest mean bond strength values were 8.99 MPa and 6.69 MPa for Er,Cr:YSGG and control groups, respectively. The difference in the repair bond strength was statistically significant between the Er,Cr:YSGG and other groups. Bond strength of the control, Nd:YAG and CO2 groups was not significantly different. The SEM micrographs revealed variable degrees of ablation and surface roughness in laser-treated groups. Conclusion: Surface treatment with Er,Cr:YSGG laser significantly increase the repair bond strength of aged silorane-based composite resin. PMID:29071025
NASA Astrophysics Data System (ADS)
Bashirzadeh, Milad
This study examines microstructural-based mechanical properties of Al-Cu composite deposited by cold spraying and wire arc sprayed nickel-based alloy 625 coating using numerical modeling and experimental techniques. The microhardness and elastic modulus of samples were determined using the Knoop hardness technique. Hardness in both transverse and longitudinal directions on the sample cross-sections has been measured. An image-based finite element simulation algorithm was employed to determine the mechanical properties through an inverse analysis. In addition mechanical tests including, tensile, bending, and nano-indentation tests were performed on alloy 625 wire arc sprayed samples. Overall, results from the experimental tests are in relatively good agreement for deposited Al-Cu composites and alloy 625 coating. However, results obtained from numerical simulation are significantly higher in value than experimentally obtained results. Examination and comparison of the results are strong indications of the influence of microstructure characteristics on the mechanical properties of thermally spray deposited coatings.
NASA Astrophysics Data System (ADS)
Zhao, Te; Ye, Hong; Zhang, Lisong; Cai, Qilin
2017-10-01
As typical phenolic resin-based ablative materials, the high silica/phenolic and carbon/phenolic composites are widely used in aerospace field. The specific heat of the carbonized ablators after ablation is an important thermophysical parameter in the process of heat transfer, but it is rarely reported. In this investigation, the carbonized samples of the high silica/phenolic and carbon/phenolic were obtained through carbonization experiments, and the specific heat of the carbonized samples was determined by a 3D DSC from 150 °C to 970 °C. Structural and compositional characterizations were performed to determine the mass fractions of the fiber and the carbonized product of phenolic which are the two constituents of the carbonized samples, while the specific heat of each constituent was also measured by 3D DSC. The masses of the carbonized samples were reduced when heated to a high temperature in the specific heat measurements, due to the thermal degradation of the carbonized product of phenolic resin in the carbonized samples. The raw experimental specific heat of the two carbonized samples and the carbonized product of phenolic resin was modified according to the quality changes of the carbonized samples presented by TGA results. Based on the mass fraction and the specific heat of each constituent, a weighted average method was adopted to obtain the calculated results of the carbonized samples. Due to the unconsolidated property of the fiber samples which impacts the reliability of the DSC measurement, there is a certain deviation between the experimental and calculated results of the carbonized samples. Considering the similarity of composition and structure, the data of quartz glass and graphite were used to substitute the specific heat of the high silica fiber and carbon fiber, respectively, resulting in better agreements with the experimental ones. Furthermore, the accurate specific heat of the high silica fiber and carbon fiber bundles was obtained by inversion, enabling the prediction of the specific heat of the carbonized ablators with different constituent mass fractions by means of the weighted average method in engineering.
Liu, Keshun
2008-11-01
Eleven distillers dried grains with solubles (DDGS), processed from yellow corn, were collected from different ethanol processing plants in the US Midwest area. Particle size distribution (PSD) by mass of each sample was determined using a series of six selected US standard sieves: Nos. 8, 12, 18, 35, 60, and 100, and a pan. The original sample and sieve sized fractions were measured for surface color and contents of moisture, protein, oil, ash, and starch. Total carbohydrate (CHO) and total non-starch CHO were also calculated. Results show that there was a great variation in composition and color among DDGS from different plants. Surprisingly, a few DDGS samples contained unusually high amounts of residual starch (11.1-17.6%, dry matter basis, vs. about 5% of the rest), presumably resulting from modified processing methods. Particle size of DDGS varied greatly within a sample and PSD varied greatly among samples. The 11 samples had a mean value of 0.660mm for the geometric mean diameter (dgw) of particles and a mean value of 0.440mm for the geometric standard deviation (Sgw) of particle diameters by mass. The majority had a unimodal PSD, with a mode in the size class between 0.5 and 1.0mm. Although PSD and color parameters had little correlation with composition of whole DDGS samples, distribution of nutrients as well as color attributes correlated well with PSD. In sieved fractions, protein content, L and a color values negatively while contents of oil and total CHO positively correlated with particle size. It is highly feasible to fractionate DDGS for compositional enrichment based on particle size, while the extent of PSD can serve as an index for potential of DDGS fractionation. The above information should be a vital addition to quality and baseline data of DDGS.
Multiferroic and magnetoelectric studies on BMFO-NZFO nanocomposites
NASA Astrophysics Data System (ADS)
Dhanalakshmi, B.; Kollu, Pratap; Barnes, Crispin H. W.; Rao, B. Parvatheeswara; Rao, P. S. V. Subba
2018-05-01
Bismuth ferrite-based multiferroic composites, xṡBi0.95Mn0.05FeO3 - (1 - x)ṡNi0.5Zn0.5Fe2O4, where x takes the values of 0.2, 0.4, 0.5, 0.6 and 0.8, have been prepared by combining sol-gel autocombustion and solid-state methods. Phase identification of the samples was done by X-ray diffraction analysis. SEM-EDX measurements on the samples were used to evaluate the microstructural aspects and quantitative evaluation of the samples. Room temperature P-E loop measurements on the samples were done under the application of external electric fields in the range from 0 to 6 kV/mm at a frequency of 50 Hz to understand the ferroelectric strength of the compounds. Magnetic studies on the samples were made by M-H loop measurements in the field range of ± 10 kOe. Magnetoelectric coupling measurements were made using a dynamic lock-in test set-up. The results indicate that the mixing of nickel-zinc ferrite in Bi0.95Mn0.05FeO3, in spite of the enhanced conductivity, has produced considerable improvements in saturation magnetization while retaining the remnant ferroelectric polarization in reasonable magnitudes to obtain improved M-E coupling. Among all the composites, the composite with x = 0.5 has resulted better M-E performance.
Molecular-beam gas-sampling system
NASA Technical Reports Server (NTRS)
Young, W. S.; Knuth, E. L.
1972-01-01
A molecular beam mass spectrometer system for rocket motor combustion chamber sampling is described. The history of the sampling system is reviewed. The problems associated with rocket motor combustion chamber sampling are reported. Several design equations are presented. The results of the experiments include the effects of cooling water flow rates, the optimum separation gap between the end plate and sampling nozzle, and preliminary data on compositions in a rocket motor combustion chamber.
Analysis of particulate contamination on tape lift samples from the VETA optical surfaces
NASA Technical Reports Server (NTRS)
Germani, Mark S.
1992-01-01
Particulate contamination analysis was carried out on samples taken from the Verification Engineering Test Article (VETA) x-ray detection system. A total of eighteen tape lift samples were taken from the VETA optical surfaces. Initially, the samples were tested using a scanning electron microscope. Additionally, particle composition was determined by energy dispersive x-ray spectrometry. Results are presented in terms of particle loading per sample.
Influence of increment thickness on the similarity of composite shade: a pilot study.
Roselino, Lourenco de Moraes Rego; Garcia, Lucas da Fonseca Roberti; Sousa, Ana Beatriz Silva; Pires-de-Souza, Fernanda de Carvalho Panzeri
2012-01-01
The aim of this study was to evaluate the similarity in shade between increments of different composite thicknesses. Fifty test specimens 12 mm in diameter were fabricated and separated into five groups (n = 10) according to sample thickness: 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm. Specimens were polished with water abrasive papers and silicone points. Next, based on the CIE L*a*b* system, test specimens were submitted to color readouts, and the values obtained for the coordinates L*, a*, and b* for each thickness were compared using one-way ANOVA and a Tukey test (P < 0.05). The results demonstrated that there was a reduction in coordinate L* as the test specimen thickness increased, with statistically significant differences (P < 0.05), except for 2.0 mm and 2.5 mm thicknesses (P > 0.05). Samples 1.5 mm thick presented less variation of a*, while a greater variation occurred for samples 2.5 mm thick, with a significant difference in comparison with the other thicknesses (P < 0.05), except for 2.0 mm (P > 0.05). Samples 0.5 mm thick presented a greater variation of b*, while the lowest variation in this coordinate occurred for samples 2.5 mm thick, which was significantly different from the other samples (P < 0.05). It was concluded that different composite thicknesses do not present similarity of color and have an influence on the final result of esthetic restorations.
Assessment of damage in ceramics and ceramic matrix composites using ultrasonic techniques
NASA Technical Reports Server (NTRS)
Chu, Y. C.; Baaklini, G. Y.; Rokhlin, S.I.
1993-01-01
This paper addresses the application of ultrasonic sensing to damage assessment in ceramics and ceramic matrix composites. It focuses on damage caused by thermal shock or oxidation at elevated temperatures, which often results in elastic anisotropy. This damaged-induced anisotropy is determined by measuring the velocities of ultrasonic waves in different propagation directions. Thermal shock damage is assessed in ceramic samples of reaction bonded silicon nitride (RBSN). Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Results indicate that most microcracks produced by thermal shock are located near sample surfaces. Ultrasonic measurements using the surface wave method are found to correlate well with measurements of degradation of mechanical properties obtained independently by other authors using destructive methods. Oxidation damage is assessed in silicon carbide fiber/reaction bonded silicon nitride matrix (SCS-6/RBSN) composites. The oxidation is done by exposing the samples in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hr. The Youngs' modulus in the fiber direction as obtained from ultrasonic measurements decreases significantly at 600 C but retains its original value at temperatures above 1200 C. This agrees well with the results of destructive tests by other authors. On the other hand, the transverse moduli obtained from ultrasonic measurements decrease continually until 1200 C. Measurements on the shear stiffnesses show behavior similar to the transverse moduli. The results of this work show that the damage-induced anisotropy in both ceramics and ceramic matrix composites can be determined successfully by ultrasonic methods. This suggests the possibility of assessing damage severity using ultrasonic techniques.
R. L. Czaplewski
2009-01-01
The minimum variance multivariate composite estimator is a relatively simple sequential estimator for complex sampling designs (Czaplewski 2009). Such designs combine a probability sample of expensive field data with multiple censuses and/or samples of relatively inexpensive multi-sensor, multi-resolution remotely sensed data. Unfortunately, the multivariate composite...
Creating Composite Age Groups to Smooth Percentile Rank Distributions of Small Samples
ERIC Educational Resources Information Center
Lopez, Francesca; Olson, Amy; Bansal, Naveen
2011-01-01
Individually administered tests are often normed on small samples, a process that may result in irregularities within and across various age or grade distributions. Test users often smooth distributions guided by Thurstone assumptions (normality and linearity) to result in norms that adhere to assumptions made about how the data should look. Test…
Solvent Hold Tank Sample Results for MCU-16-596-597-598: April 2016 Monthly Sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F. F.; Jones, D. H.
2016-07-12
Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-596-597-598), pulled on 04/30/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-596-597-598 indicated the Isopar™L concentration is above its nominal level (102%). The modifier (CS-7SB) is 14% below its nominal concentration, while the TiDG and MaxCalix concentrations are at and above their nominal concentrations, respectively. This analysis confirms the solvent may require the addition of modifier. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expectedmore » to decrease with time. Periodic characterization and trimming additions to the solvent are recommended.« less
Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie
2017-01-01
In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing. PMID:28772860
Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie
2017-05-04
In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing.
Development of bimetal oxide doped multifunctional polymer nanocomposite for water treatment
NASA Astrophysics Data System (ADS)
Saxena, Swati; Saxena, Umesh
2016-08-01
Bimetal oxide doped polymer nanocomposite was developed using Alumina and Iron (III) Oxide as nanoparticles with Nylon 6, 6 and Poly (sodium-4-styrenesulphonate) as polymer matrix for removal of pollutants from water. The blend sample of polymers was prepared by well established solution blending technique and their nanocomposite samples were prepared through dispersion technique during the solution casting of blend sample. The fabricated composites were characterized adopting FTIR, XRD, FESEM and EDX techniques. XRD and FESEM were used for morphological characterization of nano phase, while FTIR and EDX analysis were adopted for characterization of chemical moieties in composites. In the study of pollutant removal capacities of prepared composites, 6 % nanocomposite provided the best results. It exhibited the maximum removal of all parameters. The removal of total alkalinity was 66.67 %, total hardness 42.85 %, calcium 66.67 %, magnesium 25 %, chloride 58.66 %, nitrate 34.78 %, fluoride 63.85 %, TDS 41.27 % and EC was up to the level of 41.37 % by this composite. The study is a step towards developing multifunctional, cost-effective polymer nanocomposites for water remediation applications.
Microstructure study of direct laser fabricated Ti alloys using powder and wire
NASA Astrophysics Data System (ADS)
Wang, Fude; Mei, J.; Wu, Xinhua
2006-11-01
A compositionally graded material has been fabricated using direct laser fabrication (DFL). Two types of feedstock were fed simultaneously into the laser focal point, a burn resistant (BurTi) alloy Ti-25V-15Cr-2Al-0.2C powder and a Ti-6Al-4V wire. The local composition of the alloy was changed by altering the ratio of powder to wire by varying the feed rate of the powder whilst maintaining a fixed feed rate of wire-feed. For the range of compositions between about 20% and 100% BurTi only the beta phase was observed and the composition and lattice parameter varied monotonically. The grain size was found to be much finer in these functionally graded samples than in laser fabricated Ti64. Some samples were made using the wire-feed alone, where it was found that the microstructure is different from that found when using powder feed alone. The results are discussed in terms of the power requirements for laser fabrication of powder and wire samples.
The Effect of Volcanic Ash Composition on Ice Nucleation Affinity
NASA Astrophysics Data System (ADS)
Genareau, K. D.; Cloer, S.; Primm, K.; Woods, T.; Tolbert, M. A.
2017-12-01
Understanding the role that volcanic ash plays in ice nucleation is important for knowledge of lightning generation in both volcanic plumes and in clouds developing downwind from active volcanoes. Volcanic ash has long been suggested to influence heterogeneous ice nucleation following explosive eruptions, but determining precisely how composition and mineralogy affects ice nucleation affinity (INA) is poorly constrained. For the study presented here, volcanic ash samples with different compositions and mineral/glass contents were tested in both the deposition and immersion modes, following the methods presented in Schill et al. (2015). Bulk composition was determined with X-ray fluorescence (XRF), grain size distribution was determined with laser diffraction particle size analysis (LDPSA), and mineralogy was determined with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results of the deposition-mode experiments reveal that there is no relationship between ice saturation ratios (Sice) and either mineralogy or bulk ash composition, as all samples have similar Sice ratios. In the immersion-mode experiments, frozen fractions were determined from -20 °C to -50 °C using three different amounts of ash (0.5, 1.0, and 2.0 wt% of slurry). Results from the immersion freezing reveal that the rhyolitic samples (73 wt% SiO2) nucleate ice at higher temperatures compared to the basaltic samples (49 wt% SiO2). There is no observed correlation between frozen fractions and mineral content of ash samples, but the two most efficient ice nuclei are rhyolites that contain the greatest proportion of amorphous glass (> 90 %), and are enriched in K2O relative to transition metals (MnO and TiO2), the latter of which show a negative correlation with frozen fraction. Higher ash abundance in water droplets increases the frozen fraction at all temperatures, indicating that ash amount plays the biggest role in ice nucleation. If volcanic ash can reach sufficient abundance (≥ 2 wt%) in hydrometeors, and be compositionally enriched in K2O relative to MnO and TiO2, the nucleation of ice should efficiently occur. These chemical relationships are not only important for understanding ice nucleation in volcanic plumes, but also for constraining the effect of composition on the INA of other atmospheric aerosols.
Correlated compositional and mineralogical investigations at the Chang'e-3 landing site.
Ling, Zongcheng; Jolliff, Bradley L; Wang, Alian; Li, Chunlai; Liu, Jianzhong; Zhang, Jiang; Li, Bo; Sun, Lingzhi; Chen, Jian; Xiao, Long; Liu, Jianjun; Ren, Xin; Peng, Wenxi; Wang, Huanyu; Cui, Xingzhu; He, Zhiping; Wang, Jianyu
2015-12-22
The chemical compositions of relatively young mare lava flows have implications for the late volcanism on the Moon. Here we report the composition of soil along the rim of a 450-m diameter fresh crater at the Chang'e-3 (CE-3) landing site, investigated by the Yutu rover with in situ APXS (Active Particle-induced X-ray Spectrometer) and VNIS (Visible and Near-infrared Imaging Spectrometer) measurements. Results indicate that this region's composition differs from other mare sample-return sites and is a new type of mare basalt not previously sampled, but consistent with remote sensing. The CE-3 regolith derived from olivine-normative basaltic rocks with high FeO/(FeO+MgO). Deconvolution of the VNIS data indicates abundant high-Ca ferropyroxene (augite and pigeonite) plus Fe-rich olivine. We infer from the regolith composition that the basaltic source rocks formed during late-stage magma-ocean differentiation when dense ferropyroxene-ilmenite cumulates sank and mixed with deeper, relatively ferroan olivine and orthopyroxene in a hybridized mantle source.
Solvent hold tank sample results for MCU-16-1317-1318-1319. September 2016 monthly sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F. F.; Jones, D. H.
2017-01-01
Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-1317-1318-1319), pulled on 09/12/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1317-1318-1319 indicated the Isopar™L concentration is above its nominal level (102%). The extractant (MaxCalix) and the modifier (CS-7SB) are 5% and 10 % below their nominal concentrations. The suppressor (TiDG) is 77% below its nominal concentration. A summary of the concentration of the relevant solvent components is shown below. This analysis confirms the Isopar™ addition to the solvent in August. This analysis also indicates the solvent maymore » require the addition of TiDG, and possibly of modifier to restore them to nominal levels.« less
NASA Astrophysics Data System (ADS)
Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.
2015-01-01
Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.
NASA Astrophysics Data System (ADS)
– Sarraf, A. R. Al; Yaseen, M. A.
2018-05-01
In order to inhibit the metallic corrosion in the oil pipelines,the protection method with composite coating of unsaturated polyester and reinforced by Caolin at weight percentage (20%) was studied. Where, the work samples were classified into two groups according to internal composite coatings layers for all groups of these samples. The first group is nitrocellulose coating reinforced by nano and micro powder of Mgo, the second group is sodium silicate coating reinforced by nano powder of Mgo. The following weight percentages (0%, 1%, 3% and 5%) were adopted as reinforcement ratios for nano powders, as well as the weight percentages (0%, 3%, 5% and 7%) as reinforcement ratios for micro powders Tribology properties and Electrochemical Corrosion Resistance by Polarization method (Tafel) and Adhesion Strength were studied. The results showed an improvement in the corrosion resistance of protected steel by coatings compare with uncoated steel, as well as improvement in mechanical properties and adhesion strength of composite coatings.
Reynolds, R.L.; Reheis, M.; Yount, J.; Lamothe, P.
2006-01-01
The recognition and characterization of aeolian dust in soil contribute to a better understanding of landscape and ecosystem dynamics of drylands. Results of this study show that recently deposited dust, sampled in isolated, mostly high-ground settings, is chemically and mineralogically similar on varied geologic substrates over a large area (15 000 km2) in the Mojave Desert. The silt-plus-clay fraction (fines) on these isolated surfaces is closely alike in magnetic-mineral composition, in contrast to greatly dissimilar magnetic compositions of rock surfaces of vastly different lithologies, on which the fines have accumulated. The fines, thus, are predominantly deposited dust. The amounts of potential nutrients in the sampled dust are much more uniform than might be provided by direct, local weathering of bedrock or by dust locally derived from nearby weathered products. The compositional similarity of the dust on these surfaces is interpreted to result from mixing of fines in the atmosphere as well as in fluvial, alluvial, and lacustrine depositional settings prior to dust emission.
Synthesis and characterization of surrogate nuclear explosion debris: urban glass matrix
Campbell, Keri; Judge, Elizabeth J.; Dirmyer, Matthew R.; ...
2017-07-26
Surrogate nuclear explosive debris was synthesized and characterized for major, minor, and trace elemental composition as well as uranium isotopics. The samples consisted of an urban glass matrix, equal masses soda lime and cement, doped with 500 ppm uranium with varying enrichments. The surface and cross section morphology were measured with SEM, and the major elemental composition was determined by XPS. LA-ICP-MS was used to measure the uranium isotopic abundance comparing different sampling techniques. Furthermore, the results provide an example of the utility of LA-ICP-MS for forensics applications.
Proximate Composition Analysis.
2016-01-01
The proximate composition of foods includes moisture, ash, lipid, protein and carbohydrate contents. These food components may be of interest in the food industry for product development, quality control (QC) or regulatory purposes. Analyses used may be rapid methods for QC or more accurate but time-consuming official methods. Sample collection and preparation must be considered carefully to ensure analysis of a homogeneous and representative sample, and to obtain accurate results. Estimation methods of moisture content, ash value, crude lipid, total carbohydrates, starch, total free amino acids and total proteins are put together in a lucid manner.
Second Generation Integrated Composite Analyzer (ICAN) Computer Code
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Ginty, Carol A.; Sanfeliz, Jose G.
1993-01-01
This manual updates the original 1986 NASA TP-2515, Integrated Composite Analyzer (ICAN) Users and Programmers Manual. The various enhancements and newly added features are described to enable the user to prepare the appropriate input data to run this updated version of the ICAN code. For reference, the micromechanics equations are provided in an appendix and should be compared to those in the original manual for modifications. A complete output for a sample case is also provided in a separate appendix. The input to the code includes constituent material properties, factors reflecting the fabrication process, and laminate configuration. The code performs micromechanics, macromechanics, and laminate analyses, including the hygrothermal response of polymer-matrix-based fiber composites. The output includes the various ply and composite properties, the composite structural response, and the composite stress analysis results with details on failure. The code is written in FORTRAN 77 and can be used efficiently as a self-contained package (or as a module) in complex structural analysis programs. The input-output format has changed considerably from the original version of ICAN and is described extensively through the use of a sample problem.
Rinchard, Jacques; Kimmel, David G.
2017-01-01
The variability in zooplankton fatty acid composition may be an indicator of larval fish habitat quality as fatty acids are linked to fish larval growth and survival. We sampled an anadromous fish nursery, the Chowan River, during spring of 2013 in order to determine how the seston fatty acid composition varied in comparison with the zooplankton community composition and fatty acid composition during the period of anadromous larval fish residency. The seston fatty acid profiles showed no distinct pattern in relation to sampling time or location. The mesozooplankton community composition varied spatially and the fatty acid profiles were typical of freshwater species in April. The Chowan River experienced a saltwater intrusion event during May, which resulted in brackish water species dominating the zooplankton community and the fatty acid profile showed an increase in polyunsaturated fatty acids (PUFA), in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The saltwater intrusion event was followed by an influx of freshwater due to high precipitation levels in June. The zooplankton community composition once again became dominated by freshwater species and the fatty acid profiles shifted to reflect this change; however, EPA levels remained high, particularly in the lower river. We found correlations between the seston, microzooplankton and mesozooplankton fatty acid compositions. Salinity was the main factor correlated to the observed pattern in species composition, and fatty acid changes in the mesozooplankton. These data suggest that anadromous fish nursery habitat likely experiences considerable spatial variability in fatty acid profiles of zooplankton prey and that are correlated to seston community composition and hydrodynamic changes. Our results also suggest that sufficient prey density as well as a diverse fatty acid composition is present in the Chowan River to support larval fish production. PMID:28828262
Toughening and healing of composites by CNTs reinforced copolymer nylon micro-particles
NASA Astrophysics Data System (ADS)
Kostopoulos, V.; Kotrotsos, A.; Tsokanas, P.; Tsantzalis, S.
2018-02-01
In this work, nylon micro-particles, both undoped and doped with multiwall carbon nanotubes played the role of the self-healing agent into carbon fibre/epoxy composites (CFRPs). These micro-particles were blended with epoxy matrix and the resulting mixture was used for the composites fabrication. Three types of composites were manufactured; the reference CFRP and the modified CFRPs with undoped and doped nylon micro-particles. After manufacturing, these composites were tested under mode I and II fracture loading conditions and it was shown that the interlaminar fracture toughness characteristics of both nylon modified composites were significantly increased. After first fracture, healing process was activated for the tested nylon modified samples and revealed high fracture toughness characteristics recovery. Morphology examinations supported the results and elucidated the involved toughening and failure mechanisms. Finally, the in-plane mechanical and thermo-mechanical properties of all the composites were characterized for identifying possible knock-down effects due to the nylon modification of composites.
NASA Astrophysics Data System (ADS)
Caprarelli, G.; Reidel, S. P.
