Pleural plaques and their effect on lung function in Libby vermiculite miners.
Clark, Kathleen A; Flynn, J Jay; Goodman, Julie E; Zu, Ke; Karmaus, Wilfried J J; Mohr, Lawrence C
2014-09-01
Multiple studies have investigated the relationship between asbestos-related pleural plaques (PPs) and lung function, with disparate and inconsistent results. Most use chest radiographs to identify PPs and simple spirometry to measure lung function. High-resolution CT (HRCT) scanning improves the accuracy of PP identification. Complete pulmonary function tests (PFTs), including spirometry, lung volumes, and diffusing capacity of the lung for carbon monoxide, provide a more definitive assessment of lung function. The goal of this study was to determine, using HRCT scanning and complete PFTs, the effect of PPs on lung function in Libby vermiculite miners. The results of HRCT scanning and complete PFTs performed between January 2000 and August 2012 were obtained from the medical records of 166 Libby vermiculite miners. Multivariate regression analyses with Tukey multivariate adjustment were used to assess statistical associations between the presence of PPs and lung function. Adjustments were made for age, BMI, smoking history, duration of employment, and years since last occupational asbestos exposure. Nearly 90% of miners (n = 149) had evidence of PPs on HRCT scan. No significant differences in spirometry results, lung volumes, or diffusing capacity of the lung for carbon monoxide were found between miners with PPs alone and miners with normal HRCT scans. Miners with both interstitial fibrosis and the presence of PPs had a significantly decreased total lung capacity in comparison with miners with normal HRCT scans (P = .02). Age, cumulative smoking history, and BMI were significant covariates that contributed to abnormal lung function. Asbestos-related PPs alone have no significant effect on lung function in Libby vermiculite miners.
Quantification of heterogeneity in lung disease with image-based pulmonary function testing.
Stahr, Charlene S; Samarage, Chaminda R; Donnelley, Martin; Farrow, Nigel; Morgan, Kaye S; Zosky, Graeme; Boucher, Richard C; Siu, Karen K W; Mall, Marcus A; Parsons, David W; Dubsky, Stephen; Fouras, Andreas
2016-07-27
Computed tomography (CT) and spirometry are the mainstays of clinical pulmonary assessment. Spirometry is effort dependent and only provides a single global measure that is insensitive for regional disease, and as such, poor for capturing the early onset of lung disease, especially patchy disease such as cystic fibrosis lung disease. CT sensitively measures change in structure associated with advanced lung disease. However, obstructions in the peripheral airways and early onset of lung stiffening are often difficult to detect. Furthermore, CT imaging poses a radiation risk, particularly for young children, and dose reduction tends to result in reduced resolution. Here, we apply a series of lung tissue motion analyses, to achieve regional pulmonary function assessment in β-ENaC-overexpressing mice, a well-established model of lung disease. The expiratory time constants of regional airflows in the segmented airway tree were quantified as a measure of regional lung function. Our results showed marked heterogeneous lung function in β-ENaC-Tg mice compared to wild-type littermate controls; identified locations of airway obstruction, and quantified regions of bimodal airway resistance demonstrating lung compensation. These results demonstrate the applicability of regional lung function derived from lung motion as an effective alternative respiratory diagnostic tool.
Fibroblast growth factor 10 haploinsufficiency causes chronic obstructive pulmonary disease.
Klar, Joakim; Blomstrand, Peter; Brunmark, Charlott; Badhai, Jitendra; Håkansson, Hanna Falk; Brange, Charlotte Sollie; Bergendal, Birgitta; Dahl, Niklas
2011-10-01
Genetic factors influencing lung function may predispose to chronic obstructive pulmonary disease (COPD). The fibroblast growth factor 10 (FGF10) signalling pathway is critical for lung development and lung epithelial renewal. The hypothesis behind this study was that constitutive FGF10 insufficiency may lead to pulmonary disorder. Therefore investigation of the pulmonary functions of patients heterozygous for loss of function mutations in the FGF10 gene was performed. The spirometric measures of lung function from patients and non-carrier siblings were compared and both groups were related to matched reference data for normal human lung function. The patients show a significant decrease in lung function parameters when compared to control values. The average FEV1/IVC quota (FEV1%) for the patients is 0.65 (80% of predicted) and reversibility test using Terbutalin resulted in a 3.7% increase in FEV1. Patients with FGF10 haploinsufficiency have lung function parameters indicating COPD. A modest response to Terbutalin confirms an irreversible obstructive lung disease. These findings support the idea that genetic variants affecting the FGF10 signalling pathway are important determinants of lung function that may ultimately contribute to COPD. Specifically, the results show that FGF10 haploinsufficiency affects lung function measures providing a model for a dosage sensitive effect of FGF10 in the development of COPD.
Revell, M P; Lewis, M E; Llewellyn-Jones, C G; Wilson, I C; Bonser, R S
2000-12-01
We studied serial lung function in 11 patients with bronchiolitis obliterans syndrome who were treated with tacrolimus conversion following lung or heart-lung transplantation. Our results show that tacrolimus conversion slows the decline of lung function in bronchiolitis obliterans syndrome. The attenuation continues for at least 1 year following conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Q; Zhang, M; Chen, T
Purpose: Variation in function of different lung regions has been ignored so far for conventional lung cancer treatment planning, which may lead to higher risk of radiation induced lung disease. 4DCT based lung ventilation imaging provides a novel yet convenient approach for lung functional imaging as 4DCT is taken as routine for lung cancer treatment. Our work aims to evaluate the impact of accounting for spatial heterogeneity in lung function using 4DCT based lung ventilation imaging for proton and IMRT plans. Methods: Six patients with advanced stage lung cancer of various tumor locations were retrospectively evaluated for the study. Protonmore » and IMRT plans were designed following identical planning objective and constrains for each patient. Ventilation images were calculated from patients’ 4DCT using deformable image registration implemented by Velocity AI software based on Jacobian-metrics. Lung was delineated into two function level regions based on ventilation (low and high functional area). High functional region was defined as lung ventilation greater than 30%. Dose distribution and statistics in different lung function area was calculated for patients. Results: Variation in dosimetric statistics of different function lung region was observed between proton and IMRT plans. In all proton plans, high function lung regions receive lower maximum dose (100.2%–108.9%), compared with IMRT plans (106.4%–119.7%). Interestingly, three out of six proton plans gave higher mean dose by up to 2.2% than IMRT to high function lung region. Lower mean dose (lower by up to 14.1%) and maximum dose (lower by up to 9%) were observed in low function lung for proton plans. Conclusion: A systematic approach was developed to generate function lung ventilation imaging and use it to evaluate plans. This method hold great promise in function analysis of lung during planning. We are currently studying more subjects to evaluate this tool.« less
Potential Role of Lung Ventilation Scintigraphy in the Assessment of COPD
Cukic, Vesna; Begic, Amela
2014-01-01
Objective: To highlight the importance of the lung ventilation scintigraphy (LVS) to study the regional distribution of lung ventilation and to describe most frequent abnormal patterns of lung ventilation distribution obtained by this technique in COPD and to compare the information obtained by LVS with the that obtained by traditional lung function tests. Material and methods: The research was done in 20 patients with previously diagnosed COPD who were treated in Intensive care unit of Clinic for pulmonary diseases and TB “Podhrastovi” Clinical Center, University of Sarajevo in exacerbation of COPD during first three months of 2014. Each patient was undergone to testing of pulmonary function by body plethysmography and ventilation/perfusion lung scintigraphy with radio pharmaceutics Technegas, 111 MBq Tc -99m-MAA. We compared the results obtained by these two methods. Results: All patients with COPD have a damaged lung function tests examined by body plethysmography implying airflow obstruction, but LVS indicates not only airflow obstruction and reduced ventilation, but also indicates the disorders in distribution in lung ventilation. Conclusion: LVS may add further information to the functional evaluation of COPD to that provided by traditional lung function tests and may contribute to characterizing the different phenotypes of COPD. PMID:25132709
Huang, Qijie; Jabbour, Salma K; Xiao, Zhiyan; Yue, Ning; Wang, Xiao; Cao, Hongbin; Kuang, Yu; Zhang, Yin; Nie, Ke
2018-04-25
The principle aim of this study is to incorporate 4DCT ventilation imaging into functional treatment planning that preserves high-functioning lung with both double scattering and scanning beam techniques in proton therapy. Eight patients with locally advanced non-small-cell lung cancer were included in this study. Deformable image registration was performed for each patient on their planning 4DCTs and the resultant displacement vector field with Jacobian analysis was used to identify the high-, medium- and low-functional lung regions. Five plans were designed for each patient: a regular photon IMRT vs. anatomic proton plans without consideration of functional ventilation information using double scattering proton therapy (DSPT) and intensity modulated proton therapy (IMPT) vs. functional proton plans with avoidance of high-functional lung using both DSPT and IMPT. Dosimetric parameters were compared in terms of tumor coverage, plan heterogeneity, and avoidance of normal tissues. Our results showed that both DSPT and IMPT plans gave superior dose advantage to photon IMRTs in sparing low dose regions of the total lung in terms of V5 (volume receiving 5Gy). The functional DSPT only showed marginal benefit in sparing high-functioning lung in terms of V5 or V20 (volume receiving 20Gy) compared to anatomical plans. Yet, the functional planning in IMPT delivery, can further reduce the low dose in high-functioning lung without degrading the PTV dosimetric coverages, compared to anatomical proton planning. Although the doses to some critical organs might increase during functional planning, the necessary constraints were all met. Incorporating 4DCT ventilation imaging into functional proton therapy is feasible. The functional proton plans, in intensity modulated proton delivery, are effective to further preserve high-functioning lung regions without degrading the PTV coverage.
Wu, J; Kreis, I; Griffiths, D; Darling, C
2002-01-01
Aims: To determine the association between lung function of coke oven workers and exposure to coke oven emissions. Methods: Lung function data and detailed work histories for workers in recovery coke ovens of a steelworks were extracted from a lung function surveillance system. Multiple regressions were employed to determine significant predictors for lung function indices. The first sets of lung function tests for 613 new starters were pooled to assess the selection bias. The last sets of lung function tests for 834 subjects with one or more year of coke oven history were pooled to assess determinants of lung function. Results: Selection bias associated with the recruitment process was not observed among the exposure groups. For subjects with a history of one or more years of coke oven work, each year of working in the most exposed "operation" position was associated with reductions in FEV1 of around 9 ml (p = 0.006, 95% CI: 3 ml to 16 ml) and in FVC of around 12 ml (p = 0.002, 95% CI: 4 ml to 19 ml). Negative effects of smoking on lung function were also observed. Conclusions: Exposure to coke oven emissions was found to be associated with lower FEV1 and FVC. Effects of work exposure on lung function are similar to those found in other studies. PMID:12468747
Takai, Daiya
2014-12-01
The symposium consisted of four parts: history of lung function tests, nitric oxide for diagnosis and monitoring of bronchial asthma, radiological and functional changes of the lung in COPD, and combined pulmonary fibrosis and emphysema (CPFE) occasionally showing almost normal results in lung function tests. The history of lung function tests was presented by Dr. Naoko Tojo of the Tokyo Medical and Dental University. Nitric oxide tests in clinical use for diagnosis and monitoring of bronchial asthma were presented by Dr. Hiroyuki Nagase of Teikyo University. Radiological and functional changes of the lung in COPD were presented by Dr. Shigeo Muro of Kyoto University. Clinical features of combined pulmonary fibrosis and emphysema and their associated lung function were presented by Dr. Daiya Takai of the University of Tokyo. I hope that discussing the history of lung function tests until the present was useful for many medical technologists. (Review).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradskiy, Y; Miyasaka, Y; Kadoya, N
Purpose: CT-ventilation is an exciting new imaging modality that uses 4DCTs to calculate lung ventilation. Studies have proposed to use 4DCT-ventilation imaging for functional avoidance radiotherapy which implies designing treatment plans to spare functional portions of the lung. Although retrospective studies have been performed to evaluate the dosimetric gains to functional lung; no work has been done to translate the dosimetric gains to an improvement in pulmonary toxicity. The purpose of our work was to evaluate the potential reduction in toxicity for 4DCT-ventilation based functional avoidance. Methods: 70 lung cancer patients with 4DCT imaging were used for the study. CT-ventilationmore » maps were calculated using the patient’s 4DCT, deformable image registrations, and a density-change-based algorithm. Radiation pneumonitis was graded using imaging and clinical information. Log-likelihood methods were used to fit a normal-tissue-complication-probability (NTCP) model predicting grade 2+ radiation pneumonitis as a function of doses (mean and V20) to functional lung (>15% ventilation). For 20 patients a functional plan was generated that reduced dose to functional lung while meeting RTOG 0617-based constraints. The NTCP model was applied to the functional plan to determine the reduction in toxicity with functional planning Results: The mean dose to functional lung was 16.8 and 17.7 Gy with the functional and clinical plans respectively. The corresponding grade 2+ pneumonitis probability was 26.9% with the clinically-used plan and 24.6% with the functional plan (8.5% reduction). The V20-based grade 2+ pneumonitis probability was 23.7% with the clinically-used plan and reduced to 19.6% with the functional plan (20.9% reduction). Conclusion: Our results revealed a reduction of 9–20% in complication probability with functional planning. To our knowledge this is the first study to apply complication probability to convert dosimetric results to toxicity improvement. The results presented in the current work provide seminal data for prospective clinical trials in functional avoidance. YV discloses funding from State of Colorado. TY discloses National Lung Cancer Partnership; Young Investigator Research grant.« less
Proteasome function is not impaired in healthy aging of the lung.
Caniard, Anne; Ballweg, Korbinian; Lukas, Christina; Yildirim, Ali Ö; Eickelberg, Oliver; Meiners, Silke
2015-10-01
Aging is the progressive loss of cellular function which inevitably leads to death. Failure of proteostasis including the decrease in proteasome function is one hallmark of aging. In the lung, proteasome activity was shown to be impaired in age-related diseases such as chronic obstructive pulmonary disease. However, little is known on proteasome function during healthy aging. Here, we comprehensively analyzed healthy lung aging and proteasome function in wildtype, proteasome reporter and immunoproteasome knockout mice. Wildtype mice spontaneously developed senile lung emphysema while expression and activity of proteasome complexes and turnover of ubiquitinated substrates was not grossly altered in lungs of aged mice. Immunoproteasome subunits were specifically upregulated in the aged lung and the caspase-like proteasome activity concomitantly decreased. Aged knockout mice for the LMP2 or LMP7 immunoproteasome subunits showed no alteration in proteasome activities but exhibited typical lung aging phenotypes suggesting that immunoproteasome function is dispensable for physiological lung aging in mice. Our results indicate that healthy aging of the lung does not involve impairment of proteasome function. Apparently, the reserve capacity of the proteostasis systems in the lung is sufficient to avoid severe proteostasis imbalance during healthy aging.
LINKING LUNG AIRWAY STRUCTURE TO PULMONARY FUNCTION VIA COMPOSITE BRIDGE REGRESSION
Chen, Kun; Hoffman, Eric A.; Seetharaman, Indu; Jiao, Feiran; Lin, Ching-Long; Chan, Kung-Sik
2017-01-01
The human lung airway is a complex inverted tree-like structure. Detailed airway measurements can be extracted from MDCT-scanned lung images, such as segmental wall thickness, airway diameter, parent-child branch angles, etc. The wealth of lung airway data provides a unique opportunity for advancing our understanding of the fundamental structure-function relationships within the lung. An important problem is to construct and identify important lung airway features in normal subjects and connect these to standardized pulmonary function test results such as FEV1%. Among other things, the problem is complicated by the fact that a particular airway feature may be an important (relevant) predictor only when it pertains to segments of certain generations. Thus, the key is an efficient, consistent method for simultaneously conducting group selection (lung airway feature types) and within-group variable selection (airway generations), i.e., bi-level selection. Here we streamline a comprehensive procedure to process the lung airway data via imputation, normalization, transformation and groupwise principal component analysis, and then adopt a new composite penalized regression approach for conducting bi-level feature selection. As a prototype of composite penalization, the proposed composite bridge regression method is shown to admit an efficient algorithm, enjoy bi-level oracle properties, and outperform several existing methods. We analyze the MDCT lung image data from a cohort of 132 subjects with normal lung function. Our results show that, lung function in terms of FEV1% is promoted by having a less dense and more homogeneous lung comprising an airway whose segments enjoy more heterogeneity in wall thicknesses, larger mean diameters, lumen areas and branch angles. These data hold the potential of defining more accurately the “normal” subject population with borderline atypical lung functions that are clearly influenced by many genetic and environmental factors. PMID:28280520
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradskiy, Yevgeniy, E-mail: yevgeniy.vinogradskiy@ucdenver.edu; Schubert, Leah; Diot, Quentin
2016-07-15
Purpose: The development of clinical trials is underway to use 4-dimensional computed tomography (4DCT) ventilation imaging to preferentially spare functional lung in patients undergoing radiation therapy. The purpose of this work was to generate data to aide with clinical trial design by retrospectively characterizing dosimetric and functional profiles for patients with different stages of lung cancer. Methods and Materials: A total of 118 lung cancer patients (36% stage I and 64% stage III) from 2 institutions were used for the study. A 4DCT-ventilation map was calculated using the patient's 4DCT imaging, deformable image registration, and a density-change–based algorithm. To assessmore » each patient's spatial ventilation profile both quantitative and qualitative metrics were developed, including an observer-based defect observation and metrics based on the ventilation in each lung third. For each patient we used the clinical doses to calculate functionally weighted mean lung doses and metrics that assessed the interplay between the spatial location of the dose and high-functioning lung. Results: Both qualitative and quantitative metrics revealed a significant difference in functional profiles between the 2 stage groups (P<.01). We determined that 65% of stage III and 28% of stage I patients had ventilation defects. Average functionally weighted mean lung dose was 19.6 Gy and 5.4 Gy for stage III and I patients, respectively, with both groups containing patients with large spatial overlap between dose and high-function regions. Conclusion: Our 118-patient retrospective study found that 65% of stage III patients have regionally variant ventilation profiles that are suitable for functional avoidance. Our results suggest that regardless of disease stage, it is possible to have unique spatial interplay between dose and high-functional lung, highlighting the importance of evaluating the function of each patient and developing a personalized functional avoidance treatment approach.« less
Yeung, Jonathan C; Wagnetz, Dirk; Cypel, Marcelo; Rubacha, Matthew; Koike, Terumoto; Chun, Yi-Min; Hu, Jim; Waddell, Thomas K; Hwang, David M; Liu, Mingyao; Keshavjee, Shaf
2012-01-01
Acellular normothermic ex vivo lung perfusion (EVLP) is a novel method of donor lung preservation for transplantation. As cellular metabolism is preserved during perfusion, it represents a potential platform for effective gene transduction in donor lungs. We hypothesized that vector-associated inflammation would be reduced during ex vivo delivery due to isolation from the host immune system response. We compared ex vivo with in vivo intratracheal delivery of an E1-, E3-deleted adenoviral vector encoding either green fluorescent protein (GFP) or interleukin-10 (IL-10) to porcine lungs. Twelve hours after delivery, the lung was transplanted and the post-transplant function assessed. We identified significant transgene expression by 12 hours in both in vivo and ex vivo delivered groups. Lung function remained excellent in all ex vivo groups after viral vector delivery; however, as expected, lung function decreased in the in vivo delivered adenovirus vector encoding GFP (AdGFP) group with corresponding increases in IL-1β levels. Transplanted lung function was excellent in the ex vivo transduced lungs and inferior lung function was seen in the in vivo group after transplantation. In summary, ex vivo delivery of adenoviral gene therapy to the donor lung is superior to in vivo delivery in that it leads to less vector-associated inflammation and provides superior post-transplant lung function. PMID:22453765
Perinatal stress and early life programming of lung structure and function
Wright, Rosalind J.
2010-01-01
Exposure to environmental toxins during critical periods of prenatal and/or postnatal development may alter the normal course of lung morphogenesis and maturation, potentially resulting in changes that affect both structure and function of the respiratory system. Moreover, these early effects may persist into adult life magnifying the potential public health impact. Aberrant or excessive pro-inflammatory immune responses, occurring both locally and systemically, that result in inflammatory damage to the airway are a central determinant of lung structure-function changes throughout life. Disruption of neuroendocrine function in early development, specifically the hypothalamic-pituitary-adrenal (HPA) axis, may alter functional status of the immune system. Autonomic nervous system (ANS) function (sympathovagal imbalance) is another integral component of airway function and immunity in childhood. This overview discusses the evidence linking psychological factors to alterations in these interrelated physiological processes that may, in turn, influence childhood lung function and identifies gaps in our understanding. PMID:20080145
Goodwin, Renee D; Chuang, Shirley; Simuro, Nicole; Davies, Mark; Pine, Daniel S
2007-02-15
The objective of this study was to determine the association between lung function and mental health problems among adults in the United States. Data were drawn from the First National Health and Nutrition Examination Survey (1971-1975), with available information on a representative sample of US adults aged 25-74 years. Lung function was assessed by spirometry, and provisional diagnoses of restrictive and obstructive airway disease were assigned based on percentage of expected forced expiratory volume. Mental health problems were assessed with the General Well-Being scales. Restrictive lung function and obstructive lung function, compared with normal lung function, were each associated with a significantly increased likelihood of mental health problems. After adjustment for differences in demographic characteristics, obstructive lung function was associated with significantly lower overall well-being (p = 0.025), and restrictive lung function was associated with significantly lower overall well-being (p < 0.001), general health (p < 0.0001), vitality (p < 0.0001), and self-control (p = 0.001) and with higher depression (p = 0.002) subscale scores compared with no lung function problems. Consistent with previous findings from clinical and community-based studies, these results extend available data by providing evidence of a link between objectively measured lung function and self-reported mental health problems in a representative sample of community adults. Future studies are needed to determine the mechanisms of these associations.
Assessment of volume reduction effect after lung lobectomy for cancer.
Ueda, Kazuhiro; Murakami, Junichi; Sano, Fumiho; Hayashi, Masataro; Kobayashi, Taiga; Kunihiro, Yoshie; Hamano, Kimikazu
2015-07-01
Lung lobectomy results in an unexpected improvement of the remaining lung function in some patients with moderate-to-severe emphysema. Because the lung function is the main limiting factor for therapeutic decision making in patients with lung cancer, it may be advantageous to identify patients who may benefit from the volume reduction effect, particularly those with a poor functional reserve. We measured the regional distribution of the emphysematous lung and normal lung using quantitative computed tomography in 84 patients undergoing lung lobectomy for cancer between January 2010 and December 2012. The volume reduction effect was diagnosed using a combination of radiologic and spirometric parameters. Eight patients (10%) were favorably affected by the volume reduction effect. The forced expiratory volume in one second increased postoperatively in these eight patients, whereas the forced vital capacity was unchanged, thus resulting in an improvement of the airflow obstruction postoperatively. This improvement was not due to a compensatory expansion of the remaining lung but was associated with a relative decrease in the forced end-expiratory lung volume. According to a multivariate analysis, airflow obstruction and the forced end-expiratory lung volume were independent predictors of the volume reduction effect. A combined assessment using spirometry and quantitative computed tomography helped to characterize the respiratory dynamics underlying the volume reduction effect, thus leading to the identification of novel predictors of a volume reduction effect after lobectomy for cancer. Verification of our results by a large-scale prospective study may help to extend the indications for lobectomy in patients with oncologically resectable lung cancer who have a marginal pulmonary function. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslick, E; Kipritidis, J; Keall, P
2014-06-01
Purpose: The purpose of this study was to quantify the lobar lung function using the novel PET Galligas ([68Ga]-carbon nanoparticle) ventilation imaging and the investigational CT ventilation imaging in lung cancer patients pre-treatment. Methods: We present results on our first three lung cancer patients (2 male, mean age 78 years) as part of an ongoing ethics approved study. For each patient a PET Galligas ventilation (PET-V) image and a pair of breath hold CT images (end-exhale and end-inhale tidal volumes) were acquired using a Siemens Biograph PET CT. CT-ventilation (CT-V) images were created from the pair of CT images usingmore » deformable image registration (DIR) algorithms and the Hounsfield Unit (HU) ventilation metric. A comparison of ventilation quantification from each modality was done on the lobar level and the voxel level. A Bland-Altman plot was used to assess the difference in mean percentage contribution of each lobe to the total lung function between the two modalities. For each patient, a voxel-wise Spearmans correlation was calculated for the whole lungs between the two modalities. Results: The Bland-Altman plot demonstrated strong agreement between PET-V and CT-V for assessment of lobar function (r=0.99, p<0.001; range mean difference: −5.5 to 3.0). The correlation between PET-V and CT-V at the voxel level was moderate(r=0.60, p<0.001). Conclusion: This preliminary study on the three patients data sets demonstrated strong agreement between PET and CT ventilation imaging for the assessment of pre-treatment lung function at the lobar level. Agreement was only moderate at the level of voxel correlations. These results indicate that CT ventilation imaging has potential for assessing pre-treatment lobar lung function in lung cancer patients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MCClay, Joseph L.; Adkins, Daniel E.; Isern, Nancy G.
2010-06-04
Chronic obstructive pulmonary disease (COPD), characterized by chronic airflow limitation, is a serious and growing public health concern. The major environmental risk factor for COPD is tobacco smoking, but the biological mechanisms underlying COPD are not well understood. In this study, we used proton nuclear magnetic resonance (1H-NMR) spectroscopy to identify and quantify metabolites associated with lung function in COPD. Plasma and urine were collected from 197 adults with COPD and from 195 adults without COPD. Samples were assayed using a 600 MHz NMR spectrometer, and the resulting spectra were analyzed against quantitative spirometric measures of lung function. After correctingmore » for false discoveries and adjusting for covariates (sex, age, smoking) several spectral regions in urine were found to be significantly associated with baseline lung function. These regions correspond to the metabolites trigonelline, hippurate and formate. Concentrations of each metabolite, standardized to urinary creatinine, were associated with baseline lung function (minimum p-value = 0.0002 for trigonelline). No significant associations were found with plasma metabolites. Two of the three urinary metabolites positively associated with baseline lung function, i.e. hippurate and formate, are often related to gut microflora. This suggests that the microbiome composition is variable between individuals with different lung function. Alternatively, the nature and origins of all three associated metabolites may reflect lifestyle differences affecting overall health. Our results will require replication and validation, but demonstrate the utility of NMR metabolomics as a screening tool for identifying novel biomarkers of lung disease or disease risk.« less
Maniatis, Nikolaos A.; Chernaya, Olga; Shinin, Vasily; Minshall, Richard D.
2012-01-01
The primary function of the mammalian lung is to facilitate diffusion of oxygen to venous blood and to ventilate carbon dioxide produced by catabolic reactions within cells. However, it is also responsible for a variety of other important functions, including host defense and production of vasoactive agents to regulate not only systemic blood pressure, but also water, electrolyte and acid-base balance. Caveolin-1 is highly expressed in the majority of cell types in the lung, including epithelial, endothelial, smooth muscle, connective tissue cells, and alveolar macrophages. Deletion of caveolin-1 in these cells results in major functional aberrations, suggesting that caveolin-1 may be crucial to lung homeostasis and development. Furthermore, generation of mutant mice that under-express caveolin-1 results in severe functional distortion with phenotypes covering practically the entire spectrum of known lung diseases, including pulmonary hypertension, fibrosis, increased endothelial permeability, and immune defects. In this Chapter, we outline the current state of knowledge regarding caveolin-1-dependent regulation of pulmonary cell functions and discuss recent research findings on the role of caveolin-1 in various pulmonary disease states, including obstructive and fibrotic pulmonary vascular and inflammatory diseases. PMID:22411320
Jedrychowski, Wieslaw A; Perera, Frederica P; Maugeri, Umberto; Majewska, Renata; Spengler, Jack; Mroz, Elzbieta; Flak, Elzbieta; Klimaszewska-Rembiasz, Maria; Camman, David
2015-05-01
The main purpose of the present study was to test the hypothesis that the depressed lung growth attributable to prenatal exposure to polycyclic aromatic hydrocarbons (PAH) may be modified by the intake of antihistamine medications. Individual prenatal PAH exposure was assessed by personal air monitoring in 176 children who were followed over nine years, in the course of which outdoor residential air monitoring, allergic skin tests for indoor allergens, lung function tests (FVC, FEV(1), FEV(05), and FEF(25-75)) were performed. The analysis with the General Estimated Equation (GEE) showed no association between prenatal PAH exposure and lung function in the group of children who were reported to be antihistamine users. However, in the group of antihistamine non-users all lung function tests except for FEF(25-75) were significantly and inversely associated with prenatal airborne PAH exposure. The results of the study suggest that the intake of antihistamine medications in early childhood may inhibit the negative effect of fetal PAH exposure on lung growth and provides additional indirect evidence for the hypothesis that lung alterations in young children resulting from PAH exposure may be caused by the allergic inflammation within lung. © 2014 Wiley Periodicals, Inc.
Lung function not affected by asbestos exposure in workers with normal Computed Tomography scan.
Schikowsky, Christian; Felten, Michael K; Eisenhawer, Christian; Das, Marco; Kraus, Thomas
2017-05-01
It has been suggested that asbestos exposure affects lung function, even in the absence of asbestos-related pulmonary interstitial or pleural changes or emphysema. We analyzed associations between well-known asbestos-related risk factors, such as individual cumulative asbestos exposure, and key lung function parameters in formerly asbestos-exposed power industry workers (N = 207) with normal CT scans. For this, we excluded participants with emphysema, fibrosis, pleural changes, or any combination of these. The lung function parameters of FVC, FEV1, DLCO/VA, and airway resistance were significantly associated with the burden of smoking, BMI and years since end of exposure (only DLCO/VA). However, they were not affected by factors directly related to amount (eg, cumulative exposure) or duration of asbestos exposure. Our results confirm the well-known correlation between lung function, smoking habits, and BMI. However, we found no significant association between lung function and asbestos exposure. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lederman, Dror; Leader, Joseph K.; Zheng, Bin; Sciurba, Frank C.; Tan, Jun; Gur, David
2011-03-01
Quantitative computed tomography (CT) has been widely used to detect and evaluate the presence (or absence) of emphysema applying the density masks at specific thresholds, e.g., -910 or -950 Hounsfield Unit (HU). However, it has also been observed that subjects with similar density-mask based emphysema scores could have varying lung function, possibly indicating differences of disease severity. To assess this possible discrepancy, we investigated whether density distribution of "viable" lung parenchyma regions with pixel values > -910 HU correlates with lung function. A dataset of 38 subjects, who underwent both pulmonary function testing and CT examinations in a COPD SCCOR study, was assembled. After the lung regions depicted on CT images were automatically segmented by a computerized scheme, we systematically divided the lung parenchyma into different density groups (bins) and computed a number of statistical features (i.e., mean, standard deviation (STD), skewness of the pixel value distributions) in these density bins. We then analyzed the correlations between each feature and lung function. The correlation between diffusion lung capacity (DLCO) and STD of pixel values in the bin of -910HU <= PV < -750HU was -0.43, as compared with a correlation of -0.49 obtained between the post-bronchodilator ratio (FEV1/FVC) measured by the forced expiratory volume in 1 second (FEV1) dividing the forced vital capacity (FVC) and the STD of pixel values in the bin of -1024HU <= PV < -910HU. The results showed an association between the distribution of pixel values in "viable" lung parenchyma and lung function, which indicates that similar to the conventional density mask method, the pixel value distribution features in "viable" lung parenchyma areas may also provide clinically useful information to improve assessments of lung disease severity as measured by lung functional tests.
Campbell Jenkins, Brenda W.; Sarpong, Daniel F.; Addison, Clifton; White, Monique S.; Hickson, DeMarc A.; White, Wendy; Burchfiel, Cecil
2014-01-01
This study examined: (a) differences in lung function between current and non current smokers who had sedentary lifestyles and non sedentary lifestyles and (b) the mediating effect of sedentary lifestyle on the association between smoking and lung function in African Americans. Sedentary lifestyle was defined as the lowest quartile of the total physical activity score. The results of linear and logistic regression analyses revealed that non smokers with non sedentary lifestyles had the highest level of lung function, and smokers with sedentary lifestyles had the lowest level. The female non-smokers with sedentary lifestyles had a significantly higher FEV1% predicted and FVC% predicted than smokers with non sedentary lifestyles (93.3% vs. 88.6%; p = 0.0102 and 92.1% vs. 86.9%; p = 0.0055 respectively). FEV1/FVC ratio for men was higher in non smokers with sedentary lifestyles than in smokers with non sedentary lifestyles (80.9 vs. 78.1; p = 0.0048). Though smoking is inversely associated with lung function, it seems to have a more deleterious effect than sedentary lifestyle on lung function. Physically active smokers had higher lung function than their non physically active counterparts. PMID:24477212
Campbell Jenkins, Brenda W; Sarpong, Daniel F; Addison, Clifton; White, Monique S; Hickson, Demarc A; White, Wendy; Burchfiel, Cecil
2014-01-28
This study examined: (a) differences in lung function between current and non current smokers who had sedentary lifestyles and non sedentary lifestyles and (b) the mediating effect of sedentary lifestyle on the association between smoking and lung function in African Americans. Sedentary lifestyle was defined as the lowest quartile of the total physical activity score. The results of linear and logistic regression analyses revealed that non smokers with non sedentary lifestyles had the highest level of lung function, and smokers with sedentary lifestyles had the lowest level. The female non-smokers with sedentary lifestyles had a significantly higher FEV1% predicted and FVC% predicted than smokers with non sedentary lifestyles (93.3% vs. 88.6%; p = 0.0102 and 92.1% vs. 86.9%; p = 0.0055 respectively). FEV1/FVC ratio for men was higher in non smokers with sedentary lifestyles than in smokers with non sedentary lifestyles (80.9 vs. 78.1; p = 0.0048). Though smoking is inversely associated with lung function, it seems to have a more deleterious effect than sedentary lifestyle on lung function. Physically active smokers had higher lung function than their non physically active counterparts.
Barone-Adesi, Francesco; Dent, Jennifer E; Dajnak, David; Beevers, Sean; Anderson, H Ross; Kelly, Frank J; Cook, Derek G; Whincup, Peter H
2015-01-01
There is widespread concern about the possible health effects of traffic-related air pollution. Nitrogen dioxide (NO2) is a convenient marker of primary pollution. We investigated the associations between lung function and current residential exposure to a range of air pollutants (particularly NO2, NO, NOx and particulate matter) in London children. Moreover, we placed the results for NO2 in context with a meta-analysis of published estimates of the association. Associations between primary traffic pollutants and lung function were investigated in 4884 children aged 9-10 years who participated in the Child Heart and Health Study in England (CHASE). A systematic literature search identified 13 studies eligible for inclusion in a meta-analysis. We combined results from the meta-analysis with the distribution of the values of FEV1 in CHASE to estimate the prevalence of children with abnormal lung function (FEV1<80% of predicted value) expected under different scenarios of NO2 exposure. In CHASE, there were non-significant inverse associations between all pollutants except ozone and both FEV1 and FVC. In the meta-analysis, a 10 μg/m3 increase in NO2 was associated with an 8 ml lower FEV1 (95% CI: -14 to -1 ml; p: 0.016). The observed effect was not modified by a reported asthma diagnosis. On the basis of these results, a 10 μg/m3 increase in NO2 level would translate into a 7% (95% CI: 4% to 12%) increase of the prevalence of children with abnormal lung function. Exposure to traffic pollution may cause a small overall reduction in lung function and increase the prevalence of children with clinically relevant declines in lung function.
Cukic, Vesna
2012-01-01
Introduction: Nowadays an increasing number of lung resections are being done because of the rising prevalence of lung cancer that occurs mainly in patients with limited lung function, what is caused by common etiologic factor - smoking cigarettes. Loss of lung tissue in such patients can worsen much the postoperative pulmonary function. So it is necessary to asses the postoperative pulmonary function especially after maximal resection, i.e. pneumonectomy. Objective: To check over the accuracy of preoperative prognosis of postoperative lung function after pneumonectomy using spirometry and lung perfusion scinigraphy. Material and methods: The study was done on 17 patients operated at the Clinic for thoracic surgery, who were treated previously at the Clinic for Pulmonary Diseases “Podhrastovi” in the period from 01. 12. 2008. to 01. 06. 2011. Postoperative pulmonary function expressed as ppoFEV1 (predicted postoperative forced expiratory volume in one second) was prognosticated preoperatively using spirometry, i.e.. simple calculation according to the number of the pulmonary segments to be removed and perfusion lung scintigraphy. Results: There is no significant deviation of postoperative achieved values of FEV1 from predicted ones obtained by both methods, and there is no significant differences between predicted values (ppoFEV1) obtained by spirometry and perfusion scintigraphy. Conclusion: It is necessary to asses the postoperative pulmonary function before lung resection to avoid postoperative respiratory failure and other cardiopulmonary complications. It is absolutely necessary for pneumonectomy, i.e.. maximal pulmonary resection. It can be done with great possibility using spirometry or perfusion lung scintigraphy. PMID:23378687
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, H; Li, H; Gordon, J
Purpose: To investigate radiotherapy outcomes by incorporating 4DCT-based physiological and tumor elasticity functions for lung cancer patients. Methods: 4DCT images were acquired from 28 lung SBRT patients before radiation treatment. Deformable image registration (DIR) was performed from the end-inhale to the end-exhale using a B-Spline-based algorithm (Elastix, an open source software package). The resultant displacement vector fields (DVFs) were used to calculate a relative Jacobian function (RV) for each patient. The computed functions in the lung and tumor regions represent lung ventilation and tumor elasticity properties, respectively. The 28 patients were divided into two groups: 16 with two-year tumor localmore » control (LC) and 12 with local failure (LF). The ventilation and elasticity related RV functions were calculated for each of these patients. Results: The LF patients have larger RV values than the LC patients. The mean RV value in the lung region was 1.15 (±0.67) for the LF patients, higher than 1.06 (±0.59) for the LC patients. In the tumor region, the elasticity-related RV values are 1.2 (±0.97) and 0.86 (±0.64) for the LF and LC patients, respectively. Among the 16 LC patients, 3 have the mean RV values greater than 1.0 in the tumors. These tumors were located near the diaphragm, where the displacements are relatively large.. RV functions calculated in the tumor were better correlated with treatment outcomes than those calculated in the lung. Conclusion: The ventilation and elasticity-related RV functions in the lung and tumor regions were calculated from 4DCT image and the resultant values showed differences between the LC and LF patients. Further investigation of the impact of the displacements on the computed RV is warranted. Results suggest that the RV images might be useful for evaluation of treatment outcome for lung cancer patients.« less
Clinical measures, smoking, radon exposure, and risk of lung cancer in uranium miners.
Finkelstein, M M
1996-01-01
OBJECTIVES: Exposure to the radioactive daughters of radon is associated with increased risk of lung cancer in mining populations. An investigation of incidence of lung cancer following a clinical survey of Ontario uranium miners was undertaken to explore whether risk associated with radon is modified by factors including smoking, radiographic silicosis, clinical symptoms, the results of lung function testing, and the temporal pattern of radon exposure. METHODS: Miners were examined in 1974 by a respiratory questionnaire, tests of lung function, and chest radiography. A random selection of 733 (75%) of the original 973 participants was followed up by linkage to the Ontario Mortality and Cancer Registries. RESULTS: Incidence of lung cancer was increased threefold. Risk of lung cancer among miners who had stopped smoking was half that of men who continued to smoke. There was no interaction between smoking and radon exposure. Men with lung function test results consistent with airways obstruction had an increased risk of lung cancer, even after adjustment for cigarette smoking. There was no association between radiographic silicosis and risk of lung cancer. Lung cancer was associated with exposures to radon daughters accumulated in a time window four to 14 years before diagnosis, but there was little association with exposures incurred earlier than 14 years before diagnosis. Among the men diagnosed with lung cancer, the mean and median dose rates were 2.6 working level months (WLM) a year and 1.8 WLM/year in the four to 14 year exposure window. CONCLUSIONS: Risk of lung cancer associated with radon is modified by dose and time from exposure. Risk can be substantially decreased by stopping smoking. PMID:8943835
Bates, Michael N.; Crane, Julian; Balmes, John R.; Garrett, Nick
2015-01-01
Background Results have been conflicting whether long-term ambient hydrogen sulfide (H2S) affects lung function or is a risk factor for asthma or chronic obstructive pulmonary disease (COPD). Rotorua city, New Zealand, has the world’s largest population exposed to ambient H2S—from geothermal sources. Objectives We investigated associations of H2S with lung function, COPD and asthma in this population. Methods 1,204 of 1,639 study participants, aged 18–65 years during 2008–2010, provided satisfactory spirometry results. Residences, workplaces and schools over the last 30 years were geocoded. Exposures were estimated from data collected by summer and winter H2S monitoring networks across Rotorua. Four metrics for H2S exposure, representing both current and long-term (last 30 years) exposure, and also time-weighted average and peak exposures, were calculated. Departures from expected values for pre-bronchodilator lung function, calculated from prediction equations, were outcomes for linear regression models using quartiles of the H2S exposure metrics. Separate models examined participants with and without evidence of asthma or COPD, and never- and ever-smokers. Logistic regression was used to investigate associations of COPD (a post-bronchodilator FEV1/FVC < 70% of expected) and asthma (doctor-diagnosed or by FEV1 response to bronchodilator) with H2S exposure quartiles. Results None of the exposure metrics produced evidence of lung function decrement. The logistic regression analysis showed no evidence that long-term H2S exposure at Rotorua levels was associated with either increased COPD or asthma risk. Some results suggested that recent ambient H2S exposures were beneficially associated with lung function parameters. Conclusions The study found no evidence of reductions in lung function, or increased risk of COPD or asthma, from recent or long-term H2S exposure at the relatively high ambient concentrations found in Rotorua. Suggestions of improved lung function associated with recent ambient H2S exposures require confirmation in other studies. PMID:25822819
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Nishibuchi, Ikuno; Murakami, Yuji
2012-03-15
Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung.more » Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.« less
Zacharasiewicz, Angela; Renner, Sabine; Haderer, Flora; Weber, Michael; Dehlink, Eleonore; Szepfalusi, Zsolt; Frischer, Thomas
2017-08-01
Interpretation of lung function values in children with cystic fibrosis (CF) depends on the applied reference values. We hypothesize that differences between the new global lung function initiative (GLI) values and the formerly used Zapletal et al. values produce significantly different clinical results. We analyzed 3719 lung function measurements of 108 children and adolescents (n = 54 male; aged 6-18 years) with CF treated between September 1991 and July 2009. Data were analyzed in milliliters (ml) and % predicted (pred.) and interpreted using Zapletal and GLI reference values. Applying GLI compared to Zapletal resulted in significantly lower mean forced expiratory volume in 1s (FEV1)% pred. Zapletal 86.6% (SD 20.6), GLI 79.9% (SD 20.3) and 32% (n = 497/1543) were misclassified as normal when using Zapletal. Despite showing no overall differences in FEV1 and forced vital capacity (FVC) between concomitant Pseudomonas detection (PA+) in n = 938 and Pseudomonas negative (PA-) (n = 2781) using either reference PA+ resulted in lower FEV1 and FVC values with increasing age; however, measurement of small airway obstruction with forced expiratory flow at 75% of FVC (FEF75) values - available for Zapletal -showed significant differences. Reassurance regarding lung function when using old reference values may occur with potential clinical significance. Discrepancies in lung function interpretation underline the importance of using uniform and best available reference values.
Mokra, D; Kosutova, P; Balentova, S; Adamkov, M; Mikolka, P; Mokry, J; Antosova, M; Calkovska, A
2016-12-01
Diffuse alveolar injury, edema, and inflammation are fundamental signs of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Whereas the systemic administration of corticosteroids previously led to controversial results, this study evaluated if corticosteroids given intratracheally may improve lung functions and reduce edema formation, migration of cells into the lung and their activation in experimentally-induced ALI. In oxygen-ventilated rabbits, ALI was induced by repetitive saline lung lavage, until PaO2 decreased to < 26.7 kPa in FiO 2 1.0. Then, one group of animals was treated with corticosteroid budesonide (Pulmicort susp inh, AstraZeneca; 0.25 mg/kg) given intratracheally by means of inpulsion regime of high-frequency jet ventilation, while another group was non-treated, and both groups were oxygen-ventilated for following 5 hours. Another group of animals served as healthy controls. After sacrifice of animals, left lung was saline-lavaged and protein content was measured and cells in the lavage fluid were determined microscopically. Right lung tissue was used for estimation of edema formation (expressed as wet/dry weight ratio), for histomorphological investigation, immunohistochemical determination of apoptosis of lung cells, and for determination of markers of inflammation and lung injury (IL-1β, IL-6, IL-8, TNF-α, IFNγ, esRAGE, caspase-3) by ELISA methods. Levels of several cytokines were estimated also in plasma. Repetitive lung lavage worsened gas exchange, induced lung injury, inflammation and lung edema and increased apoptosis of lung epithelial cells. Budesonide reduced lung edema, cell infiltration into the lung and apoptosis of epithelial cells and decreased concentrations of proinflammatory markers in the lung and blood. These changes resulted in improved ventilation. Concluding, curative intratracheal treatment with budesonide alleviated lung injury, inflammation, apoptosis of lung epithelial cells and lung edema and improved lung functions in a lavage model of ALI. These findings suggest a potential of therapy with inhaled budesonide also for patients with ARDS.
Reduction of Pulmonary Function After Surgical Lung Resections of Different Volume
Cukic, Vesna
2014-01-01
Introduction: In recent years an increasing number of lung resections are being done because of the rising prevalence of lung cancer that occurs mainly in patients with limited lung function, what is caused with common etiologic factor - smoking cigarettes. Objective: To determine how big the loss of lung function is after surgical resection of lung of different range. Methods: The study was done on 58 patients operated at the Clinic for thoracic surgery KCU Sarajevo, previously treated at the Clinic for pulmonary diseases “Podhrastovi” in the period from 01.06.2012. to 01.06.2014. The following resections were done: pulmectomy (left, right), lobectomy (upper, lower: left and right). The values of postoperative pulmonary function were compared with preoperative ones. As a parameter of lung function we used FEV1 (forced expiratory volume in one second), and changes in FEV1 are expressed in liters and in percentage of the recorded preoperative and normal values of FEV1. Measurements of lung function were performed seven days before and 2 months after surgery. Results: Postoperative FEV1 was decreased compared to preoperative values. After pulmectomy the maximum reduction of FEV1 was 44%, and after lobectomy it was 22% of the preoperative values. Conclusion: Patients with airway obstruction are limited in their daily life before the surgery, and an additional loss of lung tissue after resection contributes to their inability. Potential benefits of lung resection surgery should be balanced in relation to postoperative morbidity and mortality. PMID:25568542
Lung transplantation in adults and children: putting lung function into perspective.
Thompson, Bruce Robert; Westall, Glen Philip; Paraskeva, Miranda; Snell, Gregory Ian
2014-11-01
The number of lung transplants performed globally continues to increase year after year. Despite this growing experience, long-term outcomes following lung transplantation continue to fall far short of that described in other solid-organ transplant settings. Chronic lung allograft dysfunction (CLAD) remains common and is the end result of exposure to a multitude of potentially injurious insults that include alloreactivity and infection among others. Central to any description of the clinical performance of the transplanted lung is an assessment of its physiology by pulmonary function testing. Spirometry and the evaluation of forced expiratory volume in 1 s and forced vital capacity, remain core indices that are measured as part of routine clinical follow-up. Spirometry, while reproducible in detecting lung allograft dysfunction, lacks specificity in differentiating the different complications of lung transplantation such as rejection, infection and bronchiolitis obliterans. However, interpretation of spirometry is central to defining the different 'chronic rejection' phenotypes. It is becoming apparent that the maximal lung function achieved following transplantation, as measured by spirometry, is influenced by a number of donor and recipient factors as well as the type of surgery performed (single vs double vs lobar lung transplant). In this review, we discuss the wide range of variables that need to be considered when interpreting lung function testing in lung transplant recipients. Finally, we review a number of novel measurements of pulmonary function that may in the future serve as better biomarkers to detect and diagnose the cause of the failing lung allograft. © 2014 Asian Pacific Society of Respirology.
Sun, Jiawei; Zhang, Ping; Zhang, Bin; Li, Kang; Li, Zhu; Li, Junhong; Zhang, Yongjian; Sun, Wuzhuang
2015-01-01
Objectives: This study was conducted to investigate an effect of inhaled budesonide on cigarette smoke-exposed lungs with a possible mechanism involved in the event. Methods: Rats were exposed to air (control) and cigarette smoke (smoking) in presence and absence of budesonide. Inflammatory cell count in bronchoalveolar lavage fluid (BALF), lung function testing, mean liner intercept (MLI) in lung tissue, mean alveolar number (MAN) and a ratio of bronchial wall thickness and external diameter (BWT/D) were determined in the grouped rats, respectively. Contents of matrix metalloproteinase (MMP)-1, MMP-2 and tissue inhibitor of metalloproteinase (TIMP)-2 productions in BALF were examined as well. Results: There were significant changes in the above assessments in the smoking rats as compared to those in the control rats (all P < 0.01 and 0.05). Budesonide inhalation significantly decreased the numbers of the BALF cells and partly reversed lung function decline in the challenged rats (P < 0.01 and 0.05). However, this corticosteroid did not influence pathological changes in fine structures of the tobacco smoke-exposed lungs. Treatment with budesonide resulted in an obvious decrease in the MMP-1 but not MMP-2 and TIMP-2 productions (P < 0.05). Conclusion: Inhaled budesonide mitigates the ongoing inflammatory process in the smoked lungs and ameliorates declining lung function through reducing MMP-1 content. PMID:26191209
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Doi, Yoshiko; Nakashima, Takeo
2015-11-15
Purpose: The purpose of this study was to prospectively investigate clinical correlations between dosimetric parameters associated with radiation pneumonitis (RP) and functional lung imaging. Methods and Materials: Functional lung imaging was performed using four-dimensional computed tomography (4D-CT) for ventilation imaging, single-photon emission computed tomography (SPECT) for perfusion imaging, or both (V/Q-matched region). Using 4D-CT, ventilation imaging was derived from a low attenuation area according to CT numbers below different thresholds (vent-860 and -910). Perfusion imaging at the 10th, 30th, 50th, and 70th percentile perfusion levels (F10-F70) were defined as the top 10%, 30%, 50%, and 70% hyperperfused normal lung, respectively.more » All imaging data were incorporated into a 3D planning system to evaluate correlations between RP dosimetric parameters (where fV20 is the percentage of functional lung volume irradiated with >20 Gy, or fMLD, the mean dose administered to functional lung) and the percentage of functional lung volume. Radiation pneumonitis was evaluated using Common Terminology Criteria for Adverse Events version 4.0. Statistical significance was defined as a P value of <.05. Results: Sixty patients who underwent curative radiation therapy were enrolled (48 patients for non-small cell lung cancer, and 12 patients for small cell lung cancer). Grades 1, 2, and ≥3 RP were observed in 16, 44, and 6 patients, respectively. Significant correlations were observed between the percentage of functional lung volume and fV20 (r=0.4475 in vent-860 and 0.3508 in F30) or fMLD (r=0.4701 in vent-860 and 0.3128 in F30) in patients with grade ≥2 RP. F30∩vent-860 results exhibited stronger correlations with fV20 and fMLD in patients with grade ≥2 (r=0.5509 in fV20 and 0.5320 in fMLD) and grade ≥3 RP (r=0.8770 in fV20 and 0.8518 in fMLD). Conclusions: RP dosimetric parameters correlated significantly with functional lung imaging.« less
Assessment of lung function in a large cohort of patients with acromegaly.
Störmann, Sylvère; Gutt, Bodo; Roemmler-Zehrer, Josefine; Bidlingmaier, Martin; Huber, Rudolf M; Schopohl, Jochen; Angstwurm, Matthias W
2017-07-01
Acromegaly is associated with increased mortality due to respiratory disease. To date, lung function in patients with acromegaly has only been assessed in small studies, with contradicting results. We assessed lung function parameters in a large cohort of patients with acromegaly. Lung function of acromegaly patients was prospectively assessed using spirometry, blood gas analysis and body plethysmography. Biochemical indicators of acromegaly were assessed through measurement of growth hormone and IGF-I levels. This study was performed at the endocrinology outpatient clinic of a tertiary referral center in Germany. We prospectively tested lung function of 109 acromegaly patients (53 male, 56 female; aged 24-82 years; 80 with active acromegaly) without severe acute or chronic pulmonary disease. We compared lung volume, air flow, airway resistance and blood gases to normative data. Acromegaly patients had greater lung volumes (maximal vital capacity, intra-thoracic gas volume and residual volume: P < 0.001, total lung capacity: P = 0.006) and showed signs of small airway obstruction (reduced maximum expiratory flow when 75% of the forced vital capacity (FVC) has been exhaled: P < 0.001, lesser peak expiratory flow: P = 0.01). There was no significant difference between active and inactive acromegaly. Female patients had significantly altered lung function in terms of subclinical airway obstruction. In our cross-sectional analysis of lung function in 109 patients with acromegaly, lung volumes were increased compared to healthy controls. Additionally, female patients showed signs of subclinical airway obstruction. There was no difference between patients with active acromegaly compared with patients biochemically in remission. © 2017 European Society of Endocrinology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, Douglas; Schubert, Leah; Diot, Quentin
Purpose: A new form of functional imaging has been proposed in the form of 4-dimensional computed tomography (4DCT) ventilation. Because 4DCTs are acquired as part of routine care for lung cancer patients, calculating ventilation maps from 4DCTs provides spatial lung function information without added dosimetric or monetary cost to the patient. Before 4DCT-ventilation is implemented it needs to be clinically validated. Pulmonary function tests (PFTs) provide a clinically established way of evaluating lung function. The purpose of our work was to perform a clinical validation by comparing 4DCT-ventilation metrics with PFT data. Methods and Materials: Ninety-eight lung cancer patients withmore » pretreatment 4DCT and PFT data were included in the study. Pulmonary function test metrics used to diagnose obstructive lung disease were recorded: forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity. Four-dimensional CT data sets and spatial registration were used to compute 4DCT-ventilation images using a density change–based and a Jacobian-based model. The ventilation maps were reduced to single metrics intended to reflect the degree of ventilation obstruction. Specifically, we computed the coefficient of variation (SD/mean), ventilation V20 (volume of lung ≤20% ventilation), and correlated the ventilation metrics with PFT data. Regression analysis was used to determine whether 4DCT ventilation data could predict for normal versus abnormal lung function using PFT thresholds. Results: Correlation coefficients comparing 4DCT-ventilation with PFT data ranged from 0.63 to 0.72, with the best agreement between FEV1 and coefficient of variation. Four-dimensional CT ventilation metrics were able to significantly delineate between clinically normal versus abnormal PFT results. Conclusions: Validation of 4DCT ventilation with clinically relevant metrics is essential. We demonstrate good global agreement between PFTs and 4DCT-ventilation, indicating that 4DCT-ventilation provides a reliable assessment of lung function. Four-dimensional CT ventilation enables exciting opportunities to assess lung function and create functional avoidance radiation therapy plans. The present work provides supporting evidence for the integration of 4DCT-ventilation into clinical trials.« less
Shim, Eunhee; Lee, Eun; Yang, Song-I; Jung, Young-Ho; Park, Geun Mi; Kim, Hyung Young; Seo, Ju-Hee
2015-01-01
Purpose Although many previous studies have attempted to identify differences between atopic asthma (AA) and non-atopic asthma (NAA), they have mainly focused on the difference of each variable of lung function and airway inflammation. The aim of this study was to evaluate relationships between lung function, bronchial hyperresponsiveness (BHR), and the exhaled nitric oxide (eNO) levels in children with AA and NAA. Methods One hundred and thirty six asthmatic children aged 5-15 years and 40 normal controls were recruited. Asthma cases were classified as AA (n=100) or NAA (n=36) from skin prick test results. Lung function, BHR to methacholine and adenosine-5'-monophosphate (AMP), eNO, blood eosinophils, and serum total IgE were measured. Results The AA and NAA cases shared common features including a reduced small airway function and increased BHR to methacholine. However, children with AA showed higher BHR to AMP and eNO levels than those with NAA. When the relationships among these variables in the AA and NAA cases were evaluated, the AA group showed significant relationships between lung function, BHR to AMP or methacholine and eNO levels. However, the children in the NAA group showed an association between small airway function and BHR to methacholine only. Conclusions These findings suggest that the pathogenesis of NAA may differ from that of AA during childhood in terms of the relationship between lung function, airway inflammation and BHR. PMID:25749776
Das, Banibrata
2016-07-03
Brick manufacturing process releases large amounts of silica dust into the work environment due to the use of silica-containing materials. The main aim of the study was to investigate the impairment of lung function and prevalence of respiratory symptoms among the different groups of brick field workers in comparison with control subjects. A total of 250 brick field workers and 130 unexposed control subjects were randomly selected in which demographic characteristics, respiratory symptoms, and lung function values were recorded. The result showed significantly lower p value (<.001) in lung function and respiratory symptoms among brick field workers when compared with control group. The prevalence of respiratory symptoms was dyspnea (46.8%), phlegm (39.2%), and chest tightness (27.6%). Dust exposure in working environment affected the lung function values and increased the respiratory symptoms among the brick field workers.
Interactions Between Secondhand Smoke and Genes That Affect Cystic Fibrosis Lung Disease
Collaco, J. Michael; Vanscoy, Lori; Bremer, Lindsay; McDougal, Kathryn; Blackman, Scott M.; Bowers, Amanda; Naughton, Kathleen; Jennings, Jacky; Ellen, Jonathan; Cutting, Garry R.
2011-01-01
Context Disease variation can be substantial even in conditions with a single gene etiology such as cystic fibrosis (CF). Simultaneously studying the effects of genes and environment may provide insight into the causes of variation. Objective To determine whether secondhand smoke exposure is associated with lung function and other outcomes in individuals with CF, whether socioeconomic status affects the relationship between secondhand smoke exposure and lung disease severity, and whether specific gene-environment interactions influence the effect of secondhand smoke exposure on lung function. Design, Setting, and Participants Retrospective assessment of lung function, stratified by environmental and genetic factors. Data were collected by the US Cystic Fibrosis Twin and Sibling Study with missing data supplemented by the Cystic Fibrosis Foundation Data Registry. All participants were diagnosed with CF, were recruited between October 2000 and October 2006, and were primarily from the United States. Main Outcome Measures Disease-specific cross-sectional and longitudinal measures of lung function. Results Of 812 participants with data on secondhand smoke in the home, 188 (23.2%) were exposed. Of 780 participants with data on active maternal smoking during gestation, 129 (16.5%) were exposed. Secondhand smoke exposure in the home was associated with significantly lower cross-sectional (9.8 percentile point decrease; P<.001) and longitudinal lung function (6.1 percentile point decrease; P=.007) compared with those not exposed. Regression analysis demonstrated that socioeconomic status did not confound the adverse effect of secondhand smoke exposure on lung function. Interaction between gene variants and secondhand smoke exposure resulted in significant percentile point decreases in lung function, namely in CFTR non-ΔF508 homozygotes (12.8 percentile point decrease; P=.001), TGFβ1-509 TT homozygotes (22.7 percentile point decrease; P=.006), and TGFβ1 codon 10 CC homozygotes (20.3 percentile point decrease; P=.005). Conclusions Any exposure to secondhand smoke adversely affects both cross-sectional and longitudinal measures of lung function in individuals with CF. Variations in the gene that causes CF (CFTR) and a CF-modifier gene (TGFβ1) amplify the negative effects of secondhand smoke exposure. PMID:18230779
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xue; Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan; Frey, Kirk
2014-05-01
Purpose: To study changes in functional activity on ventilation (V)/perfusion (Q) single-photon emission computed tomography (SPECT) during radiation therapy (RT) and explore the impact of such changes on lung dosimetry in patients with non-small cell lung cancer (NSCLC). Methods and Materials: Fifteen NSCLC patients with centrally located tumors were enrolled. All patients were treated with definitive RT dose of ≥60 Gy. V/Q SPECT-CT scans were performed prior to and after delivery of 45 Gy of fractionated RT. SPECT images were used to define temporarily dysfunctional regions of lung caused by tumor or other potentially reversible conditions as B3. The functional lung (FL)more » was defined on SPECT by 2 separate approaches: FL1, a threshold of 30% of the maximum uptake of the patient's lung; and FL2, FL1 plus B3 region. The impact of changes in FL between initiation of RT and delivery of 45 Gy on lung dosimetry were analyzed. Results: Fourteen patients (93%) had larger FL2 volumes than FL1 pre-RT (P<.001). Dysfunctional lung became functional in 11 patients (73%) on V SPECT and in 10 patients (67%) on Q SPECT. The dosimetric parameters generated from CT-based anatomical lung had significantly lower values in FL1 than FL2, with a median reduction in the volume of lung receiving a dose of at least 20 Gy (V{sub 20}) of 3%, 5.6%, and mean lung dose of 0.95 and 1.55 on V and Q SPECT respectively. Conclusions: Regional ventilation and perfusion function improve significantly during RT in centrally located NSCLC. Lung dosimetry values vary notably between different definitions of functional lung.« less
Muller, David C; Johansson, Mattias; Brennan, Paul
2017-03-10
Purpose Several lung cancer risk prediction models have been developed, but none to date have assessed the predictive ability of lung function in a population-based cohort. We sought to develop and internally validate a model incorporating lung function using data from the UK Biobank prospective cohort study. Methods This analysis included 502,321 participants without a previous diagnosis of lung cancer, predominantly between 40 and 70 years of age. We used flexible parametric survival models to estimate the 2-year probability of lung cancer, accounting for the competing risk of death. Models included predictors previously shown to be associated with lung cancer risk, including sex, variables related to smoking history and nicotine addiction, medical history, family history of lung cancer, and lung function (forced expiratory volume in 1 second [FEV1]). Results During accumulated follow-up of 1,469,518 person-years, there were 738 lung cancer diagnoses. A model incorporating all predictors had excellent discrimination (concordance (c)-statistic [95% CI] = 0.85 [0.82 to 0.87]). Internal validation suggested that the model will discriminate well when applied to new data (optimism-corrected c-statistic = 0.84). The full model, including FEV1, also had modestly superior discriminatory power than one that was designed solely on the basis of questionnaire variables (c-statistic = 0.84 [0.82 to 0.86]; optimism-corrected c-statistic = 0.83; p FEV1 = 3.4 × 10 -13 ). The full model had better discrimination than standard lung cancer screening eligibility criteria (c-statistic = 0.66 [0.64 to 0.69]). Conclusion A risk prediction model that includes lung function has strong predictive ability, which could improve eligibility criteria for lung cancer screening programs.
Abnormal lung sounds in patients with asthma during episodes with normal lung function.
Schreur, H J; Vanderschoot, J; Zwinderman, A H; Dijkman, J H; Sterk, P J
1994-07-01
Even in patients with clinically stable asthma with normal lung function, the airways are characterized by inflammatory changes, including mucosal swelling. In order to investigate whether lung sounds can distinguish these subjects from normal subjects, we compared lung sound characteristics between eight normal and nine symptom-free subjects with mild asthma. All subjects underwent simultaneous recordings of airflow, lung volume changes, and lung sounds during standardized quiet breathing, and during forced maneuvers. Flow-dependent power spectra were computed using fast Fourier transform. For each spectrum we determined lung sound intensity (LSI), frequencies (Q25%, Q50%, Q75%) wheezing (W), and W%. The results were analyzed by ANOVA. During expiration, LSI was lower in patients with asthma than in healthy controls, in particular at relatively low airflow values. During quiet expiration, Q25% to Q75% were higher in asthmatics than in healthy controls, while the change of Q25% to Q75% with flow was greater in asthmatic than in normal subjects. The W and W% were not different between the subject groups. The results indicate that at given airflows, lung sounds are lower in intensity and higher in pitch in asthmatics as compared with controls. This suggests that the generation and/or transmission of lung sounds in symptom-free patients with stable asthma differ from that in normal subjects, even when lung function is within the normal range. Therefore, airflow standardized phonopneumography might reflect morphologic changes in airways of patients with asthma.