2004-12-01
The Miocene Columbia River Basalt Group (CRBG) of north-western USA was emplaced in a geologically dynamic setting characterized by a close association between magmatism and lithospheric thinning and rifting. We present and discuss electron probe microanalysis and XRFA data obtained from samples spanning the entire sequence of the CRBG. The examined basalts have near-aphyric textures. No glass is present, and plagioclase and augitic clinopyroxene are dominant matrix and groundmass phases. Plagioclase microcrysts are labradoritic to bytownitic. Whole rock compositions were taken as proxies of the liquid compositions. Application of plagioclase / melt and clinopyroxene / melt geothermobarometers indicated that during crustal ascent the magmas were dry, and that pre-eruptive pressures and temperatures ranged from 0 to 0.66 GPa and 1393 to 1495 K, respectively. In a P-T diagram most of the samples are distributed along a general CRBG trend, while some samples plot along a parallel higher temperature trend. The calculated P-T values, the positive correlation between calculated P and T, and no horizontal alignment of the data, exclude the presence of upper crustal solidification fronts, and indicate that magma aggregation zones were located deeper than 25 km, plausibly immediately below the Moho, that in this region is at a depth of approximately 35 km. Episodic stretching of the lithosphere best explains the observed parallel P-T trends. Whole rock major element abundances resulted from fractional crystallization of the magmas during ascent. To retrieve the compositions of the primitive melts we added to the bulk rock compositions variable amounts of magnesian olivine [Mg/(Mg+Fe) = 0.88], and derived the evolution of olivine fractionating magmas in equilibrium with mantle harzburgite. Two groups of samples were found, corresponding to the parallel P-T trends obtained from mineral / melt calculations. The highest temperature trend corresponds to samples whose calculated primitive compositions are in agreement with those obtained from peridotite melting experiments (as published in the relevant literature). Interpretation of results for rocks belonging to the general CRBG trend suggests, either: (a) that higher forsteritic content olivine should be used in the calculations; or, (b) that melt / ol / opx reactions occurred. Investigation of the CRBG primitive compositions has relevance with regard to the geodynamic evolution models of this region. We are currently undertaking melt inclusion studies of suitable CRBG samples.
NASA Astrophysics Data System (ADS)
Huang, Shuyuan; Sun, Lumin; Zhou, Tingjin; Yuan, Dongxing; Du, Bing; Sun, Xiuwu
2018-01-01
In this study, samples of 18 wet precipitations (WPs) and 38 aerosols were collected around a coal-fired power plant (CFPP) located in Xiamen, southeast China, which was equipped with a seawater flue gas desulfurization system. Total particulate mercury (TPM) in aerosol samples, and total mercury (WP-TM), dissolved mercury (WP-DM) and particulate mercury (WP-PM) in WP samples were analyzed for the natural isotopic compositions of mercury. For the first time, both mass dependent fractionation (MDF) and mass independent fractionation of odd (odd-MIF) and even (even-MIF) isotopes of WP-DM and WP-PM were reported and discussed. Both WP-TM and TPM displayed negative MDF and slightly positive even-MIF. Negative odd-MIF was observed in TPM and WP-PM, whereas positive odd-MIF was observed in WP-TM and WP-DM. It was found that the mercury budget in WP-PM samples was mainly controlled by atmospheric particles. Potential sources of mercury in samples were identified via analysis of mercury isotopic signatures and meteorological data with the NOAA HYSPLIT model. The results showed that TPM and WP-PM in solid samples were homologous and the isotopic compositions of WP-TM depended on those of WP-DM. The ratios of Δ199Hg/Δ201Hg resulting from photochemical reactions and positive Δ200Hg values (from -0.06‰ to 0.27‰) in all samples indicated that the mercury coming from local emission of the CFPP together with long-distance transportation were the two main contributing sources.
NASA Astrophysics Data System (ADS)
Asmi, D.; Low, I. M.; O'Connor, B.
2008-03-01
The analysis of x-ray diffraction (XRD) patterns by the Rietveld technique was tested to the quantitatively phase compositions of self reinforcement Al2O3/CaAl12O19 composite. Room-temperature XRD patterns revealed that α-Al2O3 was the only phase presence in the CA0 sample, whereas the α-Al2O3 and CaAl12O19 phases were found for CA5, CA15, CA30, and CA50 samples. The peak intensity of CA6 in the self reinforcement Al2O3/CaAl12O19 composites increased in proportion with increase in CaAl12O19 content in contrast to α-Al2O3. The diffraction patterns for CA100 sample shows minor traces of α-Al2O3 even in relatively low peak intensity. It is suggesting that the in-situ reaction sintering of raw materials were not react completely to form 100 wt% CaAl12O19 at temperature 1650 °C. Quantitative phase compositions of self reinforcement Al2O3/CaAl12O19 composites by Rietveld analysis with XRD data has been well demonstrated. The results showed that the GOF values are relatively low and the fluctuation in the difference plots shows a reasonable fit between the observed and the calculated plot.
NASA Astrophysics Data System (ADS)
Dong, Xufeng; Guan, Xinchun; Ou, Jinping
2009-03-01
In the past ten years, there have been several investigations on the effects of particle size on magnetostrictive properties of polymer-bonded Terfenol-D composites, but they didn't get an agreement. To solve the conflict among them, Terfenol-D/unsaturated polyester resin composite samples were prepared from Tb0.3Dy0.7Fe2 powder with 20% volume fraction in six particle-size ranges (30-53, 53-150, 150-300, 300-450, 450-500 and 30-500μm). Then their magnetostrictive properties were tested. The results indicate the 53-150μm distribution presents the largest static and dynamic magnetostriction among the five monodispersed distribution samples. But the 30-500μm (polydispersed) distribution shows even larger response than 53-150μm distribution. It indicates the particle size level plays a doubleedged sword on magnetostrictive properties of magnetostrictive composites. The existence of the optimal particle size to prepare polymer-bonded Terfenol-D, whose composition is Tb0.3Dy0.7Fe2, is resulted from the competition between the positive effects and negative effects of increasing particle size. At small particle size level, the voids and the demagnetization effect decrease significantly with increasing particle size and leads to the increase of magnetostriction; while at lager particle size level, the percentage of single-crystal particles and packing density becomes increasingly smaller with increasing particle size and results in the decrease of magnetostriction. The reason for the other scholars got different results is analyzed.
Autohesive strength development in polysulfone resin and graphite-polysulfone composites
NASA Technical Reports Server (NTRS)
Howes, Jeremy C.; Loos, Alfred C.
1988-01-01
The effects of bonding temperature and contact time on autohesive strength development in thermoplastic polysulfone resin and graphite-polysulfone composites were investigated. Two test methods were examined to measure autohesion in the neat resin samples. These included an interfacial tension test and a compact tension fracture toughness test. Autohesive strength development in fiber-reinforced composites was measured using a double cantilever beam interlaminar fracture toughness test. The results of the tests were compared with current diffusion theories explaining crack healing and welding of glassy polymers. Discrepancies between the results of the present investigation and the diffusion theories are discussed.
Chemical and isotopic compositions in acid residues from various meteorites
NASA Technical Reports Server (NTRS)
Kano, N.; Yamakoshi, K.; Matsuzaki, H.; Nogami, K.
1993-01-01
We are planning to carry out systematic isotopic investigations of Ru, Mg, etc., in primordial samples. The investigations will be pursued in the context of a study of the pre-history of the solar system. It is hoped that the study will yield direct evidence for processes of nucleosynthesis in the pre-solar stage and detection of extinct radioactive nuclides. In this paper, we present the results of chemical compositions of acid residues obtained from three types of meteorites: Canyon Diablo (IA), Allende (CV3), and Nuevo Mercuro (H5); and the preliminary results of Ru isotopic compositions.
Properties of RBSN and RBSN-SiC composites. [Reaction Bonded Silicon Nitride
NASA Technical Reports Server (NTRS)
Lightfoot, A.; Ker, H. L.; Haggerty, J. S.; Ritter, J. E.
1990-01-01
Strengths, fracture toughnesses, hardnesses, and dimensional changes have been measured for RBSN and RBSN/SiC composites. Samples were made from mixtures of Si and either Si- or C-rich SiC powders. For pure, 75 pct dense RBSN dispersed with octanol, strengths up to 858 MPa have been achieved. Improved strengths result from a combination of microstructural perfection and increased fracture toughness. The mechanical properties of the composites were approximately equal to those of methanol processed RBSN but not quite equal to those of the octanol-processed RBSN. Results are discussed in terms of observed microstructural features.
Electronic bandstructure of semiconductor dilute bismide structures
NASA Astrophysics Data System (ADS)
Erucar, T.; Nutku, F.; Donmez, O.; Erol, A.
2017-02-01
In this work electronic band structure of dilute bismide GaAs/GaAs1-xBix quantum well structures with 1.8% and 3.75% bismuth compositions have been investigated both experimentally and theoretically. Photoluminescence (PL) measurements reveal that effective bandgap of the samples decreases approximately 65 meV per bismuth concentration. Temperature dependence of the effective bandgap is obtained to be higher for the sample with higher bismuth concentration. Moreover, both asymmetric characteristic at the low energy tail of the PL and full width at half maximum (FWHM) of PL peak increase with increasing bismuth composition as a result of increased Bi related defects located above valence band (VB). In order to explain composition dependence of the effective bandgap quantitatively, valence band anti-crossing (VBAC) model is used. Bismuth composition and temperature dependence of effective bandgap in a quantum well structure is modeled by solving Schrödinger equation and compared with experimental PL data.
Tantalum-tungsten oxide thermite composites prepared by sol-gel synthesis and spark plasma sintering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuntz, Joshua D.; Gash, Alexander E.; Cervantes, Octavio G.
2010-08-15
Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and the results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High-Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta-WO{sub 3}) energetic composite was consolidated to a density of 9.17 g cm{sup -3}more » or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy. (author)« less
Tantalum-Tungsten Oxide Thermite Composite Prepared by Sol-Gel Synthesis and Spark Plasma Sintering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes, O; Kuntz, J; Gash, A
2009-02-13
Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO{sub 3}) energetic composite was consolidated to a density of 9.17more » g.cm{sup -3} or 93% relative density. In addition those parts were consolidated without significant pre-reaction of the constituents, thus the sample retained its stored chemical energy.« less
In-office bleaching efficacy on stain removal from CAD/CAM and direct resin composite materials.
Alharbi, Amal; Ardu, Stefano; Bortolotto, Tissiana; Krejci, Ivo
2018-01-01
To evaluate the efficacy of in-office bleaching on stain removal from stained resin composite and ceramic computer-assisted design/computer-assisted manufacturing (CAD/CAM) blocks and direct resin composites. Forty disk-shaped samples were fabricated from each of nine materials: six CAD/CAM (VITABLOCS Mark II, Paradigm MZ100, Exp Vita Hybrid Ceramic, VITA ENAMIC, Exp Kerr, and LAVA Ultimate) and three direct resin composites (Filtek Supreme, Venus Diamond, and Filtek Silorane). Samples were randomly divided into five groups (n = 8), each stained with a particular staining solution. Using a calibrated spectrophotometer and a black background, L*a*b* values were assessed before and after 120 days of staining. Samples were subjected to in-office bleaching using 40% hydrogen peroxide gel for one hour. At subsequent assessment, color change (ΔE) was calculated as the difference between L*a*b* values. Both ANOVA and the Duncan test were used to identify differences between groups (α = 0.05). Bleaching resulted in significant differences in ΔE values for all materials (P < .001). Bleaching efficacy was highly influenced by material composition and staining solution. Residual color values after bleaching for ceramic and hybrid ceramics ranged from -0.49 to 2.35, within the clinically acceptable maximum of 3.3. Values after bleaching for resin-based CAD/CAM ranged from -0.7 to 7.08 while direct resin composites values ranged from -1.47 to 25.13. Coffee left the greatest residual color on all materials. Based on material nature, 40% hydrogen peroxide bleaching can remove staining. The new resin-based CAD/CAM blocks showed promising results in terms of color stability. Bleaching using 40% hydrogen peroxide can be an effective method to remove stains from dental restorations. In this way, restoration replacement as a result of discoloration may no longer be necessary. © 2017 Wiley Periodicals, Inc.
Okorie-Kanu, O. Josephine; Ezenduka, E. Vivienne; Okorie-Kanu, C. Onwuchokwe; Ugwu, L. Chinweokwu; Nnamani, U. John
2016-01-01
Aim: This study was conducted to investigate the occurrence of pathogenic Escherichia coli and Salmonella species in retail raw table eggs sold for human consumption in Enugu State and to determine the resistance of these pathogens to antimicrobials commonly used in human and veterinary practices in Nigeria. Materials and Methods: A total of 340 raw table eggs comprising 68 composite samples (5 eggs per composite sample) were collected from five selected farms (13 composite samples from the farms) and 10 retail outlets (55 composite samples from the retail outlets) in the study area over a period of 4-month (March-June, 2014). The eggs were screened for pathogenic E. coli and Salmonella species following standard procedures within 24 h of sample collection. Isolates obtained were subjected to in-vitro antimicrobial susceptibility test with 15 commonly used antimicrobials using the disk diffusion method. Results: About 37 (54.4%) and 7 (10.3%) of the 68 composite samples were positive for pathogenic E. coli and Salmonella species, respectively. The shells showed significantly higher (p<0.05) contaminations than the contents for both microorganisms. The eggs from the farms showed higher contamination with pathogenic E. coli than eggs from the retail outlets while the reverse was the case for Salmonella species even though they were not significant (p>0.05). The organisms obtained showed a multiple drug resistance. They were completely resistant to nitrofurantoin, sulfamethoxazole/trimethoprim, penicillin G and oxacillin. In addition to these, Salmonella spp. also showed 100% resistance to tetracycline. The pathogenic E. coli isolates obtained were 100% susceptible to gentamicin, neomycin, ciprofloxacin, and amoxicillin-clavulanic acid while Salmonella spp. showed 100% susceptibility to erythromycin, neomycin, and rifampicin. Both organisms showed varying degrees of resistance to streptomycin, amoxicillin, vancomycin, and doxycycline. Conclusion: From the results of the study, it can be concluded that the raw table eggs marketed for human consumption in Enugu State, Nigeria is contaminated with pathogenic E. coli and Salmonella species that showed multiple drug resistance to antimicrobial agents commonly used in veterinary and human practice. PMID:27956787
Coplen, T.B.; Qi, H.
2009-01-01
New isotope laboratories can achieve the goal of reporting the same isotopic composition within analytical uncertainty for the same material analysed decades apart by (1) writing their own acceptance testing procedures and putting them into their mass spectrometric or laser-based isotope-ratio equipment procurement contract, (2) requiring a manufacturer to demonstrate acceptable performance using all sample ports provided with the instrumentation, (3) for each medium to be analysed, prepare two local reference materials substantially different in isotopic composition to encompass the range in isotopic composition expected in the laboratory and calibrated them with isotopic reference materials available from the International Atomic Energy Agency (IAEA) or the US National Institute of Standards and Technology (NIST), (4) using the optimum storage containers (for water samples, sealing in glass ampoules that are sterilised after sealing is satisfactory), (5) interspersing among sample unknowns local laboratory isotopic reference materials daily (internationally distributed isotopic reference materials can be ordered at three-year intervals, and can be used for elemental analyser analyses and other analyses that consume less than 1 mg of material) - this process applies to H, C, N, O, and S isotope ratios, (6) calculating isotopic compositions of unknowns by normalising isotopic data to that of local reference materials, which have been calibrated to internationally distributed isotopic reference materials, (7) reporting results on scales normalised to internationally distributed isotopic reference materials (where they are available) and providing to sample submitters the isotopic compositions of internationally distributed isotopic reference materials of the same substance had they been analysed with unknowns, (8) providing an audit trail in the laboratory for analytical results - this trail commonly will be in electronic format and might include a laboratory information management system, (9) making at regular intervals a complete backup of laboratory analytical data (both of samples logged into the laboratory and of mass spectrometric analyses), being sure to store one copy of this backup offsite, and (10) participating in interlaboratory comparison exercises sponsored by the IAEA and other agencies at regular intervals. ?? Taylor & Francis.
Yamanaka, Wataru; Takeshita, Toru; Shibata, Yukie; Matsuo, Kazuki; Eshima, Nobuoki; Yokoyama, Takeshi; Yamashita, Yoshihisa
2012-01-01
Supragingival plaque is permanently in contact with saliva. However, the extent to which the microbiota contributes to the salivary bacterial population remains unclear. We compared the compositional shift in the salivary bacterial population with that in supragingival plaque following periodontal therapy. Samples were collected from 19 patients with periodontitis before and after periodontal therapy (mean sample collection interval, 25.8 ± 2.6 months), and their bacterial composition was investigated using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis using the UniFrac distance metric revealed that the overall bacterial community composition of saliva is distinct from that of supragingival plaque, both pre- and post-therapy. Temporal variation following therapy in the salivary bacterial population was significantly smaller than in the plaque microbiota, and the post-therapy saliva sample was significantly more similar to that pre-therapy from the same individual than to those from other subjects. Following periodontal therapy, microbial richness and biodiversity were significantly decreased in the plaque microbiota, but not in the salivary bacterial population. The operational taxonomic units whose relative abundances changed significantly after therapy were not common to the two microbiotae. These results reveal the compositional stability of salivary bacterial populations against shifts in the supragingival microbiota, suggesting that the effect of the supragingival plaque microbiota on salivary bacterial population composition is limited.
Ndidi, Uche Samuel; Ndidi, Charity Unekwuojo; Olagunju, Abbas; Muhammad, Aliyu; Billy, Francis Graham; Okpe, Oche
2014-01-01
This research was aimed at evaluating the proximate composition, level of anti-nutrients, and the mineral composition of raw and processed Sphenostylis stenocarpa seeds and at examining the effect of processing on the parameters. From the proximate composition analysis, the ash content showed no significant difference (P > 0.05) between the processed and unprocessed (raw) samples. However, there was significant difference (P < 0.05) in the levels of moisture, crude lipid, nitrogen-free extract, gross energy, true protein, and crude fiber between the processed and unprocessed S. stenocarpa. Analyses of the antinutrient composition show that the processed S. stenocarpa registered significant reduction in levels of hydrogen cyanide, trypsin inhibitor, phytate, oxalate, and tannins compared to the unprocessed. Evaluation of the mineral composition showed that the level of sodium, calcium, and potassium was high in both the processed and unprocessed sample (150–400 mg/100 g). However, the level of iron, copper, zinc, and magnesium was low in both processed and unprocessed samples (2–45 mg/100 g). The correlation analysis showed that tannins and oxalate affected the levels of ash and nitrogen-free extract of processed and unprocessed seeds. These results suggest that the consumption of S. stenocarpa will go a long way in reducing the level of malnutrition in northern Nigeria. PMID:24967265
Ceruti, P; Erovigni, F; Casella, F; Lombardo, S
2005-10-01
The aim of this work is to compare the adhesion of the glass-ceramic (empress II) to the composite cement and the adhesion of the ceromer to the composite cement. From each of the above materials, 10 little blocks, of 8 x 6 x 2 mm size, have been prepared. All the surface treatments suggested by the manufacturing industry have been performed: sandblasting and acid-etching of the ceramic, ceromer surface roughening with diamond bur and silanization and bonding application on both materials. A homogeneous layer of cement has been placed between couples of blocks of the same material and photopolymerised. Every sample, consisting of 2 bonded blocks, has been submitted to a traction force on a universal test machine connected with a computerized measure system (SINTEC D/10). Samples have been anchored to the machine binding devices by a bicomponent epoxy glue. Data on the breaking charge have been recorded and an analysis of the broken surfaces has been performed in order to classify the breaking modalities. The results ontained showed that the composite-glass-ceramic adhesion force (mean value 64 Mpa) was remarkably higher than the composite-ceromer adhesion (mean value 37.21 Mpa). The analysis of the broken surfaces by SEM showed that a mixed fracture occurred in all samples (both partly adhesive and cohesive).
Nasoohi, Negin; Hoorizad, Maryam
2017-01-01
Objectives: This study aimed to assess the effect of wet and dry finishing and polishing on microhardness and roughness of microhybrid and nanohybrid composites. Materials and Methods: Thirty samples were fabricated of each of the Polofil Supra and Aelite Aesthetic All-Purpose Body microhybrid and Grandio and Aelite Aesthetic Enamel nanohybrid composite resins. Each group (n=30) was divided into three subgroups of D, W and C (n=10). Finishing and polishing were performed dry in group D and under water coolant in group W. Group C served as the control group and did not receive finishing and polishing. Surface roughness of samples was measured by a profilometer and their hardness was measured by a Vickers hardness tester. Data were analyzed using two-way ANOVA (P<0.05). Results: The smoothest surfaces with the lowest microhardness were obtained under Mylar strip without finishing/polishing for all composites (P<0.0001). The highest surface roughness was recorded for dry finishing/polishing for all composites (P<0.0001). Dry finishing/polishing increased the microhardness of all composites (P<0.0001). Conclusions: Dry finishing and polishing increases the microhardness and surface roughness of microhybrid and nanohybrid composite resins. PMID:29104597
NASA Astrophysics Data System (ADS)
Venkata Reddy, V.; Gopi Krishna, M.; Praveen Kumar, K.; Naga Kishore, B. S.; Babu Rao, J.; Bhargava, NRMR
2018-02-01
Experiments have been performed under laboratory condition to review the mechanical behaviour of the hybrid composites with aluminium matrix A7075 alloy, reinforced with silicon carbide (SiC) and Flyash. This has been possible by fabricating the samples through usual stir casting technique. Scanning electron microscopy was used for microstructure analysis. Chemical characterization of both matrix and composites was performed by using EDAX. Density, hardness, tensile and deformation studies were conceded out on both the base alloy and composites. Enhanced hardness and deformed properties were observed for all the composites. Interestingly improved tensile results were obtained for the composites than alloy. Dispersion of (SiC) and Flyash particles in aluminium matrix enhances the hardness of the composites.
Results Of Initial Analyses Of The Salt (Macro) Batch 9 Tank 21H Qualification Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T.
2015-10-08
Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 9 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 9 composite sample indicates that the material does not display any unusual characteristics. Further results on the chemistry and other tests will be issued in the future.
Pyronin Y (basic xanthene dye)-bentonite composite: A spectroscopic study
NASA Astrophysics Data System (ADS)
Tabak, A.; Kaya, M.; Yilmaz, N.; Meral, K.; Onganer, Y.; Caglar, B.; Sungur, O.
2014-02-01
The expansion by 1.43 Angstrom of basal spacing and the shift to higher frequencies of in-plane ring vibrations of the Pyronin Y molecule at 1603 and 1527 cm-1 on the formation of Pyronin Y-bentonite composite exhibited that the dye cations might be oriented as a monolayer form in the interlamellar spacing with aromatic rings parallel to clay layers. Thermal analysis results of this composite compared to those of raw bentonite signified the different outer sphere water entities associated with the replacement of inorganic cations with organic dye cations and the gradual decomposition of the organic molecule in the interlamellar spacing. Thermo-Infrared spectra of Pyronin Y-bentonite sample up to high temperatures showed the thermal stability of the dye-clay composite as a result of the presence of π interactions. The pore structure characteristics of Pyronin Y-bentonite composite exhibited the increase in the number of mesopores during formation of the composite.
Fernandes, Ângela; Barros, Lillian; Martins, Anabela; Herbert, Paulo; Ferreira, Isabel C F R
2015-02-15
Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. is the third most produced edible mushroom worldwide, due to its ability to colonise and degrade a large variety of lignocellulosic substrates. Therefore, the objective of this work was to evaluate the chemical composition of fruiting bodies of P. ostreatus grown on blank and printed paper substrates, in comparison with samples grown on oat straw (control). The nutritional properties of the control sample were similar to values reported in the literature, while the chemical composition of the samples obtained using paper scraps, either blank or printed, was highly satisfactory. The results obtained validated the nutritional characteristics of the samples, highlighting a profitable means to recycle paper. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rossi, Martina; Roda, Barbara; Zia, Silvia; Vigliotta, Ilaria; Zannini, Chiara; Alviano, Francesco; Bonsi, Laura; Zattoni, Andrea; Reschiglian, Pierluigi; Gennai, Alessandro
2018-06-14
New microfat preparations provide material suitable for use as a regenerative filler for different facial areas. To support the development of new robust techniques for regenerative purposes, the cellular content of the sample should be considered. To evaluate the stromal vascular fraction (SVF) cell components of micro-superficial enhanced fluid fat injection (SEFFI) samples via a technique to harvest re-injectable tissue with minimum manipulation. The results were compared to those obtained from SEFFI samples. Microscopy analysis was performed to visualize the tissue structure. Micro-SEFFI samples were also fractionated using Celector ®, an innovative non-invasive separation technique, to provide an initial evaluation of sample fluidity and composition. SVFs obtained from SEFFI and micro-SEFFI were studied. Adipose stromal cells (ASCs) were isolated and characterized by proliferation and differentiation capacity assays. Microscopic and quality analyses of micro-SEFFI samples by Celector® confirmed the high fluidity and sample cellular composition in terms of red blood cell contamination, the presence of cell aggregates and extracellular matrix fragments. ASCs were isolated from adipose tissue harvested using SEFFI and micro-SEFFI systems. These cells were demonstrated to have a good proliferation rate and differentiation potential towards mesenchymal lineages. Despite the small sizes and low cellularity observed in micro-SEFFI-derived tissue, we were able to isolate stem cells. This result partially explains the regenerative potential of autologous micro-SEFFI tissue grafts. In addition, using this novel Celector® technology, tissues used for aging treatment were characterized analytically, and the adipose tissue composition was evaluated with no need for extra sample processing.
Self-sealing of thermal fatigue and mechanical damage in fiber-reinforced composite materials
NASA Astrophysics Data System (ADS)
Moll, Jericho L.
Fiber reinforced composite tanks provide a promising method of storage for liquid oxygen and hydrogen for aerospace applications. The inherent thermal fatigue of these vessels leads to the formation of microcracks, which allow gas phase leakage across the tank walls. In this dissertation, self-healing functionality is imparted to a structural composite to effectively seal microcracks induced by both mechanical and thermal loading cycles. Two different microencapsulated healing chemistries are investigated in woven glass fiber/epoxy and uni-weave carbon fiber/epoxy composites. Self-healing of mechanically induced damage was first studied in a room temperature cured plain weave E-glass/epoxy composite with encapsulated dicyclopentadiene (DCPD) monomer and wax protected Grubbs' catalyst healing components. A controlled amount of microcracking was introduced through cyclic indentation of opposing surfaces of the composite. The resulting damage zone was proportional to the indentation load. Healing was assessed through the use of a pressure cell apparatus to detect nitrogen flow through the thickness direction of the damaged composite. Successful healing resulted in a perfect seal, with no measurable gas flow. The effect of DCPD microcapsule size (51 microm and 18 microm) and concentration (0--12.2 wt%) on the self-sealing ability was investigated. Composite specimens with 6.5 wt% 51 microm capsules sealed 67% of the time, compared to 13% for the control panels without healing components. A thermally stable, dual microcapsule healing chemistry comprised of silanol terminated poly(dimethyl siloxane) plus a crosslinking agent and a tin catalyst was employed to allow higher composite processing temperatures. The microcapsules were incorporated into a satin weave E-glass fiber/epoxy composite processed at 120°C to yield a glass transition temperature of 127°C. Self-sealing ability after mechanical damage was assessed for different microcapsule sizees (25 microm and 42 microm) and concentrations (0--11 vol%). Incorporating 9 vol% 42 microm capsules or 11 vol% 25 microm capsules into the composite matrix leads to 100% of the samples sealing. The effect of microcapsule concentration on the short beam strength, storage modulus, and glass transition temperature of the composite specimens was also investigated. The thermally stable tin catalyzed poly(dimethyl siloxane) healing chemistry was then integrated into a [0/90]s uniweave carbon fiber/epoxy composite. Thermal cycling (-196°C to 35°C) of these specimens lead to the formation of microcracks, over time, formed a percolating crack network from one side of the composite to the other, resulting in a gas permeable specimen. Crack damage accumulation and sample permeability was monitored with number of cycles for both self-healing and traditional non-healing composites. Crack accumulation occurred at a similar rate for all sample types tested. A 63% increase in lifetime extension was achieved for the self-healing specimens over traditional non-healing composites.
Wang, Hua-Mei; Fu, Ting-Ming; Guo, Li-Wei
2013-06-01
This study is to report the influence of conditions in spray drying process on physical and chemical properties and lung inhaling performance of Panax notoginseng Saponins - Tanshinone II A composite particles. According to the physical and chemical properties of the two types of components within the composite particles, three solvent systems were selected including ethanol, ethanol : acetone (9 : 1, v/v) and ethanol : acetone (4 : 1, v/v), and three inlet temperature: 110 degrees C, 120 degrees C, 130 degrees C to prepare seven different composite particle samples; each sample was characterized using laser diffraction, scanning electron microscopy (SEM), dynamic vapour sorption (DVS) and atomic force microscope (AFM), and their aerodynamic behavior was evaluated by a Next Generation Impactor (NGI). The results indicate that under the conditions of using the mixed solvent system of ethanol--acetone volume ratio of 9 : 1, and the inlet temperature of 110 degrees C, the resulting composite particles showed rough surface, with more tanshinone II A distributing in the outer layer, such composite particles have the best lung inhaling performance and the fine particle fraction (FPF) close to 60%. Finally it is concluded that by adjusting the conditions in co-spray drying process, the distribution amount and existence form of tanshinone II A in the outer layer of the particles can be changed so that to enhance lung inhaling performance of the drug composite particles.
NASA Astrophysics Data System (ADS)
Manjili, Mohsen Hajipour; Halali, Mohammad
2018-02-01
Samples of INCONEL 718 were levitated and melted in a slag by the application of an electromagnetic field. The effects of temperature, time, and slag composition on the inclusion content of the samples were studied thoroughly. Samples were compared with the original alloy to study the effect of the process on inclusions. Size, shape, and chemical composition of remaining non-metallic inclusions were investigated. The samples were prepared by Standard Guide for Preparing and Evaluating Specimens for Automatic Inclusion Assessment of Steel (ASTM E 768-99) method and the results were reported by means of the Standard Test Methods for Determining the Inclusion Content of Steel (ASTM E 45-97). Results indicated that by increasing temperature and processing time, greater level of cleanliness could be achieved, and numbers and size of the remaining inclusions decreased significantly. It was also observed that increasing calcium fluoride content of the slag helped reduce inclusion content.
Fabrication, characterization, and photocatalytic property of α-Fe2O3/graphene oxide composite
NASA Astrophysics Data System (ADS)
Li, Hong; Zhao, Qidong; Li, Xinyong; Zhu, Zhengru; Tade, Moses; Liu, Shaomin
2013-06-01
Spindle-shaped microstructure of α-Fe2O3 was successfully synthesized by a simple hydrothermal method. The α-Fe2O3/graphene oxide (GO) composites was prepared using a modified Hummers' strategy. The properties of the samples were systematically investigated by X-ray powder diffraction (XRD), UV-Vis diffuse reflectance spectrophotometer, transmission electron microscope, atomic force microscope, X-ray photoelectron spectroscopy, and Raman spectroscopy (Raman) techniques. GO nanosheets act as supporting materials for anchoring the α-Fe2O3 particles. The average crystallite sizes of the α-Fe2O3 and α-Fe2O3/GO samples are ca. 27 and 24 nm, respectively. The possible growth of α-Fe2O3 onto GO layers led to a higher absorbance capacity for visible light by α-Fe2O3/GO than α-Fe2O3 composite. The photocatalytic degradation of toluene over the α-Fe2O3 and α-Fe2O3/GO samples under xenon-lamp irradiation was comparatively studied by in situ FTIR technique. The results indicate that the α-Fe2O3/GO sample synthesized exhibited a higher capacity for the degradation of toluene. The composite of α-Fe2O3/GO could be promisingly applied in photo-driven air purification.
Marti, Elisabet; Jofre, Juan; Balcazar, Jose Luis
2013-01-01
Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs), their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP) effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, bla TEM, bla CTX-M, bla SHV, erm(B), sul(I), sul(II), tet(O) and tet(W) were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river. PMID:24205347
Crawford, Bryn; Pakpour, Sepideh; Kazemian, Negin; Klironomos, John; Stoeffler, Karen; Rho, Denis; Denault, Johanne; Milani, Abbas S.
2017-01-01
The development and application of bio-sourced composites have been gaining wide attention, yet their deterioration due to the growth of ubiquitous microorganisms during storage/manufacturing/in-service phases is still not fully understood for optimum material selection and design purposes. In this study, samples of non-woven flax fibers, hemp fibers, and mats made of co-mingled randomly-oriented flax or hemp fiber (50%) and polypropylene fiber (50%) were subjected to 28 days of exposure to (i) no water-no fungi, (ii) water only and (iii) water along with the Chaetomium globosum fungus. Biocomposite samples were measured for weight loss over time, to observe the rate of fungal growth and the respiration of cellulose components in the fibers. Tensile testing was conducted to measure mechanical properties of the composite samples under different configurations. Scanning electron microscopy was employed to visualize fungal hyphal growth on the natural fibers, as well as to observe the fracture planes and failure modes of the biocomposite samples. Results showed that fungal growth significantly affects the dry mass as well as the tensile elastic modulus of the tested natural fiber mats and composites, and the effect depends on both the type and the length scale of fibers, as well as the exposure condition and time. PMID:29088118
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste
The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more importantmore » than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.« less
NASA Astrophysics Data System (ADS)
Yurkov, G. Yu.; Kozinkin, A. V.; Koksharov, Yu. A.; Ovchenkov, E. A.; Volkov, A. N.; Kozinkin, Yu. A.; Vlasenko, V. G.; Popkov, O. V.; Ivicheva, S. N.; Kargin, Yu. F.
2013-05-01
Cobalt-containing particles are synthesized on the surface of silicon dioxide micrograins prepared by the Stöber-Fink method. The composition and structure of nanoparticles are determined by transmission electron microscopy, X-ray diffraction analysis, and EXAFS. The average size of cobalt nanoparticles in the samples is found to be 14 ± 5 nm. The resulting composites are shown to be ferromagnetics with low specific magnetization values.
Compositional patterns in the genomes of unicellular eukaryotes
2013-01-01
Background The genomes of multicellular eukaryotes are compartmentalized in mosaics of isochores, large and fairly homogeneous stretches of DNA that belong to a small number of families characterized by different average GC levels, by different gene concentration (that increase with GC), different chromatin structures, different replication timing in the cell cycle, and other different properties. A question raised by these basic results concerns how far back in evolution the compartmentalized organization of the eukaryotic genomes arose. Results In the present work we approached this problem by studying the compositional organization of the genomes from the unicellular eukaryotes for which full sequences are available, the sample used being representative. The average GC levels of the genomes from unicellular eukaryotes cover an extremely wide range (19%-60% GC) and the compositional patterns of individual genomes are extremely different but all genomes tested show a compositional compartmentalization. Conclusions The average GC range of the genomes of unicellular eukaryotes is very broad (as broad as that of prokaryotes) and individual compositional patterns cover a very broad range from very narrow to very complex. Both features are not surprising for organisms that are very far from each other both in terms of phylogenetic distances and of environmental life conditions. Most importantly, all genomes tested, a representative sample of all supergroups of unicellular eukaryotes, are compositionally compartmentalized, a major difference with prokaryotes. PMID:24188247
Bakal, Tomas; Janata, Jiri; Sabova, Lenka; Grabic, Roman; Zlabek, Vladimir; Najmanova, Lucie
2018-06-16
A robust and widely applicable method for sampling of aquatic microbial biofilm and further sample processing is presented. The method is based on next-generation sequencing of V4-V5 variable regions of 16S rRNA gene and further statistical analysis of sequencing data, which could be useful not only to investigate taxonomic composition of biofilm bacterial consortia but also to assess aquatic ecosystem health. Five artificial materials commonly used for biofilm growth (glass, stainless steel, aluminum, polypropylene, polyethylene) were tested to determine the one giving most robust and reproducible results. The effect of used sampler material on total microbial composition was not statistically significant; however, the non-plastic materials (glass, metal) gave more stable outputs without irregularities among sample parallels. The bias of the method is assessed with respect to the employment of a non-quantitative step (PCR amplification) to obtain quantitative results (relative abundance of identified taxa). This aspect is often overlooked in ecological and medical studies. We document that sequencing of a mixture of three merged primary PCR reactions for each sample and further evaluation of median values from three technical replicates for each sample enables to overcome this bias and gives robust and repeatable results well distinguishing among sampling localities and seasons.
NASA Astrophysics Data System (ADS)
Venero, I. M.; Mayol-Bracero, O. L.; Anderson, J. R.
2012-12-01
As part of the Puerto Rican African Dust and Cloud Study (PRADACS) and the Ice in Clouds Experiment - Tropical (ICE-T), we sampled giant airborne particles to study their elemental composition, morphology, and size distributions. Samples were collected in July 2011 during field measurements performed by NCAR's C-130 aircraft based on St Croix, U.S Virgin Island. The results presented here correspond to the measurements done during research flight #8 (RF8). Aerosol particles with Dp > 1 um were sampled with the Giant Nuclei Impactor and particles with Dp < 1 um were collected with the Wyoming Inlet. Collected particles were later analyzed using an automated scanning electron microscope (SEM) and manual observation by field emission SEM. We identified the chemical composition and morphology of major particle types in filter samples collected at different altitudes (e.g., 300 ft, 1000 ft, and 4500ft). Results from the flight upwind of Puerto Rico show that particles in the giant nuclei size range are dominated by sea salt. Samples collected at altitudes 300 ft and 1000 ft showed the highest number of sea salt particles and the samples collected at higher altitudes (> 4000 ft) showed the highest concentrations of clay material. HYSPLIT back trajectories for all samples showed that the low altitude samples initiated in the free troposphere in the Atlantic Ocean, which may account for the high sea salt content and that the source of the high altitude samples was closer to the Saharan - Sahel desert region and, therefore, these samples possibly had the influence of African dust. Size distribution results for quartz and unreacted sea-salt aerosols collected on the Giant Nuclei Impactor showed that sample RF08 - 12:05 UTM (300 ft) had the largest size value (mean = 2.936 μm) than all the other samples. Additional information was also obtained from the Wyoming Inlet present at the C - 130 aircraft which showed that size distribution results for all particles were smaller in size. The different mineral components of the dust have different size distributions so that a fractionation process could occur during transport. Also, the presence of supermicron sea salt at altitude is important for cloud processes.
Effect of Carbon Nanotubes Upon Emissions From Cutting and Sanding Carbon Fiber-Epoxy Composites
Heitbrink, William A.; Lo, Li-Ming
2015-01-01
Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20% to 80% compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9×108 and 2.8×106 fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC. PMID:26478716
Wei, Liqiu; Che, Ruxin; Jiang, Yijun; Yu, Bing
2013-12-01
Microwave absorbing material plays a great role in electromagnetic pollution controlling, electromagnetic interference shielding and stealth technology, etc. The core-nanoshell composite materials doped with La were prepared by a solid-state reaction method, which is applied to the electromagnetic wave absorption. The core is magnetic fly-ash hollow cenosphere, and the shell is the nanosized ferrite doped with La. The thermal decomposition process of the sample was investigated by thermogravimetry and differential thermal analysis. The morphology and components of the composite materials were investigated by the X-ray diffraction analysis, the microstructure was observed by scanning electron microscope and transmission electron microscope. The results of vibrating sample magnetometer analysis indicated that the exchange-coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which caused outstanding magnetic properties. The microwave absorbing property of the sample was measured by reflectivity far field radar cross section of radar microwave absorbing material with vector network analyzer. The results indicated that the exchange-coupling interaction enhanced magnetic loss of composite materials. Therefore, in the frequency of 5 GHz, the reflection coefficient can achieve -24 dB. It is better than single material and is consistent with requirements of the microwave absorbing material at the low-frequency absorption. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Palomar, Teresa; Garcia-Heras, Manuel; Sabio, Rafael; Rincon, Jesus-Maria; Villegas, Maria-Angeles
This paper presents the results derived from an archaeometric study undertaken on glass samples from the Roman town of Augusta Emerita (Mérida, Spain). The main goal of the research was to provide for the first time some compositional and technological insights into the glass finds unearthed in this town. Glass samples from different sites and chronology, either from inside or from outside the perimeter of the ancient town and from the first to the sixth century AD, were analyzed and characterized through optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDS), X-ray fluorescence (XRF) spectrometry and VIS spectrophotometry. Resulting data indicated that all the samples studied were natron-based soda lime silicate glasses, even though two chronological and compositionally distinct groups were distinguished. One composed of Early Empire glasses and a second one composed of glasses from the fourth century AD onward, which was characterized by the presence of the so-called HIMT (high iron, manganese, and titanium) glasses. Comparison with coeval glasses suggested that Augusta Emerita shared the same trade glass circles than other contemporary Roman towns, within the frame of a secondary production scale. Finally, some outstanding differences connected to composition and chronology were found, since Late Roman glasses presented a higher and distinct degree of alteration than Early Empire ones.
NASA Astrophysics Data System (ADS)
Shi, Yan; Li, Yunfeng; Liu, Jia; Yuan, Zhenyu
2018-02-01
In this study, a gradient composite coating was manufactured on 20CrMnTi alloy steel by laser cladding. The laser power, cladding scan velocity and powder flow rate were selected as influencing factors of the orthogonal cladding experiments. The influencing factors were optimized by the comprehensive analysis of Taguchi OA and TOPSIS method. The high significant parameters and the predicted results were confirmed by the ANOVA method. The macromorphology and microstructures are characterized by using laser microscope, SEM, XRD and microhardness tester. Comparison tests of wear resistance of gradient composite coating, 20CrMnTi cemented quenching sample and the 20CrMnTi sample were conducted on the friction-wear tester. The results show that the phases are γ-Co solid solution, Co3B, M23C6 and etc. The interlayers and wear-resisting layer also contain new hard phases as WC, W2C. The microhardness of the gradient coating was increased to 3 times as compared with that of the 20CrMnTi substrate. The wear resistance of the gradient composite coating and 20CrMnTi cemented quenching sample was enhanced to 36.4 and 15.9 times as compared with that of the 20CrMnTi.
NASA Astrophysics Data System (ADS)
Vidischeva, Olesya; Akhmanov, Grigorii; Khlystov, Oleg; Giliazetdinova, Dina
2016-04-01
In July 2015 the research cruise in the waters of Lake Baikal was carried out onboard RV "G.Yu. Vereshchagin". The expedition was organized by Lomonosov Moscow State University and Limnological Institute of Russian Academy of Sciences. The main purpose of the expedition was to study the modern sedimentation and natural geological processes on the bottom of Lake Baikal. One of the tasks of the cruise was to conduct gas-geochemical survey of bottom sediments. The samples of hydrocarbon gases were collected during the cruise. Subsequent study of the composition and origin of the sampled gas was carried out in the laboratories of Moscow State University. 708 samples from 61 bottom sampling stations were studied. Analyzed samples are from seven different areas located in the southern and central depressions of the lake: (1) "Goloustnoe" seepage area; (2) Bolshoy mud volcano; (3) Elovskiy Area; (4) "Krasny Yar" Seep; (5) "St. Petersburg" Seep; (6) Khuray deep-water depositional system; and (7) Kukuy Griva (Ridge) area. The results of molecular composition analysis indicate that hydrocarbon gases in bottom sediments from almost all sampling stations are represented mostly by pure methane. Ethane was detected only in some places within "Krasny Yar", "Goloustnoe" and "St. Petersburg" seepage areas. The highest concentrations of methane were registered in the sediments from the "Krasny Yar" area - 14 457 μl/l (station TTR-BL15-146G) - and from the "St. Petersburg" area - 13 684 μl/l (station TTR-BL15-125G). The sediments with high concentrations of gases were sampled from active fluid discharge areas, which also can be well distinguished on the seismic profiles. Gas hydrates were obtained in the areas of "Krasny Yar", "Goloustnoe", and "St. Petersburg" seeps and in the area of the Bolshoy mud volcano. Isotopic composition δ13C(CH4) was studied for 100 samples of hydrocarbon gases collected in areas with high methane concentration in bottom sediments. The average value is -53‰. Overall bottom sediments of the Baikal Lake are very saturated in biogenic shallow methane. However, some evidences of thermogenic methane contribution can be recorded in the areas of focused fluid flows from deeper strata (e.g. mud volcanoes, seepage sites, etc.). Scrupulous examination of gas composition data results in understanding of scope of activity of individual structure and rough estimation of thermogenic gas flow input.
Rivard, Christine; Bordeleau, Geneviève; Lavoie, Denis; Lefebvre, René; Malet, Xavier
2018-03-06
Methane concentrations and isotopic composition in groundwater are the focus of a growing number of studies. However, concerns are often expressed regarding the integrity of samples, as methane is very volatile and may partially exsolve during sample lifting in the well and transfer to sampling containers. While issues concerning bottle-filling techniques have already been documented, this paper documents a comparison of methane concentration and isotopic composition obtained with three devices commonly used to retrieve water samples from dedicated observation wells. This work lies within the framework of a larger project carried out in the Saint-Édouard area (southern Québec, Canada), whose objective was to assess the risk to shallow groundwater quality related to potential shale gas exploitation. The selected sampling devices, which were tested on ten wells during three sampling campaigns, consist of an impeller pump, a bladder pump, and disposable sampling bags (HydraSleeve). The sampling bags were used both before and after pumping, to verify the appropriateness of a no-purge approach, compared to the low-flow approach involving pumping until stabilization of field physicochemical parameters. Results show that methane concentrations obtained with the selected sampling techniques are usually similar and that there is no systematic bias related to a specific technique. Nonetheless, concentrations can sometimes vary quite significantly (up to 3.5 times) for a given well and sampling event. Methane isotopic composition obtained with all sampling techniques is very similar, except in some cases where sampling bags were used before pumping (no-purge approach), in wells where multiple groundwater sources enter the borehole.
Selective generation of laser-induced periodic surface structures on Al2O3-ZrO2-Nb composites
NASA Astrophysics Data System (ADS)
Kunz, Clemens; Bartolomé, José F.; Gnecco, Enrico; Müller, Frank A.; Gräf, Stephan
2018-03-01
Laser-induced periodic surface structures (LIPSS) were selectively fabricated on the metal phase of Al2O3-nZrO2-Nb (78.3-1.7-20 vol.%) ceramic matrix composites. For this purpose, sample surfaces were irradiated with fs-laser pulses (τ = 300 fs, λ = 1025 nm) of different laser peak fluences ranging from 0.23 to 0.40 J/cm2. The structured surfaces were characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and by measuring the water contact angle. Well-pronounced LIPSS with a period of Λ ≈ 750 nm and a height of h ≈ 263 nm were found solely on the metal phase of the composite when applying the highest fluence whereas no structural and chemical modifications were found on the surface of the ceramic matrix. This can be explained by the different light absorption behaviour of both phases, which results in different ablation thresholds. The water contact angle of composite surfaces was successfully reduced from 68.4° for untreated samples to 40.9° for structured samples. Selectively structured composites with adjustable wettability are of particular interest for biomedical and tribological applications.
Preparation of a bonelike apatite-polymer fiber composite using a simple biomimetic process.
Yokoyama, Yoshiro; Oyane, Ayako; Ito, Atsuo
2008-08-01
A bonelike apatite-polymer fiber composite may be useful as an implant material to replace bone, the enthesis of a tendon, and the joint part of a ligament. We treated an ethylene-vinyl alcohol copolymer (EVOH) plate and knitted EVOH fibers with an oxygen plasma to produce oxygen-containing functional groups on their surfaces. The plasma-treated samples were alternately dipped in alcoholic calcium and phosphate ion solutions three times to deposit apatite precursors onto their surfaces. The surface-modified samples formed a dense and uniform bonelike surface apatite layer after immersion for 24 h in a simulated body fluid with ion concentrations approximately equal to those of human blood plasma. The adhesive strength between the apatite layer and the sample's surface increased with increasing power density of the oxygen plasma. The apatite-EVOH fiber composite obtained by our process has similarities to natural bone in that apatite crystals are deposited on organic polymer fibers. The resulting composite would possess osteoconductivity due to the apatite phase. With proper polymer selection and optimized synthesis techniques, a composite could be made that would have bonelike mechanical properties. Hence, the present surface modification and coating process would be a promising route to obtain new implant materials with bonelike mechanical properties and osteoconductivity. (c) 2007 Wiley Periodicals, Inc.
Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection.
Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza
2018-04-18
Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.
Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection
Casavola, Caterina; Palano, Fania; De Cillis, Francesco; Tati, Angelo; Terzi, Roberto; Luprano, Vincenza
2018-01-01
Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode. PMID:29669992
The development of a Martian atmospheric Sample collection canister
NASA Astrophysics Data System (ADS)
Kulczycki, E.; Galey, C.; Kennedy, B.; Budney, C.; Bame, D.; Van Schilfgaarde, R.; Aisen, N.; Townsend, J.; Younse, P.; Piacentine, J.
The collection of an atmospheric sample from Mars would provide significant insight to the understanding of the elemental composition and sub-surface out-gassing rates of noble gases. A team of engineers at the Jet Propulsion Laboratory (JPL), California Institute of Technology have developed an atmospheric sample collection canister for Martian application. The engineering strategy has two basic elements: first, to collect two separately sealed 50 cubic centimeter unpressurized atmospheric samples with minimal sensing and actuation in a self contained pressure vessel; and second, to package this atmospheric sample canister in such a way that it can be easily integrated into the orbiting sample capsule for collection and return to Earth. Sample collection and integrity are demonstrated by emulating the atmospheric collection portion of the Mars Sample Return mission on a compressed timeline. The test results achieved by varying the pressure inside of a thermal vacuum chamber while opening and closing the valve on the sample canister at Mars ambient pressure. A commercial off-the-shelf medical grade micro-valve is utilized in the first iteration of this design to enable rapid testing of the system. The valve has been independently leak tested at JPL to quantify and separate the leak rates associated with the canister. The results are factored in to an overall system design that quantifies mass, power, and sensing requirements for a Martian atmospheric Sample Collection (MASC) canister as outlined in the Mars Sample Return mission profile. Qualitative results include the selection of materials to minimize sample contamination, preliminary science requirements, priorities in sample composition, flight valve selection criteria, a storyboard from sample collection to loading in the orbiting sample capsule, and contributions to maintaining “ Earth” clean exterior surfaces on the orbiting sample capsule.
40 CFR 761.289 - Compositing samples.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 761.289 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.289 Compositing samples. Compositing is a method of combining several samples of a specific type of bulk PCB remediation waste or...
40 CFR 761.289 - Compositing samples.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 761.289 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.289 Compositing samples. Compositing is a method of combining several samples of a specific type of bulk PCB remediation waste or...
40 CFR 761.289 - Compositing samples.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 761.289 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.289 Compositing samples. Compositing is a method of combining several samples of a specific type of bulk PCB remediation waste or...