2014-01-01
Background The pattern and factors influencing the lung function recovery in the first postoperative days are still not fully elucidated, especially in patients at increased risk. Methods Prospective study on 60 patients at increased risk, who underwent a lung resection for primary lung cancer. Inclusion criteria: complete resection and one or more known risk factors in form of COPD, cardiovascular disorders, advanced age or other comorbidities. Previous myocardial infarction, myocardial revascularization or stenting, cardiac rhythm disorders, arterial hypertension and myocardiopathy determined the increased cardiac risk. The severity of COPD was graded according to GOLD criteria. The trend of the postoperative lung function recovery was assessed by performing spirometry with a portable spirometer. Results Cardiac comorbidity existed in 55%, mild and moderate COPD in 20% and 35% of patients respectively. Measured values of FVC% and FEV1% on postoperative days one, three and seven, showed continuous improvement, with significant difference between the days of measurement, especially between days three and seven. There was no difference in the trend of the lung function recovery between patients with and without postoperative complications. Whilst pO2 was decreasing during the first three days in a roughly parallel fashion in patients with respiratory, surgical complications and in patients without complications, a slight hypercapnia registered on the first postoperative day was gradually abolished in all groups except in patients with cardiac complications. Conclusion Extent of the lung resection and postoperative complications do not significantly influence the trend of the lung function recovery after lung resection for lung cancer. PMID:24884793
Heathcote, Karen L; Cockcroft, Donald W; Fladeland, Derek A; Fenton, Mark E
2011-01-01
Pulmonary function tests in patients with idiopathic pulmonary fibrosis characteristically show a restrictive pattern including small lung volumes and increased expiratory flow rates resulting from a reduction in pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. When the diseases coexist, pulmonary volumes are compensated, and a smaller than expected reduction or even normal lung volumes can be found. The present report describes 10 patients with progressive breathlessness, three of whom experienced severe limitation in their quality of life. All patients showed lung interstitial involvement and emphysema on computed tomography scan of the chest. The 10 patients showed normal spirometry and lung volumes with severe compromise of gas exchange. Normal lung volumes do not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.
Danielsbacka, Jenny S; Olsén, Monika Fagevik; Hansson, Per-Olof; Mannerkorpi, Kaisa
2018-03-01
Acute pulmonary embolism (PE) is a cardiovascular disease with symptoms including respiratory associated chest pain (RACP) and dyspnea. No previous studies exist focusing on lung function, functional capacity, and respiratory symptoms at discharge after PE. The aim was to examine and describe lung function, functional capacity, and respiratory symptoms at discharge in patients with PE and compare to reference values. Fifty consecutive patients with PE admitted to the Acute Medical Unit, Sahlgrenska University Hospital, were included. Size of PE was calculated by Qanadli score (QS) percentage (mean QS 33.4% (17.6)). FVC and FEV 1 were registered and 6-minute walk test (6MWT) performed at the day of discharge. RACP was rated before and after spirometry/6MWT with the Visual Analogue Scale. Perceived exertion was rated with Borg CR-10 scale. Spirometry and 6MWT results were compared with reference values. This study shows that patients with PE have significantly reduced lung function (p < 0.05) and functional capacity (p < 0.001) at discharge compared with reference values. Patients with higher QS percentage were more dyspneic after 6MWT, no other significant differences in lung function or functional capacity were found between the groups. The patients still suffer from RACP (30%) and dyspnea (60%) at discharge. This study indicates that patients with PE have a reduced lung function, reduced functional capacity, and experience respiratory symptoms as pain and dyspnea at discharge. Further studies are needed concerning long-term follow-up of lung function, functional capacity, and symptoms after PE.
Bates, Michael N; Crane, Julian; Balmes, John R; Garrett, Nick
2015-01-01
Results have been conflicting whether long-term ambient hydrogen sulfide (H2S) affects lung function or is a risk factor for asthma or chronic obstructive pulmonary disease (COPD). Rotorua city, New Zealand, has the world's largest population exposed to ambient H2S-from geothermal sources. We investigated associations of H2S with lung function, COPD and asthma in this population. 1,204 of 1,639 study participants, aged 18-65 years during 2008-2010, provided satisfactory spirometry results. Residences, workplaces and schools over the last 30 years were geocoded. Exposures were estimated from data collected by summer and winter H2S monitoring networks across Rotorua. Four metrics for H2S exposure, representing both current and long-term (last 30 years) exposure, and also time-weighted average and peak exposures, were calculated. Departures from expected values for pre-bronchodilator lung function, calculated from prediction equations, were outcomes for linear regression models using quartiles of the H2S exposure metrics. Separate models examined participants with and without evidence of asthma or COPD, and never- and ever-smokers. Logistic regression was used to investigate associations of COPD (a post-bronchodilator FEV1/FVC < 70% of expected) and asthma (doctor-diagnosed or by FEV1 response to bronchodilator) with H2S exposure quartiles. None of the exposure metrics produced evidence of lung function decrement. The logistic regression analysis showed no evidence that long-term H2S exposure at Rotorua levels was associated with either increased COPD or asthma risk. Some results suggested that recent ambient H2S exposures were beneficially associated with lung function parameters. The study found no evidence of reductions in lung function, or increased risk of COPD or asthma, from recent or long-term H2S exposure at the relatively high ambient concentrations found in Rotorua. Suggestions of improved lung function associated with recent ambient H2S exposures require confirmation in other studies.
Kotaki, Kenji; Senjyu, Hideaki; Tanaka, Takako; Yano, Yudai; Miyamoto, Naomi; Nishinakagawa, Tsuyoshi; Yanagita, Yorihide; Asai, Masaharu; Kozu, Ryo; Tabusadani, Mitsuru; Sawai, Terumitsu; Honda, Sumihisa
2014-01-01
Objectives We sought to elucidate the long-term association of tobacco use and respiratory health in designated pollution victims with and without obstructive pulmonary defects. Design A retrospective cross-sectional study. Setting The register of pollution victims in Kurashiki, Japan. Participants 730 individuals over 65 years of age previously diagnosed with pollution-related respiratory disease. Patients were classified into four groups according to their smoking status and whether they had obstructive pulmonary disease. We then compared the prevalence of respiratory symptoms and lung function over time between groups. Primary outcome measures Spirometry was performed and a respiratory health questionnaire completed in the same season each year for up to 30 years. Results Rates of smoking and respiratory disease were high in our sample. Although respiratory function in non-smoking patients did not completely recover, the annual rate of change in lung function was within the normal range (p<0.01). However, smokers had worse lung function and were more likely to report more severe pulmonary symptoms (p<0.01). Conclusions Patients’ respiratory function did not fully recover despite improved air quality. Our results suggest that, in the context of exposure to air pollution, tobacco use causes additional loss of lung function and exacerbates respiratory symptoms. PMID:25082419
OZONE-INDUCED RESPIRATORY SYMPTOMS AND LUNG FUNCTION DECREMENTS IN HUMANS: EXPOSURE-RESPONSE MODELS
Short duration exposure to ozone (<8 hr) is known to result in lung function decrements and respiratory symptoms in humans. The magnitudes of these responses are functions of ozone concentration (C), activity level measured by minute ventilation (Ve), duration of exposure (T), a...
Mordukhovich, Irina; Lepeule, Johanna; Coull, Brent A; Sparrow, David; Vokonas, Pantel; Schwartz, Joel
2015-02-01
Black carbon (BC) is a pro-oxidant, traffic-related pollutant linked with lung function decline. We evaluated the influence of genetic variation in the oxidative stress pathway on the association between long-term BC exposure and lung function decline. Lung function parameters (FVC and FEV1) were measured during one or more study visits between 1995 and 2011 (n=651 participants) among an elderly cohort: the Normative Aging Study. Residential BC exposure levels were estimated using a spatiotemporal land use regression model. We evaluated whether oxidative stress variants, combined into a genetic score, modify the association between 1-year and 5-year moving averages of BC exposure and lung function levels and rates of decline, using linear mixed models. We report stronger associations between long-term BC exposure and increased rate of lung function decline, but not baseline lung function level, among participants with higher oxidative stress allelic risk profiles compared with participants with lower risk profiles. Associations were strongest when evaluating 5-year moving averages of BC exposure. A 0.5 µg/m(3) increase in 5-year BC exposure was associated with a 0.1% yearly increase in FVC (95% CI -0.5 to 0.7) among participants with low genetic risk scores and a 1.3% yearly decrease (95% CI -1.8 to -0.8) among those with high scores (p-interaction=0.0003). Our results suggest that elderly men with high oxidative stress genetic scores may be more susceptible to the effects of BC on lung function decline. The results, if confirmed, should inform air-quality recommendations in light of a potentially susceptible subgroup. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Laporta, Rosalía; Ussetti, Piedad; Mora, Gema; López, Cristina; Gómez, David; de Pablo, Alicia; Lázaro, M Teresa; Carreño, M Cruz; Ferreiro, M José
2008-08-01
The time at which lung transplantation is indicated is determined by clinical and functional criteria that vary according to the particular disease. The aim of our study was to present the criteria according to which patients were placed on waiting lists for lung transplantation in our hospital. We analyzed retrospectively the clinical characteristics, lung function, heart function, and 6-minute walk test results of patients who had received a lung transplant in our hospital from January 2002 through September 2005. During the study period 100 lung transplants were performed. The mean age of the patients was 45 years (range, 15-67 years) and 57% were men. The diseases that most often led to a lung transplant were chronic obstructive pulmonary disease (COPD) (35%), pulmonary fibrosis (29%), and bronchiectasis (21%). Lung function values differed by disease: mean (SD) forced expiratory volume in 1 second (FEV1) was 20% (11%) and forced vital capacity (FVC) was 37% (15%) in patients with COPD; FEV1 was 41% (15%) and FVC, 40% (17%) in patients with pulmonary fibrosis; and FEV1 was 23% (7%) and FVC, 37% (10%) in patients with bronchiectasis. The patients who received lung transplants in our hospital were in advanced phases of their disease and met the inclusion criteria accepted by the various medical associations when they were placed on the waiting list.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradskiy, Y; Waxweiler, T; Diot, Q
Purpose: 4DCT-ventilation is an exciting new imaging modality that uses 4DCTs to calculate lung ventilation. Because 4DCTs are acquired as part of routine care, calculating 4DCT-ventilation allows for lung function evaluation without additional cost or inconvenience to the patient. Development of a clinical trial is underway at our institution to use 4DCT-ventilation for thoracic functional avoidance with the idea that preferential sparing of functional lung regions can decrease pulmonary toxicity. The purpose of our work was to develop the practical aspects of a 4DCT-ventilation functional avoidance clinical trial including: 1.assessing patient eligibility 2.developing trial inclusion criteria and 3.developing treatment planningmore » and dose-function evaluation strategies. Methods: 96 stage III lung cancer patients from 2 institutions were retrospectively reviewed. 4DCT-ventilation maps were calculated using the patient’s 4DCTs, deformable image registrations, and a density-change-based algorithm. To assess patient eligibility and develop trial inclusion criteria we used an observer-based binary end point noting the presence or absence of a ventilation defect and developed an algorithm based on the percent ventilation in each lung third. Functional avoidance planning integrating 4DCT-ventilation was performed using rapid-arc and compared to the patient’s clinically used plan. Results: Investigator-determined clinical ventilation defects were present in 69% of patients. Our regional/lung-thirds ventilation algorithm identified that 59% of patients have lung functional profiles suitable for functional avoidance. Compared to the clinical plan, functional avoidance planning was able to reduce the mean dose to functional lung by 2 Gy while delivering comparable target coverage and cord/heart doses. Conclusions: 4DCT-ventilation functional avoidance clinical trials have great potential to reduce toxicity, and our data suggest that 59% of lung cancer patients have lung function profiles suitable for functional avoidance. Our study used a retrospective evaluation of a large lung cancer patient database to develop the practical aspects of a 4DCT-ventilation functional avoidance clinical trial. (R.C., E.C., T.G.), NIH Research Scientist Development Award K01-CA181292 (R.C.), and State of Colorado Advanced Industries Accelerator Grant (Y.V.)« less
Lung segmentation from HRCT using united geometric active contours
NASA Astrophysics Data System (ADS)
Liu, Junwei; Li, Chuanfu; Xiong, Jin; Feng, Huanqing
2007-12-01
Accurate lung segmentation from high resolution CT images is a challenging task due to various detail tracheal structures, missing boundary segments and complex lung anatomy. One popular method is based on gray-level threshold, however its results are usually rough. A united geometric active contours model based on level set is proposed for lung segmentation in this paper. Particularly, this method combines local boundary information and region statistical-based model synchronously: 1) Boundary term ensures the integrality of lung tissue.2) Region term makes the level set function evolve with global characteristic and independent on initial settings. A penalizing energy term is introduced into the model, which forces the level set function evolving without re-initialization. The method is found to be much more efficient in lung segmentation than other methods that are only based on boundary or region. Results are shown by 3D lung surface reconstruction, which indicates that the method will play an important role in the design of computer-aided diagnostic (CAD) system.
Wang, Yajie; Jiang, Xue; Zhang, Lihai; Wang, Lihong; Li, Zhu; Sun, Wuzhuang
2014-01-01
Objectives: This study is conducted to investigate an effect of simvastatin on cigarette smoke-induced COPD. Methods: Rats were exposed to air (control) and cigarette smoke (smoking) in presence and absence of simvastatin. Heart and lung tissues were harvested for histopathologic and morphometric analysis. Body weight of rat, mean liner intercept (MLI), mean alveolar number (MAN), lung function test, mean pulmonary artery pressure (mPAP), right ventricular hypertrophy index (RVHI) and 5-HTT level in serum and BALF were examined in experimental rats, respectively. Results: Application of simvastatin mitigated peribronchiolar inflammation and pulmonary bullae formed in the smoke-exposed lungs with weight gain as compared to the smoking rats (P < 0.05). Simvastatin-treated rats showed slight but significant decreases in MLI and MAN with a partial reversal of lung function decline (all P < 0.05). Treatment with simvastatin resulted in a significant decrease not only in mPAP and RVHI but also in a 5-HTT level in serum and BALF (P < 0.01 or 0.05) with a good correlation between the 5-HTT level and mPAP or RVHI (r = 0.693 and 0.479; 0.675 and 0.508). Conclusion: Simvastatin partly reverses lung function decline and attenuates structural impairments of lung and right ventricle possibly through reducing 5-HTT content in the model of COPD. PMID:25674219
NASA Astrophysics Data System (ADS)
Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Noshiro, Makoto; Brown, Brian H.; Soma, Kazui
2010-04-01
The consistency of regional lung density measurements as estimated by Electrical Impedance Tomography (EIT), in eleven patients supported by a mechanical ventilator, was validated to verify the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities between the normal lung and diseased lungs associated with pneumonia, atelectasis and pleural effusion (Steel-Dwass test, p < 0.05). Temporal changes in regional lung density of patients with atelectasis were observed to be in good agreement with the results of clinical diagnosis. These results indicate that it is feasible to obtain a quantitative value for regional lung density using EIT.
A prospective study of decline in lung function in relation to welding emissions.
Christensen, Sigve W; Bonde, Jens Peter; Omland, Oyvind
2008-02-26
Numerous cross-sectional studies have reported reduced lung function among welders but limitations of exposure assessment and design preclude causal inference. The aim of this study was to investigate if long-term exposure to welding fume particulates accelerates the age-related decline in lung function. Lung function was measured by spirometry in 1987 and 2004 among 68 steel welders and 32 non-welding production workers. The decline in forced expiratory volume (FEV1) was analysed in relation to cumulated exposure to fume particulates among welders during the follow-up period. Among smokers the decline in FEV1 through follow-up period was in average 150 ml larger among welders than non-welders while the difference was negligible among non-smokers. The results did not reach statistical significance and within welders the decline in lung function was not related to the cumulated welding particulate exposure during follow-up period Long-term exposure to welding emissions may accelerate the age-related decline of lung function but at exposure levels in the range of 1.5 to 6.5 mg/m3 the average annual excess loss of FEV1 is unlikely to exceed 25 ml in smokers and 10 ml in non-smokers.
Lung function and exhaled nitric oxide in healthy unsedated African infants
Gray, Diane; Willemse, Lauren; Visagie, Ane; Smith, Emilee; Czövek, Dorottya; Sly, Peter D; Hantos, Zoltán; Hall, Graham L; Zar, Heather J
2015-01-01
Background and objective Population-appropriate lung function reference data are essential to accurately identify respiratory disease and measure response to interventions. There are currently no reference data in African infants. The aim was to describe normal lung function in healthy African infants. Methods Lung function was performed on healthy South African infants enrolled in a birth cohort study, the Drakenstein child health study. Infants were excluded if they were born preterm or had a history of neonatal respiratory distress or prior respiratory tract infection. Measurements, made during natural sleep, included the forced oscillation technique, tidal breathing, exhaled nitric oxide and multiple breath washout measures. Results Three hundred sixty-three infants were tested. Acceptable and repeatable measurements were obtained in 356 (98%) and 352 (97%) infants for tidal breathing analysis and exhaled nitric oxide outcomes, 345 (95%) infants for multiple breath washout and 293 of the 333 (88%) infants for the forced oscillation technique. Age, sex and weight-for-age z score were significantly associated with lung function measures. Conclusions This study provides reference data for unsedated infant lung function in African infants and highlights the importance of using population-specific data. PMID:26134556
Hanson, Corrine; Lyden, Elizabeth; Furtado, Jeremy; Campos, Hannia; Sparrow, David; Vokonas, Pantel; Litonjua, Augusto A.
2015-01-01
Background and Aims The results of studies assessing relationships between vitamin E intake and status and lung function are conflicting. This study aimed to evaluate the effect of vitamin E intake and serum levels of tocopherol isoforms on lung function in a cross-sectional sample of 580 men from the Normative Aging Study, a longitudinal aging study. Methods Regression models were used to look at associations of serum tocopherol isoform levels and vitamin E intake with lung function parameters after adjustment for confounders. Vitamin E intake was measured using a food frequency questionnaire and serum levels of γ, α, and δ-tocopherol levels were measured using high-performance liquid chromatography. Results After adjustment for potential confounders, serum γ-tocopherol had a significant inverse association with forced vital capacity (β=-0.10, p=0.05). Alpha and δ-tocopherol were not associated with any lung function parameter. After classifying COPD status according to Global Initiative for Obstructive Lung Disease (GOLD) stage criteria, serum levels of δ-tocopherol were lower in participants with more severe COPD (p=0.01). Serum levels of δ-tocopherol were also lower in participants with greater levels of smoking (p=0.02). Both vitamin E intake (β=0.03, p=0.02; β=0.03, p=0.01) and use of vitamin E supplements (β=0.05, p=0.03; β=0.06. p=0.02) were positively associated with FEV1 and FVC, after adjusting for confounders. Subjects who took vitamin E supplements had significantly higher α-tocopherol levels (p<0.0001) and lower γ-tocopherol levels (p<0.0001) than non-users. Conclusion In this study, there is a positive association between dietary vitamin E intake and lung function, and evidence of an inverse relationship between serum levels of γ-tocopherol and lung function. PMID:25715694
Mondrinos, Mark J.; Knight, Linda C.; Kennedy, Paul A.; Wu, Jichuan; Kauffman, Matthew; Baker, Sandy T.; Wolfson, Marla R.
2015-01-01
Sepsis and sepsis-induced lung injury remain a leading cause of death in intensive care units. We identified protein kinase C-δ (PKCδ) as a critical regulator of the acute inflammatory response and demonstrated that PKCδ inhibition was lung-protective in a rodent sepsis model, suggesting that targeting PKCδ is a potential strategy for preserving pulmonary function in the setting of indirect lung injury. In this study, whole-body organ biodistribution and pulmonary cellular distribution of a transactivator of transcription (TAT)–conjugated PKCδ inhibitory peptide (PKCδ-TAT) was determined following intratracheal (IT) delivery in control and septic [cecal ligation and puncture (CLP)] rats to ascertain the impact of disease pathology on biodistribution and efficacy. There was negligible lung uptake of radiolabeled peptide upon intravenous delivery [<1% initial dose (ID)], whereas IT administration resulted in lung retention of >65% ID with minimal uptake in liver or kidney (<2% ID). IT delivery of a fluorescent-tagged (tetramethylrhodamine-PKCδ-TAT) peptide demonstrated uniform spatial distribution and cellular uptake throughout the peripheral lung. IT delivery of PKCδ-TAT at the time of CLP surgery significantly reduced PKCδ activation (tyrosine phosphorylation, nuclear translocation and cleavage) and acute lung inflammation, resulting in improved lung function and gas exchange. Importantly, peptide efficacy was similar when delivered at 4 hours post-CLP, demonstrating therapeutic relevance. Conversely, spatial lung distribution and efficacy were significantly impaired at 8 hours post-CLP, which corresponded to marked histopathological progression of lung injury. These studies establish a functional connection between peptide spatial distribution, inflammatory histopathology in the lung, and efficacy of this anti-inflammatory peptide. PMID:26243739
Collaco, Joseph M; Raraigh, Karen S; Appel, Lawrence J; Cutting, Garry R
2016-11-01
Mean annual ambient temperature is a replicated environmental modifier of cystic fibrosis (CF) lung disease with warmer temperatures being associated with lower lung function. The mechanism of this relationship is not completely understood. However, Pseudomonas aeruginosa, a pathogen that infects the lungs of CF individuals and decreases lung function, also has a higher prevalence in individuals living in warmer climates. We therefore investigated the extent to which respiratory pathogens mediated the association between temperature and lung function. Thirteen respiratory pathogens observed on CF respiratory cultures were assessed in multistep fashion using clustered linear and logistic regression to determine if any mediated the association between temperature and lung function. Analysis was performed in the CF Twin-Sibling Study (n=1730; primary population); key findings were then evaluated in the U.S. CF Foundation Data Registry (n=15,174; replication population). In the primary population, three respiratory pathogens (P. aeruginosa, mucoid P. aeruginosa, and methicillin-resistant Staphylococcus aureus) mediated the association between temperature and lung function. P. aeruginosa accounted for 19% of the association (p=0.003), mucoid P. aeruginosa for 31% (p=0.001), and MRSA for 13% (p=0.023). The same three pathogens mediated association in the replication population (7%, p<0.001; 7%, p=0.002; and 4%, (p=0.002), respectively). Three important respiratory pathogens in CF mediate the association between lower lung function and warmer temperatures. These findings have implications for understanding regional variations in clinical outcomes, and interpreting results of epidemiologic studies and clinical trials that encompass regions with different ambient temperatures. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Singh, Brijendra; Kasam, Rajesh K; Sontake, Vishwaraj; Wynn, Thomas A; Madala, Satish K
2017-11-01
IL-4 and IL-13 are major T-helper cell (Th) 2 cytokines implicated in the pathogenesis of several lung diseases, including pulmonary fibrosis. In this study, using a novel repetitive intradermal bleomycin model in which mice develop extensive lung fibrosis and a progressive decline in lung function compared with saline-treated control mice, we investigated profibrotic functions of Th2 cytokines. To determine the role of IL-13 signaling in the pathogenesis of bleomycin-induced pulmonary fibrosis, wild-type, IL-13, and IL-4Rα-deficient mice were treated with bleomycin, and lungs were assessed for changes in lung function and pulmonary fibrosis. Histological staining and lung function measurements demonstrated that collagen deposition and lung function decline were attenuated in mice deficient in either IL-13 or IL-4Rα-driven signaling compared with wild-type mice treated with bleomycin. Furthermore, our results demonstrated that IL-13 and IL-4Rα-driven signaling are involved in excessive migration of macrophages and fibroblasts. Notably, our findings demonstrated that IL-13-driven migration involves increased phospho-focal adhesion kinase signaling and F-actin polymerization. Importantly, in vivo findings demonstrated that IL-13 augments matrix metalloproteinase (MMP)-2 and MMP9 activity that has also been shown to increase migration and invasiveness of fibroblasts in the lungs during bleomycin-induced pulmonary fibrosis. Together, our findings demonstrate a pathogenic role for Th2-cytokine signaling that includes excessive migration and protease activity involved in severe fibrotic lung disease.
Molecular mechanisms underlying variations in lung function: a systems genetics analysis
Obeidat, Ma’en; Hao, Ke; Bossé, Yohan; Nickle, David C; Nie, Yunlong; Postma, Dirkje S; Laviolette, Michel; Sandford, Andrew J; Daley, Denise D; Hogg, James C; Elliott, W Mark; Fishbane, Nick; Timens, Wim; Hysi, Pirro G; Kaprio, Jaakko; Wilson, James F; Hui, Jennie; Rawal, Rajesh; Schulz, Holger; Stubbe, Beate; Hayward, Caroline; Polasek, Ozren; Järvelin, Marjo-Riitta; Zhao, Jing Hua; Jarvis, Deborah; Kähönen, Mika; Franceschini, Nora; North, Kari E; Loth, Daan W; Brusselle, Guy G; Smith, Albert Vernon; Gudnason, Vilmundur; Bartz, Traci M; Wilk, Jemma B; O’Connor, George T; Cassano, Patricia A; Tang, Wenbo; Wain, Louise V; Artigas, María Soler; Gharib, Sina A; Strachan, David P; Sin, Don D; Tobin, Martin D; London, Stephanie J; Hall, Ian P; Paré, Peter D
2016-01-01
Summary Background Lung function measures reflect the physiological state of the lung, and are essential to the diagnosis of chronic obstructive pulmonary disease (COPD). The SpiroMeta-CHARGE consortium undertook the largest genome-wide association study (GWAS) so far (n=48 201) for forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FEV1/FVC) in the general population. The lung expression quantitative trait loci (eQTLs) study mapped the genetic architecture of gene expression in lung tissue from 1111 individuals. We used a systems genetics approach to identify single nucleotide polymorphisms (SNPs) associated with lung function that act as eQTLs and change the level of expression of their target genes in lung tissue; termed eSNPs. Methods The SpiroMeta-CHARGE GWAS results were integrated with lung eQTLs to map eSNPs and the genes and pathways underlying the associations in lung tissue. For comparison, a similar analysis was done in peripheral blood. The lung mRNA expression levels of the eSNP-regulated genes were tested for associations with lung function measures in 727 individuals. Additional analyses identified the pleiotropic effects of eSNPs from the published GWAS catalogue, and mapped enrichment in regulatory regions from the ENCODE project. Finally, the Connectivity Map database was used to identify potential therapeutics in silico that could reverse the COPD lung tissue gene signature. Findings SNPs associated with lung function measures were more likely to be eQTLs and vice versa. The integration mapped the specific genes underlying the GWAS signals in lung tissue. The eSNP-regulated genes were enriched for developmental and inflammatory pathways; by comparison, SNPs associated with lung function that were eQTLs in blood, but not in lung, were only involved in inflammatory pathways. Lung function eSNPs were enriched for regulatory elements and were over-represented among genes showing differential expression during fetal lung development. An mRNA gene expression signature for COPD was identified in lung tissue and compared with the Connectivity Map. This in-silico drug repurposing approach suggested several compounds that reverse the COPD gene expression signature, including a nicotine receptor antagonist. These findings represent novel therapeutic pathways for COPD. Interpretation The system genetics approach identified lung tissue genes driving the variation in lung function and susceptibility to COPD. The identification of these genes and the pathways in which they are enriched is essential to understand the pathophysiology of airway obstruction and to identify novel therapeutic targets and biomarkers for COPD, including drugs that reverse the COPD gene signature in silico. Funding The research reported in this article was not specifically funded by any agency. See Acknowledgments for a full list of funders of the lung eQTL study and the Spiro-Meta CHARGE GWAS. PMID:26404118
2014-01-01
Background Physical activity has well-established positive health-related effects. Sedentary behaviour has been associated with postoperative complications and mortality after cardiac surgery. Patients undergoing cardiac surgery often suffer from impaired lung function postoperatively. The association between physical activity and lung function in cardiac surgery patients has not previously been reported. Methods Patients undergoing cardiac surgery were followed up two months postoperatively. Physical activity was assessed on a four-category scale (sedentary, moderate activity, moderate regular exercise, and regular activity and exercise), modified from the Swedish National Institute of Public Health’s national survey. Formal lung function testing was performed preoperatively and two months postoperatively. Results The sample included 283 patients (82% male). Two months after surgery, the level of physical activity had increased (p < 0.001) in the whole sample. Patients who remained active or increased their level of physical activity had significantly better recovery of lung function than patients who remained sedentary or had decreased their level of activity postoperatively in terms of vital capacity (94 ± 11% of preoperative value vs. 91 ± 9%; p = 0.03), inspiratory capacity (94 ± 14% vs. 88 ± 19%; p = 0.008), and total lung capacity (96 ± 11% vs. 90 ± 11%; p = 0.01). Conclusions An increased level of physical activity, compared to preoperative level, was reported as early as two months after surgery. Our data shows that there could be a significant association between physical activity and recovery of lung function after cardiac surgery. The relationship between objectively measured physical activity and postoperative pulmonary recovery needs to be further examined to verify these results. PMID:24678691
Larcombe, Alexander N.; Foong, Rachel E.; Boylen, Catherine E.; Zosky, Graeme R.
2012-01-01
Please cite this paper as: Larcombe et al. (2012) Acute diesel exhaust particle exposure increases viral titre and inflammation associated with existing influenza infection, but does not exacerbate deficits in lung function. Influenza and Other Respiratory Viruses DOI:10.1111/irv.12012. Background Exposure to diesel exhaust particles (DEP) is thought to exacerbate many pre‐existing respiratory diseases, including asthma, bronchitis and chronic obstructive pulmonary disease, however, there is a paucity of data on whether DEP exacerbates illness due to respiratory viral infection. Objectives To assess the physiological consequences of an acute DEP exposure during the peak of influenza‐induced illness. Methods We exposed adult female BALB/c mice to 100 μg DEP (or control) 3·75 days after infection with 104·5 plaque forming units of influenza A/Mem71 (or control). Six hours, 24 hours and 7 days after DEP exposure we measured thoracic gas volume and lung function at functional residual capacity. Bronchoalveolar lavage fluid was taken for analyses of cellular inflammation and cytokines, and whole lungs were taken for measurement of viral titre. Results Influenza infection resulted in significantly increased inflammation, cytokine influx and impairment to lung function. DEP exposure alone resulted in less inflammation and cytokine influx, and no impairment to lung function. Mice infected with influenza and exposed to DEP had higher viral titres and neutrophilia compared with infected mice, yet they did not have more impaired lung mechanics than mice infected with influenza alone. Conclusions A single dose of DEP is not sufficient to physiologically exacerbate pre‐existing respiratory disease caused by influenza infection in mice. PMID:22994877
Serum Methylarginines and Spirometry-Measured Lung Function in Older Adults
McEvoy, Mark A.; Schofield, Peter W.; Smith, Wayne T.; Agho, Kingsley; Mangoni, Arduino A.; Soiza, Roy L.; Peel, Roseanne; Hancock, Stephen J.; Carru, Ciriaco; Zinellu, Angelo; Attia, John R.
2013-01-01
Rationale Methylarginines are endogenous nitric oxide synthase inhibitors that have been implicated in animal models of lung disease but have not previously been examined for their association with spirometric measures of lung function in humans. Objectives This study measured serum concentrations of asymmetric and symmetric dimethylarginine in a representative sample of older community-dwelling adults and determined their association with spirometric lung function measures. Methods Data on clinical, lifestyle, and demographic characteristics, methylated arginines, and L-arginine (measured using LC-MS/MS) were collected from a population-based sample of older Australian adults from the Hunter Community Study. The five key lung function measures included as outcomes were Forced Expiratory Volume in 1 second, Forced Vital Capacity, Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio, Percent Predicted Forced Expiratory Volume in 1 second, and Percent Predicted Forced Vital Capacity. Measurements and Main Results In adjusted analyses there were statistically significant independent associations between a) higher asymmetric dimethylarginine, lower Forced Expiratory Volume in 1 second and lower Forced Vital Capacity; and b) lower L-arginine/asymmetric dimethylarginine ratio, lower Forced Expiratory Volume in 1 second, lower Percent Predicted Forced Expiratory Volume in 1 second and lower Percent Predicted Forced Vital Capacity. By contrast, no significant associations were observed between symmetric dimethylarginine and lung function. Conclusions After adjusting for clinical, demographic, biochemical, and pharmacological confounders, higher serum asymmetric dimethylarginine was independently associated with a reduction in key measures of lung function. Further research is needed to determine if methylarginines predict the decline in lung function. PMID:23690915
Zych, Bartlomiej; Popov, Aron-Frederik; Amrani, Mohamed; Bahrami, Toufan; Redmond, Karen Christina; Krueger, Heike; Carby, Martin; Simon, André Ruediger
2012-09-01
Donor organ shortage remains to be the major limitation in lung transplantation, and donation after circulatory death (DCD) might represent one way to alleviate this problem. DCD was introduced to our institution in 2007 and has been a part of our clinical routine since then. Here, we present the mid-term results of lung transplantation from DCD in a single institution and compare the outcomes with the lung recipient cohort receiving lungs from donation after brain death (DBD). Since initiation of the DCD programme in March 2007, of the 157 lung transplantations performed, 26 (16.5%) were retrieved from DCD donors, with 25 double- and 1 single-lung transplants being performed. Results were compared with standard DBD transplantations. Analyses included, amongst others, donor characteristics, survival, prevalence of primary graft dysfunction, acute rejection, lung function tests during follow-up, onset of bronchiolitis obliterans syndrome (BOS) as well as duration of mechanical ventilation, hospital and intensive care unit length of stay. While there was no significant difference between lung function, BOS and survival between the two groups, lungs from DCD donors had a higher PaO(2) (median; interquartile range) 498.3 (451.5; 525) vs. DBD 442.5 (371.25; 502) kPa before retrieval (P = 0.009). There was also a longer total ischaemic time in the DCD vs. DBD group: 320 min (298.75; 393.25) vs. 285.5 min (240; 373) (P = 0.025). All other parameters were comparable. Medium-term results after lung transplantation with organs procured after circulatory death are comparable with those obtained after standard lung transplantation. Therefore, DCD could be used to significantly increase the donor pool.
Lung vital capacity and oxygen saturation in adults with cerebral palsy
Lampe, Renée; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana
2014-01-01
Background Individuals with infantile cerebral palsy have multiple disabilities. The most conspicuous syndrome being investigated from many aspects is motor movement disorder with a spastic gait pattern. The lung function of adults with spasticity attracts less attention in the literature. This is surprising because decreased thoracic mobility and longstanding scoliosis should have an impact on lung function. With increasing age and the level of disability, individuals become susceptible to lung infections and reflux illness, and these are accompanied by increased aspiration risk. This study examined, with different methods, to what extent adults with congenital cerebral palsy and acquired spastic paresis – following traumatic brain injury – showed restriction of lung function. It also assessed the contribution of disability level on this restriction. Methods The oxygen saturation of 46 adults with a diagnosis of cerebral palsy was measured with an oximeter. Lung vital capacity was measured with a mobile spirometer and excursion of the thorax was clinically registered. The gross motor function levels and the presence or absence of scoliosis were determined. Results A significantly positive correlation between lung vital capacity and chest expansion was established. Both the lung vital capacity and the thorax excursion decreased with increases in gross motor function level. Oxygen saturation remained within the normal range in all persons, in spite of reduced values of the measured lung parameters. No statistically significant dependency between lung vital capacity and oxygen saturation, and between chest expansion and oxygen saturation was found. The scoliotic deformities of the spine were associated with an additional decrease in the vital capacity, but this did not affect blood oxygen supply. Conclusion Despite the decreased chest expansion and the significantly reduced lung volume in adults with cerebral palsy, sufficient oxygen supply was registered. PMID:25525345
Transcriptome profile and unique genetic evolution of positively selected genes in yak lungs.
Lan, DaoLiang; Xiong, XianRong; Ji, WenHui; Li, Jian; Mipam, Tserang-Donko; Ai, Yi; Chai, ZhiXin
2018-04-01
The yak (Bos grunniens), which is a unique bovine breed that is distributed mainly in the Qinghai-Tibetan Plateau, is considered a good model for studying plateau adaptability in mammals. The lungs are important functional organs that enable animals to adapt to their external environment. However, the genetic mechanism underlying the adaptability of yak lungs to harsh plateau environments remains unknown. To explore the unique evolutionary process and genetic mechanism of yak adaptation to plateau environments, we performed transcriptome sequencing of yak and cattle (Bos taurus) lungs using RNA-Seq technology and a subsequent comparison analysis to identify the positively selected genes in the yak. After deep sequencing, a normal transcriptome profile of yak lung that containing a total of 16,815 expressed genes was obtained, and the characteristics of yak lungs transcriptome was described by functional analysis. Furthermore, Ka/Ks comparison statistics result showed that 39 strong positively selected genes are identified from yak lungs. Further GO and KEGG analysis was conducted for the functional annotation of these genes. The results of this study provide valuable data for further explorations of the unique evolutionary process of high-altitude hypoxia adaptation in yaks in the Tibetan Plateau and the genetic mechanism at the molecular level.
Jiménez, Julio; Richter, Jute; Nagatomo, Taro; Salaets, Thomas; Quarck, Rozenn; Wagennar, Allard; Wang, Hongmei; Vanoirbeek, Jeroen; Deprest, Jan; Toelen, Jaan
2016-10-24
Bronchopulmonary dysplasia (BPD) is caused by preterm neonatal lung injury and results in oxygen dependency and pulmonary hypertension. Current clinical management fails to reduce the incidence of BPD, which calls for novel therapies. Fetal rabbits have a lung development that mimics humans and can be used as a translational model to test novel treatment options. In preterm rabbits, exposure to hyperoxia leads to parenchymal changes, yet vascular damage has not been studied in this model. In this study we document the early functional and structural changes of the lung vasculature in preterm rabbits that are induced by hyperoxia after birth. Pulmonary artery Doppler measurements, micro-CT barium angiograms and media thickness of peripheral pulmonary arteries were affected after seven days of hyperoxia when compared to controls. The parenchyma was also affected both at the functional and structural level. Lung function testing showed higher tissue resistance and elastance, with a decreased lung compliance and lung capacity. Histologically hyperoxia leads to fewer and larger alveoli with thicker walls, less developed distal airways and more inflammation than normoxia. In conclusion, we show that the rabbit model develops pulmonary hypertension and developmental lung arrest after preterm lung injury, which parallel the early changes in human BPD. Thus it enables the testing of pharmaceutical agents that target the cardiovascular compartment of the lung for further translation towards the clinic.
Jiménez, Julio; Richter, Jute; Nagatomo, Taro; Salaets, Thomas; Quarck, Rozenn; Wagennar, Allard; Wang, Hongmei; Vanoirbeek, Jeroen; Deprest, Jan; Toelen, Jaan
2016-01-01
Bronchopulmonary dysplasia (BPD) is caused by preterm neonatal lung injury and results in oxygen dependency and pulmonary hypertension. Current clinical management fails to reduce the incidence of BPD, which calls for novel therapies. Fetal rabbits have a lung development that mimics humans and can be used as a translational model to test novel treatment options. In preterm rabbits, exposure to hyperoxia leads to parenchymal changes, yet vascular damage has not been studied in this model. In this study we document the early functional and structural changes of the lung vasculature in preterm rabbits that are induced by hyperoxia after birth. Pulmonary artery Doppler measurements, micro-CT barium angiograms and media thickness of peripheral pulmonary arteries were affected after seven days of hyperoxia when compared to controls. The parenchyma was also affected both at the functional and structural level. Lung function testing showed higher tissue resistance and elastance, with a decreased lung compliance and lung capacity. Histologically hyperoxia leads to fewer and larger alveoli with thicker walls, less developed distal airways and more inflammation than normoxia. In conclusion, we show that the rabbit model develops pulmonary hypertension and developmental lung arrest after preterm lung injury, which parallel the early changes in human BPD. Thus it enables the testing of pharmaceutical agents that target the cardiovascular compartment of the lung for further translation towards the clinic. PMID:27783043
Lung function in post-poliomyelitis syndrome: a cross-sectional study*
de Lira, Claudio Andre Barbosa; Minozzo, Fábio Carderelli; Sousa, Bolivar Saldanha; Vancini, Rodrigo Luiz; Andrade, Marília dos Santos; Quadros, Abrahão Augusto Juviniano; Oliveira, Acary Souza Bulle; da Silva, Antonio Carlos
2013-01-01
OBJECTIVE: To compare lung function between patients with post-poliomyelitis syndrome and those with sequelae of paralytic poliomyelitis (without any signs or symptoms of post-poliomyelitis syndrome), as well as between patients with post-poliomyelitis syndrome and healthy controls. METHODS: Twenty-nine male participants were assigned to one of three groups: control; poliomyelitis (comprising patients who had had paralytic poliomyelitis but had not developed post-poliomyelitis syndrome); and post-poliomyelitis syndrome. Volunteers underwent lung function measurements (spirometry and respiratory muscle strength assessment). RESULTS: The results of the spirometric assessment revealed no significant differences among the groups except for an approximately 27% lower mean maximal voluntary ventilation in the post-poliomyelitis syndrome group when compared with the control group (p = 0.0127). Nevertheless, the maximal voluntary ventilation values for the post-poliomyelitis group were compared with those for the Brazilian population and were found to be normal. No significant differences were observed in respiratory muscle strength among the groups. CONCLUSIONS: With the exception of lower maximal voluntary ventilation, there was no significant lung function impairment in outpatients diagnosed with post-poliomyelitis syndrome when compared with healthy subjects and with patients with sequelae of poliomyelitis without post-poliomyelitis syndrome. This is an important clinical finding because it shows that patients with post-poliomyelitis syndrome can have preserved lung function. PMID:24068267
Retinoic acid-induced alveolar cellular growth does not improve function after right pneumonectomy.
Dane, D Merrill; Yan, Xiao; Tamhane, Rahul M; Johnson, Robert L; Estrera, Aaron S; Hogg, Deborah C; Hogg, Richard T; Hsia, Connie C W
2004-03-01
To determine whether all-trans retinoic acid (RA) treatment enhances lung function during compensatory lung growth in fully mature animals, adult male dogs (n = 4) received 2 mg x kg(-1) x day(-1) po RA 4 days/wk beginning the day after right pneumonectomy (R-PNX, 55-58% resection). Litter-matched male R-PNX controls (n = 4) received placebo. After 3 mo, transpulmonary pressure (TPP)-lung volume relationship, diffusing capacities for carbon monoxide and nitric oxide, cardiac output, and septal volume (V(tiss-RB)) were measured under anesthesia by a rebreathing technique at two lung volumes. Lung air and tissue volumes (V(air-CT) and V(tiss-CT)) were also measured from high-resolution computerized tomographic (CT) scans at a constant TPP. In RA-treated dogs compared with controls, TPP-lung volume relationships were similar. Diffusing capacities for carbon monoxide and nitric oxide were significantly impaired at a lower lung volume but similar at a high lung volume. Whereas V(tiss-RB) was significantly lower at both lung volumes in RA-treated animals, V(air-CT) and V(tiss-CT) were not different between groups; results suggest uneven distribution of ventilation consistent with distortion of alveolar geometry and/or altered small airway function induced by RA. We conclude that RA does not improve resting pulmonary function during the early months after R-PNX despite histological evidence of its action in enhancing alveolar cellular growth in the remaining lung.
2013-01-01
Background We have recently reported on the changes in plasma free amino acid (PFAA) profiles in lung cancer patients and the efficacy of a PFAA-based, multivariate discrimination index for the early detection of lung cancer. In this study, we aimed to verify the usefulness and robustness of PFAA profiling for detecting lung cancer using new test samples. Methods Plasma samples were collected from 171 lung cancer patients and 3849 controls without apparent cancer. PFAA levels were measured by high-performance liquid chromatography (HPLC)–electrospray ionization (ESI)–mass spectrometry (MS). Results High reproducibility was observed for both the change in the PFAA profiles in the lung cancer patients and the discriminating performance for lung cancer patients compared to previously reported results. Furthermore, multivariate discriminating functions obtained in previous studies clearly distinguished the lung cancer patients from the controls based on the area under the receiver-operator characteristics curve (AUC of ROC = 0.731 ~ 0.806), strongly suggesting the robustness of the methodology for clinical use. Moreover, the results suggested that the combinatorial use of this classifier and tumor markers improves the clinical performance of tumor markers. Conclusions These findings suggest that PFAA profiling, which involves a relatively simple plasma assay and imposes a low physical burden on subjects, has great potential for improving early detection of lung cancer. PMID:23409863
Development of a patient-specific model for calculation of pulmonary function
NASA Astrophysics Data System (ADS)
Zhong, Hualiang; Ding, Mingyue; Movsas, Benjamin; Chetty, Indrin J.
2011-06-01
The purpose of this paper is to develop a patient-specific finite element model (FEM) to calculate the pulmonary function of lung cancer patients for evaluation of radiation treatment. The lung model was created with an in-house developed FEM software with region-specific parameters derived from a four-dimensional CT (4DCT) image. The model was used first to calculate changes in air volume and elastic stress in the lung, and then to calculate regional compliance defined as the change in air volume corrected by its associated stress. The results have shown that the resultant compliance images can reveal the regional elastic property of lung tissue, and could be useful for radiation treatment planning and assessment.
Sustained Effects of Sirolimus on Lung Function and Cystic Lung Lesions in Lymphangioleiomyomatosis
Yao, Jianhua; Jones, Amanda M.; Julien-Williams, Patricia; Stylianou, Mario; Moss, Joel
2014-01-01
Rationale: Sirolimus therapy stabilizes lung function and reduces the size of chylous effusions and lymphangioleiomyomas in patients with lymphangioleiomyomatosis. Objectives: To determine whether sirolimus has beneficial effects on lung function, cystic areas, and adjacent lung parenchyma; whether these effects are sustained; and whether sirolimus is well tolerated by patients. Methods: Lung function decline over time, lung volume occupied by cysts (cyst score), and lung tissue texture in the vicinity of the cysts were quantified with a computer-aided diagnosis system in 38 patients. Then we compared cyst scores from the last study on sirolimus with studies done on sirolimus therapy. In 12 patients, we evaluated rates of change in lung function and cyst scores off and on sirolimus. Measurements and Main Results: Sirolimus reduced yearly declines in FEV1 (−2.3 ± 0.1 vs. 1.0 ± 0.3% predicted; P < 0.001) and diffusing capacity of carbon monoxide (−2.6 ± 0.1 vs. 0.9 ± 0.2% predicted; P < 0.001). Cyst scores 1.2 ± 0.8 years (30.5 ± 11.9%) and 2.5 ± 2 years (29.7 ± 12.1%) after initiating sirolimus were not significantly different from pretreatment values (28.4 ± 12.5%). In 12 patients followed for 5 years, a significant reduction in rates of yearly decline in FEV1 (−1.4 ± 0.2 vs. 0.3 ± 0.4% predicted; P = 0.025) was observed. Analyses of 104 computed tomography scans showed a nonsignificant (P = 0.23) reduction in yearly rates of change of cyst scores (1.8 ± 0.2 vs. 0.3 ± 0.3%; P = 0.23) and lung texture features. Despite adverse events, most patients were able to continue sirolimus therapy. Conclusions: Sirolimus therapy slowed down lung function decline and increase in cystic lesions. Most patients were able to tolerate sirolimus therapy. PMID:25329516
NASA Astrophysics Data System (ADS)
Aleksanyan, Grayr; Shcherbakov, Ivan; Kucher, Artem; Sulyz, Andrew
2018-04-01
With continuous monitoring of the lungs using multi-angle electric impedance tomography method, a large array of images of impedance changes in the patient's chest cavity is accumulated. This article proposes a method for evaluating the regional ventilation function of lungs based on the results of continuous monitoring using the multi-angle electric impedance tomography method, which allows one image of the thoracic cavity to be formed on the basis of a large array of images of the impedance change in the patient's chest cavity. In the presence of pathologies in the lungs (neoplasms, fluid, pneumothorax, etc.) in these areas, air filling will be disrupted, which will be displayed on the generated image. When conducting continuous monitoring in several sections, a three-dimensional pattern of air filling of the thoracic cavity is possible.
Posner, S; Zheng, J; Wood, R K; Shimpi, R A; Hartwig, M G; Chow, S-C; Leiman, D A
2018-05-01
Gastroesophageal reflux disease and esophageal dysmotility are prevalent in patients with advanced lung disease and are associated with graft dysfunction following lung transplantation. As a result, many transplant centers perform esophageal function testing as part of the wait-listing process but guidelines for testing in this population are lacking. The aim of this study is to describe whether symptoms of gastroesophageal reflux correlate with abnormal results on pH-metry and high-resolution manometry and can be used to identify those who require testing. We performed a retrospective cohort study of 226 lung transplant candidates referred for high-resolution manometry and pH-metry over a 12-month period in 2015. Demographic data, results of a standard symptom questionnaire and details of esophageal function testing were obtained. Associations between the presence of symptoms and test results were analyzed using Fisher's exact tests and multivariable logistic regression. The most common lung disease diagnosis was interstitial lung disease (N = 131, 58%). Abnormal pH-metry was seen in 116 (51%) patients and the presence of symptoms was significantly associated with an abnormal study (p < 0.01). Dysmotility was found in 98 (43%) patients, with major peristaltic or esophageal outflow disorders in 45 (20%) patients. Symptoms were not correlated with findings on esophageal high-resolution manometry. Fifteen of 25 (60%) asymptomatic patients had an abnormal manometry or pH-metry. These results demonstrate that in patients with advanced lung disease, symptoms of gastroesophageal reflux increase the likelihood of elevated acid exposure on pH-metry but were not associated with dysmotility. Given the proportion of asymptomatic patients with abnormal studies and associated post-transplant risks, a practice of universal high-resolution manometry and pH-metry testing in this population is justifiable.
Functional and prognostic effects when emphysema complicates idiopathic pulmonary fibrosis.
Jacob, Joseph; Bartholmai, Brian J; Rajagopalan, Srinivasan; Kokosi, Maria; Maher, Toby M; Nair, Arjun; Karwoski, Ronald; Renzoni, Elisabetta; Walsh, Simon L F; Hansell, David M; Wells, Athol U
2017-07-01
This study aimed to investigate whether the combination of fibrosis and emphysema has a greater effect than the sum of its parts on functional indices and outcome in idiopathic pulmonary fibrosis (IPF), using visual and computer-based (CALIPER) computed tomography (CT) analysis.Consecutive patients (n=272) with a multidisciplinary IPF diagnosis had the extent of interstitial lung disease (ILD) scored visually and by CALIPER. Visually scored emphysema was subcategorised as isolated or mixed with fibrotic lung. The CT scores were evaluated against functional indices forced vital capacity (FVC), diffusing capacity of the lungs for carbon monoxide ( D LCO ), transfer coefficient of the lung for carbon monoxide ( K CO ), composite physiologic index (CPI)) and mortality.The presence and extent of emphysema had no impact on survival. Results were maintained following correction for age, gender, smoking status and baseline severity using D LCO , and combined visual emphysema and ILD extent. Visual emphysema quantitation indicated that relative preservation of lung volumes (FVC) resulted from tractionally dilated airways within fibrotic lung, ventilating areas of admixed emphysema (p<0.0001), with no independent effect on FVC from isolated emphysema. Conversely, only isolated emphysema (p<0.0001) reduced gas transfer ( D LCO ).There is no prognostic impact of emphysema in IPF, beyond that explained by the additive extents of both fibrosis and emphysema. With respect to the location of pulmonary fibrosis, emphysema distribution determines the functional effects of emphysema. Copyright ©ERS 2017.
Puskas, J D; Winton, T L; Miller, J D; Scavuzzo, M; Patterson, G A
1992-05-01
Single lung transplantation remains limited by a severe shortage of suitable donor lungs. Potential lung donors are often deemed unsuitable because accepted criteria (both lungs clear on the chest roentgenogram, arterial oxygen tension greater than 300 mm Hg with an inspired oxygen fraction of 1.0, a positive end-expiratory pressure of 5 cm H2O, and no purulent secretions) do not distinguish between unilateral and bilateral pulmonary disease. Many adequate single lung grafts may be discarded as a result of contralateral aspiration or pulmonary trauma. We have recently used intraoperative unilateral ventilation and perfusion to assess single lung function in potential donors with contralateral lung disease. In the 11-month period ending October 1, 1990, we performed 18 single lung transplants. In four of these cases (22%), the donor chest roentgenogram or bronchoscopic examination demonstrated significant unilateral lung injury. Donor arterial oxygen tension, (inspired oxygen fraction 1.0; positive end-expiratory pressure 5 cm H2O) was below the accepted level in each case (246 +/- 47 mm Hg, mean +/- standard deviation). Through the sternotomy used for multiple organ harvest, the pulmonary artery to the injured lung was clamped. A double-lumen endotracheal tube or endobronchial balloon occlusion catheter was used to permit ventilation of the uninjured lung alone. A second measurement of arterial oxygen tension (inspired oxygen fraction 1.0; positive end-expiratory pressure 5 cm H2O) revealed excellent unilateral lung function in all four cases (499.5 +/- 43 mm Hg; p less than 0.0004). These single lung grafts (three right, one left) were transplanted uneventfully into four recipients (three with pulmonary fibrosis and one with primary pulmonary hypertension). Lung function early after transplantation was adequate in all patients. Two patients were extubated within 24 hours. There were two late deaths, one caused by rejection and Aspergillus infection and the other caused by cytomegalovirus 6 months after transplantation. Two patients are alive and doing well. We conclude that assessment of unilateral lung function in potential lung donors is indicated in selected cases, may be quickly and easily performed, and may significantly increase the availability of single lung grafts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, N; D'Souza, W; Sornsen de Koste, J
2014-06-01
Purpose: Recently, there has been an interest in incorporating functional information in treatment planning especially in thoracic tumors. The rationale is that healthy lung regions need to be spared from radiation if possible to help achieve better control on toxicity. However, it is still unclear whether high functioning regions need to be spared or have more capacity to deal with the excessive radiation as compared to the compromised regions of the lung. Our goal with this work is to establish the tools by which we can establish a relationship between pre-treatment lung function, dose, and radiographic outcomes of lung toxicity.more » Methods: Treatment planning was performed using a single phase of a 4DCT scan, and follow-up anatomical CT scans were performed every 3 months for most patients. In this study, we developed the pipeline of tools needed to analyze such a large dataset, while trying to establish a relationship between function, dose, and outcome. Pre-treatment lung function was evaluated using a recently published technique that evaluates Fractional Regional Ventilation (FRV). All images including the FRV map and the individual follow-up anatomical CT images were all spatially matched to the planning CT using a diffusion based Demons image registration algorithm. Change in HU value was used as a metric to capture the effects of lung toxicity. To validate the findings, a radiologist evaluated the follow-up anatomical CT images and scored lung toxicity. Results: Initial experience in 1 patient shows a relationship between the pre-treatment lung function, dose and toxicity outcome. The results are also correlated to the findings by the radiologist who was blinded to the analysis or dose. Conclusion: The pipeline we have established to study this enables future studies in large retrospective studies. However, the tools are dependent on the fidelity of 4DCT reconstruction for accurate evaluation of regional ventilation. Patent Pending for the technique presented in this work to evaluate FRV incorporating mass correction.« less
Stubbe, Beate; Schipf, Sabine; Schäper, Christoph; Felix, Stephan B; Steveling, Antje; Nauck, Matthias; Völzke, Henry; Wallaschofski, Henri; Friedrich, Nele; Ewert, Ralf; Ittermann, Till; Gläser, Sven
2017-01-01
Background: Diabetes mellitus Type 1 (T1DM) is associated with metabolic and microvascular diseases as part of a multi-organ and multi-systemic disorder. The dense network of capillary vessels in the lungs may change during the course of the development of microangiopathy. The connective tissue as well as alveoli may be subjected to non-enzymatic glycosylation of proteins which may in turn affect pulmonary function. Previous studies investigating lung function in patients with type 1 diabetes have only been performed on small numbers of patients. Our study is based on population data of the Study of Health in Pomerania (SHIP). Objective: To investigate the influence of metabolic control on pulmonary system function and to establish a decreased pulmonary system function as a late complication of T1DM in a population based setting. Methods: The study is a case matched study with multiple controls based on participants with T1DM (SHIP-DM-1, n=73) and non-diabetics (SHIP-1, n=292) from the population based study of Pomerania. Data on lung function and exercise performance stratified by age, sex, body mass index and smoking habits in participants with T1DM and without diabetes were matched. Results: Participants with T1DM showed a significantly lower total lung capacity, residual volume and forced vital capacity. The transfer factor for carbon monoxide, the maximum power output and oxygen uptake during exercise were significantly decreased in comparison to the general population without diabetes. Conclusion: The pattern of abnormal pulmonary function as observed in the present study with a reduction in lung volume parameters and reduced oxygen uptake in participants with T1DM suggests a restrictive type of lung disease caused by an intrinsic lung tissue derangement as well as pulmonary microangiopathy. © Georg Thieme Verlag KG Stuttgart · New York.
Zhao, Yunge; Sharma, Ashish K; LaPar, Damien J; Kron, Irving L; Ailawadi, Gorav; Liu, Yuan; Jones, David R; Laubach, Victor E; Lau, Christine L
2011-05-01
Ischemia-reperfusion (IR) injury following lung transplantation remains a major source of early morbidity and mortality. Histologically, this inflammatory process is characterized by neutrophil infiltration and activation. We previously reported that lung IR injury was significantly attenuated in plasminogen activator inhibitor-1-deficient mice. In this study, we explored the potential role of tissue plasminogen activator (tPA) in a mouse lung IR injury model. As a result, tPA knockout (KO) mice were significantly protected from lung IR injury through several mechanisms. At the cellular level, tPA KO specifically blocked neutrophil extravasation into the interstitium, and abundant homotypic neutrophil aggregation (HNA) was detected in the lung microvasculature of tPA KO mice after IR. At the molecular level, inhibition of neutrophil extravasation was associated with reduced expression of platelet endothelial cell adhesion molecule-1 mediated through the tPA/ LDL receptor-related protein/NF-κB signaling pathway, whereas increased P-selectin triggered HNA. At the functional level, tPA KO mice incurred significantly decreased vascular permeability and improved lung function following IR. Protection from lung IR injury in tPA KO mice occurs through a fibrinolysis-independent mechanism. These results suggest that tPA could serve as an important therapeutic target for the prevention and treatment of acute IR injury after lung transplantation.
[Normal lung volumes in patients with idiopathic pulmonary fibrosis and emphysema].
Casas, Juan Pablo; Abbona, Horacio; Robles, Adriana; López, Ana María
2008-01-01
Pulmonary function tests in idiopathic pulmonary fibrosis characteristically show a restrictive pattern, resulting from reduction of pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. Previous reports suggest that when both diseases coexist, pulmonary volumes are compensated and a smaller than expected reduction or even normal lung volumes can be found. We report 4 male patients of 64, 60, 73 and 70 years, all with heavy cigarette smoking history and progressive breathlessness. Three of them had severe limitation in their quality of life. All four showed advanced lung interstitial involvement, at high resolution CT scan, fibrotic changes predominantly in the subpleural areas of lower lung fields and concomitant emphysema in the upper lobes. Emphysema and pulmonary fibrosis was confirmed by open lung biopsy in one patient. The four patients showed normal spirometry and lung volumes with severe compromise of gas exchange and poor exercise tolerance evaluated by 6 minute walk test. Severe pulmonary arterial hypertension was also confirmed in three patients. Normal lung volumes does not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.
Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells
Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li
2013-01-01
Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer biology and therapeutics. PMID:23704904
Alamo, Ines G.; Kannan, Kolenkode B.; Ramos, Harry; Loftus, Tyler J.; Efron, Philip A.; Mohr, Alicia M.
2016-01-01
Background Propranolol has been shown previously to restore bone marrow function and improve anemia after lung contusion/hemorrhagic shock. We hypothesized that daily clonidine administration would inhibit central sympathetic outflow and restore bone marrow function in our rodent model of lung contusion/hemorrhagic shock with chronic stress. Methods Male Sprague-Dawley rats underwent six days of restraint stress after lung contusion/hemorrhagic shock during which the animals received clonidine (75μg/kg) after the restraint stress. On post-injury day seven, we assessed urine norepinephrine, blood hemoglobin, plasma granulocyte colony stimulating factor (G-CSF), and peripheral blood mobilization of hematopoietic progenitor cells (HPC), as well as bone marrow cellularity and erythroid progenitor cell growth. Results The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress, significantly decreased urine norepinephrine levels, improved bone marrow cellularity, restored erythroid progenitor colony growth, and improved hemoglobin (14.1±0.6 vs. 10.8±0.6 g/dL). The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased HPC mobilization and restored G-CSF levels. Conclusions After lung contusion/hemorrhagic shock with chronic restraint stress, daily administration of clonidine restored bone marrow function and improved anemia. Alleviating chronic stress and decreasing norepinephrine is a key therapeutic target to improve bone marrow function after severe injury. PMID:27742030
Washko, George R; Criner, Gerald J; Mohsenifar, Zab; Sciurba, Frank C; Sharafkhaneh, Amir; Make, Barry J; Hoffman, Eric A; Reilly, John J
2008-06-01
Computed tomographic based indices of emphysematous lung destruction may highlight differences in disease pathogenesis and further enable the classification of subjects with Chronic Obstructive Pulmonary Disease. While there are multiple techniques that can be utilized for such radiographic analysis, there is very little published information comparing the performance of these methods in a clinical case series. Our objective was to examine several quantitative and semi-quantitative methods for the assessment of the burden of emphysema apparent on computed tomographic scans and compare their ability to predict lung mechanics and function. Automated densitometric analysis was performed on 1094 computed tomographic scans collected upon enrollment into the National Emphysema Treatment Trial. Trained radiologists performed an additional visual grading of emphysema on high resolution CT scans. Full pulmonary function test results were available for correlation, with a subset of subjects having additional measurements of lung static recoil. There was a wide range of emphysematous lung destruction apparent on the CT scans and univariate correlations to measures of lung function were of modest strength. No single method of CT scan analysis clearly outperformed the rest of the group. Quantification of the burden of emphysematous lung destruction apparent on CT scan is a weak predictor of lung function and mechanics in severe COPD with no uniformly superior method found to perform this analysis. The CT based quantification of emphysema may augment pulmonary function testing in the characterization of COPD by providing complementary phenotypic information.
Sun, Jiawei; Zhang, Ping; Zhang, Bin; Li, Kang; Li, Zhu; Li, Junhong; Zhang, Yongjian; Sun, Wuzhuang
2015-01-01
This study was conducted to investigate an effect of inhaled budesonide on cigarette smoke-exposed lungs with a possible mechanism involved in the event. Rats were exposed to air (control) and cigarette smoke (smoking) in presence and absence of budesonide. Inflammatory cell count in bronchoalveolar lavage fluid (BALF), lung function testing, mean liner intercept (MLI) in lung tissue, mean alveolar number (MAN) and a ratio of bronchial wall thickness and external diameter (BWT/D) were determined in the grouped rats, respectively. Contents of matrix metalloproteinase (MMP)-1, MMP-2 and tissue inhibitor of metalloproteinase (TIMP)-2 productions in BALF were examined as well. There were significant changes in the above assessments in the smoking rats as compared to those in the control rats (all P<0.01 and 0.05). Budesonide inhalation significantly decreased the numbers of the BALF cells and partly reversed lung function decline in the challenged rats (P<0.01 and 0.05). However, this corticosteroid did not influence pathological changes in fine structures of the tobacco smoke-exposed lungs. Treatment with budesonide resulted in an obvious decrease in the MMP-1 but not MMP-2 and TIMP-2 productions (P<0.05). Inhaled budesonide mitigates the ongoing inflammatory process in the smoked lungs and ameliorates declining lung function through reducing MMP-1 content.
NASA Astrophysics Data System (ADS)
Dullin, C.; Markus, M. A.; Larsson, E.; Tromba, G.; Hülsmann, S.; Alves, F.
2016-11-01
In mice, along with the assessment of eosinophils, lung function measurements, most commonly carried out by plethysmography, are essential to monitor the course of allergic airway inflammation, to examine therapy efficacy and to correlate animal with patient data. To date, plethysmography techniques either use intubation and/or restraining of the mice and are thus invasive, or are limited in their sensitivity. We present a novel unrestrained lung function method based on low-dose planar cinematic x-ray imaging (X-Ray Lung Function, XLF) and demonstrate its performance in monitoring OVA induced experimental allergic airway inflammation in mice and an improved assessment of the efficacy of the common treatment dexamethasone. We further show that XLF is more sensitive than unrestrained whole body plethysmography (UWBP) and that conventional broncho-alveolar lavage and histology provide only limited information of the efficacy of a treatment when compared to XLF. Our results highlight the fact that a multi-parametric imaging approach as delivered by XLF is needed to address the combined cellular, anatomical and functional effects that occur during the course of asthma and in response to therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanna, L.; Tashkin, D.P.; Taplin, G.V.
1975-11-01
Seventy subjects with either no, mild, or definite evidence of pulmonary abnormality on screening studies volunteered to have detailed pulmonary function tests (PFTs), respiratory questionnaires, physical examinations, and /sup 113m/indium aerosol-inhalation lung imaging performed. Also, 22 and 52 of these subjects underwent /sup 133/xenon ventilation and lung perfusion imaging with /sup 99m/technetium-labelled macroaggregated albumin, and 56 had chest x-ray examinations performed. Results of the radionuclide lung-imaging procedures were compared with those of conventional PFTs and other clinical diagnostic procedures used to identify chronic obstructive pulmonary disease (COPD). Abnormal radioaerosol patterns were found in 32 of 33 subjects with abnormal findingsmore » on PFTs, whereas results of PFTs were abnormal in only 32 of 46 subjects with abnormal aerosol deposition. Aerosol lung images were abnormal more frequently than respiratory questionnaire responses, findings on physical examination, chest x-ray films, and perfusion lung images and with approximately the same frequency as /sup 133/xenon ventilation scintiscans. These results suggest that radioaerosol lung imaging may be a more sensitive indicator of early COPD than other diagnostic procedures, including maximal midexpiratory flow rates, single-breath nitrogen washout, and closing volume. Further studies are required to determine the physiologic and pathologic significance of isolated aerosol lung-imaging abnormalities.« less
A review of cetacean lung morphology and mechanics.
Piscitelli, Marina A; Raverty, Stephen A; Lillie, Margo A; Shadwick, Robert E
2013-12-01
Cetaceans possess diverse adaptations in respiratory structure and mechanics that are highly specialized for an array of surfacing and diving behaviors. Some of these adaptations and air management strategies are still not completely understood despite over a century of study. We have compiled the historical and contemporary knowledge of cetacean lung anatomy and mechanics in regards to normal lung function during ventilation and air management while diving. New techniques are emerging utilizing pulmonary mechanics to measure lung function in live cetaceans. Given the diversity of respiratory adaptations in cetaceans, interpretations of these results should consider species-specific anatomy, mechanics, and behavior. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jing; Mo, Yiqun; Schlueter, Connie F.
Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-inducedmore » neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Corticosteroids may inhibit lung injury through their anti-inflammatory actions. • Corticosteroids inhibited chlorine-induced pneumonitis and pulmonary edema. • Mometasone and budesonide are potential rescue treatments for chlorine lung injury.« less
Peradzyńska, Joanna; Krenke, Katarzyna; Szylling, Anna; Kołodziejczyk, Beata; Gazda, Agnieszka; Rutkowska-Sak, Lidia; Kulus, Marek
2016-01-01
Connective tissue diseases (CTDs) of childhood are rare inflammatory disorders, involving various organs and tissues including respiratory system. Pulmonary involvement in patients with CTDs is uncommon but may cause functional impairment. Data on prevalence and type of lung function abnormalities in children with CTDs are scarce. Thus, the aim of this study was to asses pulmonary functional status in children with newly diagnosed CTD and follow the results after two years of the disease course. There were 98 children (mean age: 13 ± 3; 76 girls), treated in Department of Pediatric Rheumatology, Institute of Rheumatology, Warsaw and 80 aged-matched, healthy controls (mean age 12.7 ± 2.4; 50 girls) included into the study. Study procedures included medical history, physical examination, chest radiograph and PFT (spirometry and whole body-plethysmography). Then, the assessment of PFT was performed after 24 months. FEV₁, FEV₁/FVC and MEF50 were significantly lower in CTD as compared to control group, there was no difference in FVC and TLC. The proportion of patients with abnormal lung function was significantly higher in the study group, 41 (42%) vs 9 (11%). 24-months observation didn't reveal progression in lung function impairment. Lung function impairment is relatively common in children with CTDs. Although restrictive ventilatory pattern is considered typical feature of lung involvement in CTDs, airflow limitation could also be an initial abnormality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu; Patel, Kinal J., E-mail: kinalv5@gmail.com; Shen, Jianliang, E-mail: jianliangs@gmail.com
Nitrogen mustard is a vesicant that causes damage to the respiratory tract. In these studies, we characterized the acute effects of nitrogen mustard on lung structure, inflammatory mediator expression, and pulmonary function, with the goal of identifying mediators potentially involved in toxicity. Treatment of rats (male Wistar, 200-225 g) with nitrogen mustard (mechlorethamine hydrochloride, i.t., 0.25 mg/kg) resulted in marked histological changes in the respiratory tract, including necrotizing bronchiolitis, thickening of alveolar septa, and inflammation which was evident within 24 h. This was associated with increases in bronchoalveolar lavage protein and cells, confirming injury to alveolar epithelial regions of themore » lung. Nitrogen mustard administration also resulted in increased expression of inducible nitric oxide synthase and cyclooxygenase-2, pro-inflammatory proteins implicated in lung injury, in alveolar macrophages and alveolar and bronchial epithelial cells. Expression of connective tissue growth factor and matrix metalloproteinase-9, mediators regulating extracellular matrix turnover was also increased, suggesting that pathways leading to chronic lung disease are initiated early in the pathogenic process. Following nitrogen mustard exposure, alterations in lung mechanics and function were also observed. These included decreases in baseline static compliance, end-tidal volume and airway resistance, and a pronounced loss of methacholine responsiveness in resistance, tissue damping and elastance. Taken together, these data demonstrate that nitrogen mustard induces rapid structural and inflammatory changes in the lung which are associated with altered lung functioning. Understanding the nature of the injury induced by nitrogen mustard and related analogs may aid in the development of efficacious therapies for treatment of pulmonary injury resulting from exposure to vesicants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu; Patel-Vayas, Kinal, E-mail: kinalv5@gmail.com; Shen, Jianliang, E-mail: jianliangs@gmail.com
Lung toxicity induced by sulfur mustard is associated with inflammation and oxidative stress. To elucidate mechanisms mediating pulmonary damage, we used 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. Male mice (B6129) were treated intratracheally with CEES (3 or 6 mg/kg) or control. Animals were sacrificed 3, 7 or 14 days later and bronchoalveolar lavage (BAL) fluid and lung tissue collected. Treatment of mice with CEES resulted in an increase in BAL protein, an indication of alveolar epithelial damage, within 3 days. Expression of Ym1, an oxidative stress marker also increased in the lung, along with inducible nitric oxidemore » synthase, and at 14 days, cyclooxygenase-2 and monocyte chemotactic protein-1, inflammatory proteins implicated in tissue injury. These responses were attenuated in mice lacking the p55 receptor for TNF{alpha} (TNFR1-/-), demonstrating that signaling via TNFR1 is key to CEES-induced injury, oxidative stress, and inflammation. CEES-induced upregulation of CuZn-superoxide dismutase (SOD) and MnSOD was delayed or absent in TNFR1-/- mice, relative to WT mice, suggesting that TNF{alpha} mediates early antioxidant responses to lung toxicants. Treatment of WT mice with CEES also resulted in functional alterations in the lung including decreases in compliance and increases in elastance. Additionally, methacholine-induced alterations in total lung resistance and central airway resistance were dampened by CEES. Loss of TNFR1 resulted in blunted functional responses to CEES. These effects were most notable in the airways. These data suggest that targeting TNF{alpha} signaling may be useful in mitigating lung injury, inflammation and functional alterations induced by vesicants.« less
Heritability of Lung Disease Severity in Cystic Fibrosis
Vanscoy, Lori L.; Blackman, Scott M.; Collaco, Joseph M.; Bowers, Amanda; Lai, Teresa; Naughton, Kathleen; Algire, Marilyn; McWilliams, Rita; Beck, Suzanne; Hoover-Fong, Julie; Hamosh, Ada; Cutler, Dave; Cutting, Garry R.
2007-01-01
Rationale: Obstructive lung disease, the major cause of mortality in cystic fibrosis (CF), is poorly correlated with mutations in the disease-causing gene, indicating that other factors determine severity of lung disease. Objectives: To quantify the contribution of modifier genes to variation in CF lung disease severity. Methods: Pulmonary function data from patients with CF living with their affected twin or sibling were converted into reference values based on both healthy and CF populations. The best measure of FEV1 within the last year was used for cross-sectional analysis. FEV1 measures collected over at least 4 years were used for longitudinal analysis. Genetic contribution to disease variation (i.e., heritability) was estimated in two ways: by comparing similarity of lung function in monozygous (MZ) twins (∼ 100% gene sharing) with that of dizygous (DZ) twins/siblings (∼ 50% gene sharing), and by comparing similarity of lung function measures for related siblings to similarity for all study subjects. Measurements and Main Results: Forty-seven MZ twin pairs, 10 DZ twin pairs, and 231 sibling pairs (of a total of 526 patients) with CF were studied. Correlations for all measures of lung function for MZ twins (0.82–0.91, p < 0.0001) were higher than for DZ twins and siblings (0.50–0.64, p < 0.001). Heritability estimates from both methods were consistent for each measure of lung function and ranged from 0.54 to 1.0. Heritability estimates generally increased after adjustment for differences in nutritional status (measured as body mass index z-score). Conclusions: Our heritability estimates indicate substantial genetic control of variation in CF lung disease severity, independent of CFTR genotype. PMID:17332481
Kim, Joohae; Yoon, Ho Il; Oh, Yeon-Mok; Lim, Seong Yong; Lee, Ji-Hyun; Kim, Tae-Hyung; Lee, Sang Yeub; Lee, Jin Hwa; Lee, Sang-Do; Lee, Chang-Hoon
2015-01-01
Background Since the Global Initiative for Chronic Obstructive Lung Disease (GOLD) groups A–D were introduced, the lung function changes according to group have been evaluated rarely. Objective We investigated the rate of decline in annual lung function in patients categorized according to the 2014 GOLD guidelines. Methods Patients with COPD included in the Korean Obstructive Lung Disease (KOLD) prospective study, who underwent yearly postbronchodilator spirometry at least three times, were included. The main outcome was the annual decline in postbronchodilator forced expiratory volume in 1 second (FEV1), which was analyzed by random-slope and random-intercept mixed linear regression. Results A total 175 participants were included. No significant postbronchodilator FEV1 decline was observed between the groups (−34.4±7.9 [group A]; −26.2±9.4 [group B]; −22.7±16.0 [group C]; and −24.0±8.7 mL/year [group D]) (P=0.79). The group with less symptoms (−32.3±7.2 vs −25.0±6.5 mL/year) (P=0.44) and the low risk group (−31.0±6.1 vs −23.6±7.7 mL/year) (P=0.44) at baseline showed a more rapid decline in the postbronchodilator FEV1, but the trends were not statistically significant. However, GOLD stages classified by FEV1 were significantly related to the annual lung function decline. Conclusion There was no significant difference in lung function decline rates according to the GOLD groups. Prior classification using postbronchodilator FEV1 predicts decline in lung function better than does the new classification. PMID:26379432
Code of Federal Regulations, 2014 CFR
2014-07-01
.... The term includes in situ lung cancers. (m) Readily available documentation means documents in the... injury means structural or functional damage to the kidney tubules that results in renal disease and... resulting in chronic renal dysfunction. (j) Nonmalignant respiratory disease means fibrosis of the lung...
Ye, Ming; Beach, Jeremy; Martin, Jonathan W.
2014-01-01
Background Although DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] has been banned in many countries since the 1970s, it may still pose a risk to human respiratory health. In agriculture, DDT exposures have been associated with asthma and chronic bronchitis. However, little is known about the effect of DDT on lung function. Methods We used data on 1,696 participants 20–79 years of age from the Canadian Health Measures Survey (CHMS) and conducted multiple regression analysis to estimate associations between plasma p,p´-DDT/DDE and lung function. Results Almost all participants (> 99.0%) had detectable concentrations of plasma p,p´-DDE, but only 10.0% had detectable p,p´-DDT. Participants with detectable p,p´-DDT had significantly lower mean FVC (difference = 311 mL; 95% CI: –492, –130; p = 0.003) and FEV1 (difference = 232 mL; 95% CI: –408, –55; p = 0.015) than those without. A 100-ng/g lipid increase in plasma p,p´-DDE was associated with an 18.8-mL decrease in mean FVC (95% CI: –29, –9) and an 11.8-mL decrease in mean FEV1 (95% CI: –21, –3). Neither exposure was associated with FEV1/FVC ratio or FEF25%–75%. Conclusions DDT exposures, which may have occurred decades ago, were still detectable among Canadians. Plasma DDT and DDE were negatively associated with lung function parameters. Additional research on the potential effects of DDT use on lung function is warranted. Citation Ye M, Beach J, Martin JW, Senthilselvan A. 2015. Association between lung function in adults and plasma DDT and DDE levels: results from the Canadian Health Measures Survey. Environ Health Perspect 123:422–427; http://dx.doi.org/10.1289/ehp.1408217 PMID:25536373
Rubin, Adalberto Sperb; Nascimento, Douglas Zaione; Sanchez, Letícia; Watte, Guilherme; Holand, Arthur Rodrigo Ronconi; Fassbind, Derrick Alexandre; Camargo, José Jesus
2015-01-01
Abstract Objective: To evaluate the changes in lung function in the first year after single lung transplantation in patients with idiopathic pulmonary fibrosis (IPF). Methods: We retrospectively evaluated patients with IPF who underwent single lung transplantation between January of 2006 and December of 2012, reviewing the changes in the lung function occurring during the first year after the procedure. Results: Of the 218 patients undergoing lung transplantation during the study period, 79 (36.2%) had IPF. Of those 79 patients, 24 (30%) died, and 11 (14%) did not undergo spirometry at the end of the first year. Of the 44 patients included in the study, 29 (66%) were men. The mean age of the patients was 57 years. Before transplantation, mean FVC, FEV1, and FEV1/FVC ratio were 1.78 L (50% of predicted), 1.48 L (52% of predicted), and 83%, respectively. In the first month after transplantation, there was a mean increase of 12% in FVC (400 mL) and FEV1 (350 mL). In the third month after transplantation, there were additional increases, of 5% (170 mL) in FVC and 1% (50 mL) in FEV1. At the end of the first year, the functional improvement persisted, with a mean gain of 19% (620 mL) in FVC and 16% (430 mL) in FEV1. Conclusions: Single lung transplantation in IPF patients who survive for at least one year provides significant and progressive benefits in lung function during the first year. This procedure is an important therapeutic alternative in the management of IPF. PMID:26398749
Modeling pressure relationships of inspired air into the human lung bifurcations through simulations
NASA Astrophysics Data System (ADS)
Aghasafari, Parya; Ibrahim, Israr B. M.; Pidaparti, Ramana
2018-03-01
Applied pressure on human lung wall has great importance on setting up protective ventilatory strategies, therefore, estimating pressure relationships in terms of specific parameters would provide invaluable information specifically during mechanical ventilation (MV). A three-dimensional model from a healthy human lung MRI is analyzed by computational fluid dynamic (CFD), and results for pressure are curve fitted to estimate relationships that associate pressure to breathing time, cross section and generation numbers of intended locations. Among all possible functions, it is observed that exponential and polynomial pressure functions present most accurate results for normal breathing (NB) and MV, respectively. For validation, pressure-location curves from CFD and results from this study are compared and good correlations are found. Also, estimated pressure values are used to calculate pressure drop and airway resistance to the induced air into the lung bifurcations. It is concluded that maximum pressure drop appeared in generation number 2 and medium sized airways show higher resistance to air flow and that resistance decreased as cross sectional area increased through the model. Results from this study are in good agreement with previous studies and provide potentials for further studies on influence of air pressure on human lung tissue and reducing lung injuries during MV.
Pulmonary functions in plastic factory workers: a preliminary study.
Khaliq, Farah; Singh, Pawan; Chandra, Prakash; Gupta, Keshav; Vaney, Neelam
2011-01-01
Exposure to long term air pollution in the work environment may result in decreased lung functions and various other health problems. A significant occupational hazard to lung functions is experienced by plastic factory workers. The present study is planned to assess the pulmonary functions of workers in the plastic factory where recycling of pastic material was done. These workers were constantly exposed to fumes of various chemicals throughout the day. Thirty one workers of plastic factory were assessed for their pulmonary functions. Parameters were compared with 31 age and sex matched controls not exposed to the same environment. The pulmonary function tests were done using Sibelmed Datospir 120 B portable spirometer. A significant decrease in most of the flow rates (MEF 25%, MEF 50%, MEF 75% and FEF 25-75%) and most of the lung volumes and capacities (FVC, FEV1, VC, TV, ERV, MVV) were observed in the workers. Smoking and duration of exposure were not affecting the lung functions as the non smokers also showed a similar decrement in pulmonary functions. Similarly the workers working for less than 5 years also had decrement in pulmonary functions indicating that their lungs are being affected even if they have worked for one year. Exposure to the organic dust in the work environment should be controlled by adequate engineering measures, complemented by effective personal respiratory protection.
Validation of the plain chest radiograph for epidemiologic studies of airflow obstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musk, A.W.
The chest radiographs of 125 industrial workers from rural New South Wales were examined for overinflated lungs, with and without attenuated midzonal vessels. Although the mean values of a comprehensive range of pulmonary function tests in the whole group were within normal limits, the nine subjects whose radiographs showed overinflated lungs and attenuated vessels had significantly impaired pulmonary function in comparison with 85 subjects with normal radiographs. The mean values for these nine subjects, expressed as a percentage of the mean value for subjects with normal radiographs, were: forced expiratory volume in 1 second, 75%; total lung capacity, 107%; residualmore » volume, 143%; transpulmonary pressure at maximum inspiration, 60%; static deflation compliance, 158%; lung volume at transpulmonary pressure 10 cm H/sub 2/O, 132%; transfer factor, 79%; and transfer factor/alveolar volume, 77%. Similar results were obtained by a second observer. Those subjects with overinflation but no vascular attenuation had significantly larger mean values for vital capacity and alveolar volume but no significant difference in total lung capacity or other tests of the mechanical properties of the lungs. Agreement on the presence of a positive sign between the two observers expressed as a percentage of those considered positive by either was 81% for overinflation and 62% for attenuated midzonal vessels. The results indicate that in groups of subjects with normal-average values of pulmonary function, the plain chest radiograph may provide information concerning pulmonary structure that is reflected in tests of function.« less
Morales, Eva; Garcia-Esteban, Raquel; de la Cruz, Oscar Asensio; Basterrechea, Mikel; Lertxundi, Aitana; de Dicastillo, Maria D Martinez López; Zabaleta, Carlos; Sunyer, Jordi
2015-01-01
Effects of prenatal and postnatal exposure to air pollution on lung function at preschool age remain unexplored. We examined the association of exposure to air pollution during specific trimesters of pregnancy and postnatal life with lung function in preschoolers. Lung function was assessed with spirometry in preschoolers aged 4.5 years (n=620) participating in the INfancia y Medio Ambiente (INMA) cohort. Temporally adjusted land use regression (LUR) models were applied to estimate individual residential exposures to benzene and nitrogen dioxide (NO₂) during specific trimesters of pregnancy and early postnatal life (the first year of life). Recent and current (1 year and 1 week before lung function testing, respectively) exposures to NO₂ and nitrogen oxides (NOx) were also assessed. Exposure to higher levels of benzene and NO₂ during pregnancy was associated with reduced lung function. FEV1 estimates for an IQR increase in exposures during the second trimester of pregnancy were -18.4 mL, 95% CI -34.8 to -2.1 for benzene and -28.0 mL, 95% CI -52.9 to -3.2 for NO₂. Relative risk (RR) of low lung function (<80% of predicted FEV1) for an IQR increase in benzene and NO₂ during the second trimester of pregnancy were 1.22, 95% CI 1.02 to 1.46 and 1.30, 95% CI 0.97 to 1.76, respectively. Associations for early postnatal, recent and current exposures were not statistically significant. Stronger associations appeared among allergic children and those of lower social class. Prenatal exposure to residential traffic-related air pollution may result in long-term lung function deficits at preschool age. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Effect of gas cooking on lung function in adolescents: modifying role of sex and immunoglobulin E.
Corbo, G M; Forastiere, F; Agabiti, N; Dell'Orco, V; Pistelli, R; Aebischer, M L; Valente, S; Perucci, C A
2001-07-01
A study was undertaken to investigate the effect of gas cooking on the lung function of adolescents while considering serum IgE level as a possible effect modifier. The cross sectional study was performed in 702 subjects aged 11-13 years from primary and secondary schools in Civitavecchia and Viterbo ( Latium region in Central Italy), categorised according to how often they were in the kitchen while the mother cooked (never, sometimes, often). Data were collected by questionnaire and lung function was measured by spirometric tests. Bronchial hyperresponsiveness was evaluated by the methacholine test, atopic status by a skin prick test, and a blood sample was collected to determine serum IgE levels. The results were analysed separately for boys and girls. Multiple regression analysis was performed, taking functional parameters (FEV(1), FEV(1)/FVC, FEF(25-75), FEF(50), FEF(75)) as the dependent variables and age, height, parental smoking, and father's education as independent variables. There was no association between time spent in the kitchen and lung function level in boys, but a reduction in lung function was detected in girls which was statistically significant for FEF(75) (sometimes -10.3%, often -11.1%). After stratifying boys and girls into four groups on the basis of the IgE serum level (below and above the median value of IgE), the reduction in lung function was significant in girls with a high IgE value whereas no significant deleterious effects were evident in girls with a low IgE value or in boys with either a low or high IgE. The results remained substantially unchanged after excluding girls with a response to methacholine below the concentration of 4 mg/ml, asthmatic patients, and those with positive skin prick tests. Gas cooking has a harmful effect on the lung function of girls with a high serum level of IgE. We do not know whether serum IgE, a marker of allergic susceptibility, is a simple indicator that an inflammatory process is in progress or whether it is involved in the pathogenesis of injury leading to bronchial obstruction.
Adetiba, Emmanuel; Olugbara, Oludayo O
2015-01-01
Lung cancer is one of the diseases responsible for a large number of cancer related death cases worldwide. The recommended standard for screening and early detection of lung cancer is the low dose computed tomography. However, many patients diagnosed die within one year, which makes it essential to find alternative approaches for screening and early detection of lung cancer. We present computational methods that can be implemented in a functional multi-genomic system for classification, screening and early detection of lung cancer victims. Samples of top ten biomarker genes previously reported to have the highest frequency of lung cancer mutations and sequences of normal biomarker genes were respectively collected from the COSMIC and NCBI databases to validate the computational methods. Experiments were performed based on the combinations of Z-curve and tetrahedron affine transforms, Histogram of Oriented Gradient (HOG), Multilayer perceptron and Gaussian Radial Basis Function (RBF) neural networks to obtain an appropriate combination of computational methods to achieve improved classification of lung cancer biomarker genes. Results show that a combination of affine transforms of Voss representation, HOG genomic features and Gaussian RBF neural network perceptibly improves classification accuracy, specificity and sensitivity of lung cancer biomarker genes as well as achieving low mean square error.
SU-F-J-91: Sparing Lung Function in Treatment Planning Using Dual Energy Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapointe, A; Bahig, H; Zerouali, K
2016-06-15
Purpose: To propose an alternate treatment plan that minimizes the dose to the functional lung tissues. In clinical situation, the evaluation of the lung functionality is typically derived from perfusion scintigraphy. However, such technique has spatial and temporal resolutions generally inferior to those of a CT scan. Alternatively, it is possible to evaluate pulmonary function by analysing the iodine concentration determined via contrast-enhanced dual energy CT (DECT) scan. Methods: Five lung cancer patients underwent a scintigraphy and a contrast-enhanced DECT scan (SOMATOM Definition Flash, Siemens). The iodine concentration was evaluated using the two-material decomposition method to produce a functional mapmore » of the lung. The validation of the approach is realized by comparison between the differential function computed by DECT and scintigraphy. The functional map is then used to redefine the V5 (volume of the organ that received more than 5 Gy during a radiotherapy treatment) to a novel functional parameter, the V5f. The V5f, that uses a volume weighted by its function level, can assist in evaluating optimal beam entry points for a specific treatment plan. Results: The results show that the differential functions obtained by scintigraphy and DECT are in good agreement with a mean difference of 6%. In specific cases, we are able to visually correlate low iodine concentration with abnormal pulmonary lung or cancerous tumors. The comparison between V5f and V5 has shown that some entry points can be better exploited and that new ones are now accessible, 2.34 times more in average, without increasing the V5f - thus allowing easier optimization of other planning objectives. Conclusion: In addition to the high-resolution DECT images, the iodine map provides local information used to detect potential functional heterogeneities in the 3D space. We propose that this information be used to calculate new functional dose parameters such as the V5f. The presenting author, Andreanne Lapointe, received a canadian scholarship from MITACS. Part of the funding is from the compagny Siemens.« less
Jones, Christina V; Alikhan, Maliha A; O'Reilly, Megan; Sozo, Foula; Williams, Timothy M; Harding, Richard; Jenkin, Graham; Ricardo, Sharon D
2014-09-06
Lung immaturity due to preterm birth is a significant complication affecting neonatal health. Despite the detrimental effects of supplemental oxygen on alveolar formation, it remains an important treatment for infants with respiratory distress. Macrophages are traditionally associated with the propagation of inflammatory insults, however increased appreciation of their diversity has revealed essential functions in development and regeneration. Macrophage regulatory cytokine Colony-Stimulating Factor-1 (CSF-1) was investigated in a model of neonatal hyperoxia exposure, with the aim of promoting macrophages associated with alveologenesis to protect/rescue lung development and function. Neonatal mice were exposed to normoxia (21% oxygen) or hyperoxia (Hyp; 65% oxygen); and administered CSF-1 (0.5 μg/g, daily × 5) or vehicle (PBS) in two treatment regimes; 1) after hyperoxia from postnatal day (P)7-11, or 2) concurrently with five days of hyperoxia from P1-5. Lung structure, function and macrophages were assessed using alveolar morphometry, barometric whole-body plethysmography and flow cytometry. Seven days of hyperoxia resulted in an 18% decrease in body weight and perturbation of lung structure and function. In regime 1, growth restriction persisted in the Hyp + PBS and Hyp + CSF-1 groups, although perturbations in respiratory function were resolved by P35. CSF-1 increased CSF-1R+/F4/80+ macrophage number by 34% at P11 compared to Hyp + PBS, but was not associated with growth or lung structural rescue. In regime 2, five days of hyperoxia did not cause initial growth restriction in the Hyp + PBS and Hyp + CSF-1 groups, although body weight was decreased at P35 with CSF-1. CSF-1 was not associated with increased macrophages, or with functional perturbation in the adult. Overall, CSF-1 did not rescue the growth and lung defects associated with hyperoxia in this model; however, an increase in CSF-1R+ macrophages was not associated with an exacerbation of lung injury. The trophic functions of macrophages in lung development requires further elucidation in order to explore macrophage modulation as a strategy for promoting lung maturation.
Zhao, Yunge; Sharma, Ashish K.; LaPar, Damien J.; Kron, Irving L.; Ailawadi, Gorav; Liu, Yuan; Jones, David R.; Laubach, Victor E.
2011-01-01
Ischemia-reperfusion (IR) injury following lung transplantation remains a major source of early morbidity and mortality. Histologically, this inflammatory process is characterized by neutrophil infiltration and activation. We previously reported that lung IR injury was significantly attenuated in plasminogen activator inhibitor-1-deficient mice. In this study, we explored the potential role of tissue plasminogen activator (tPA) in a mouse lung IR injury model. As a result, tPA knockout (KO) mice were significantly protected from lung IR injury through several mechanisms. At the cellular level, tPA KO specifically blocked neutrophil extravasation into the interstitium, and abundant homotypic neutrophil aggregation (HNA) was detected in the lung microvasculature of tPA KO mice after IR. At the molecular level, inhibition of neutrophil extravasation was associated with reduced expression of platelet endothelial cell adhesion molecule-1 mediated through the tPA/ LDL receptor-related protein/NF-κB signaling pathway, whereas increased P-selectin triggered HNA. At the functional level, tPA KO mice incurred significantly decreased vascular permeability and improved lung function following IR. Protection from lung IR injury in tPA KO mice occurs through a fibrinolysis-independent mechanism. These results suggest that tPA could serve as an important therapeutic target for the prevention and treatment of acute IR injury after lung transplantation. PMID:21378024
Jonsson, Marcus; Urell, Charlotte; Emtner, Margareta; Westerdahl, Elisabeth
2014-03-28
Physical activity has well-established positive health-related effects. Sedentary behaviour has been associated with postoperative complications and mortality after cardiac surgery. Patients undergoing cardiac surgery often suffer from impaired lung function postoperatively. The association between physical activity and lung function in cardiac surgery patients has not previously been reported. Patients undergoing cardiac surgery were followed up two months postoperatively. Physical activity was assessed on a four-category scale (sedentary, moderate activity, moderate regular exercise, and regular activity and exercise), modified from the Swedish National Institute of Public Health's national survey. Formal lung function testing was performed preoperatively and two months postoperatively. The sample included 283 patients (82% male). Two months after surgery, the level of physical activity had increased (p < 0.001) in the whole sample. Patients who remained active or increased their level of physical activity had significantly better recovery of lung function than patients who remained sedentary or had decreased their level of activity postoperatively in terms of vital capacity (94 ± 11% of preoperative value vs. 91 ± 9%; p = 0.03), inspiratory capacity (94 ± 14% vs. 88 ± 19%; p = 0.008), and total lung capacity (96 ± 11% vs. 90 ± 11%; p = 0.01). An increased level of physical activity, compared to preoperative level, was reported as early as two months after surgery. Our data shows that there could be a significant association between physical activity and recovery of lung function after cardiac surgery. The relationship between objectively measured physical activity and postoperative pulmonary recovery needs to be further examined to verify these results.
McClure, Jennifer B.; Ludman, Evette J.; Grothaus, Lou; Pabiniak, Chester; Richards, Julie
2009-01-01
Objective We compared long-term outcomes among smokers with and without impaired lung functioning who received brief counseling highlighting their spirometric test results. Methods Participants in this analysis all received a brief motivational intervention for smoking cessation including spirometric testing and feedback (~20 minutes), were advised to quit smoking, offered free access to a phone-based smoking cessation program, and followed for one year. Outcomes were analyzed for smokers with (n = 99) and without (n = 168) impaired lung function. Results Participants with lung impairment reported greater use of self-help cessation materials at 6 months, greater use of non-study-provided counseling services at 6 and 12 months, higher 7-day PPA rates at 6 months, and were more likely to talk with their doctor about their spirometry results. Conclusion Further research is warranted to determine if spirometry feedback has a differential treatment effect among smokers with and without lung impairment. Practice Implications It is premature to make practice recommendations based on these data. PMID:20434863
Araki, Tetsuro; Nishino, Mizuki; Zazueta, Oscar E.; Gao, Wei; Dupuis, Josée; Okajima, Yuka; Latourelle, Jeanne C.; Rosas, Ivan O.; Murakami, Takamichi; O’Connor, George T.; Washko, George R.; Hunninghake, Gary M.; Hatabu, Hiroto
2015-01-01
Objective To investigate the prevalence and distribution of paraseptal emphysema on chest CT images in the Framingham Heart Study (FHS) population, and assess its impact on pulmonary function. Also pursued was the association with interstitial lung abnormalities. Materials and Methods We assessed 2633 participants in the FHS for paraseptal emphysema on chest CT. Characteristics of participants, including age, sex, smoking status, clinical symptoms, and results of pulmonary function tests, were compared between those with and without paraseptal emphysema. The association between paraseptal emphysema and interstitial lung abnormalities was investigated. Results Of the 2633 participants, 86 (3%) had pure paraseptal emphysema (defined as paraseptal emphysema with no other subtypes of emphysema other than paraseptal emphysema or a very few centrilobular emphysema involved) in at least one lung zone. The upper zone of the lungs was almost always involved. Compared to the participants without paraseptal emphysema, those with pure paraseptal emphysema were significantly older, and were more frequently male and smokers (mean 64 years, 71% male, mean 36 pack-years, p<0.001) and had significantly decreased FEV1/FVC% (p=0.002), and diffusion capacity of carbon monoxide (DLCO) (p=0.002). There was a significant association between pure paraseptal emphysema and interstitial lung abnormalities (p<0.001). Conclusions The prevalence of pure paraseptal emphysema was 3% in the FHS population, predominantly affects the upper lung zone, and contributes to decreased pulmonary function. Cigarette smoking, aging, and male gender were the factors associated with the presence of paraseptal emphysema. Significant association between paraseptal emphysema and interstitial lung abnormalities was observed. PMID:25868675
Leslie, Kevin O
2012-06-01
Idiopathic pulmonary fibrosis is a progressive, fatal lung disease occurring in older individuals. Despite 50 years of accrued data about the disease, little progress has been made in slowing functional loss or in decreasing patient mortality. To present a novel hypothesis on the etiology and pathogenesis of idiopathic pulmonary fibrosis. Published data are reviewed regarding the epidemiology, clinical presentation, natural history, radiologic findings, and pathologic findings in patients with idiopathic pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis may be predisposed genetically to tractional injury to the peripheral lung. The result is recurrent damage to the epithelial-mesenchymal interface, preferentially at the outer edges of the basilar lung lobules where tractional stress is high during inspiration, compliance is relatively low, and there is a greater tendency for alveolar collapse at end-expiration. A distinctive "reticular network of injury" (the fibroblast focus) forms, attended by a prolonged phase of wound repair (tear and slow repair). Discrete areas of alveolar collapse are observed in scar at the periphery of the lung lobules. The cycle repeats over many years resulting in progressive fibrous remodeling and replacement of the alveoli in a lobule by bronchiolar cysts surrounded by scar (honeycomb lung). Abnormalities in surfactant function are proposed as a potential mechanism of initial lung damage. Age of onset may be a function of a required threshold of environmental exposures (eg, cigarette smoking) or other comorbid injury to the aging lung. Evidence supporting this hypothesis is presented and potential mechanisms are discussed. A potential role for contributing cofactors is presented.
Multiple image x-radiography for functional lung imaging
NASA Astrophysics Data System (ADS)
Aulakh, G. K.; Mann, A.; Belev, G.; Wiebe, S.; Kuebler, W. M.; Singh, B.; Chapman, D.
2018-01-01
Detection and visualization of lung tissue structures is impaired by predominance of air. However, by using synchrotron x-rays, refraction of x-rays at the interface of tissue and air can be utilized to generate contrast which may in turn enable quantification of lung optical properties. We utilized multiple image radiography, a variant of diffraction enhanced imaging, at the Canadian light source to quantify changes in unique x-ray optical properties of lungs, namely attenuation, refraction and ultra small-angle scatter (USAXS or width) contrast ratios as a function of lung orientation in free-breathing or respiratory-gated mice before and after intra-nasal bacterial endotoxin (lipopolysaccharide) instillation. The lung ultra small-angle scatter and attenuation contrast ratios were significantly higher 9 h post lipopolysaccharide instillation compared to saline treatment whereas the refraction contrast decreased in magnitude. In ventilated mice, end-expiratory pressures result in an increase in ultra small-angle scatter contrast ratio when compared to end-inspiratory pressures. There were no detectable changes in lung attenuation or refraction contrast ratio with change in lung pressure alone. In effect, multiple image radiography can be applied towards following optical properties of lung air-tissue barrier over time during pathologies such as acute lung injury.
Koo, Hyeon-Kyoung; Hong, Yoonki; Lim, Myoung Nam; Yim, Jae-Joon; Kim, Woo Jin
2016-01-01
Objective Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation in the airway and lung. A protease–antiprotease imbalance has been suggested as a possible pathogenic mechanism for COPD. We evaluated the relationship between matrix metalloproteinase (MMP) levels and COPD severity. Methods Plasma levels of MMP-1, MMP-8, MMP-9, and MMP-12 were measured in 57 COPD patients and 36 normal controls. The relationship between MMP levels and lung function, emphysema index, bronchial wall thickness, pulmonary artery pressure, and quality of life was examined using general linear regression analyses. Results There were significant associations of MMP-1 with bronchodilator reversibility and of MMP-8 and MMP-9 with lung function. Also, MMP-1, MMP-8, and MMP-9 levels were correlated with the emphysema index, independent of lung function. However, MMP-12 was not associated with lung function or emphysema severity. Associations between MMP levels and bronchial wall thickness, pulmonary artery pressure, and quality of life were not statistically significant. Conclusion Plasma levels of MMP-1, MMP-8, and MMP-9 are associated with COPD severity and can be used as a biomarker to better understand the characteristics of COPD patients. PMID:27313452
Optical properties of tissue, experimental results
NASA Astrophysics Data System (ADS)
Beek, Johan F.
1993-08-01
The effective attenuation coefficient of piglet lung was measured in vitro at 632.8 nm. Interstial fibres with isotropic tips were used to measure the fluence rate as a function of the distance from an isotropic light source. In vitro measurements at 632.8 nm on a lung that was insufflated with oxygen from 50 to 150 ml showed that the effective attenuation coefficient decreases as a function of the volume of air in the lung (at 50 ml /Jeff = 0.297 + 0.011 mnf1, at 100 ml lice 0.150 ± 0.007 mm-1, and at 150 ml /Jeff= 0.1136 + 0.015 mm-1). A single in vitro measurement at 790 nm at an insufflated lung volume of 100 ml gave a comparable result (ii ie = 0.175 + 0.004 mm-1). A ff decrease in effective attenuation coefficient with an ncrease in lung volume was explained by Mie-theory. The effective attenuation coefficient, calculated with 11, and g from Mie-theory, showed a deviation < 22% from the measured in vitro values.
Taveira-DaSilva, Angelo M.; Hathaway, Olanda; Stylianou, Mario; Moss, Joel
2011-01-01
Background Lymphangioleiomyomatosis (LAM) is a disorder that affects women and is characterized by cystic lung destruction, chylous effusions, lymphangioleiomyomas, and angiomyolipomas. It is caused by proliferation of abnormal smooth muscle–like cells. Sirolimus is a mammalian target of rapamycin inhibitor that has been reported to decrease the size of neoplastic growths in animal models of tuberous sclerosis complex and to reduce the size of angiomyolipomas and stabilize lung function in humans. Objective To assess whether sirolimus therapy is associated with improvement in lung function and a decrease in the size of chylous effusions and lymphangioleiomyomas in patients with LAM. Design Observational study. Setting The National Institutes of Health Clinical Center. Patients 19 patients with rapidly progressing LAM or chylous effusions. Intervention Treatment with sirolimus. Measurements Lung function and the size of chylous effusions and lymphangioleiomyomas before and during sirolimus therapy. Results Over a mean of 2.5 years before beginning sirolimus therapy, the mean (±SE) FEV1 decreased by 2.8% ± 0.8% predicted and diffusing capacity of the lung for carbon monoxide (DLCO) decreased by 4.8% ± 0.9% predicted per year. In contrast, over a mean of 2.6 years of sirolimus therapy, the mean (± SE) FEV1 increased by 1.8% ± 0.5% predicted and DLCO increased by 0.8% ± 0.5% predicted per year (P < 0.001). After beginning sirolimus therapy, 12 patients with chylous effusions and 11 patients with lymphangioleiomyomas experienced almost complete resolution of these conditions. In 2 of the 12 patients, sirolimus therapy enabled discontinuation of pleural fluid drainage. Limitations This was an observational study. The resolution of effusions may have affected improvements in lung function. Conclusion Sirolimus therapy is associated with improvement or stabilization of lung function and reduction in the size of chylous effusions and lymphangioleiomyomas in patients with LAM. Primary Funding Source Intramural Research Program, National Heart, Lung, and Blood Institute, National Institutes of Health. PMID:21690594
Wang, Yajie; Jiang, Xue; Zhang, Lihai; Wang, Lihong; Li, Zhu; Sun, Wuzhuang
2014-01-01
This study is conducted to investigate an effect of simvastatin on cigarette smoke-induced COPD. Rats were exposed to air (control) and cigarette smoke (smoking) in presence and absence of simvastatin. Heart and lung tissues were harvested for histopathologic and morphometric analysis. Body weight of rat, mean liner intercept (MLI), mean alveolar number (MAN), lung function test, mean pulmonary artery pressure (mPAP), right ventricular hypertrophy index (RVHI) and 5-HTT level in serum and BALF were examined in experimental rats, respectively. Application of simvastatin mitigated peribronchiolar inflammation and pulmonary bullae formed in the smoke-exposed lungs with weight gain as compared to the smoking rats (P < 0.05). Simvastatin-treated rats showed slight but significant decreases in MLI and MAN with a partial reversal of lung function decline (all P < 0.05). Treatment with simvastatin resulted in a significant decrease not only in mPAP and RVHI but also in a 5-HTT level in serum and BALF (P < 0.01 or 0.05) with a good correlation between the 5-HTT level and mPAP or RVHI (r = 0.693 and 0.479; 0.675 and 0.508). Simvastatin partly reverses lung function decline and attenuates structural impairments of lung and right ventricle possibly through reducing 5-HTT content in the model of COPD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, Fujun; Jeudy, Jean; D’Souza, Warren
Purpose: To investigate the incorporation of pretherapy regional ventilation function in predicting radiation fibrosis (RF) in stage III nonsmall cell lung cancer (NSCLC) patients treated with concurrent thoracic chemoradiotherapy. Methods: Thirty-seven patients with stage III NSCLC were retrospectively studied. Patients received one cycle of cisplatin–gemcitabine, followed by two to three cycles of cisplatin–etoposide concurrently with involved-field thoracic radiotherapy (46–66 Gy; 2 Gy/fraction). Pretherapy regional ventilation images of the lung were derived from 4D computed tomography via a density change–based algorithm with mass correction. In addition to the conventional dose–volume metrics (V{sub 20}, V{sub 30}, V{sub 40}, and mean lung dose),more » dose–function metrics (fV{sub 20}, fV{sub 30}, fV{sub 40}, and functional mean lung dose) were generated by combining regional ventilation and radiation dose. A new class of metrics was derived and referred to as dose–subvolume metrics (sV{sub 20}, sV{sub 30}, sV{sub 40}, and subvolume mean lung dose); these were defined as the conventional dose–volume metrics computed on the functional lung. Area under the receiver operating characteristic curve (AUC) values and logistic regression analyses were used to evaluate these metrics in predicting hallmark characteristics of RF (lung consolidation, volume loss, and airway dilation). Results: AUC values for the dose–volume metrics in predicting lung consolidation, volume loss, and airway dilation were 0.65–0.69, 0.57–0.70, and 0.69–0.76, respectively. The respective ranges for dose–function metrics were 0.63–0.66, 0.61–0.71, and 0.72–0.80 and for dose–subvolume metrics were 0.50–0.65, 0.65–0.75, and 0.73–0.85. Using an AUC value = 0.70 as cutoff value suggested that at least one of each type of metrics (dose–volume, dose–function, dose–subvolume) was predictive for volume loss and airway dilation, whereas lung consolidation cannot be accurately predicted by any of the metrics. Logistic regression analyses showed that dose–function and dose–subvolume metrics were significant (P values ≤ 0.02) in predicting volume airway dilation. Likelihood ratio test showed that when combining dose–function and/or dose–subvolume metrics with dose–volume metrics, the achieved improvements of prediction accuracy on volume loss and airway dilation were significant (P values ≤ 0.04). Conclusions: The authors’ results demonstrated that the inclusion of regional ventilation function improved accuracy in predicting RF. In particular, dose–subvolume metrics provided a promising method for preventing radiation-induced pulmonary complications.« less
Zagorul'ko, A K; Fat, L F; Safronova, L G; Kobozev, G V; Gorelik, N I
1989-06-01
The lungs of 19 guinea pigs, born from 8 females in which acute and chronic pneumonia had been modelled by transtracheal introduction of sterile fishing-line were investigated. It was established, that in guinea pigs, born in females with acute and chronic pneumonia, the functional immaturity of pneumocytes of the 2-nd type took place. The functional immaturity of pneumocytes of the 2-nd type results in suppression of the surface active characteristics of surfactant.
Linking lung function to structural damage of alveolar epithelium in ventilator-induced lung injury.
Hamlington, Katharine L; Smith, Bradford J; Dunn, Celia M; Charlebois, Chantel M; Roy, Gregory S; Bates, Jason H T
2018-05-06
Understanding how the mechanisms of ventilator-induced lung injury (VILI), namely atelectrauma and volutrauma, contribute to the failure of the blood-gas barrier and subsequent intrusion of edematous fluid into the airspace is essential for the design of mechanical ventilation strategies that minimize VILI. We ventilated mice with different combinations of tidal volume and positive end-expiratory pressure (PEEP) and linked degradation in lung function measurements to injury of the alveolar epithelium observed via scanning electron microscopy. Ventilating with both high inspiratory plateau pressure and zero PEEP was necessary to cause derangements in lung function as well as visually apparent physical damage to the alveolar epithelium of initially healthy mice. In particular, the epithelial injury was tightly associated with indicators of alveolar collapse. These results support the hypothesis that mechanical damage to the epithelium during VILI is at least partially attributed to atelectrauma-induced damage of alveolar type I epithelial cells. Copyright © 2018. Published by Elsevier B.V.
Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide
Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W.
2013-01-01
Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. PMID:23800689
Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide.
Chen, Jing; Mo, Yiqun; Schlueter, Connie F; Hoyle, Gary W
2013-10-15
Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. © 2013.
Unilateral lung transplantation for pulmonary fibrosis.
1986-05-01
Improvements in immunosuppression and surgical techniques have made unilateral lung transplantation feasible in selected patients with end-stage interstitial lung disease. We report two cases of successful unilateral lung transplantation for end-stage respiratory failure due to pulmonary fibrosis. The patients, both oxygen-dependent, had progressive disease refractory to all treatment, with an anticipated life expectancy of less than one year on the basis of the rate of progression of the disease. Both patients were discharged six weeks after transplantation and returned to normal life. They are alive and well at 26 months and 14 months after the procedure. Pulmonary-function studies have shown substantial improvement in their lung volumes and diffusing capacities. For both patients, arterial oxygen tension is now normal and there is no arterial oxygen desaturation with exercise. This experience shows that unilateral lung transplantation, for selected patients with end-stage interstitial lung disease, provides a good functional result. Moreover, it avoids the necessity for cardiac transplantation, as required by the combined heart-lung procedure, and permits the use of the donor heart for another recipient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jane
The emission of cerium oxide nanoparticles (CeO{sub 2}) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO{sub 2} induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO{sub 2}-induced fibrosis. Male Sprague-Dawley rats were exposed to CeO{sub 2} (0.15 to 7 mg/kg) by a single intratracheal instillation and sacrificed at various times post-exposure. The results show that at 28 days after CeO{sub 2} (3.5 mg/kg)more » exposure, lung fibrosis was evidenced by increased soluble collagen in bronchoalveolar lavage fluid, elevated hydroxyproline content in lung tissues, and enhanced sirius red staining for collagen in the lung tissue. Lung fibroblasts and alveolar type II (ATII) cells isolated from CeO{sub 2}-exposed rats at 28 days post-exposure demonstrated decreasing proliferation rate when compare to the controls. CeO{sub 2} exposure was cytotoxic and altered cell function as demonstrated by fibroblast apoptosis and aggregation, and ATII cell hypertrophy and hyperplasia with increased surfactant. The presence of stress fibers, expressed as α-smooth muscle actin (SMA), in CeO{sub 2}-exposed fibroblasts and ATII cells was significantly increased compared to the control. Immunohistofluorescence analysis demonstrated co-localization of TGF-β or α-SMA with prosurfactant protein C (SPC)-stained ATII cells. These results demonstrate that CeO{sub 2} exposure affects fibroblast function and induces EMT in ATII cells that play a role in lung fibrosis. These findings suggest potential adverse health effects in response to CeO{sub 2} nanoparticle exposure. - Highlights: • CeO{sub 2} exposure induced lung fibrosis. • CeO{sub 2} were detected in lung tissue, alveolar type II (ATII) cells and fibroblasts. • CeO{sub 2} caused ATII cell hypertrophy and hyperplasia and altered fibroblast function. • Increased α-SMA in CeO{sub 2}-exposed lung fibroblasts indicating myofibroblast formation. • CeO{sub 2} induced EMT in ATII cells demonstrated as increased α-SMA expression.« less
Elevated airway liquid volumes at birth: a potential cause of transient tachypnea of the newborn.
McGillick, Erin V; Lee, Katie; Yamaoka, Shigeo; Te Pas, Arjan B; Crossley, Kelly J; Wallace, Megan J; Kitchen, Marcus J; Lewis, Robert A; Kerr, Lauren T; DeKoninck, Philip; Dekker, Janneke; Thio, Marta; McDougall, Annie R A; Hooper, Stuart B
2017-11-01
Excessive liquid in airways and/or distal lung tissue may underpin the respiratory morbidity associated with transient tachypnea of the newborn (TTN). However, its effects on lung aeration and respiratory function following birth are unknown. We investigated the effect of elevated airway liquid volumes on newborn respiratory function. Near-term rabbit kittens (30 days gestation; term ~32 days) were delivered, had their lung liquid-drained, and either had no liquid replaced (control; n = 7) or 30 ml/kg of liquid re-added to the airways [liquid added (LA); n = 7]. Kittens were mechanically ventilated in a plethysmograph. Measures of chest and lung parameters, uniformity of lung aeration, and airway size were analyzed using phase contrast X-ray imaging. The maximum peak inflation pressure required to recruit a tidal volume of 8 ml/kg was significantly greater in LA compared with control kittens (35.0 ± 0.7 vs. 26.8 ± 0.4 cmH 2 O, P < 0.001). LA kittens required greater time to achieve lung aeration (106 ± 14 vs. 60 ± 6 inflations, P = 0.03) and had expanded chest walls, as evidenced by an increased total chest area (32 ± 9%, P < 0.0001), lung height (17 ± 6%, P = 0.02), and curvature of the diaphragm (19 ± 8%, P = 0.04). LA kittens had lower functional residual capacity during stepwise changes in positive end-expiratory pressures (5, 3, 0, and 5 cmH 2 0). Elevated lung liquid volumes had marked adverse effects on lung structure and function in the immediate neonatal period and reduced the ability of the lung to aerate efficiently. We speculate that elevated airway liquid volumes may underlie the initial morbidity in near-term babies with TTN after birth. NEW & NOTEWORTHY Transient tachypnea of the newborn reduces respiratory function in newborns and is thought to result due to elevated airway liquid volumes following birth. However, the effect of elevated airway liquid volumes on neonatal respiratory function is unknown. Using phase contrast X-ray imaging, we show that elevated airway liquid volumes have adverse effects on lung structure and function in the immediate newborn period, which may underlie the pathology of TTN in near-term babies after birth. Copyright © 2017 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbanck, Sylvia, E-mail: sylvia.verbanck@uzbrussel.be; Hanon, Shane; Schuermans, Daniel
Purpose: To assess the effect of radiation therapy on lung function over the course of 3 years. Methods and Materials: Evolution of restrictive and obstructive lung function parameters was investigated in 108 breast cancer participants in a randomized, controlled trial comparing conventional radiation therapy (CR) and hypofractionated tomotherapy (TT) (age at inclusion ranging 32-81 years). Spirometry, plethysmography, and hemoglobin-corrected diffusing capacity were assessed at baseline and after 3 months and 1, 2, and 3 years. Natural aging was accounted for by considering all lung function parameters in terms of percent predicted values using the most recent reference values for women aged up to 80 years. Results:more » In the patients with negligible history of respiratory disease or smoking (n=77), the greatest rate of functional decline was observed during the initial 3 months, this acute decrease being more marked in the CR versus the TT arm. During the remainder of the 3-year follow-up period, values (in terms of percent predicted) were maintained (diffusing capacity) or continued to decline at a slower rate (forced vital capacity). However, the average decline of the restrictive lung function parameters over a 3-year period did not exceed 9% predicted in either the TT or the CR arm. Obstructive lung function parameters remained unaffected throughout. Including also the 31 patients with a history of respiratory disease or more than 10 pack-years showed a very similar restrictive pattern. Conclusions: In women with breast cancer, both conventional radiation therapy and hypofractionated tomotherapy induce small but consistent restrictive lung patterns over the course of a 3-year period, irrespective of baseline respiratory status or smoking history. The fastest rate of lung function decline generally occurred in the first 3 months.« less
Sonoda, Nao; Morimoto, Akiko; Tatsumi, Yukako; Asayama, Kei; Ohkubo, Takayoshi; Izawa, Satoshi; Ohno, Yuko
2018-05-01
To assess the impact of diabetes on restrictive and obstructive lung function impairment. This 5-year prospective study included 7524 participants aged 40-69years without lung function impairment at baseline who underwent a comprehensive medical check-up between April 2008 and March 2009 at Saku Central Hospital. Diabetes was defined by fasting plasma glucose ≥7.0mmol/l (126mg/dl), HbA1c≥6.5% (48mmol/mol), or a history of diabetes, as determined by interviews conducted by the physicians. Restrictive and obstructive lung function impairment were defined as forced vital capacity (FVC) <80% predicted and forced expiratory volume in 1s (FEV 1 ) to FVC ratio (FEV 1 /FVC) <0.70, respectively. Participants were screened until they developed restrictive or obstructive lung function impairment or until March 2014. During the follow-up period, 171 and 639 individuals developed restrictive and obstructive lung function impairment, respectively. Individuals with diabetes had a 1.6-fold higher risk of restrictive lung function impairment than those without diabetes after adjusting for sex, age, height, abdominal obesity, smoking status, exercise habits, systolic blood pressure, HDL-cholesterol, log-transformed high-sensitivity C-reactive protein, and baseline lung function [multivariable-adjusted HR and 95% CI; 1.57 (1.04-2.36)]. In contrast, individuals with diabetes did not have a significantly higher risk of obstructive lung function impairment [multivariable-adjusted HR and 95% CI; 0.93 (0.72-1.21)]. Diabetes was associated with restrictive lung function impairment but not obstructive lung function impairment. Copyright © 2017. Published by Elsevier Inc.
Hamzah, Nurul Ainun; Mohd Tamrin, Shamsul Bahri; Ismail, Noor Hassim
2016-01-01
Background Metallic dust is a heterogeneous substance with respiratory sensitizing properties. Its long term exposure adversely affected lung function, thus may cause acute or chronic respiratory diseases. Methods A cross-sectional study was conducted in a steel factory in Terengganu, Malaysia to assess the metal dust exposure and its relationship to lung function values among 184 workers. Metal dust concentrations values (Co, Cr, and Ni) for each worker were collected using air personal sampling. Lung function values (FEV1, FVC, and %FEV1/FVC) were determined using spirometer. Results Exposure to cobalt and chromium were 1–3 times higher than permissible exposure limit (PEL) while nickel was not exceeding the PEL. Cumulative of chromium was the predictor to all lung function values (FEV1, FVC, and %FEV1/FVC). Frequency of using mask was positively associated with FVC (Adj b = 0.263, P = 0.011) while past respiratory illnesses were negatively associated with %FEV1/FVC (Adj b = –1.452, P = 0.026). Only few workers (36.4%) were found to wear their masks all times during the working hours. Conclusions There was an exposure-response relationship of cumulative metal dust exposure with the deterioration of lung function values. Improvement of control measures as well as proper and efficient use or personal protection equipment while at work could help to protect the respiratory health of workers. PMID:27392157
Jacob, Joseph; Bartholmai, Brian J; Brun, Anne Laure; Egashira, Ryoko; Rajagopalan, Srinivasan; Karwoski, Ronald; Kouranos, Vasileios; Kokosi, Maria; Hansell, David M; Wells, Athol U
2017-11-01
To determine whether computer-based quantification (CALIPER software) is superior to visual computed tomography (CT) scoring in the identification of CT patterns indicative of restrictive and obstructive functional indices in hypersensitivity pneumonitis (HP). A total of 135 consecutive HP patients had CT parenchymal patterns evaluated quantitatively by both visual scoring and CALIPER. Results were evaluated against: forced vital capacity (FVC), total lung capacity (TLC), diffusing capacity for carbon monoxide (DL CO ) and a composite physiological index (CPI) to identify which CT scoring method better correlated with functional indices. CALIPER-derived scores of total interstitial lung disease extent correlated more strongly than visual scores: FVC (CALIPER R = 0.73, visual R = 0.51); DL CO (CALIPER R = 0.61, visual R = 0.48); and CPI (CALIPER R = 0·70, visual R = 0·55). The CT variable that correlated most strongly with restrictive functional indices was CALIPER pulmonary vessel volume (PVV): FVC R = 0.75, DL CO R = 0.68 and CPI R = 0.76. Ground-glass opacity quantified by CALIPER alone demonstrated strong associations with restrictive functional indices: CALIPER FVC R = 0.65; DL CO R = 0.59; CPI R = 0.64; and visual = not significant. Decreased attenuation lung quantified by CALIPER was a better morphological measure of obstructive lung disease than equivalent visual scores as judged by relationships with TLC (CALIPER R = 0.63 and visual R = 0.12). All results were maintained on multivariate analysis. CALIPER improved on visual scoring in HP as judged by restrictive and obstructive functional correlations. Decreased attenuation regions of the lung quantified by CALIPER demonstrated better linkages to obstructive lung physiology than visually quantified CT scores. A novel CALIPER variable, the PVV, demonstrated the strongest linkages with restrictive functional indices and could represent a new automated index of disease severity in HP. © 2017 Asian Pacific Society of Respirology.
Lung and Intestine: A Specific Link in an Ulcerative Colitis Rat Model
Liu, Yuan; Wang, Xin-Yue; Yang, Xue; Jing, Shan; Zhu, Li; Gao, Si-Hua
2013-01-01
Background. To investigate the link and mechanisms between intestine and lung in the ulcerative colitis (UC) rat model. Materials and Methods. We used the UC rat model by immunological sensitization combined with local 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) in 50% ethanol enema, observed dynamically animal general state and body weight, examined the histological and functional changes in the colon, lung, liver, and kidney tissues, and detected microvascular endothelium response towards inflammation characterized with the expression of iNOS, TXB2, P-selectin, ICAM-1, and vascular endothelial growth factor A (VEGF-A) in the colon and lung tissue. Results. Pulmonary function results suggested ventilator disorder, and pathological findings showed interstitial pneumonia. There were no significant changes in the liver and kidney function and histopathology. The colon and lung tissue iNOS, TXB2, P-selectin, ICAM-1, and VEGF-A expression of the model rats was significantly higher than the normal rats at both time points. Conclusions. Our study is the first to demonstrate the close association between the large intestine and lung in the immune-TNBS-ethanol-induced UC rat model. Different organs and tissues with the same embryonic origin may share the same pathological specificities in a disease. The present study provided a new way of thinking for pathological changes in clinical complex diseases manifested with multiorgan damage. PMID:23606829
Bettina, Alexandra; Zhang, Zhimin; Michels, Kathryn; Cagnina, R Elaine; Vincent, Isaah S; Burdick, Marie D; Kadl, Alexandra; Mehrad, Borna
2016-06-15
Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells, and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. M-CSF has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden, and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, proliferation of precursors, or recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and antimicrobial functions of both lung and liver mononuclear phagocytes during pneumonia, and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and antimicrobial functions of mononuclear phagocytes in the lungs and liver. Copyright © 2016 by The American Association of Immunologists, Inc.
Bettina, Alexandra; Zhang, Zhimin; Michels, Kathryn; Cagnina, R. Elaine; Vincent, Isaah S.; Burdick, Marie D.; Kadl, Alexandra; Mehrad, Borna
2016-01-01
Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. Macrophage-colony stimulating factor (M-CSF) has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, the proliferation of precursors or the recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and anti-microbial functions of both lung and liver mononuclear phagocytes during pneumonia and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and anti-microbial functions of mononuclear phagocytes in the lungs and liver. PMID:27183631
Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype.
Erickson, John J; Lu, Pengcheng; Wen, Sherry; Hastings, Andrew K; Gilchuk, Pavlo; Joyce, Sebastian; Shyr, Yu; Williams, John V
2015-11-01
Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors. Copyright © 2015 by The American Association of Immunologists, Inc.
Kuti, Bankole Peter; Oladimeji, Oluwatoyin Ibukun; Kuti, Demilade Kehinde; Adeniyi, Adewuyi Temidayo; Adeniji, Emmanuel Oluwatosin; Osundare, Yetunde Justinah
2017-01-01
Introduction The effect of socio-demographic and nutritional factors on lung functions of African children is poorly studied. This study set out to determine the effects of these factors on lung functions of Nigerian school children. Methods Rural and urban secondary schools students in Ilesa, Nigeria were selected by multistage sampling. The socio-demographic, nutritional status as well as lung function parameters measured using incentive Spirometry (MIR Spirolab III srl, Italy) of the children were obtained and compared among the rural and urban children. Results A total of 250 children (128 rural and 122 urban) aged 9 to 17 years participated in the study over a 12 month period. Mean (SD) age was 12.6 (1.9) years and Male: Female 1:1.1. The urban children were heavier, taller and have larger lung volumes than their age and sex matched rural counterpart. Stunted rural males [Mean (SD) FVC 1.8 (0.3) L vs. 2.2 (0.6) L t-test = 2.360; p = 0.022], underweight females [Mean (SD) FVC 1.8 (0.4) L vs. 2.2 (0.6) L; t-test = 2.855; p = 0.006] and those exposed to unclean fuel [Mean (SD) FVC 2.1 (0.6) L vs. 2.4 (0.5) L; t-test = 2.079; p = 0.041] had significantly lower lung volumes compared to their counterparts without these conditions. Conclusion Undernutrition, low socio-economic class and use of unclean fuels adversely affect the lung functions of Nigerian children. Improved standard of living, use of clean fuel and adequate nutrition may ensure better lung health among these children. PMID:29629016
Lung volume, breathing pattern and ventilation inhomogeneity in preterm and term infants.
Latzin, Philipp; Roth, Stefan; Thamrin, Cindy; Hutten, Gerard J; Pramana, Isabelle; Kuehni, Claudia E; Casaulta, Carmen; Nelle, Matthias; Riedel, Thomas; Frey, Urs
2009-01-01
Morphological changes in preterm infants with bronchopulmonary dysplasia (BPD) have functional consequences on lung volume, ventilation inhomogeneity and respiratory mechanics. Although some studies have shown lower lung volumes and increased ventilation inhomogeneity in BPD infants, conflicting results exist possibly due to differences in sedation and measurement techniques. We studied 127 infants with BPD, 58 preterm infants without BPD and 239 healthy term-born infants, at a matched post-conceptional age of 44 weeks during quiet natural sleep according to ATS/ERS standards. Lung function parameters measured were functional residual capacity (FRC) and ventilation inhomogeneity by multiple breath washout as well as tidal breathing parameters. Preterm infants with BPD had only marginally lower FRC (21.4 mL/kg) than preterm infants without BPD (23.4 mL/kg) and term-born infants (22.6 mL/kg), though there was no trend with disease severity. They also showed higher respiratory rates and lower ratios of time to peak expiratory flow and expiratory time (t(PTEF)/t(E)) than healthy preterm and term controls. These changes were related to disease severity. No differences were found for ventilation inhomogeneity. Our results suggest that preterm infants with BPD have a high capacity to maintain functional lung volume during natural sleep. The alterations in breathing pattern with disease severity may reflect presence of adaptive mechanisms to cope with the disease process.