Mohammadi, Narmin; Bahari, Mahmoud; Kimyai, Soodabeh; Rahbani Nobar, Behnam
2015-01-01
Objectives: Composite repair is a minimally invasive and conservative approach. This study aimed to evaluate the effect of an additional hydrophobic resin layer on the repair shear bond strength of a silorane-based composite repaired with silorane or methacrylate-based composite. Materials and Methods: Sixty bar-shaped composite blocks were fabricated and stored in saline for 72 hours. The surface of the samples were roughened by diamond burs and etched with phosphoric acid; then, they were randomly divided into three groups according to the repairing process: Group 1: Silorane composite-silorane bonding agent-silorane composite; group 2: Silorane composite-silorane bonding agent-hydrophobic resin-silorane composite, and group 3: Silorane composite-silorane bonding agent-hydrophobic resin methacrylate-based composite. Repairing composite blocks measured 2.5×2.5×5mm. After repairing, the samples were stored in saline for 24 hours and thermocycled for 1500 cycles. The repair bond strength was measured at a strain rate of 1mm/min. Twenty additional cylindrical composite blocks (diameter: 2.5mm, height: 6mm) were also fabricated for measuring the cohesive strength of silorane-based composite. The data were analyzed using One-way ANOVA and the post hoc Tukey’s test (α=0.05). Results: Cohesive bond strength of silorane composite was significantly higher than the repair bond strengths in other groups (P<0.001). The repair bond strength of group 3 was significantly higher than that of group 1 (P=0.001). Conclusion: Application of an additional hydrophobic resin layer for repair of silorane-based composite with a methacrylate-based composite enhanced the repair shear bond strength. PMID:27559348
Ibekwe, A Mark; Ma, Jincai; Murinda, Shelton E
2016-10-01
Microbial communities in terrestrial fresh water are diverse and dynamic in composition due to different environmental factors. The goal of this study was to undertake a comprehensive analysis of bacterial composition along different rivers and creeks and correlate these to land-use practices and pollutant sources. Here we used 454 pyrosequencing to determine the total bacterial community composition, and bacterial communities that are potentially of fecal origin, and of relevance to water quality assessment. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, and community composition. Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to correlate bacterial composition in streams and creeks to different environmental parameters impacting bacterial communities in the sediment and surface water within the watershed. Bacteria were dominated by the phyla Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria, with Bacteroidetes significantly (P<0.001) higher in all water samples than sediment, where as Acidobacteria and Actinobacteria where significantly higher (P<0.05) in all the sediment samples than surface water. Overall results, using the β diversity measures, coupled with PCoA and DCA showed that bacterial composition in sediment and surface water was significantly different (P<0.001). Also, there were differences in bacterial community composition between agricultural runoff and urban runoff based on parsimony tests using 454 pyrosequencing data. Fecal indicator bacteria in surface water along different creeks and channels were significantly correlated with pH (P<0.01), NO2 (P<0.03), and NH4N (P<0.005); and in the sediment with NO3 (P<0.015). Our results suggest that microbial community compositions were influenced by several environmental factors, and pH, NO2, and NH4 were the major environmental factors driving FIB in surface water based on CCA analysis, while NO3 was the only factor in sediment. Published by Elsevier B.V.
Compositional Data for Bengal Delta Sediment Collected from a Borehole at Rajoir, Bangladesh
Breit, George N.; Yount, James C.; Uddin, Md. Nehal; Muneem, Ad. Atual; Lowers, Heather; Berry, Cyrus J.; Whitney, John W.
2007-01-01
Processes active within sediment of the Bengal basin have attracted world concern because of the locally high content of arsenic dissolved in ground water drawn from that sediment. Sediment samples were collected from a borehole in the town of Rajoir, Rajoir upazila, Madaripur district, Bangladesh, to investigate the processes contributing to arsenic contamination. The samples were mineralogically and chemically analyzed to determine compositional variations related to the arsenic content of the sediment. Mineralogy of the sediment was determined using powder X-ray diffraction. Bulk chemical composition was measured by Combustion; Inductively Coupled Plasma Atomic Emission Spectroscopy; Energy Dispersive X-ray Fluorescence; and Hydride Generation Atomic Absorption Spectrophotometry. Sediment was treated with 0.5 N HCl and resulting solutions were analyzed, primarily to evaluate the abundance and oxidation state of acid-soluble iron. Acid-volatile sulfide, acid-soluble sulfate, and reducible sulfide were also measured on a few samples. Sediment sampled at Rajoir is typically unlithified, gray, micaceous, feldspathic arenaceous sand with a few silt and clay layers. Arsenic content of the sediment ranges from 0.6 to 21 ppm with a median of 1.2 ppm.
Simulations of a Thin Sampling Calorimeter with GEANT/FLUKA
NASA Technical Reports Server (NTRS)
Lee, Jeongin; Watts, John; Howell, Leonard; Rose, M. Franklin (Technical Monitor)
2000-01-01
The Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS) will investigate the origin, composition and acceleration mechanism of cosmic rays by measuring the elemental composition of the cosmic rays up to 10(exp 15) eV. These measurements will be made with a thin ionization calorimeter and a transition radiation detector. This paper reports studies of a thin sampling calorimeter concept for the ACCESS thin ionization calorimeter. For the past year, a Monte Carlo simulation study of a Thin Sampling Calorimeter (TSC) design has been conducted to predict the detector performance and to design the system for achieving the ACCESS scientific objectives. Simulation results show that the detector energy resolution function resembles a Gaussian distribution and the energy resolution of TSC is about 40%. In addition, simulations of the detector's response to an assumed broken power law cosmic ray spectra in the region where the 'knee' of the cosmic ray spectrum occurs have been conducted and clearly show that a thin sampling calorimeter can provide sufficiently accurate estimates of the spectral parameters to meet the science requirements of ACCESS. n
Workshop on Analysis of Returned Comet Nucleus Samples
NASA Technical Reports Server (NTRS)
1989-01-01
This volume contains abstracts that were accepted by the Program Committee for presentation at the workshop on the analysis of returned comet nucleus samples held in Milpitas, California, January 16 to 18, 1989. The abstracts deal with the nature of cometary ices, cryogenic handling and sampling equipment, origin and composition of samples, and spectroscopic, thermal and chemical processing methods of cometary nuclei. Laboratory simulation experimental results on dust samples are reported. Some results obtained from Halley's comet are also included. Microanalytic techniques for examining trace elements of cometary particles, synchrotron x ray fluorescence and instrument neutron activation analysis (INAA), are presented.
Li, Nan; Shen, Qing; Wang, Jiahui; Han, Chunhui; Ji, Rong; Li, Fengqin; Jiang, Tao
2015-01-01
This study identifies the pufferfish species and detects tetrodotoxin (TTX) in roasted fish fillet samples collected in Beijing, Qingdao and Xiamen, China. The cytochrome c oxidase I (COI) gene was used as the target gene for identification of the pufferfish species in the samples. Enzyme-linked immunosorbent assay (ELISA) screened the TTX levels in samples that had been detected as containing pufferfish by DNA barcode. A total of 125 samples were identified by DNA barcodes; 32 (26%) samples contained pufferfish composition and, among them, 26 (81%) were the highly toxic species Lagocephalus lunaris. All 32 samples containing the pufferfish composition were positive for TTX with levels ranging from 100 to 63,800 ng g(-1). Most of the 32 samples contained the highly toxic L. lunaris. Based on the results, we suggest that the monitoring of roasted fish fillet should be strengthened and the processing procedures should be standardised to minimise TTX poisoning caused by pufferfish.
NASA Astrophysics Data System (ADS)
Hakim, I.; May, D.; Abo Ras, M.; Meyendorf, N.; Donaldson, S.
2016-04-01
On the present work, samples of carbon fiber/epoxy composites with different void levels were fabricated using hand layup vacuum bagging process by varying the pressure. Thermal nondestructive methods: thermal conductivity measurement, pulse thermography, pulse phase thermography and lock-in-thermography, and mechanical testing: modes I and II interlaminar fracture toughness were conducted. Comparing the parameters resulted from the thermal nondestructive testing revealed that voids lead to reductions in thermal properties in all directions of composites. The results of mode I and mode II interlaminar fracture toughness showed that voids lead to reductions in interlaminar fracture toughness. The parameters resulted from thermal nondestructive testing were correlated to the results of mode I and mode II interlaminar fracture toughness and voids were quantified.
Crock, J.G.; Seal, R.R.; Gough, L.P.; Weber-Scannell, P.
2003-01-01
We report the results of the elemental and stable isotopic analyses, as well as the composition of stomach contents, of Arctic grayling (Thymallus arcticus), an ecologically important resident freshwater sport and subsistence fish in the Fortymile River Mining District of the Interior Highlands Ecoregion in eastern Alaska. These data are presented here as a data compilation with minimal interpretation or discussion. Further analyses of the data will be presented elsewhere. The study area has been mined for placer gold for over a century and is currently experiencing renewed mineral exploration activity. The results for the analysis of 40 inorganic elements are reported for grayling muscle (fillet) tissue, liver tissue, and stomach contents from 34 individuals caught at 11 sites within the watershed. The 11 sites were classified as occurring within the following lithologies: metavolcanic (7 sites), metasedimentary (3 sites), and granitic intrusion (1 site). This information (along with fish tissue stable isotope data) is critical in the assessment of the influence of regional lithology on the fish chemical composition, especially the trace metal content. We report the nitrogen, carbon, and sulfur stable isotope composition of muscle samples. Nitrogen isotopes appear homogeneous (d15N = 7.6 to 9.7 permil) whereas carbon and sulfur isotope compositions of the same samples span a range from d 13C = ?33.1 to ?25.8 permil, and d 34S = ?8.4 to 8.2 permil. Stomach content material was examined for the occurrence and frequency of macroinvertebrate composition and diversity in three individual fish. Results showed a high degree of diversity with 9 to 15 invertebrate taxa; both aquatic and terrestrial forms were represented.
Assessment of hyaline cartilage matrix composition using near infrared spectroscopy.
Palukuru, Uday P; McGoverin, Cushla M; Pleshko, Nancy
2014-09-01
Changes in the composition of the extracellular matrix (ECM) are characteristic of injury or disease in cartilage tissue. Various imaging modalities and biochemical techniques have been used to assess the changes in cartilage tissue but lack adequate sensitivity, or in the case of biochemical techniques, result in destruction of the sample. Fourier transform near infrared (FT-NIR) spectroscopy has shown promise for the study of cartilage composition. In the current study NIR spectroscopy was used to identify the contributions of individual components of cartilage in the NIR spectra by assessment of the major cartilage components, collagen and chondroitin sulfate, in pure component mixtures. The NIR spectra were obtained using homogenous pellets made by dilution with potassium bromide. A partial least squares (PLS) model was calculated to predict composition in bovine cartilage samples. Characteristic absorbance peaks between 4000 and 5000 cm(-1) could be attributed to components of cartilage, i.e. collagen and chondroitin sulfate. Prediction of the amount of collagen and chondroitin sulfate in tissues was possible within 8% (w/dw) of values obtained by gold standard biochemical assessment. These results support the use of NIR spectroscopy for in vitro and in vivo applications to assess matrix composition of cartilage tissues, especially when tissue destruction should be avoided. Copyright © 2014. Published by Elsevier B.V.
A facile in-situ hydrothermal synthesis of SrTiO3/TiO2 microsphere composite
NASA Astrophysics Data System (ADS)
Wang, Hongxing; Zhao, Wei; Zhang, Yubo; Zhang, Shimeng; Wang, Zihao; Zhao, Dan
2016-06-01
TiO2 was successfully used as sacrificed template to synthesise SrTiO3/TiO2 microsphere composite via an in-situ hydrothermal process. The diameter of SrTiO3/TiO2 microsphere was about 700 nm with the same size of the template, and all of the microspheres were in good dispersity. The optimized reaction parameters for the phase and morphology of the as-synthesized samples were investigated. The results showed the SrTiO3/TiO2 microsphere can be synthesized at 170 °C when the concentration of sodium hydroxide was 0.1 M. Lower hydrothermal temperature hampered the formation of the SrTiO3/TiO2 composite, the higher alkali concentration, however, will destroy the morphology of products. The formation mechanism of SrTiO3/TiO2 microsphere composite was proposed and the photocatalytic properties of the samples were characterized using methylene blue solution as the pollutant under the UV light irradiation. The results indicated the proper OH- concentration will provide a channel for Sr2+ to react with Ti4+ located in the template and form the SrTiO3/TiO2 composite, and those with micro-scaled spherical morphology exhibited good photocatalytic activities.
Effective role of deposition duration on the growth of V2O5 nanostructured thin films
NASA Astrophysics Data System (ADS)
Sharma, Rabindar Kumar; Saini, Sujit Kumar; Singh, Megha; Reddy, G. B.
2016-05-01
In this report, vanadium pentoxide nanostructured thin films (NSTs) with nanoplates (NPs) have synthesized on Ni coated glass substrate employing plasma assisted sublimation process (PASP), as a function of deposition/growth durations. The effect of deposition durations on the morphological, structural, vibrational, and compositional properties have been investigated one by one. The structural and vibrational studies endorsed that the grown NPs have only orthorhombic phase, no other sub oxide phases are recorded in the limit of resolution. The morphological results of all samples using SEM, revealed that the features, coverage density, and alignments of NPs are greatly controlled by deposition duration and the best sample is obtained for 25 min (S2). Further, the more insight information is accomplished by HRTEM/SAED on the best featured sample, which confirmed the single crystalline nature of NPs. The XPS result again confirmed the compositional purity and the nearly stoichiometric nature of NPs.
Low temperature hall effect investigation of conducting polymer-carbon nanotubes composite network.
Bahrami, Afarin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat; Behzad, Kasra; M Abdi, Mahnaz; Din, Fasih Ud
2012-11-14
Polypyrrole (PPy) and polypyrrole-carboxylic functionalized multi wall carbon nanotube composites (PPy/f-MWCNT) were synthesized by in situ chemical oxidative polymerization of pyrrole on the carbon nanotubes (CNTs). The structure of the resulting complex nanotubes was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The effects of f-MWCNT concentration on the electrical properties of the resulting composites were studied at temperatures between 100 K and 300 K. The Hall mobility and Hall coefficient of PPy and PPy/f-MWCNT composite samples with different concentrations of f-MWCNT were measured using the van der Pauw technique. The mobility decreased slightly with increasing temperature, while the conductivity was dominated by the gradually increasing carrier density.
Assessment of probability of detection of delaminations in fiber-reinforced composites
NASA Technical Reports Server (NTRS)
Chern, E. J.; Chu, H. P.; Yang, J. N.
1991-01-01
Delamination is one of the critical defects in composite materials and structures. An ultrasonic C-scan imaging technique which maps out the acoustic impedance mismatched areas with respect to the sample coordinates, is particularly well suited for detecting and characterizing delaminations in composites. To properly interpret the results, it is necessary to correlate the indications with the detection limits and probability of detection (POD) of the ultrasonic C-scan imaging technique. The baseline information on the assessment of POD of delaminations in composite materials and structures is very beneficial to the evaluation of spacecraft materials. In this study, we review the principle of POD, describe the laboratory set-up and procedure, and present the experimental results as well as assessment of POD of delaminations in fiber reinforced composite panels using ultrasonic C-scan techniques.
Petrie, Bruce; Proctor, Kathryn; Youdan, Jane; Barden, Ruth; Kasprzyk-Hordern, Barbara
2017-02-01
It is essential to monitor the release of organic micropollutants from wastewater treatment plants (WWTPs) for developing environmental risk assessment and assessing compliance with legislative regulation. In this study the impact of sampling strategy on the quantitative determination of micropollutants in effluent wastewater was investigated. An extended list of 90 chiral and achiral micropollutants representing a broad range of biological and physico-chemical properties were studied simultaneously for the first time. During composite sample collection micropollutants can degrade resulting in the under-estimation of concentration. Cooling collected sub-samples to 4°C stabilised ≥81 of 90 micropollutants to acceptable levels (±20% of the initial concentration) in the studied effluents. However, achieving stability for all micropollutants will require an integrated approach to sample collection (i.e., multi-bottle sampling with more than one stabilisation method applied). Full-scale monitoring of effluent revealed time-paced composites attained similar information to volume-paced composites (influent wastewater requires a sampling mode responsive to flow variation). The option of monitoring effluent using time-paced composite samplers is advantageous as not all WWTPs have flow controlled samplers or suitable sites for deploying portable flow meters. There has been little research to date on the impact of monitoring strategy on the determination of chiral micropollutants at the enantiomeric level. Variability in wastewater flow results in a dynamic hydraulic retention time within the WWTP (and upstream sewerage system). Despite chiral micropollutants being susceptible to stereo-selective degradation, no diurnal variability in their enantiomeric distribution was observed. However, unused medication can be directly disposed into the sewer network creating short-term (e.g., daily) changes to their enantiomeric distribution. As enantio-specific toxicity is observed in the environment, similar resolution of enantio-selective analysis to more routinely applied achiral methods is needed throughout the monitoring period for accurate risk assessment. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nesic, M.; Popovic, M.; Rabasovic, M.; Milicevic, D.; Suljovrujic, E.; Markushev, D.; Stojanovic, Z.
2018-02-01
In this work, thermal diffusivity of crystalline high-density polyethylene samples of various thickness, and prepared using different procedures, was evaluated by transmission gas-microphone frequency photoacoustics. The samples' composition analysis and their degree of crystallinity were determined from the wide-angle X-ray diffraction, which confirmed that high-density polyethylene samples, obtained by slow and fast cooling, were equivalent in composition but with different degrees of crystallinity. Structural analysis, performed by differential scanning calorimetry, demonstrated that all of the used samples had different levels of crystallinity, depending not only on the preparing procedure, but also on sample thickness. Therefore, in order to evaluate the samples' thermal diffusivity, it was necessary to modify standard photoacoustic fitting procedures (based on the normalization of photoacoustic amplitude and phase characteristics on two thickness levels) for the interpretation of photoacoustic measurements. The calculated values of thermal diffusivity were in the range of the expected literature values. Besides that, the obtained results indicate the unexpected correlation between the values of thermal diffusivity and thermal conductivity with the degree of crystallinity of the investigated geometrically thin samples. The results indicate the necessity of additional investigation of energy transport in macromolecular systems, as well as the possible employment of the photoacoustic techniques in order to clarify its mechanism.
Sahmetlioglu, Ertugrul; Yilmaz, Erkan; Aktas, Ece; Soylak, Mustafa
2014-02-01
A multi-walled carbon nanotubes-polypyrrole conducting polymer nanocomposite has been synthesized, characterized and used for the separation and preconcentration of lead at trace levels in water samples prior to its flame atomic absorption spectrometric detection. The analytical parameters like pH, sample volume, eluent, sample flow rate that were affected the retentions of lead(II) on the new nanocomposite were optimized. Matrix effects were also investigated. Limit of detection and preconcentration factors were 1.1 µg L(-1) and 200, respectively. The adsorption capacity of the nanocomposite was 25.0mg lead(II) per gram composite. The validation of the method was checked by using SPS-WW2 Waste water Level 2 certified reference material. The method was applied to the determination of lead in water samples with satisfactory results. © 2013 Elsevier B.V. All rights reserved.
Utilization of Android-base Smartphone to Support Handmade Spectrophotometer : A Preliminary Study
NASA Astrophysics Data System (ADS)
Ujiningtyas, R.; Apriliani, E.; Yohana, I.; Afrillianti, L.; Hikmah, N.; Kurniawan, C.
2018-04-01
Visible spectrophotometer is a powerful instrument in chemistry. We can identify the chemical species base on their specific color and then we can also determine the amount of the species using the spectrophotometer. However, the availability of visible spectrophotometer still limited, particularly for education. This affect the skill of student to have experience on handling the instrumentation. On the other hand, the communication technology creates an opportunity for student to explore their smart feature, mainly the camera. The objective of this research is to make an application that utilize the camera feature as a detector for handmade visible spectrophotometer. The software have been made based on android program, and we name it as Spectrophone®. The spectrophotometer consists of an acrylic body, sample compartment, and light sources (USB-LED lamp powered by 6600 mAh battery). Before reach the sample, the light source was filtered using colored-mica plastic. The spectrophone® apps utilize the camera to detect the color based on its RGB composition. A different colored solution will show a different RGB composition based on the concentration and specific absorbance wavelength. We then can choose one type of color composition, R or G or B only to be converted as an absorbance using -Log (Cs/Co), where Cs and Co are color composition of sample and blank, respectively. The calibration curve of metilen blue measured. In a red (R) composition, the regression is not linear (R2=0.78) compare to the result of UV-Vis spectrophotomer model Spectroquant Pharo 300 (R2=0.8053). This measurement result shows that The Spectrophone® still need to be evaluated and corrected. One problem than can we identify that the diameter of pick point of RGB composition is too wide and this will affect the reading color composition. Next, we will fix the problem and in advance we will apply this Spectrophone® in a wide scale.
Development and testing of fiber-reinforced composite space maintainers.
Kulkarni, Gajanan; Lau, Domenic; Hafezi, Sara
2009-01-01
The purpose of this study was to develop a clinically acceptable, cheaper, and more expedient alternative to standard stainless steel band and loop space maintainers. Loops of fiber-reinforced composites were constructed using polyethylene fiber (Ribbond) and glass fiber (Sticktech). The loops were bonded on extracted third molars and tested for flexural strength before and after thermocycling and following repair of the appliances after initial stress failure. Bacterial colonization on the appliances was also compared. Conventional stainless steel band and loop space maintainers cemented with Ketac were controls. Ribbond samples demonstrated higher flexural strength than Sticktech and the control (P<.05). No differences were noted among the other samples and the control. The repaired Ribbond samples were statistically comparable in flexural strength to the initial samples. Thermocycling resulted in decreased flexural strength of both Ribbond and Sticktech (P<.05). Thermocycled Ribbond samples were comparable to the control, but a lower flexural strength was noted for Sticktech samples (P<.05). While all space maintainers allowed some bacterial adhesion, Sticktech showed higher Streptococcus mutans counts than Ribbond (P=.06). Ribbond space-maintainers are comparable to the stainless steel in terms of physical strength and biofilm formation. The fiber-reinforced composite space maintainers may be a clinically acceptable and expedient alternative to the conventional band-loop appliance.
Diversity of indoor fungi as revealed by DNA metabarcoding.
Korpelainen, Helena; Pietiläinen, Maria
2017-01-01
In the present study, we conducted DNA metabarcoding (the nuclear ITS2 region) for indoor fungal samples originating from two nursery schools with a suspected mould problem (sampling before and after renovation), from two university buildings, and from an old farmhouse. Good-quality sequences were obtained, and the results showed that DNA metabarcoding provides high resolution in fungal identification. The pooled proportions of sequences representing filamentous ascomycetes, filamentous basidiomycetes, yeasts, and other fungi equalled 62.3%, 8.0%, 28.3%, and 1.4%, respectively, and the total number of fungal genera found during the study was 585. When comparing fungal diversities and taxonomic composition between different types of buildings, no obvious pattern was detected. The average pairwise values of Sørensen Chao indices that were used to compare similarities for taxon composition between samples among the samples from the two university buildings, two nurseries, and farmhouse equaled 0.693, 0.736, 0.852, 0.928, and 0.981, respectively, while the mean similarity index for all samples was 0.864. We discovered that making explicit conclusions on the relationship between the indoor air quality and mycoflora is complicated by the lack of appropriate indicators for air quality and by the occurrence of wide spatial and temporal changes in diversity and compositions among samples.
Solodukhin, V; Аidarkhanov, A; Lukashenko, S; Gluchshenko, V; Poznyak, V; Lyahova, O
2015-06-01
The results of the field and laboratory studies of radiation and environmental state at the specific area of Irtysh River adjacent to the Semipalatinsk Test Site are provided. It was found that the radiation situation in this area is normal: equivalent dose of γ-radiation = (0.11-0.13) µSv h(-1). Determination of radionuclide composition of soil, bottom sediment and water samples was performed by the methods of instrumental γ-spectrometry, radiochemical analysis and the liquid scintillation β-spectrometry. It was found that concentrations of the studied natural and artificial radionuclides in these objects are very low; no contamination with radionuclides was detected in this segment of Irtysh River. The article provides the results of elemental composition determination for samples of soil and bottom sediment (by X-ray fluorescence method) and water samples (by inductively coupled plasma mass spectrometry method). It is shown that the content of some elements (Li, Be, B, V, Cu, Sr, Mo) in the water of Irtysh River increases downstream. The additional studies are required to explain this peculiarity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molaei, M.J., E-mail: mj.molaee@merc.ac.ir; Delft Chem Tech, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft; Ataie, A.
2015-03-15
In this research a mixture of barium ferrite and graphite was milled for different periods of time and then heat treated at different temperatures. The effects of milling time and heat treatment temperature on the phase composition, thermal behavior, morphology and magnetic properties of the samples have been investigated using X-ray diffraction, differential thermal analysis, high resolution transmission electron microscopy and vibrating sample magnetometer techniques, respectively. X-ray diffraction results revealed that BaFe{sub 12}O{sub 19}/Fe{sub 3}O{sub 4} nanocomposites form after a 20 h milling due to the partial reduction of BaFe{sub 12}O{sub 19}. High resolution transmission electron microscope images of amore » 40 h milled sample showed agglomerated structure consisting of nanoparticles with a mean particle size of 30 nm. Thermal analysis of the samples via differential thermal analysis indicated that for un-milled samples, heat treatment up to 900 °C did not result in α-Fe formation, while for a 20 h milled sample heat treatment at 700 °C resulted in reduction process progress to the formation of α-Fe. Wustite was disappeared in an X-ray diffraction pattern of a heat treated sample at 850 °C, by increasing the milling time from 20 to 40 h. By increasing the milling time, the structure of heat treated samples becomes magnetically softer due to an increase in saturation magnetization and a decrease in coercivity. Saturation magnetization and coercivity of a sample milled for 20 h and heat treated at 850 °C were 126.3 emu/g and 149.5 Oe which by increasing the milling time to 40 h, alter to 169.1 emu/g and 24.3 Oe, respectively. High coercivity values of milled and heat treated samples were attributed to the nano-scale formed iron particles. - Graphical abstract: Display Omitted - Highlights: • Barium ferrite and graphite were treated mechano-thermally. • Increasing milling time increases reduction progress after heat treatment. • Composites including iron nano-crystals forms by milling and heat treatment. • Shorter milling time results in higher H{sub C} of the milled and heat treated samples.« less
Publications - GMC 309 | Alaska Division of Geological & Geophysical
in the North Aleutian COST # 1 well as follows: cuttings composited (15,700' - 16,800') as one sample , and core composited (16,006.0' - 16,029' and 16,701.2' - 16,720') as one sample Authors: U.S. Minerals ') as one sample, and core composited (16,006.0' - 16,029' and 16,701.2' - 16,720') as one sample
Repair Strength in Simulated Restorations of Methacrylate- or Silorane-Based Composite Resins.
Consani, Rafael Leonardo Xediek; Marinho, Tatiane; Bacchi, Atais; Caldas, Ricardo Armini; Feitosa, Victor Pinheiro; Pfeifer, Carmem Silvia
2016-01-01
The study verified the bond strength in simulated dental restorations of silorane- or methacrylate-based composites repaired with methacrylate-based composite. Methacrylate- (P60) or silorane-based (P90) composites were used associated with adhesive (Adper Single Bond 2). Twenty-four hemi-hourglass-shaped samples were repaired with each composite (n=12). Samples were divided according to groups: G1= P60 + Adper Single Bond 2+ P60; G2= P60 + Adper Single Bond 2 + P60 + thermocycling; G3= P90 + Adper Single Bond 2 + P60; and G4= P90 + Adper Single Bond 2 + P60 + thermocycling. G1 and G3 were submitted to tensile test 24 h after repair procedure, and G2 and G4 after submitted to 5,000 thermocycles at 5 and 55 ?#61616;C for 30 s in each bath. Tensile bond strength test was accomplished in an universal testing machine at crosshead speed of 0.5 mm/min. Data (MPa) were analyzed by two-way ANOVA and Tukey's test (5%). Sample failure pattern (adhesive, cohesive in resin or mixed) was evaluated by stereomicroscope at 30?#61655; and images were obtained in SEM. Bond strength values of methacrylate-based composite samples repaired with methacrylate-based composite (G1 and G2) were greater than for silorane-based samples (G3 and G4). Thermocycling decreased the bond strength values for both composites. All groups showed predominance of adhesive failures and no cohesive failure in composite resin was observed. In conclusion, higher bond strength values were observed in methacrylate-based resin samples and greater percentage of adhesive failures in silorane-based resin samples, both composites repaired with methacrylate-based resin.
Stable carbon and nitrogen isotope analysis of avian uric acid.
Bird, Michael I; Tait, Elaine; Wurster, Christopher M; Furness, Robert W
2008-11-01
We report results obtained using a new technique developed to measure the stable-isotope composition of uric acid isolated from bird excreta (guano). Results from a diet-switch feeding trial using zebra finches suggest that the delta(13)C of uric acid in the guano equilibrates with the diet of the bird within 3 days of a change in diet, while the equilibration time for delta(15)N may be longer. The average carbon isotope discrimination between uric acid and food before the diet switch was +0.34 +/- 1 per thousand (1sigma) while after the diet switch this increased slightly to +0.83 +/- 0.7 per thousand (1sigma). Nitrogen isotope discrimination was +1.3 +/- 0.3 per thousand (1sigma) and +0.3 +/- 0.3 per thousand (1sigma) before and after the diet switch; however, it is possible that the nitrogen isotope values did not fully equilibrate with diet switch over the course of the experiment. Analyses of other chemical fractions of the guano (organic residue after uric acid extraction and non-uric acid organics solubilised during extraction) suggest a total range of up to 3 per thousand for both delta(13)C and delta(15)N values in individual components of a single bulk guano sample. The analysis of natural samples from a range of terrestrial and marine species demonstrates that the technique yields isotopic compositions consistent with the known diets of the birds. The results from natural samples further demonstrate that multiple samples from the same species collected from the same location yield similar results, while different species from the same location exhibit a range of isotopic compositions indicative of different dietary preferences. Given that many samples of guano can be rapidly collected without any requirement to capture specimens for invasive sampling, the stable-isotope analysis of uric acid offers a new, simple and potentially powerful tool for studying avian ecology and metabolism.
Agiang, M A; Umoh, I B; Essien, A I; Eteng, M U
2010-10-15
Evaluations of the effect of prolong cooking on the nutrient and antinutrient composition ofbeniseed and beniseed soup were carried out in this study. Proximate, mineral, vitamin A and C and antinutrient compositions of raw beniseed (BS-R), beniseed boiled (BSB) for 15, 30, 45 and 60 min and beniseed soup (BSS) cooked for the same intervals of time were assessed. Results of the proximate composition analyses showed that raw and boiled beniseed had lower moisture content (5.39-5.51%) than beniseed soups (10.06-15.20%). Nitrogen-free extract (total carbohydrates), fats and phosphorus contents were improved in both the boiled beniseed and beniseed soup while calcium and potassium were increased in the boiled seeds and soup samples respectively. Moisture (in the raw and boiled beniseed), ash, magnesium, zinc, iron contents in both the seed and soup were unchanged in all the samples. Vitamins A and C levels of both boiled beniseed and beniseed soup samples were reduced with increase in cooking time. Beniseed soup had higher protein contents than both the raw and boiled beniseed which decreased with increase in cooking time. Beniseed samples provided good sources of energy (572.97-666.05 kcal/100 g). Except for phytate, the levels of antinutrients tested were lower in the raw and boiled beniseed than in the soup samples which decreased with increase in cooking time. The results are discussed with reference to the effect of prolonged cooking on the nutrient requirements of consumers.
Compressive behavior of energy-saving fired facing brick composite wall
NASA Astrophysics Data System (ADS)
Guo, Kai; Wu, Cai
2018-03-01
The energy-saving fired facing brick composite wall has a broad development prospects due to its merits of thermal insulation, energy conservation, beautiful, and natural. The construction and characteristics of this wall are introduced and analyzed in this paper. Experimental studies of samples are also conducted to investigate its compressive performance. The results show that the energy-saving fired facing brick composite wall has high compressive capacity. It has considerable application prospect, the study in this paper provides foundation to further studies.
Li, Lin; Xu, Shuo; An, Xin; Zhang, Lu-Da
2011-10-01
In near infrared spectral quantitative analysis, the precision of measured samples' chemical values is the theoretical limit of those of quantitative analysis with mathematical models. However, the number of samples that can obtain accurately their chemical values is few. Many models exclude the amount of samples without chemical values, and consider only these samples with chemical values when modeling sample compositions' contents. To address this problem, a semi-supervised LS-SVR (S2 LS-SVR) model is proposed on the basis of LS-SVR, which can utilize samples without chemical values as well as those with chemical values. Similar to the LS-SVR, to train this model is equivalent to solving a linear system. Finally, the samples of flue-cured tobacco were taken as experimental material, and corresponding quantitative analysis models were constructed for four sample compositions' content(total sugar, reducing sugar, total nitrogen and nicotine) with PLS regression, LS-SVR and S2 LS-SVR. For the S2 LS-SVR model, the average relative errors between actual values and predicted ones for the four sample compositions' contents are 6.62%, 7.56%, 6.11% and 8.20%, respectively, and the correlation coefficients are 0.974 1, 0.973 3, 0.923 0 and 0.948 6, respectively. Experimental results show the S2 LS-SVR model outperforms the other two, which verifies the feasibility and efficiency of the S2 LS-SVR model.
Horttanainen, M; Teirasvuo, N; Kapustina, V; Hupponen, M; Luoranen, M
2013-12-01
For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50-60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose. Copyright © 2013 Elsevier Ltd. All rights reserved.
The earliest Lunar Magma Ocean differentiation recorded in Fe isotopes
NASA Astrophysics Data System (ADS)
Wang, Kun; Jacobsen, Stein B.; Sedaghatpour, Fatemeh; Chen, Heng; Korotev, Randy L.
2015-11-01
Recent high-precision isotopic measurements show that the isotopic similarity of Earth and Moon is unique among all known planetary bodies in our Solar System. These observations provide fundamental constraints on the origin of Earth-Moon system, likely a catastrophic Giant Impact event. However, in contrast to the isotopic composition of many elements (e.g., O, Mg, Si, K, Ti, Cr, and W), the Fe isotopic compositions of all lunar samples are significantly different from those of the bulk silicate Earth. Such a global Fe isotopic difference between the Moon and Earth provides an important constraint on the lunar formation - such as the amount of Fe evaporation as a result of a Giant Impact origin of the Moon. Here, we show through high-precision Fe isotopic measurements of one of the oldest lunar rocks (4.51 ± 0.10 Gyr dunite 72 415), compared with Fe isotope results of other lunar samples from the Apollo program, and lunar meteorites, that the lunar dunite is enriched in light Fe isotopes, complementing the heavy Fe isotope enrichment in other lunar samples. Thus, the earliest olivine accumulation in the Lunar Magma Ocean may have been enriched in light Fe isotopes. This new observation allows the Fe isotopic composition of the bulk silicate Moon to be identical to that of the bulk silicate Earth, by balancing light Fe in the deep Moon with heavy Fe in the shallow Moon rather than the Moon having a heavier Fe isotope composition than Earth as a result of Giant Impact vaporization.
NASA Astrophysics Data System (ADS)
Tahir, D.; Halide, H.; Wahab, A. W.; Kurniawan, D.
2014-09-01
The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.
Ultrasonic Determination of the Elastic Constants of Epoxy-natural Fiber Composites
NASA Astrophysics Data System (ADS)
Valencia, C. A. Meza; Pazos-Ospina, J. F.; Franco, E. E.; Ealo, Joao L.; Collazos-Burbano, D. A.; Garcia, G. F. Casanova
This paper shows the applications ultrasonic through-transmission technique to determine the elastic constants of two polymer-natural fiber composite materials with potential industrial application and economic and environmental advantages. The transversely isotropic coconut-epoxy and fique-epoxy samples were analyzed using an experimental setup which allows the sample to be rotated with respect to transducers faces and measures the time-of-flight at different angles of incidence. Then, the elastic properties of the material were obtained by fitting the experimental data to the Christoffel equation. Results show a good agreement between the measured elastic constants and the values predicted by an analytical model. The velocities as a function of the incidence angle are reported and the effect of the natural fiber on the stiffness of the composite is discussed.
Comparison of the retention of 5 core materials supported by a dental post.
Gu, Steven; Isidro, Mario; Deutsch, Allan S; Musikant, Barry L
2006-01-01
This study evaluated the retention of dental post heads (No. 2 Flexi-Post) embedded in 5 core materials (1 automix resin composite, 2 hand-mixed resin composites, and 2 glass ionomers). Samples were prepared by embedding post heads in 4.5-mm-thick disks of core material. The resin composite materials provided significantly more retention than the glass-ionomer-based materials. The post head retention of the automix resin composite was comparable to that of the hand-mixed resin composites. Unlike the resin composite samples, all the glass-ionomer samples fractured during testing. This is an unacceptable condition for a clinically successful restoration.
Thermal Conductivities of Some Polymers and Composites
2018-02-01
volume fraction of glass and fabric style. The experimental results are compared to modeled results for Kt in composites. 15. SUBJECT TERMS...entities in a polymer above TG increases, so Cp will increase at TG. For Kt to remain constant, there would have to be a comparable decrease in α due to...scanning calorimetry (DSC) method, and have error bars as large as the claimed effect. Their Kt values for their carbon fiber samples are comparable to
Effective charge separation in BiOI/Cu2O composites with enhanced photocatalytic activity
NASA Astrophysics Data System (ADS)
Xia, Yongmei; He, Zuming; Yang, Wei; Tang, Bin; Lu, Yalin; Hu, Kejun; Su, Jiangbin; Li, Xiaoping
2018-02-01
Novel BiOI/Cu2O composites were designed and synthesized for the first time by coupling reduction method at low temperature. The samples were characterized by XRD, XPS, SEM, EDS, HRTEM, UV-vis (DRS), FTIR and photo-electro-chemical (PEC) analysis. Results showed that the BiOI/Cu2O composites consisted of three-dimensional (3D), hierarchical cauliflower-like structure composed of BiOI nanosheet and Cu2O cubic submicrometer structure, the composite absorption band broadened, and the absorption intensity in the visible region strengthened. And the composites exhibited an excellent photocatalytic performance, which might be attributed to the improvement of the composite absorption and effective charge separation in BiOI/Cu2O composites. In addition, the possible photocatalytic mechanism was proposed.
Kleiman, Susan C.; Watson, Hunna J.; Bulik-Sullivan, Emily C.; Huh, Eun Young; Tarantino, Lisa M.; Bulik, Cynthia M.; Carroll, Ian M.
2015-01-01
Objective The relevance of the microbe-gut-brain axis to psychopathology is of interest in anorexia nervosa (AN), as the intestinal microbiota plays a critical role in metabolic function and weight regulation. Methods We characterized the composition and diversity of the intestinal microbiota in AN, using stool samples collected at inpatient admission (T1) (n=16) and discharge (T2) (n=10). At T1, participants completed the Beck Depression and Anxiety Inventories and the Eating Disorder Examination-Questionnaire. Patients with AN were compared to healthy individuals who participated in a previous study (healthy comparison group; HCG). Genomic DNA was isolated from stool samples, and bacterial composition was characterized by 454 pyrosequencing of the 16S rRNA gene. Sequencing results were processed by the Quantitative Insights Into Microbial Ecology pipeline. We compared T1 vs. T2 samples, samples from both points were compared to HCG (n=12), and associations between psychopathology and T1 samples were explored. Results In patients with AN, significant changes emerged between T1 and T2 in taxa abundance and beta (between-sample) diversity. Patients with AN had significantly lower alpha (within-sample) diversity than HCG at both T1 (p=0.0001) and T2 (p=0.016), and differences in taxa abundance were found between AN patients and HCG. Levels of depression, anxiety, and eating disorder psychopathology at T1 were associated with composition and diversity of the intestinal microbiota. Conclusions We provide evidence of intestinal dysbiosis in AN and an association between mood and the enteric microbiota in this patient population. Future directions include mechanistic investigations of the microbe-gut-brain axis in animal models and association of microbial measures with metabolic changes and recovery indices. PMID:26428446
The Statistics of Radio Astronomical Polarimetry: Disjoint, Superposed, and Composite Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straten, W. van; Tiburzi, C., E-mail: willem.van.straten@aut.ac.nz
2017-02-01
A statistical framework is presented for the study of the orthogonally polarized modes of radio pulsar emission via the covariances between the Stokes parameters. To accommodate the typically heavy-tailed distributions of single-pulse radio flux density, the fourth-order joint cumulants of the electric field are used to describe the superposition of modes with arbitrary probability distributions. The framework is used to consider the distinction between superposed and disjoint modes, with particular attention to the effects of integration over finite samples. If the interval over which the polarization state is estimated is longer than the timescale for switching between two or moremore » disjoint modes of emission, then the modes are unresolved by the instrument. The resulting composite sample mean exhibits properties that have been attributed to mode superposition, such as depolarization. Because the distinction between disjoint modes and a composite sample of unresolved disjoint modes depends on the temporal resolution of the observing instrumentation, the arguments in favor of superposed modes of pulsar emission are revisited, and observational evidence for disjoint modes is described. In principle, the four-dimensional covariance matrix that describes the distribution of sample mean Stokes parameters can be used to distinguish between disjoint modes, superposed modes, and a composite sample of unresolved disjoint modes. More comprehensive and conclusive interpretation of the covariance matrix requires more detailed consideration of various relevant phenomena, including temporally correlated subpulse modulation (e.g., jitter), statistical dependence between modes (e.g., covariant intensities and partial coherence), and multipath propagation effects (e.g., scintillation and scattering).« less
Effect of different bleaching strategies on microhardness of a silorane-based composite resin.
Bahari, Mahmoud; Savadi Oskoee, Siavash; Mohammadi, Narmin; Ebrahimi Chaharom, Mohammad Esmaeel; Godrati, Mostafa; Savadi Oskoee, Ayda
2016-01-01
Background. Dentists' awareness of the effects of bleaching agents on the surface and mechanical properties of restorative materials is of utmost importance. Therefore, this in vitro study was undertaken to investigate the effects of different bleaching strategies on the microhardness of a silorane-based composite resin. Methods. Eighty samples of a silorane-based composite resin (measuring 4 mm in diameter and 2 mm in thickness) were prepared within acrylic molds. The samples were polished and randomly assigned to 4 groups (n=20). Group 1 (controls) were stored in distilled water for 2 weeks. The samples in group 2 underwent a bleaching procedure with 15% carbamide peroxide for two weeks two hours daily. The samples in group 3 were bleached with 35% hydrogen peroxide twice 5 days apart for 30 minutes each time. The samples in group 4 underwent a bleaching procedure with light-activated 35% hydrogen peroxide under LED light once for 40 minutes. Then the microhardness of the samples was determined using Vickers method. Data were analyzed with one-way ANOVA and post hoc Tukey tests (P < 0.05). Results. All the bleaching agents significantly decreased microhardness compared to the control group (P < 0.05). In addition, there were significant differences in microhardness between groups 2 and 4 (P = 0.001) and between groups 3 and 4 (P<0.001). However, no significant differences were detected in microhardness between groups 2 and 3 (P > 0.05). Conclusion. Bleaching agents decreased microhardness of silorane-based composite resin restorations, the magnitude of which depending on the bleaching strategy used.
[Rapid analysis of biocompatibility with graded test samples exemplified by Ni-NiTi-Ti].
Bogdanski, D; Köller, M; Bram, M; Stöver, D; Buchkremer, H P; Choi, J; Epple, M; Muhr, G
2002-01-01
The biocompatibility of nickel-titanium alloys was investigated by single-culture experiments on functionally graded samples with a stepwise change in composition from nickel to titanium, including NiTi shape memory alloy of a 50:50 mixture. This approach permitted a considerable decrease of experimental resources by simultaneously studying a full variation of composition. The results indicate a good biocompatibility for a nickel content up to about 50%. The cells used in the biocompatibility studies comprised human osteoblast-like osteosarcoma cells (SAOS-2, MG-63), primary human osteoblasts (HOB), and murine fibroblasts (3T3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdez, Carlos A.; Vu, Alexander K.
Provided herein are methods for selectively detecting an alkyne-presenting molecule in a sample and related detection reagents, compositions, methods and systems. The methods include contacting a detection reagent with the sample for a time and under a condition to allow binding of the detection reagent to the one or more alkyne-presenting molecules possibly present in the matrix to the detection reagent. The detection reagent includes an organic label moiety presenting an azide group. The binding of the azide group to the alkyne-presenting molecules results in emission of a signal from the organic label moiety.
Haselhorst, Derek S.; Moreno, J. Enrique; Punyasena, Surangi W.
2013-01-01
Tropical paleoecologists use a combination of mud-water interface and modern pollen rain samples (local samples of airborne pollen) to interpret compositional changes within fossil pollen records. Taxonomic similarities between the composition of modern assemblages and fossil samples are the basis of reconstructing paleoclimates and paleoenvironments. Surface sediment samples reflect a time-averaged accumulation of pollen spanning several years or more. Due to experimental constraints, modern pollen rain samples are generally collected over shorter timeframes (1–3 years) and are therefore less likely to capture the full range of natural variability in pollen rain composition and abundance. This potentially biases paleoenvironmental interpretations based on modern pollen rain transfer functions. To determine the degree to which short-term environmental change affects the composition of the aerial pollen flux of Neotropical forests, we sampled ten years of the seasonal pollen rain from Barro Colorado Island, Panama and compared it to climatic and environmental data over the same ten-year span. We establish that the pollen rain effectively captured the strong seasonality and stratification of pollen flow within the forest canopy and that individual taxa had variable sensitivity to seasonal and annual changes in environmental conditions, manifested as changes in pollen productivity. We conclude that modern pollen rain samples capture the reproductive response of moist tropical plants to short-term environmental change, but that consequently, pollen rain-based calibrations need to include longer sampling periods (≥7 years) to reflect the full range of natural variability in the pollen output of a forest and simulate the time-averaging present in sediment samples. Our results also demonstrate that over the long-term, pollen traps placed in the forest understory are representative samples of the pollen output of both canopy and understory vegetation. Aerial pollen traps, therefore, also represent an underutilized means of monitoring the pollen productivity and reproductive behavior of moist tropical forests. PMID:23320089
Henderson, Gemma; Cox, Faith; Kittelmann, Sandra; Miri, Vahideh Heidarian; Zethof, Michael; Noel, Samantha J.; Waghorn, Garry C.; Janssen, Peter H.
2013-01-01
Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However, comparison of data from studies in which different sampling techniques, different rumen sample fractions or different DNA extraction methods were used should be avoided. PMID:24040342
Henderson, Gemma; Cox, Faith; Kittelmann, Sandra; Miri, Vahideh Heidarian; Zethof, Michael; Noel, Samantha J; Waghorn, Garry C; Janssen, Peter H
2013-01-01
Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However, comparison of data from studies in which different sampling techniques, different rumen sample fractions or different DNA extraction methods were used should be avoided.
Haselhorst, Derek S; Moreno, J Enrique; Punyasena, Surangi W
2013-01-01
Tropical paleoecologists use a combination of mud-water interface and modern pollen rain samples (local samples of airborne pollen) to interpret compositional changes within fossil pollen records. Taxonomic similarities between the composition of modern assemblages and fossil samples are the basis of reconstructing paleoclimates and paleoenvironments. Surface sediment samples reflect a time-averaged accumulation of pollen spanning several years or more. Due to experimental constraints, modern pollen rain samples are generally collected over shorter timeframes (1-3 years) and are therefore less likely to capture the full range of natural variability in pollen rain composition and abundance. This potentially biases paleoenvironmental interpretations based on modern pollen rain transfer functions. To determine the degree to which short-term environmental change affects the composition of the aerial pollen flux of Neotropical forests, we sampled ten years of the seasonal pollen rain from Barro Colorado Island, Panama and compared it to climatic and environmental data over the same ten-year span. We establish that the pollen rain effectively captured the strong seasonality and stratification of pollen flow within the forest canopy and that individual taxa had variable sensitivity to seasonal and annual changes in environmental conditions, manifested as changes in pollen productivity. We conclude that modern pollen rain samples capture the reproductive response of moist tropical plants to short-term environmental change, but that consequently, pollen rain-based calibrations need to include longer sampling periods (≥7 years) to reflect the full range of natural variability in the pollen output of a forest and simulate the time-averaging present in sediment samples. Our results also demonstrate that over the long-term, pollen traps placed in the forest understory are representative samples of the pollen output of both canopy and understory vegetation. Aerial pollen traps, therefore, also represent an underutilized means of monitoring the pollen productivity and reproductive behavior of moist tropical forests.
Corrosion in drinking water pipes: the importance of green rusts.
Swietlik, Joanna; Raczyk-Stanisławiak, Urszula; Piszora, Paweł; Nawrocki, Jacek
2012-01-01
Complex crystallographic composition of the corrosion products is studied by diffraction methods and results obtained after different pre-treatment of samples are compared. The green rusts are found to be much more abundant in corrosion scales than it has been assumed so far. The characteristic and crystallographic composition of corrosion scales and deposits suspended in steady waters were analyzed by X-ray diffraction (XRD). The necessity of the examination of corrosion products in the wet conditions is indicated. The drying of the samples before analysis is shown to substantially change the crystallographic phases originally present in corrosion products. On sample drying the unstable green rusts is converted into more stable phases such as goethite and lepidocrocite, while the content of magnetite and siderite decreases. Three types of green rusts in wet materials sampled from tubercles are identified. Unexpectedly, in almost all corrosion scale samples significant amounts of the least stable green rust in chloride form was detected. Analysis of corrosion products suspended in steady water, which remained between tubercles and possibly in their interiors, revealed complex crystallographic composition of the sampled material. Goethite, lepidocrocite and magnetite as well as low amounts of siderite and quartz were present in all samples. Six different forms of green rusts were identified in the deposits separated from steady waters and the most abundant was carbonate green rust GR(CO(3)(2-))(I). Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fatima, Noshin; Ahmed, Muhammad M.; Karimov, Khasan S.; Ahmad, Zubair; Fariq Muhammad, Fahmi
2017-06-01
In this study, solution processed composite films of nickel phthalocyanine (NiPc) and cobalt phthalocyanine (CoPc) are deposited by drop casting and under centrifugal force. The films are deposited on surface-type inter-digitated silver electrodes on ceramic alumina substrates. The effects of illumination on the impedance and capacitance of the NiPc-CoPc composite samples are investigated. The samples deposited under centrifugal force show better conductivity than the samples deposited by drop casting technique. In terms of impedance and capacitance sensitivities the samples fabricated under centrifugal force are more sensitive than the drop casting samples. The values of impedance sensitivity ({S}z) are equal to (-1.83) {{M}}{{Ω }}\\cdot {{cm}}2/{mW} and (-5.365){{M}}{{Ω }}\\cdot {{cm}}2/{mW} for the samples fabricated using drop casting and under centrifugal force, respectively. Similarly, the values of capacitance sensitivity ({S}{{c}}) are equal to 0.083 {pF}\\cdot {{cm}}2/{mW} and 0.185 {pF}\\cdot {{cm}}2/{mW} for the samples fabricated by drop casting and under centrifugal force. The films deposited using the different procedures could potentially be viable for different operational modes (i.e., conductive or capacitive) of the optical sensors. Both experimental and simulated results are discussed. Project supported by the Center for Advanced Materials (CAM), Qatar University, Qatar.