Chronic hypersensitivity pneumonitis
Pereira, Carlos AC; Gimenez, Andréa; Kuranishi, Lilian; Storrer, Karin
2016-01-01
Hypersensitivity pneumonitis (HSP) is a common interstitial lung disease resulting from inhalation of a large variety of antigens by susceptible individuals. The disease is best classified as acute and chronic. Chronic HSP can be fibrosing or not. Fibrotic HSP has a large differential diagnosis and has a worse prognosis. The most common etiologies for HSP are reviewed. Diagnostic criteria are proposed for both chronic forms based on exposure, lung auscultation, lung function tests, HRCT findings, bronchoalveolar lavage, and biopsies. Treatment options are limited, but lung transplantation results in greater survival in comparison to idiopathic pulmonary fibrosis. Randomized trials with new antifibrotic agents are necessary. PMID:27703382
Inhibition of the purinergic pathway prolongs mouse lung allograft survival.
Liu, Kaifeng; Vergani, Andrea; Zhao, Picheng; Ben Nasr, Moufida; Wu, Xiao; Iken, Khadija; Jiang, Dawei; Su, Xiaofeng; Fotino, Carmen; Fiorina, Paolo; Visner, Gary A
2014-08-01
Lung transplantation has limited survival with current immunosuppression. ATP is released from activated T cells, which act as costimulatory molecules through binding to the purinergic receptor P2XR7. We investigated the role of blocking the ATP/purinergic pathway, primarily P2XR7, using its inhibitor oxidized ATP (oATP) in modulating rejection of mouse lung allografts. Mouse lung transplants were performed using mice with major histocompatibility complex mismatch, BALB/c to C57BL6. Recipients received suramin or oATP, and lung allografts were evaluated 15 to ≥ 60 days after transplantation. Recipients were also treated with oATP after the onset of moderate to severe rejection to determine its ability to rescue lung allografts. Outcomes measures included lung function, histology, thoracic imaging, and allo-immune responses. Blocking purinergic receptors with the nonselective inhibitor suramin or with the P2XR7-selective inhibitor oATP reduced acute rejection and prolonged lung allograft survival for ≥ 60 days with no progression in severity. There were fewer inflammatory cells within lung allografts, less rejection, and improved lung function, which was maintained over time. CD4 and CD8 T cells were reduced within lung allografts with impaired activation with prolonged impairment of CD8 responses. In vitro, oATP reduced CD8 activation of Th1 inflammatory cytokines IFN-γ and TNF-α and cytolytic machinery, granzyme B. Cotreatment with immunosuppressive agents, cyclosporine, rapamycin, or CTLA-4Ig resulted in no additive benefits, and oATP alone resulted in better outcomes than cyclosporine alone. This study illustrates a potential new pathway to target in hopes of prolonging survival of lung transplant recipients.
Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J
2015-02-01
We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurosawa, T; Moriya, S; Sato, M
2015-06-15
Purpose: To evaluate the functional planning using CT-pulmonary ventilation imaging for conformal SBRT. Methods: The CT-pulmonary ventilation image was generated using the Jacobian metric in the in-house program with the NiftyReg software package. Using the ventilation image, the normal lung was split into three lung regions for functionality (high, moderate and low). The anatomical plan (AP) and functional plan (FP) were made for ten lung SBRT patients. For the AP, the beam angles were optimized with the dose-volume constraints for the normal lung sparing and the PTV coverage. For the FP, the gantry angles were also optimized with the additionalmore » constraint for high functional lung. The MLC aperture shapes were adjusted to the PTV with the additional 5 mm margin. The dosimetric parameters for PTV, the functional volumes, spinal cord and so on were compared in both plans. Results: Compared to the AP, the FP showed better dose sparing for high- and moderate-functional lungs with similar PTV coverage while not taking care of the low functional lung (High:−12.9±9.26% Moderate: −2.0±7.09%, Low: +4.1±12.2%). For the other normal organs, the FP and AP showed similar dose sparing in the eight patients. However, the FP showed that the maximum doses for spinal cord were increased with the significant increment of 16.4Gy and 21.0Gy in other two patients, respectively. Because the beam direction optimizer chose the unexpected directions passing through the spinal cord. Conclusion: Even the functional conformal SBRT can selectively reduce high- and moderatefunctional lung while keeping the PTV coverage. However, it would be careful that the optimizer would choose unexpected beam angles and the dose sparing for the other normal organs can be worse. Therefore, the planner needs to control the dose-volume constraints and also limit the beam angles in order to achieve the expected dose sparing and coverage.« less
Animal Models of Fibrotic Lung Disease
Lawson, William E.; Oury, Tim D.; Sisson, Thomas H.; Raghavendran, Krishnan; Hogaboam, Cory M.
2013-01-01
Interstitial lung fibrosis can develop as a consequence of occupational or medical exposure, as a result of genetic defects, and after trauma or acute lung injury leading to fibroproliferative acute respiratory distress syndrome, or it can develop in an idiopathic manner. The pathogenesis of each form of lung fibrosis remains poorly understood. They each result in a progressive loss of lung function with increasing dyspnea, and most forms ultimately result in mortality. To better understand the pathogenesis of lung fibrotic disorders, multiple animal models have been developed. This review summarizes the common and emerging models of lung fibrosis to highlight their usefulness in understanding the cell–cell and soluble mediator interactions that drive fibrotic responses. Recent advances have allowed for the development of models to study targeted injuries of Type II alveolar epithelial cells, fibroblastic autonomous effects, and targeted genetic defects. Repetitive dosing in some models has more closely mimicked the pathology of human fibrotic lung disease. We also have a much better understanding of the fact that the aged lung has increased susceptibility to fibrosis. Each of the models reviewed in this report offers a powerful tool for studying some aspect of fibrotic lung disease. PMID:23526222
Luzak, Agnes; Fuertes, Elaine; Flexeder, Claudia; Standl, Marie; von Berg, Andrea; Berdel, Dietrich; Koletzko, Sibylle; Heinrich, Joachim; Nowak, Dennis; Schulz, Holger
2017-07-12
Various factors may affect lung function at different stages in life. Since investigations that simultaneously consider several factors are rare, we examined the relative importance of early life, current environmental/lifestyle factors and allergic diseases on lung function in 15-year-olds. Best subset selection was performed for linear regression models to investigate associations between 21 diverse early life events and current factors with spirometric parameters (forced vital capacity, forced expiratory volume in 1 s and maximal mid-expiratory flow (FEF 25-75 )) in 1326 participants of the German GINIplus and LISAplus birth cohorts. To reduce model complexity, one model for each spirometric parameter was replicated 1000 times in random subpopulations (N = 884). Only those factors that were included in >70% of the replication models were retained in the final analysis. A higher peak weight velocity and early lung infections were the early life events prevalently associated with airflow limitation and FEF 25-75 . Current environmental/lifestyle factors at age 15 years and allergic diseases that were associated with lung function were: indoor second-hand smoke exposure, vitamin D concentration, body mass index (BMI) and asthma status. Sex and height captured the majority of the explained variance (>75%), followed by BMI (≤23.7%). The variance explained by early life events was comparatively low (median: 4.8%; range: 0.2-22.4%), but these events were consistently negatively associated with airway function. Although the explained variance was mainly captured by well-known factors included in lung function prediction equations, our findings indicate early life and current factors that should be considered in studies on lung health among adolescents.
Long-term gas exchange characteristics as markers of deterioration in patients with cystic fibrosis
2009-01-01
Background and Aim In patients with cystic fibrosis (CF) the architecture of the developing lungs and the ventilation of lung units are progressively affected, influencing intrapulmonary gas mixing and gas exchange. We examined the long-term course of blood gas measurements in relation to characteristics of lung function and the influence of different CFTR genotype upon this process. Methods Serial annual measurements of PaO2 and PaCO2 assessed in relation to lung function, providing functional residual capacity (FRCpleth), lung clearance index (LCI), trapped gas (VTG), airway resistance (sReff), and forced expiratory indices (FEV1, FEF50), were collected in 178 children (88 males; 90 females) with CF, over an age range of 5 to 18 years. Linear mixed model analysis and binary logistic regression analysis were used to define predominant lung function parameters influencing oxygenation and carbon dioxide elimination. Results PaO2 decreased linearly from age 5 to 18 years, and was mainly associated with FRCpleth, (p < 0.0001), FEV1 (p < 0.001), FEF50 (p < 0.002), and LCI (p < 0.002), indicating that oxygenation was associated with the degree of pulmonary hyperinflation, ventilation inhomogeneities and impeded airway function. PaCO2 showed a transitory phase of low PaCO2 values, mainly during the age range of 5 to 12 years. Both PaO2 and PaCO2 presented with different progression slopes within specific CFTR genotypes. Conclusion In the long-term evaluation of gas exchange characteristics, an association with different lung function patterns was found and was closely related to specific genotypes. Early examination of blood gases may reveal hypocarbia, presumably reflecting compensatory mechanisms to improve oxygenation. PMID:19909502
The assessment and impact of sarcopenia in lung cancer: a systematic literature review.
Collins, Jemima; Noble, Simon; Chester, John; Coles, Bernadette; Byrne, Anthony
2014-01-02
There is growing awareness of the relationship between sarcopenia (loss of muscle mass and function), and outcomes in cancer, making it a potential target for future therapies. In order to inform future research and practice, we undertook a systematic review of factors associated with loss of muscle mass, and the relationship between muscle function and muscle mass in lung cancer, a common condition associated with poor outcomes. We conducted a computerised systematic literature search on five databases. Studies were included if they explored muscle mass as an outcome measure in patients with lung cancer, and were published in English. Secondary care. Patients with lung cancer. Factors associated with loss of muscle mass and muscle function, or sarcopenia, and the clinical impact thereof in patients with lung cancer. We reviewed 5726 citations, and 35 articles were selected for analysis. Sarcopenia, as defined by reduced muscle mass alone, was found to be very prevalent in patients with lung cancer, regardless of body mass index, and where present was associated with poorer functional status and overall survival. There were diverse studies exploring molecular and metabolic factors in the development of loss of muscle mass; however, the precise mechanisms that contribute to sarcopenia and cachexia remain uncertain. The effect of nutritional supplements and ATP infusions on muscle mass showed conflicting results. There are very limited data on the correlation between degree of sarcopenia and muscle function, which has a non-linear relationship in older non-cancer populations. Loss of muscle mass is a significant contributor to morbidity in patients with lung cancer. Loss of muscle mass and function may predate clinically overt cachexia, underlining the importance of evaluating sarcopenia, rather than weight loss alone. Understanding this relationship and its associated factors will provide opportunities for focused intervention to improve clinical outcomes.
Excess longitudinal decline in lung function in grain farmers.
Senthilselvan, Ambikaipakan; Chénard, Liliane; Grover, Vaneeta; Kirychuk, Shelley P; Hagel, Louise; Ulmer, Kendra; Hurst, Thomas S; Dosman, James A
2010-04-01
Workers in intensive agricultural operations are exposed to dust and endotoxin that are associated with respiratory effects. The authors investigated the longitudinal changes in lung function in male grain farmers. In this study, male grain farmers (n = 263) and male nonfarming control subjects (n = 261) studies initially in 1990/91 were followed-up in 1994/95 and 2003/04. After controlling for potential confounders, grain farmers had an excess annual decline of 9.2 ml/year (95% confidence interval [CI]: 2.7, 15.8, p = .006) in forced vital capacity (FVC) in comparison to control. Long-term exposure to grain dust and other substances in lifetime grain farmers results in progressive loss in lung function.
Predictors of oxygen desaturation during submaximal exercise in 8,000 patients.
Hadeli, K O; Siegel, E M; Sherrill, D L; Beck, K C; Enright, P L
2001-07-01
To determine predictors of oxygen desaturation during submaximal exercise in patients with various lung diseases. This retrospective case series used pulmonary function laboratory results from all patients referred to a major tertiary-care center. All patients > or = 35 years old who underwent spirometry, diffusing capacity of the lung for carbon monoxide (DLCO), lung volumes, and pulse oximetry during 3-min submaximal step-test exercise during 1996 were included (4,545 men and 3,472 women). Logistic regression models, correcting for gender, age, and weight, determined the odds ratios (ORs) for oxygen desaturation of > or = 4% during exercise for each category of lung function abnormality (compared to those with entirely normal lung function). Approximately 74% of the patients had airways obstruction, while only 5.6% had restriction of lung volumes. One third of those with obstruction had a low DLCO, compared to 56% with restriction, while 2.7% had a low DLCO without obstruction or restriction. The risk of oxygen desaturation during submaximal exercise was very high (OR, 34) in patients with restriction and low DLCO (as in interstitial lung disease) and in patients with obstruction and low DLCO (as in COPD; OR, 18), intermediate (OR, 9) in patients with only a low DLCO, and lowest in those with a normal DLCO (OR, 4 if restricted; OR, 2 if obstructed). A cut point of DLCO < 62% predicted resulted in 75% sensitivity and specificity for exercise desaturation. No untoward cardiac events occurred in any patients during or following the submaximal exercise tests. The risk of oxygen desaturation during submaximal exercise is very high in patients with a low DLCO. Submaximal exercise tests are safe, even in elderly patients with heart and lung diseases.
Is Chronic Obstructive Pulmonary Disease an Accelerated Aging Disease?
MacNee, William
2016-12-01
Aging is one of the most important risk factors for most chronic diseases. The worldwide increase in life expectancy has been accompanied by an increase in the prevalence of age-related diseases that result in significant morbidity and mortality and place an enormous burden on healthcare and resources. Aging is a progressive degeneration of the tissues that has a negative impact on the structure and function of vital organs. The lung ages, resulting in decreased function and reduced capacity to respond to environmental stresses and injury. Many of the changes that occur in the lungs with normal aging, such as decline in lung function, increased gas trapping, loss of lung elastic recoil, and enlargement of the distal air spaces, also are present in chronic obstructive pulmonary disease (COPD). The prevalence of COPD is two to three times higher in people over the age of 60 years than in younger age groups. Indeed, COPD has been considered a condition of accelerated lung aging. Several mechanisms associated with aging are present in the lungs of patients with COPD. Cell senescence is present in emphysematous lungs and is associated with shortened telomeres and decreased antiaging molecules, suggesting accelerated aging in the lungs of patients with COPD. Increasing age leads to elevated basal levels of inflammation and oxidative stress (inflammaging) and to increased immunosenescence associated with changes in both the innate and adaptive immune responses. These changes are similar to those that occur in COPD and may enhance the activity of the disease as well as increase susceptibility to exacerbations in patients with COPD. Understanding the mechanism of age-related changes in COPD may identify novel therapies for this condition.
Hutter, Hans-Peter; Borsoi, Livia; Wallner, Peter; Moshammer, Hanns; Kundi, Michael
2009-07-01
In response to the World Health Organization Children's Environment and Health Action Plan for Europe (CEHAPE), a town near Vienna initiated a health survey of schoolchildren. To create recommendations for the community's decision makers, the health survey tried to identify the environmental factors influencing the respiratory health of children. The survey consisted of a questionnaire and spirometry. For 186 of 207 children of first and second grade, parents consented to include their children and answered a questionnaire. Spirometry was performed in 177 children. Results of lung function testing revealed that lung function was significantly reduced in children with visible mould infestation at home and living on a street with frequent lorry traffic. Larger family size and living in a rural area had positive effects on lung function. Our study provides an example for a feasible strategy to provide local decision makers with recommendations based on scientific evidence and actual observations and to help them implement measures in accordance with CEHAPE.
van Suylen, V; Luijk, B; Hoek, R A S; van de Graaf, E A; Verschuuren, E A; Van De Wauwer, C; Bekkers, J A; Meijer, R C A; van der Bij, W; Erasmus, M E
2017-10-01
The implementation of donation after circulatory death category 3 (DCD3) was one of the attempts to reduce the gap between supply and demand of donor lungs. In the Netherlands, the total number of potential lung donors was greatly increased by the availability of DCD3 lungs in addition to the initial standard use of donation after brain death (DBD) lungs. From the three lung transplant centers in the Netherlands, 130 DCD3 recipients were one-to-one nearest neighbor propensity score matched with 130 DBD recipients. The primary end points were primary graft dysfunction (PGD), posttransplant lung function, freedom from chronic lung allograft dysfunction (CLAD), and overall survival. PGD did not differ between the groups. Posttransplant lung function was comparable after bilateral lung transplantation, but seemed worse after DCD3 single lung transplantation. The incidence of CLAD (p = 0.17) nor the freedom from CLAD (p = 0.36) nor the overall survival (p = 0.40) were significantly different between both groups. The presented multicenter results are derived from a national context where one third of the lung transplantations are performed with DCD3 lungs. We conclude that the long-term outcome after lung transplantation with DCD3 donors is similar to that of DBD donors and that DCD3 donation can substantially enlarge the donor pool. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
[The registry report of Japanese lung transplantation--2009].
2010-07-01
To scrutinize the status of lung transplantation in Japan, the Japanese Society of Lung and Heart-Lung Transplantation started to collect and present registry data from 2005. This is the 5th official registry report of Japanese lung transplantation. The data of cadaveric lung transplantation and living-donor lobar transplantation performed by the end of 2008 were registered to the database and analyzed with respect to the number of transplants, recipient survival rates, recipient functional and working status, and cause of death after transplantation. Survival rates were calculated by the Kaplan-Meier method. Fifty-three (30 single and 23 bilateral) cadaveric lung transplantations and 77 living-donor lobar transplantations were performed by the end of 2008. Five-year survival rates of cadaveric single and bilateral lung transplantations were 61.9% and 62.5%, respectively, which were both superior to those in the International Registry (47.1% and 55.0%, respectively). Five-year and 10-year survival rates of living-donor lobar transplantation were excellent at 79.9% and 77.0%, respectively. The functional status of >80% of recipients was restored to Hugh-Jones I or II after transplantation. Infection was the leading cause of death after lung transplantation. The results of Japanese lung transplantation are so far satisfactory although we should note the small number of lung transplant cases in Japan. The Japanese Society of Lung and Heart-Lung Transplantation will continue to present the annual report of Japanese lung transplantation.
Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications.
Cohen-Cymberknoh, Malena; Kerem, Eitan; Ferkol, Thomas; Elizur, Arnon
2013-12-01
Airway epithelial cells and immune cells participate in the inflammatory process responsible for much of the pathology found in the lung of patients with cystic fibrosis (CF). Intense bronchial neutrophilic inflammation and release of proteases and oxygen radicals perpetuate the vicious cycle and progressively damage the airways. In vitro studies suggest that CF transmembrane conductance regulator (CFTR)-deficient airway epithelial cells display signalling abnormalities and aberrant intracellular processes which lead to transcription of inflammatory mediators. Several transcription factors, especially nuclear factor-κB, are activated. In addition, the accumulation of abnormally processed CFTR in the endoplasmic reticulum results in unfolded protein responses that trigger 'cell stress' and apoptosis leading to dysregulation of the epithelial cells and innate immune function in the lung, resulting in exaggerated and ineffective airway inflammation. Measuring airway inflammation is crucial for initiating treatment and monitoring its effect. No inflammatory biomarker predictive for the clinical course of CF lung disease is currently known, although neutrophil elastase seems to correlate with lung function decline. CF animal models mimicking human lung disease may provide an important insight into the pathogenesis of lung inflammation in CF and identify new therapeutic targets.
Mujovic, Natasa; Mujovic, Nebojsa; Subotic, Dragan; Ercegovac, Maja; Milovanovic, Andjela; Nikcevic, Ljubica; Zugic, Vladimir; Nikolic, Dejan
2015-11-01
Influence of physiotherapy on the outcome of the lung resection is still controversial. Study aim was to assess the influence of physiotherapy program on postoperative lung function and effort tolerance in lung cancer patients with chronic obstructive pulmonary disease (COPD) that are undergoing lobectomy or pneumonectomy. The prospective study included 56 COPD patients who underwent lung resection for primary non small-cell lung cancer after previous physiotherapy (Group A) and 47 COPD patients (Group B) without physiotherapy before lung cancer surgery. In Group A, lung function and effort tolerance on admission were compared with the same parameters after preoperative physiotherapy. Both groups were compared in relation to lung function, effort tolerance and symptoms change after resection. In patients with tumors requiring a lobectomy, after preoperative physiotherapy, a highly significant increase in FEV1, VC, FEF50 and FEF25 of 20%, 17%, 18% and 16% respectively was registered with respect to baseline values. After physiotherapy, a significant improvement in 6-minute walking distance was achieved. After lung resection, the significant loss of FEV1 and VC occurred, together with significant worsening of the small airways function, effort tolerance and symptomatic status. After the surgery, a clear tendency existed towards smaller FEV1 loss in patients with moderate to severe, when compared to patients with mild baseline lung function impairment. A better FEV1 improvement was associated with more significant loss in FEV1. Physiotherapy represents an important part of preoperative and postoperative treatment in COPD patients undergoing a lung resection for primary lung cancer.
A long term study of pulmonary function among US refractory ceramic fibre workers
LeMasters, Grace K; Hilbert, Timothy J; Levin, Linda S; Rice, Carol H; Borton, Eric K; Lockey, James E
2010-01-01
Background Cross-sectional studies have shown declines in lung function among refractory ceramic fibre (RCF) workers with increasing fibre exposure. This study followed current and former workers (n=1396) for up to 17 years and collected 5243 pulmonary function tests. Methods Cumulative fibre exposure and production years were categorised into exposure levels at five manufacturing locations. Conventional longitudinal models did not adequately partition age-related changes from other time-dependent variables. Therefore, a restricted cubic spline model was developed to account for the non-linear decline with age. Results Cumulative fibre >60 fibre-months/cc showed a significant loss in lung function at the first test. When results were examined longitudinally, cumulative exposure was confounded with age as workers with the highest cumulative exposure were generally older. A longitudinal model adjusted by age groups was implemented to control for this confounding. No consistent longitudinal loss in lung function was observed with RCF exposure. Smoking, initial weight and weight increase were significant factors. Conclusion No consistent decline was observed longitudinally with exposure to RCF, although cross-sectional and longitudinal findings were discordant. Confounding and accelerated lung function declines with ageing and the correlation of multiple time-dependent variables should be considered in order to minimise error and maximise precision. An innovative statistical methodology for these types of data is described. PMID:20798015
The β-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22.
Lilly, Lauren M; Gessner, Melissa A; Dunaway, Chad W; Metz, Allison E; Schwiebert, Lisa; Weaver, Casey T; Brown, Gordon D; Steele, Chad
2012-10-01
Sensitization to fungi, such as the mold Aspergillus fumigatus, is increasingly becoming linked with asthma severity. We have previously shown that lung responses generated via the β-glucan receptor Dectin-1 are required for lung defense during acute, invasive A. fumigatus infection. Unexpectedly, in an allergic model of chronic lung exposure to live A. fumigatus conidia, β-glucan recognition via Dectin-1 led to the induction of multiple proallergic (Muc5ac, Clca3, CCL17, CCL22, and IL-33) and proinflammatory (IL-1β and CXCL1) mediators that compromised lung function. Attenuated proallergic and proinflammatory responses in the absence of Dectin-1 were not associated with changes in Ido (IDO), Il12p35/Ebi3 (IL-35), IL-10, or TGF-β levels. Assessment of Th responses demonstrated that purified lung CD4(+) T cells produced IL-4, IL-13, IFN-γ, and IL-17A, but not IL-22, in a Dectin-1-dependent manner. In contrast, we observed robust, Dectin-1-dependent IL-22 production by unfractionated lung digest cells. Intriguingly, the absence of IL-22 alone mimicked the attenuated proallergic and proinflammatory responses observed in the absence of Dectin-1, suggesting that Dectin-1-mediated IL-22 production potentiated responses that led to decrements in lung function. To this end, neutralization of IL-22 improved lung function in normal mice. Collectively, these results indicate that the β-glucan receptor Dectin-1 contributes to lung inflammation and immunopathology associated with persistent fungal exposure via the production of IL-22.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maneckjee, R.; Minna, J.D.
Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptidesmore » ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.« less
Pilates Method for Lung Function and Functional Capacity in Obese Adults.
Niehues, Janaina Rocha; Gonzáles, Inês; Lemos, Robson Rodrigues; Haas, Patrícia
2015-01-01
Obesity is defined as the condition in which the body mass index (BMI) is ≥ 30 kg/m2 and is responsible for decreased quality of life and functional limitations. The harmful effects on ventilatory function include reduced lung capacity and volume; diaphragmatic muscle weakness; decreased lung compliance and stiffness; and weakness of the abdominal muscles, among others. Pilates is a method of resistance training that works with low-impact muscle exercises and is based on isometric exercises. The current article is a review of the literature that aims to investigate the hypothesis that the Pilates method, as a complementary method of training, might be beneficial to pulmonary function and functional capacity in obese adults. The intent of the review was to evaluate the use of Pilates as an innovative intervention in the respiratory dysfunctions of obese adults. In studies with other populations, it has been observed that Pilates can be effective in improving chest capacity and expansion and lung volume. That finding is due to the fact that Pilates works through the center of force, made up of the abdominal muscles and gluteus muscles lumbar, which are responsible for the stabilization of the static and dynamic body that is associated with breath control. It has been observed that different Pilates exercises increase the activation and recruitment of the abdominal muscles. Those muscles are important in respiration, both in expiration and inspiration, through the facilitation of diaphragmatic action. In that way, strengthening the abdominal muscles can help improve respiratory function, leading to improvements in lung volume and capacity. The results found in the current literature review support the authors' observations that Pilates promotes the strengthening of the abdominal muscles and that improvements in diaphragmatic function may result in positive outcomes in respiratory function, thereby improving functional capacity. However, the authors did not find specific studies with obese people, justifying the need for future studies.
Variation in Cilia Protein Genes and Progression of Lung Disease in Cystic Fibrosis.
Blue, Elizabeth; Louie, Tin L; Chong, Jessica X; Hebbring, Scott J; Barnes, Kathleen C; Rafaels, Nicholas M; Knowles, Michael R; Gibson, Ronald L; Bamshad, Michael J; Emond, Mary J
2018-04-01
Cystic fibrosis, like primary ciliary dyskinesia, is an autosomal recessive disorder characterized by abnormal mucociliary clearance and obstructive lung disease. We hypothesized that genes underlying the development or function of cilia may modify lung disease severity in persons with cystic fibrosis. To test this hypothesis, we compared variants in 93 candidate genes in both upper and lower tertiles of lung function in a large cohort of children and adults with cystic fibrosis with those of a population control dataset. Variants within candidate genes were tested for association using the SKAT-O test, comparing cystic fibrosis cases defined by poor (n = 127) or preserved (n = 127) lung function with population controls (n = 3,269 or 3,148, respectively). Associated variants were then tested for association with related phenotypes in independent datasets. Variants in DNAH14 and DNAAF3 were associated with poor lung function in cystic fibrosis, whereas variants in DNAH14 and DNAH6 were associated with preserved lung function in cystic fibrosis. Associations between DNAH14 and lung function were replicated in disease-related phenotypes characterized by obstructive lung disease in adults. Genetic variants within DNAH6, DNAH14, and DNAAF3 are associated with variation in lung function among persons with cystic fibrosis.
Schullcke, Benjamin; Gong, Bo; Krueger-Ziolek, Sabine; Soleimani, Manuchehr; Mueller-Lisse, Ullrich; Moeller, Knut
2016-05-16
Lung EIT is a functional imaging method that utilizes electrical currents to reconstruct images of conductivity changes inside the thorax. This technique is radiation free and applicable at the bedside, but lacks of spatial resolution compared to morphological imaging methods such as X-ray computed tomography (CT). In this article we describe an approach for EIT image reconstruction using morphologic information obtained from other structural imaging modalities. This leads to recon- structed images of lung ventilation that can easily be superimposed with structural CT or MRI images, which facilitates image interpretation. The approach is based on a Discrete Cosine Transformation (DCT) of an image of the considered transversal thorax slice. The use of DCT enables reduction of the dimensionality of the reconstruction and ensures that only conductivity changes of the lungs are reconstructed and displayed. The DCT based approach is well suited to fuse morphological image information with functional lung imaging at low computational costs. Results on simulated data indicate that this approach preserves the morphological structures of the lungs and avoids blurring of the solution. Images from patient measurements reveal the capabilities of the method and demonstrate benefits in possible applications.
Schullcke, Benjamin; Gong, Bo; Krueger-Ziolek, Sabine; Soleimani, Manuchehr; Mueller-Lisse, Ullrich; Moeller, Knut
2016-01-01
Lung EIT is a functional imaging method that utilizes electrical currents to reconstruct images of conductivity changes inside the thorax. This technique is radiation free and applicable at the bedside, but lacks of spatial resolution compared to morphological imaging methods such as X-ray computed tomography (CT). In this article we describe an approach for EIT image reconstruction using morphologic information obtained from other structural imaging modalities. This leads to recon- structed images of lung ventilation that can easily be superimposed with structural CT or MRI images, which facilitates image interpretation. The approach is based on a Discrete Cosine Transformation (DCT) of an image of the considered transversal thorax slice. The use of DCT enables reduction of the dimensionality of the reconstruction and ensures that only conductivity changes of the lungs are reconstructed and displayed. The DCT based approach is well suited to fuse morphological image information with functional lung imaging at low computational costs. Results on simulated data indicate that this approach preserves the morphological structures of the lungs and avoids blurring of the solution. Images from patient measurements reveal the capabilities of the method and demonstrate benefits in possible applications. PMID:27181695
Effects of an anti-inflammatory VAP-1/SSAO inhibitor, PXS-4728A, on pulmonary neutrophil migration.
Schilter, Heidi C; Collison, Adam; Russo, Remo C; Foot, Jonathan S; Yow, Tin T; Vieira, Angelica T; Tavares, Livia D; Mattes, Joerg; Teixeira, Mauro M; Jarolimek, Wolfgang
2015-03-20
The persistent influx of neutrophils into the lung and subsequent tissue damage are characteristics of COPD, cystic fibrosis and acute lung inflammation. VAP-1/SSAO is an endothelial bound adhesion molecule with amine oxidase activity that is reported to be involved in neutrophil egress from the microvasculature during inflammation. This study explored the role of VAP-1/SSAO in neutrophilic lung mediated diseases and examined the therapeutic potential of the selective inhibitor PXS-4728A. Mice treated with PXS-4728A underwent intra-vital microscopy visualization of the cremaster muscle upon CXCL1/KC stimulation. LPS inflammation, Klebsiella pneumoniae infection, cecal ligation and puncture as well as rhinovirus exacerbated asthma models were also assessed using PXS-4728A. Selective VAP-1/SSAO inhibition by PXS-4728A diminished leukocyte rolling and adherence induced by CXCL1/KC. Inhibition of VAP-1/SSAO also dampened the migration of neutrophils to the lungs in response to LPS, Klebsiella pneumoniae lung infection and CLP induced sepsis; whilst still allowing for normal neutrophil defense function, resulting in increased survival. The functional effects of this inhibition were demonstrated in the RV exacerbated asthma model, with a reduction in cellular infiltrate correlating with a reduction in airways hyperractivity. This study demonstrates that the endothelial cell ligand VAP-1/SSAO contributes to the migration of neutrophils during acute lung inflammation, pulmonary infection and airway hyperractivity. These results highlight the potential of inhibiting of VAP-1/SSAO enzymatic function, by PXS-4728A, as a novel therapeutic approach in lung diseases that are characterized by neutrophilic pattern of inflammation.
Luzak, Agnes; Karrasch, Stefan; Wacker, Margarethe; Thorand, Barbara; Nowak, Dennis; Peters, Annette; Schulz, Holger
2018-03-01
Among patients with lung disease, decreased lung function is associated with lower health-related quality of life. However, whether this association is detectable within the physiological variability of respiratory function in lung-healthy populations is unknown. We analyzed the association of each EQ-5D-3L dimension (mobility, self-care, usual activities, pain/discomfort, anxiety/depression) and self-reported physical inactivity with spirometric indices in lung-healthy adults. Modulating effects between inactivity and EQ-5D dimensions were considered. 1132 non-smoking, apparently lung-healthy participants (48% male, aged 64 ± 12 years) from the population-based KORA F4L and Age surveys in Southern Germany were analyzed. Associations of each EQ-5D dimension and inactivity with spirometric indices serving as outcomes (forced expiratory volume in 1 s (FEV 1 ), forced vital capacity (FVC), FEV 1 /FVC, and mid-expiratory flow) were examined by linear regression, considering possible confounders. Interactions between EQ-5D dimensions (no problems/any problems) and inactivity (four categories of time spent engaging in exercise: inactive to most active) were assessed. Among all participants 42% reported no problems in any EQ-5D dimension, 24% were inactive and 32% exercised > 2 h/week. After adjustment, FEV 1 was - 99 ml (95% CI - 166; - 32) and FVC was - 109 ml (95% CI - 195; - 24) lower among subjects with mobility problems. Comparable estimates were observed for usual activities. Inactivity was negatively associated with FVC (β-coefficient: - 83 ml, 95% CI - 166; 0), but showed no interactions with EQ-5D. Problems with mobility or usual activities, and inactivity were associated with slightly lower spirometric parameters in lung-healthy adults, suggesting a relationship between perceived physical functioning and volumetric lung function.
Comparative analysis of the mechanical signals in lung development and compensatory growth.
Hsia, Connie C W
2017-03-01
This review compares the manner in which physical stress imposed on the parenchyma, vasculature and thorax and the thoraco-pulmonary interactions, drive both developmental and compensatory lung growth. Re-initiation of anatomical lung growth in the mature lung is possible when the loss of functioning lung units renders the existing physiologic-structural reserves insufficient for maintaining adequate function and physical stress on the remaining units exceeds a critical threshold. The appropriate spatial and temporal mechanical interrelationships and the availability of intra-thoracic space, are crucial to growth initiation, follow-on remodeling and physiological outcome. While the endogenous potential for compensatory lung growth is retained and may be pharmacologically augmented, supra-optimal mechanical stimulation, unbalanced structural growth, or inadequate remodeling may limit functional gain. Finding ways to optimize the signal-response relationships and resolve structure-function discrepancies are major challenges that must be overcome before the innate compensatory ability could be fully realized. Partial pneumonectomy reproducibly removes a known fraction of functioning lung units and remains the most robust model for examining the adaptive mechanisms, structure-function consequences and plasticity of the remaining functioning lung units capable of regeneration. Fundamental mechanical stimulus-response relationships established in the pneumonectomy model directly inform the exploration of effective approaches to maximize compensatory growth and function in chronic destructive lung diseases, transplantation and bioengineered lungs.
Comparative Analysis of the Mechanical Signals in Lung Development and Compensatory Growth
Hsia, Connie C.W.
2017-01-01
This review compares the manner in which physical stress imposed on the parenchyma, vasculature and thorax, and the thoraco-pulmonary interactions, drive both developmental and compensatory lung growth. Re-initiation of anatomical lung growth in the mature lung is possible when the loss of functioning lung units renders the existing physiologic-structural reserves insufficient for maintaining adequate function and physical stress on the remaining units exceeds a critical threshold. The appropriate spatial and temporal mechanical interrelationships, and the availability of intra-thoracic space, are crucial to growth initiation, follow-on remodeling and physiological outcome. While the endogenous potential for compensatory lung growth is retained and may be pharmacologically augmented, supra-optimal mechanical stimulation, unbalanced structural growth, or inadequate remodeling, may limit functional gain. Finding ways to optimize the signal-response relationships and resolve structure-function discrepancies are major challenges that must be overcome before the innate compensatory ability could be fully realized. Partial pneumonectomy reproducibly removes a known fraction of functioning lung units and remains the most robust model for examining the adaptive mechanisms, structure-function consequences, and plasticity of the remaining functioning lung units capable of regeneration. Fundamental mechanical stimulus-response relationships established in the pneumonectomy model directly inform the exploration of effective approaches to maximize compensatory growth and function in chronic destructive lung diseases, transplantation and bioengineered lungs. PMID:28084523
Effects of Exposure to Welding Fume on Lung Function: Results from the German WELDOX Study.
Lehnert, M; Hoffmeyer, F; Gawrych, K; Lotz, A; Heinze, E; Berresheim, H; Merget, R; Harth, V; Van Gelder, R; Hahn, J-U; Hartwig, A; Weiß, T; Pesch, B; Brüning, T
2015-01-01
The association between exposure to welding fume and chronic obstructive pulmonary disease (COPD) has been insufficiently clarified. In this study we assessed the influence of exposure to welding fume on lung function parameters. We investigated forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, and expiratory flow rates in 219 welders. We measured current exposure to respirable particles and estimated a worker's lifetime exposure considering welding techniques, working conditions and protective measures at current and former workplaces. Multiple regression models were applied to estimate the influence of exposure to welding fume, age, and smoking on lung function. We additionally investigated the duration of working as a welder and the predominant welding technique. The findings were that age- and smoking-adjusted lung function parameters showed no decline with increasing duration, current exposure level, and lifetime exposure to welding fume. However, 15% of the welders had FEV1/FVC below the lower limit of normal, but we could not substantiate the presence of an association with the measures of exposure. Adverse effects of cigarette smoking were confirmed. In conclusion, the study did not support the notion of a possible detrimental effect of exposure to welding fume on lung function in welders.
Socioeconomic Status and Longitudinal Lung Function of Healthy Mexican Children
Martínez-Briseño, David; Fernández-Plata, Rosario; Gochicoa-Rangel, Laura; Torre-Bouscoulet, Luis; Rojas-Martínez, Rosalba; Mendoza-Alvarado, Laura; García-Sancho, Cecilia; Pérez-Padilla, Rogelio
2015-01-01
Introduction Our aim was to estimate the longitudinal effect of Socioeconomic status (SES) on lung function growth of Mexican children and adolescents. Materials and Methods A cohort of Mexican children in third grade of primary school was followed with spirometry twice a year for 6 years through secondary school. Multilevel mixed-effects lineal models were fitted for the spirometric variables of 2,641 respiratory-healthy Mexican children. Monthly family income (in 2002 U.S. dollars [USD]) and parents’ years completed at school were used as proxies of SES. Results Individuals with higher SES tended to have greater height for age, and smaller sitting height/standing height and crude lung function. For each 1-year increase of parents’ schooling, Forced expiratory volume in 1 sec (FEV1) and Forced vital capacity (FVC) increased 8.5 (0.4%) and 10.6 mL (0.4%), respectively (p <0.05) when models were adjusted for gender. Impact of education on lung function was reduced drastically or abolished on adjusting by anthropometric variables and ozone. Conclusions Higher parental schooling and higher monthly family income were associated with higher lung function in healthy Mexican children, with the majority of the effect likely due to the increase in height-for-age. PMID:26379144
Impaired functional vitamin B6 status is associated with increased risk of lung cancer.
Theofylaktopoulou, Despoina; Midttun, Øivind; Ueland, Per M; Meyer, Klaus; Fanidi, Anouar; Zheng, Wei; Shu, Xiao-Ou; Xiang, Yong-Bing; Prentice, Ross; Pettinger, Mary; Thomson, Cynthia A; Giles, Graham G; Hodge, Allison; Cai, Qiuyin; Blot, William J; Wu, Jie; Johansson, Mikael; Hultdin, Johan; Grankvist, Kjell; Stevens, Victoria L; McCullough, Marjorie M; Weinstein, Stephanie J; Albanes, Demetrius; Ziegler, Regina; Freedman, Neal D; Langhammer, Arnulf; Hveem, Kristian; Naess, Marit; Sesso, Howard D; Gaziano, J Michael; Buring, Julie E; Lee, I-Min; Severi, Gianluca; Zhang, Xuehong; Stampfer, Meir J; Han, Jiali; Smith-Warner, Stephanie A; Zeleniuch-Jacquotte, Anne; Le Marchand, Loic; Yuan, Jian-Min; Wang, Renwei; Butler, Lesley M; Koh, Woon-Puay; Gao, Yu-Tang; Rothman, Nathaniel; Ericson, Ulrika; Sonestedt, Emily; Visvanathan, Kala; Jones, Miranda R; Relton, Caroline; Brennan, Paul; Johansson, Mattias; Ulvik, Arve
2018-06-15
Circulating vitamin B6 levels have been found to be inversely associated with lung cancer. Most studies have focused on the B6 form pyridoxal 5'-phosphate (PLP), a direct biomarker influenced by inflammation and other factors. Using a functional B6 marker allows further investigation of the potential role of vitamin B6 status in the pathogenesis of lung cancer. We prospectively evaluated the association of the functional marker of vitamin B6 status, the 3-hydroxykynurenine:xanthurenic acid (HK:XA) ratio, with risk of lung cancer in a nested case-control study consisting of 5,364 matched case-control pairs from the Lung Cancer Cohort Consortium (LC3). We used conditional logistic regression to evaluate the association between HK:XA and lung cancer, and random effect models to combine results from different cohorts and regions. High levels of HK:XA, indicating impaired functional B6 status, were associated with an increased risk of lung cancer, the odds ratio comparing the fourth and the first quartiles (OR 4th vs. 1st ) was 1.25 (95% confidence interval, 1.10-1.41). Stratified analyses indicated that this association was primarily driven by cases diagnosed with squamous cell carcinoma. Notably, the risk associated with HK:XA was approximately 50% higher in groups with a high relative frequency of squamous cell carcinoma, i.e., men, former and current smokers. This risk of squamous cell carcinoma was present in both men and women regardless of smoking status. © 2017 UICC.
Zhang, Yuan; Tan, Xiaoming; Xue, Lianfang
2018-01-01
The α2-adrenoceptor inducer dexmedetomidine protects against acute lung injury (ALI), but the mechanism of this effect is largely unknown. The present study investigated the effect of dexmedetomidine on apoptosis induced by lipopolysaccharide (LPS) and the relationship between this effect and gap junction intercellular communication in human lung fibroblast cell line. Flow cytometry was used to detect apoptosis induced by LPS. Parachute dye coupling assay was used to measure gap junction function, and western blot analysis was used to determine the expression levels of connexin43 (Cx43). The results revealed that exposure of human lung fibroblast cell line to LPS for 24 h increased the apoptosis, and pretreatment of dexmedetomidine and 18α-GA significantly reduced LPS-induced apoptosis. Dexmedetomidine exposure for 1 h inhibited gap junction function mainly via a decrease in Cx43 protein levels in human lung fibroblast cell line. These results demonstrated that the inhibition of gap junction intercellular communication by dexmedetomidine affected the LPS-induced apoptosis through inhibition of gap junction function by reducing Cx43 protein levels. The present study provides evidence of a novel mechanism underlying the effects of analgesics in counteracting ALI. Copyright © 2017 Elsevier Inc. All rights reserved.
Quantification of atopy, lung function and airway hypersensitivity in adults
2011-01-01
Background Studies in children have shown that concentration of specific serum IgE (sIgE) and size of skin tests to inhalant allergens better predict wheezing and reduced lung function than the information on presence or absence of atopy. However, very few studies in adults have investigated the relationship of quantitative atopy with lung function and airway hyperresponsiveness (AHR). Objective To determine the association between lung function and AHR and quantitative atopy in a large sample of adults from the UK. Methods FEV1 and FVC (% predicted) were measured using spirometry and airway responsiveness by methacholine challenge (5-breath dosimeter protocol) in 983 subjects (random sample of 800 parents of children enrolled in a population-based birth cohort enriched with 183 patients with physician-diagnosed asthma). Atopic status was assessed by skin prick tests (SPT) and measurement of sIgE (common inhalant allergens). We also measured indoor allergen exposure in subjects' homes. Results Spirometry was completed by 792 subjects and 626 underwent methacholine challenge, with 100 (16.0%) having AHR (dose-response slope>25). Using sIgE as a continuous variable in a multiple linear regression analysis, we found that increasing levels of sIgE to mite, cat and dog were significantly associated with lower FEV1 (mite p = 0.001, cat p = 0.0001, dog p = 2.95 × 10-8). Similar findings were observed when using the size of wheal on skin testing as a continuous variable, with significantly poorer lung function with increasing skin test size (mite p = 8.23 × 10-8, cat p = 3.93 × 10-10, dog p = 3.03 × 10-15, grass p = 2.95 × 10-9). The association between quantitative atopy with lung function and AHR remained unchanged when we repeated the analyses amongst subjects defined as sensitised using standard definitions (sIgE>0.35 kUa/l, SPT-3 mm>negative control). Conclusions In the studied population, lung function decreased and AHR increased with increasing sIgE levels or SPT wheal diameter to inhalant allergens, suggesting that atopy may not be a dichotomous outcome influencing lung function and AHR. PMID:22410099
Ueda, Kazuhiro; Tanaka, Toshiki; Li, Tao-Sheng; Tanaka, Nobuyuki; Hamano, Kimikazu
2009-03-01
The prediction of pulmonary functional reserve is mandatory in therapeutic decision-making for patients with resectable lung cancer, especially those with underlying lung disease. Volumetric analysis in combination with densitometric analysis of the affected lung lobe or segment with quantitative computed tomography (CT) helps to identify residual pulmonary function, although the utility of this modality needs investigation. The subjects of this prospective study were 30 patients with resectable lung cancer. A three-dimensional CT lung model was created with voxels representing normal lung attenuation (-600 to -910 Hounsfield units). Residual pulmonary function was predicted by drawing a boundary line between the lung to be preserved and that to be resected, directly on the lung model. The predicted values were correlated with the postoperative measured values. The predicted and measured values corresponded well (r=0.89, p<0.001). Although the predicted values corresponded with values predicted by simple calculation using a segment-counting method (r=0.98), there were two outliers whose pulmonary functional reserves were predicted more accurately by CT than by segment counting. The measured pulmonary functional reserves were significantly higher than the predicted values in patients with extensive emphysematous areas (<-910 Hounsfield units), but not in patients with chronic obstructive pulmonary disease. Quantitative CT yielded accurate prediction of functional reserve after lung cancer surgery and helped to identify patients whose functional reserves are likely to be underestimated. Hence, this modality should be utilized for patients with marginal pulmonary function.
Erdal, Barbaros Selnur; Yildiz, Vedat; King, Mark A.; Patterson, Andrew T.; Knopp, Michael V.; Clymer, Bradley D.
2012-01-01
Background: Chest CT scans are commonly used to clinically assess disease severity in patients presenting with pulmonary sarcoidosis. Despite their ability to reliably detect subtle changes in lung disease, the utility of chest CT scans for guiding therapy is limited by the fact that image interpretation by radiologists is qualitative and highly variable. We sought to create a computerized CT image analysis tool that would provide quantitative and clinically relevant information. Methods: We established that a two-point correlation analysis approach reduced the background signal attendant to normal lung structures, such as blood vessels, airways, and lymphatics while highlighting diseased tissue. This approach was applied to multiple lung fields to generate an overall lung texture score (LTS) representing the quantity of diseased lung parenchyma. Using deidentified lung CT scan and pulmonary function test (PFT) data from The Ohio State University Medical Center’s Information Warehouse, we analyzed 71 consecutive CT scans from patients with sarcoidosis for whom simultaneous matching PFTs were available to determine whether the LTS correlated with standard PFT results. Results: We found a high correlation between LTS and FVC, total lung capacity, and diffusing capacity of the lung for carbon monoxide (P < .0001 for all comparisons). Moreover, LTS was equivalent to PFTs for the detection of active lung disease. The image analysis protocol was conducted quickly (< 1 min per study) on a standard laptop computer connected to a publicly available National Institutes of Health ImageJ toolkit. Conclusions: The two-point image analysis tool is highly practical and appears to reliably assess lung disease severity. We predict that this tool will be useful for clinical and research applications. PMID:22628487
Burgos, Carmen Mesas; Davey, Marcus G; Riley, John S; Jia, Huimin; Flake, Alan W; Peranteau, William H
2017-12-19
Lung and pulmonary vascular maldevelopment in congenital diaphragmatic hernia (CDH) results in significant morbidity and mortality. Retinoic acid (RA) and imatinib have been shown to improve pulmonary morphology following prenatal administration in the rat nitrofen-induced CDH model. It remains unclear if these changes translate into improved function. We evaluated the effect of prenatal RA and imatinib on postnatal lung function, structure, and pulmonary artery (PA) blood flow in the rat CDH model. Olive oil or nitrofen was administered alone or in combination with RA or imatinib to pregnant rats. Pups were assessed for PA blood flow by ultrasound and pulmonary function/morphology following delivery, intubation, and short-term ventilation. Neither RA nor imatinib had a negative effect on lung and body growth. RA accelerated lung maturation indicated by increased alveoli number and thinner interalveolar septa and was associated with decreased PA resistance and improved oxygenation. With the exception of a decreased PA pulsatility index, no significant changes in morphology and pulmonary function were noted following imatinib. Prenatal treatment with RA but not imatinib was associated with improved pulmonary morphology and function, and decreased pulmonary vascular resistance. This study highlights the potential of prenatal pharmacologic therapies, such as RA, for management of CDH. Copyright © 2017 Elsevier Inc. All rights reserved.
Long-term exposure to diesel engine exhaust induced lung function decline in a cross sectional study
ZHANG, Li Ping; ZHANG, Xiao; DUAN, Hua Wei; MENG, Tao; NIU, Yong; HUANG, Chuan Feng; GAO, Wei Min; YU, Shan Fa; ZHENG, Yu Xin
2016-01-01
To clarify the effects of lung function following exposure to diesel engine exhaust (DEE), we recruited 137 diesel engine testing workers exposed to DEE and 127 non-DEE-exposed workers as study subjects. We performed lung function tests and measured cytokinesis-block micronucleus (CBMN) cytome index and levels of urinary polycyclic aromatic hydrocarbons (PAHs) metabolites. There was a significant decrease of forced expiratory volume in 1 second (FEV1), ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/ FVC), maximal mid expiratory flow curve (MMF), forced expiratory flow at 50% of FVC (FEF50%), and forced expiratory flow at 75% of FVC (FEF75%) in the DEE-exposed workers than non-DEE-exposed workers (all p<0.05). Among all study subjects, the decreases of FEF75% were associated with the increasing levels of PAHs metabolites (p<0.05), and there were negative correlations between FEV1, FEV1/FVC, MMF, FEF50%, and FEF75% with CBMN cytome index (all p<0.05). Our results show that long-term exposure to DEE can induce lung function decline which shows mainly obstructive changes and influence of small airways function. The decreased lung function is associated with internal dosage of DEE exposure, and accompany with the increasing CBMN cytome index. PMID:27334424
McClure, Jennifer B; Ludman, Evette J; Grothaus, Lou; Pabiniak, Chester; Richards, Julie
2010-08-01
We compared long-term outcomes among smokers with and without impaired lung functioning who received brief counseling highlighting their spirometric test results. Participants in this analysis all received a brief motivational intervention for smoking cessation including spirometric testing and feedback ( approximately 20 min), were advised to quit smoking, offered free access to a phone-based smoking cessation program, and followed for one year. Outcomes were analyzed for smokers with (n=99) and without (n=168) impaired lung function. Participants with lung impairment reported greater use of self-help cessation materials at 6 months, greater use of non-study-provided counseling services at 6 and 12 months, higher 7-day PPA rates at 6 months, and were more likely to talk with their doctor about their spirometry results. Further research is warranted to determine if spirometry feedback has a differential treatment effect among smokers with and without lung impairment. It is premature to make practice recommendations based on these data. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Fishman, Emily F.; Quirk, James D.; Sweet, Stuart C.; Woods, Jason C.; Gierada, David S.; Conradi, Mark S.; Siegel, Marilyn J.; Yablonskiy, Dmitriy A.
2016-01-01
Background Obtaining information on transplanted lung microstructure is an important part of the current care for monitoring transplant recipients. However, until now this information was only available from invasive lung biopsy. The objective of this study was to evaluate the use of an innovative non-invasive technique in vivo lung morphometry with hyperpolarized 3He MRI - to characterize lung microstructure in the pediatric lung transplant population. This technique yields quantitative measurements of acinar airways’ (alveolar ducts and sacs) parameters, such as acinar airways radii and alveolar depth. Methods Six pediatric lung transplant recipients with cystic fibrosis underwent in vivo lung morphometry MRI, pulmonary function testing, and quantitative CT. Results We found a strong correlation between lung lifespan and alveolar depth - patients with more shallow alveoli were likely to have a negative outcome sooner than those with larger alveolar depth. Combining morphometric results with CT we also determined mean alveolar wall thickness and found substantial increases in this parameter in some patients that negatively correlated with DLCO. Conclusion In vivo lung morphometry uniquely provides previously unavailable information on lung microstructure that may be predictive of a negative outcome and has a potential to aid in lung selection for transplantation. PMID:28120553
Explaining ethnic disparities in lung function among young adults: A pilot investigation
Patel, Jaymini; Minelli, Cosetta; Burney, Peter G. J.
2017-01-01
Background Ethnic disparities in lung function have been linked mainly to anthropometric factors but have not been fully explained. We conducted a cross-sectional pilot study to investigate how best to study ethnic differences in lung function in young adults and evaluate whether these could be explained by birth weight and socio-economic factors. Methods We recruited 112 university students of White and South Asian British ethnicity, measured post-bronchodilator lung function, obtained information on respiratory symptoms and socio-economic factors through questionnaires, and acquired birth weight through data linkage. We regressed lung function against ethnicity and candidate predictors defined a priori using linear regression, and used penalised regression to examine a wider range of factors. We reviewed the implications of our findings for the feasibility of a larger study. Results There was a similar parental socio-economic environment and no difference in birth weight between the two ethnic groups, but the ethnic difference in FVC adjusted for sex, age, height, demi-span, father’s occupation, birth weight, maternal educational attainment and maternal upbringing was 0.81L (95%CI: -1.01 to -0.54L). Difference in body proportions did not explain the ethnic differences although parental immigration was an important predictor of FVC independent of ethnic group. Participants were comfortable with study procedures and we were able to link birth weight data to clinical measurements. Conclusion Studies of ethnic disparities in lung function among young adults are feasible. Future studies should recruit a socially more diverse sample and investigate the role of markers of acculturation in explaining such differences. PMID:28575113
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semrau, Sabine, E-mail: sabine.semrau@uk-erlangen.d; Department of Radiation Therapy, University of Rostock, Suedring, Rostock; Klautke, Gunther
2011-01-01
Purpose: Little is known about the effects of cardiopulmonary function on the prognosis of concurrent chemoradiotherapy in patients with inoperable non-small-cell lung cancer (NSCLC). Methods and Materials: A retrospective analysis of the effects of tumor- and patient-related factors and parameters of cardiopulmonary function and heart morphology on the feasibility, toxicity, and prognosis was performed. Results: Cardiopulmonary function had no effect on the toxicity or feasibility of treatment; effects on survival were observed in the univariate analysis. Median survival varied as follows: cardiac function: 13.0 {+-} 1.6 months for left ventricular ejection fraction (LVEF) > 50% vs. 10.0 {+-} 1.9 monthsmore » for LVEF {<=} 50% (p = 0.003); pulmonary function: 16.0 {+-} 0.6 months for no lung function deficits (vital capacity [VC]{>=} 60%, forced expiratory volume in 1 s {>=} 80%, and diffusing capacity of the lung for carbon monoxide (DLCO) {>=}60%) vs. 14.0 {+-} 1.5 months for one or two function deficits vs. 8.0 {+-} 1.5 months for three lung function deficits (p = 0.001); T stage: 19.0 {+-} 3.1 months for rcT0/cT1/cT2 vs. 12.0 {+-} 0.8 months for cT3/cT4 (p = 0.039); and age: 11.0 {+-} 1.5 months for <60 years vs. 18.0 {+-} 2.5 months for 60-69 years vs. 12.0 {+-} 1.2 months for {>=}70 years (p = 0.008). Prognostic factors identified in the multivariate analysis were LVEF {<=}50% (p = 0.043; hazard ratio [HR], 1.74), reduced pulmonary function (p = 0.001; HR, 1.71 or 5.05) and T stage (p = 0.026; HR: 1.71). Conclusions: In addition to T-stage, cardiac and pulmonary function variables affected the survival of non-small-cell lung cancer patients after chemoradiotherapy.« less
Comparison of Acute Health Effects From Exposures to Diesel and Biodiesel Fuel Emissions
Mehus, Aaron A.; Reed, Rustin J.; Lee, Vivien S. T.; Littau, Sally R.; Hu, Chengcheng; Lutz, Eric A.
2015-01-01
Objective: To investigate the comparative acute health effects associated with exposures to diesel and 75% biodiesel/25% diesel (B75) blend fuel emissions. Methods: We analyzed multiple health endpoints in 48 healthy adults before and after exposures to diesel and B75 emissions in an underground mine setting—lung function, lung and systemic inflammation, novel biomarkers of exposure, and oxidative stress were assessed. Results: B75 reduced respirable diesel particulate matter by 20%. Lung function declined significantly more after exposure to diesel emissions. Lung inflammatory cells along with sputum and plasma inflammatory mediators increased significantly to similar levels with both exposures. Urinary 8-hydroxydeoxyguanosine, a marker of oxidative stress, was not significantly changed after either exposure. Conclusions: Use of B75 lowered respirable diesel particulate matter exposure and some associated acute health effects, although lung and systemic inflammation were not reduced compared with diesel use. PMID:26147538
Analysis of speckle patterns in phase-contrast images of lung tissue
NASA Astrophysics Data System (ADS)
Kitchen, M. J.; Paganin, D.; Lewis, R. A.; Yagi, N.; Uesugi, K.
2005-08-01
Propagation-based phase-contrast images of mice lungs have been obtained at the SPring-8 synchrotron research facility. Such images exhibit a speckled intensity pattern that bears a superficial resemblance to alveolar structures. This speckle results from focussing effects as projected air-filled alveoli form aberrated compound refractive lenses. An appropriate phase-retrieval algorithm has been utilized to reconstruct the approximate projected lung tissue thickness from single-phase-contrast mice chest radiographs. The results show projected density variations across the lung, highlighting regions of low density corresponding to air-filled regions. Potentially, this offers a better method than conventional radiography for detecting lung diseases such as fibrosis, emphysema and cancer, though this has yet to be demonstrated. As such, the approach can assist in continuing studies of lung function utilizing propagation-based phase-contrast imaging.
Lung function changes in coke oven workers during 12 years of follow up
Wu, J; Griffiths, D; Kreis, I; Darling, C
2004-01-01
Aims: To investigate the effect of exposure to coke oven emissions on the lung function of coke oven workers. Methods: The study population, followed from 1978 and 1990, was 580 male workers with at least two sets of lung function measurements (FVC, FEV1, FEV1/FVC, and FEF25–75%). An annual rate of change (time slope) for age and height adjusted lung function index was estimated for each subject. This "time slope" was then treated as the response variable in a weighted multiple regression analysis with selected predictors. Results: For all 580 subjects, each year of working in the "operation" group (the most exposed) was found to increase the FVC decline by around 0.7 ml/year (95% CI 0.1 to 1.3 ml/year). After the exclusion of 111 subjects without detailed work history, the above finding was confirmed and each year of exposure in "operation" was also found to increase the FEV1 decline by around 0.8 ml/year (95% CI 0.1 to 1.4 ml/year). Conclusions: These findings are consistent with the results of previous cross-sectional studies. Work duration in the most exposed position in the coke ovens was associated with increased annual decline for FVC and FEV1. The estimated effect of one year of work exposure in "operation" is equivalent, in terms of the reduction in lung function, to an estimated 2.1 pack-years of smoking for FVC and 1.2 pack-years of smoking for FEV1. PMID:15258275
Cotton Dust Exposure and Resulting Respiratory Disorders Among Home-Based Garment Workers.
Silpasuwan, Pimpan; Prayomyong, Somchit; Sujitrat, Dusit; Suwan-Ampai, Plernpit
2016-03-01
Cotton dust exposures and resulting respiratory disorders among Thai home-based garment workers in Bangkok were explored. Structured interviews focused on occupational health assessments of respiratory disorders; workflow process observations, lung function screening tests, and garment dust density assessments were used to gather data. Results revealed that garment workers in this study had worked in home-based tailoring an average of 14.88 years; 88.5% reported average health status, only 2.6% currently smoked cigarettes, and 8.6% had impaired lung function. The prevalence of respiratory disorders in this occupational group was 25%. Significant respiratory tract signs and symptoms were associated with lung function capacity (odds ratio [OR] = 52.15, 95% confidence interval [CI] = [6.49, 419.60]). Long work hours and few preventive behaviors were significantly associated with respiratory disorders (OR = 2.89 and OR = 10.183, respectively). Improving working conditions at home and minimizing fabric dust exposure among garment workers are recommended. © 2015 The Author(s).
Tourkina, Elena; Bonner, Michael; Oates, James; Hofbauer, Ann; Richard, Mathieu; Znoyko, Sergei; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley
2011-07-01
Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors.
2011-01-01
Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors. PMID:21722364
Möller, Lena; Hess, Christian; Paleček, Jiří; Su, Yi; Haverich, Axel
2013-01-01
Summary Covalent multistep coating of poly(methylpentene), the membrane material in lung ventilators, by using a copper-free “click” approach with a modified cyclic RGD peptide, leads to a highly biocompatible poly(methylpentene) surface. The resulting modified membrane preserves the required excellent gas-flow properties while being densely seeded with lung endothelial cells. PMID:23504394
A new approach to assess COPD by identifying lung function break-points
Eriksson, Göran; Jarenbäck, Linnea; Peterson, Stefan; Ankerst, Jaro; Bjermer, Leif; Tufvesson, Ellen
2015-01-01
Purpose COPD is a progressive disease, which can take different routes, leading to great heterogeneity. The aim of the post-hoc analysis reported here was to perform continuous analyses of advanced lung function measurements, using linear and nonlinear regressions. Patients and methods Fifty-one COPD patients with mild to very severe disease (Global Initiative for Chronic Obstructive Lung Disease [GOLD] Stages I–IV) and 41 healthy smokers were investigated post-bronchodilation by flow-volume spirometry, body plethysmography, diffusion capacity testing, and impulse oscillometry. The relationship between COPD severity, based on forced expiratory volume in 1 second (FEV1), and different lung function parameters was analyzed by flexible nonparametric method, linear regression, and segmented linear regression with break-points. Results Most lung function parameters were nonlinear in relation to spirometric severity. Parameters related to volume (residual volume, functional residual capacity, total lung capacity, diffusion capacity [diffusion capacity of the lung for carbon monoxide], diffusion capacity of the lung for carbon monoxide/alveolar volume) and reactance (reactance area and reactance at 5Hz) were segmented with break-points at 60%–70% of FEV1. FEV1/forced vital capacity (FVC) and resonance frequency had break-points around 80% of FEV1, while many resistance parameters had break-points below 40%. The slopes in percent predicted differed; resistance at 5 Hz minus resistance at 20 Hz had a linear slope change of −5.3 per unit FEV1, while residual volume had no slope change above and −3.3 change per unit FEV1 below its break-point of 61%. Conclusion Continuous analyses of different lung function parameters over the spirometric COPD severity range gave valuable information additional to categorical analyses. Parameters related to volume, diffusion capacity, and reactance showed break-points around 65% of FEV1, indicating that air trapping starts to dominate in moderate COPD (FEV1 =50%–80%). This may have an impact on the patient’s management plan and selection of patients and/or outcomes in clinical research. PMID:26508849
Neurobehavioral Functioning and Survival Following Lung Transplantation
Blumenthal, James A.; Carney, Robert M.; Freedland, Kenneth E.; O’Hayer, C. Virginia F.; Trulock, Elbert P.; Martinu, Tereza; Schwartz, Todd A.; Hoffman, Benson M.; Koch, Gary G.; Davis, R. Duane; Palmer, Scott M.
2014-01-01
Background: Neurobehavioral functioning is widely recognized as being an important consideration in lung transplant candidates, but little is known about whether these factors are related to clinical outcomes. The present study examined the relationship of neurobehavioral functioning, including measures of executive function and memory, depression, and anxiety, to long-term survival among lung transplant recipients. Methods: The sample was drawn from 201 patients who underwent transplantation at Duke University and Washington University who participated in a dual-site clinical trial investigating medical and psychosocial outcomes in transplant candidates with end-stage lung disease. All patients completed the Beck Depression Inventory-II (BDI-II) and Spielberger State-Trait Anxiety Inventory at baseline and again after 12 weeks, while a subset of 86 patients from Duke University also completed neurocognitive testing. Patients were followed for survival up to 12 years after completing baseline assessments. Results: One hundred eleven patients died over a mean follow-up of 10.8 years (SD = 0.8). Baseline depression, anxiety, and neurocognitive function were examined as predictors of posttransplant survival, controlling for age, 6-min walk distance, FEV, and native disease; education and cardiovascular risk factors were also included in the model for neurocognition. Lower executive function (hazard ratio [HR] = 1.09, P = .012) and memory performance (HR = 1.11, P = .030) were independently associated with greater mortality following lung transplant. Although pretransplant depression and anxiety were not predictive of mortality, patients who scored > 13 on the BDI-II at baseline and after 3 months pretransplant had greater mortality (HR = 1.85 [95% CI, 1.04, 3.28], P = .036). Conclusions: Neurobehavioral functioning, including persistently elevated depressive symptoms and lower neurocognitive performance, was associated with reduced survival after lung transplantation. Trial registry: ClinicalTrials.gov; No.: NCT00113139; URL: www.clinicaltrials.gov PMID:24233282
3D segmentation of lung CT data with graph-cuts: analysis of parameter sensitivities
NASA Astrophysics Data System (ADS)
Cha, Jung won; Dunlap, Neal; Wang, Brian; Amini, Amir
2016-03-01
Lung boundary image segmentation is important for many tasks including for example in development of radiation treatment plans for subjects with thoracic malignancies. In this paper, we describe a method and parameter settings for accurate 3D lung boundary segmentation based on graph-cuts from X-ray CT data1. Even though previously several researchers have used graph-cuts for image segmentation, to date, no systematic studies have been performed regarding the range of parameter that give accurate results. The energy function in the graph-cuts algorithm requires 3 suitable parameter settings: K, a large constant for assigning seed points, c, the similarity coefficient for n-links, and λ, the terminal coefficient for t-links. We analyzed the parameter sensitivity with four lung data sets from subjects with lung cancer using error metrics. Large values of K created artifacts on segmented images, and relatively much larger value of c than the value of λ influenced the balance between the boundary term and the data term in the energy function, leading to unacceptable segmentation results. For a range of parameter settings, we performed 3D image segmentation, and in each case compared the results with the expert-delineated lung boundaries. We used simple 6-neighborhood systems for n-link in 3D. The 3D image segmentation took 10 minutes for a 512x512x118 ~ 512x512x190 lung CT image volume. Our results indicate that the graph-cuts algorithm was more sensitive to the K and λ parameter settings than to the C parameter and furthermore that amongst the range of parameters tested, K=5 and λ=0.5 yielded good results.
Structural basis for pulmonary functional imaging.
Itoh, H; Nakatsu, M; Yoxtheimer, L M; Uematsu, H; Ohno, Y; Hatabu, H
2001-03-01
An understanding of fine normal lung morphology is important for effective pulmonary functional imaging. The lung specimens must be inflated. These include (a) unfixed, inflated lung specimen, (b) formaldehyde fixed lung specimen, (c) fixed, inflated dry lung specimen, and (d) histology specimen. Photography, magnified view, radiograph, computed tomography, and histology of these specimens are demonstrated. From a standpoint of diagnostic imaging, the main normal lung structures consist of airways (bronchi and bronchioles), alveoli, pulmonary vessels, secondary pulmonary lobules, and subpleural pulmonary lymphatic channels. This review summarizes fine radiologic normal lung morphology as an aid to effective pulmonary functional imaging.
Cyclist route choice, traffic-related air pollution, and lung function: a scripted exposure study
2013-01-01
Background A travel mode shift to active transportation such as bicycling would help reduce traffic volume and related air pollution emissions as well as promote increased physical activity level. Cyclists, however, are at risk for exposure to vehicle-related air pollutants due to their proximity to vehicle traffic and elevated respiratory rates. To promote safe bicycle commuting, the City of Berkeley, California, has designated a network of residential streets as “Bicycle Boulevards.” We hypothesized that cyclist exposure to air pollution would be lower on these Bicycle Boulevards when compared to busier roads and this elevated exposure may result in reduced lung function. Methods We recruited 15 healthy adults to cycle on two routes – a low-traffic Bicycle Boulevard route and a high-traffic route. Each participant cycled on the low-traffic route once and the high-traffic route once. We mounted pollutant monitors and a global positioning system (GPS) on the bicycles. The monitors were all synced to GPS time so pollutant measurements could be spatially plotted. We measured lung function using spirometry before and after each bike ride. Results We found that fine and ultrafine particulate matter, carbon monoxide, and black carbon were all elevated on the high-traffic route compared to the low-traffic route. There were no corresponding changes in the lung function of healthy non-asthmatic study subjects. We also found that wind-speed affected pollution concentrations. Conclusions These results suggest that by selecting low-traffic Bicycle Boulevards instead of heavily trafficked roads, cyclists can reduce their exposure to vehicle-related air pollution. The lung function results indicate that elevated pollutant exposure may not have acute negative effects on healthy cyclists, but further research is necessary to determine long-term effects on a more diverse population. This study and broader field of research have the potential to encourage policy-makers and city planners to expand infrastructure to promote safe and healthy bicycle commuting. PMID:23391029
Kotaki, Kenji; Senjyu, Hideaki; Tanaka, Takako; Yano, Yudai; Miyamoto, Naomi; Nishinakagawa, Tsuyoshi; Yanagita, Yorihide; Asai, Masaharu; Kozu, Ryo; Tabusadani, Mitsuru; Sawai, Terumitsu; Honda, Sumihisa
2014-07-31
We sought to elucidate the long-term association of tobacco use and respiratory health in designated pollution victims with and without obstructive pulmonary defects. A retrospective cross-sectional study. The register of pollution victims in Kurashiki, Japan. 730 individuals over 65 years of age previously diagnosed with pollution-related respiratory disease. Patients were classified into four groups according to their smoking status and whether they had obstructive pulmonary disease. We then compared the prevalence of respiratory symptoms and lung function over time between groups. Spirometry was performed and a respiratory health questionnaire completed in the same season each year for up to 30 years. Rates of smoking and respiratory disease were high in our sample. Although respiratory function in non-smoking patients did not completely recover, the annual rate of change in lung function was within the normal range (p<0.01). However, smokers had worse lung function and were more likely to report more severe pulmonary symptoms (p<0.01). Patients' respiratory function did not fully recover despite improved air quality. Our results suggest that, in the context of exposure to air pollution, tobacco use causes additional loss of lung function and exacerbates respiratory symptoms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Peters, E J; Esin, R A; Immananagha, K K; Siziya, S; Osim, E E
1999-05-01
To determine the lung function status of some Nigerian men and women chronically exposed to fish drying using burning firewood. Case control study. Ibaka, Utaewa and Ikanga fishing settlements. 183 males and 192 females engaged in fishing, aged 20 to 45 years who have been exposed for a minimum of five years as cases. The control group comprised sex matched male (142) and female (152) Nigerians from the same area who were not exposed to any known air pollutant. Lung function indices: FVC, FEV1, FEV1% and PEFR. Lung function indices were significantly lower in men engaged in fishing than in their controls: FVC [mean (SD): 2.98 (0.20) vs 3.52 (0.29), p < 0.001]; FEV1 [2.08 (0.18) vs 2.82 (0.25), p < 0.001]; FEV1% [69.8 (3.1) vs 80.2 (6.7), p < 0.001]; and PEFR [335 (22) vs 592 (99), p < 0.001], respectively. Similarly, lung function indices were lower in females in the fishing industry than in their controls; FVC [2.42 (0.17) vs 3.02 (0.24), p < 0.001]; FEV1 [1.70 (0.19) vs 2.55 (0.21), p < 0.001]; FEV1% [72.9 (3.2) vs 84.4 (6.7), p < 0.001]; and PEFR [298 (22) vs 418 (34), p < 0.001]. All the lung function indices (except FEV1%) of the fishermen and women declined significantly (p < 0.001) with their duration of exposure. The results showed a predominantly mixed pattern (restrictive and obstructive) of respiratory defect. There were higher prevalences of respiratory and other symptoms among the cases than the controls. The respiratory symptoms included cough with sputum, chest pain, dyspnoea catarrh and sneezing and unproductive cough. Other symptoms were eye and skin irritation, internal heat and headache. Chronic exposure to fish drying using burning firewood can impair lung function and cause respiratory and other symptoms.
The effect of donor treatment with hydrogen on lung allograft function in rats.
Kawamura, Tomohiro; Huang, Chien-Sheng; Peng, Ximei; Masutani, Kosuke; Shigemura, Norihisa; Billiar, Timothy R; Okumura, Meinoshin; Toyoda, Yoshiya; Nakao, Atsunori
2011-08-01
Because inhaled hydrogen provides potent anti-inflammatory and antiapoptotic effects against acute lung injury, we hypothesized that treatment of organ donors with inhaled hydrogen during mechanical ventilation would decrease graft injury after lung transplantation. Orthotopic left lung transplants were performed using a fully allogeneic Lewis to Brown Norway rat model. The donors were exposed to mechanical ventilation with 98% oxygen plus 2% nitrogen or 2% hydrogen for 3 h prior to harvest, and the lung grafts underwent 4 h of cold storage in Perfadex (Vitrolife, Göteborg, Sweden). The graft function, histomorphologic changes, and inflammatory reactions were assessed. The combination of mechanical ventilation and prolonged cold ischemia resulted in marked deterioration of gas exchange when the donors were ventilated with 2% nitrogen/98% oxygen, which was accompanied by upregulation of proinflammatory cytokines and proapoptotic molecules. These lung injuries were attenuated significantly by ventilation with 2% hydrogen. Inhaled hydrogen induced heme oxygenase-1, an antioxidant enzyme, in the lung grafts prior to implantation, which might contribute to protective effects afforded by hydrogen. Preloaded hydrogen gas during ventilation prior to organ procurement protected lung grafts effectively from ischemia/reperfusion-induced injury in a rat lung transplantation model. Copyright © 2011 Mosby, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valstar, Dingena L.; Schijf, Marcel A.; Nijkamp, Frans P.
2006-02-15
Occupational exposure to low molecular weight chemicals, like trimellitic anhydride (TMA), can result in occupational asthma. Alveolar macrophages (AMs) are among the first cells to encounter inhaled compounds. These cells can produce many different mediators that have a putative role in asthma. In this study, we examined the role of AMs in lung function and airway inflammation of rats exposed to TMA. Female Brown Norway rats were sensitized by dermal application of TMA or received vehicle alone on days 0 and 7. One day before challenge, rats received intratracheally either empty or clodronate-containing liposomes to deplete the lungs of AMs.more » On day 21, all rats were challenged by inhalation of TMA in air. Lung function parameters were measured before, during, within 1 h after, and 24 h after challenge. IgE levels and parameters of inflammation and tissue damage were assessed 24 h after challenge. Sensitization with TMA led to decreased lung function parameters during and within 1 h after challenge as compared to non-sensitized rats. AM depletion alleviated the TMA-induced drop in lung function parameters and induced a faster recovery compared to sham-depleted TMA-sensitized rats. It also decreased the levels of serum IgE 24 h after challenge, but did not affect the sensitization-dependent increase in lung lavage fluid IL-6 and tissue TNF-{alpha} levels. In contrast, AM depletion augmented the TMA-induced tissue damage and inflammation 24 h after challenge. AMs seem to have a dual role in this model for TMA-induced occupational asthma since they potentiate the immediate TMA-induced decrease in lung function but tended to dampen the TMA-induced inflammatory reaction 24 h later.« less
Badirdast, Phateme; Salehpour, Soussan; Ghadjari, Ali; Khodakarim, Soheila; Panahi, Davod; Fadaei, Moslem; Rahimi, Abolfazl
2017-01-01
Background: Occupational exposure to dust leads to acute and chronic respiratory diseases, occupational asthma, and depressed lung function. In the light of a lack of comprehensive studies on the exposure of Iranian workers to wood dusts, the objective of this study was to monitor the occupational exposure to wood dust and bioaerosol, and their correlation with the lung function parameters in chipboard manufacturing industry workers. Materials and Methods: A cross-sectional study was conducted on chipboard workers in Golestan Province; a total of 150 men (100 exposed cases and 50 controls) were assessed. Workers were monitored for inhalable wood dust and lung function parameters, i.e., FVC, FEV1, FEV1/FVC, and FEF25–75%. The workers’ exposure to bioaerosols was measured using a bacterial sampler; a total of 68 area samples were collected. The analysis was performed using the Mann-Whitney, Kruskal-Wallis, and regression statistical tests. Results: The geometric mean value and geometric standard deviation of inhalable wood dust for the exposed and control groups were 19 ± 2.00 mg/m3 and 0.008 ± 0.001 mg/m3, respectively. A statistically significant correlation was observed between the lung parameters and cumulative exposure to inhalable wood dust, whereas a statistically significant correlation was not observed between the lung parameters and bioaerosol exposure. However, the exposure of Iranian workers to bioaerosols was higher, compared to their foreign coworkers. Conclusion: Considering the high level of exposure among workers in this study along with their lung function results, long-term exposure to wood dust may be detrimental to the workers’ health and steps to limit their exposure should be considered seriously. PMID:28638425
Multi-phase simultaneous segmentation of tumor in lung 4D-CT data with context information.
Shen, Zhengwen; Wang, Huafeng; Xi, Weiwen; Deng, Xiaogang; Chen, Jin; Zhang, Yu
2017-01-01
Lung 4D computed tomography (4D-CT) plays an important role in high-precision radiotherapy because it characterizes respiratory motion, which is crucial for accurate target definition. However, the manual segmentation of a lung tumor is a heavy workload for doctors because of the large number of lung 4D-CT data slices. Meanwhile, tumor segmentation is still a notoriously challenging problem in computer-aided diagnosis. In this paper, we propose a new method based on an improved graph cut algorithm with context information constraint to find a convenient and robust approach of lung 4D-CT tumor segmentation. We combine all phases of the lung 4D-CT into a global graph, and construct a global energy function accordingly. The sub-graph is first constructed for each phase. A context cost term is enforced to achieve segmentation results in every phase by adding a context constraint between neighboring phases. A global energy function is finally constructed by combining all cost terms. The optimization is achieved by solving a max-flow/min-cut problem, which leads to simultaneous and robust segmentation of the tumor in all the lung 4D-CT phases. The effectiveness of our approach is validated through experiments on 10 different lung 4D-CT cases. The comparison with the graph cut without context constraint, the level set method and the graph cut with star shape prior demonstrates that the proposed method obtains more accurate and robust segmentation results.
Bronchopulmonary dysplasia: improvement in lung function between 7 and 10 years of age.
Blayney, M; Kerem, E; Whyte, H; O'Brodovich, H
1991-02-01
To evaluate the natural history of bronchopulmonary dysplasia, we studied the same 32 patients at a mean age of 7 and 10 years. The group as a whole had normal height and weight percentiles, and each child grew along his or her established somatic growth curve. Although some children had abnormal values, the group maintained a normal mean total lung capacity and functional residual capacity. The mean residual volume and the residual volume/total lung capacity ratios were elevated at both ages. At age 7 years the 19 patients (59%) who had a forced expiratory volume in 1 second (FEV1) of less than 80% had "catch up" improvement by 10 years of age (65 +/- 11% to 72 +/- 16% of predicted value; p less than 0.05). All the children who had a normal FEV1 at 7 years of age continued to have a normal FEV1 at age 10 years. Resting single-breath carbon monoxide uptake by the lung was normal when measured at age 10 years. The majority of patients had a positive methacholine challenge test result at both ages, although there was a low incidence of clinically diagnosed asthma. This study demonstrates that patients with bronchopulmonary dysplasia who have normal lung function at age 7 have had normal lung growth and that those with evidence of mild to moderate lung disease have continued lung growth or repair, or both, during their school years.
Determinants of early-life lung function in African infants
Willemse, Lauren; Visagie, Ane; Czövek, Dorottya; Nduru, Polite; Vanker, Aneesa; Stein, Dan J; Koen, Nastassja; Sly, Peter D; Hantos, Zoltán; Hall, Graham L; Zar, Heather J
2017-01-01
Background Low lung function in early life is associated with later respiratory illness. There is limited data on lung function in African infants despite a high prevalence of respiratory disease. Aim To assess the determinants of early lung function in African infants. Method Infants enrolled in a South African birth cohort, the Drakenstein child health study, had lung function measured at 6–10 weeks of age. Measurements, made with the infant breathing via a facemask during natural sleep, included tidal breathing, sulfur hexafluoride multiple breath washout and the forced oscillation technique. Information on antenatal and early postnatal exposures was collected using questionnaires and urine cotinine. Household benzene exposure was measured antenatally. Results Successful tests were obtained in 645/675 (95%) infants, median (IQR) age of 51 (46–58) days. Infant size, age and male gender were associated with larger tidal volume. Infants whose mothers smoked had lower tidal volumes (−1.6 mL (95% CI −3.0 to −0.1), p=0.04) and higher lung clearance index (0.1 turnovers (95% CI 0.01 to 0.3), p=0.03) compared with infants unexposed to tobacco smoke. Infants exposed to alcohol in utero or household benzene had lower time to peak tidal expiratory flow over total expiratory time ratios, 10% (95% CI −15.4% to −3.7%), p=0.002) and 3.0% (95% CI −5.2% to −0.7%, p=0.01) lower respectively compared with unexposed infants. HIV-exposed infants had higher tidal volumes (1.7 mL (95% CI 0.06 to 3.3) p=0.04) compared with infants whose mothers were HIV negative. Conclusion We identified several factors including infant size, sex, maternal smoking, maternal alcohol, maternal HIV and household benzene associated with altered early lung function, many of which are factors amenable to public health interventions. Long-term study of lung function and respiratory disease in these children is a priority to develop strategies to strengthen child health. PMID:27856821
Hanson, Corrine; Lyden, Elizabeth; Furtado, Jeremy; Campos, Hannia; Sparrow, David; Vokonas, Pantel; Litonjua, Augusto A
2016-02-01
The results of studies assessing relationships between vitamin E intake and status and lung function are conflicting. This study aimed to evaluate the effect of vitamin E intake and serum levels of tocopherol isoforms on lung function in a cross-sectional sample of 580 men from the Normative Aging Study, a longitudinal aging study. Regression models were used to look at associations of serum tocopherol isoform levels and vitamin E intake with lung function parameters after adjustment for confounders. Vitamin E intake was measured using a food frequency questionnaire and serum levels of γ, α, and δ-tocopherol levels were measured using high-performance liquid chromatography. After adjustment for potential confounders, serum γ-tocopherol had a significant inverse association with forced vital capacity (β = -0.10, p = 0.05). Alpha and δ-tocopherol were not associated with any lung function parameter. After classifying COPD status according to Global Initiative for Obstructive Lung Disease (GOLD) stage criteria, serum levels of δ-tocopherol were lower in participants with more severe COPD (p = 0.01). Serum levels of δ-tocopherol were also lower in participants with greater levels of smoking (p = 0.02). Both vitamin E intake (β = 0.03, p = 0.02; β = 0.03, p = 0.01) and use of vitamin E supplements (β = 0.05, p = 0.03; β = 0.06. p = 0.02) were positively associated with FEV1 and FVC, after adjusting for confounders. Subjects who took vitamin E supplements had significantly higher α-tocopherol levels (p < 0.0001) and lower γ-tocopherol levels (p < 0.0001) than non-users. In this study, there is a positive association between dietary vitamin E intake and lung function, and evidence of an inverse relationship between serum levels of γ-tocopherol and lung function. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Alphonse, Rajesh S; Vadivel, Arul; Fung, Moses; Shelley, William Chris; Critser, Paul John; Ionescu, Lavinia; O'Reilly, Megan; Ohls, Robin K; McConaghy, Suzanne; Eaton, Farah; Zhong, Shumei; Yoder, Merv; Thébaud, Bernard
2014-05-27
Bronchopulmonary dysplasia and emphysema are life-threatening diseases resulting from impaired alveolar development or alveolar destruction. Both conditions lack effective therapies. Angiogenic growth factors promote alveolar growth and contribute to alveolar maintenance. Endothelial colony-forming cells (ECFCs) represent a subset of circulating and resident endothelial cells capable of self-renewal and de novo vessel formation. We hypothesized that resident ECFCs exist in the developing lung, that they are impaired during arrested alveolar growth in experimental bronchopulmonary dysplasia, and that exogenous ECFCs restore disrupted alveolar growth. Human fetal and neonatal rat lungs contain ECFCs with robust proliferative potential, secondary colony formation on replating, and de novo blood vessel formation in vivo when transplanted into immunodeficient mice. In contrast, human fetal lung ECFCs exposed to hyperoxia in vitro and neonatal rat ECFCs isolated from hyperoxic alveolar growth-arrested rat lungs mimicking bronchopulmonary dysplasia proliferated less, showed decreased clonogenic capacity, and formed fewer capillary-like networks. Intrajugular administration of human cord blood-derived ECFCs after established arrested alveolar growth restored lung function, alveolar and lung vascular growth, and attenuated pulmonary hypertension. Lung ECFC colony- and capillary-like network-forming capabilities were also restored. Low ECFC engraftment and the protective effect of cell-free ECFC-derived conditioned media suggest a paracrine effect. Long-term (10 months) assessment of ECFC therapy showed no adverse effects with persistent improvement in lung structure, exercise capacity, and pulmonary hypertension. Impaired ECFC function may contribute to arrested alveolar growth. Cord blood-derived ECFC therapy may offer new therapeutic options for lung diseases characterized by alveolar damage. © 2014 American Heart Association, Inc.
Devien, Laurent; Giovannelli, Jonathan; Cuny, Damien; Matran, Régis; Amouyel, Philippe; Hulo, Sébastien; Edmé, Jean Louis; Dauchet, Luc
2018-07-01
The objective of the present study was to investigate the relationship between sources of household air pollution, respiratory symptoms and lung function. 3039 adults aged from 40 to 65 participated in the 2011-2013 ELISABET cross-sectional survey in northern France. Lung function was measured using spirometry. During a structured interview, respiratory symptoms, household fuels, exposure to moulds, and use of ventilation were recorded on a questionnaire. The self-reported presence of mould in at least two rooms (not including the bathroom and the kitchen) was associated with a 2.5% lower predicted forced expiratory volume in 1 s (95% confidence interval, -4.7 to -0.29; p-trend <0.05) and a higher risk of wheezing (p-trend < 0.001). Visible condensation was associated with wheezing (p < .05) and chronic cough (p < .05). There were no significant associations with the type of household fuel or inadequate ventilation/aeration. Similar results were found when the analyses were restricted to participants without known respiratory disease. Our results suggest that the presence of mould (known to be associated with more severe asthma symptoms) could also have an impact on respiratory symptoms and lung function in the general population and in populations without known respiratory disease. Copyright © 2018 Elsevier Inc. All rights reserved.
Belmaati, Esther Okeke; Iversen, Martin; Kofoed, Klaus F; Nielsen, Michael B; Mortensen, Jann
2012-06-01
Scintigraphy has been used as a tool to detect dysfunction of the lung before and after transplantation. The aims of this study were to evaluate the development of the ventilation-perfusion relationships in single lung transplant recipients in the first year, at 3 months after transplantation, and to investigate whether scintigraphic findings at 3 months were predictive for the outcome at 12 months in relation to primary graft dysfunction (PGD) and lung function. A retrospective study was carried out on all patients who prospectively and consecutively were referred for a routine lung scintigraphy procedure 3 months after single lung transplantation (SLTX). A total of 41 patients were included in the study: 20 women and 21 men with the age span of patients at transplantation being 38-66 years (mean ± SD: 54.2 ± 6.0). Patient records also included lung function tests and chest X-ray images. We found no significant correlation between lung function distribution at 3 months and PGD at 72 h. There was also no significant correlation between PGD scores at 72 h and lung function at 6 and 12 months. The same applied to scintigraphic scores for heterogeneity at 3 months compared with lung function at 6 and 12 months. Fifty-five percent of all patients had decreased ventilation function measured in the period from 6 to 12 months. Forty-nine percent of the patients had normal perfusion evaluations, and 51% had abnormal perfusion evaluations at 3 months. For ventilation evaluations, 72% were normal and 28% were abnormal. There was a significant difference in the normal versus abnormal perfusion and ventilation scintigraphic images evaluated from the same patients. Ventilation was distributed more homogenously in the transplanted lung than perfusion in the same lung. The relative distribution of perfusion and ventilation to the transplanted lung of patients with and without a primary diagnosis of fibrosis did not differ significantly from each other. We conclude that PGD defined at 72 h does not lead to recognizable changes in ventilation-perfusion scintigrapy at 3 months, and scintigraphic findings do not correlate with development in lung function in the first 12 months.
Scarlett, J F; Abbott, K J; Peacock, J L; Strachan, D P; Anderson, H R
1996-01-01
BACKGROUND: There is growing concern about health effects of air pollution in the UK. Studies in the USA have reported adverse effects on lung function among children but no comparable studies have been published in the UK. This study investigates the relationship between daily changes in ambient air pollution and short term variations in lung function in a panel of school children. METHODS: One hundred and fifty four children aged 7-11 attending a primary school adjacent to a major motorway in Surrey, south-east England, were studied. Bellows spirometry was performed daily on 31 schooldays between 6 June and 21 July 1994. Levels of ozone, nitrogen dioxide, and particulates of less than 10 microns in diameter (PM10) were measured continuously at the school and the pollen count was measured six miles away. Relationships between daily changes in forced expiratory volume in 0.75 seconds (FEV0.75), forced vital capacity (FVC), the FEV0.75/FVC ratio and pollutants were analysed using separate autoregressive models for each child. A weighted average of the resulting slopes was then calculated. RESULTS: There was a significant inverse relationship between daily mean PM10 levels lagged one day and FVC, with a reduction in lung function of 1% (95% CI 0.3% to 2%) across the whole range of PM10 levels (20-150 micrograms/m3). The effect on FEV0.75 was similar (-0.5%) but was not significant when weighted by 1/SE2 (95% CI -1.2% to 0.2%). There was no effect of PM10 levels on the FEV0.75/FVC ratio. No significant association was seen between FEV0.75, FVC, or the FEV0.75/FVC ratio and either ozone or nitrogen dioxide levels. There was no evidence that wheezy children were more affected than healthy children. Pollen levels on the previous day had no effect on lung function and did not change the air pollution results. CONCLUSIONS: There is a very small, but statistically significant, adverse effect of airborne respirable particulate matter, measured as PM10, on lung function in this study group. There is no evidence for an inverse association of lung function with levels of ozone or NO2 measured on the previous day. PMID:8958894
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundar, Isaac K.; Hwang, Jae-Woong; Wu, Shaoping
Research highlights: {yields} Vitamin D deficiency is linked to accelerated decline in lung function. {yields} Levels of vitamin D receptor (VDR) are decreased in lungs of patients with COPD. {yields} VDR knock-out mouse showed increased lung inflammation and emphysema. {yields} This was associated with decline in lung function and increased MMPs. {yields} VDR knock-out mouse model is useful for studying the mechanisms of lung diseases. -- Abstract: Deficiency of vitamin D is associated with accelerated decline in lung function. Vitamin D is a ligand for nuclear hormone vitamin D receptor (VDR), and upon binding it modulates various cellular functions. Themore » level of VDR is reduced in lungs of patients with chronic obstructive pulmonary disease (COPD) which led us to hypothesize that deficiency of VDR leads to significant alterations in lung phenotype that are characteristics of COPD/emphysema associated with increased inflammatory response. We found that VDR knock-out (VDR{sup -/-}) mice had increased influx of inflammatory cells, phospho-acetylation of nuclear factor-kappaB (NF-{kappa}B) associated with increased proinflammatory mediators, and up-regulation of matrix metalloproteinases (MMPs) MMP-2, MMP-9, and MMP-12 in the lung. This was associated with emphysema and decline in lung function associated with lymphoid aggregates formation compared to WT mice. These findings suggest that deficiency of VDR in mouse lung can lead to an early onset of emphysema/COPD because of chronic inflammation, immune dysregulation, and lung destruction.« less
Kanwal, Richard; Kullman, Greg; Fedan, Kathleen B.; Kreiss, Kathleen
2011-01-01
Objectives After an outbreak of severe lung disease among workers exposed to butter-flavoring chemicals at a microwave popcorn plant, we determined whether or not lung disease risk declined after implementation of exposure controls. Methods National Institute for Occupational Safety and Health staff performed eight serial cross-sectional medical and industrial hygiene surveys at the plant from November 2000 through August 2003. Medical surveys included standardized questionnaires and spirometry testing. Industrial hygiene surveys measured levels of production-related air contaminants, including butter-flavoring chemicals such as diacetyl. All diacetyl concentrations above detectable limits were corrected for the effects of absolute humidity and days to sample extraction. Results Ventilation and isolation of the production process resulted in one to three orders of magnitude reductions in diacetyl air concentrations in different areas of the plant. Workers with past high exposures had stable chest symptoms over time; nasal, eye, and skin irritation symptoms declined. New workers had lower symptom prevalences and higher lung function than workers with past high exposures, and they did not worsen over time. In workers who had at least three spirometry tests, those with past high exposures were more likely to experience rapid declines in lung function than new workers. Conclusions Implemented controls lowered exposures to butter-flavoring chemicals and decreased lung disease risk for much of the plant workforce. Some workers with continuing potential for intermittent, short-term peak and measurable time-weighted exposures remain at risk and should use respiratory protection and have regularly scheduled spirometry to detect rapid lung function declines that may be work-related. Close follow-up of such workers is likely to yield additional information on risks due to peak and time-weighted exposure levels. PMID:21800743
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Nieto, Beatriz, E-mail: bsanchez@fis.puc.cl; Goset, Karen C.; Caviedes, Ivan
Purpose: To propose multivariate predictive models for changes in pulmonary function tests ({Delta}PFTs) with respect to preradiotherapy (pre-RT) values in patients undergoing RT for breast cancer and lymphoma. Methods and Materials: A prospective study was designed to measure {Delta}PFTs of patients undergoing RT. Sixty-six patients were included. Spirometry, lung capacity (measured by helium dilution), and diffusing capacity of carbon monoxide tests were used to measure lung function. Two lung definitions were considered: paired lung vs. irradiated lung (IL). Correlation analysis of dosimetric parameters (mean lung dose and the percentage of lung volume receiving more than a threshold dose) and {Delta}PFTsmore » was carried out to find the best dosimetric predictor. Chemotherapy, age, smoking, and the selected dose-volume parameter were considered as single and interaction terms in a multivariate analysis. Stability of results was checked by bootstrapping. Results: Both lung definitions proved to be similar. Modeling was carried out for IL. Acute and late damage showed the highest correlations with volumes irradiated above {approx}20 Gy (maximum R{sup 2} = 0.28) and {approx}40 Gy (maximum R{sup 2} = 0.21), respectively. RT alone induced a minor and transitory restrictive defect (p = 0.013). Doxorubicin-cyclophosphamide-paclitaxel (Taxol), when administered pre-RT, induced a late, large restrictive effect, independent of RT (p = 0.031). Bootstrap values confirmed the results. Conclusions: None of the dose-volume parameters was a perfect predictor of outcome. Thus, different predictor models for {Delta}PFTs were derived for the IL, which incorporated other nondosimetric parameters mainly through interaction terms. Late {Delta}PFTs seem to behave more serially than early ones. Large restrictive defects were demonstrated in patients pretreated with doxorubicin-cyclophosphamide-paclitaxel.« less
de Campos, Elaine Cristina; Peixoto-Souza, Fabiana Sobral; Alves, Viviane Cristina; Basso-Vanelli, Renata; Barbalho-Moulim, Marcela; Laurino-Neto, Rafael Melillo; Costa, Dirceu
2018-01-01
OBJECTIVE: To determine whether weight loss in women with morbid obesity subjected to bariatric surgery alters lung function, respiratory muscle strength, functional capacity and the level of habitual physical activity and to investigate the relationship between these variables and changes in both body composition and anthropometrics. METHODS: Twenty-four women with morbid obesity were evaluated with regard to lung function, respiratory muscle strength, functional capacity, body composition, anthropometrics and the level of habitual physical activity two weeks prior to and six months after bariatric surgery. RESULTS: Regarding lung function, mean increases of 160 mL in slow vital capacity, 550 mL in expiratory reserve volume, 290 mL in forced vital capacity and 250 mL in forced expiratory volume in the first second as well as a mean reduction of 490 mL in inspiratory capacity were found. Respiratory muscle strength increased by a mean of 10 cmH2O of maximum inspiratory pressure, and a 72-meter longer distance on the Incremental Shuttle Walk Test demonstrated that functional capacity also improved. Significant changes also occurred in anthropometric variables and body composition but not in the level of physical activity detected using the Baecke questionnaire, indicating that the participants remained sedentary. Moreover, correlations were found between the percentages of lean and fat mass and both inspiratory and expiratory reserve volumes. CONCLUSION: The present data suggest that changes in body composition and anthropometric variables exerted a direct influence on functional capacity and lung function in the women analyzed but exerted no influence on sedentarism, even after accentuated weight loss following bariatric surgery. PMID:29561930
Immersing lungs in hydrogen-rich saline attenuates lung ischaemia-reperfusion injury.
Takahashi, Mamoru; Chen-Yoshikawa, Toyofumi F; Saito, Masao; Tanaka, Satona; Miyamoto, Ei; Ohata, Keiji; Kondo, Takeshi; Motoyama, Hideki; Hijiya, Kyoko; Aoyama, Akihiro; Date, Hiroshi
2017-03-01
Anti-oxidant effects of hydrogen have been reported in studies examining ischaemia-reperfusion injury (IRI). In this study, we evaluated the therapeutic efficacy of immersing lungs in hydrogen-rich saline on lung IRI. Lewis rats were divided into three groups: (i) sham, (ii) normal saline and (iii) hydrogen-rich saline. In the first experiment, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline for 1 h. Then, we measured the hydrogen concentration in the left lung using a sensor gas chromatograph ( N = 3 per group). In the second experiment, lung IRI was induced by occlusion of the left pulmonary hilum for 1 h, followed by reperfusion for 3 h. During the ischaemic period, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline. After reperfusion, we assessed lung function, histological changes and cytokine production ( N = 5-7 per group). Immersing lungs in hydrogen-rich saline resulted in an elevated hydrogen concentration in the lung (6.9 ± 2.9 μmol/1 g lung). After IRI, pulmonary function (pulmonary compliance and oxygenation levels) was significantly higher in the hydrogen-rich saline group than in the normal saline group ( P < 0.05). Similarly, pro-inflammatory cytokine levels (interleukin-1β and interleukin-6) in the left lung were significantly lower in the hydrogen-rich saline group than in the normal saline group ( P < 0.05). Immersing lungs in hydrogen-rich saline delivered hydrogen into the lung and consequently attenuated lung IRI. Hydrogen-rich solution appears to be a promising approach to managing lung IRI. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Inci, Ilhan; Irani, Sarosh; Kestenholz, Peter; Benden, Christian; Boehler, Annette; Weder, Walter
2011-01-01
The limited number of available grafts is one of the major obstacles of lung transplantation. Size-reduced lung transplantation allows the use of oversized grafts for small recipients. Optimal lung size matching is vital to achieve best functional outcome and avoid potential problems when using oversized grafts. We hypothesise that donor-predicted postoperative forced expiratory volume in 1s (ppoFEV1) correlates with the recipient best FEV1 after size-reduced lung transplant, being useful for the estimation of function outcome. All patients undergoing size-reduced or standard bilateral lung transplantation were included (1992-2007). Donor ppoFEV1 was calculated and corrected with respect to size reduction and correlated with recipient measured best FEV1 post-transplant. In addition, pre- and postoperative clinical data including surgical complications and outcome of all size-reduced lung transplant recipients were compared with standard lung transplant recipients. A total of 61 size-reduced lung transplant recipients (lobar transplants, n=20; anatomic or non-anatomic resection, n=41) were included and compared to 145 standard transplants. The mean donor-recipient height difference was statistically significant between the two groups (p=0.0001). The mean donor ppoFEV1 was comparable with recipient best FEV1 (2.7±0.6 vs 2.6±0.7 l). There was a statistically significant correlation between donor ppoFEV1 and recipient best FEV1 (p=0.01, r=0.688). The 30-day mortality rate and 3-month, 1- and 5-year survival rates were comparable between the two groups. In size-reduced lung transplantation, postoperative recipient best FEV1 could be predicted from donor-calculated and corrected FEV1 with respect to its size reduction. Compared to standard lung transplantation, equivalent morbidity, mortality and functional results could be obtained after size-reduced lung transplantation. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.
Dregely, Isabel; Mugler, John P.; Ruset, Iulian C.; Altes, Talissa A.; Mata, Jaime F.; Miller, G. Wilson; Ketel, Jeffrey; Ketel, Steve; Distelbrink, Jan; Hersman, F.W.; Ruppert, Kai
2011-01-01
Purpose To develop and test a method to non-invasively assess the functional lung microstructure. Materials and Methods The Multiple exchange time Xenon polarization Transfer Contrast technique (MXTC) encodes xenon gas-exchange contrast at multiple delay times permitting two lung-function parameters to be derived: 1) MXTC-F, the long exchange-time depolarization value, which is proportional to the tissue to alveolar-volume ratio and 2) MXTC-S, the square root of the xenon exchange-time constant, which characterizes thickness and composition of alveolar septa. Three healthy volunteers, one asthmatic and two COPD (GOLD stage I and II) subjects were imaged with MXTC MRI. In a subset of subjects, hyperpolarized xenon-129 ADC MRI and CT imaging were also performed. Results The MXTC-S parameter was found to be elevated in subjects with lung disease (p-value = 0.018). In the MXTC-F parameter map it was feasible to identify regional loss of functional tissue in a COPD patient. Further, the MXTC-F map showed excellent regional correlation with CT and ADC (ρ ≥ 0.90) in one COPD subject. Conclusion The functional tissue-density parameter MXTC-F showed regional agreement with other imaging techniques. The newly developed parameter MXTC-S, which characterizes the functional thickness of alveolar septa, has potential as a novel biomarker for regional parenchymal inflammation or thickening. PMID:21509861
Alonso-Gonzalez, Rafael; Borgia, Francesco; Diller, Gerhard-Paul; Inuzuka, Ryo; Kempny, Aleksander; Martinez-Naharro, Ana; Tutarel, Oktay; Marino, Philip; Wustmann, Kerstin; Charalambides, Menelaos; Silva, Margarida; Swan, Lorna; Dimopoulos, Konstantinos; Gatzoulis, Michael A
2013-02-26
Restrictive lung defects are associated with higher mortality in patients with acquired chronic heart failure. We investigated the prevalence of abnormal lung function, its relation to severity of underlying cardiac defect, its surgical history, and its impact on outcome across the spectrum of adult congenital heart disease. A total of 1188 patients with adult congenital heart disease (age, 33.1±13.1 years) undergoing lung function testing between 2000 and 2009 were included. Patients were classified according to the severity of lung dysfunction based on predicted values of forced vital capacity. Lung function was normal in 53% of patients with adult congenital heart disease, mildly impaired in 17%, and moderately to severely impaired in the remainder (30%). Moderate to severe impairment of lung function related to complexity of underlying cardiac defect, enlarged cardiothoracic ratio, previous thoracotomy/ies, body mass index, scoliosis, and diaphragm palsy. Over a median follow-up period of 6.7 years, 106 patients died. Moderate to severe impairment of lung function was an independent predictor of survival in this cohort. Patients with reduced force vital capacity of at least moderate severity had a 1.6-fold increased risk of death compared with patients with normal lung function (P=0.04). A reduced forced vital capacity is prevalent in patients with adult congenital heart disease; its severity relates to the complexity of the underlying heart defect, surgical history, and scoliosis. Moderate to severe impairment of lung function is an independent predictor of mortality in contemporary patients with adult congenital heart disease.
Kundra, Pankaj; Vitheeswaran, Madhurima; Nagappa, Mahesh; Sistla, Sarath
2010-06-01
This study was designed to compare the effects of preoperative and postoperative incentive spirometry on lung functions after laparoscopic cholecystectomy in 50 otherwise normal healthy adults. Patients were randomized into a control group (group PO, n=25) and a study group (group PR, n=25). Patients in group PR were instructed to carry out incentive spirometry before the surgery 15 times, every fourth hourly, for 1 week whereas in group PO, incentive spirometry was carried out during the postoperative period. Lung functions were recorded at the time of preanesthetic evaluation, on the day before the surgery, postoperatively at 6, 24, and 48 hours, and at discharge. Significant improvement in the lung functions was seen after preoperative incentive spirometry (group PR), P<0.05. The lung functions were significantly reduced till the time of discharge in both the groups. However, lung functions were better preserved in group PR at all times when compared with group PO; P<0.05. To conclude, lung functions are better preserved with preoperative than postoperative incentive spirometry.
Liu, Xiaoyu; Ma, Cuiqing; Wang, Xiaoyu; Wang, Wenjing; Li, Zhu; Wang, Xiansheng; Wang, Pengyu; Sun, Wuzhuang; Xue, Baojian
2017-01-01
Background Chronic obstructive pulmonary disease (COPD) is a progressive pulmonary disease caused by harmful gases or particles. Recent studies have shown that 2% hydrogen or hydrogen water is effective in the treatment and prevention of a variety of diseases. This study investigated the beneficial effects and the possible mechanisms of different hydrogen concentrations on COPD. Methods A rat COPD model was established through smoke exposure methods, and inhalation of different concentrations of hydrogen was used as the intervention. The daily condition of rats and the weight changes were observed; lung function and right ventricular hypertrophy index were assessed. Also, white blood cells were assessed in bronchoalveolar lavage fluid. Pathologic changes in the lung tissue were analyzed using light microscopy and electron microscopy; cardiovascular structure and pulmonary arterial pressure changes in rats were observed using ultrasonography. Tumor necrosis factor alpha, interleukin (IL)-6, IL-17, IL-23, matrix metalloproteinase-12, tissue inhibitor of metalloproteinase-1, caspase-3, caspase-8 protein, and mRNA levels in the lung tissue were determined using immunohistochemistry, Western blot, and real-time polymerase chain reaction. Results The results showed that hydrogen inhalation significantly reduced the number of inflammatory cells in the bronchoalveolar lavage fluid, and the mRNA and protein expression levels of tumor necrosis factor alpha, IL-6, IL-17, IL-23, matrix metalloproteinase-12, caspase-3, and caspase-8, but increased the tissue inhibitor of metalloproteinase-1 expression. Furthermore, hydrogen inhalation ameliorated lung pathology, lung function, and cardiovascular function and reduced the right ventricular hypertrophy index. Inhalation of 22% and 41.6% hydrogen showed better outcome than inhalation of 2% hydrogen. Conclusion These results suggest that hydrogen inhalation slows the development of COPD-like lung disease in a cigarette smoke-induced rat model. Higher concentrations of hydrogen may represent a more effective way for the rat model. PMID:28496315
Taroni, Jaclyn N; Greene, Casey S; Martyanov, Viktor; Wood, Tammara A; Christmann, Romy B; Farber, Harrison W; Lafyatis, Robert A; Denton, Christopher P; Hinchcliff, Monique E; Pioli, Patricia A; Mahoney, J Matthew; Whitfield, Michael L
2017-03-23
Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved affected tissues or if each manifestation has a distinct underlying pathology. We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets for enrichment in skin and lung using a Wilcoxon rank sum test. We identified a common pathogenic gene expression signature-an immune-fibrotic axis-indicative of pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells) affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation transcriptional programs in SSc-associated PF lung and in the skin of patients with an "inflammatory" SSc gene expression signature. Our results suggest that the innate immune system is central to SSc disease processes but that subtle distinctions exist between tissues. Our approach provides a framework for examining molecular signatures of disease in fibrosis and autoimmune diseases and for leveraging publicly available data to understand common and tissue-specific disease processes in complex human diseases.
Evolution of cystic fibrosis lung function in the early years.
Bush, Andrew; Sly, Peter D
2015-11-01
Most treatment of newborn screening-diagnosed cystic fibrosis is not evidence-based; there are very few randomized controlled trials (RCTs). Furthermore, the advent of novel molecular therapies, which could be started at diagnosis, mandates performing RCTs in very young children. However, unless the natural history of early cystic fibrosis lung disease is known, RCTs are impossible. Here, we review the results of two large prospective cohorts of these infants - London Cystic Fibrosis Collaboration (LCFC) (London, UK) and Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST-CF) (Australia). Nutritional status remained excellent in both the cohorts. Both cohorts reported abnormal lung function aged at 3 months. AREST-CF, which previously reported rapidly declining preschool lung function, now report good conventional school-age spirometry. LCFC reported improvement between 3 months and 1 year, and stability in the second year. AREST-CF also reported a high prevalence of high resolution computed tomographic abnormalities related to free neutrophil elastase in bronchoalveolar lavage; LCFC reported high resolution computed tomographic changes at 1 year, which were too mild to be scored reproducibly. At least in the first 2 years of life, lung function is not a good end-point for RCTs; routine bronchoalveolar lavage and HRCT cannot be justified. Newborn screening has greatly improved outcomes, but we need better point-of-care biomarkers.
Hetzel, Juergen; Spengler, Werner; Horger, Marius; Boeckeler, Michael
2015-06-01
Endoscopic lung volume reduction is an emerging technique meant to improve lung function parameters, quality of life, and exercise tolerance in patients with severe lung emphysema. This is the first report of lung volume reduction by autologous blood in a patient with non-bullous lung emphysema. A 74-year-old woman with heterogeneous lung emphysema developed accidentally diffuse lobar bleeding immediately after valve placement. Due to persistent hemorrhage, the valves had to be removed shortly thereafter. Despite extraction of the valves, respiratory function of the patient improved rapidly indicated also by a drop in the COPD assessment test questionnaire, 3 months later. This was consistent with both improvement of lung function tests and six-minute walking test.
Jia, Wen-Jun; Jiang, Shan; Tang, Qiao-Li; Shen, Di; Xue, Bin; Ning, Wen; Li, Chao-Jun
2016-06-01
G proteins play essential roles in regulating fetal lung development, and any defects in their expression or function (eg, activation or posttranslational modification) can lead to lung developmental malformation. Geranylgeranyl diphosphate synthase (GGPPS) can modulate protein prenylation that is required for protein membrane-anchoring and activation. Here, we report that GGPPS regulates fetal lung branching morphogenesis possibly through controlling K-Ras prenylation during fetal lung development. GGPPS was continuously expressed in lung epithelium throughout whole fetal lung development. Specific deletion of geranylgeranyl diphosphate synthase 1 (Ggps1) in lung epithelium during fetal lung development resulted in neonatal respiratory distress syndrome-like disease. The knockout mice died at postnatal day 1 of respiratory failure, and the lungs showed compensatory pneumonectasis, pulmonary atelectasis, and hyaline membranes. Subsequently, we proved that lung malformations in Ggps1-deficient mice resulted from the failure of fetal lung branching morphogenesis. Further investigation revealed Ggps1 deletion blocked K-Ras geranylgeranylation and extracellular signal-related kinase 1 or 2/mitogen-activated protein kinase signaling, which in turn disturbed fibroblast growth factor 10 regulation on fetal lung branching morphogenesis. Collectively, our data suggest that GGPPS is essential for maintaining fetal lung branching morphogenesis, which is possibly through regulating K-Ras prenylation. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Lawson, Joshua A; Dosman, James A; Rennie, Donna C; Beach, Jeremy; Newman, Stephen C; Senthilselvan, Ambikaipakan
2011-01-01
BACKGROUND/OBJECTIVES: Knowledge of the effects of domestic endotoxin on children’s lung function is limited. The association between domestic endotoxin and asthma or wheeze and lung function among school-age children (six to 18 years of age) was examined. The interaction between endotoxin and other personal and environmental characteristics and lung function was also assessed. METHODS: A case-control study was conducted in and around the rural community of Humboldt, Saskatchewan, between 2005 and 2007. Parents of cases reported either doctor-diagnosed asthma or wheeze in the previous year. Controls were randomly selected from those not reporting these conditions. Data were collected by questionnaire to ascertain symptoms and conditions, while spirometry was used to measure lung function including forced vital capacity and forced expiratory volume in 1 s. Dust collected from the child’s play area floor and the child’s mattress was used to quantify endotoxin, and saliva was collected to quantify cotinine levels and assess tobacco smoke exposure. RESULTS: There were 102 cases and 207 controls included in the present study. Lower forced expiratory volume in 1 s was associated with higher mattress endotoxin load among female cases (beta=−0.25, SE=0.07 [P<0.01]). There was a trend toward lower forced vital capacity, which was associated with higher play area endotoxin load among cases with high tobacco smoke exposure (beta=−0.17, SE=0.09 [P<0.10]). CONCLUSIONS: Findings indicated that high endotoxin levels present in common household areas of rural children with asthma or wheeze may also affect their lung function. These associations may be potentiated by tobacco smoke exposure and female sex. PMID:22187693
Violence exposure, a chronic psychosocial stressor, and childhood lung function
Suglia, Shakira Franco; Ryan, Louise; Laden, Francine; Dockery, Douglas; Wright, Rosalind J
2011-01-01
Background Chronic psychosocial stressors, including violence, have been linked to neuropsychological and behavioral development in children as well as physiologic alterations that may lead to broader health effects. Methods We examined the relationship between violence and childhood lung function in a prospective birth cohort of 313 urban children 6 and 7 years of age. Mothers reported on their child’s lifetime exposure to community violence (ETV) and interparental conflict in the home [Conflict Tactics Scale (CTS)] within one year of the lung function assessment. Results In linear regression analyses, adjusting for maternal education, child’s age, race, birthweight, tobacco smoke exposure, and medical history, girls in the highest CTS verbal aggression tertile had a 5.5% (95% CI: −9.6, −1.5) decrease in percent predicted FEV1 and a 5.4% (95% CI: −9.7, −1.1) decrease in FVC compared to girls in the lowest tertile. The CTS verbal aggression subscale was associated with lung function among boys in the same direction, albeit this was not statistically significant. Boys in the highest ETV tertile had a 3.4% (95% CI: −8.0, 1.1) lower FEV1 and 5.3% lower (95% CI: −10.2, −0.4) FVC compared to boys in the lowest tertile. The ETV score was not a significant predictor of girl’s lung function. Conclusions Interparental conflict, specifically verbal aggression, and exposure to community violence were associated with decreased childhood lung function independent of socioeconomic status, tobacco smoke exposure, birthweight and respiratory illness history. Gender differences were noted based on the type of violence exposure which may warrant further exploration. PMID:18158365
Putcha, Nirupama; Crainiceanu, Ciprian; Norato, Gina; Samet, Jonathan; Quan, Stuart F.; Gottlieb, Daniel J.; Redline, Susan
2016-01-01
Rationale: Whether sleep-disordered breathing (SDB) severity and diminished lung function act synergistically to heighten the risk of adverse health outcomes remains a topic of significant debate. Objectives: The current study sought to determine whether the association between lower lung function and mortality would be stronger in those with increasing severity of SDB in a community-based cohort of middle-aged and older adults. Methods: Full montage home sleep testing and spirometry data were analyzed on 6,173 participants of the Sleep Heart Health Study. Proportional hazards models were used to calculate risk for all-cause mortality, with FEV1 and apnea–hypopnea index (AHI) as the primary exposure indicators along with several potential confounders. Measurements and Main Results: All-cause mortality rate was 26.9 per 1,000 person-years in those with SDB (AHI ≥5 events/h) and 18.2 per 1,000 person-years in those without (AHI <5 events/h). For every 200-ml decrease in FEV1, all-cause mortality increased by 11.0% in those without SDB (hazard ratio, 1.11; 95% confidence interval, 1.08–1.13). In contrast, for every 200-ml decrease in FEV1, all-cause mortality increased by only 6.0% in participants with SDB (hazard ratio, 1.06; 95% confidence interval, 1.04–1.09). Additionally, the incremental influence of lung function on all-cause mortality was less with increasing severity of SDB (P value for interaction between AHI and FEV1, 0.004). Conclusions: Lung function was associated with risk for all-cause mortality. The incremental contribution of lung function to mortality diminishes with increasing severity of SDB. PMID:27105053
Davidson, Donald J; Webb, Sheila; Teague, Peter; Govan, John R W; Dorin, Julia R
2004-01-01
To establish the role of defects in murine Cftr in the susceptibility to Staphylococcus aureus lung disease using mouse models of cystic fibrosis (CF), congenic or inbred strains. We describe the histopathological analyses of CF mice repeatedly exposed by aerosolisation to a CF isolate of S. aureus, using residual function Cftr mice and compound heterozygotes generated by intercrossing these with Cftr 'null' mice, all congenic on the C57Bl6/N background. We demonstrate that mice congenic on the C57Bl/6 background develop significantly more severe lung pathology than non-CF littermates in response to repeated exposure to the most frequent early CF lung pathogen S. aureus. Furthermore, reducing the level of Cftr by half in compound heterozygote mice does not impact upon disease severity, even in response to an increased bacterial dose. These results are consistent with an airway clearance defect, or abnormal inflammatory response secondary to Cftr mutation. These studies confirm the primary role for Cftr mutation in the development of this lung phenotype. In addition, these results demonstrate that a further 50% decrease in residual wild-type Cftr mRNA levels in this model does not impact the severity of the histopathological response to S. aureus, suggesting a critical threshold level for functional CFTR. Copyright 2004 S. Karger AG, Basel
Lung function in the absence of respiratory symptoms in overweight children and adolescents*
de Assunção, Silvana Neves Ferraz; Daltro, Carla Hilário da Cunha; Boa Sorte, Ney Christian; Ribeiro, Hugo da Costa; Bastos, Maria de Lourdes; Queiroz, Cleriston Farias; Lemos, Antônio Carlos Moreira
2014-01-01
OBJECTIVE: To describe lung function findings in overweight children and adolescents without respiratory disease. METHODS: This was a cross-sectional study involving male and female overweight children and adolescents in the 8-18 year age bracket, without respiratory disease. All of the participants underwent anthropometric assessment, chest X-ray, pulse oximetry, spirometry, and lung volume measurements. Individuals with respiratory disease were excluded, as were those who were smokers, those with abnormal chest X-rays, and those with an SpO2 = 92%. Waist circumference was measured in centimeters. The body mass index-for-age Z score for boys and girls was used in order to classify the individuals as overweight, obese, or severely obese. Lung function variables were expressed in percentage of the predicted value and were correlated with the anthropometric indices. RESULTS: We included 59 individuals (30 males and 29 females). The mean age was 11.7 ± 2.7 years. Lung function was normal in 21 individuals (35.6%). Of the 38 remaining individuals, 19 (32.2%), 15 (25.4%), and 4 (6.7%) presented with obstructive, restrictive, and mixed ventilatory disorder, respectively. The bronchodilator response was positive in 15 individuals (25.4%), and TLC measurements revealed that all of the individuals with reduced VC had restrictive ventilatory disorder. There were significant negative correlations between the anthropometric indices and the Tiffeneau index in the individuals with mixed ventilatory disorder. CONCLUSIONS: Lung function was abnormal in approximately 65% of the individuals evaluated here, all of whom were overweight. Obstructive ventilatory disorder and positive bronchodilator response predominated. PMID:24831397
Impact of childhood anthropometry trends on adult lung function.
Suresh, Sadasivam; O'Callaghan, Michael; Sly, Peter D; Mamun, Abdullah A
2015-04-01
Poor fetal growth rate is associated with lower respiratory function; however, there is limited understanding of the impact of growth trends and BMI during childhood on adult respiratory function. The current study data are from the Mater-University of Queensland Study of Pregnancy birth cohort. Prospective data were available from 1,740 young adults who performed standard spirometry at 21 years of age and whose birth weight and weight, height, and BMI at 5, 14, and 21 years of age were available. Catch-up growth was defined as an increase of 0.67 Z score in weight between measurements. The impact of catch-up growth on adult lung function and the relationship between childhood BMI trends and adult lung function were assessed using regression analyses. Lung function was higher at 21 years in those demonstrating catch-up growth from birth to 5 years (FVC, men: 5.33 L vs 5.54 L; women: 3.78 L vs 4.03 L; and FEV1, men: 4.52 L/s vs 4.64 L/s; women: 3.31 L/s vs 3.45 L/s). Subjects in the lowest quintile of birth (intrauterine growth retardation) also showed improved lung function if they had catch-up growth in the first 5 years of life. There was a positive correlation between increasing BMI and lung function at 5 years of age. However, in the later measurements when BMI increased into the obese category, a drop in lung function was observed. These data show evidence for a positive contribution of catch-up growth in early life to adult lung function. However, if weight gain or onset of obesity occurs after 5 years of age, an adverse impact on adult lung function is noted.
Pbert, Lori; Madison, J. Mark; Druker, Susan; Olendzki, Nicholas; Magner, Robert; Reed, George; Carmody, James
2014-01-01
Background Improving asthma patients’ quality of life is an important clinical outcome. This study evaluated the efficacy of mindfulness-based stress reduction (MBSR) in improving quality of life and lung function in patients with asthma. Methods A randomized controlled trial compared an 8 week MBSR group-based program (n = 42) to an educational control program (n = 41) in adults with mild, moderate or severe persistent asthma recruited at a university hospital outpatient primary care and pulmonary care clinic. Primary outcomes were quality of life assessed by the Asthma Quality of Life Questionnaire (AQOL), and lung function assessed by change from baseline in two-week average morning peak expiratory flow (PEF). Secondary outcomes were asthma control assessed by 2007 NIH/NHLBI guidelines, and stress assessed by Perceived Stress Scale. Follow-up assessments were conducted at 10 weeks, 6 and 12 months. Results At 12 months MBSR resulted in clinically significant improvements in quality of life (intervention effect 0.55 (95% CI 0.21, 0.89, p=0.001)) and perceived stress (intervention effect −4.5 (95% CI −7.1, −1.9; p= 0.001)). No significant effect was found on lung function (morning PEF, PEF variability, and FEV1). At 12 months the percentage of patients in MBSR with well-controlled asthma showed a non-statistically significant increase (7.3% at baseline to 19.4%) compared to the control condition (7.5% and 7.9%, respectively) (p=0.30). Conclusions MBSR produced lasting clinically significant improvements in asthma-related quality of life and stress in patients with persistent asthma, even in the absence of improvements in lung function. PMID:22544892
Detecting regional lung properties using audio transfer functions of the respiratory system.
Mulligan, K; Adler, A; Goubran, R
2009-01-01
In this study, a novel instrument has been developed for measuring changes in the distribution of lung fluid the respiratory system. The instrument consists of a speaker that inputs a 0-4kHz White Gaussian Noise (WGN) signal into a patient's mouth and an array of 4 electronic stethoscopes, linked via a fully adjustable harness, used to recover signals on the chest surface. The software system for processing the data utilizes the principles of adaptive filtering in order to obtain a transfer function that represents the input-output relationship for the signal as the volume of fluid in the lungs is varied. A chest phantom model was constructed to simulate the behavior of fluid related diseases within the lungs through the injection of varying volumes of water. Tests from the phantom model were compared to healthy subjects. Results show the instrument can obtain similar transfer functions and sound propagation delays between both human and phantom chests.
Binks, Andrew P; Beyer, Megyn; Miller, Ryan; LeClair, Renee J
2017-03-01
Idiopathic pulmonary fibrosis (IPF) involves collagen deposition that results in a progressive decline in lung function. This process involves activation of Smad2/3 by transforming growth factor (TGF)- β and Wnt signaling pathways. Collagen Triple Helix Repeat-Containing-1 (Cthrc1) protein inhibits Smad2/3 activation. To test the hypothesis that Cthrc1 limits collagen deposition and the decline of lung function, Cthrc1 knockout (Cthrc1 -/- ) and wild-type mice (WT) received intratracheal injections of 2.5 U/kg bleomycin or saline. Lungs were harvested after 14 days and Bronchoalveolar lavage (BAL) TGF- β , IL1- β , hydroxyproline and lung compliance were assessed. TGF- β was significantly higher in Cthrc1 -/- compared to WT (53.45 ± 6.15 ng/mL vs. 34.48 ± 11.05) after saline injection. Bleomycin injection increased TGF- β in both Cthrc1 -/- (66.37 ± 8.54 ng/mL) and WT (63.64 ± 8.09 ng/mL). Hydroxyproline was significantly higher in Cthrc1 -/- compared to WT after bleomycin-injection (2.676 ± 0.527 μ g/mg vs. 1.889 ± 0.520, P = 0.028). Immunohistochemistry of Cthrc1 -/- lung sections showed intracellular localization and activation of β -catenin Y654 in areas of tissue remodeling that was not evident in WT Lung compliance was significantly reduced by bleomycin in Cthrc1 -/- but there was no effect in WT animals. These data suggest Cthrc1 reduces fibrotic tissue formation in bleomycin-induced lung fibrosis and the effect is potent enough to limit the decline in lung function. We conclude that Cthrc1 plays a protective role, limiting collagen deposition and could form the basis of a novel therapy for pulmonary fibrosis. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Fetal and post-natal lung defects reveal a novel and required role for Fgf8 in lung development
Yu, Shibin; Poe, Bryan; Schwarz, Margaret; Elliot, Sarah; Albertine, Kurt H.; Fenton, Stephen; Garg, Vidu; Moon, Anne M.
2016-01-01
The fibroblast growth factor, FGF8, has been shown to be essential for vertebrate cardiovascular, craniofacial, brain and limb development. Here we report that Fgf8 function is required for normal progression through the late fetal stages of lung development that culminate in alveolar formation. Budding, lobation and branching morphogenesis are unaffected in early stage Fgf8 hypomorphic and conditional mutant lungs. Excess proliferation during fetal development disrupts distal airspace formation, mesenchymal and vascular remodeling, and Type I epithelial cell differentiation resulting in postnatal respiratory failure and death. Our findings reveal a previously unknown, critical role for Fgf8 function in fetal lung development and suggest that this factor may also contribute to postnatal alveologenesis. Given the high number of premature infants with alveolar dysgenesis and lung dysplasia, and the accumulating evidence that short-term benefits of available therapies may be outweighed by long term detrimental effects on postnatal alveologenesis, the therapeutic implications of identifying a factor or pathway that can be targeted to stimulate normal alveolar development are profound. PMID:20727874
Calcineurin/Nfat signaling is required for perinatal lung maturation and function.
Davé, Vrushank; Childs, Tawanna; Xu, Yan; Ikegami, Machiko; Besnard, Valérie; Maeda, Yutaka; Wert, Susan E; Neilson, Joel R; Crabtree, Gerald R; Whitsett, Jeffrey A
2006-10-01
Pulmonary surfactant proteins and lipids are required for lung function after birth. Lung immaturity and resultant surfactant deficiency cause respiratory distress syndrome, a common disorder contributing to morbidity and mortality in preterm infants. Surfactant synthesis increases prior to birth in association with formation of the alveoli that mediate efficient gas exchange. To identify mechanisms controlling perinatal lung maturation, the Calcineurin b1 (Cnb1) gene was deleted in the respiratory epithelium of the fetal mouse. Deletion of Cnb1 caused respiratory failure after birth and inhibited the structural maturation of the peripheral lung. Synthesis of surfactant and a lamellar body-associated protein, ABC transporter A3 (ABCA3), was decreased prior to birth. Nuclear factor of activated T cells (Nfat) calcineurin-dependent 3 (Nfatc3), a transcription factor modulated by calcineurin, was identified as a direct activator of Sftpa, Sftpb, Sftpc, Abca3, Foxa1, and Foxa2 genes. The calcineurin/Nfat pathway controls the morphologic maturation of lungs prior to birth and regulates expression of genes involved in surfactant homeostasis that are critical for adaptation to air breathing.