Sekar, R; Deines, P; Machell, J; Osborn, A M; Biggs, C A; Boxall, J B
2012-06-01
To determine the spatial and temporal variability in the abundance, structure and composition of planktonic bacterial assemblages sampled from a small, looped water distribution system and to interpret results with respect to hydraulic conditions. Water samples were collected from five sampling points, twice a day at 06:00 h and 09:00 h on a Monday (following low weekend demand) and a Wednesday (higher midweek demand). All samples were fully compliant with current regulated parameter standards. This study did not show obvious changes in bacterial abundance (DAPI count) or community structure Denaturing gradient gel electrophoresis analysis with respect to sample site and hence to water age; however, the study did show temporal variability with respect to both sampling day and sample times. Data suggests that variations in the bacterial assemblages may be associated with the local system hydraulics: the bacterial composition and numbers, over short durations, are governed by the interaction of the bulk water and the biofilm influenced by the hydraulic conditions. This study demonstrates general stability in bacterial abundance, community structure and composition within the system studied. Trends and patterns supporting the transfer of idealized understanding to the real world were evident. Ultimately, such work will help to safeguard potable water quality, fundamental to public health. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Studies on the electrical transport properties of carbon nanotube composites
NASA Astrophysics Data System (ADS)
Tarlton, Taylor Warren
This work presents a probabilistic approach to model the electrical transport properties of carbon nanotube composite materials. A pseudo-random generation method is presented with the ability to generate 3-D samples with a variety of different configurations. Periodic boundary conditions are employed in the directions perpendicular to transport to minimize edge effects. Simulations produce values for drift velocity, carrier mobility, and conductivity in samples that account for geometrical features resembling those found in the lab. All results show an excellent agreement to the well-known power law characteristic of percolation processes, which is used to compare across simulations. The effect of sample morphology, like nanotube waviness and aspect ratio, and agglomeration on charge transport within CNT composites is evaluated within this model. This study determines the optimum simulation box-sizes that lead to minimize size-effects without rendering the simulation unaffordable. In addition, physical parameters within the model are characterized, involving various density functional theory calculations within Atomistix Toolkit. Finite element calculations have been performed to solve Maxwell's Equations for static fields in the COMSOL Multiphysics software package in order to better understand the behavior of the electric field within the composite material to further improve the model within this work. The types of composites studied within this work are often studied for use in electromagnetic shielding, electrostatic reduction, or even monitoring structural changes due to compression, stretching, or damage through their effect on the conductivity. However, experimental works have shown that based on various processing techniques the electrical properties of specific composites can vary widely. Therefore, the goal of this work has been to form a model with the ability to accurately predict the conductive properties as a function physical characteristics of the composite material in order to aid in the design of these composites.
Integrated Composite Analyzer (ICAN): Users and programmers manual
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1986-01-01
The use of and relevant equations programmed in a computer code designed to carry out a comprehensive linear analysis of multilayered fiber composites is described. The analysis contains the essential features required to effectively design structural components made from fiber composites. The inputs to the code are constituent material properties, factors reflecting the fabrication process, and composite geometry. The code performs micromechanics, macromechanics, and laminate analysis, including the hygrothermal response of fiber composites. The code outputs are the various ply and composite properties, composite structural response, and composite stress analysis results with details on failure. The code is in Fortran IV and can be used efficiently as a package in complex structural analysis programs. The input-output format is described extensively through the use of a sample problem. The program listing is also included. The code manual consists of two parts.
Wolfrum, Edward J; Ness, Ryan M; Nagle, Nicholas J; Peterson, Darren J; Scarlata, Christopher J
2013-11-14
The rapid determination of the release of structural sugars from biomass feedstocks is an important enabling technology for the development of cellulosic biofuels. An assay that is used to determine sugar release for large numbers of samples must be robust, rapid, and easy to perform, and must use modest amounts of the samples to be tested.In this work we present a laboratory-scale combined pretreatment and saccharification assay that can be used as a biomass feedstock screening tool. The assay uses a commercially available automated solvent extraction system for pretreatment followed by a small-scale enzymatic hydrolysis step. The assay allows multiple samples to be screened simultaneously, and uses only ~3 g of biomass per sample. If the composition of the biomass sample is known, the results of the assay can be expressed as reactivity (fraction of structural carbohydrate present in the biomass sample released as monomeric sugars). We first present pretreatment and enzymatic hydrolysis experiments on a set of representative biomass feedstock samples (corn stover, poplar, sorghum, switchgrass) in order to put the assay in context, and then show the results of the assay applied to approximately 150 different feedstock samples covering 5 different materials. From the compositional analysis data we identify a positive correlation between lignin and structural carbohydrates, and from the reactivity data we identify a negative correlation between both carbohydrate and lignin content and total reactivity. The negative correlation between lignin content and total reactivity suggests that lignin may interfere with sugar release, or that more mature samples (with higher structural sugars) may have more recalcitrant lignin. The assay presented in this work provides a robust and straightforward method to measure the sugar release after pretreatment and saccharification that can be used as a biomass feedstock screening tool. We demonstrated the utility of the assay by identifying correlations between feedstock composition and reactivity in a population of 150 samples.
The effect of different beverages on the color and translucency of flowable composites.
Karadas, Muhammet
2016-11-01
This study examined the changes in color and translucency of flowable composites after immersion in different beverages. Thirty composite samples were prepared from four flowable composites (G-aenial Universal Flo, Filtek Ultimate, Esthelite Flow Quick, and Clearfil Majesty ES Flow) and a microhybrid composite (Filtek Z-250) and stored in distilled water at 37°C for 24 h. The samples were randomly divided into seven groups and then immersed in different beverages (Red Bull, coffee, black tea, Pepsi Cola, orange juice, and distilled water) for 7 days. The CIE L*a*b* values of each sample were measured against white and black backgrounds using a spectrophotometer before and after immersion. Data were analyzed using two-way analysis of variance and Tukey's post-hoc test (p < 0.05). The color changes were significantly different among the composite materials after immersion in beverages (p < 0.05). Filtek Ultimate and Esthelite Flow Quick exhibited less discoloration than did G-aenial Universal Flo and Clearfil Majesty ES Flow. No significant difference was found between Filtek Z-250 and either Filtek Ultimate or Esthelite Flow Quick (p > 0.05). Among the beverages, black tea and coffee caused the highest discoloration of all the materials. Immersion in coffee and black tea resulted in the highest negative changes in the translucency of the materials. The degree of discoloration for the composite resins depended on the material used and drinking beverage. SCANNING 38:701-709, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Fernández-Oliveras, Alicia; Costa, Manuel F. M.; Pecho, Oscar E.; Rubiño, Manuel; Pérez, María. M.
2013-11-01
Surface properties are essential for a complete characterization of biomaterials. In restorative dentistry, the study of the surface properties of materials meant to replace dental tissues in an irreversibly diseased tooth is important to avoid harmful changes in future treatments. We have experimentally analyzed the surface characterization parameters of two different types of dental-resin composites and pre-sintered and sintered zirconia ceramics. We studied two shades of both composite types and two sintered zirconia ceramics: colored and uncolored. Moreover, a surface treatment was applied to one specimen of each dental-resin. All the samples were submitted to rugometric and microtopographic non-invasive inspection with the MICROTOP.06.MFC laser microtopographer in order to gather meaningful statistical parameters such as the average roughness (Ra), the root-mean-square deviation (Rq), the skewness (Rsk), and the kurtosis of the surface height distribution (Rku). For a comparison of the different biomaterials, the uncertainties associated to the surface parameters were also determined. With respect to Ra and Rq, significant differences between the composite shades were found. Among the dental resins, the nanocomposite presented the highest values and, for the zirconia ceramics, the pre-sintered sample registered the lowest ones. The composite performance may have been due to cluster-formation variations. Except for the composites with the surface treatment, the sample surfaces had approximately a normal distribution of heights. The surface treatment applied to the composites increased the average roughness and moved the height distribution farther away from the normal distribution. The zirconia-sintering process resulted in higher average roughness without affecting the height distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying, E-mail: liu.ying.48r@st.kyoto-u.ac.jp; Imashuku, Susumu; Sasaki, Nobuharu
In this study, a portable total reflection x-ray fluorescence (TXRF) spectrometer was used to analyze unknown laboratory hazards that precipitated on exterior surfaces of cooling pipes and fume hood pipes in chemical laboratories. With the aim to examine the accuracy of TXRF analysis for the determination of elemental composition, analytical results were compared with those of wavelength-dispersive x-ray fluorescence spectrometry, scanning electron microscope and energy-dispersive x-ray spectrometry, energy-dispersive x-ray fluorescence spectrometry, inductively coupled plasma atomic emission spectrometry, x-ray diffraction spectrometry (XRD), and x-ray photoelectron spectroscopy (XPS). Detailed comparison of data confirmed that the TXRF method itself was not sufficient tomore » determine all the elements (Z > 11) contained in the samples. In addition, results suggest that XRD should be combined with XPS in order to accurately determine compound composition. This study demonstrates that at least two analytical methods should be used in order to analyze the composition of unknown real samples.« less
Combined investigation of Eddy current and ultrasonic techniques for composite materials NDE
NASA Technical Reports Server (NTRS)
Davis, C. W.; Nath, S.; Fulton, J. P.; Namkung, M.
1993-01-01
Advanced composites are not without trade-offs. Their increased designability brings an increase in the complexity of their internal geometry and, as a result, an increase in the number of failure modes associated with a defect. When two or more isotropic materials are combined in a composite, the isotropic material failure modes may also combine. In a laminate, matrix delamination, cracking and crazing, and voids and porosity, will often combine with fiber breakage, shattering, waviness, and separation to bring about ultimate structural failure. This combining of failure modes can result in defect boundaries of different sizes, corresponding to the failure of each structural component. This paper discusses a dual-technology NDE (Non Destructive Evaluation) (eddy current (EC) and ultrasonics (UT)) study of graphite/epoxy (gr/ep) laminate samples. Eddy current and ultrasonic raster (Cscan) imaging were used together to characterize the effects of mechanical impact damage, high temperature thermal damage and various types of inserts in gr/ep laminate samples of various stacking sequences.
Sputtering Deposition of Sn-Mo-Based Composite Anode for Thin-Film Li-Ion Batteries
NASA Astrophysics Data System (ADS)
Mani Chandran, T.; Balaji, S.
2016-06-01
The role of electrochemically inactive molybdenum in alleviating the anomalous volume expansion of tin anode upon charge-discharge cycling has been investigated. Tin-molybdenum thin-film composite anodes for Li-ion batteries were prepared using a direct-current sputtering method from a tin metal target incorporating molybdenum element. Results of structural and compositional analyses confirmed the presence of tin and molybdenum. The elemental ratio obtained from energy-dispersive x-ray spectroscopy confirmed the feasibility of tailoring the thin-film composition by varying the ratio of metallic elements present in the sputtering target. Scanning electron micrographs of the samples revealed the occurrence of flower-like open morphology with Mo inclusion in a Sn matrix. The gravimetric discharge capacity for pure Sn, Sn-rich, and Mo-rich samples was 733 mAh g-1, 572 mAh g-1, and 439 mAh g-1, respectively, with capacity retention after 50 cycles of 22%, 61%, and 74%, respectively. Mo inclusion reduced the surface resistivity of the Sn anode after the initial charge-discharge cycle. The charge-transfer resistance after the first cycle for pure Sn, Sn-rich, and Mo-rich samples was 17.395 Ω, 5.345 Ω, and 2.865 Ω, respectively. The lithium-ion diffusion coefficient also increased from 8.68 × 10-8 cm2S-1 for the pure Sn sample to 2.98 × 10-5 cm2S-1 for the Mo-rich sample.
Residual stresses in continuous graphite fiber Al metal matrix composites
NASA Technical Reports Server (NTRS)
Park, Hun Sub; Zong, Gui Sheng; Marcus, Harris L.
1988-01-01
The residual stresses in graphite fiber reinforced aluminum (Gr/Al) composites with various thermal histories are measured using X-ray diffraction (XRD) methods. The XRD stress analysis is based on the determination of lattice strains by precise measurements of the interplanar spacings in different directions of the sample. The sample is a plate consisting of two-ply P 100 Gr/Al 6061 precursor wires and Al 6061 overlayers. Prior to XRD measurement, the 6061 overlayers are electrochemically removed. In order to calibrate the relationship between stress magnitude and lattice spacing shift, samples of Al 6061 are loaded at varying stress levels in a three-point bend fixture, while the stresses are simultaneously determined by XRD and surface-attached strain gages. The stresses determined by XRD closely match those determined by the strain gages. Using these calibrations, the longitudinal residual stresses of P 100 Gr/Al 6061 composites are measured for various heat treatments, and the results are presented.
Haytowitz, David B; Pehrsson, Pamela R
2018-01-01
For nearly 20years, the National Food and Nutrient Analysis Program (NFNAP) has expanded and improved the quantity and quality of data in US Department of Agriculture's (USDA) food composition databases (FCDB) through the collection and analysis of nationally representative food samples. NFNAP employs statistically valid sampling plans, the Key Foods approach to identify and prioritize foods and nutrients, comprehensive quality control protocols, and analytical oversight to generate new and updated analytical data for food components. NFNAP has allowed the Nutrient Data Laboratory to keep up with the dynamic US food supply and emerging scientific research. Recently generated results for nationally representative food samples show marked changes compared to previous database values for selected nutrients. Monitoring changes in the composition of foods is critical in keeping FCDB up-to-date, so that they remain a vital tool in assessing the nutrient intake of national populations, as well as for providing dietary advice. Published by Elsevier Ltd.
The mercury isotope composition of Arctic coastal seawater
NASA Astrophysics Data System (ADS)
Štrok, Marko; Baya, Pascale Anabelle; Hintelmann, Holger
2015-11-01
For the first time, Hg isotope composition of seawater in the Canadian Arctic Archipelago is reported. Hg was pre-concentrated from large volumes of seawater sampling using anion exchange resins onboard the research vessel immediately after collection. Elution of Hg was performed in laboratory followed by isotope composition determination by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For comparison, seawater from two stations was shipped to the laboratory and processed within it. Results showed negative mass-dependent fractionation in the range from -2.85 to -1.10‰ for δ202Hg, as well as slightly positive mass-independent fractionation of odd Hg isotopes. Positive mass-independent fractionation of 200Hg was also observed. Samples that were pre-concentrated in the laboratory showed different Hg isotope signatures and this is most probably due to the abiotic reduction of Hg in the dark by organic matter during storage and shipment after sampling. This emphasizes the need for immediate onboard pre-concentration.
Radulescu, Georgeta; Gauld, Ian C.; Ilas, Germina; ...
2014-11-01
This paper describes a depletion code validation approach for criticality safety analysis using burnup credit for actinide and fission product nuclides in spent nuclear fuel (SNF) compositions. The technical basis for determining the uncertainties in the calculated nuclide concentrations is comparison of calculations to available measurements obtained from destructive radiochemical assay of SNF samples. Probability distributions developed for the uncertainties in the calculated nuclide concentrations were applied to the SNF compositions of a criticality safety analysis model by the use of a Monte Carlo uncertainty sampling method to determine bias and bias uncertainty in effective neutron multiplication factor. Application ofmore » the Monte Carlo uncertainty sampling approach is demonstrated for representative criticality safety analysis models of pressurized water reactor spent fuel pool storage racks and transportation packages using burnup-dependent nuclide concentrations calculated with SCALE 6.1 and the ENDF/B-VII nuclear data. Furthermore, the validation approach and results support a recent revision of the U.S. Nuclear Regulatory Commission Interim Staff Guidance 8.« less
NASA Astrophysics Data System (ADS)
Khattak, Khanzadi Fatima; Simpson, Thomas James; Ihasnullah
2009-03-01
The assurance of microbial quality is necessary to make plant materials suitable for human consumption and commercialization. The aim of the present study was to evaluate the possibility to apply the gamma radiation treatment on the rhizome samples of Nelumbo nucifera for microbial decontamination. The radiation processing was carried out at dose levels of 1, 2, 4 and 6 kGy. The irradiated and control samples were analyzed for microbial load, organoleptic acceptance, extraction yield, proximate composition, phenolic contents and DPPH scavenging activity. The results indicated that gamma radiation treatment significantly reduced microbial load and increased the storability of the irradiated samples. The treated samples were also acceptable sensorically. The extraction yield and phenolic contents increased with the increase of radiation dose. Gamma radiation also enhanced the DPPH scavenging activity.
Optimization of protein buffer cocktails using Thermofluor.
Reinhard, Linda; Mayerhofer, Hubert; Geerlof, Arie; Mueller-Dieckmann, Jochen; Weiss, Manfred S
2013-02-01
The stability and homogeneity of a protein sample is strongly influenced by the composition of the buffer that the protein is in. A quick and easy approach to identify a buffer composition which increases the stability and possibly the conformational homogeneity of a protein sample is the fluorescence-based thermal-shift assay (Thermofluor). Here, a novel 96-condition screen for Thermofluor experiments is presented which consists of buffer and additive parts. The buffer screen comprises 23 different buffers and the additive screen includes small-molecule additives such as salts and nucleotide analogues. The utilization of small-molecule components which increase the thermal stability of a protein sample frequently results in a protein preparation of higher quality and quantity and ultimately also increases the chances of the protein crystallizing.
Modeling Code Is Helping Cleveland Develop New Products
NASA Technical Reports Server (NTRS)
1998-01-01
Master Builders, Inc., is a 350-person company in Cleveland, Ohio, that develops and markets specialty chemicals for the construction industry. Developing new products involves creating many potential samples and running numerous tests to characterize the samples' performance. Company engineers enlisted NASA's help to replace cumbersome physical testing with computer modeling of the samples' behavior. Since the NASA Lewis Research Center's Structures Division develops mathematical models and associated computation tools to analyze the deformation and failure of composite materials, its researchers began a two-phase effort to modify Lewis' Integrated Composite Analyzer (ICAN) software for Master Builders' use. Phase I has been completed, and Master Builders is pleased with the results. The company is now working to begin implementation of Phase II.
NASA Astrophysics Data System (ADS)
Christen, Hans M.; Ohkubo, Isao; Rouleau, Christopher M.; Jellison, Gerald E., Jr.; Puretzky, Alex A.; Geohegan, David B.; Lowndes, Douglas H.
2005-01-01
Parallel (multi-sample) approaches, such as discrete combinatorial synthesis or continuous compositional-spread (CCS), can significantly increase the rate of materials discovery and process optimization. Here we review our generalized CCS method, based on pulsed-laser deposition, in which the synchronization between laser firing and substrate translation (behind a fixed slit aperture) yields the desired variations of composition and thickness. In situ alloying makes this approach applicable to the non-equilibrium synthesis of metastable phases. Deposition on a heater plate with a controlled spatial temperature variation can additionally be used for growth-temperature-dependence studies. Composition and temperature variations are controlled on length scales large enough to yield sample sizes sufficient for conventional characterization techniques (such as temperature-dependent measurements of resistivity or magnetic properties). This technique has been applied to various experimental studies, and we present here the results for the growth of electro-optic materials (SrxBa1-xNb2O6) and magnetic perovskites (Sr1-xCaxRuO3), and discuss the application to the understanding and optimization of catalysts used in the synthesis of dense forests of carbon nanotubes.
A Comparison between Characterization and Biological Properties of Brazilian Fresh and Aged Propolis
Schmidt, Eduardo Morgado; Stock, Daniele; Chada, Fabio José Garcia; Finger, Daiane; Christine Helena Frankland Sawaya, Alexandra; Eberlin, Marcos Nogueira; Felsner, Maria Lurdes; Quináia, Sueli Pércio; Torres, Yohandra Reyes
2014-01-01
Objective. As propolis is a highly valued bee product, we aimed to verify the quality of aged propolis, investigating their phenolic and flavonoid composition, levels of toxic metals, radical scavenging and antimicrobial activities. Material and Methods. Samples of fresh and aged propolis of six different beekeepers, from the same geographical location, were investigated in terms of their phenolic and flavonoid composition and levels of Pb, Cd, and Cr, as well as radical scavenging and antimicrobial activities. Results. The two groups of propolis had similar qualitative composition by HPLC-PDA and ESI(-)-MS. Fresh propolis and aged propolis show no differences when average values of extraction yield, flavonoids, EC50, or MIC were compared and both types of propolis showed good antimicrobial activity at low concentrations. Only levels of phenolic compounds were higher in fresh propolis. Conclusion. The propolis samples considered in this study, aged or fresh, had similar qualitative composition, although they were collected in different periods. Samples only differed in their levels of total phenolic content. Moreover, aged propolis conserves significant radical scavenging and antimicrobial properties. We suggest that aged propolis should not be discarded but explored for alternative applications. PMID:25530958
NASA Astrophysics Data System (ADS)
Sivalingam, Muthu Mariappan; Balasubramanian, Karthikeyan
2016-07-01
Zinc oxide: reduced graphene oxide (ZnO:rgo) composites with varying ZnO morphologies have been synthesized towards the application of non-enzymatic fluorescence (FL) glucose sensor and photocatalysis for methylene blue (MB) degradation. The phase structure of ZnO has confirmed by X-ray diffraction studies, and the band gap calculations were done by UV absorption spectra. Scanning electron microscope and Raman spectra revealed the morphological change and the vibrational studies of the prepared samples, respectively. The quenching of the FL emission band of ZnO:rgo composite sample confirmed the transfer of electrons from ZnO to rgo which inhibit the exciton recombination process. The non-enzymatic FL glucose sensing was carried out by the addition of dextrose glucose ( d-glucose) into the ZnO:rgo composite solution, which shows strong relationship between glucose concentration and the FL intensity. The photocatalytic studies showed that composite with high surface to volume ratio exhibits a maximum degradation of MB over 93 %. Our combined results ensured that the ZnO:rgo composites with varying morphologies could be an effective system for applications such as FL-based glucose sensing and photocatalytic degradation.
Mei, Changtong; Xu, Bing; Chen, Weimin; Yong, Cheng; Wang, Ke; Wu, Qinglin
2018-01-01
Weathering of wood--plastic composites (WPCs) leads to discoloration and cracks, which greatly limits their outdoor application. In this study, light stabilizers (including UV-327, HS-944 and nano-SiO2) were added to the shell of a co-extruded high-density polyethylene-based WPC to improve its anti-ultraviolet (UV) ageing properties and simultaneously to maintain its good mechanical properties. The results showed that UV-327 was the most effective light stabilizer for improving the mechanical and anti-UV ageing properties of the composites among the three stabilizers used. WPC samples combined with 2% UV-327 had the highest retention rates in flexural strength and also had the smoothest surface after 2500 h of UV ageing. The samples with 2% UV-327 added had the best protection for discoloration, showing the lowest values of ΔE* (colour difference) and ΔL* (luminescence) in all samples after 2500 h of UV ageing. WPC samples with 2% UV-327 were also oxidized the least after 2500 h of UV ageing. The results reported herein serve to enhance our understanding of the efficiency of light stabilizers in preventing UV degradation of WPCs, with a view to developing co-extruded WPCs with low cost, high anti-UV ageing properties and good mechanical properties for outdoor applications. PMID:29892445
NASA Astrophysics Data System (ADS)
Gupta, Shashaank; Bhattacharjee, Shuvrajyoti; Pandey, Dhananjai; Bansal, Vipul; Bhargava, Suresh K.; Peng, Ju Lin; Garg, Ashish
2011-07-01
We report an unusual behavior observed in (BiFeO3)1- x -(PbTiO3) x (BF- xPT) thin films prepared using a multilayer chemical solution deposition method. Films of different compositions were grown by depositing several bilayers of BF and PT precursors of varying BF and PT layer thicknesses followed by heat treatment in air. X-ray diffraction showed that samples of all compositions show mixing of two compounds resulting in a single-phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk compositions, samples show a monoclinic (MA-type) structure suggesting disappearance of the morphotropic phase boundary (MPB) at x=0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of the remanent polarization at the MPB, as shown by the ferroelectric measurements. Magnetic measurements showed an increase in the magnetization of the samples with increasing BF content. Significant magnetization in the samples indicates melting of spin spirals in the BF- xPT films, arising from a random distribution of iron atoms. Absence of Fe2+ ions was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that thin film processing methodology significantly changes the structural evolution, in contrast to predictions from the equilibrium phase diagram, besides modifying the functional characteristics of the BP- xPT system dramatically.
Progressive Failure Analysis of Composite Stiffened Panels
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Yarrington, Phillip W.; Collier, Craig S.; Arnold, Steven M.