Tibboel, Jeroen; Keijzer, Richard; Reiss, Irwin; de Jongste, Johan C; Post, Martin
2014-06-01
The aim of this study was to characterize the evolution of lung function and -structure in elastase-induced emphysema in adult mice and the effect of mesenchymal stromal cell (MSC) administration on these parameters. Adult mice were treated with intratracheal (4.8 units/100 g bodyweight) elastase to induce emphysema. MSCs were administered intratracheally or intravenously, before or after elastase injection. Lung function measurements, histological and morphometric analysis of lung tissue were performed at 3 weeks, 5 and 10 months after elastase and at 19, 20 and 21 days following MSC administration. Elastase-treated mice showed increased dynamic compliance and total lung capacity, and reduced tissue-specific elastance and forced expiratory flows at 3 weeks after elastase, which persisted during 10 months follow-up. Histology showed heterogeneous alveolar destruction which also persisted during long-term follow-up. Jugular vein injection of MSCs before elastase inhibited deterioration of lung function but had no effects on histology. Intratracheal MSC treatment did not modify lung function or histology. In conclusion, elastase-treated mice displayed persistent characteristics of pulmonary emphysema. Jugular vein injection of MSCs prior to elastase reduced deterioration of lung function. Intratracheal MSC treatment had no effect on lung function or histology.
Dubsky, Stephen; Hooper, Stuart B.; Siu, Karen K. W.; Fouras, Andreas
2012-01-01
During breathing, lung inflation is a dynamic process involving a balance of mechanical factors, including trans-pulmonary pressure gradients, tissue compliance and airway resistance. Current techniques lack the capacity for dynamic measurement of ventilation in vivo at sufficient spatial and temporal resolution to allow the spatio-temporal patterns of ventilation to be precisely defined. As a result, little is known of the regional dynamics of lung inflation, in either health or disease. Using fast synchrotron-based imaging (up to 60 frames s−1), we have combined dynamic computed tomography (CT) with cross-correlation velocimetry to measure regional time constants and expansion within the mammalian lung in vivo. Additionally, our new technique provides estimation of the airflow distribution throughout the bronchial tree during the ventilation cycle. Measurements of lung expansion and airflow in mice and rabbit pups are shown to agree with independent measures. The ability to measure lung function at a regional level will provide invaluable information for studies into normal and pathological lung dynamics, and may provide new pathways for diagnosis of regional lung diseases. Although proof-of-concept data were acquired on a synchrotron, the methodology developed potentially lends itself to clinical CT scanning and therefore offers translational research opportunities. PMID:22491972
Ambrosius, Wojciech; Gazdulska, Joanna; Gołda-Gocka, Iwona; Kozubski, Wojciech; Ramlau, Rodryg
2016-01-01
Objective. To evaluate the involvement of glutamate metabolism in peripheral blood mononuclear cells (PBMC) in the development of neurological complications in lung cancer and during chemotherapy. Methods. The prospective study included 221 lung cancer patients treated with chemotherapeutics. Neurological status and cognitive functions were evaluated at baseline and after 6-month follow-up. Glutamate level, the activities of glutaminase- (GLS-) glutamate synthetizing enzyme, glutamate dehydrogenase (GDH), and glutamate decarboxylase catalyzing glutamate degradation were analyzed in PBMC and in sera of lung cancer patients by means of spectrophotometric and colorimetric methods. Results. Chemotherapy of lung neoplasms induced increase of glutamate content in PBMC and its concentration in serum increased the activity of GDH in PBMC and decreased activity of glutaminase in PBMC. The changes in glutamate metabolism markers were associated with initial manifestation of neurological deficit in lung cancer patients and with new symptoms, which appear as a complication of chemotherapy. Moreover, the analyzed parameters of glutamate control correlated with a spectrum of cognitive functions measures in lung cancer patients. Conclusion. We have demonstrated dysregulation in glutamate and glutamate metabolism controlling enzymes as promising indicators of risk for chemotherapy-induced neurological complications in lung cancer patients with particular emphasis on cognitive impairment. PMID:28044066
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh, Khadija; Capaldi, Dante PI; Parraga, Grace
Purpose: Functional lung avoidance radiotherapy promises optimized therapy planning by minimizing dose to well-functioning lung and maximizing dose to the rest of the lung. Patients with NSCLC commonly present with co-morbid COPD and heterogeneously distributed ventilation abnormalities stemming from emphysema, airways disease, and tumour burden. We hypothesized that pulmonary functional imaging methods may be used to optimize radiotherapy plans to avoid regions of well-functioning lung and significantly improve outcomes like quality-of-life and survival. To ascertain the utility of functional lung avoidance therapy in clinical practice, we measured COPD phenotypes in NSCLC patients enrolled in a randomized-controlled-clinical-trial prior to curative intentmore » therapy. Methods: Thirty stage IIIA/IIIB NSCLC patients provided written informed consent to a randomized-controlled-clinical-trial ( http://clinicaltrials.gov/ct2/show/NCT02002052 ) comparing outcomes in patients randomized to standard or image-guided radiotherapy. Hyperpolarized noble gas MRI ventilation-defect-percent (VDP) (Kirby et al, Acad Radiol, 2012) as well as CT-emphysema measurements were determined. Patients were stratified based on quantitative imaging evidence of ventilation-defects and emphysema into two subgroups: 1) tumour-specific ventilation defects only (TSD), and, 2) tumour-specific and other ventilation defects with and without emphysema (TSD{sub VE}). Receiver-operating-characteristic (ROC) curves were used to characterize the performance of clinical measures as predictors of the presence of non-tumour specific ventilation defects. Results: Twenty-one out of thirty subjects (70%) had non-tumour specific ventilation defects (TSD{sub VE}) and nine subjects had ONLY tumour-specific defects (TSD). Subjects in the TSD{sub VE} group had significantly greater smoking-history (p=.006) and airflow obstruction (FEV{sub 1}/FVC) (p=.001). ROC analysis demonstrated an 87% classification rate for smoking pack-years, 90% for FEV{sub 1}/FVC, and 56% for tumour RECIST measurements for identifying patients with non-tumour and tumour-specific ventilation abnormalities. Conclusion: 70% of NSCLC patients had ventilation abnormalities stemming from emphysema, airways disease and tumour burden. Smoking-history and airflow obstruction, but not RECIST, identified NSCLC patients with ventilation abnormalities appropriate for functional lung avoidance therapy.« less
Interstitial pneumonia associated to peginterferon alpha-2a: A focus on lung function
Cortés-Telles, Arturo
2016-01-01
Pulmonary toxicity related to the use of pegylated interferon alpha-2a during treatment of hepatitis C infections is rare; nonetheless, some cases with fatal outcomes have been reported. Evaluating patients’ pulmonary function is a key to diagnosis, follow-up and prognosis of several respiratory diseases, but case reports of respiratory manifestations related to the use of pegylated interferon alpha-2a have limited their findings to only baseline measurements. This paper examines the case of a 65-year-old woman with chronic hepatitis C virus infection who developed interstitial pneumonitis associated with pegylated interferon alpha-2a. Initial lung function evaluation revealed a marked reduction compared to an earlier assessment; the results were consistent with a moderate restricted pattern. Fortunately, over the ensuing 8 weeks of follow-up after discontinuing the drug, the patient recovered her lung function and experienced an overall improvement in her respiratory symptoms. PMID:27051119
Enhanced Re-Endothelialization of Decellularized Rat Lungs
Stabler, Collin T.; Caires, Luiz C.; Mondrinos, Mark J.; Marcinkiewicz, Cezary; Lazarovici, Philip; Wolfson, Marla R.
2016-01-01
Decellularized lung tissue has been recognized as a potential platform to engineer whole lung organs suitable for transplantation or for modeling a variety of lung diseases. However, many technical hurdles remain before this potential may be fully realized. Inability to efficiently re-endothelialize the pulmonary vasculature with a functional endothelium appears to be the primary cause of failure of recellularized lung scaffolds in early transplant studies. Here, we present an optimized approach for enhanced re-endothelialization of decellularized rodent lung scaffolds with rat lung microvascular endothelial cells (ECs). This was achieved by adjusting the posture of the lung to a supine position during cell seeding through the pulmonary artery. The supine position allowed for significantly more homogeneous seeding and better cell retention in the apex regions of all lobes than the traditional upright position, especially in the right upper and left lobes. Additionally, the supine position allowed for greater cell retention within large diameter vessels (proximal 100–5000 μm) than the upright position, with little to no difference in the small diameter distal vessels. EC adhesion in the proximal regions of the pulmonary vasculature in the decellularized lung was dependent on the binding of EC integrins, specifically α1β1, α2β1, and α5β1 integrins to, respectively, collagen type-I, type-IV, and fibronectin in the residual extracellular matrix. Following in vitro maturation of the seeded constructs under perfusion culture, the seeded ECs spread along the vascular wall, leading to a partial reestablishment of endothelial barrier function as inferred from a custom-designed leakage assay. Our results suggest that attention to cellular distribution within the whole organ is of paramount importance for restoring proper vascular function. PMID:26935764
Zhou, Fei; Wang, Yanru; Liu, Hongliang; Ready, Neal; Han, Younghun; Hung, Rayjean J.; Brhane, Yonathan; McLaughlin, John; Brennan, Paul; Bickeböller, Heike; Rosenberger, Albert; Houlston, Richard S.; Caporaso, Neil; Landi, Maria Teresa; Brüske, Irene; Risch, Angela; Ye, Yuanqing; Wu, Xifeng; Christiani, David C.; Goodman, Gary; Chen, Chu; Amos, Christopher I.; Qingyi, Wei
2017-01-01
Purpose mRNA degradation is an important regulatory step for controlling gene expression and cell functions. Genetic abnormalities of the genes involved in mRNA degradation were found to be associated with cancer risks. Therefore, we systematically investigated the roles of genetic variants of genes in the general mRNA degradation pathway in lung cancer risk. Experimental design Meta-analyses were conducted in six lung cancer genome-wide association studies (GWASs) from the Transdisciplinary Research in Cancer of the Lung and additional two GWASs from Harvard University and deCODE in the International Lung Cancer Consortium. Expression quantitative trait loci analysis (eQTL) was used for in silico functional validation of the identified significant susceptibility loci. Results This pathway-based analysis included 4,603 single nucleotide polymorphisms (SNP) in 68 genes in 14,463 lung cancer cases and 44,188 controls, of which 20 SNPs were found to be associated with lung cancer risk with a false discovery rate threshold of <0.05. Among the 11 newly identified SNPs in CNOT6, which were in high linkage disequilibrium, the rs2453176 with a RegulomDB score “1f” was chosen as the tag SNP for further analysis. We found that the rs2453176 T allele was significantly associated with lung cancer risk (odds ratio=1.11, 95% confidence interval=1.04–1.18, P=0.001) in the eight GWASs. In the eQTL analysis, we found that levels of CNOT6 mRNA expression were significantly correlated with the rs2453176 T allele, which provided additional biological basis for the observed positive association. Conclusion The CNOT6 rs2453176 SNP may be a new functional susceptible locus for lung cancer risk. PMID:27805284
Hüttemann, Maik; Lee, Icksoo; Gao, Xiufeng; Pecina, Petr; Pecinova, Alena; Liu, Jenney; Aras, Siddhesh; Sommer, Natascha; Sanderson, Thomas H.; Tost, Monica; Neff, Frauke; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Naton, Beatrix; Rathkolb, Birgit; Rozman, Jan; Favor, Jack; Hans, Wolfgang; Prehn, Cornelia; Puk, Oliver; Schrewe, Anja; Sun, Minxuan; Höfler, Heinz; Adamski, Jerzy; Bekeredjian, Raffi; Graw, Jochen; Adler, Thure; Busch, Dirk H.; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Weissmann, Norbert; Doan, Jeffrey W.; Bassett, David J. P.; Grossman, Lawrence I.
2012-01-01
Cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial electron transport chain. The purpose of this study was to analyze the function of lung-specific cytochrome c oxidase subunit 4 isoform 2 (COX4i2) in vitro and in COX4i2-knockout mice in vivo. COX was isolated from cow lung and liver as control and functionally analyzed. COX4i2-knockout mice were generated and the effect of the gene knockout was determined, including COX activity, tissue energy levels, noninvasive and invasive lung function, and lung pathology. These studies were complemented by a comprehensive functional screen performed at the German Mouse Clinic (Neuherberg, Germany). We show that isolated cow lung COX containing COX4i2 is about twice as active (88 and 102% increased activity in the presence of allosteric activator ADP and inhibitor ATP, respectively) as liver COX, which lacks COX4i2. In COX4i2-knockout mice, lung COX activity and cellular ATP levels were significantly reduced (−50 and −29%, respectively). Knockout mice showed decreased airway responsiveness (60% reduced Penh and 58% reduced airway resistance upon challenge with 25 and 100 mg methacholine, respectively), and they developed a lung pathology deteriorating with age that included the appearance of Charcot-Leyden crystals. In addition, there was an interesting sex-specific phenotype, in which the knockout females showed reduced lean mass (−12%), reduced total oxygen consumption rate (−8%), improved glucose tolerance, and reduced grip force (−14%) compared to wild-type females. Our data suggest that high activity lung COX is a central determinant of airway function and is required for maximal airway responsiveness and healthy lung function. Since airway constriction requires energy, we propose a model in which reduced tissue ATP levels explain protection from airway hyperresponsiveness, i.e., absence of COX4i2 leads to reduced lung COX activity and ATP levels, which results in impaired airway constriction and thus reduced airway responsiveness; long-term lung pathology develops in the knockout mice due to impairment of energy-costly lung maintenance processes; and therefore, we propose mitochondrial oxidative phosphorylation as a novel target for the treatment of respiratory diseases, such as asthma.—Hüttemann, M., Lee, I., Gao, X., Pecina, P., Pecinova, A., Liu, J., Aras, S., Sommer, N., Sanderson, T. H., Tost, M., Neff, F., Aguilar-Pimentel, J. A., Becker, L., Naton, B., Rathkolb, B., Rozman, J., Favor, J., Hans, W., Prehn, C., Puk, O., Schrewe, A., Sun, M., Höfler, H., Adamski, J., Bekeredjian, R., Graw, J., Adler, T., Busch, D. H., Klingenspor, M., Klopstock, T., Ollert, M., Wolf, E., Fuchs, H., Gailus-Durner, V., Hrabě de Angelis, M., Weissmann, N., Doan, J. W., Bassett, D. J. P., Grossman, L. I. Cytochrome c oxidase subunit 4 isoform 2-knockout mice show reduced enzyme activity, airway hyporeactivity, and lung pathology. PMID:22730437
Spruit, Martijn A; Janssen, Paul P; Willemsen, Sonja C P; Hochstenbag, Monique M H; Wouters, Emiel F M
2006-05-01
Although lung cancer is a highly prevalent type of cancer, the effects of an inpatient multidisciplinary rehabilitation program on pulmonary function and exercise capacity have never been studied in these patients. Pulmonary function, 6-min walking distance and peak exercise capacity of 10 patients with a severely impaired pulmonary function following treatment of lung cancer were assessed in this pilot study before and after an 8-week inpatient multidisciplinary rehabilitation program. At baseline, patients had a restrictive pulmonary function and an apparent exercise intolerance (median 6-min walking distance: 63.6% predicted; median peak cycling load: 58.5% predicted). Despite the lack of change in median pulmonary function [FEV1: -0.01L, p = 0.5469], functional exercise capacity [145 m; 43.2% of the initial values, p=0.0020] and peak exercise capacity [26 W; 34.4% of the initial values, p = 0.0078] improved significantly compared to baseline. Future trials have to corroborate the present findings. Nevertheless, patients with lung cancer have a clear indication to start a comprehensive rehabilitation program following intensive treatment of their disease. In fact, based on the results of the present pilot study it appears that these patients are good candidates for pulmonary rehabilitation programs.
Cyclist route choice, traffic-related air pollution, and lung function: a scripted exposure study.
Jarjour, Sarah; Jerrett, Michael; Westerdahl, Dane; de Nazelle, Audrey; Hanning, Cooper; Daly, Laura; Lipsitt, Jonah; Balmes, John
2013-02-07
A travel mode shift to active transportation such as bicycling would help reduce traffic volume and related air pollution emissions as well as promote increased physical activity level. Cyclists, however, are at risk for exposure to vehicle-related air pollutants due to their proximity to vehicle traffic and elevated respiratory rates. To promote safe bicycle commuting, the City of Berkeley, California, has designated a network of residential streets as "Bicycle Boulevards." We hypothesized that cyclist exposure to air pollution would be lower on these Bicycle Boulevards when compared to busier roads and this elevated exposure may result in reduced lung function. We recruited 15 healthy adults to cycle on two routes - a low-traffic Bicycle Boulevard route and a high-traffic route. Each participant cycled on the low-traffic route once and the high-traffic route once. We mounted pollutant monitors and a global positioning system (GPS) on the bicycles. The monitors were all synced to GPS time so pollutant measurements could be spatially plotted. We measured lung function using spirometry before and after each bike ride. We found that fine and ultrafine particulate matter, carbon monoxide, and black carbon were all elevated on the high-traffic route compared to the low-traffic route. There were no corresponding changes in the lung function of healthy non-asthmatic study subjects. We also found that wind-speed affected pollution concentrations. These results suggest that by selecting low-traffic Bicycle Boulevards instead of heavily trafficked roads, cyclists can reduce their exposure to vehicle-related air pollution. The lung function results indicate that elevated pollutant exposure may not have acute negative effects on healthy cyclists, but further research is necessary to determine long-term effects on a more diverse population. This study and broader field of research have the potential to encourage policy-makers and city planners to expand infrastructure to promote safe and healthy bicycle commuting.
Li, Nan; Hu, Yang; Zhang, Yuan; Xu, Jin-Fu; Li, Xia; Ren, Jie; Su, Bo; Yuan, Wei-Zhong; Teng, Xin-Rong; Zhang, Rong-Xuan; Jiang, Dian-hua; Mulet, Xavier; Li, Hui-Ping
2013-01-01
Objective Acute lung injury (ALI), is a major cause of morbidity and mortality, which is routinely treated with the administration of systemic glucocorticoids. The current study investigated the distribution and therapeutic effect of a dexamethasone(DXM)-loaded immunoliposome (NLP) functionalized with pulmonary surfactant protein A (SP-A) antibody (SPA-DXM-NLP) in an animal model. Methods DXM-NLP was prepared using film dispersion combined with extrusion techniques. SP-A antibody was used as the lung targeting agent. Tissue distribution of SPA-DXM-NLP was investigated in liver, spleen, kidney and lung tissue. The efficacy of SPA-DXM-NLP against lung injury was assessed in a rat model of bleomycin-induced acute lung injury. Results The SPA-DXM-NLP complex was successfully synthesized and the particles were stable at 4°C. Pulmonary dexamethasone levels were 40 times higher with SPA-DXM-NLP than conventional dexamethasone injection. Administration of SPA-DXM-NLP significantly attenuated lung injury and inflammation, decreased incidence of infection, and increased survival in animal models. Conclusions The administration of SPA-DXM-NLP to animal models resulted in increased levels of DXM in the lungs, indicating active targeting. The efficacy against ALI of the immunoliposomes was shown to be superior to conventional dexamethasone administration. These results demonstrate the potential of actively targeted glucocorticoid therapy in the treatment of lung disease in clinical practice. PMID:23516459
Reference Equations for Static Lung Volumes and TLCO from a Population Sample in Northern Greece.
Michailopoulos, Pavlos; Kontakiotis, Theodoros; Spyratos, Dionisios; Argyropoulou-Pataka, Paraskevi; Sichletidis, Lazaros
2015-02-14
Background: The most commonly used reference equations for the measurement of static lung volumes/capacities and transfer factor of the lung for CO (TL CO ) are based on studies around 30-40 years old with significant limitations. Objectives: Our aim was to (1) develop reference equations for static lung volumes and TL CO using the current American Thoracic Society/European Respiratory Society guidelines, and (2) compare the equations derived with those most commonly used. Methods: Healthy Caucasian subjects (234 males and 233 females) aged 18-91 years were recruited. All of them were healthy never smokers with a normal chest X-ray. Static lung volumes and TL CO were measured with a single-breath technique according to the latest guidelines. Results: Curvilinear regression prediction equations derived from the present study were compared with those that are most commonly used. Our reference equations in accordance with the latest studies show lower values for all static lung volume parameters and TL CO as well as a different way of deviation of those parameters (i.e. declining with age total lung capacity, TL CO age decline in both sex and functional residual capacity age rise in males). Conclusions: We suggest that old reference values of static lung volumes and TL CO should be updated, and our perception of deviation of some spirometric parameters should be revised. Our new reference curvilinear equations derived according to the latest guidelines could contribute to the updating by respiratory societies of old existing reference values and result in a better estimation of the lung function of contemporary populations with similar Caucasian characteristics. © 2015 S. Karger AG, Basel.
Hypergravity Alters the Susceptibility of Cells to Anoxia-Reoxygenation Injury
NASA Technical Reports Server (NTRS)
McCloud, Henry; Pink, Yulondo; Harris-Hooker, Sandra A.; Melhado, Caroline D.; Sanford, Gary L.
1997-01-01
Gravity is a physical force, much like shear stress or mechanical stretch, and should affect organ and cellular function. Researchers have shown that gravity plays a role in ventilation and blood flow distribution, gas exchange, alveolar size and mechanical stresses within the lung. Short exposure to microgravity produced marked alterations in lung blood flow and ventilation distribution while hypergravity exaggerated the regional differences in lung structure and function resulting in reduced ventilation at the base and no ventilation of the upper half of the lung. Microgravity also decreased metabolic activity in cardiac cells, WI-38 embryonic lung cells, and human lymphocytes. Rats, in the tail-suspended head-down tilt model, experienced transient loss of lung water, contrary to an expected increase due to pooling of blood in the pulmonary vasculature. Hypergravity has also been found to increase the proliferation of several different cell lines (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. These studies show that changes in the gravity environment will affect several aspects of organ and cellular function and produce major change in blood flow and tissue/organ perfusion. However, these past studies have not addressed whether ischemia-reperfusion injury will be exacerbated or ameliorated by changes in the gravity environment, e.g., space flight. Currently, nothing is known about how gravity will affect the susceptibility of different lung and vascular cells to this type of injury. We conducted studies that addressed the following question: Does the susceptibility of lung fibroblasts, vascular smooth muscle, and endothelial cells to anoxia/reoxygenation injury change following exposure to hypergravity conditions?
Contemporary management of voice and swallowing disorders in patients with advanced lung cancer.
Brady, Grainne C; Carding, Paul N; Bhosle, Jaishree; Roe, Justin W G
2015-06-01
Advanced lung cancer can cause changes to swallowing and communication function. Direct tumour invasion, dyspnoea and deconditioning can all impact on swallowing function and communication. Cancer treatment, if administered, may cause or compound symptoms. In this study, the nature of swallowing and communication difficulties in patients with advanced lung cancer will be discussed, and management options including medical management, speech and language therapy (SLT) intervention, and surgical interventions will be considered. Advanced lung cancer can result in voice and swallowing difficulties, which can increase symptom burden and significantly impact on quality of life (QOL). There is a growing evidence base to support the use of injection laryngoplasty under local anaesthetic to offer immediate improvement in voice, swallowing and overall QOL. There is limited literature on the nature and extent of voice and swallowing impairment in patients with lung cancer. Well designed studies with robust and sensitive multidimensional dysphagia and dysphonia assessments are required. Outcome studies examining interventions with clearly defined treatment goals are required. These studies should include both functional and patient-reported outcome measures to develop the evidence base and to ensure that interventions are both timely and appropriate.
Gupta, C K; Mishra, G; Mehta, S C; Prasad, J
1993-01-01
Lung volumes, capacities, diffusion and alveolar volumes with physical characteristics (age, height and weight) were recorded for 186 healthy school children (96 boys and 90 girls) of 10-17 years age group. The objective was to study the relative importance of physical characteristics as regressor variables in regression models to estimate lung functions. We observed that height is best correlated with all the lung functions. Inclusion of all physical characteristics in the models have little gain compared to the ones having just height as regressor variable. We also find that exponential models were not only statistically valid but fared better compared to the linear ones. We conclude that lung functions covary with height and other physical characteristics but do not depend upon them. The rate of increase in the functions depend upon initial lung functions. Further, we propose models and provide ready reckoners to give estimates of lung functions with 95 per cent confidence limits based on heights from 125 to 170 cm for the age group of 10 to 17 years.
Estimation of Lung Ventilation
NASA Astrophysics Data System (ADS)
Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.
Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.
Provost, Karine; Leblond, Antoine; Gauthier-Lemire, Annie; Filion, Édith; Bahig, Houda; Lord, Martin
2017-09-01
Planar perfusion scintigraphy with 99m Tc-labeled macroaggregated albumin is often used for pretherapy quantification of regional lung perfusion in lung cancer patients, particularly those with poor respiratory function. However, subdividing lung parenchyma into rectangular regions of interest, as done on planar images, is a poor reflection of true lobar anatomy. New tridimensional methods using SPECT and SPECT/CT have been introduced, including semiautomatic lung segmentation software. The present study evaluated inter- and intraobserver agreement on quantification using SPECT/CT software and compared the results for regional lung contribution obtained with SPECT/CT and planar scintigraphy. Methods: Thirty lung cancer patients underwent ventilation-perfusion scintigraphy with 99m Tc-macroaggregated albumin and 99m Tc-Technegas. The regional lung contribution to perfusion and ventilation was measured on both planar scintigraphy and SPECT/CT using semiautomatic lung segmentation software by 2 observers. Interobserver and intraobserver agreement for the SPECT/CT software was assessed using the intraclass correlation coefficient, Bland-Altman plots, and absolute differences in measurements. Measurements from planar and tridimensional methods were compared using the paired-sample t test and mean absolute differences. Results: Intraclass correlation coefficients were in the excellent range (above 0.9) for both interobserver and intraobserver agreement using the SPECT/CT software. Bland-Altman analyses showed very narrow limits of agreement. Absolute differences were below 2.0% in 96% of both interobserver and intraobserver measurements. There was a statistically significant difference between planar and SPECT/CT methods ( P < 0.001) for quantification of perfusion and ventilation for all right lung lobes, with a maximal mean absolute difference of 20.7% for the right middle lobe. There was no statistically significant difference in quantification of perfusion and ventilation for the left lung lobes using either method; however, absolute differences reached 12.0%. The total right and left lung contributions were similar for the two methods, with a mean difference of 1.2% for perfusion and 2.0% for ventilation. Conclusion: Quantification of regional lung perfusion and ventilation using SPECT/CT-based lung segmentation software is highly reproducible. This tridimensional method yields statistically significant differences in measurements for right lung lobes when compared with planar scintigraphy. We recommend that SPECT/CT-based quantification be used for all lung cancer patients undergoing pretherapy evaluation of regional lung function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Ye, Zaiting; Fang, Bingmu; Pan, Jiongwei; Zhang, Ning; Huang, Jinwei; Xie, Congying; Lou, Tianzheng; Cao, Zhuo
2017-06-01
The present study determined the role and mechanism of miR-138 in non-small cell lung cancer (NSCLC). In total, 45 freshly resected clinical NSCLC tissues were collected. The expression of miR-138 in tissues and cell lines were determined by real-time quantitative PCR. miR-138 mimics were transfected into A549 and Calu-3 cells in vitro, and then the effects of miR-138 on lung cancer cell proliferation, cell cycle, invasion and metastasis were investigated by CCK-8 assay, Transwell and flow cytometry, respectively. The protein expression of the potential target gene Sirt1 in lung cancer cells were determined by western blot analysis. Dual-luciferase reporter assay was performed to further confirm whether Sirt1 was the target gene of miR-138. The expression of miR-138 was significantly lower in lung cancer tissues and was negatively correlated to the differentiation degree and lymph node metastasis of lung cancer. In vitro experiment results showed that miR-138 inhibited lung cancer cell proliferation, invasion and migration. It was verified that miR-138 could downregulate Sirt1 protein expression, inhibit epithelial-mesenchymal transition (EMT), decrease the activity of AMPK signaling pathway and elevate mTOR phosphorylation level. Dual-luciferase reporter assay demonstrated that miR-138 could directly regulate Sirt1. Downregulation of Sirt1 alone can also cause the same molecular and biological function changes. Western blot analysis and confocal microscopy results indicated that overexpression of miR-138 or interference of Sirt1 expression could inhibit lung cancer cell autophagy activity possibly through AMPK-mTOR signaling pathway. miR-138 plays a tumor suppressor function in lung cancer. It may inhibit the proliferation, invasion and migration of lung cancer through downregulation of Sirt1 expression and activation of cell autophagy. The downregulation of miR-138 is closely related to the development of lung cancer.
STUDIES ON LUNG INJURIES FOLLOWING ROENTGEN TREATMENT OF BREAST CANCER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichikawa, H.; Arai, T.
1960-01-01
Of 102 cases of breast cancer treated by x rays, 46 (45%) showed rcentgenographic evidence of lung flbrosis. A special chest phantom was constructed to measure the dose distribution within the lungs. The highest dose in the lung, by McWhirter's technique of radiation, was 150-160% of the surface. The parts of the lung where the tlssue received the highest dose were the upper, anterior, and outside parts of the radiated lung. This result was the same as indicated in the roentgenographic study. The lung radiation reaction was parallel to the skin reaction. The age had no relation to the fibrosis,more » but 4 cases, who had marked tuberculous calcification in their lung fields, seemed to have a tendency to produce considerable fibrosis by radiation. The sympton of pneumonitis was generally slight, and the general condition of the patients was not greatly influenced as a rule. The functional lung test showed almost normal results in the cases of grade I and grade II, but considerable injury in the cases of grade III, independent of their subjective symptoms. (Abstr. Japan Med., 1: No. 10, 1961)« less
Gorr, Matthew W; Youtz, Dane J; Eichenseer, Clayton M; Smith, Korbin E; Nelin, Timothy D; Cormet-Boyaka, Estelle; Wold, Loren E
2015-07-01
Particulate matter (PM) exposure induces a pathological response from both the lungs and the cardiovascular system. PM is capable of both manifestation into the lung epithelium and entrance into the bloodstream. Therefore, PM has the capacity for both direct and lung-mediated indirect effects on the heart. In the present studies, we exposed isolated rat cardiomyocytes to ultrafine particulate matter (diesel exhaust particles, DEP) and examined their contractile function and calcium handling ability. In another set of experiments, lung epithelial cells (16HBE14o- or Calu-3) were cultured on permeable supports that allowed access to both the basal (serosal) and apical (mucosal) media; the basal media was used to culture cardiomyocytes to model the indirect, lung-mediated effects of PM on the heart. Both the direct and indirect treatments caused a reduction in contractility as evidenced by reduced percent sarcomere shortening and reduced calcium handling ability measured in field-stimulated cardiomyocytes. Treatment of cardiomyocytes with various anti-oxidants before culture with DEP was able to partially prevent the contractile dysfunction. The basal media from lung epithelial cells treated with PM contained several inflammatory cytokines, and we found that monocyte chemotactic protein-1 was a key trigger for cardiomyocyte dysfunction. These results indicate the presence of both direct and indirect effects of PM on cardiomyocyte function in vitro. Future work will focus on elucidating the mechanisms involved in these separate pathways using in vivo models of air pollution exposure. Copyright © 2015 the American Physiological Society.
Li, Nan; Weng, Dong; Wang, Shan-Mei; Zhang, Yuan; Chen, Shan-Shan; Yin, Zhao-Fang; Zhai, Jiali; Scoble, Judy; Williams, Charlotte C; Chen, Tao; Qiu, Hui; Wu, Qin; Zhao, Meng-Meng; Lu, Li-Qin; Mulet, Xavier; Li, Hui-Ping
2017-11-01
The advent of nanomedicine requires novel delivery vehicles to actively target their site of action. Here, we demonstrate the development of lung-targeting drug-loaded liposomes and their efficacy, specificity and safety. Our study focuses on glucocorticoids methylprednisolone (MPS), a commonly used drug to treat lung injuries. The steroidal molecule was loaded into functionalized nano-sterically stabilized unilamellar liposomes (NSSLs). Targeting functionality was performed through conjugation of surfactant protein A (SPANb) nanobodies to form MPS-NSSLs-SPANb. MPS-NSSLs-SPANb exhibited good size distribution, morphology, and encapsulation efficiency. Animal experiments demonstrated the high specificity of MPS-NSSLs-SPANb to the lung. Treatment with MPS-NSSLs-SPANb reduced the levels of TNF-α, IL-8, and TGF-β1 in rat bronchoalveolar lavage fluid and the expression of NK-κB in the lung tissues, thereby alleviating lung injuries and increasing rat survival. The nanobody functionalized nanoparticles demonstrate superior performance to treat lung injury when compared to that of antibody functionalized systems.
Zeng, Xiang; Xu, Xijin; Zhang, Yuling; Li, Weiqiu; Huo, Xia
2017-10-01
The purpose of this study was to investigate the associations between birth weight, chest circumference, and lung function in preschool children from e-waste exposure area. A total of 206 preschool children from Guiyu (an e-waste recycling area) and Haojiang and Xiashan (the reference areas) in China were recruited and required to undergo physical examination, blood tests, and lung function tests during the study period. Birth outcome such as birth weight and birth height were obtained by questionnaire. Children living in the e-waste-exposed area have a lower birth weight, chest circumference, height, and lung function when compare to their peers from the reference areas (all p value <0.05). Both Spearman and partial correlation analyses showed that birth weight and chest circumference were positively correlated with lung function levels including forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV 1 ). After adjustment for the potential confounders in further linear regression analyses, birth weight, and chest circumference were positively associated with lung function levels, respectively. Taken together, birth weight and chest circumference may be good predictors for lung function levels in preschool children.
Hilgendorff, Anne; Parai, Kakoli; Ertsey, Robert; Navarro, Edwin; Jain, Noopur; Carandang, Francis; Peterson, Joanna; Mokres, Lucia; Milla, Carlos; Preuss, Stefanie; Alcazar, Miguel Alejandre; Khan, Suleman; Masumi, Juliet; Ferreira-Tojais, Nancy; Mujahid, Sana; Starcher, Barry; Rabinovitch, Marlene
2014-01-01
Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln+/−) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice. We studied 5-day-old wild-type (Eln+/+) and Eln+/− littermates at baseline and after MV with air for 8–24 h. Lungs of unventilated Eln+/− mice contained ∼50% less elastin and ∼100% more collagen-1 and lysyl oxidase compared with Eln+/+ pups. Eln+/− lungs contained fewer capillaries than Eln+/+ lungs, without discernible differences in alveolar structure. In response to MV, lung tropoelastin and elastase activity increased in Eln+/+ neonates, whereas tropoelastin decreased and elastase activity was unchanged in Eln+/− mice. Fibrillin-1 protein increased in lungs of both groups during MV, more in Eln+/− than in Eln+/+ pups. In both groups, MV caused capillary loss, with larger and fewer alveoli compared with unventilated controls. Respiratory system elastance, which was less in unventilated Eln+/− compared with Eln+/+ mice, was similar in both groups after MV. These results suggest that elastin haploinsufficiency adversely impacts pulmonary angiogenesis and that MV dysregulates elastic fiber integrity, with further loss of lung capillaries, lung growth arrest, and impaired respiratory function in both Eln+/+ and Eln+/− mice. Paucity of lung capillaries in Eln+/− newborns might help explain subsequent development of pulmonary hypertension previously reported in adult Eln+/− mice. PMID:25539853
Egger, Christine; Gérard, Christelle; Vidotto, Nella; Accart, Nathalie; Cannet, Catherine; Dunbar, Andrew; Tigani, Bruno; Piaia, Alessandro; Jarai, Gabor; Jarman, Elizabeth; Schmid, Herbert A; Beckmann, Nicolau
2014-06-15
Idiopathic pulmonary fibrosis is a progressive and lethal disease, characterized by loss of lung elasticity and alveolar surface area, secondary to alveolar epithelial cell injury, reactive inflammation, proliferation of fibroblasts, and deposition of extracellular matrix. The effects of oropharyngeal aspiration of bleomycin in Sprague-Dawley rats and C57BL/6 mice, as well as of intratracheal administration of ovalbumin to actively sensitized Brown Norway rats on total lung volume as assessed noninvasively by magnetic resonance imaging (MRI) were investigated here. Lung injury and volume were quantified by using nongated or respiratory-gated MRI acquisitions [ultrashort echo time (UTE) or gradient-echo techniques]. Lung function of bleomycin-challenged rats was examined additionally using a flexiVent system. Postmortem analyses included histology of collagen and hydroxyproline assays. Bleomycin induced an increase of MRI-assessed total lung volume, lung dry and wet weights, and hydroxyproline content as well as collagen amount. In bleomycin-treated rats, gated MRI showed an increased volume of the lung in the inspiratory and expiratory phases of the respiratory cycle and a temporary decrease of tidal volume. Decreased dynamic lung compliance was found in bleomycin-challenged rats. Bleomycin-induced increase of MRI-detected lung volume was consistent with tissue deposition during fibrotic processes resulting in decreased lung elasticity, whereas influences by edema or emphysema could be excluded. In ovalbumin-challenged rats, total lung volume quantified by MRI remained unchanged. The somatostatin analog, SOM230, was shown to have therapeutic effects on established bleomycin-induced fibrosis in rats. This work suggests MRI-detected total lung volume as readout for tissue-deposition in small rodent bleomycin models of pulmonary fibrosis. Copyright © 2014 the American Physiological Society.
Motoyama, H; Chen, F; Ohsumi, A; Hijiya, K; Takahashi, M; Ohata, K; Yamada, T; Sato, M; Aoyama, A; Bando, T; Date, H
2014-04-01
Although double lung transplantation is performed more frequently for emphysema, single lung transplantation (SLT) continues to be performed owing to limited donor organ availability. Native lung hyperinflation (NLH) is a unique complication following SLT for emphysema. Three-dimensional computed tomography (3D-CT) volumetry has been introduced into the field of lung transplantation, which we used to assess NLH in emphysema patients undergoing SLT. The primary purpose of this study was to confirm the effectiveness of 3D-CT volumetry in the evaluation of NLH following SLT for emphysema. In 5 emphysema patients undergoing SLT at Kyoto University Hospital, 3D-CT volumetry data, pulmonary function test results, and clinical and radiological findings were retrospectively evaluated. Three patients did not develop a significant mediastinal shift, whereas the other 2 patients developed a mediastinal shift. In the 3 patients without a mediastinal shift, 3D-CT volumetry did not show a significant increase in native lung volume. These patients had a history of sternotomy prior to lung transplantation and firm adhesion on the mediastinal side was detected during lung transplantation. One of 2 patients with a mediastinal shift developed severe dyspnea with significantly decreased pulmonary function, and 3D-CT volumetry showed a significant increase in the native lung volume. However, the other patient did not show any dyspnea and his native lung volume decreased postoperatively (preoperatively to 6 months postoperatively: +981 mL and -348 mL, respectively). Although bilateral lung transplantation has become preferable for emphysema patients owing to postoperative NLH with SLT, patients with a history of sternotomy prior to lung transplantation might be good candidates for SLT. 3D-CT volumetry may be a useful method for detection of NLH. Copyright © 2014 Elsevier Inc. All rights reserved.
Quantitative Pulmonary Imaging Using Computed Tomography and Magnetic Resonance Imaging
Washko, George R.; Parraga, Grace; Coxson, Harvey O.
2011-01-01
Measurements of lung function, including spirometry and body plethesmography, are easy to perform and are the current clinical standard for assessing disease severity. However, these lung functional techniques do not adequately explain the observed variability in clinical manifestations of disease and offer little insight into the relationship of lung structure and function. Lung imaging and the image based assessment of lung disease has matured to the extent that it is common for clinical, epidemiologic, and genetic investigation to have a component dedicated to image analysis. There are several exciting imaging modalities currently being used for the non-invasive study of lung anatomy and function. In this review we will focus on two of them, x-ray computed tomography and magnetic resonance imaging. Following a brief introduction of each method we detail some of the most recent work being done to characterize smoking-related lung disease and the clinical applications of such knowledge. PMID:22142490
Rowe, A; Hernandez, P; Kuhle, S; Kirkland, S
2017-10-01
Decreased lung function has health impacts beyond diagnosable lung disease. It is therefore important to understand the factors that may influence even small changes in lung function including obesity, physical fitness and physical activity. The aim of this study was to determine the anthropometric measure most useful in examining the association with lung function and to determine how physical activity and physical fitness influence this association. The current study used cross-sectional data on 4662 adults aged 40-79 years from the Canadian Health Measures Survey Cycles 1 and 2. Linear regression models were used to examine the association between the anthropometric and lung function measures (forced expiratory volume in 1 s [FEV 1 ] and forced vital capacity [FVC]); R 2 values were compared among models. Physical fitness and physical activity terms were added to the models and potential confounding was assessed. Models using sum of 5 skinfolds and waist circumference consistently had the highest R 2 values for FEV 1 and FVC, while models using body mass index consistently had among the lowest R 2 values for FEV 1 and FVC and for men and women. Physical activity and physical fitness were confounders of the relationships between waist circumference and the lung function measures. Waist circumference remained a significant predictor of FVC but not FEV 1 after adjustment for physical activity or physical fitness. Waist circumference is an important predictor of lung function. Physical activity and physical fitness should be considered as potential confounders of the relationship between anthropometric measures and lung function. Copyright © 2017. Published by Elsevier Ltd.
[Testing and analyzing the lung functions in the normal population in Hebei province].
Chen, Li; Zhao, Ming; Han, Shao-mei; Li, Zhong-ming; Zhu, Guang-jin
2004-08-01
To investigate the lung function of the normal subjects living in Hebei province and its correlative factors such as living circumstance, age, height, and body weight. The lung volumes and breath capacities of 1,587 normal subjects were tested by portable spirometers (Scope Rotry) from August to October in 2002. The influences of living circumstance, age, gender, height, and body weight on lung functions were observed and analyzed. No significant difference was found between urban and rural areas in all indexes (P > 0.05); however, significant difference existed between male and female subjects (P = 0.000). The change trends of lung function in male and female subjects were similar. Growth spurt appeared at the age of 12-16 years in male subjects and 12-14 years in female subjects. Vital capacity (VC), forced vital capacity (FVC), and forced expiratory volume in one second (FEV1) reached their peaks at the age of 26-34 years and then decreased with age. Peak expiratory flow (PEF), 25% forced expiratory flow (FEF50%), and 75% forced expiratory flow (FEF75%) appeared at the age of 18 and then went down with age. Both height and weight had a correlation with all the indexes of lung functions, although the influence of height is stronger than weight. All the indexes of lung function have correlations with age, height, and weight. Lung function changes with aging, therefore different expected values shall be available for the adolescence, young adults, and middle-aged and old people. This study provides reference values of lung function for normal population.
Glorion, M; Polard, V; Favereau, F; Hauet, T; Zal, F; Fadel, E; Sage, E
2017-10-25
We describe the results of adding a new biological agent HEMO 2 life ® to a standard preservation solution for hypothermic static lung preservation aiming to improve early functional parameters after lung transplantation. HEMO 2 life ® is a natural oxygen carrier extracted from Arenicola marina with high oxygen affinity developed as an additive to standard organ preservation solutions. Standard preservation solution (Perfadex ® ) was compared with Perfadex ® associated with HEMO 2 life ® and with sham animals after 24 h of hypothermic preservation followed by lung transplantation. During five hours of lung reperfusion, functional parameters and biomarkers expression in serum and in bronchoalveolar lavage fluid (BALF) were measured. After five hours of reperfusion, HEMO 2 life ® group led to significant improvement in functional parameters: reduction of graft vascular resistance (p < .05) and increase in graft oxygenation ratio (p < .05). Several ischemia-reperfusion related biomarkers showed positive trends in the HEMO 2 life ® group: expression of HMG B1 in serum tended to be lower in comparison (2.1 ± 0.8 vs. 4.6 ± 1.5) with Perfadex ® group, TNF-α and IL-8 in BALF were significantly higher in the two experimental groups compared to control (p < .05). During cold ischemia, expression of HIF1α and histology remained unchanged and similar to control. Supplementation of the Perfadex ® solution by an innovative oxygen carrier HEMO 2 life ® during hypothermic static preservation improves early graft function after prolonged cold ischemia in lung transplantation.
Kongstad, Thomas; Green, Kent; Buchvald, Frederik; Skov, Marianne; Pressler, Tania; Nielsen, Kim Gjerum
2017-01-01
Background : Computed tomography (CT) of the lungs is the gold standard for assessing the extent of structural changes in the lungs. Spirometry-controlled chest CT (SCCCT) has improved the usefulness of CT by standardising inspiratory and expiratory lung volumes during imaging. This was a single-centre cross-sectional study in children with cystic fibrosis (CF). Using SCCCT we wished to investigate the association between the quantity and extent of structural lung changes and pulmonary function outcomes, and prevalence of known CF lung pathogens. Methods : CT images were analysed by CF-CT scoring (expressed as % of maximum score) to quantify different aspects of structural lung changes including bronchiectasis, airway wall thickening, mucus plugging, opacities, cysts, bullae and gas trapping. Clinical markers consisted of outcomes from pulmonary function tests, microbiological cultures from sputum and serological samples reflecting anti-bacterial and anti-fungal antibodies. Results : Sixty-four children with CF, median age (range) of 12.7 (6.4-18.1) years, participated in the study. The median (range) CF-CT total score in all children was 9.3% (0.4-46.8) with gas trapping of 40.7% (3.7-100) as the most abundant finding. Significantly higher median CF-CT total scores (21.9%) were found in patients with chronic infections ( N = 12) including Gram-negative infection and allergic bronchopulmonary aspergillosis (ABPA) exhibiting CF-CT total scores of 14.2% (ns) and 24.0% ( p < 0.01), respectively, compared to 8.0% in patients with no chronic lung infection. Lung clearance index (LCI) derived from multiple breath washout exhibited closest association with total CF-CT scores, compared to other pulmonary function outcomes. Conclusions : The most prominent structural lung change was gas trapping, while CF-CT total scores were generally low, both showing close association with LCI. Chronic lung infections, specifically in the form of ABPA, were associated with increased scores in lung changes. Further investigation of impact of infections with different microorganisms on extent and progression of structural CF lung disease is needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qing, K; Mugler, J; Chen, Q
Purpose: Hyperpolarized xenon-129 dissolved-phase MRI is the first imaging technique that allows 3-dimensional regional mapping of ventilation and gas uptake by tissue and blood the in human lung. Multiple outcome measures can be produced from this method. Existing studies in subjects with major lung diseases compared to healthy controls demonstrated high sensitivities of this method to pulmonary physiological factors including ventilation, alveolar tissue density, surface-to-volume ratio, pulmonary perfusion and gas-blood barrier thickness. The purpose of this study is to evaluate the utility of this new imaging tool to assess the lung function in patients with non-small cell lung cancer (NSCLC).more » Methods: Ten healthy controls (age: 63±10) and five patients (age: 62±13) with NSCLC underwent the xenon-129 dissolved-phase MRI, pulmonary function test (PFT) and CT for clinical purpose. Three outcome measures were produced from xenon-129 dissolved-phase MRI, including ventilation defect fraction (Vdef%) reflecting the airflow obstruction, tissue-to-gas ratio reflecting lung tissue density, and RBC-to-tissue ratio reflecting pulmonary perfusion and gas exchange. Results: Compared to healthy controls, patients with NSCLC showed more ventilation defects (NSCLC: 22±6%; control: 40±18%; P=0.01), lower tissue-to-gas (NSCLC: 0.82±0.31%; control: 1.07±0.13%; P=0.05) and RBC-to-tissue ratios (NSCLC: 0.82±0.31%; control: 1.07±0.13%; P=0.01). Maps for ventilation and gas uptake by tissue and blood were highly heterogeneous in the lungs of patients. Vdef% and RBC-to-tissue ratios in all 15 subjects correlated with corresponding global lung functional measures from PFT: FEV1/FVC (R=−0.91, P<0.001) and DLCO % predicted (R=0.54, P=0.03), respectively. The tissue-to-gas ratios correlated with tissue density (HU) measured by CT (R=0.88, P<0.001). Conclusion: With the unique ability to provide detailed information about lung function including ventilation, tissue density, perfusion and gas exchange with 3D resolution, hyperpolarized xenon-129 dissolved-phase MRI has high potential to be used as an important reference for radiotherapy treatment planning and for evaluating the side effects of the treatment. Receive research support and funding from Siemens.« less
Nye, Russell T; Mercincavage, Melissa; Branstetter, Steven A
2017-08-01
How addiction severity relates to physical activity (PA), and if PA moderates the relation between PA and lung function among smokers, is unknown. This study explored the independent and interactive associations of nicotine addiction severity and PA with lung function. The study used cross-sectional data from 343 adult smokers aged 40 to 79 participating in the 2009-10 and 2011-12 National Health and Nutrition Examination Survey. Assessed were the independent relations of nicotine addiction severity, as measured by the time to first cigarette (TTFC), and average daily minutes of moderate and vigorous PA with lung function ratio (FEV1/FVC). Additional analysis examined whether PA moderated the relationship between addiction severity and lung function. Greater lung function was independently associated with moderate PA and later TTFC, but not vigorous PA, when controlling for cigarettes per day (CPD), past month smoking, ethnicity, years smoked, and gender (P-values < .05). PA did not moderate the association between addiction severity (TTFC) and lung function (P = .441). Among middle-aged to older smokers, increased PA and lower addiction severity were associated with greater lung function, independent of CPD. This may inform research into the protective role of PA and identification of risk factors for interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, S; Lee, E; Miyaoka, R
Purpose: NSCLC patient RT is planned without consideration of spatial heterogeneity in lung function or tumor response, which may have contributed to failed uniform dose escalation in a randomized trial. The feasibility of functional lung avoidance and response-adaptive escalation (FLARE) RT to reduce dose to [{sup 99m}Tc]MAA-SPECT/CT perfused lung while redistributing 74Gy within [{sup 18}F]FDG-PET/CT biological target volumes was assessed. Methods: Eight Stage IIB–IIIB NSCLC patients underwent FDG-PET/CT and MAA-SPECT/CT treatment planning scans. Perfused lung objectives were derived from scatter/collimator/attenuation-corrected MAA-SPECT uptake relative to ITV-subtracted lung to maintain <20Gy mean lung dose (MLD). Prescriptions included 60Gy to PTV and concomitantmore » boost of 74Gy mean to biological target volumes (BTV=GTV+PET margin) scaled to each BTV voxel by relative FDG-PET SUV. Dose-painting-by-numbers prescriptions were integrated into commercial TPS via previously reported ROI discretization. Dose constraints for lung, heart, cord, and esophagus were defined. FLARE RT plans were optimized with VMAT, proton pencil beam scanning (PBS) with 3%-3mm robust optimization, and combination PBS (avoidance) plus VMAT (escalation). Dosimetric differences were evaluated by Friedman non-parametric paired test with multiple sampling correction. Results: PTV and normal tissue objectives were not violated in 24 FLARE RT plans. Population median of mean BTV dose was 73.7Gy (68.5–75.5Gy), mean FDG-PET peak dose was 89.7Gy (73.5–103Gy), MLD was 12.3Gy (7.5–19.6Gy), and perfused MLD was 4.8Gy (0.9–12.1Gy). VMAT achieved higher dose to the FDG-PET peak subvolume (p=0.01), while PBS delivered lower dose to lung (p<0.001). Voxelwise linear correlation between BTV dose and FDG-PET uptake was higher for VMAT (R=0.93) and PBS+VMAT (R=0.94) compared to PBS alone (R=0.89). Conclusion: FLARE RT is feasible with VMAT and PBS. A combination of PBS for functional lung avoidance and VMAT for FDG-PET dose escalation balances target/normal tissue objective tradeoffs. These results support future testing of FLARE RT safety and efficacy within a precision radiation oncology trial. This work was supported by a Research Scholar grant from the Radiological Society of North American Research & Education Foundation.« less
Comprehensive outcomes after lung retransplantation: a single center review.
Halloran, Kieran; Aversa, Meghan; Tinckam, Kathryn; Martinu, Tereza; Binnie, Matthew; Chaparro, Cecilia; Chow, Chung-Wai; Waddell, Tom; McRae, Karen; Pierre, Andrew; de Perrot, Marc; Yasufuku, Kazuhiro; Cypel, Marcelo; Keshavjee, Shaf; Singer, Lianne G
2018-05-13
Lung retransplantation is an important therapy for a growing population of lung transplant recipients with graft failure, but detailed outcome data are lacking. We conducted a retrospective cohort study of adult lung retransplant in the Toronto Lung Transplant Program from 2001 to 2013 (n=38). We analyzed the post-operative course, graft function, renal function, microbiology, donor specific antibodies (DSA), quality of life and survival compared to a control cohort of primary transplant recipients matched for age and era. Indication for retransplant was chronic lung allograft dysfunction in most retransplant recipients (35/38, 82%). The post-operative course was more complex after retransplant than primary (ventilation time, 8 vs. 2 days, p<0.01; ICU stay 14 vs. 4 days, 0<0.01) and peak lung function was lower (FEV1 2.2L vs. 3L, p<0.01). Quality of life scores were comparable, as were renal function, microbiology and donor specific antibody formation. Median survival was 1988 days after primary and 1475 days after retransplant (p=0.39). Lung retransplantation is associated with a more complex post-operative course and lower peak lung function, but the long term medical profile is similar to primary transplant. Lung retransplantation can be beneficial for carefully selected candidates with allograft failure. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Ercegovac, Maja; Subotic, Dragan; Zugic, Vladimir; Jakovic, Radoslav; Moskovljevic, Dejan; Bascarevic, Slavisa; Mujovic, Natasa
2014-05-19
The pattern and factors influencing the lung function recovery in the first postoperative days are still not fully elucidated, especially in patients at increased risk. Prospective study on 60 patients at increased risk, who underwent a lung resection for primary lung cancer. complete resection and one or more known risk factors in form of COPD, cardiovascular disorders, advanced age or other comorbidities. Previous myocardial infarction, myocardial revascularization or stenting, cardiac rhythm disorders, arterial hypertension and myocardiopathy determined the increased cardiac risk. The severity of COPD was graded according to GOLD criteria. The trend of the postoperative lung function recovery was assessed by performing spirometry with a portable spirometer. Cardiac comorbidity existed in 55%, mild and moderate COPD in 20% and 35% of patients respectively. Measured values of FVC% and FEV1% on postoperative days one, three and seven, showed continuous improvement, with significant difference between the days of measurement, especially between days three and seven. There was no difference in the trend of the lung function recovery between patients with and without postoperative complications. Whilst pO2 was decreasing during the first three days in a roughly parallel fashion in patients with respiratory, surgical complications and in patients without complications, a slight hypercapnia registered on the first postoperative day was gradually abolished in all groups except in patients with cardiac complications. Extent of the lung resection and postoperative complications do not significantly influence the trend of the lung function recovery after lung resection for lung cancer.
Nemer, Maysaa; Kristensen, Petter; Nijem, Khaldoun; Bjertness, Espen; Skare, Øivind; Skogstad, Marit
2015-01-01
Objectives Hairdressers are exposed to chemicals at the workplace which are known to cause respiratory symptoms and asthma. This study aimed to examine changes in self-reported respiratory symptoms over 5 years, as well as to examine the lung function decline and determine whether it is within the expected range, to assess the dropout rate and reasons for leaving the profession, and to examine the associations between occupational factors and lung function changes at follow-up. Design Prospective study. Setting Female hairdressing salons in Hebron city, Palestine. Participants 170 female hairdressers who participated in a baseline survey in 2008 were followed up in 2013. A total of 161 participants participated in 2013. Outcome measures Change in reported respiratory symptoms and change in lung function over follow-up. Dropout from the profession and reasons for it. Differences between current and former hairdressers in respiratory symptoms and lung function at follow-up. Ambient air ammonia levels in 13 salons. Results Current hairdressers reported more respiratory symptoms in 2013 compared with baseline. Former hairdressers reported fewer symptoms at follow-up. At follow-up, current hairdressers showed a significant decrease in forced vital capacity of 35 mL/year (95% CI 26 to 44 mL/year) and of 31 mL/year (95% CI 25 to 36 mL/year) for forced expiratory volume in 1 s (FEV1). 28 (16%) of the hairdressers quit the job during the 5-year follow-up, 8 (28%) because of health problems. Hairdressers who had been working for 4 years or more at baseline showed a stronger decline in FEV1 compared with those who worked less than 4 years (difference 13, 95% CI 1 to 25). Conclusions Current hairdressers developed more respiratory symptoms and larger lung function decline than former hairdressers during follow-up. Few hairdressers left their profession because of respiratory health problems. Working for more years is associated with lung function decline among current hairdressers. PMID:26474935
Inhaled uranium ore dust and lung cancer risk in rats.
Mitchel, R E; Jackson, J S; Heinmiller, B
1999-02-01
Using a nose-only inhalation system, male Sprague-Dawley rats were exposed 4.2 h d(-1), 5 days per week for 65 weeks to one of two concentrations of natural uranium ore dust aerosol (44% U, 50 mg m(-3) and 19 mg m(-3)) without significant radon content. After inhalation exposure ceased, the rats were allowed to live for their natural lifetime. Lung uranium burdens, measured at the time of death of each animal, declined exponentially after dust inhalation ceased, and the rate of decline was independent of the initial lung burden. Lymph node specific burdens ranged from 1 to 60 fold greater than the specific lung burden in the same animal. No lymph node tumors were observed. The frequency of primary malignant lung tumors was 0.016, 0.175 and 0.328 and primary non-malignant lung tumors 0.016, 0.135 and 0.131 in the control, low and high aerosol exposed groups, respectively. There was no difference in tumor latency between the groups. Absorbed dose to the lung was calculated for each animal in the study. The average doses for all the animals exposed to the low and high dust aerosol concentrations were 0.87 Gy and 1.64 Gy respectively, resulting in an average risk of malignant lung tumors of about 0.20 tumors per animal per Gy in both groups. The frequency of primary lung tumors was also calculated as a function of dose increment for both exposed groups individually and combined. The data indicate that, in spite of the above result, lung tumor frequency was not directly proportional to dose. However, when malignant lung tumor frequency was calculated as a function of dose rate (as measured by the lung burden at the end of dust inhalation) a direct linear relationship was seen (p < 0.01) suggesting dose rate may be a more important determinant of lung cancer risk than dose. Conversely, non-malignant lung tumors were significantly correlated with low lung burdens (p = 0.01). We conclude that chronic inhalation of natural uranium ore dust alone in rats creates a risk of primary malignant and non-malignant lung tumor formation and that malignant tumor risk was not directly proportional to dose, but was directly proportional to dose rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garson, A; Gunsten, S; Guan, H
Purpose: We demonstrate a novel X-ray phase-contrast (XPC) method for lung imaging representing a paradigm shift in the way small animal functional imaging is performed. In our method, information regarding airway microstructure that is encoded within speckle texture of a single XPC radiograph is decoded to produce 2D parametric images that will spatially resolve changes in lung properties such as microstructure sizes and air volumes. Such information cannot be derived from conventional lung radiography or any other 2D imaging modality. By computing these images at different points within a breathing cycle, dynamic functional imaging will be readily achieved without themore » need for tomography. Methods: XPC mouse lung radiographs acquired in situ with an in-line X-ray phase contrast benchtop system. The lung air volume is varied and controlled with a small animal ventilator. XPC radiographs will be acquired for various lung air volume levels representing different phases of the respiratory cycle. Similar data will be acquired of microsphere-based lung phantoms containing hollow glass spheres with known distributions of diameters. Image texture analysis is applied to the data to investigate relationships between texture characteristics and airspace/microsphere physical properties. Results: Correlations between Fourier-based texture descriptors (FBTDs) and regional lung air volume indicate that the texture features in 2D radiographs reveal information on 3D properties of the lungs. For example, we find for a 350 × 350 πm2 lung ROI a linear relationship between injected air volume and FBTD value with slope and intercept of 8.9×10{sup 5} and 7.5, respectively. Conclusion: We demonstrate specific image texture measures related to lung speckle features are correlated with physical characteristics of refracting elements (i.e. lung air spaces). Furthermore, we present results indicating the feasibility of implementing the technique with a simple imaging system design, short exposures, and low dose which provides potential for widespread use in laboratory settings for in vivo studies. This research was supported in part by NSF Award CBET1263988.« less
Acute Exacerbation of Chronic Obstructive Pulmonary Disease: Cardiovascular Links
Laratta, Cheryl R.; van Eeden, Stephan
2014-01-01
Chronic obstructive pulmonary disease (COPD) is a chronic, progressive lung disease resulting from exposure to cigarette smoke, noxious gases, particulate matter, and air pollutants. COPD is exacerbated by acute inflammatory insults such as lung infections (viral and bacterial) and air pollutants which further accelerate the steady decline in lung function. The chronic inflammatory process in the lung contributes to the extrapulmonary manifestations of COPD which are predominantly cardiovascular in nature. Here we review the significant burden of cardiovascular disease in COPD and discuss the clinical and pathological links between acute exacerbations of COPD and cardiovascular disease. PMID:24724085
Effects of cannabis on lung function: a population-based cohort study.
Hancox, R J; Poulton, R; Ely, M; Welch, D; Taylor, D R; McLachlan, C R; Greene, J M; Moffitt, T E; Caspi, A; Sears, M R
2010-01-01
The effects of cannabis on lung function remain unclear and may be different from those of tobacco. We compared the associations between use of these substances and lung function in a population-based cohort (n = 1,037). Cannabis and tobacco use were reported at ages 18, 21, 26 and 32 yrs. Spirometry, plethysmography and carbon monoxide transfer factor were measured at 32 yrs. Associations between lung function and exposure to each substance were adjusted for exposure to the other substance. Cumulative cannabis use was associated with higher forced vital capacity, total lung capacity, functional residual capacity and residual volume. Cannabis was also associated with higher airway resistance but not with forced expiratory volume in 1 s, forced expiratory ratio or transfer factor. These findings were similar among those who did not smoke tobacco. In contrast, tobacco use was associated with lower forced expiratory volume in 1 s, lower forced expiratory ratio, lower transfer factor and higher static lung volumes, but not with airway resistance. Cannabis appears to have different effects on lung function from those of tobacco. Cannabis use was associated with higher lung volumes, suggesting hyperinflation and increased large-airways resistance, but there was little evidence for airflow obstruction or impairment of gas transfer.
Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses
Waters, Christopher M.; Roan, Esra; Navajas, Daniel
2015-01-01
Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis. PMID:23728969
Tawhai, M. H.; Clark, A. R.; Donovan, G. M.; Burrowes, K. S.
2011-01-01
Computational models of lung structure and function necessarily span multiple spatial and temporal scales, i.e., dynamic molecular interactions give rise to whole organ function, and the link between these scales cannot be fully understood if only molecular or organ-level function is considered. Here, we review progress in constructing multiscale finite element models of lung structure and function that are aimed at providing a computational framework for bridging the spatial scales from molecular to whole organ. These include structural models of the intact lung, embedded models of the pulmonary airways that couple to model lung tissue, and models of the pulmonary vasculature that account for distinct structural differences at the extra- and intra-acinar levels. Biophysically based functional models for tissue deformation, pulmonary blood flow, and airway bronchoconstriction are also described. The development of these advanced multiscale models has led to a better understanding of complex physiological mechanisms that govern regional lung perfusion and emergent heterogeneity during bronchoconstriction. PMID:22011236
Lauhkonen, Eero; Koponen, Petri; Teräsjärvi, Johanna; Gröndahl-Yli-Hannuksela, Kirsi; Vuononvirta, Juho; Nuolivirta, Kirsi; Toikka, Jyri O.; Helminen, Merja; He, Qiushui; Korppi, Matti
2015-01-01
Aim Interleukin-10 (IL-10) has been associated with wheezing and asthma in children and the genetic variation of the IL-10 cytokine production may be linked to post-bronchiolitis lung function. We used impulse oscillometry (IOS) to evaluate the associations of IL10 polymorphisms with lung function at a median age of 6.3 years in children hospitalised for bronchiolitis before six months of age. Methods We performed baseline and post-exercise IOS on 103 former bronchiolitis patients. Data on single nucleotide polymorphisms (SNP) of IL10 rs1800896 (–1082G/A), rs1800871 (–819C/T), rs1800872 (–592C/A) were available for 99 children and of IL10 rs1800890 (–3575T/A) for 98 children. Results IL10 rs1800896, rs1800871 and rs1800872 combined genotype AA+CT+CA and carriage of haplotype ATA, respectively, were associated with higher resistance and lower reactance in baseline IOS in adjusted analyses. At IL10 rs1800890, the A/A-genotype and carriers of A-allele were associated with lower reactance in baseline IOS. There were no significant associations between the studied SNPs and airway hyper-reactivity to exercise. Conclusion Low-IL-10-producing polymorphisms in the IL-10 encoding gene were associated with obstructive lung function parameters, suggesting an important role for IL-10 in development of lung function deficit in early bronchiolitis patients. PMID:26473365
Lung function and functional capacity among foundry workers using effective risk control measures.