2006-01-01
A new progressive failure analysis capability for stiffened composite panels has been developed based on the combination of the HyperSizer stiffened panel design/analysis/optimization software with the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). MAC/GMC discretizes a composite material s microstructure into a number of subvolumes and solves for the stress and strain state in each while providing the homogenized composite properties as well. As a result, local failure criteria may be employed to predict local subvolume failure and the effects of these local failures on the overall composite response. When combined with HyperSizer, MAC/GMC is employed to represent the ply level composite material response within the laminates that constitute a stiffened panel. The effects of local subvolume failures can then be tracked as loading on the stiffened panel progresses. Sample progressive failure results are presented at both the composite laminate and the composite stiffened panel levels. Deformation and failure model predictions are compared with experimental data from the World Wide Failure Exercise for AS4/3501-6 graphite/epoxy laminates.
Teaching machines to find mantle composition
NASA Astrophysics Data System (ADS)
Atkins, Suzanne; Tackley, Paul; Trampert, Jeannot; Valentine, Andrew
2017-04-01
The composition of the mantle affects many geodynamical processes by altering factors such as the density, the location of phase changes, and melting temperature. The inferences we make about mantle composition also determine how we interpret the changes in velocity, reflections, attenuation and scattering seen by seismologists. However, the bulk composition of the mantle is very poorly constrained. Inferences are made from meteorite samples, rock samples from the Earth and inferences made from geophysical data. All of these approaches require significant assumptions and the inferences made are subject to large uncertainties. Here we present a new method for inferring mantle composition, based on pattern recognition machine learning, which uses large scale in situ observations of the mantle to make fully probabilistic inferences of composition for convection simulations. Our method has an advantage over other petrological approaches because we use large scale geophysical observations. This means that we average over much greater length scales and do not need to rely on extrapolating from localised samples of the mantle or planetary disk. Another major advantage of our method is that it is fully probabilistic. This allows us to include all of the uncertainties inherent in the inference process, giving us far more information about the reliability of the result than other methods. Finally our method includes the impact of composition on mantle convection. This allows us to make much more precise inferences from geophysical data than other geophysical approaches, which attempt to invert one observation with no consideration of the relationship between convection and composition. We use a sampling based inversion method, using hundreds of convection simulations run using StagYY with self consistent mineral physics properties calculated using the PerpleX package. The observations from these simulations are used to train a neural network to make a probabilistic inference for major element oxide composition of the mantle. We find we can constrain bulk mantle FeO molar percent, FeO/MgO and FeO/SiO2 using observations of the temperature and density structure of the mantle in convection simulations.
Dong, Fan; Sun, Yanjuan; Fu, Min; Wu, Zhongbiao; Lee, S C
2012-06-15
This research represents a highly enhanced visible light photocatalytic removal of 450 ppb level of nitric oxide (NO) in air by utilizing flower-like hierarchical porous BiOI/BiOCl composites synthesized by a room temperature template free method for the first time. The facile synthesis method avoids high temperature treatment, use of organic precursors and production of undesirable organic byproducts during synthesis process. The result indicated that the as-prepared BiOI/BiOCl composites samples were solid solution and were self-assembled hierarchically with single-crystal nanoplates. The aggregation of the self-assembled nanoplates resulted in the formation of 3D hierarchical porous architecture containing tri-model mesopores. The coupling to BiOI with BiOCl led to down-lowered valence band (VB) and up-lifted conduction band (CB) in contrast to BiOI, making the composites suitable for visible light excitation. The BiOI/BiOCl composites samples exhibited highly enhanced visible light photocatalytic activity for removal of NO in air due to the large surface areas and pore volume, hierarchical structure and modified band structure, exceeding that of P25, BiOI, C-doped TiO(2) and Bi(2)WO(6). This research results could provide a cost-effective approach for the synthesis of porous hierarchical materials and enhancement of photocatalyst performance for environmental and energetic applications owing to its low cost and easy scaling up. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashidi, S.; Ataie, A., E-mail: aataie@ut.ac.ir
Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. Themore » results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.« less
Methods for collection and analysis of water samples
Rainwater, Frank Hays; Thatcher, Leland Lincoln
1960-01-01
This manual contains methods used by the U.S. Geological Survey to collect, preserve, and analyze water samples. Throughout, the emphasis is on obtaining analytical results that accurately describe the chemical composition of the water in situ. Among the topics discussed are selection of sampling sites, frequency of sampling, field equipment, preservatives and fixatives, analytical techniques of water analysis, and instruments. Seventy-seven laboratory and field procedures are given for determining fifty-three water properties.
Highly efficient removal of pathogenic bacteria with magnetic graphene composite.
Zhan, Sihui; Zhu, Dandan; Ma, Shuanglong; Yu, Wenchao; Jia, Yanan; Li, Yi; Yu, Hongbing; Shen, Zhiqiang
2015-02-25
Magnetic Fe3O4/graphene composite (abbreviated as G-Fe3O4) was synthesized successfully by solvothermal method to effectively remove both bacteriophage and bacteria in water, which was tested by HRTEM, XRD, BET, XPS, FTIR, CV, magnetic property and zeta-potential measurements. Based on the result of HRTEM, the single-sheet structure of graphene oxide and the monodisperse Fe3O4 nanoparticles on the surface of graphene can be observed obviously. The G-Fe3O4 composite were attractive for removing a wide range of pathogens including not only bacteriophage ms2, but also various bacteria such as S. aureus, E. coli, Salmonella, E. Faecium, E. faecalis, and Shigella. The removal efficiency of E. coli for G-Fe3O4 composite can achieve 93.09%, whereas it is only 54.97% with pure Fe3O4 nanoparticles. Moreover, a detailed verification test of real water samples was conducted and the removal efficiency of bacteria in real water samples with G-Fe3O4 composite can also reach 94.8%.
Correlated compositional and mineralogical investigations at the Chang′e-3 landing site
Ling, Zongcheng; Jolliff, Bradley L.; Wang, Alian; Li, Chunlai; Liu, Jianzhong; Zhang, Jiang; Li, Bo; Sun, Lingzhi; Chen, Jian; Xiao, Long; Liu, Jianjun; Ren, Xin; Peng, Wenxi; Wang, Huanyu; Cui, Xingzhu; He, Zhiping; Wang, Jianyu
2015-01-01
The chemical compositions of relatively young mare lava flows have implications for the late volcanism on the Moon. Here we report the composition of soil along the rim of a 450-m diameter fresh crater at the Chang′e-3 (CE-3) landing site, investigated by the Yutu rover with in situ APXS (Active Particle-induced X-ray Spectrometer) and VNIS (Visible and Near-infrared Imaging Spectrometer) measurements. Results indicate that this region's composition differs from other mare sample-return sites and is a new type of mare basalt not previously sampled, but consistent with remote sensing. The CE-3 regolith derived from olivine-normative basaltic rocks with high FeO/(FeO+MgO). Deconvolution of the VNIS data indicates abundant high-Ca ferropyroxene (augite and pigeonite) plus Fe-rich olivine. We infer from the regolith composition that the basaltic source rocks formed during late-stage magma-ocean differentiation when dense ferropyroxene-ilmenite cumulates sank and mixed with deeper, relatively ferroan olivine and orthopyroxene in a hybridized mantle source. PMID:26694712
Interaction of pulsed laser radiation with a powder complex based on the Al-Mg-C matrix
NASA Astrophysics Data System (ADS)
Voznesenskaya, A.; Khorkov, K.; Kochuev, D.; Zhdanov, A.; Morozov, V.
2018-01-01
Experimental work on laser melting of the Al powder composition has been carried out. The influence of the duration of the laser pulse on the result of processing the powder composition has been studied. In this work, the powder material was obtained by the joint mechanical activation of matrix material and filler particles in high-energy ball mills. The research work consisted of analyzing the starting material, the phase composition, the particle size distribution, and the morphology of the powder particles. The obtained samples also studied the phase composition, the presence of pores, cracks, the surface of the formed coating, the average height of the roller. The obtained samples were studied by X-ray diffractometry, Raman spectroscopy, and microsections of the structures obtained by optical microscopy. On the basis of the data obtained, conclusions were drawn about changes in the structural-phase composition, the nature of the distribution, the localization of alloying additives in the course of phase-to-phase transitions, and the change in the phase states of alloying additives.
NASA Astrophysics Data System (ADS)
Patel, R. H.; Sharma, S.; Pansuriya, T.; Malgani, E. V.; Sevkani, V.
2018-05-01
Hybrid composites have been fabricated by hand lay-up technique with epoxy resin and diethylene tri amine as a hardener for high impact energy absorption with sandwich stacking of different reinforcements of dyneema and glass fabric. High impact grade composites are nowadays gaining a lot of importance in the field of high mechanical load bearing applications, ballistics and bulletproofing. The present work emphases on the fabrication and mechanical properties of the hybrid composites of cut resistant dyneema fabric along with glass fabric reinforced in the thermosetting resin. i.e. epoxy. The prime importance while fabricating such materials have been given to the processing along with selection of the raw materials. High impact resistive materials with low density and henceforth low weight have been manufactured and characterized by IZOD impact tester, UTM, Archimedes density meter and SEM. Throughout the work, satisfactory results have been obtained. Impact resistance was observed to be boosted three times as that of the reference sample of glass fabric and epoxy. The density of the hybrid composite is observed to be 25% as that of the reference sample.
Shear test of composite bonded to dentin: Er:YAG laser versus dental handpiece preparations
NASA Astrophysics Data System (ADS)
Visuri, Steven R.; Gilbert, Jeremy L.; Walsh, Joseph T., Jr.; Wigdor, Harvey A.
1995-05-01
The erbium:YAG laser coupled with a cooling stream of water appears to be an effective means of removing dental hard tissues. However, before the procedure is deemed clinically viable, there are several important issues of safety and efficacy that need to be explored. In this study we investigated the surface that remains following laser ablation of dentin and compared the results to the use of a dental handpiece. Specifically, we studied the effect the laser radiation had on the bonding of composite to dentin. The crowns of extracted human molars were removed revealing the underlying dentin. An additional thickness of material was removed with either a dental handpiece or an Er:YAG laser by raster scanning the samples under a fixed handpiece or laser. Comparable surface roughnesses were achieved. A cylinder of composite was bonded onto the prepared surfaces following the manufacturer's directions. The dentin-composite bond was then shear stressed to failure on a universal testing apparatus and the maximum load recorded. Preliminary results indicated that laser irradiated samples had improved bond strengths. SEM photographs of the surfaces were also taken to compare the two methods of tooth preparation.
NASA Technical Reports Server (NTRS)
1993-01-01
Surface modifications to composite materials induced by long term exposure in low earth orbit (LEO) were dominated by atomic oxygen erosion and micrometeoroid and space debris impacts. As expected, calculated erosion rates were peculiar to material type and within the predicted order of magnitude. Generally, about one ply of the carbon fiber composites was eroded during the 70 month LDEF experiment. Matrix erosion was greater than fiber erosion and was more evident for a polysulfone matrix than for epoxy matrices. Micrometeoroid and space debris impacts resulted in small (less than 1mm) craters and splattered contaminants on all samples. Surfaces became more diffuse and darker with small increases in emissivity and absorption. Tensile strength decreased roughly with thickness loss, and epoxy matrices apparently became slightly embrittled, probably as a result of continued curing under UV and/or electron bombardment. However, changes in the ultimate yield stress of the carbon reinforced epoxy composites correlate neither with weave direction nor fiber type. Unexpected developments were the discovery of new synergistic effects of the space environment in the interaction of atomic oxygen and copious amounts of contamination and in the induced luminescence of many materials.
Real time in-situ sensing of damage evolution in nanocomposite bonded surrogate energetic materials
NASA Astrophysics Data System (ADS)
Sengezer, Engin C.; Seidel, Gary D.
2016-04-01
The current work aims to explore the potential for in-situ structural health monitoring in polymer bonded energetic materials through the introduction of carbon nanotubes (CNTs) into the binder phase as a means to establish a significant piezoresistive response through the resulting nanocomposite binder. The experimental effort herein is focused towards electro-mechanical characterization of surrogate materials in place of actual energetic (explosive) materials in order to provide proof of concept for the strain and damage sensing. The electrical conductivity and the piezoresistive behavior of samples containing randomly oriented MWCNTs introduced into the epoxy (EPON 862) binder of 70 wt% ammonium perchlorate-epoxy hybrid composites are quantitatively and qualitatively evaluated. Brittle failure going through linear elastic behavior, formation of microcracks leading to reduction in composite load carrying capacity and finally macrocracks resulting in eventual failure are observed in the mechanical response of MWNT-ammonium perchlorateepoxy hybrid composites. Incorporating MWNTs into local polymer binder improves the effective stiffness about 40% compared to neat ammonium perchlorate-polymer samples. The real time in-situ relative change in resistance for MWNT hybrid composites was detected with the applied strains through piezoresistive response.
Deployable structures using bistable reeled composites
NASA Astrophysics Data System (ADS)
Daton-Lovett, Andrew J.; Compton-Bishop, Quentin M.; Curry, Richard G.
2000-06-01
This paper describes an innovative, patented use of composite materials developed by RolaTube Technology Ltd. to make smart deployable structures. Bi-stable reeled composites (BRCs) can alternate between two stable forms; that of a strong, rigid structure and that of a compact coil of flat-wound material. Bi-stability arises as a result of the manipulation of Poisson's ratio and isotropy in the various layers of the material. BRCs are made of fiber- reinforced composite materials, most often with a thermoplastic matrix. A range of fibers and polymer matrices can be used according to the requirements of the operating environment. Samples of a BRC structure were constructed using layers of unidirectional, fiber-reinforced thermoplastic sheet with the layers at different angles. The whole assembly was then consolidated under conditions of elevated temperature and pressure. The properties of the BRC are described and the result of a series of experiments performed on the sample to determine the tensile strength of the BRC structure are reported. A full analysis using finite element methods is being undertaken in collaboration with the University of Cambridge, England. The first commercial use has been to fabricate boom and drive mechanisms for the remote inspection of industrial plant.
NASA Astrophysics Data System (ADS)
Dandliker, Richard B.
The development of alloys with high glass forming ability allows fabrication of bulk samples of amorphous metal. This capability makes these materials available for applications which require significant material thickness in all three dimensions. Superior mechanical properties and advantages in processing make metallic glass a choice candidate as a matrix material for composites. This study reports techniques for making composites by melt-infiltration casting using the alloy Zrsb{41.2}Tisb{13.8}Cusb{12.5}Nisb{10.0}Besb{22.5} (VitreloyspTM 1) as a matrix material. Composite rods 5 cm in length and 7 mm in diameter were made and found to have a nearly fully amorphous matrix; there was less than 3 volume percent crystallized matrix material. The samples were reinforced by continuous metal wires, tungsten powder, or silicon carbide particulate preforms. The most easily processed samples were made with uniaxially aligned tungsten and carbon steel continuous wire reinforcement; the majority of the analysis presented is of these samples. The measured porosity was typically less than 3%. The results also indicate necessary guidelines for developing processing techniques for large scale production, new reinforcement materials, and other metallic glass compositions. Analysis of the microstructure of the tungsten wire and steel wire reinforced composites was performed by x-ray diffraction, scanning electron microscopy, scanning Auger microscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. The most common phase in the crystallized matrix is most likely a Laves phase with the approximate formula Besb{12}Zrsb3TiNiCu. In tungsten-reinforced composites, a crystalline reaction layer 240 nm thick of tungsten nanocrystals in an amorphous matrix formed. In the steel reinforced composites, the reaction layer was primarily composed of a mixed metal carbide, mainly ZrC. One promising application of the metallic glass matrix composite is as a kinetic energy penetrator material. Ballistic tests show that a composite of 80 volume percent uniaxially aligned tungsten wires and a VitreloyspTM 1 matrix has self-sharpening behavior, which is a necessary characteristic of superior penetrator materials. Small-scale tests with both aluminum and steel targets show that this composite performs better than tungsten heavy alloys typically used for penetrator applications, and comparably with depleted uranium.
Luo, Ting; Srinivasan, Usha; Ramadugu, Kirtana; Shedden, Kerby A; Neiswanger, Katherine; Trumble, Erika; Li, Jiean J; McNeil, Daniel W; Crout, Richard J; Weyant, Robert J; Marazita, Mary L; Foxman, Betsy
2016-09-15
Community profiling of the oral microbiome requires the recovery of quality sequences in order to accurately describe microbial community structure and composition. Our objective was to assess the effects of specimen collection method, storage medium, and storage conditions on the relative abundance of taxa in saliva and plaque identified using 16S rRNA genes. We also assessed short-term changes in taxon composition and relative abundance and compared the salivary and dental plaque communities in children and adults. Over a 2-week period, four successive saliva and dental plaque specimens were collected from four adults with no dental decay (108 samples), and two successive specimens were collected from six children with four or more erupted teeth (48 samples). There were minimal differences in community composition at the phylum and operational taxonomic unit levels between dental plaque collection using a scaler and collection using a CytoSoft brush. Plaque samples stored in OMNIgene medium showed higher within-sample Shannon diversity, were compositionally different, and were more similar to each other than plaque stored in liquid dental transport medium. Saliva samples stored in OMNIgene recovered similar communities for at least a week following storage at room temperature. However, the microbial communities recovered from plaque and saliva stored in OMNIgene were significantly different in composition from their counterparts stored in liquid dental transport medium. Dental plaque communities collected from the same tooth type over four successive visits from the same adult did not significantly differ in structure or composition. Large-scale epidemiologic studies require collection over time and space, often with multiple teams collecting, storing, and processing data. Therefore, it is essential to understand how sensitive study results are to modest changes in collection and storage protocols that may occur with variation in personnel, resources available at a study site, and shipping requirements. The research presented in this paper measures the effects of multiple storage parameters and collection methodologies on the measured ecology of the oral microbiome from healthy adults and children. These results will potentially enable investigators to conduct oral microbiome studies at maximal efficiency by guiding informed administrative decisions pertaining to the necessary field or clinical work. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Luo, Ting; Srinivasan, Usha; Ramadugu, Kirtana; Shedden, Kerby A.; Neiswanger, Katherine; Trumble, Erika; Li, Jiean J.; McNeil, Daniel W.; Crout, Richard J.; Weyant, Robert J.; Marazita, Mary L.
2016-01-01
ABSTRACT Community profiling of the oral microbiome requires the recovery of quality sequences in order to accurately describe microbial community structure and composition. Our objective was to assess the effects of specimen collection method, storage medium, and storage conditions on the relative abundance of taxa in saliva and plaque identified using 16S rRNA genes. We also assessed short-term changes in taxon composition and relative abundance and compared the salivary and dental plaque communities in children and adults. Over a 2-week period, four successive saliva and dental plaque specimens were collected from four adults with no dental decay (108 samples), and two successive specimens were collected from six children with four or more erupted teeth (48 samples). There were minimal differences in community composition at the phylum and operational taxonomic unit levels between dental plaque collection using a scaler and collection using a CytoSoft brush. Plaque samples stored in OMNIgene medium showed higher within-sample Shannon diversity, were compositionally different, and were more similar to each other than plaque stored in liquid dental transport medium. Saliva samples stored in OMNIgene recovered similar communities for at least a week following storage at room temperature. However, the microbial communities recovered from plaque and saliva stored in OMNIgene were significantly different in composition from their counterparts stored in liquid dental transport medium. Dental plaque communities collected from the same tooth type over four successive visits from the same adult did not significantly differ in structure or composition. IMPORTANCE Large-scale epidemiologic studies require collection over time and space, often with multiple teams collecting, storing, and processing data. Therefore, it is essential to understand how sensitive study results are to modest changes in collection and storage protocols that may occur with variation in personnel, resources available at a study site, and shipping requirements. The research presented in this paper measures the effects of multiple storage parameters and collection methodologies on the measured ecology of the oral microbiome from healthy adults and children. These results will potentially enable investigators to conduct oral microbiome studies at maximal efficiency by guiding informed administrative decisions pertaining to the necessary field or clinical work. PMID:27371581
Quantification by SEM-EDS in uncoated non-conducting samples
NASA Astrophysics Data System (ADS)
Galván Josa, V.; Castellano, G.; Bertolino, S. R.
2013-07-01
An approach to perform elemental quantitative analysis in a conventional scanning electron microscope with an energy dispersive spectrometer has been developed for non-conductive samples in which the conductive coating should be avoided. Charge accumulation effects, which basically decrease the energy of the primary beam, were taken into account by means of the Duane-Hunt limit. This value represents the maximum energy of the continuum X-ray spectrum, and is related to the effective energy of the incident electron beam. To validate the results obtained by this procedure, a non-conductive sample of known composition was quantified without conductive coating. Complementarily, changes in the X-ray spectrum due to charge accumulation effects were studied by Monte Carlo simulations, comparing relative characteristic intensities as a function of the incident energy. This methodology is exemplified here to obtain the chemical composition of white and reddish archaeological pigments belonging to the Ambato style of "Aguada" culture (Catamarca, Argentina 500-1100 AD). The results obtained in this work show that the quantification procedure taking into account the Duane-Hunt limit is suitable for this kind of samples. This approach may be recommended for the quantification of samples for which coating is not desirable, such as ancient artwork, forensic or archaeological samples, or when the coating element is also present in the sample.
Titanium stable isotope investigation of magmatic processes on the Earth and Moon
NASA Astrophysics Data System (ADS)
Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.
2016-09-01
We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.
Canto, A.; Herrera, C. M.
2012-01-01
Background and Aims Variation in the composition of floral nectar reflects intrinsic plant characteristics as well as the action of extrinsic factors. Micro-organisms, particularly yeasts, represent one extrinsic factor that inhabit the nectar of animal-pollinated flowers worldwide. In this study a ‘microbial imprint hypothesis’ is formulated and tested, in which it is proposed that natural community-wide variation in nectar sugar composition will partly depend on the presence of yeasts in flowers. Methods Occurrence and density of yeasts were studied microscopically in single-flower nectar samples of 22 animal-pollinated species from coastal xeric and sub-humid tropical habitats of the Yucatán Peninsula, Mexico. Nectar sugar concentration and composition were concurrently determined on the same samples using high-performance liquid chromatography (HPLC) methods. Key Results Microscopical examination of nectar samples revealed the presence of yeasts in nearly all plant species (21 out of 22 species) and in about half of the samples examined (51·8 % of total, all species combined). Plant species and individuals differed significantly in nectar sugar concentration and composition, and also in the incidence of nectar yeasts. After statistically controlling for differences between plant species and individuals, nectar yeasts still accounted for a significant fraction of community-wide variance in all nectar sugar parameters considered. Significant yeast × species interactions on sugar parameters revealed that plant species differed in the nectar sugar correlates of variation in yeast incidence. Conclusions The results support the hypothesis that nectar yeasts impose a detectable imprint on community-wide variation in nectar sugar composition and concentration. Since nectar sugar features influence pollinator attraction and plant reproduction, future nectar studies should control for yeast presence and examine the extent to which microbial signatures on nectar characteristics ultimately have some influence on pollination services in plant communities. PMID:22915578
NASA Astrophysics Data System (ADS)
Nelson, Bruce K.; Deniro, Michael J.; Schoeninger, Margaret J.; De Paolo, Donald J.; Hare, P. E.
1986-09-01
Paleodietary analysis based on variations in the trace element and stable isotopic composition of inorganic and organic phases in fossil bone depends on the assumption that measured values reflect in vivo values. To test for postmortem alteration, we measured 87Sr /86Sr , 13C /12C , 18O /16O and 15N /14N ratios and Sr concentrations in modern and prehistoric (610 to 5470 yr old) bones of animals with marine or terrestrial diets from Greenland. Bones from modern terrestrial feeders have substantially lower Sr concentrations and more radiogenic 87Sr /86Sr ratios than those from modern marine feeders. This contrast was not preserved in the prehistoric samples, which showed almost complete overlap for both Sr concentration and isotopic composition in bones from the two types of animals. Leaching experiments, X-ray diffraction analysis and infrared spectroscopy indicate that alteration of the Sr concentration and isotopic composition in prehistoric bone probably results from nearly complete exchange with groundwater. Oxygen isotope ratios in fossil apatite carbonate also failed to preserve the original discrimination between modern terrestrial and marine feeders. The C isotope ratio of apatite carbonate did not discriminate between animals with marine or terrestrial diets in the modern samples. Even so, the ranges of apatite δ 13C values in prehistoric bone are more scattered than in modern samples for both groups, suggesting alteration had occurred. δ 13C and δ 15N values of collagen in modern bone are distinctly different for the two feeding types, and this distinction is preserved in most of the prehistoric samples. Our results suggest that postmortem alteration of dietary tracers in the inorganic phases of bone may be a problem at all archaeological sites and must be evaluated in each case. While collagen analyzed in this study was resistant to alteration, evaluation of the possibility of diagenetic alteration of its isotopic composition in bones from other contexts is also warranted.