Bernardes, Rosane Andrea Bretas; Chiavegato, Luciana Dias; de Moraes, Mônica Vasconcelos; Negreiros, Alexandher; Padula, Rosimeire Simprini
2015-01-01
Inhaled dust in the environment can trigger specific reactions in the airways and cause various respiratory diseases. Evaluate the lung function and functional capacity of foundry workers who are exposed to metals and use effective control measures. A cross-sectional study was realized with 108 workers at a bronze foundry and machining plant and in maintenance at a private university, both in Brazil. The workers were divided into two groups: the study group exposed to metals but using risk control measues and a control group not exposed to metal work. The Medical Research Council Questionnaire on Respiratory Symptoms and the International Physical Activity Questionnaire were administered, and lung function and functional capacity were evaluated. Comparative statistics were used to identify differences in the outcome measures between the two groups. The groups had similar personal and anthropometric characteristics and time on the job. Spirometry and peak expiratory flow presented no significant differences between the groups. And there was also no statistically significant difference between groups in functional capacity as assessed by performance on the six-minute walk test. Foundry industry workers in Brazil who were exposed to metal but used risk control measures had similar lung function and functional capacity when compared to the control group who were not exposed to metal. This is a positive results and maybe related to age, time exposure and control of occupational hazards. However, these workers need to continue being monitored in longitudinal studies.
Sports-related lung injury during breath-hold diving.
Mijacika, Tanja; Dujic, Zeljko
2016-12-01
The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise.In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition.According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage. Copyright ©ERS 2016.
Disparities in pulmonary function in healthy children across the Indian urban-rural continuum.
Sonnappa, Samatha; Lum, Sooky; Kirkby, Jane; Bonner, Rachel; Wade, Angela; Subramanya, Vinita; Lakshman, Padmanabha T; Rajan, Babitha; Nooyi, Shalini C; Stocks, Janet
2015-01-01
Marked socioeconomic health-care disparities are recognized in India, but lung health inequalities between urban and rural children have not been studied. We investigated whether differences exist in spirometric pulmonary function in healthy children across the Indian urban-rural continuum and compared results with those from Indian children living in the UK. Indian children aged 5 to 12 years were recruited from Indian urban, semiurban, and rural schools, and as part of the Size and Lung Function in Children study, London. Anthropometric and spirometric assessments were undertaken. Acceptable spirometric data were obtained from 728 (58% boys) children in India and 311 (50% boys) UK-Indian children. As an entire group, the India-resident children had significantly lower z FEV1 and z FVC than UK-Indian children (P < 0.0005), when expressed using Global Lung Function Initiative-2012 equations. However, when India-resident children were categorized according to residence, there were no differences in z FEV1 and z FVC between Indian-urban and UK-Indian children. There were, however, significant reductions of ∼ 0.5 z scores and 0.9 z scores in both FEV1 and FVC (with no difference in FEV1/FVC) in Indian-semiurban and Indian-rural children, respectively, when compared with Indian-urban children (P < 0.0005). z Body mass index, socioeconomic circumstances, tobacco, and biomass exposure were individually significantly associated with z FEV1 and z FVC (P < 0.0005). The presence of an urban-rural continuum of lung function within a specific ethnic group emphasizes the impact of environmental factors on lung growth in emerging nations such as India, which must be taken into account when developing ethnic-specific reference values or designing studies to optimize lung health.
Lung function in infants with cystic fibrosis diagnosed by newborn screening.
Linnane, Barry M; Hall, Graham L; Nolan, Gary; Brennan, Siobhan; Stick, Stephen M; Sly, Peter D; Robertson, Colin F; Robinson, Philip J; Franklin, Peter J; Turner, Stephen W; Ranganathan, Sarath C
2008-12-15
Progressive lung damage in cystic fibrosis (CF) starts in infancy, and early detection may aid preventative strategies. To measure lung function in infants with CF diagnosed by newborn screening and describe its association with pulmonary infection and inflammation. Infants with CF (n = 68, 6 weeks to 30 months of age) and healthy infants without CF (n = 49) were studied. Forced vital capacity, FEV(0.5), and forced expiratory flows at 75% of exhaled vital capacity (FEF(75)) were measured using the raised-volume rapid thoracoabdominal compression technique. Forty-eight hours later, infants with CF had bronchoalveolar lavage (BAL) for assessment of pulmonary infection and inflammation. In the CF group, the deficit in FEV(0.5) z score increased by -0.77 (95% confidence interval, -1.14 to -0.41; P < 0.001) with each year of age. The mean FEV(0.5) z score did not differ between infants with CF and healthy control subjects less than 6 months of age (-0.06 and 0.02, respectively; P = 0.87). However, the mean FEV(0.5) z score was lower by 1.15 in infants with CF who were older than 6 months of age compared with healthy infants (P < 0.001). FVC and FEF(75) followed a similar pattern. Pulmonary infection and inflammation in BAL samples did not explain the lung function results. Lung function, measured by forced expiration, is normal in infants with CF at the time of diagnosis by newborn screening but is diminished in older infants. These findings suggest that in CF the optimal timing of therapeutic interventions aimed at preserving lung function may be within the first 6 months of life.
Wolf, Lisa; Herr, Christian; Niederstraßer, Julia; Beisswenger, Christoph; Bals, Robert
2017-01-01
The receptor for advanced glycation endproducts (RAGE) is highly expressed in the lung but its physiological functions in this organ is still not completely understood. To determine the contribution of RAGE to physiological functions of the lung, we analyzed pulmonary mechanics and structure of wildtype and RAGE deficient (RAGE-/-) mice. RAGE deficiency spontaneously resulted in a loss of lung structure shown by an increased mean chord length, increased respiratory system compliance, decreased respiratory system elastance and increased concentrations of serum protein albumin in bronchoalveolar lavage fluids. Pulmonary expression of RAGE was mainly localized on alveolar epithelial cells and alveolar macrophages. Primary murine alveolar epithelial cells isolated from RAGE-/- mice revealed an altered differentiation and defective barrier formation under in vitro conditions. Stimulation of interferone-y (IFNy)-activated alveolar macrophages deficient for RAGE with Toll-like receptor (TLR) ligands resulted in significantly decreased release of proinflammatory cytokines and chemokines. Exposure to chronic cigarette smoke did not affect emphysema-like changes in lung parenchyma in RAGE-/- mice. Acute cigarette smoke exposure revealed a modified inflammatory response in RAGE-/- mice that was characterized by an influx of macrophages and a decreased keratinocyte-derived chemokine (KC) release. Our data suggest that RAGE regulates the differentiation of alveolar epithelial cells and impacts on the development and maintenance of pulmonary structure. In cigarette smoke-induced lung pathology, RAGE mediates inflammation that contributes to lung damage.
Hyperpolarized 129Xe MRI of the Human Lung
Mugler, John P.; Altes, Talissa A.
2012-01-01
By permitting direct visualization of the airspaces of the lung, MR imaging using hyperpolarized gases provides unique strategies for evaluating pulmonary structure and function. Although the vast majority of research in humans has been performed using hyperpolarized 3He, recent contraction in the supply of 3He and consequent increases in price have turned attention to the alternative agent, hyperpolarized 129Xe. Compared to 3He, 129Xe yields reduced signal due to its smaller magnetic moment. Nonetheless, taking advantage of advances in gas-polarization technology, recent studies in humans using techniques for measuring ventilation, diffusion, and partial pressure of oxygen have demonstrated results for hyperpolarized 129Xe comparable to those previously demonstrated using hyperpolarized 3He. In addition, xenon has the advantage of readily dissolving in lung tissue and blood following inhalation, which makes hyperpolarized 129Xe particularly attractive for exploring certain characteristics of lung function, such as gas exchange and uptake, which cannot be accessed using 3He. Preliminary results from methods for imaging 129Xe dissolved in the human lung suggest that these approaches will provide new opportunities for quantifying relationships among gas delivery, exchange, and transport, and thus show substantial potential to broaden our understanding of lung disease. Finally, recent changes in the commercial landscape of the hyperpolarized-gas field now make it possible for this innovative technology to move beyond the research lab. PMID:23355432
Lung tumor motion prediction during lung brachytherapy using finite element model
NASA Astrophysics Data System (ADS)
Shirzadi, Zahra; Sadeghi Naini, Ali; Samani, Abbas
2012-02-01
A biomechanical model is proposed to predict deflated lung tumor motion caused by diaphragm respiratory motion. This model can be very useful for targeting the tumor in tumor ablative procedures such as lung brachytherapy. To minimize motion within the target lung, these procedures are performed while the lung is deflated. However, significant amount of tissue deformation still occurs during respiration due to the diaphragm contact forces. In the absence of effective realtime image guidance, biomechanical models can be used to estimate tumor motion as a function of diaphragm's position. To develop this model, Finite Element Method (FEM) was employed. To demonstrate the concept, we conducted an animal study of an ex-vivo porcine deflated lung with a tumor phantom. The lung was deformed by compressing a diaphragm mimicking cylinder against it. Before compression, 3D-CT image of this lung was acquired, which was segmented and turned into FE mesh. The lung tissue was modeled as hyperelastic material with a contact loading to calculate the lung deformation and tumor motion during respiration. To validate the results from FE model, the motion of a small area on the surface close to the tumor was tracked while the lung was being loaded by the cylinder. Good agreement was demonstrated between the experiment results and simulation results. Furthermore, the impact of tissue hyperelastic parameters uncertainties in the FE model was investigated. For this purpose, we performed in-silico simulations with different hyperelastic parameters. This study demonstrated that the FEM was accurate and robust for tumor motion prediction.
Washko, George R.; Kinney, Gregory L.; Ross, James C.; San José Estépar, Raúl; Han, MeiLan K.; Dransfield, Mark T.; Kim, Victor; Hatabu, Hiroto; Come, Carolyn E.; Bowler, Russell P.; Silverman, Edwin K.; Crapo, James; Lynch, David A.; Hokanson, John; Diaz, Alejandro A.
2017-01-01
Rationale and Objective Emphysema is characterized by airspace dilation, inflammation, and irregular deposition of elastin and collagen in the interstitium. Computed tomographic (CT) studies have reported that lung mass (LM) may be increased in smokers, a finding attributed to inflammatory and parenchymal remodeling processes observed on histopathology. We sought to examine the epidemiologic and clinical associations of LM in smokers. Materials and Methods Baseline epidemiologic, clinical, and CT data (n=8,156) from smokers enrolled into the COPDGene Study were analyzed. LM was calculated from the CT scan. Changes in lung function at five-year follow-up were available from 1,623 subjects. Regression analysis was performed to assess for associations of LM with forced expiratory volume in 1 second (FEV1) and FEV1 decline. Results Subjects with Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1 COPD had greater LM than either smokers with normal lung function or those with GOLD 2–4 COPD (P<0.001 for both comparisons). LM was predictive of rate of the decline in FEV1 (decline per 100 g, −4.7 ± 1.7 ml/yr, P=0.006). Conclusion Our cross sectional data suggest the presence of a biphasic radiologic remodeling process in smokers: the presence of such non-linearity must be accounted for in longitudinal CT studies. Baseline LM predicts the decline in lung function. PMID:27940230
Takahashi, Mamoru; Ohsumi, Akihiro; Ohata, Keiji; Kondo, Takeshi; Motoyama, Hideki; Hijiya, Kyoko; Aoyama, Akihiro; Date, Hiroshi; Chen-Yoshikawa, Toyofumi F
2017-06-01
The ImmuKnow (IK) assay is a comprehensive immune function test that involves measuring adenosine triphosphate produced by the cluster of differentiation 4+ T lymphocytes in peripheral blood. The aim of this study was to analyze the time trends of IK values and assess the relationship between IK values and infections in lung transplants. We prospectively collected 178 blood samples from 22 deceased-donor lung transplant (DDLT) recipients and 17 living-donor lobar lung transplant (LDLLT) recipients. A surveillance IK assay was performed postoperatively, then after 1 week and 1, 3, 6, and 12 months. Time trends of IK values in stable recipients peaked 1 week after DDLT (477 ± 247 ATP ng/ml), and 1 month after LDLLT (433 ± 134 ng/ml), followed by a gradual decline over 1 year. The mean IK values in infections were significantly lower than those in the stable state (119 vs 312 ATP ng/ml, p = 0.0002). IK values increased sharply after lung transplantation and then decreased gradually over time in the first year, suggesting a natural history of immune function. IK values were also significantly reduced during infections. These results may provide new insights into the utility of immune monitoring after lung transplantation.
Infection, inflammation, and lung function decline in infants with cystic fibrosis.
Pillarisetti, Naveen; Williamson, Elizabeth; Linnane, Barry; Skoric, Billy; Robertson, Colin F; Robinson, Phil; Massie, John; Hall, Graham L; Sly, Peter; Stick, Stephen; Ranganathan, Sarath
2011-07-01
Better understanding of evolution of lung function in infants with cystic fibrosis (CF) and its association with pulmonary inflammation and infection is crucial in informing both early intervention studies aimed at limiting lung damage and the role of lung function as outcomes in such studies. To describe longitudinal change in lung function in infants with CF and its association with pulmonary infection and inflammation. Infants diagnosed after newborn screening or clinical presentation were recruited prospectively. FVC, forced expiratory volume in 0.5 seconds (FEV(0.5)), and forced expiratory flows at 75% of exhaled vital capacity (FEF(75)) were measured using the raised-volume technique, and z-scores were calculated from published reference equations. Pulmonary infection and inflammation were measured in bronchoalveolar lavage within 48 hours of lung function testing. Thirty-seven infants had at least two successful repeat lung function measurements. Mean (SD) z-scores for FVC were -0.8 (1.0), -0.9 (1.1), and -1.7 (1.2) when measured at the first visit, 1-year visit, or 2-year visit, respectively. Mean (SD) z-scores for FEV(0.5) were -1.4 (1.2), -2.4 (1.1), and -4.3 (1.6), respectively. In those infants in whom free neutrophil elastase was detected, FVC z-scores were 0.81 lower (P=0.003), and FEV(0.5) z-scores 0.96 lower (P=0.001), respectively. Significantly greater decline in FEV(0.5) z-scores occurred in those infected with Staphylococcus aureus (P=0.018) or Pseudomonas aeruginosa (P=0.021). In infants with CF, pulmonary inflammation is associated with lower lung function, whereas pulmonary infection is associated with a greater rate of decline in lung function. Strategies targeting pulmonary inflammation and infection are required to prevent early decline in lung function in infants with CF.
The problem of the treatment of sarcoidosis: Report of the Subcommittee on Therapy.
Turiaf, J; Johns, C J; Terstein, A S; Tsuji, S; Wurm, K
1976-01-01
Stage I: Hilar Adenopathy With normal lung function observe, as it often resolves. With reduced lung function observe for 6-12 months. Treat if there is progression or persistence. With erythema nodosum use mild anti-inflammatory agents such as salicylates or like drugs. Stage II: Adenopathy + Pulmonar Infiltrates With normal or slightly reduced lung function observe; treat if it worsens. Treat if there is no remission in 6-12 months. With reduced lung function treat, possibly for many years or a lifetime. Stage III: Pulmonary Infiltrates +/- Fibrosis Without Adenopathy There is reduced lung function. Treat, demonstrate improvement, follow patients with serial measurements of vital capacity at least. Other Indications for Treatment Other indications for treatment include myocardial sarcoidosis, cerebral sarcoidosis (although the outcome is less certain), serious hepatic or renal sarcoidosis, hypercalcemia, persistent systemic symptoms, or other serious organ or functional impairment. Assess each patient individually and completely. Use good clinical judgement. It is clear that treatment that is too little or too late is of little benefit. Even the statistical results form a perfectly controlled study cannot provide absolute direction for the individual patient. As clinicians we are frequently called upon to apply considered judgements without hard data to predict the outcome. We also maintain the flexibility to change our therapeutic programs when circumstances change, either in the patient or in our knowledge. We can be grateful we have a treatment as good as corticosteroids and must try to exercise our best judgement as to when it should be instituted.
Sensitization to sunflower pollen and lung functions in sunflower processing workers.
Atis, S; Tutluoglu, B; Sahin, K; Yaman, M; Küçükusta, A R; Oktay, I
2002-01-01
This study aimed to investigate whether exposure to sunflower pollen (Helianthus annuus) increases both sensitization and respiratory symptoms, and whether or not it affects lung functions in sunflower processing workers. The largest sunflower processing factories in the Thrace region of Turkey participated in this study. Workers from the units directly exposed to sunflower seed enrolled as the study group (n = 102) and workers who were not directly exposed to Helianthus annuus pollen (n = 102) were the control group. Detailed questionnaires covering respiratory and allergic symptoms were completed, and skin prick tests and lung function tests were performed. We found a very high rate (23.5%) of sensitization to Helianthus annuus in the study group compared to the controls (P<0.001). Logistic regression analysis showed that the risk of sensitization to H. annuus was increased 4.7-fold (odds ratio = 4.17, 95%) confidence interval = 1.3-16.7) if subjects were exposed to sunflower pollen in the workplace. While asthmatic symptoms and allergic skin diseases were not different between the two groups, workers in the study group had a higher rate of allergic rhinitis and conjunctivitis (P<0.05). We found that pulmonary function was significantly impaired in the study group (P<0.01). Using a multivariate analysis model, inclusion in the study group was found to be a predictive factor for impairment of lung function (P=0.002). We conclude that sunflower pollen has high allergenic potential, especially when there is close contact, and exposure to sunflower pollen in the workplace can result in impairment in lung function.
NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease
Malhotra, Deepti; Boezen, H. Marike; Siedlinski, Mateusz; Postma, Dirkje S.; Wong, Vivien; Akhabir, Loubna; He, Jian-Qing; Connett, John E.; Anthonisen, Nicholas R.; Paré, Peter D.; Biswal, Shyam
2012-01-01
An oxidant-antioxidant imbalance in the lung contributes to the development of chronic obstructive pulmonary disease (COPD) that is caused by a complex interaction of genetic and environmental risk factors. Nuclear erythroid 2-related factor 2 (NFE2L2 or NRF2) is a critical molecule in the lung's defense mechanism against oxidants. We investigated whether polymorphisms in the NFE2L2 pathway affected the rate of decline of lung function in smokers from the Lung Health Study (LHS)(n = 547) and in a replication set, the Vlagtwedde-Vlaardingen cohort (n = 533). We selected polymorphisms in NFE2L2 in genes that positively or negatively regulate NFE2L2 transcriptional activity and in genes that are regulated by NFE2L2. Polymorphisms in 11 genes were significantly associated with rate of lung function decline in the LHS. One of these polymorphisms, rs11085735 in the KEAP1 gene, was previously shown to be associated with the level of lung function in the Vlagtwedde-Vlaardingen cohort but not with decline of lung function. Of the 23 associated polymorphisms in the LHS, only rs634534 in the FOSL1 gene showed a significant association in the Vlagtwedde-Vlaardingen cohort with rate of lung function decline, but the direction of the association was not consistent with that in the LHS. In summary, despite finding several nominally significant polymorphisms in the LHS, none of these associations were replicated in the Vlagtwedde-Vlaardingen cohort, indicating lack of effect of polymorphisms in the NFE2L2 pathway on the rate of decline of lung function. PMID:22693272
NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease.
Sandford, Andrew J; Malhotra, Deepti; Boezen, H Marike; Siedlinski, Mateusz; Postma, Dirkje S; Wong, Vivien; Akhabir, Loubna; He, Jian-Qing; Connett, John E; Anthonisen, Nicholas R; Paré, Peter D; Biswal, Shyam
2012-08-01
An oxidant-antioxidant imbalance in the lung contributes to the development of chronic obstructive pulmonary disease (COPD) that is caused by a complex interaction of genetic and environmental risk factors. Nuclear erythroid 2-related factor 2 (NFE2L2 or NRF2) is a critical molecule in the lung's defense mechanism against oxidants. We investigated whether polymorphisms in the NFE2L2 pathway affected the rate of decline of lung function in smokers from the Lung Health Study (LHS)(n = 547) and in a replication set, the Vlagtwedde-Vlaardingen cohort (n = 533). We selected polymorphisms in NFE2L2 in genes that positively or negatively regulate NFE2L2 transcriptional activity and in genes that are regulated by NFE2L2. Polymorphisms in 11 genes were significantly associated with rate of lung function decline in the LHS. One of these polymorphisms, rs11085735 in the KEAP1 gene, was previously shown to be associated with the level of lung function in the Vlagtwedde-Vlaardingen cohort but not with decline of lung function. Of the 23 associated polymorphisms in the LHS, only rs634534 in the FOSL1 gene showed a significant association in the Vlagtwedde-Vlaardingen cohort with rate of lung function decline, but the direction of the association was not consistent with that in the LHS. In summary, despite finding several nominally significant polymorphisms in the LHS, none of these associations were replicated in the Vlagtwedde-Vlaardingen cohort, indicating lack of effect of polymorphisms in the NFE2L2 pathway on the rate of decline of lung function.
Cvijetić, Selma; Pipinić, Ivana Sabolić; Varnai, Veda Maria; Macan, Jelena
2017-03-01
Low bone mineral density has been reported in paediatric and adult patients with different lung diseases, but limited data are available on the association between lung function and bone density in a healthy young population. We explored the predictors of association between bone mass and pulmonary function in healthy first-year university students, focusing on body mass index (BMI). In this cross-sectional study we measured bone density with ultrasound and lung function with spirometry in 370 university students (271 girls and 99 boys). Information on lifestyle habits, such as physical activity, smoking, and alcohol consumption were obtained with a questionnaire. All lung function and bone parameters were significantly higher in boys than in girls (P<0.001). Underweight students had a significantly lower forced vital capacity (FVC%) (P=0.001 girls; P=0.012 boys), while overweight students had a significantly higher FVC% than normal weight students (P=0.024 girls; P=0.001 boys). BMI significantly correlated with FVC% (P=0.001) and forced expiratory volume in 1 second (FEV1 %) in both genders (P=0.001 girls; P=0.018 boys) and with broadband ultrasound attenuation (BUA) in boys. There were no significant associations between any of the bone and lung function parameters either in boys or girls. The most important determinant of lung function and ultrasound bone parameters in our study population was body mass index, with no direct association between bone density and lung function.
Lower lung function associates with cessation of menstruation: UK Biobank data.
Amaral, André F S; Strachan, David P; Gómez Real, Francisco; Burney, Peter G J; Jarvis, Deborah L
2016-11-01
Little is known about the effect of cessation of menstruation on lung function. The aims of the study were to examine the association of lung function with natural and surgical cessation of menstruation, and assess whether lower lung function is associated with earlier age at cessation of menstruation.The study was performed in 141 076 women from the UK Biobank, who had provided acceptable and reproducible spirometry measurements and information on menstrual status. The associations of lung function (forced vital capacity (FVC), forced expiratory volume in 1 s (FEV 1 ), spirometric restriction (FVC < lower limit of normal (LLN)), airflow obstruction (FEV 1 /FVC
Perceived health in lung cancer patients: the role of positive and negative affect.
Hirsch, Jameson K; Floyd, Andrea R; Duberstein, Paul R
2012-03-01
To examine the association of affective experience and health-related quality of life in lung cancer patients, we hypothesized that negative affect would be positively, and positive affect would be negatively, associated with perceived health. A sample of 133 English-speaking lung cancer patients (33% female; mean age = 63.68 years old, SD = 9.37) completed a battery of self-report surveys. Results of our secondary analysis indicate that trait negative affect was significantly associated with poor physical and social functioning, greater role limitations due to emotional problems, greater bodily pain, and poor general health. Positive affect was significantly associated with adaptive social functioning, fewer emotion-based role limitations, and less severe bodily pain. In a full model, positive affect was significantly associated with greater levels of social functioning and general health, over and above the effects of negative affect. Reduction of negative affect is an important therapeutic goal, but the ability to maintain positive affect may result in greater perceived health. Indeed, engagement in behaviors that result in greater state positive affect may, over time, result in dispositional changes and enhancement of quality of life.
Hayes, Don; Naguib, Aymen; Kirkby, Stephen; Galantowicz, Mark; McConnell, Patrick I; Baker, Peter B; Kopp, Benjamin T; Lloyd, Eric A; Astor, Todd L
2014-05-01
Limited data exist on methods to evaluate allograft function in infant recipients of lung and heart-lung transplants. At our institution, we developed a procedural protocol in coordination with pediatric anesthesia where infants were sedated to perform infant pulmonary function testing, computed tomography imaging of the chest, and flexible fiberoptic bronchoscopy with transbronchial biopsies. A retrospective review was performed of children aged younger than 1 year who underwent lung or heart-lung transplantation at our institution to assess the effect of this procedural protocol in the evaluation of infant lung allografts. Since 2005, 5 infants have undergone thoracic transplantation (3 heart-lung, 2 lung). At time of transplant, the mean ± standard deviation age was 7.2 ± 2.8 months (range, 3-11 months). Of 24 procedural sessions performed to evaluate lung allografts, 83% (20 of 24) were considered surveillance where the patients were completely asymptomatic. Of the surveillance procedures, 80% were performed as an outpatient, whereas 20% were done as inpatients during the lung or heart-lung transplant post-operative period before discharge home. Sedation was performed with propofol alone (23 of 24) or in addition to ketamine (1 of 24) infusion; mean sedation time was 141 ± 39 minutes (range, 70-214) minutes. Of the 16 outpatient procedures, patients were discharged after 14 (88%) on the same day, and after 2 (12%) were admitted for observation, with 1 being due to transportation issues and the other due to fever during the observation period. A comprehensive procedural protocol to evaluate allograft function in infant lung and heart-lung transplant recipients was performed safely as an outpatient. Copyright © 2014 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Effect of a Gonadotrophin-Releasing Hormone Analogue on Lung Function in Lymphangioleiomyomatosis
Harari, Sergio; Cassandro, Roberto; Chiodini, Jacopo; Taveira-DaSilva, Angelo M.; Moss, Joel
2010-01-01
Background Lymphangioleiomyomatosis (LAM), a multisystem disease occurring primarily in women, is characterized by cystic lung destruction, and kidney and lymphatic tumors, caused by the proliferation of abnormal-appearing cells (ie, LAM cells) with a smooth muscle cell phenotype that express melanoma antigens and are capable of metastasizing. Estrogen receptors are present in LAM cells, and this finding, along with reports of disease progression during pregnancy or following exogenous estrogen administration, suggest the involvement of estrogens in the pathogenesis of LAM. Consequently, antiestrogen therapies have been employed in treatment. The goal of this prospective study was to evaluate the efficacy of triptorelin, a gonadotrophin-releasing hormone analogue, in 11 premenopausal women with LAM. Methods Patients were evaluated at baseline and every 3 to 6 months thereafter, for a total of 36 months. Hormonal assays, pulmonary function tests, 6-min walk tests, high-resolution CT scans of the chest, and bone mineral density studies were performed. Results Gonadal suppression was achieved in all patients. Overall, a significant decline in lung function was observed; two patients underwent lung transplantation 1 year after study enrollment, and another patient was lost to follow-up. Treatment with triptorelin was associated with a decline in bone mineral density. Conclusions Triptorelin appears not to prevent a decline in lung function in patients with LAM. Its use, however, may be associated with the loss of bone mineral density. PMID:18071009
First Danish experience with ex vivo lung perfusion of donor lungs before transplantation.
Henriksen, Ian Sune Iversen; Møller-Sørensen, Hasse; Møller, Christian Holdfold; Zemtsovski, Mikhail; Nilsson, Jens Christian; Seidelin, Casper Tobias; Perch, Michael; Iversen, Martin; Steinbrüchel, Daniel
2014-03-01
The number of lung transplantations is limited by a general lack of donor organs. Ex vivo lung perfusion (EVLP) is a novel method to optimise and evaluate marginal donor lungs prior to transplantation. We describe our experiences with EVLP in Denmark during the first year after its introduction. The study was conducted by prospective registration of donor offers and lung transplantations in Denmark from 1 May 2012 to 30 April 2013. Donor lungs without any contraindications were transplanted in the traditional manner. Taken for EVLP were donor lungs that were otherwise considered transplantable, but failed to meet the usual criteria due to possible contusions or because they were from donors with sepsis or unable to pass the oxygenation test. In the study period, seven of 33 Danish lung transplantations were made possible due to EVLP. One patient died of non-EVLP-related causes, but all other recipients were alive with normal graft function at the end of our registration period. All lungs showed an improved PaO2/FiO2 ratio from a median 23.1 kPa (8.8-38.9) within the donor to 58.8 kPa (34.9-76.5) (FiO2 = 1.0) after EVLP, which corresponds to a 155% improved oxygenation. The median time to extubation, time in intensive care unit and the admission period were 1, 7 and 39 days, respectively. In the first year after the introduction of EVLP in Denmark, seven pairs of donor lungs that previously would have been rejected have been transplanted as a result of their improved function. EVLP seems to be a safe way to increase the use of marginal donor lungs. no funding was granted for the present paper. not relevant.
Neonatal lungs: maturational changes in lung resistivity spectra.
Brown, B H; Primhak, R A; Smallwood, R H; Milnes, P; Narracott, A J; Jackson, M J
2002-09-01
The electrical resistivity of lung tissue can be related to the structure and composition of the tissue and also to the air content. Electrical impedance tomographic measurements have been used on 155 normal children over the first three years of life and 25 pre-term infants, to determine the absolute resistivity of lung tissue as a function of frequency. The results show consistent changes with increasing age in both lung tissue resistivity (5.8 ohm m at birth to 20.9 ohm m at 3 years of age) and in the changes of resistivity with frequency (Cole parameter ratio R/S=0.41 at birth and 0.84 at 3 years of age). Comparison with a lung model showed that the measurements are consistent with maturational changes in the number and size of alveoli, the extracapillary blood volume and the size of the extracapillary vessels. However, the results show that the process of maturation is not complete at the age of three years.
Experimental evidence of age-related adaptive changes in human acinar airways
Quirk, James D.; Sukstanskii, Alexander L.; Woods, Jason C.; Lutey, Barbara A.; Conradi, Mark S.; Gierada, David S.; Yusen, Roger D.; Castro, Mario
2015-01-01
The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized 3He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized 3He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger. PMID:26542518
Mathew, L; Castillo, R; Castillo, E; Yaremko, B; Rodrigues, G; Etemad-Rezai, R; Guerrero, T; Parraga, G
2012-07-01
Dynamic imaging methods such as four-dimensional computed tomography (4DCT) and static imaging methods such as noble gas magnetic resonance imaging (MRI) deliver direct and regional measurements of lung function even in lung cancer patients in whom global lung function measurements are dominated by tumour burden. The purpose of this study was to directly compare quantitative measurements of gas distribution from static hyperpolarized 3 He MRI and dynamic 4DCT in a small group of lung cancer patients. MRI and 4DCT were performed in 11 subjects prior to radiation therapy. MRI was performed at 3.0T in breath-hold after inhalation 1L of hyperpolarized 3 He gas. Gas distribution in 3 He MRI was quantified using a semi-automated segmentation algorithm to generate percent-ventilated volume (PVV), reflecting the volume of gas in the lung normalized to the thoracic cavity volume. 4DCT pulmonary function maps were generated using deformable image registration of six expiratory phase images. The correspondence between identical tissue elements at inspiratory and expiratory phases was used to estimate regional gas distribution and PVV was quantified from these images. After accounting for differences in lung volumes between 3 He MRI (1.9±0.5L ipsilateral, 2.3±0.7 contralateral) and 4DCT (1.2±0.3L ipsilateral, 1.3±0.4L contralateral) during image acquisition, there was no statistically significant difference in PVV between 3 He MRI (72±11% ipsilateral, 79±12% contralateral) and 4DCT (74±3% ipsilateral, 75±4% contralateral). Our results indicate quantitative agreement in the regional distribution of inhaled gas in both static and dynamic imaging methods. PVV may be considered as a regional surrogate measurement of lung function or ventilation. © 2012 American Association of Physicists in Medicine.
Zhang, Bin; Gao, Fuping; Wang, Mengjiao; Cao, Xu; Liu, Fei; Wang, Xin; Luo, Jianwen; Wang, Guangzhi; Bai, Jing
2014-01-01
Non-invasive in vivo imaging of diffuse and wide-spread colonization within the lungs, rather than distinct solid primary tumors, is still a challenging work. In this work, a lung colonization mouse model bearing A549 human lung tumor was simultaneously scanned by a dual-modality fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) system in vivo. A two steps method which incorporates CT structural information into the FMT reconstruction procedure is employed to provide concurrent anatomical and functional information. By using the target-specific fluorescence agent, the fluorescence tomographic results show elevated fluorescence intensity deep within the lungs which is colonized with diffuse and wide-spread tumors. The results were confirmed with ex vivo fluorescence reflectance imaging and histological examination of the lung tissues. With FMT reconstruction combined with the CT information, the dual-modality FMT/micro-CT system is expected to offer sensitive and noninvasive imaging of diffuse tumor colonization within the lungs in vivo. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microbial colonization and lung function in adolescents with cystic fibrosis.
Hector, Andreas; Kirn, Tobias; Ralhan, Anjali; Graepler-Mainka, Ute; Berenbrinker, Sina; Riethmueller, Joachim; Hogardt, Michael; Wagner, Marlies; Pfleger, Andreas; Autenrieth, Ingo; Kappler, Matthias; Griese, Matthias; Eber, Ernst; Martus, Peter; Hartl, Dominik
2016-05-01
With intensified antibiotic therapy and longer survival, patients with cystic fibrosis (CF) are colonized with a more complex pattern of bacteria and fungi. However, the clinical relevance of these emerging pathogens for lung function remains poorly defined. The aim of this study was to assess the association of bacterial and fungal colonization patterns with lung function in adolescent patients with CF. Microbial colonization patterns and lung function parameters were assessed in 770 adolescent European (German/Austrian) CF patients in a retrospective study (median follow-up time: 10years). Colonization with Pseudomonas aeruginosa and MRSA were most strongly associated with loss of lung function, while mainly colonization with Haemophilus influenzae was associated with preserved lung function. Aspergillus fumigatus was the only species that was associated with an increased risk for infection with P. aeruginosa. Microbial interaction analysis revealed three distinct microbial clusters within the longitudinal course of CF lung disease. Collectively, this study identified potentially protective and harmful microbial colonization patterns in adolescent CF patients. Further studies in different patient cohorts are required to evaluate these microbial patterns and to assess their clinical relevance. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma.
McGeachie, M J; Yates, K P; Zhou, X; Guo, F; Sternberg, A L; Van Natta, M L; Wise, R A; Szefler, S J; Sharma, S; Kho, A T; Cho, M H; Croteau-Chonka, D C; Castaldi, P J; Jain, G; Sanyal, A; Zhan, Y; Lajoie, B R; Dekker, J; Stamatoyannopoulos, J; Covar, R A; Zeiger, R S; Adkinson, N F; Williams, P V; Kelly, H W; Grasemann, H; Vonk, J M; Koppelman, G H; Postma, D S; Raby, B A; Houston, I; Lu, Q; Fuhlbrigge, A L; Tantisira, K G; Silverman, E K; Tonascia, J; Weiss, S T; Strunk, R C
2016-05-12
Tracking longitudinal measurements of growth and decline in lung function in patients with persistent childhood asthma may reveal links between asthma and subsequent chronic airflow obstruction. We classified children with asthma according to four characteristic patterns of lung-function growth and decline on the basis of graphs showing forced expiratory volume in 1 second (FEV1), representing spirometric measurements performed from childhood into adulthood. Risk factors associated with abnormal patterns were also examined. To define normal values, we used FEV1 values from participants in the National Health and Nutrition Examination Survey who did not have asthma. Of the 684 study participants, 170 (25%) had a normal pattern of lung-function growth without early decline, and 514 (75%) had abnormal patterns: 176 (26%) had reduced growth and an early decline, 160 (23%) had reduced growth only, and 178 (26%) had normal growth and an early decline. Lower baseline values for FEV1, smaller bronchodilator response, airway hyperresponsiveness at baseline, and male sex were associated with reduced growth (P<0.001 for all comparisons). At the last spirometric measurement (mean [±SD] age, 26.0±1.8 years), 73 participants (11%) met Global Initiative for Chronic Obstructive Lung Disease spirometric criteria for lung-function impairment that was consistent with chronic obstructive pulmonary disease (COPD); these participants were more likely to have a reduced pattern of growth than a normal pattern (18% vs. 3%, P<0.001). Childhood impairment of lung function and male sex were the most significant predictors of abnormal longitudinal patterns of lung-function growth and decline. Children with persistent asthma and reduced growth of lung function are at increased risk for fixed airflow obstruction and possibly COPD in early adulthood. (Funded by the Parker B. Francis Foundation and others; ClinicalTrials.gov number, NCT00000575.).
Aspergillus fumigatus colonization in cystic fibrosis: implications for lung function?
de Vrankrijker, A M M; van der Ent, C K; van Berkhout, F T; Stellato, R K; Willems, R J L; Bonten, M J M; Wolfs, T F W
2011-09-01
Aspergillus fumigatus is commonly found in the respiratory secretions of patients with cystic fibrosis (CF). Although allergic bronchopulmonary aspergillosis (ABPA) is associated with deterioration of lung function, the effects of A. fumigatus colonization on lung function in the absence of ABPA are not clear. This study was performed in 259 adults and children with CF, without ABPA. A. fumigatus colonization was defined as positivity of >50% of respiratory cultures in a given year. A cross-sectional analysis was performed to study clinical characteristics associated with A. fumigatus colonization. A retrospective cohort analysis was performed to study the effect of A. fumigatus colonization on lung function observed between 2002 and 2007. Longitudinal data were analysed with a linear mixed model. Sixty-one of 259 patients were at least intermittently colonized with A. fumigatus. An association was found between A. fumigatus colonization and increased age and use of inhaled antibiotics. In the longitudinal analysis, 163 patients were grouped according to duration of colonization. After adjustment for confounders, there was no significant difference in lung function between patients colonized for 0 or 1 year and patients with 2-3 or more than 3 years of colonization (p 0.40 and p 0.64) throughout the study. There was no significant difference in lung function decline between groups. Although colonization with A. fumigatus is more commonly found in patients with more severe lung disease and increased treatment burden, it is not independently associated with lower lung function or more severe lung function decline over a 5-year period. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.
Wall, M A; Olson, D; Bonn, B A; Creelman, T; Buist, A S
1982-02-01
Reference standards of lung function was determined in 176 healthy North American Indian children (94 girls, 82 boys) 7 to 18 yr of age. Spirometry, maximal expiratory flow volume curves, and peak expiratory flow rate were measured using techniques and equipment recommended by the American Thoracic Society. Standing height was found to be an accurate predictor of lung function, and prediction equations for each lung function variable are presented using standing height as the independent variable. Lung volumes and expiratory flow rates in North American Indian children were similar to those previously reported for white and Mexican-American children but were greater than those in black children. In both boys and girls, lung function increased in a curvilinear fashion. Volume-adjusted maximal expiratory flow rates after expiring 50 or 75% of FVC tended to decrease in both sexes as age and height increased. Our maximal expiratory flow volume curve data suggest that as North American Indian children grow, lung volume increases at a slightly faster rate than airway size does.
Xia, Wanmin; Xie, Liang; Cao, Bangrong; Cheng, Shujun; Wan, Huajing; Liu, Hanmin
2017-07-01
Leukotrienes play critical roles in many inflammatory lung diseases and several antagonists of their receptors have been used in the clinical settings. However, the physiological functions of leukotrienes in lung development are still unclear. The expression levels of 34 genes involved in leukotriene synthesis and function pathway in the lungs of Rhesus monkey during different developmental time points were determined on a MiSeq platform and analyzed by the reads per kilobase of transcript per million mapped reads (RPKM) method. The results showed that the expression levels of PLA2G1B, PLA2G10, PLA2G2D, ALOX5, and ALOX5AP increased dramatically in the lung of Rhesus monkey, reflecting the changes in the pulmonary environment after delivery. Additionally, the different expression patterns between molecules related to LTB4 and LTC4 synthesis suggested distinct roles of LTB4 and LTC4 in lung development. Finally, the constant expression of CysLT1 during the development process provided new information to the pharmaceutical basis of the use of leukotriene receptor antagonists in the clinical setting. The expression levels of several key genes involved in leukotriene synthesis changed dramatically during lung development in Rhesus monkeys, suggesting the potential roles of leukotrienes in lung development in this animal model. Copyright © 2017 Elsevier Ltd. All rights reserved.
IL-22 Is Essential for Lung Epithelial Repair following Influenza Infection
Pociask, Derek A.; Scheller, Erich V.; Mandalapu, Sivanarayana; McHugh, Kevin J.; Enelow, Richard I.; Fattman, Cheryl L.; Kolls, Jay K.; Alcorn, John F.
2014-01-01
Influenza infection is widespread in the United States and the world. Despite low mortality rates due to infection, morbidity is common and little is known about the molecular events involved in recovery. Influenza infection results in persistent distal lung remodeling, and the mechanism(s) involved are poorly understood. Recently IL-22 has been found to mediate epithelial repair. We propose that IL-22 is critical for recovery of normal lung function and architecture after influenza infection. Wild-type and IL-22−/− mice were infected with influenza A PR8/34 H1N1 and were followed up for up to 21 days post infection. IL-22 receptor was localized to the airway epithelium in naive mice but was expressed at the sites of parenchymal lung remodeling induced by influenza infection. IL-22−/− mice displayed exacerbated lung injury compared with wild-type mice, which correlated with decreased lung function 21 days post infection. Epithelial metaplasia was observed in wild-type mice but was not evident in IL-22−/− animals that were characterized with an increased fibrotic phenotype. Gene expression analysis revealed aberrant expression of epithelial genes involved in repair processes, among changes in several other biological processes. These data indicate that IL-22 is required for normal lung repair after influenza infection. IL-22 represents a novel pathway involved in interstitial lung disease. PMID:23490254
Mulloy, Daniel P; Stone, Matthew L; Crosby, Ivan K; Lapar, Damien J; Sharma, Ashish K; Webb, David V; Lau, Christine L; Laubach, Victor E; Kron, Irving L
2012-11-01
Ex vivo lung perfusion (EVLP) is a promising modality for the evaluation and treatment of marginal donor lungs. The optimal timing of EVLP initiation and the potential for rehabilitation of donor lungs with extended warm ischemic times is unknown. The present study compared the efficacy of different treatment strategies for uncontrolled non-heart-beating donor lungs. Mature swine underwent hypoxic arrest, followed by 60 minutes of no-touch warm ischemia. The lungs were harvested and flushed with 4°C Perfadex. Three groups (n = 5/group) were stratified according to the preservation method: cold static preservation (CSP; 4 hours of 4°C storage), immediate EVLP (I-EVLP: 4 hours EVLP at 37°C), and delayed EVLP (D-EVLP; 4 hours of CSP followed by 4 hours of EVLP). The EVLP groups were perfused with Steen solution supplemented with heparin, methylprednisolone, cefazolin, and an adenosine 2A receptor agonist. The lungs then underwent allotransplantation and 4 hours of recipient reperfusion before allograft assessment for resultant ischemia-reperfusion injury. The donor blood oxygenation (partial pressure of oxygen/fraction of inspired oxygen ratio) before death was not different between the groups. The oxygenation after transplantation was significantly greater in the D-EVLP group than in the I-EVLP or CSP groups. The mean airway pressure, pulmonary artery pressure, and expression of interleukin-8, interleukin-1β, and tumor necrosis factor-α were all significantly reduced in the D-EVLP group. Post-transplant oxygenation exceeded the acceptable clinical levels only in the D-EVLP group. Uncontrolled non-heart-beating donor lungs with extended warm ischemia can be reconditioned for successful transplantation. The combination of CSP and EVLP in the D-EVLP group was necessary to obtain optimal post-transplant function. This finding, if confirmed clinically, will allow expanded use of nonheart-beating donor lungs. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Physiologic Basis for Improved Pulmonary Function after Lung Volume Reduction
Fessler, Henry E.; Scharf, Steven M.; Ingenito, Edward P.; McKenna, Robert J.; Sharafkhaneh, Amir
2008-01-01
It is not readily apparent how pulmonary function could be improved by resecting portions of the lung in patients with emphysema. In emphysema, elevation in residual volume relative to total lung capacity reduces forced expiratory volumes, increases inspiratory effort, and impairs inspiratory muscle mechanics. Lung volume reduction surgery (LVRS) better matches the size of the lungs to the size of the thorax containing them. This restores forced expiratory volumes and the mechanical advantage of the inspiratory muscles. In patients with heterogeneous emphysema, LVRS may also allow space occupied by cysts to be reclaimed by more normal lung. Newer, bronchoscopic methods for lung volume reduction seek to achieve similar ends by causing localized atelectasis, but may be hindered by the low collateral resistance of emphysematous lung. Understanding of the mechanisms of improved function after LVRS can help select patients more likely to benefit from this approach. PMID:18453348
Effects of Body Mass Index on Lung Function Index of Chinese Population
NASA Astrophysics Data System (ADS)
Guo, Qiao; Ye, Jun; Yang, Jian; Zhu, Changan; Sheng, Lei; Zhang, Yongliang
2018-01-01
To study the effect of body mass index (BMI) on lung function indexes in Chinese population. A cross-sectional study was performed on 10, 592 participants. The linear relationship between lung function and BMI was evaluated by multivariate linear regression analysis, and the correlation between BMI and lung function was assessed by Pearson correlation analysis. Correlation analysis showed that BMI was positively related with the decreasing of forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and FEV1/FVC (P <0.05), the increasing of FVC% predicted value (FVC%pre) and FEV1% predicted value (FEV1%pre). These suggested that Chinese people can restrain the decline of lung function to prevent the occurrence and development of COPD by the control of BMI.
Lung function in type 2 diabetes: the Normative Aging Study.
Litonjua, Augusto A; Lazarus, Ross; Sparrow, David; Demolles, Debbie; Weiss, Scott T
2005-12-01
Cross-sectional studies have noted that subjects with diabetes have lower lung function than non-diabetic subjects. We conducted this analysis to determine whether diabetic subjects have different rates of lung function change compared with non-diabetic subjects. We conducted a nested case-control analysis in 352 men who developed diabetes and 352 non-diabetic subjects in a longitudinal observational study of aging in men. We assessed lung function among cases and controls at three time points: Time0, prior to meeting the definition of diabetes; Time1, the point when the definition of diabetes was met; and Time2, the most recent follow-up exam. Cases had lower forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) at all time points, even with adjustment for age, height, weight, and smoking. In multiple linear regression models adjusting for relevant covariates, there were no differences in rates of FEV1 or FVC change over time between cases and controls. Men who are predisposed to develop diabetes have decreased lung function many years prior to the diagnosis, compared with men who do not develop diabetes. This decrement in lung function remains after the development of diabetes. We postulate that mechanisms involved in the insulin resistant state contribute to the diminished lung function observed in our subjects.
Cushing, Leah; Costinean, Stefan; Xu, Wei; Jiang, Zhihua; Madden, Lindsey; Kuang, Pingping; Huang, Jingshu; Weisman, Alexandra; Hata, Akiko; Croce, Carlo M; Lü, Jining
2015-05-01
Differentiation of lung vascular smooth muscle cells (vSMCs) is tightly regulated during development or in response to challenges in a vessel specific manner. Aberrant vSMCs specifically associated with distal pulmonary arteries have been implicated in the pathogenesis of respiratory diseases, such as pulmonary arterial hypertension (PAH), a progressive and fatal disease, with no effective treatment. Therefore, it is highly relevant to understand the underlying mechanisms of lung vSMC differentiation. miRNAs are known to play critical roles in vSMC maturation and function of systemic vessels; however, little is known regarding the role of miRNAs in lung vSMCs. Here, we report that miR-29 family members are the most abundant miRNAs in adult mouse lungs. Moreover, high levels of miR-29 expression are selectively associated with vSMCs of distal vessels in both mouse and human lungs. Furthermore, we have shown that disruption of miR-29 in vivo leads to immature/synthetic vSMC phenotype specifically associated with distal lung vasculature, at least partially due to the derepression of KLF4, components of the PDGF pathway and ECM-related genes associated with synthetic phenotype. Moreover, we found that expression of FBXO32 in vSMCs is significantly upregulated in the distal vasculature of miR-29 null lungs. This indicates a potential important role of miR-29 in smooth muscle cell function by regulating FBXO32 and SMC protein degradation. These results are strongly supported by findings of a cell autonomous role of endogenous miR-29 in promoting SMC differentiation in vitro. Together, our findings suggested a vessel specific role of miR-29 in vSMC differentiation and function by targeting several key negative regulators.
Fibulin-1 Predicts Disease Progression in Patients With Idiopathic Pulmonary Fibrosis
Unger, Sofia; Corte, Tamera J.; Keller, Michael; Wolters, Paul J.; Richeldi, Luca; Cerri, Stefania; Prêle, Cecilia M.; Hansbro, Philip M.; Argraves, William Scott; Oliver, Rema A.; Oliver, Brian G.; Black, Judith L.; Burgess, Janette K.
2014-01-01
BACKGROUND: The underlying mechanisms of idiopathic pulmonary fibrosis (IPF) are unknown. This progressive disease has high mortality rates, and current models for prediction of mortality have limited value in identifying which patients will progress. We previously showed that the glycoprotein fibulin-1 is involved in enhanced proliferation and wound repair by mesenchymal cells and, thus, may contribute to lung fibrosis in IPF. METHODS: Serum, lung tissue, and lung function values were obtained from four independent locations (Sydney, NSW, and Perth, WA, Australia; San Francisco, CA; and Modena, Italy). Patients with IPF were followed for a minimum of 1 year and progression was defined as a significant decline in lung function or death. Primary parenchymal lung fibroblasts of 15 patients with and without IPF were cultured under nonstimulatory conditions. Fibulin-1 levels in serum, and secreted or deposited by fibroblasts, were measured by western blot and in lung tissue by immunohistochemistry. RESULTS: Serum fibulin-1 levels were increased in patients with IPF compared with subjects without lung disease (P = .006). Furthermore, tissue fibulin-1 levels were increased in patients with IPF (P = .02) and correlated negatively with lung function (r = −0.9, P < .05). Primary parenchymal fibroblasts from patients with IPF produced more fibulin-1 than those from subjects without IPF (P < .05). Finally, serum fibulin-1 levels at first blood draw predicted disease progression in IPF within 1 year (area under the curve , 0.71; 95% CI, 0.57-0.86; P = .012). CONCLUSIONS: Fibulin-1 is a novel potential biomarker for disease progression in IPF and raises the possibility that it could be used as a target for the development of new treatments. PMID:24832167
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Weina, E-mail: liweina228@163.com; He, Fei, E-mail: hesili1027@163.com
2014-07-18
Highlights: • Expression of MMD is increased in lung cancer tissues. • Knockdown of MMD inhibits growth of A549 and LLC cells in vitro and in vivo. • MMD is a direct functional target of miR-140-5p. • MiR-140-5p/MMD axis regulates Erk1/2 signaling. - Abstract: Monocyte to macrophage differentiation-associated (MMD) is identified in macrophages as a gene associated with the differentiation from monocytes to macrophages. Recent microarray analysis for non-small cell lung cancer (NSCLC) suggests that MMD is an important signature associated with relapse and survival among patients with NSCLC. Therefore, we speculate that MMD likely plays a role in lungmore » cancer. In this study, we found that the protein level of MMD was increased in lung cancer compared to benign lung tissues, and knockdown of MMD inhibited the growth of A549 and Lewis lung cancer cells (LLC) in vitro and in vivo. Integrated analysis demonstrated that MMD was a direct functional target of miR-140-5p. Furthermore, we found that miR-140-5p/MMD axis could affect the cell proliferation of lung cancer cells by regulating Erk signaling. Together, our results highlight the significance of miR-140-5p/MMD axis in lung cancer, and miR-140-5p/MMD axis could serve as new molecular targets for the therapy against lung cancer.« less
Wang, Maolong; Sun, Xiao; Yang, Yuling; Jiao, Wenjie
2018-06-13
The antisense of the OIP5-AS1 gene is a long non-coding RNA (lncRNA) that is reported to be upregulated and promotes cell proliferation in multiple human cancers; however, its function in lung cancer is unknown. We investigated the regulatory function and underlying mechanisms of OIP5-AS1 in lung cancer. OIP5-AS1 and microRNA (miR)-378a-3p expression were assayed by quantitative real-time PCR, and proliferation-related protein expression was measured by Western blotting. Cell viability was detected using methyl thiazolyl tetrazolium assay. Luciferase reporter assay and RNA immunoprecipitation were used to detect the direct regulation of miR-378a-3p by OIP5-AS1. Nude mice were used to test the function of OIP5-AS1 in vivo. OIP5-AS1 was highly expressed in lung cancer tissues and was correlated with tumor size and tumor growth speed. OIP5-AS1 overexpression increased lung cancer cell proliferation in vitro. Further investigation revealed that OIP5-AS1 functions as a competing endogenous RNA of miR-378a-3p. MiR-378a-3p overexpression inhibited cell proliferation and caused proliferation-associated proteins CDK4 and CDK6 to decrease in A549 cells. Overexpression of wild type OIP5-AS1 led to strong CDK4 and CDK6 expression; however, these two proteins did not change when mutated OIP5-AS1 was upregulated. Finally, in vivo assay showed that the speed of tumor growth was increased and decreased when OIP5-AS1 was upregulated and downregulated, respectively. Our results revealed that OIP5-AS1 acts as a growth-promoting lncRNA in lung cancer by suppressing miR-378a-3p function. OIP5-AS1 and miR-378a-3p interaction may provide a potential target for lung cancer treatment. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Pouliot, P.; Spahr, A.; Careau, É.; Turmel, V.; Bissonnette, E. Y.
2016-01-01
Summary Background We already demonstrated that adoptive transfer of alveolar macrophages (AMs) from non-allergic rats into AM-depleted allergic rats prevents airway hyperresponsiveness (AHR). We also showed that AMs from non-sensitized, but not from sensitized, allergy-prone rats can prevent AHR following allergen challenge in sensitized allergic animals, establishing the importance of rat immunological status on the modulation of AM functions and suggesting that an allergic lung environment alters AM functions. Objective We investigated how the activation of allergic AMs can be modulated to reinstitute them with their capacity to reduce AHR. Methods AMs from sensitized Brown Norway rats were cultured ex vivo for up to 18 h in culture media to deprogram them from the influence of the allergic lung before being reintroduced into the lung of AM-depleted sensitized recipient. AHR and cytokines in bronchoalveolar lavage (BAL) were measured following allergen challenge. AMs stimulated ex vivo with Bacillus Calmette-Guerin(BCG) were used as positive controls as BCG induces a T-helper type 1 activation in AMs. Results AMs ex vivo cultured for 4–18 h reduced AHR to normal level. Interestingly, pro-allergic functions of AMs were dampened by 18 h culture and they reduced AHR even after spending 48 h in an allergic lung microenvironment. Furthermore, transfer of cultured AMs caused an increase in the levels of IFN-γ and IL-12 in BAL when compared with their ovalbumin control. After 18 h of ex vivo culture, AMs expressed reduced levels of TNF, IL-1α, IL-6, and Arginase-2 mRNAs compared with freshly isolated AMs, suggesting that ex vivo culture exempted AMs from lung stimuli that affected their functions. Conclusions There is a significant crosstalk between lung microenvironment and AMs, affecting their functions. It is also the first report showing that sensitized AMs can be modulated ex vivo to reduce lung pro-allergic environment, opening the way to therapies targetting AMs. PMID:18201249
Kamada, Takahiro; Kaneko, Masahiro; Tomioka, Hiromi
2017-01-01
Forced oscillation technique (FOT) has been reported to be useful in the evaluation and management of obstructive lung disease, including COPD. To date, no data are available concerning long-term changes in respiratory system impedance measured by FOT. Additionally, although exacerbations have been reported to be associated with excessive lung function decline in COPD, the impact of exacerbations on the results of FOT has not been demonstrated. The aim of this study was to investigate the longitudinal changes in respiratory system impedance and the influence of exacerbations thereon. Between March 2011 and March 2012, outpatients who attended Kobe City Medical Center West Hospital with a diagnosis of COPD were assessed for eligibility. Baseline patient characteristics (age, sex, body mass index, smoking history, current smoking status, COPD stage), lung function (post-bronchodilator forced expiratory volume in 1 second [FEV 1 ]), blood tests (neutrophils and eosinophils), FOT, and COPD assessment test results were collected at enrollment. Lung function and FOT were examined every 6 months until March 2016. Annual changes in FEV 1 and FOT parameters were obtained from the slope of the linear regression curve. The patients were divided into 2 groups based on exacerbation history. Fifty-one of 58 patients with COPD were enrolled in this study. The median follow-up period was 57 (52-59) months. Twenty-five (49%) patients experienced exacerbations. A significant annual decline in FEV 1 and respiratory system impedance were shown. Additionally, annual changes in FEV 1 , respiratory system resistance at 5 Hz, respiratory system reactance at 5 Hz, and resonant frequency were greater in patients with exacerbations than in those without exacerbations. Exacerbations of COPD lead not only to a decline in lung function but also to an increase in respiratory system impedance.
Yu, Yunjiang; Yu, Ziling; Sun, Peng; Lin, Bigui; Li, Liangzhong; Wang, Zhengdong; Ma, Ruixue; Xiang, Mingdeng; Li, Hui; Guo, Shu
2018-05-01
This cross-sectional study investigated the association between air pollutant (AP) and respiratory health of 951 children residing near a municipal solid waste (MSW) landfill in Northern China. Results showed that students in non-exposure areas had significantly higher levels of lysozyme, secretory immunoglobulin A (SIgA), and better lung capacity than students in exposure areas (p < .05). Multiple regression model analysis indicated that lysozyme levels exhibited a consistent negative association with methane (CH 4 : β = -76.3, 95% CI -105 to -47.7) and sulfuretted hydrogen (H 2 S: β = -11.7, 95% CI -20.2 to -3.19). In addition, SIgA levels were negatively associated with H 2 S (β = -68.9, 95% CI -97.9 to -39.9) and ammonia (NH 3 : β = -30.3, 95% CI -51.7 to -8.96). Among all AP, H 2 S and sulfur dioxide (SO 2 ) were the most robustly related with reduced lung function. H 2 S exposure was negatively associated with six lung function indices, 1-s forced expiratory volume (FEV1%), mean forced expiratory flow between 25% and 75% (MMF), maximum voluntary ventilation (MVV), and forced expiratory flow at 25%, 50%, and 75% of the pulmonary volume (FEF25, FEF50, FEF75); and SO 2 was negatively associated with FEV1%, MVV, FEF25, FEF50 and FEF75. Our results suggested that AP exposure was negatively associated with more lung function parameters in boys than in girls. In conclusion, our findings suggested that children living adjacent to landfill sites were more likely to have deficient non-specific immunity and impaired lung function. Copyright © 2017 Elsevier Ltd. All rights reserved.
Goldwasser, Deborah L
2017-03-15
The National Lung Screening Trial (NLST) demonstrated that non-small cell lung cancer (NSCLC) mortality can be reduced by a program of annual CT screening in high-risk individuals. However, CT screening regimens and adherence vary, potentially impacting the lung cancer mortality benefit. We defined the NSCLC cure threshold as the maximum tumor size at which a given NSCLC would be curable due to early detection. We obtained data from 518,234 NSCLCs documented in the U.S. SEER cancer registry between 1988 and 2012 and 1769 NSCLCs detected in the NLST. We demonstrated mathematically that the distribution function governing the cure threshold for the most aggressive NSCLCs, G(x|Φ = 1), was embedded in the probability function governing detection of SEER-documented NSCLCs. We determined the resulting probability functions governing detection over a range of G(x|Φ = 1) scenarios and compared them with their expected functional forms. We constructed a simulation framework to determine the cure threshold models most consistent with tumor sizes and outcomes documented in SEER and the NLST. Whereas the median tumor size for lethal NSCLCs documented in SEER is 43 mm (males) and 40 mm (females), a simulation model in which the median cure threshold for the most aggressive NSCLCs is 10 mm (males) and 15 mm (females) best fit the SEER and NLST data. The majority of NSCLCs in the NLST were treated at sizes greater than our median cure threshold estimates. New technology is needed to better distinguish and treat the most aggressive NSCLCs when they are small (i.e., 5-15 mm). © 2016 UICC.
Biomarkers for radiation pneumonitis using non-invasive molecular imaging
Medhora, Meetha; Haworth, Steven; Liu, Yu; Narayanan, Jayashree; Gao, Feng; Zhao, Ming; Audi, Said; Jacobs, Elizabeth R.; Fish, Brian L.; Clough, Anne V.
2016-01-01
Rationale Our goal is to develop minimally-invasive biomarkers for predicting radiation-induced lung injury before symptoms develop. Currently there are no biomarkers that can predict radiation pneumonitis. Radiation damage to the whole lung is a serious risk in nuclear accidents or in case of radiological terrorism. Our previous studies have shown a single dose of 15 Gy X-rays to the thorax causes severe pneumonitis in rats by 6–8 weeks. We have also developed a mitigator for radiation pneumonitis and fibrosis that can be started as late as 5 weeks after radiation. Methods We used two functional single photon emission computed tomography (SPECT) probes in vivo in irradiated rat lungs. Regional pulmonary perfusion was measured by injection of technetium labeled macroaggregated albumin (99mTc-MAA). Perfused volume was determined by comparing the volume of distribution of 99mTc-MAA to the anatomical lung volume obtained by micro-CT. A second probe, technetium labeled duramycin that binds to apoptotic cells, was used to measure pulmonary cell death in the same rat model. Results Perfused volume of lung was decreased by ~25% at 1, 2 and 3 weeks after 15 Gy and 99mTc-duramycin uptake was more than doubled at 2 and 3 weeks. There was no change in body weight, breathing rate or lung histology between irradiated and non-irradiated rats at these times. Pulmonary vascular resistance and vascular permeability measured in isolated perfused lungs ex vivo increased at 2 weeks after 15 Gy. Principal conclusions Our results suggest the potential for SPECT biomarkers for predicting radiation injury to the lungs before substantial functional or histological damage is observed. Early prediction of radiation pneumonitis will benefit those receiving radiation in the context of therapy, accidents or terrorism in time to initiate mitigation. PMID:27033892
MRI and CT lung biomarkers: Towards an in vivo understanding of lung biomechanics.
Young, Heather M; Eddy, Rachel L; Parraga, Grace
2017-09-29
The biomechanical properties of the lung are necessarily dependent on its structure and function, both of which are complex and change over time and space. This makes in vivo evaluation of lung biomechanics and a deep understanding of lung biomarkers, very challenging. In patients and animal models of lung disease, in vivo evaluations of lung structure and function are typically made at the mouth and include spirometry, multiple-breath gas washout tests and the forced oscillation technique. These techniques, and the biomarkers they provide, incorporate the properties of the whole organ system including the parenchyma, large and small airways, mouth, diaphragm and intercostal muscles. Unfortunately, these well-established measurements mask regional differences, limiting their ability to probe the lung's gross and micro-biomechanical properties which vary widely throughout the organ and its subcompartments. Pulmonary imaging has the advantage in providing regional, non-invasive measurements of healthy and diseased lung, in vivo. Here we summarize well-established and emerging lung imaging tools and biomarkers and how they may be used to generate lung biomechanical measurements. We review well-established and emerging lung anatomical, microstructural and functional imaging biomarkers generated using synchrotron x-ray tomographic-microscopy (SRXTM), micro-x-ray computed-tomography (micro-CT), clinical CT as well as magnetic resonance imaging (MRI). Pulmonary imaging provides measurements of lung structure, function and biomechanics with high spatial and temporal resolution. Imaging biomarkers that reflect the biomechanical properties of the lung are now being validated to provide a deeper understanding of the lung that cannot be achieved using measurements made at the mouth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Graft downsizing during ex vivo lung perfusion: case report and technical notes.