Borkowski, Leszek; Sroka-Bartnicka, Anna; Drączkowski, Piotr; Ptak, Agnieszka; Zięba, Emil; Ślósarczyk, Anna; Ginalska, Grażyna
2016-05-01
Apatite forming ability of hydroxyapatite (HAP) and carbonate hydroxyapatite (CHAP) containing composites was compared. Two composite materials, intended for filling bone defects, were made of polysaccharide polymer and one of two types of hydroxyapatite. The bioactivity of the composites was evaluated in vitro by soaking in a simulated body fluid (SBF), and the formation of the apatite layer was determined by scanning electron microscopy with energy-dispersive spectrometer and Raman spectroscopy. The results showed that both the composites induced the formation of apatite layer on their surface after soaking in SBF. In addition, the sample weight changes and the ion concentration of the SBF were scrutinized. The results showed the weight increase for both materials after SBF treatment, higher weight gain and higher uptake of calcium ions by HAP containing scaffolds. SBF solution analysis indicated loss of calcium and phosphorus ions during experiment. All these results indicate apatite forming ability of both biomaterials and suggest comparable bioactive properties of composite containing pure hydroxyapatite and carbonate-substituted one. Copyright © 2016 Elsevier B.V. All rights reserved.
Quantification of cell response to polymeric composites using a two-dimensional gradient platform.
Lin, Nancy J; Hu, Haiqing; Sung, Lipin; Lin-Gibson, Sheng
2009-07-01
A simple and straightforward screening process to assess the toxicity and corresponding cell response of dental composites would be useful prior to extensive in vitro or in vivo characterization. To this end, gradient composite samples were prepared with variations in filler content/type and in degree of conversion (DC). The DC was determined using near infrared spectroscopy (NIR), and the surface morphology was evaluated by laser scanning confocal microscopy (LSCM). RAW 264.7 macrophage-like cells were cultured directly on the composite gradient samples, and cell viability, density, and area were measured at 24 h. All three measures of cell response varied as a function of material properties. For instance, compositions with higher filler content had no reduction in cell viability or cell density, even at low conversions of 52%, whereas significant decreases in viability and density were present when the filler content was 35% or below (by mass). The overall results demonstrate the complexity of the cell-material interactions, with properties including DC, filler type, filler mass ratio, and surface morphology influencing the cell response. The combinatorial approach described herein enables simultaneous screening of multiple compositions and material properties, providing a more thorough characterization of cell response for the improved selection of biocompatible composite formulations and processing conditions.
M*, Monfared; ME, Bahrololoom
2016-01-01
Statement of Problem: Dental resin composites are becoming prevalent in restorative dentistry and have almost replaced amalgam nowadays. Consequently, their mechanical properties and durability are critical. Objectives: The aim of this study was to produce Pyrex glass nano-particles by wet milling process and use them as reinforcement in dental resins for anterior restorations and then examination of fractographic properties of these composites. Materials and Methods: The glass nano-particles were achieved via wet milling. The surface of the particles was modified with 3-(Trimethoxysilyl) propyl methacrylate (γ-MPTMS) silane in order to improve their surface. Fourier transform infra-red (FTIR) analysis showed that the silane groups provided double bonds to the surface of the particles and prevented agglomeration. Then, the composite resins were made with different weight percentages of Pyrex glass. The mechanical properties of samples flexural test were evaluated. The required energy for fracture of the specimens was achieved via this test. The fracture surfaces of the samples were analyzed using a scanning electron microscope (SEM) in order to explain the mechanisms of fracture. Results: The results and analysis showed that increasing the glass nano-particles mass fraction had a great effect on mechanical properties of the composites due to the mechanisms of crack propagation and crack deflection as well as preventing void formation. The effective energy dissipation mechanisms such as crack pinning and deflection, was observed in SEM micrographs. Conclusions: Void formation in the low filler content composite is one of the mechanisms to decrease the energy required for fracture of these composites and eventually weaken them. PMID:28959761
Carbon fiber content measurement in composite
NASA Astrophysics Data System (ADS)
Wang, Qiushi
Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and Malek methods. The activation energy (Ea) of the solid-state process is determined to be 202 kJ mol--1 in an oxidative atmosphere using Kissinger's method, which is 10-15 kJ mol--1 more than the results calculated in a nitrogen atmosphere. The value of the activation energy obtained using Ozawa-Flynn methods is in agreement with that using the Kissinger method. Different degradation mechanisms are used to compare with this value. Based on the analytical result, the actual thermal degradation mechanism of the CPPS is a Dn deceleration type. The carbonization temperature range of the CPPS is the same as pure PPS resin.
Buckwalter, Theodore F.; Zimmerman, Tammy M.; Fulton, John W.
2006-01-01
Concentrations of fecal-indicator bacteria were determined in 1,027 water-quality samples collected from July 2001 through August 2005 during dry- (72-hour dry antecedent period) and wet-weather (48-hour dry antecedent period and at least 0.3 inch of rain in a 24-hour period) conditions in the Allegheny, Monongahela, and Ohio Rivers (locally referred to as the Three Rivers) and selected tributaries in Allegheny County. Samples were collected at five sampling sites on the Three Rivers and at eight sites on four tributaries to the Three Rivers having combined sewer overflows. Water samples were analyzed for three fecal-indicator organisms fecal coliform, Escherichia coli (E. coli), and enterococci bacteria. Left-bank and right-bank surface-water samples were collected in addition to a cross-section composite sample at each site. Concentrations of fecal coliform, E. coli, and enterococci were detected in 98.6, 98.5, and 87.7 percent of all samples, respectively. The maximum fecal-indicator bacteria concentrations were collected from Sawmill Run, a tributary to the Ohio River; Sawmill Run at Duquesne Heights had concentrations of fecal coliform, E. coli, and enterococci of 410,000, 510,000, and 180,000 col/100 mL, respectively, following a large storm. The samples collected in the Three Rivers and selected tributaries frequently exceeded established recreational standards and criteria for bacteria. Concentrations of fecal coliform exceeded the Pennsylvania water-quality standard (200 col/100 mL) in approximately 63 percent of the samples. Sample concentrations of E. coli and enterococci exceeded the U.S. Environmental Protection Agency (USEPA) water-quality criteria (235 and 61 col/100 mL, respectively) in about 53 and 47 percent, respectively, of the samples. Fecal-indicator bacteria were most strongly correlated with streamflow, specific conductance, and turbidity. These correlations most frequently were observed in samples collected from tributary sites. Fecal-indicator bacteria concentrations and turbidity were correlated to the location of sample collection in the cross section. Most differences were between bank and composite samples; differences between right-bank and left-bank samples were rarely observed. The Allegheny River sites had more significant correlations than the Monongahela or Ohio River sites. Comparisons were made between fecal-indicator bacteria in composite samples collected during dry-weather, wet-weather day-one, wet-weather day-two (tributary sites only), and wet-weather day-three (Three Rivers sites only) events in the Three Rivers and selected tributary sites. The lowest median bacteria concentrations generally were observed in the dry-weather composite samples. All median bacteria concentrations in dry-weather composite samples in the five Three Rivers sites were below water-quality standards and criteria; bacteria concentrations in the upstream tributary sites rarely met all standards or criteria. Only Turtle Creek, Thompson Run, and Chartiers Creek had at least one median bacteria concentration below water-quality standards or criteria. Median bacteria concentrations in the composite samples generally were higher the day after a wet-weather event compared to dry-weather composite samples and other wet-weather composite samples collected. In the five Three Rivers sites, median bacteria concentrations 3 days after a wet-weather event in composite samples tended to fall below the water-quality standards and criteria; in the eight tributary sites, median bacteria concentrations in the dry-weather and wet-weather composite samples generally were above the water-quality standards or criteria. Composite samples collected at the upstream sites on the Three Rivers and selected tributaries generally had lower median bacteria concentrations than composite samples collected at the downstream sites during dry- and wet-weather events. Higher concentrations downstream may be because o
Ultrasonic Studies of Composites Undergoing Thermal and Fatigue Loading
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Winfree, William P.; Johnston, Patrick H.
1997-01-01
New composite materials possess attractive properties for use in advanced aircraft. A necessary requirement for their introduction into aeronautic use is an accurate understanding of their long term aging processes so that proper design criteria can be established. In order to understand those properties, these composites must be exposed to thermal and load cycles that are characteristic of flight conditions. Additionally, airline companies will require nondestructive evaluation (NDE) methods that can be used in the field to assess the condition of these new materials as they age. As part of an effort to obtain the required information about new composites for aviation use, we are performing ultrasonic measurements both in the NDE laboratory and in the materials testing laboratory at NASA. The materials testing laboratory is equipped with environmental chambers mounted on load frames so that composite samples can be exposed to thermal and loading cycles representative of flight protocols. Applying both temperature and load simultaneously will help to highlight temperature and load interactions during the aging of these composite materials. This study reports on our initial ultrasonic attenuation results from thermoset and thermoplastic composite samples. Ultrasonic attenuation measurements have been used reliably to assess the effects of material degradation. For example, recently, researchers have shown that by using frequencies of ultrasound on the order of 24 MHz, they could obtain adequate contrast in the evaluation of thermal degradation in these composites. This paper will present data that shows results at a lower frequency range. In addition, we report results on the frequency dependence of attenuation as the slope of attenuation with respect to frequency, beta = delta alpha (f) / delta f. The slope of attenuation is an attractive parameter since it is quantitative, yet does not require interface corrections like conventional quantitative attenuation measurements. This is a consequence of the assumption that interface correction terms are frequently independent. Uncertainty in those corrections terms compromises the value of conventional quantitative attenuation data.
Hierarchical Simulation of Hot Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.
1993-01-01
Computational procedures are described to simulate the thermal and mechanical behavior of high temperature metal matrix composites (HT-MMC) in the following three broad areas: (1) Behavior of HT-MMC's from micromechanics to laminate via Metal Matrix Composite Analyzer (METCAN), (2) tailoring of HT-MMC behavior for optimum specific performance via Metal Matrix Laminate Tailoring (MMLT), and (3) HT-MMC structural response for hot structural components via High Temperature Composite Analyzer (HITCAN). Representative results from each area are presented to illustrate the effectiveness of computational simulation procedures. The sample case results show that METCAN can be used to simulate material behavior such as strength, stress-strain response, and cyclic life in HTMMC's; MMLT can be used to tailor the fabrication process for optimum performance such as that for in-service load carrying capacity of HT-MMC's; and HITCAN can be used to evaluate static fracture and fatigue life of hot pressurized metal matrix composite rings.
Sun, Xinbo; Zhang, Lifeng; Cao, Zhengbing; Deng, Ying; Liu, Li; Fong, Hao; Sun, Yuyu
2010-04-01
Herein we report that electrospun composite nanofiber fabrics containing uniformly dispersed antimicrobial agents and having large surface-to-mass ratios are an innovative type of antimicrobial polymeric materials with durable, nonleachable, and biocompatible characteristics, and more importantly, superior antimicrobial efficacy. Specifically, electrospun cellulose acetate (CA) nanofiber fabrics containing an N-halamine antimicrobial agent of bis(N-chloro-2,2,6,6-tetramethyl-4-piperidinyl) sebacate (Cl-BTMP) were prepared and evaluated; the results of antimicrobial efficacy indicated that the electrospun composite nanofiber fabrics substantially outperformed the control samples that were solution-cast films containing identical amounts of CA and Cl-BTMP. Additionally, the results of trypan blue assay test suggested that the electrospun composite nanofiber fabrics also had excellent mammal cell viability. The developed electrospun composite nanofiber fabrics with superior antimicrobial efficacy are expected to find vital applications in biomedical, hygienic, and many other fields.
The effect of short-range spatial variability on soil sampling uncertainty.
Van der Perk, Marcel; de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Sansone, Umberto; Jeran, Zvonka; Jaćimović, Radojko
2008-11-01
This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T.; Fondeur, F.; Fink, S.
Solvent Hold Tank (SHT) samples are sent to Savannah River National Laboratory (SRNL) to examine solvent composition changes over time. On December 5, 2011, Operations personnel delivered six samples from the SHT (MCU-11-1452 through -1457) for analysis. These samples are intended to verify that the solvent is within the specified composition range. The results from the analyses are presented in this document. Samples were received in p-nut vials containing {approx}10 mL each. Once taken into the Shielded Cells, the samples were combined. Samples were removed for analysis by density, semi-volatile organic analysis (SVOA), high performance liquid chromatography (HPLC), and Fourier-Transformmore » Infra-Red spectroscopy (FTIR). Details for the work are contained in a controlled laboratory notebook. Each of the six p-nut vials contained a single phase, with no apparent solids contamination or cloudiness. Table 1 contains the results of the analyses for the combined samples. A duplicate density measurement of the organic phase gave a result of 0.844 g/mL (1.2% residual standard deviation - RSD). Using the density as a starting point, we know that the Isopar{reg_sign} L should be slightly higher than nominal and the other components should be slightly lower than nominal. The results as a whole are internally consistent. All measurements indicate Isopar{reg_sign} L higher than nominal, and Modifier lower than nominal. The extractant result is higher than expected - given the other results, the extractant concentration should be under nominal values. Using the measured density as well as the Isopar{reg_sign} L and Modifier concentrations from the FTIR results, we calculate an extractant concentration of 6888 mg/L. This value is outside the analytical uncertainty of the reported HPLC value. Given the other results, this most likely indicates that the HPLC extractant result was biased high. When compared to the MCU density target of 0.845 g/mL, there is no need to add an Isopar{reg_sign} L trim. However, it is advisable to add sufficient trioctylamine (TOA) to return the solvent composition to within specifications as that component has declined to about 64% the concentration since the last analysis. The TOA measurement was performed twice, so the result is not an analytical aberration. TOA has not been added to the system since the previous quarterly sample in October 2011. As with the previous solvent sample results, these analyses indicate that the solvent does not require Isopar{reg_sign} L trimming at this time. However, addition of TOA is warranted. These findings indicate that the new protocols for solvent monitoring and control are yielding favorable results. Nevertheless, the deviation in the TOA concentration since the last analysis indicates continued periodic (i.e., quarterly) monitoring is recommended.« less
The FDA's market basket study reports total arsenic concentrations from composite diet samples. The use of composite diets, based on market basket sampling, is the most cost effective means of obtaining a generic arsenic exposure estimate for a population. For example, the tota...
Shifts in tree functional composition amplify the response of forest biomass to climate
NASA Astrophysics Data System (ADS)
Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W.
2018-04-01
Forests have a key role in global ecosystems, hosting much of the world’s terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.
Shifts in tree functional composition amplify the response of forest biomass to climate.
Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W
2018-04-05
Forests have a key role in global ecosystems, hosting much of the world's terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.
Duan, Chao; Meng, Jingru; Wang, Xinqi; Meng, Xin; Sun, Xiaole; Xu, Yongjian; Zhao, Wei; Ni, Yonghao
2018-08-01
A novel cellulose-based antibacterial material, namely silver nanoparticles@ metal-organic frameworks@ carboxymethylated fibers composites (Ag NPs@ HKUST-1@ CFs), was synthesized. The results showed that the metal-organic frameworks (HKUST-1) were uniformly anchored on the fiber's surfaces by virtue of complexation between copper ions in HKUST-1 and carboxyl groups on the carboxymethylated fibers (CFs). The silver nanoparticles (Ag NPs) were immobilized and well-dispersed into the pores and/or onto the surfaces of HKUST-1 via in situ microwave reduction, resulting in the formation of novel Ag NPs@ HKUST-1@ CFs composites. The antibacterial assays showed that the as-prepared composites exhibited a much higher antibacterial activity than Ag NPs@ CFs or HKUST-1@ CFs samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xie, Xianjun; Wang, Yanxin; Su, Chunli; Duan, Mengyu
2013-02-01
To better understand the effects of recharge and discharge on the hydrogeochemistry of high levels of arsenic (As) and fluoride (F) in groundwater, environmental isotopic composition (delta2H and delta18O) and chloride (Cl) concentrations were analyzed in 29 groundwater samples collected from the Datong Basin. High arsenic groundwater samples (As > 50 micog/L) were found to be enriched in lighter isotopic composition that ranged from -92 to -78 per thousand for deuterium (delta2H) and from -12.5 to -9.9 per thousand for oxygen-18 (delta18O). High F-containing groundwater (F > 1 mg/L) was relatively enriched in heavier isotopic composition and varied from -90 to -57 per thousand and from -12.2 to -6.7 per thousand for delta2H and delta18O, respectively. High chloride concentrations and delta18O values were primarily measured in groundwater samples from the northern and southwestern portions of the study area, indicating the effect of evaporation on groundwater. The observation of relatively homogenized and low delta18O values and chloride concentrations in groundwater samples from central part of the Datong Basin might be a result of fast recharge by irrigation returns, which suggests that irrigation using arsenic-contaminated groundwater affected the occurrence of high arsenic-containing groundwater in the basin.
Canfield, Timothy J.; Dwyer, F. James; Fairchild, James F.; Haverland, Pamela S.; Ingersoll, Christopher G.; Kemble, Nile E.; Mount, David R.; La Point, Thomas W.; Burton, G. Allen; Swift, M. C.
1996-01-01
Sediments in many Great Lakes harbors and tributary rivers are contaminated. As part of the USEPA's Assessment and Remediation of Contaminated Sediment (ARCS) program, a number of studies were conducted to determine the nature and extent of sediment contamination in Great Lakes Areas of Concern (AOC). This paper describes the composition of benthic invertebrate communities in contaminated sediments and is one in a series of papers describing studies conducted to evaluate sediment toxicity from three AOC's (Buffalo River, NY; Indiana Harbor, IN; Saginaw River, MI), as part of the ARCS Program. Oligochaeta (worms) and Chironomidae (midge) comprised over 90% of the benthic invertebrate numbers in samples collected from depositional areas. Worms and midge consisted of taxa identified as primarily contaminant tolerant organisms. Structural deformities of mouthparts in midge larvae were pronounced in many of the samples. Good concurrence was evident between measures of laboratory toxicity, sediment contaminant concentration, and benthic invertebrate community composition in extremely contaminated samples. However, in moderately contaminated samples, less concordance was observed between the benthos community composition and either laboratory toxicity test results or sediment contaminant concentration. Laboratory sediment toxicity tests may better identify chemical contamination in sediments than many commonly used measures of benthic invertebrate community composition. Benthic measures may also reflect other factors such as habitat alteration. Evaluation of non-contaminant factors are needed to better interpret the response of benthic invertebrates to sediment contamination.
The XRD Amorphous Component in John Klein Drill Fines at Yellowknife Bay, Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Ming,, Douglas W.; Blake, David; Vaniman, David; Bish, David L; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Gellert, Ralf; Campbell, Iain;
2013-01-01
Drill fines of mudstone (targets John Klein and Cumberland) from the Sheepbed unit at Yel-lowknife Bay were analyzed by MSL payload elements including the Chemistry and Mineralogy (CheMin), APXS (Alpha Particle X-Ray Spectrometer), and Sample Analysis at Mars (SAM) instruments. CheMin XRD results show a variety of crystalline phases including feldspar, pyroxene, olivine, oxides, oxyhydroxides, sulfates, sulfides, a tri-octahedral smectite, and XRD amorphous material. The drill fines are distinctly different from corresponding analyses of the global soil (target Rocknest) in that the mudstone samples contained detectable phyllosilicate. Here we focus on John Klein and combine CheMin and APXS data to calculate the chemical composition and concentration of the amorphous component. The chemical composition of the amorphous plus smectite component for John Klein was calculated by subtracting the abundance-weighted chemical composition of the individual XRD crystalline components from the bulk composition of John Kline as measured by APXS. The chemical composition of individual crystalline components was determined either by stoichiometry (e.g., hematite and magnetite) or from their unit cell parameters (e.g., feldspar, olivine, and pyroxene). The chemical composition of the amorphous + smectite component (approx 71 wt.% of bulk sample) and bulk chemical composition are similar. In order to calculate the chemical composition of the amorphous component, a chemical composition for the tri-octahedral smectite must be assumed. We selected two tri-octahedral smectites with very different MgO/(FeO + Fe2O3) ratios (34 and 1.3 for SapCa1 and Griffithite, respectively). Relative to bulk sample, the concentration of amorphous and smectite components are 40 and 29 wt.% for SapCa1 and 33 and 36 wt.% for Griffithite. The amount of smectite was calculated by requiring the MgO concentration to be approx 0 wt.% in the amorphous component. Griffithite is the preferred smectite because the position of its 021 diffraction peak is similar to that reported for John Klein. In both cases, the amorphous component has low SiO2 and MgO and high FeO + Fe2O3, P2O5, and SO3 concentrations relative to bulk sample. The chemical composition of the bulk drill fines and XRD crystalline, smectite, and amorphous components implies alteration of an initially basaltic material under near neutral conditions (not acid sulfate), with the sulfate incorporated later as veins of CaSO4 injected into the mudstone.
NASA Astrophysics Data System (ADS)
Yepez, Johanna
Statement of the problem: There is a weak connection between the filler and the resin matrix of dental composites caused primarily by hydrolysis of silane coupling agent, therefore, jeopardizing the mechanical properties of the dental restorations. Purpose: The purpose of this study was to compare the diametral tensile strength (DTS) of a nano-mechanically bonded polymer ceramic nano composite (pcnc) versus the chemically bonding prototype polymer ceramic nano composite (pcnc) fabricated by using hydrolytically stable interphase. Materials and Methods: Composites were made with 60wt % filler, 38% triethyleneglycol dimethacrylate (TEDGMA), 1% camphorquinone (CQ) and 1% 2-(dimethylamino) ethyl methacrylate (DMAEMA). Tests for DTS were performed using a universal testing machine. The disk-shaped specimens were loaded in compression between two supporting plates at a crosshead speed of 0.5 mm/min until fracture. The samples, measuring 3 mm in height and 6 mm in diameter, were produced in a round stainless steel (SS) mold. A total of 144 samples were created. Groups of 48 samples were made for each of three different fillers. Specimens were soaked in artificial saliva at 37° for four time periods, dry(t=0), 1 day, 7 days, 28 days). At the end of each soaking time DTS tests were performed. Results: There where statistically significant differences in the DTS between the filler groups and the soaking times (p=<0.001) as well as for the pairwise comparison between the different filler group values and between the different soaking times as an individual treatment. Overall, longer soaking times resulted in lower mean DTS values. The DTS of the PCNC for filler #1 decreased to 82.4% of the original value after 1 day of soaking, 67.2% after 7 days and 27.2 % after 28 days. For filler #2 decreased to 54.8% of the original value after 1 day of soaking, 62.3% after 7 days and 61.2% after 28 days. For filler #3 decreased to 71.2% of the original value, 67.3% after 7 days and 51.4% after 28 days (Fig 8). Conclusions: Within the limitation of this study it can be concluded that the use of coupling agent will significantly influence the degradation of the material under wet environment. Clinical Implication: Changes within matrix composition and bonding interphase of resin base composites promise improvements of mechanical properties, decreasing the incidence of clinical failure of posterior composite restorations, hence resulting in a more ideal restorative material for use in posterior segment. The results of this investigation showed that the deficiency of hydrostability in dental composites is a detrimental factor in the mechanical behavior. The silanation of the filler particles have a positive influence on the mechanical properties of dental composites but the hydrolysis of the silane coupling agent can dramatically reduce the average lifetime of dental composites.
NASA Astrophysics Data System (ADS)
Salih, Wafaa Mahdi; Abdulkader, Niveen Jamal; Salih, Sana Mahdi
2018-05-01
This research were studied the effect of some mechanical properties for composite materials reinforced fiber and prepared from material (polyester with various natural fibers) then studied the effect of chemical treatment on the same fiber immerse in 10% NaOH solution for half an hour and then compared, the results of the same test of composite materials without and with chemical treatment and the results proved that there is a clear effect when treat the fiber compared to non-chemical treatment of the fibers also noted that hemp fibers loaded the stress higher than other fibers for both cases to distinguish them that the hemp fiber has continuous fibers either the other fibers are characterized by the type of cross linking or chopped types in tensile test, and the results of the same test of composite materials without and with chemical treatment and the results proved that the hardness of the fiber composite while the treated fiber composite samples better than the untreated fiber, and from the figures the palm leaf has the highest value than lufa fiber, hemp fiber and the smallest value is in sisal fiber because of the nature of formation fibers materials.
Ecological tolerances of Miocene larger benthic foraminifera from Indonesia
NASA Astrophysics Data System (ADS)
Novak, Vibor; Renema, Willem
2018-01-01
To provide a comprehensive palaeoenvironmental reconstruction based on larger benthic foraminifera (LBF), a quantitative analysis of their assemblage composition is needed. Besides microfacies analysis which includes environmental preferences of foraminiferal taxa, statistical analyses should also be employed. Therefore, detrended correspondence analysis and cluster analysis were performed on relative abundance data of identified LBF assemblages deposited in mixed carbonate-siliciclastic (MCS) systems and blue-water (BW) settings. Studied MCS system localities include ten sections from the central part of the Kutai Basin in East Kalimantan, ranging from late Burdigalian to Serravallian age. The BW samples were collected from eleven sections of the Bulu Formation on Central Java, dated as Serravallian. Results from detrended correspondence analysis reveal significant differences between these two environmental settings. Cluster analysis produced five clusters of samples; clusters 1 and 2 comprise dominantly MCS samples, clusters 3 and 4 with dominance of BW samples, and cluster 5 showing a mixed composition with both MCS and BW samples. The results of cluster analysis were afterwards subjected to indicator species analysis resulting in the interpretation that generated three groups among LBF taxa: typical assemblage indicators, regularly occurring taxa and rare taxa. By interpreting the results of detrended correspondence analysis, cluster analysis and indicator species analysis, along with environmental preferences of identified LBF taxa, a palaeoenvironmental model is proposed for the distribution of LBF in Miocene MCS systems and adjacent BW settings of Indonesia.