Nosotti, M; Rosso, L; Mendogni, P; Tosi, D; Palleschi, A; Righi, I; Froio, S; Valenza, F; Santambrogio, L
2014-09-01
Among patients with respiratory insufficiency awaiting lung transplantation, small adult patients have a lower opportunity of receiving size-matched pulmonary grafts, because of the shortage of donors, particularly those of small size. Reducing the size of an oversized graft is one of the methods to increase the donor pool; similarly, ex vivo lung perfusion is an emerging technique aimed toward the same purpose. We describe how we combined the 2 techniques (lobar transplantation plus contralateral nonanatomic graft reduction during ex vivo lung perfusion) to overcome graft shortage in a clinical case. For the 1st time, this case report demonstrates that surgical manipulation during ex vivo lung perfusion does not affect the functional improvement in a lung previously judged to be not suitable for transplantation. The 6-month follow-up results are similar to those of standard bilateral lung transplantation. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Xudong; Liu, Shupeng; Zhou, Zhenhua; Yan, Hongli; Xiao, Jianru
2017-05-01
Certain viruses use microRNAs to regulate the expression of their own genes, host genes, or both. A number of microRNAs expressed by herpes simplex virus type 2 have been confirmed by previous studies. However, whether these microRNAs play a role in the metastasis of lung cancers and how these viral microRNAs precisely regulated the tumor biological process in lung cancer bone metastasis remain obscure. We recently identified the high expression of an acutely and latently expressed viral microRNA, Hsv2-miR-H9-5p, encoded by herpes simplex virus type 2 latency-associated transcript through microarray and quantitative polymerase chain reaction analyses which compared the expression of microRNAs in bone metastasis from lung cancer with primary lung cancers. We now reported that Hsv2-miR-H9-5p was highly expressed in bone metastasis and closely associated with pathological and metastatic processes of lung cancers. The functions of Hsv2-miR-H9-5p were determined by overexpression which results in an increase in survival, migration, and invasion of lung cancer cells in vitro. We determined that Hsv2-miR-H9-5p directly targeted SOCS2 mechanistically by dual-luciferase reporter assay. Then, we investigated the functions of SOCS2 in the progress of lung cancers. Reduction of SOCS2 dosage by hsv2-miR-H9-5p induced increased migration and invasion of lung cancer cells. Overexpression of SOCS2 inverted these phenotypes generated by hsv2-miR-H9-5p, indicating the potential roles of SOCS2 in Hsv2-miR-H9-5p-driven metastasis in lung cancers. The results highlighted that Hsv2-miR-H9-5p regulated and contributed to bone metastasis of lung cancers. We proposed that Hsv2-miR-H9-5p could be used as a potential target in lung cancer therapy.
Kirillov, Varvara; Siler, Jonathan T; Ramadass, Mahalakshmi; Ge, Lingyin; Davis, James; Grant, Geraldine; Nathan, Steven D; Jarai, Gabor; Trujillo, Glenda
2015-04-01
Idiopathic pulmonary fibrosis (IPF) is characterized by excessive scarring of the lung parenchyma, resulting in a steady decline of lung function and ultimately respiratory failure. The disease course of IPF is extremely variable, with some patients exhibiting stability of symptoms for prolonged periods of time, whereas others exhibit rapid progression and loss of lung function. Viral infections have been implicated in IPF and linked to disease severity; however, whether they directly contribute to progression is unclear. We previously classified patients as rapid and slow progressors on the basis of clinical features and expression of the pathogen recognition receptor, Toll-like receptor 9 (TLR9). Activation of TLR9 in vivo exacerbated IPF in mice and induced differentiation of myofibroblasts in vitro, but the mechanism of TLR9 up-regulation and progression of fibrosis are unknown. Herein, we investigate whether transforming growth factor (TGF)-β, a pleiotropic cytokine central to IPF pathogenesis, regulates TLR9 in lung myofibroblasts. Results showed induction of TLR9 expression by TGF-β in lung myofibroblasts and a distinct profibrotic myofibroblast phenotype driven by stimulation with the TLR9 agonist, CpG-DNA. Chronic TLR9 stimulation resulted in stably differentiated α-smooth muscle actin(+)/platelet-derived growth factor receptor α(+)/CD44(+)/matrix metalloproteinase-14(+)/matrix metalloproteinase-2(+) myofibroblasts, which secrete inflammatory cytokines, invade Matrigel toward platelet-derived growth factor, and resist hypoxia-induced apoptosis. These results suggest a mechanism by which TGF-β and TLR9 responses in myofibroblasts collaborate to drive rapid progression of IPF. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Yamamoto, Tokihiro; Kabus, Sven; Bal, Matthieu; Bzdusek, Karl; Keall, Paul J; Wright, Cari; Benedict, Stanley H; Daly, Megan E
2018-05-04
Lung functional image guided radiation therapy (RT) that avoids irradiating highly functional regions has potential to reduce pulmonary toxicity following RT. Tumor regression during RT is common, leading to recovery of lung function. We hypothesized that computed tomography (CT) ventilation image-guided treatment planning reduces the functional lung dose compared to standard anatomic image-guided planning in 2 different scenarios with or without plan adaptation. CT scans were acquired before RT and during RT at 2 time points (16-20 Gy and 30-34 Gy) for 14 patients with locally advanced lung cancer. Ventilation images were calculated by deformable image registration of four-dimensional CT image data sets and image analysis. We created 4 treatment plans at each time point for each patient: functional adapted, anatomic adapted, functional unadapted, and anatomic unadapted plans. Adaptation was performed at 2 time points. Deformable image registration was used for accumulating dose and calculating a composite of dose-weighted ventilation used to quantify the lung accumulated dose-function metrics. The functional plans were compared with the anatomic plans for each scenario separately to investigate the hypothesis at a significance level of 0.05. Tumor volume was significantly reduced by 20% after 16 to 20 Gy (P = .02) and by 32% after 30 to 34 Gy (P < .01) on average. In both scenarios, the lung accumulated dose-function metrics were significantly lower in the functional plans than in the anatomic plans without compromising target volume coverage and adherence to constraints to critical structures. For example, functional planning significantly reduced the functional mean lung dose by 5.0% (P < .01) compared to anatomic planning in the adapted scenario and by 3.6% (P = .03) in the unadapted scenario. This study demonstrated significant reductions in the accumulated dose to the functional lung with CT ventilation image-guided planning compared to anatomic image-guided planning for patients showing tumor regression and changes in regional ventilation during RT. Copyright © 2018 Elsevier Inc. All rights reserved.
Spirometry: a predictor of lung cancer among asbestos workers.
Świątkowska, Beata; Szeszenia-Dąbrowska, Neonila
2017-01-01
The significance of lung function as an independent risk factor for lung cancer remains unclear. The objective of the study is to answer the question if spirometry can identify patients at risk for lung cancer among people occupationally exposed to asbestos dust in the past. In order to identify a group of individuals with the highest risk of lung cancer incidence based on lung function levels of FEV 1 % predicted value, we examined 6882 subjects enrolled in the health surveillance program for asbestos related diseases over the years 2000-2014. We found a total of 110 cases confirmed as primary lung cancer. Using Cox's proportional hazards model after adjustment for age, gender, number of cigarettes, duration of smoking and cumulative asbestos exposure, we estimated that compared with the subjects with FEV 1 ≥90% pred, the HR of lung cancer was 1.40 (95%CI: 0.94-2.08) for the subjects with FEV 1 less than 90% and 1.95 (HR = 1.86; 95%CI: 1.12-3.08) for those with FEV 1 less than 70%. In addition, probability of the occurrence of lung cancer for FEV 1 <90% of the predicted value was HR = 2.19 (95%CI: 1.04-4.61) in the subjects whose time since spirometry and cancer diagnosis was three years or less. The results strongly support the hypothesis that spirometry can identify patients at a risk of lung cancer development. Regular spirometry should be offered to all patients with a history of asbestos exposure, at least once every three years.
Methods for Measuring Lung Volumes: Is There a Better One?
Tantucci, Claudio; Bottone, Damiano; Borghesi, Andrea; Guerini, Michele; Quadri, Federico; Pini, Laura
2016-01-01
Accurate measurement of lung volumes is of paramount importance to establish the presence of ventilatory defects and give insights for diagnostic and/or therapeutic purposes. It was the aim of this study to measure lung volumes in subjects with respiratory disorders and in normal controls by 3 different techniques (plethysmographic, dilutional and radiographic methods), in an attempt to clarify the role of each of them in performing such a task, without any presumptive 'a priori' superiority of one method above others. Patients andMethods: In different groups of subjects with obstructive and restrictive ventilatory defects and in a normal control group, total lung capacity, functional residual capacity (FRC) and residual volume were measured by body plethysmography, multi-breath helium (He) dilution and radiographic CT scan method with spirometric gating. The 3 methods gave comparable results in normal subjects and in patients with a restrictive defect. In patients with an obstructive defect, CT scan and plethysmography showed similar lung volumes, while on average significantly lower lung volumes were obtained with the He dilution technique. Taking into account that the He dilution technique does primarily measure FRC during tidal breathing, our data suggest that in some patients with an obstructive defect, a number of small airways can be functionally closed at end-expiratory lung volume, preventing He to reach the lung regions subserved by these airways. In all circumstances, both CT scan with spirometric gating and plethysmographic methods provide similar values of lung volumes. In contrast, the He dilution method can measure lower lung volumes in some patients with chronic airflow obstruction. © 2016 S. Karger AG, Basel.
A portable single-sided magnet system for remote NMR measurements of pulmonary function.
Dabaghyan, Mikayel; Muradyan, Iga; Hrovat, Alan; Butler, James; Frederick, Eric; Zhou, Feng; Kyriazis, Angelos; Hardin, Charles; Patz, Samuel; Hrovat, Mirko
2014-12-01
In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung. In order to achieve portability, one must trade off field strength and therefore spatial resolution. We report initial measurements from a ping-pong ball size region in the lung as a function of lung volume. As expected, we measured decreased signal at larger lung volumes since lung density decreases with increasing lung volume. Using a CPMG sequence with ΔTE=3.5 ms and a 20 echo train, a signal to noise ratio ~1100 was obtained from an 8.8mT planar magnet after signal averaging for 43 s. This is the first demonstration of NMR measurements made on a human lung with a light-weight planar NMR device. We argue that very low spatial resolution measurements of different lobar lung regions will provide useful diagnostic information for clinicians treating Acute Respiratory Distress Syndrome as clinicians want to avoid ventilator pressures that cause either lung over distension (too much pressure) or lung collapse (too little pressure). Copyright © 2014 John Wiley & Sons, Ltd.
A portable single-sided magnet system for remote NMR measurements of pulmonary function
Mikayel, Dabaghyan; Iga, Muradyan; James, Butler; Eric, Frederick; Feng, Zhou; Angelos, Kyriazis; Charles, Hardin; Samuel, Patz; Mirko, Hrovat
2014-01-01
In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung. In order to achieve portability, one must trade off field strength and therefore spatial resolution. We report initial measurements from a ping-pong ball size region in the lung as a function of lung volume. As expected, we measured decreased signal at larger lung volumes since lung density decreases with increasing lung volume. Using a CPMG sequence with ΔTE=3.5 ms and a 20 echo train, a signal to noise ratio ~1100 was obtained from an 8.8mT planar magnet after signal averaging for 43 s. This is the first demonstration of NMR measurements made on a human lung with a light-weight planar NMR device. We argue that very low spatial resolution measurements of different lobar lung regions will provide useful diagnostic information for clinicians treating Acute Respiratory Distress Syndrome as clinicians want to avoid ventilator pressures that cause either lung over distension (too much pressure) or lung collapse (too little pressure). PMID:24953556
SU-E-T-217: Intrinsic Respiratory Gating in Small Animal CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y; Smith, M; Mistry, N
Purpose: Preclinical animal models of lung cancer can provide a controlled test-bed for testing dose escalation or function-based-treatment-planning studies. However, to extract lung function, i.e. ventilation, one needs to be able to image the lung at different phases of ventilation (in-hale / ex-hale). Most respiratory-gated imaging using micro-CT involves using an external ventilator and surgical intervention limiting the utility in longitudinal studies. A new intrinsic respiratory retrospective gating method was developed and tested in mice. Methods: A fixed region of interest (ROI) that covers the diaphragm was selected on all projection images to estimate the mean intensity (M). The meanmore » intensity depends on the projection angle and diaphragm position. A 3-point moving average (A) of consecutive M values: Mpre, Mcurrent and Mpost, was calculated to be subtracted from Mcurrent. A fixed threshold was used to enable amplitude based sorting into 4 different phases of respiration. Images at full-inhale and end-exhale phases of respiration were reconstructed using the open source OSCaR. Lung volumes estimated at the 2 phases of respiration were validated against literature values. Results: Intrinsic retrospective gating was accomplished without the use of any external breathing waveform. While projection images were acquired at 360 different angles. Only 138 and 104 projections were used to reconstruct images at full-inhale and end-exhale. This often results in non-uniform under-sampled angular projections leading to some minor streaking artifacts. The calculated expiratory, inspiratory and tidal lung volumes correlated well with the values known from the literature. Conclusion: Our initial result demonstrates an intrinsic gating method that is suitable for flat panel cone beam small animal CT systems. Reduction in streaking artifacts can be accomplished by oversampling the data or using iterative reconstruction methods. This initial experience will enable freebreathing small animal micro-CT imaging to fuel longitudinal studies of lung function.« less
Manichaikul, Ani; Hoffman, Eric A.; Smolonska, Joanna; Gao, Wei; Cho, Michael H.; Baumhauer, Heather; Budoff, Matthew; Austin, John H. M.; Washko, George R.; Carr, J. Jeffrey; Kaufman, Joel D.; Pottinger, Tess; Powell, Charles A.; Wijmenga, Cisca; Zanen, Pieter; Groen, Harry J. M.; Postma, Dirkje S.; Wanner, Adam; Rouhani, Farshid N.; Brantly, Mark L.; Powell, Rhea; Smith, Benjamin M.; Rabinowitz, Dan; Raffel, Leslie J.; Hinckley Stukovsky, Karen D.; Crapo, James D.; Beaty, Terri H.; Hokanson, John E.; Silverman, Edwin K.; Dupuis, Josée; O’Connor, George T.; Boezen, H. Marike; Rich, Stephen S.
2014-01-01
Rationale: Pulmonary emphysema overlaps partially with spirometrically defined chronic obstructive pulmonary disease and is heritable, with moderately high familial clustering. Objectives: To complete a genome-wide association study (GWAS) for the percentage of emphysema-like lung on computed tomography in the Multi-Ethnic Study of Atherosclerosis (MESA) Lung/SNP Health Association Resource (SHARe) Study, a large, population-based cohort in the United States. Methods: We determined percent emphysema and upper-lower lobe ratio in emphysema defined by lung regions less than −950 HU on cardiac scans. Genetic analyses were reported combined across four race/ethnic groups: non-Hispanic white (n = 2,587), African American (n = 2,510), Hispanic (n = 2,113), and Chinese (n = 704) and stratified by race and ethnicity. Measurements and Main Results: Among 7,914 participants, we identified regions at genome-wide significance for percent emphysema in or near SNRPF (rs7957346; P = 2.2 × 10−8) and PPT2 (rs10947233; P = 3.2 × 10−8), both of which replicated in an additional 6,023 individuals of European ancestry. Both single-nucleotide polymorphisms were previously implicated as genes influencing lung function, and analyses including lung function revealed independent associations for percent emphysema. Among Hispanics, we identified a genetic locus for upper-lower lobe ratio near the α-mannosidase–related gene MAN2B1 (rs10411619; P = 1.1 × 10−9; minor allele frequency [MAF], 4.4%). Among Chinese, we identified single-nucleotide polymorphisms associated with upper-lower lobe ratio near DHX15 (rs7698250; P = 1.8 × 10−10; MAF, 2.7%) and MGAT5B (rs7221059; P = 2.7 × 10−8; MAF, 2.6%), which acts on α-linked mannose. Among African Americans, a locus near a third α-mannosidase–related gene, MAN1C1 (rs12130495; P = 9.9 × 10−6; MAF, 13.3%) was associated with percent emphysema. Conclusions: Our results suggest that some genes previously identified as influencing lung function are independently associated with emphysema rather than lung function, and that genes related to α-mannosidase may influence risk of emphysema. PMID:24383474
Liu, Xiaoyu; Ma, Cuiqing; Wang, Xiaoyu; Wang, Wenjing; Li, Zhu; Wang, Xiansheng; Wang, Pengyu; Sun, Wuzhuang; Xue, Baojian
2017-01-01
Chronic obstructive pulmonary disease (COPD) is a progressive pulmonary disease caused by harmful gases or particles. Recent studies have shown that 2% hydrogen or hydrogen water is effective in the treatment and prevention of a variety of diseases. This study investigated the beneficial effects and the possible mechanisms of different hydrogen concentrations on COPD. A rat COPD model was established through smoke exposure methods, and inhalation of different concentrations of hydrogen was used as the intervention. The daily condition of rats and the weight changes were observed; lung function and right ventricular hypertrophy index were assessed. Also, white blood cells were assessed in bronchoalveolar lavage fluid. Pathologic changes in the lung tissue were analyzed using light microscopy and electron microscopy; cardiovascular structure and pulmonary arterial pressure changes in rats were observed using ultrasonography. Tumor necrosis factor alpha, interleukin (IL)-6, IL-17, IL-23, matrix metalloproteinase-12, tissue inhibitor of metalloproteinase-1, caspase-3, caspase-8 protein, and mRNA levels in the lung tissue were determined using immunohistochemistry, Western blot, and real-time polymerase chain reaction. The results showed that hydrogen inhalation significantly reduced the number of inflammatory cells in the bronchoalveolar lavage fluid, and the mRNA and protein expression levels of tumor necrosis factor alpha, IL-6, IL-17, IL-23, matrix metalloproteinase-12, caspase-3, and caspase-8, but increased the tissue inhibitor of metalloproteinase-1 expression. Furthermore, hydrogen inhalation ameliorated lung pathology, lung function, and cardiovascular function and reduced the right ventricular hypertrophy index. Inhalation of 22% and 41.6% hydrogen showed better outcome than inhalation of 2% hydrogen. These results suggest that hydrogen inhalation slows the development of COPD-like lung disease in a cigarette smoke-induced rat model. Higher concentrations of hydrogen may represent a more effective way for the rat model.
Rose, Darya B; Nellesen, Dave; Neary, Maureen P; Cai, Beilei
2017-04-01
Advanced neuroendocrine tumors (NETs) are a rare malignancy with considerable need for effective therapies. Everolimus is a mammalian target of rapamycin (mTOR) inhibitor approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) in 2016 for treatment of adults with progressive, well-differentiated, non-functional NETs of gastrointestinal (GI) or lung origin that are unresectable, locally advanced, or metastatic. To assess the 3-year budget impact for a typical US health plan following availability of everolimus for treatment of GI and lung NETs. Methods An economic model was developed that considered two perspectives: an entire health plan and a pharmacy budget. The total budget impact included costs of drug therapies, administration, hospitalizations, physician visits, monitoring, and adverse events (AEs). The pharmacy model only considered drug costs. In a US health plan with 1 million members, the model estimated 66 patients with well-differentiated, non-functional, and advanced or metastatic GI NETs and 20 with lung NETs undergoing treatment each year. Total budget impact in the first through third year after FDA approval ranged from $0.0568-$0.1443 per member per month (PMPM) for GI NETs and from $0.0181-$0.0355 PMPM for lung NETs. The total budget impact was lower than the pharmacy budget impact because it included cost offsets from administration and AE management for everolimus compared with alternative therapies (e.g. chemotherapies). Because GI and lung NETs are rare diseases with limited published data, several assumptions were made that may influence interpretation of results. The budget impact for everolimus was minimal in this rare disease area with a high unmet need, largely due to low disease prevalence. These results should be considered in the context of significant clinical benefits potentially provided by everolimus, including significantly longer progression-free survival (PFS) for advanced GI and lung NET patients.
Obstructive lung disease as a complication in post pulmonary TB
NASA Astrophysics Data System (ADS)
Tarigan, A. P.; Pandia, P.; Eyanoer, P.; Tina, D.; Pratama, R.; Fresia, A.; Tamara; Silvanna
2018-03-01
The case of post TB is a problem that arises in the community. Pulmonary tuberculosis (TB) can affect lung function. Therefore, we evaluated impaired pulmonary function in subjects with diagnosed prior pulmonary TB. A Case Series study, pulmonary function test was performed in subjects with a history of pulmonary tuberculosis; aged ≥18 years were included. Exclusion criteria was a subject who had asthma, obesity, abnormal thorax and smoking history. We measured FEV1 and FVC to evaluate pulmonary function. Airflow obstruction was FEV1/FVC%<75 and restriction was FVC<80% according to Indonesia’s pneumomobile project. This study was obtained from 23 patients with post pulmonary TB, 5 subjects (23%) had airflow obstruction with FEV1/FVC% value <75%, 15 subjects (71.4%) had abnormalities restriction with FVC value <80% and 3 subjects (5.6%) had normal lung function. Obstructive lung disease is one of the complications of impaired lung function in post pulmonary TB.
Are Lung Disease and Function Related to Age-related Macular Degeneration?
Moorthy, Sonia; Cheung, Ning; Klein, Ronald; Shahar, E; Wong, Tien Y
2010-01-01
Purpose To describe the relationship of lung disease and function with early age-related macular degeneration (AMD) in a population-based study. Design A population-based, cross-sectional study of 12,596 middle-aged participants from the Atherosclerosis Risk in Communities Study. Methods Lung function was assessed by spirometry. Physician diagnosis of asthma and lung disease was ascertained from a standardized questionnaire. AMD signs were graded from fundus photographs according to the Wisconsin grading protocol. Results Of our study population, 587 (4.7%) had early AMD, 638 (5.1%) had asthma and 581 (4.6%) had lung disease. After adjusting for age, gender, smoking and hypertension, each litre increase in predicted forced expiratory volume in one second (FEV1) (odds ratio [OR]: 1.27; 95% confidence interval [CI]: 0.89, 1.80), forced vital capacity (FVC) (OR 1.18; 95% CI: 0.93, 1.51) and peak expiratory flow rate (OR 1.12; 95% CI: 0.95, 1.33) were not significantly associated with early AMD. FEV1/FVC ratio (second quartile OR 1.61; 95%CI 0.88–2.93, third quartile OR 1.65; CI 0.90–3.03, fourth quartile OR 1.28; 95%CI 0.68–2.40) was not significantly associated with early AMD. Similarly, asthma (OR 1.06; 95% CI: 0.86, 1.27) and other lung diseases (OR 1.08; 95% CI: 0.90, 1.29) were not associated with early AMD. Conclusion Our data do not support a cross-sectional association between lung disease and risk of early AMD. PMID:21168814
Thyroid function in lung cancer
Ratcliffe, J G; Stack, B H R; Burt, R W; Ratcliffe, W A; Spilg, W G S; Cuthbert, J; Kennedy, R S
1978-01-01
Thyroid function was assessed at the time of initial diagnosis in 204 patients with lung cancer and compared with that of age and sex-matched patients with non-malignant lung disease. Abnormalities in thyroid function were found in 67 patients (33%). The most prevalent abnormality was a low T3 concentration; this was not associated with other clinical or biochemical evidence of hypothyroidism, but the short-term prognosis of these patients was worse than that of matched patients with lung cancer having normal T3 concentrations. Primary hypothyroidism occurred in three patients, low T4 concentrations and free thyroxine index (FTI) with normal thyrotrophin (TSH) concentrations in four patients, and moderately raised TSH with normal thyroid hormone concentrations in six patients; nine patients had a raised FTI with or without raised T4 concentration as the sole abnormality. Overall, the pattern of thyroid hormone metabolism in lung cancer was a tendency towards reduced T3 concentrations with significantly increased T4/T3 ratios and modestly increased 3,3′,5′-triiodothyronine (rT3) concentrations. The altered T4/T3 ratio was particularly noticeable in patients with anaplastic tumours of small (“oat cell”) and large cell types, but was not apparently related to detectable extrathoracic metastases. These data suggest that thyroid hormone metabolism is altered in patients with lung cancer by decreased 5′-monodeiodination of T4. The resulting low T3 concentrations and altered T4/T3 ratio may be partly responsible for the reduced ratio of androsterone to aetiocholanolone observed in lung cancer, which is known to be a poor prognostic sign. PMID:620266
Microbiota Promotes Chronic Pulmonary Inflammation by Enhancing IL-17A and Autoantibodies.
Yadava, Koshika; Pattaroni, Céline; Sichelstiel, Anke K; Trompette, Aurélien; Gollwitzer, Eva S; Salami, Olawale; von Garnier, Christophe; Nicod, Laurent P; Marsland, Benjamin J
2016-05-01
Changes in the pulmonary microbiota are associated with progressive respiratory diseases including chronic obstructive pulmonary disease (COPD). Whether there is a causal relationship between these changes and disease progression remains unknown. To investigate the link between an altered microbiota and disease, we used a murine model of chronic lung inflammation that is characterized by key pathological features found in COPD and compared responses in specific pathogen-free (SPF) mice and mice depleted of microbiota by antibiotic treatment or devoid of a microbiota (axenic). Mice were challenged with LPS/elastase intranasally over 4 weeks, resulting in a chronically inflamed and damaged lung. The ensuing cellular infiltration, histological damage, and decline in lung function were quantified. Similar to human disease, the composition of the pulmonary microbiota was altered in diseased animals. We found that the microbiota richness and diversity were decreased in LPS/elastase-treated mice, with an increased representation of the genera Pseudomonas and Lactobacillus and a reduction in Prevotella. Moreover, the microbiota was implicated in disease development as mice depleted, or devoid, of microbiota exhibited an improvement in lung function, reduced inflammation, and lymphoid neogenesis. The absence of microbial cues markedly decreased the production of IL-17A, whereas intranasal transfer of fluid enriched with the pulmonary microbiota isolated from diseased mice enhanced IL-17A production in the lungs of antibiotic-treated or axenic recipients. Finally, in mice harboring a microbiota, neutralizing IL-17A dampened inflammation and restored lung function. Collectively, our data indicate that host-microbial cross-talk promotes inflammation and could underlie the chronicity of inflammatory lung diseases.
Stephen, Michael J; Emami, Kiarash; Woodburn, John M; Chia, Elaine; Kadlecek, Stephen; Zhu, Jianliang; Pickup, Stephen; Ishii, Masaru; Rizi, Rahim R; Rossman, Milton
2010-11-01
The use of hyperpolarized (3)He magnetic resonance imaging as a quantitative lung imaging tool has progressed rapidly in the past decade, mostly in the assessment of the airway diseases chronic obstructive pulmonary disease and asthma. This technique has shown potential to assess both structural and functional information in healthy and diseased lungs. In this study, the regional measurements of structure and function were applied to a bleomycin rat model of interstitial lung disease. Male Sprague-Dawley rats (weight, 300-350 g) were administered intratracheal bleomycin. After 3 weeks, apparent diffusion coefficient and fractional ventilation were measured by (3)He magnetic resonance imaging and pulmonary function testing using a rodent-specific plethysmography chamber. Sensitized and healthy animals were then compared using threshold analysis to assess the potential sensitivity of these techniques to pulmonary abnormalities. No significant changes were observed in total lung volume and compliance between the two groups. Airway resistance elevated and forced expiratory volume significantly declined in the 3-week bleomycin rats, and fractional ventilation was significantly decreased compared to control animals (P < .0004). The apparent diffusion coefficient of (3)He showed a smaller change but still a significant decrease in 3-week bleomycin animals (P < .05). Preliminary results suggest that quantitative (3)He magnetic resonance imaging can be a sensitive and noninvasive tool to assess changes in an animal interstitial lung disease model. This technique may be useful for longitudinal animal studies and also in the investigation of human interstitial lung diseases. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.
Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.
Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G
1999-01-01
The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.
Hou, Jian; Sun, Huizhen; Xiao, Lili; Zhou, Yun; Yin, Wenjun; Xu, Tian; Cheng, Juan; Chen, Weihong; Yuan, Jing
2016-07-01
Associations of type 2 diabetes with exposure to polycyclic aromatic hydrocarbons and reduced lung function have been reported. The aim of the present study was to investigate effect of reduced lung function and exposure to background PAHs on diabetes. A total of 2730 individuals were drawn from the Wuhan-Zhuhai (WHZH) Cohort Study (n=3053). Participants completed physical examination, measurement of lung function and urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs). Risk factors for type 2 diabetes were identified by multiple logistic regression analysis, and the presence of additive interaction between levels of urinary OH-PAHs and lower lung function was evaluated by calculation of the relative excess risk due to interaction (RERI) and attributable proportion due to interaction (AP). Urinary OH-PAHs levels was positively associated with type 2 diabetes among individuals with impaired lung function (p<0.05). Forced expiratory volume in one second (FEV1, odd ratio (OR): 0.664, 95% confidence interval (CI): 0.491-0.900) and forced vital capacity (FVC, OR: 0.693, 95% CI: 0.537-0.893) were negatively associated with diabetes among individuals. Additive interaction of higher urinary levels of OH-PAHs and lower FVC (RERI: 0.679, 95% CI: 0.120-1.238); AP: 0.427, 95% CI: 0.072-0.782) was associated with diabetes. Exposure to background PAHs was related to diabetes among individuals with lower lung function. Urinary levels of OH-PAHs and reduced lung function had an additive effect on diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, H; Xia, P; Yu, N
Purpose: To study ventilation weighting effect on radiation doses to both side lungs for patients with advanced stage lung cancer. Methods: Fourteen patients with advanced stage lung cancer were included in this retrospective study. Proprietary software was developed to calculate the lung ventilation map based on 4DCT images acquired for radiation therapy. Two phases of inhale (0%) and exhale (50%) were used for the lung ventilation calculations. For each patient, the CT images were resampled to the same dose calculation resolution of 3mmx3mmx3mm. The ventilation distribution was then normalized by the mean value of the ventilation. The ventilation weighted dosemore » was calculated by applying linearly weighted ventilation to the dose of each pixel. The lung contours were automatically delineated from patient CT image with lung window, excluding the tumor and high density tissues. For contralateral and ipsilateral lungs, the mean lung doses from the original plan and ventilation weighted mean lung doses were compared using two tail t-Test. Results: The average of mean dose was 6.1 ±3.8Gy for the contralateral lungs, and 26.2 ± 14.0Gy for the ipsilateral lungs. The average of ventilation weighted dose was 6.3± 3.8Gy for the contralateral lungs and 24.6 ± 13.1Gy for the ipsilateral lungs. The statistics analysis shows the significance of the mean dose increase (p<0.015) for the contralateral lungs and decrease (p<0.005) for the ipsilateral lungs. Conclusion: Ventilation weighted doses were greater than the un-weighted doses for contralateral lungs and smaller for ipsilateral lungs. This Result may be helpful to understand the radiation dosimetric effect on the lung function and provide planning guidance for patients with advance stage lung cancer.« less
Wagner, Darcy E.; Bonvillain, Ryan W.; Jensen, Todd J.; Girard, Eric D.; Bunnell, Bruce A.; Finck, Christine M.; Hoffman, Andrew M.; Weiss, Daniel J.
2013-01-01
For patients with end-stage lung diseases, lung transplantation is the only available therapeutic option. However, the number of suitable donor lungs is insufficient and lung transplants are complicated by significant graft failure and complications of immunosuppressive regimens. An alternative to classic organ replacement is desperately needed. Engineering of bioartificial organs using either natural or synthetic scaffolds is an exciting new potential option for generation of functional pulmonary tissue for human clinical application. Natural organ scaffolds can be generated by decellularization of native tissues; these acellular scaffolds retain the native organ ultrastructure and can be seeded with autologous cells toward the goal of regenerating functional tissues. Several decellularization strategies have been employed for lung, however, there is no consensus on the optimal approach. A variety of cell types have been investigated as potential candidates for effective recellularization of acellular lung scaffolds. Candidate cells that might be best utilized are those which can be easily and reproducibly isolated, expanded in vitro, seeded onto decellularized matrices, induced to differentiate into pulmonary lineage cells, and which survive to functional maturity. Whole lung cell suspensions, endogenous progenitor cells, embryonic and adult stem cells, and induced pluripotent stem (iPS) cells have been investigated for their applicability to repopulate acellular lung matrices. Ideally, patient-derived autologous cells would be used for lung recellularization as they have the potential to reduce the need for post-transplant immunosuppression. Several studies have performed transplantation of rudimentary bioengineered lung scaffolds in animal models with limited, short-term functionality but much further study is needed. PMID:23614471
Bacci, Giovanni; Fiscarelli, Ersilia; Taccetti, Giovanni; Dolce, Daniela; Paganin, Patrizia; Morelli, Patrizia; Tuccio, Vanessa; De Alessandri, Alessandra; Lucidi, Vincenzina
2017-01-01
In recent years, next-generation sequencing (NGS) was employed to decipher the structure and composition of the microbiota of the airways in cystic fibrosis (CF) patients. However, little is still known about the overall gene functions harbored by the resident microbial populations and which specific genes are associated with various stages of CF lung disease. In the present study, we aimed to identify the microbial gene repertoire of CF microbiota in twelve patients with severe and normal/mild lung disease by performing sputum shotgun metagenome sequencing. The abundance of metabolic pathways encoded by microbes inhabiting CF airways was reconstructed from the metagenome. We identified a set of metabolic pathways differently distributed in patients with different pulmonary function; namely, pathways related to bacterial chemotaxis and flagellar assembly, as well as genes encoding efflux-mediated antibiotic resistance mechanisms and virulence-related genes. The results indicated that the microbiome of CF patients with low pulmonary function is enriched in virulence-related genes and in genes encoding efflux-mediated antibiotic resistance mechanisms. Overall, the microbiome of severely affected adults with CF seems to encode different mechanisms for the facilitation of microbial colonization and persistence in the lung, consistent with the characteristics of multidrug-resistant microbial communities that are commonly observed in patients with severe lung disease. PMID:28758937
Genome-wide assessment of gene-by-smoking interactions in COPD.
Park, Boram; Koo, So-My; An, Jaehoon; Lee, MoonGyu; Kang, Hae Yeon; Qiao, Dandi; Cho, Michael H; Sung, Joohon; Silverman, Edwin K; Yang, Hyeon-Jong; Won, Sungho
2018-06-18
Cigarette smoke exposure is a major risk factor in chronic obstructive pulmonary disease (COPD) and its interactions with genetic variants could affect lung function. However, few gene-smoking interactions have been reported. In this report, we evaluated the effects of gene-smoking interactions on lung function using Korea Associated Resource (KARE) data with the spirometric variables-forced expiratory volume in 1 s (FEV 1 ). We found that variations in FEV 1 were different among smoking status. Thus, we considered a linear mixed model for association analysis under heteroscedasticity according to smoking status. We found a previously identified locus near SOX9 on chromosome 17 to be the most significant based on a joint test of the main and interaction effects of smoking. Smoking interactions were replicated with Gene-Environment of Interaction and phenotype (GENIE), Multi-Ethnic Study of Atherosclerosis-Lung (MESA-Lung), and COPDGene studies. We found that individuals with minor alleles, rs17765644, rs17178251, rs11870732, and rs4793541, tended to have lower FEV 1 values, and lung function decreased much faster with age for smokers. There have been very few reports to replicate a common variant gene-smoking interaction, and our results revealed that statistical models for gene-smoking interaction analyses should be carefully selected.
Yates, Laura L.; Schnatwinkel, Carsten; Hazelwood, Lee; Chessum, Lauren; Paudyal, Anju; Hilton, Helen; Romero, M. Rosario; Wilde, Jonathan; Bogani, Debora; Sanderson, Jeremy; Formstone, Caroline; Murdoch, Jennifer N.; Niswander, Lee A.; Greenfield, Andy; Dean, Charlotte H.
2013-01-01
During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell–cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical–basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, ‘open’ lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in ScribCrc/Crc lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell–cell association, we show that Scrib associates with β-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen morphogenesis by maintaining cell–cell contacts. Thus we reveal novel and important roles for Scrib in lung development operating via the PCP pathway, and in regulating junctional complexes and cell cohesion. PMID:23195221
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, T; Du, K; Bayouth, J
Purpose: Four-dimensional computed tomography (4DCT) and image registration can be used to determine regional lung ventilation changes after radiation therapy (RT). This study aimed to determine if lung ventilation change following radiation therapy was affected by the pre-RT ventilation of the lung. Methods: 13 subjects had three 4DCT scans: two repeat scans acquired before RT and one three months after RT. Regional ventilation was computed using Jacobian determinant calculations on the registered 4DCT images. The post-RT ventilation map was divided by the pre-RT ventilation map to get a voxel-by-voxel Jacobian ratio map depicting ventilation change over the course of RT.more » Jacobian ratio change was compared over the range of delivered doses. The first pre-RT ventilation image was divided by the second to establish a control for Jacobian ratio change without radiation delivered. The functional change between scans was assessed using histograms of the Jacobian ratios. Results: There were significantly (p < 0.05) more voxels that had a large decrease in Jacobian ratio in the post-RT divided by pre-RT map (15.6%) than the control (13.2%). There were also significantly (p < .01) more voxels that had a large increase in Jacobian ratio (16.2%) when compared to control (13.3%). Lung regions with low function (<10% expansion by Jacobian) showed a slight linear reduction in expansion (0.2%/10 Gy delivered), while high function regions (>10% expansion) showed a greater response (1.2% reduction/10 Gy). Contiguous high function regions > 1 liter occurred in 11 of 13 subjects. Conclusion: There is a significant change in regional ventilation following a course of radiation therapy. The change in Jacobian following RT is dependent both on the delivered dose and the initial ventilation of the lung tissue: high functioning lung has greater ventilation loss for equivalent radiation doses. Substantial regions of high function lung tissue are prevalent. Research support from NIH grants CA166119 and CA166703, a gift from Roger Koch, and a Pilot Grant from University of Iowa Carver College of Medicine.« less
Parvez, Faruque; Chen, Yu; Yunus, Mahbub; Olopade, Christopher; Segers, Stephanie; Slavkovich, Vesna; Argos, Maria; Hasan, Rabiul; Ahmed, Alauddin; Islam, Tariqul; Akter, Mahmud M.; Graziano, Joseph H.
2013-01-01
Rationale: Exposure to arsenic through drinking water has been linked to respiratory symptoms, obstructive lung diseases, and mortality from respiratory diseases. Limited evidence for the deleterious effects on lung function exists among individuals exposed to a high dose of arsenic. Objectives: To determine the deleterious effects on lung function that exist among individuals exposed to a high dose of arsenic. Methods: In 950 individuals who presented with any respiratory symptom among a population-based cohort of 20,033 adults, we evaluated the association between arsenic exposure, measured by well water and urinary arsenic concentrations measured at baseline, and post-bronchodilator–administered pulmonary function assessed during follow-up. Measurements and Main Results: For every one SD increase in baseline water arsenic exposure, we observed a lower level of FEV1 (−46.5 ml; P < 0.0005) and FVC (−53.1 ml; P < 0.01) in regression models adjusted for age, sex, body mass index, smoking, socioeconomic status, betel nut use, and arsenical skin lesions status. Similar inverse relationships were observed between baseline urinary arsenic and FEV1 (−48.3 ml; P < 0.005) and FVC (−55.2 ml; P < 0.01) in adjusted models. Our analyses also demonstrated a dose-related decrease in lung function with increasing levels of baseline water and urinary arsenic. This association remained significant in never-smokers and individuals without skin lesions, and was stronger in male smokers. Among male smokers and individuals with skin lesions, every one SD increase in water arsenic was related to a significant reduction of FEV1 (−74.4 ml, P < 0.01; and −116.1 ml, P < 0.05) and FVC (−72.8 ml, P = 0.02; and −146.9 ml, P = 0.004), respectively. Conclusions: This large population-based study confirms that arsenic exposure is associated with impaired lung function and the deleterious effect is evident at low- to moderate-dose range. PMID:23848239
Fareed, Mohd.; Pathak, Manoj Kumar; Bihari, Vipin; Kamal, Ritul; Srivastava, Anup Kumar; Kesavachandran, Chandrasekharan Nair
2013-01-01
Background Non-protective work practices followed by farm workers during spraying of pesticides lead to occupational exposure among them. Objective This study is designed to explore the respiratory health and hematological profile of agricultural workers occupationally exposed to OP pesticides. Materials and Methods A cross sectional study was undertaken among 166 pesticide sprayers working in mango orchards of Lucknow district in North India compared with 77 controls to assess the respiratory illness, lung functions, cholinesterase levels and hematological profile. A questionnaire based survey and clinical examination for respiratory health were conducted among study subjects. Lung function test was conducted among study subjects by using spirometer. Cholinesterase level as biomarker of OP pesticides and hematological profile of study subjects were investigated in the laboratory by following the standard protocols. Results Overall respiratory morbidity observed among exposed subjects was 36.75%. Symptoms for respiratory illness like dry cough, productive cough, wheezing, irritation of throat and blood stained sputum were found to be significantly more (p<0.05) among pesticide sprayers than controls. Lung function parameters viz. PEFR, FEV1, %PEFR predicted, %FEV1 predicted and FEV1/FVC were found to be significantly decreased (p<0.05) among pesticide sprayers as compared to controls. Exposure wise distribution of respiratory illness and lung functions among pesticide sprayers show that the exposure duration significantly elevates (p<0.05) the respiratory problems and significantly decreases (p<0.001) lung functions among pesticide sprayers. Activities of acetylcholinesterase and butyrylcholinesterase were found to be significantly depleted (p<0.001) among pesticide sprayers as compared to controls which show the exposure of OP pesticides among them. The hematological profile viz. RBC, WBC, monocytes, neutrophils, MCV, MCH, MCHC and platelet count were significantly altered (p<0.001) in pesticide sprayers than controls. Conclusion This study shows that the unsafe occupational exposure of OP pesticides causes respiratory illness, decreased lung functions and hematological alterations among pesticide sprayers. PMID:23936093
Urman, Robert; McConnell, Rob; Islam, Talat; Avol, Edward L; Lurmann, Frederick W; Vora, Hita; Linn, William S; Rappaport, Edward B; Gilliland, Frank D; Gauderman, W James
2014-06-01
Previous studies have reported adverse effects of either regional or near-roadway air pollution (NRAP) on lung function. However, there has been little study of the joint effects of these exposures. To assess the joint effects of NRAP and regional pollutants on childhood lung function in the Children's Health Study. Lung function was measured on 1811 children from eight Southern Californian communities. NRAP exposure was assessed based on (1) residential distance to the nearest freeway or major road and (2) estimated near-roadway contributions to residential nitrogen dioxide (NO2), nitric oxide (NO) and total nitrogen oxides (NOx). Exposure to regional ozone (O3), NO2, particulate matter with aerodynamic diameter <10 µm (PM10) and 2.5 µm (PM2.5) was measured continuously at community monitors. An increase in near-roadway NOx of 17.9 ppb (2 SD) was associated with deficits of 1.6% in forced vital capacity (FVC) (p=0.005) and 1.1% in forced expiratory volume in 1 s (FEV1) (p=0.048). Effects were observed in all communities and were similar for NO2 and NO. Residential proximity to a freeway was associated with a reduction in FVC. Lung function deficits of 2-3% were associated with regional PM10 and PM2.5 (FVC and FEV1) and with O3 (FEV1), but not NO2 across the range of exposure between communities. Associations with regional pollution and NRAP were independent in models adjusted for each. The effects of NRAP were not modified by regional pollutant concentrations. The results indicate that NRAP and regional air pollution have independent adverse effects on childhood lung function. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Short-Term Exposure to Air Pollution and Lung Function in the Framingham Heart Study
Ljungman, Petter L.; Wilker, Elissa H.; Gold, Diane R.; Schwartz, Joel D.; Koutrakis, Petros; Washko, George R.; O’Connor, George T.; Mittleman, Murray A.
2013-01-01
Rationale: Short-term exposure to ambient air pollution has been associated with lower lung function. Few studies have examined whether these associations are detectable at relatively low levels of pollution within current U.S. Environmental Protection Agency (EPA) standards. Objectives: To examine exposure to ambient air pollutants within EPA standards and lung function in a large cohort study. Methods: We included 3,262 participants of the Framingham Offspring and Third Generation cohorts living within 40 km of the Harvard Supersite monitor in Boston, Massachusetts (5,358 examinations, 1995–2011) who were not current smokers, with previous-day pollutant levels in compliance with EPA standards. We compared lung function (FEV1 and FVC) after previous-day exposure to particulate matter less than 2.5 μm in diameter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) in the “moderate” range of the EPA Air Quality Index to exposure in the “good” range. We also examined linear relationships between moving averages of pollutant concentrations 1, 2, 3, 5, and 7 days before spirometry and lung function. Measurements and Main Results: Exposure to pollutant concentrations in the “moderate” range of the EPA Air Quality Index was associated with a 20.1-ml lower FEV1 for PM2.5 (95% confidence interval [CI], −33.4, −6.9), a 30.6-ml lower FEV1 for NO2 (95% CI, −60.9, −0.2), and a 55.7-ml lower FEV1 for O3 (95% CI, −100.7, −10.8) compared with the “good” range. The 1- and 2-day moving averages of PM2.5, NO2, and O3 before testing were negatively associated with FEV1 and FVC. Conclusions: Short-term exposure to PM2.5, NO2, and O3 within current EPA standards was associated with lower lung function in this cohort of adults. PMID:24200465
[Evaluation of walk-in lung function service for smokers in Copenhagen--a 1-year study].
Backer, Vibeke; Bolton, Sophie; Ehlers, Hanne D; Thomsen, Simon; Pedersen, Lars; Porsbjerg, Celeste; Lund, Thomas; Harmsen, Lotte; Harmse, Lotte; Fuglsang, Charlotte
2008-08-25
Early prevention of COPD and immediate consultation about tobacco cessation is a major issue in respiratory medicine. To evaluate if a community-based walk-in lung function service, either in a clinic or a shopping mall, could result in early detection of COPD. Early detection would facilitate prevention. In an area with 1.5 mill inhabitants, a walk-in lung function service opened in 2005/06 once a month for 3 hours at a clinic and on two full days in a mall. The staff consisted of two respiratory nurses and one chest physician. The nurses informed all participants about their lung function level and all received a preventive talk about tobacco consumption. Those with signs of COPD spoke with the doctor immediately. A total of 1169 subjects, 59% women, with a mean (SD) age of 60 years (15), visited the walk-in services, 602 (52%) of whom visited the walk-in service at the clinic. Among the participants, 826 (71%) were smokers (n=452) or former smokers (n=374). The mean tobacco consumption was 32 (18) packs a year. We found that more current smokers visited the walk-in service at the clinic (45% versus 33%), whereas more ex-smokers visited the lung function service at the mall (38% versus 25%) (p < 0.01). The mean tobacco consumption was 32 (18) packs a year, with a difference between those visiting the mall and the clinic (32 (20) versus 23 (16), p<0.05). Among smokers, 54% had normal lung function, 15% had signs of airway obstruction, whereas 31% had developed moderate to severe COPD. Despite free medical access, more that one thirds had signs of airway obstruction. As all were informed about tobacco cessation, a walk-in service in a clinic and not a supermarket is most cost effective.
Altuğ, Hicran; Gaga, Eftade O; Döğeroğlu, Tuncay; Ozden, Ozlem; Ornektekin, Sermin; Brunekreef, Bert; Meliefste, Kees; Hoek, Gerard; Van Doorn, Wim
2013-09-01
Health effects of ambient air pollution were studied in three groups of schoolchildren living in areas (suburban, urban and urban-traffic) with different air pollution levels in Eskişehir, Turkey. This study involved 1,880 students aged between 9 and 13 years from 16 public primary schools. This two-season study was conducted from January 2008 through March 2009. Symptoms of asthma, rhinitis and eczema were determined by the International Study of Asthma and Allergies in Childhood questionnaire in 2008. Two lung function tests were performed by each child for summer and winter seasons with simultaneous ambient air measurements of ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2) by passive sampling. Effects of air pollution on impaired lung function and symptoms in schoolchildren were estimated by multivariate logistic regression analyses. Girls with impaired lung function (only for the summer season evaluation) were more observed in suburban and urban areas when compared to urban-traffic area ([odds ratio (OR) = 1.49; 95 % confidence interval (CI) 1.04-2.14] and [OR = 1.69 (95 % CI 1.06-2.71)] for suburban vs. urban-traffic and urban vs. urban-traffic, respectively). Significant association between ambient ozone concentrations and impaired lung function (for an increase of 10 μg m(-3)) was found only for girls for the summer season evaluation [OR = 1.11 (95 % CI 1.03-1.19)]. No association was found for boys and for the winter season evaluation. No association was found between any of the measured air pollutants and symptoms of current wheeze, current rhinoconjunctivitis and current itchy rash. The results of this study showed that increasing ozone concentrations may cause a sub-acute impairment in lung function of school aged children.
Guarnieri, Michael; Diaz, Esperanza; Pope, Daniel; Eisen, Ellen A; Mann, Jennifer; Smith, Kirk R; Smith-Sivertsen, Tone; Bruce, Nigel G; Balmes, John R
2015-11-01
COPD is the third most frequent cause of death globally, with much of this burden attributable to household biomass smoke exposure in developing countries. As biomass smoke exposure is also associated with cardiovascular disease, lower respiratory infection, lung cancer, and cataracts, it presents an important target for public health intervention. Lung function in Guatemalan women exposed to wood smoke from open fires was measured throughout the Randomized Exposure Study of Pollution Indoors and Respiratory Effects (RESPIRE) stove intervention trial and continued during the Chronic Respiratory Effects of Early Childhood Exposure to Respirable Particulate Matter (CRECER) cohort study. In RESPIRE, early stove households received a chimney woodstove at the beginning of the 18-month trial, and delayed stove households received a stove at trial completion. Personal exposure to wood smoke was assessed with exhaled breath carbon monoxide (CO) and personal CO tubes. Change in lung function between intervention groups and as a function of wood smoke exposure was assessed using random effects models. Of 306 women participating in both studies, acceptable spirometry was collected in 129 early stove and 136 delayed stove households (n = 265), with a mean follow-up of 5.6 years. Despite reduced wood smoke exposures in early stove households, there were no significant differences in any of the measured spirometric variables during the study period (FEV1, FVC, FEV1/FVC ratio, and annual change) after adjustment for confounding. In these young Guatemalan women, there was no association between lung function and early randomization to a chimney stove or personal wood smoke exposure. Future stove intervention trials should incorporate cleaner stoves, longer follow-up, or potentially susceptible groups to identify meaningful differences in lung function.
Sansores, R; Perez-Padilla, R; Paré, P D; Selman, M
1992-05-01
Pigeon-breeder's lung (PBL) is extremely common in Mexico City and often progresses to irreversible pulmonary fibrosis. The exponential analysis of the lung pressure-volume (PV) curve (V = A - Be-kp) has been suggested as a method to separate the lung restriction caused by inflammation from that caused by pulmonary fibrosis; a significantly decreased value for the exponential constant, k, suggests a change in the mechanical properties of the functioning lung parenchyma, while a normal value accompanied by restriction suggests subtraction of lung units without a change in the mechanical properties of the functioning units. We measured lung volumes and static PV curves in 29 patients who had persistent lung restriction following a biopsy-proven diagnosis of PBL. Mean values in the 29 subjects were as follows: age, 43 +/- 13 years; TLC, 61 +/- 15 percent of predicted; VC, 46 +/- 19 percent of predicted; and k, 55 +/- 17 percent of predicted. Twenty-four of the 29 patients had values for k that were below the 95 percent confidence level, and five had "normal" values. There was no difference in TLC and VC (percent of predicted) between those with or without a decreased value for k. Four of five patients with a normal value for k improved subsequent to diagnosis, while only one of 21 patients with a decreased k improved. We conclude that increased lung elasticity manifested by a low value for k is common in patients with chronic PBL. These results support the observation of frequent irreversible lung fibrosis in these patients. Measurements of k could prove a good prognostic indicator at the time of initial diagnosis.
Hu, Weidong; Liu, Yue; Zhou, Wenhui; Si, Lianlian; Ren, Liang
2014-01-01
Despite advances in early diagnosis and multimodality therapy for cancers, most of lung cancer patients have been locally advanced or metastatic at the time of diagnosis, suggesting the highly progressive characteristic of lung cancer cells. The mechanisms underling invasiveness and metastasis of lung cancer are yet to be elucidated. In the present study, immunohistochemistry was performed to detect the expression of CXCL16-CXCR6 in human lung cancer tissues. It was demonstrated that similar to CXCL12 and CXCR4, CXCL16 and CXCR6 were also coexpressed in human primary lung cancer tissues. After confirming the functional existence of CXCL16 and CXCR6 protein in A549, 95D and H292 cells by ELSA and flow cytometry analysis, we further explored the significance of CXCL16-CXCR6 axis in the biological functions of lung cancer cell lines in vitro. It was found that CXCL16 had no effects on the PCNA (proliferating cell nuclear antigen) expression of A549, 95D and H292 cells. However, both exogenous CXCL16 and CM (conditioned medium from A549, 95D or H292) significantly improved the in vitro viability and invasion of three lung cancer cell lines. The neutralizing antibody to CXCL16 or down-regulation of CXCR6 was able to inhibit the increased viability and invasiveness of A549, 95D and H292 cells stimulated by CXCL16 or CM. Our results imply that CXCL16-CXCR6 axis is involved in the regulation of viability and invasion rather than PCNA expression of lung caner cells, which opens the door for better understanding the mechanisms of lung tumor progression and metastasis.
Hu, Weidong; Liu, Yue; Zhou, Wenhui; Si, Lianlian; Ren, Liang
2014-01-01
Despite advances in early diagnosis and multimodality therapy for cancers, most of lung cancer patients have been locally advanced or metastatic at the time of diagnosis, suggesting the highly progressive characteristic of lung cancer cells. The mechanisms underling invasiveness and metastasis of lung cancer are yet to be elucidated. In the present study, immunohistochemistry was performed to detect the expression of CXCL16-CXCR6 in human lung cancer tissues. It was demonstrated that similar to CXCL12 and CXCR4, CXCL16 and CXCR6 were also coexpressed in human primary lung cancer tissues. After confirming the functional existence of CXCL16 and CXCR6 protein in A549, 95D and H292 cells by ELSA and flow cytometry analysis, we further explored the significance of CXCL16-CXCR6 axis in the biological functions of lung cancer cell lines in vitro. It was found that CXCL16 had no effects on the PCNA (proliferating cell nuclear antigen) expression of A549, 95D and H292 cells. However, both exogenous CXCL16 and CM (conditioned medium from A549, 95D or H292) significantly improved the in vitro viability and invasion of three lung cancer cell lines. The neutralizing antibody to CXCL16 or down-regulation of CXCR6 was able to inhibit the increased viability and invasiveness of A549, 95D and H292 cells stimulated by CXCL16 or CM. Our results imply that CXCL16-CXCR6 axis is involved in the regulation of viability and invasion rather than PCNA expression of lung caner cells, which opens the door for better understanding the mechanisms of lung tumor progression and metastasis. PMID:24897301
2013-01-01
Background We assessed indoor air quality in photocopier centers and investigated whether occupational exposure to emissions from photocopiers is associated with decline in lung function or changes in haematological parameters, oxidative stress and inflammatory status. Methods Indoor air quality was monitored in five photocopier centers. Pulmonary function was assessed by spirometry in 81 photocopier operators (64 male and 17 female) and 43 healthy control (31 male and 12 female) subjects. Hematological status, serum thio-barbituric acid reactive substances (TBARS), total ferric reducing antioxidant capacity (FRAC), leukotriene B4 (LTB4), 8-isoprostane, C reactive protein (CRP), interleukin 8 (IL-8), clara cell protein (CC-16), intercellular adhesion molecule 1 (ICAM-1) and eosinophilic cationic protein (ECP) were analyzed. Relationships between cumulative exposure, lung function and inflammatory markers were assessed. Results PM10 and PM2.5 were above the permissible levels in all the photocopier centers, whereas the levels of carbon monoxide, nitrogen oxides, ozone, sulphur dioxide, lead, arsenic, nickel, ammonia, benzene and benzo(a)pyrene were within Indian ambient air quality standards. Lung function was similar in the photocopier operators and control subjects. Serum TBARS was significantly higher and FRAC was lower among photocopier operators when compared to healthy controls. Plasma IL-8, LTB4, ICAM-1 and ECP were significantly higher in the photocopier exposed group. Conclusions Photocopiers emit high levels of particulate matter. Long term exposure to emissions from photocopiers was not associated with decreased lung function, but resulted in high oxidative stress and systemic inflammation leading to high risk of cardiovascular diseases. PMID:24025094
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, F; Jeudy, J; Tseng, H
Purpose: To investigate the incorporation of pre-therapy regional ventilation function in predicting radiation fibrosis (RF) in stage III non-small-cell lung cancer (NSCLC) patients treated with concurrent thoracic chemoradiotherapy. Methods: 37 stage III NSCLC patients were retrospectively studied. Patients received one cycle of cisplatin-gemcitabine, followed by two to three cycles of cisplatin-etoposide concurrently with involved-field thoracic radiotherapy between 46 and 66 Gy (2 Gy per fraction). Pre-therapy regional ventilation images of the lung were derived from 4DCT via a density-change-based image registration algorithm with mass correction. RF was evaluated at 6-months post-treatment using radiographic scoring based on airway dilation and volumemore » loss. Three types of ipsilateral lung metrics were studied: (1) conventional dose-volume metrics (V20, V30, V40, and mean-lung-dose (MLD)), (2) dose-function metrics (fV20, fV30, fV40, and functional mean-lung-dose (fMLD) generated by combining regional ventilation and dose), and (3) dose-subvolume metrics (sV20, sV30, sV40, and subvolume mean-lung-dose (sMLD) defined as the dose-volume metrics computed on the sub-volume of the lung with at least 60% of the quantified maximum ventilation status). Receiver operating characteristic (ROC) curve analysis and logistic regression analysis were used to evaluate the predictability of these metrics for RF. Results: In predicting airway dilation, the area under the ROC curve (AUC) values for (V20, MLD), (fV20, fMLD), and (sV20, and sMLD) were (0.76, 0.70), (0.80, 0.74) and (0.82, 0.80), respectively. The logistic regression p-values were (0.09, 0.18), (0.02, 0.05) and (0.004, 0.006), respectively. With regard to volume loss, the corresponding AUC values for these metrics were (0.66, 0.57), (0.67, 0.61) and (0.71, 0.69), and p-values were (0.95, 0.90), (0.43, 0.64) and (0.08, 0.12), respectively. Conclusion: The inclusion of regional ventilation function improved predictability of radiation fibrosis. Dose-subvolume metrics provided a promising method for incorporating functional information into the conventional dose-volume parameters for outcome assessment.« less
Wang, Mei Lin; Storey, Eileen; Cassidy, Laura D; Doney, Brent; Conner, Patrick R; Collins, James J; Carson, Michael; Molenaar, Don
2017-12-01
The aim of this study was to investigate lung function among toluene diisocyanate (TDI) production workers. One hundred ninety-seven U.S workers performed spirometry from 2006 through 2012. Results were compared within the study cohort and with U.S. population measures. A mixed-effects model assessed factors affecting repeated forced expiratory volume in 1 second (FEV1) measurements. The cohort's mean FEV1 and forced vital capacity (FVC) percent reference values, although greater than 90%, were significantly lower and the prevalence of abnormal spirometry (predominantly restrictive pattern) was significantly higher than in the U.S. Differences in lung function among workers with higher cumulative TDI exposure were in the direction of an exposure effect, but not significant. We found little evidence of an adverse effect of TDI exposure on longitudinal spirometry in these workers. The association between TDI exposure and the increasing prevalence of a restrictive pattern needs further exploration.
Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis
Lau, Allison N; Curtis, Stephen J; Fillmore, Christine M; Rowbotham, Samuel P; Mohseni, Morvarid; Wagner, Darcy E; Beede, Alexander M; Montoro, Daniel T; Sinkevicius, Kerstin W; Walton, Zandra E; Barrios, Juliana; Weiss, Daniel J; Camargo, Fernando D; Wong, Kwok-Kin; Kim, Carla F
2014-01-01
Metastasis is the leading cause of morbidity for lung cancer patients. Here we demonstrate that murine tumor propagating cells (TPCs) with the markers Sca1 and CD24 are enriched for metastatic potential in orthotopic transplantation assays. CD24 knockdown decreased the metastatic potential of lung cancer cell lines resembling TPCs. In lung cancer patient data sets, metastatic spread and patient survival could be stratified with a murine lung TPC gene signature. The TPC signature was enriched for genes in the Hippo signaling pathway. Knockdown of the Hippo mediators Yap1 or Taz decreased in vitro cellular migration and transplantation of metastatic disease. Furthermore, constitutively active Yap was sufficient to drive lung tumor progression in vivo. These results demonstrate functional roles for two different pathways, CD24-dependent and Yap/Taz-dependent pathways, in lung tumor propagation and metastasis. This study demonstrates the utility of TPCs for identifying molecules contributing to metastatic lung cancer, potentially enabling the therapeutic targeting of this devastating disease. PMID:24497554
NASA Technical Reports Server (NTRS)
West, John B.
1991-01-01
Results are presented from studies of the effect of microgravity on the lungs of rats flown on the Cosmos 2044 mission, and from relevant laboratory experiments. The effects of microgravity fall into five categories: topographical structure and function, the lung volumes and mechanics, the intrathoracic blood pressures and volumes, the pulmonary deposition of aerosol, and denitrogenaton during EVA. The ultrastructure of the left lungs of rats flown for 14 days on the Cosmos 2044 spacecraft and that of some tail-suspended rats disclosed presence of red blood cells in the alveolar spaces, indicating that pulmonary hemorrhage and pulmonary edema occurred in these rats. Possible causes for this phenomenon are discussed.
Lung function gain in preterm infants with and without bronchopulmonary dysplasia.
Sanchez-Solis, Manuel; Perez-Fernandez, Virginia; Bosch-Gimenez, Vicente; Quesada, Juan J; Garcia-Marcos, Luis
2016-09-01
The aim of our study was to determine whether the development of lung function, during the first 2 years of life, is different in preterm infants who suffered or did not suffer from Bronchopulmonary dysplasia (BPD). We also assessed the role of nutritional status and growth in that development. Lung function tests were performed in 71 preterm infants at two time points: 6 months of corrected age and 1 year after. FVC, FEV0.5, FEF75 , and FEF25-75 were obtained from maximal expiratory volume curves by means of the raised volume rapid thoraco-abdominal compression technique. When comparing lung function measurements, we found that FVC (P = 0.033) FEV0.5 (P = 0.044), FEF75 (P = 0.014), and FEF25-75 (P = 0.036) were significantly lower in BPD infants. We did not find any catch-up of lung function during the study time, in neither the whole group of children nor within the BPD or non-BPD groups. The increase in lung function was directly proportional to the increase in weight and length. The multivariate analysis showed that the increase in z-score of FVC (P = 0.043), FEV0.5 (P = 0.015), and FEF75 (P = 0.042), was related with the height velocity during the study period. Infants who suffered from BPD have lower lung function (FVC, FEV0.5 , FEF75 , and FEF25-75 ), than those non-BPD, at two different time points 1 year apart. During the study period, there was no lung function catch-up in either BPD or non-BPD infants. The increase in length is closely associated to the increase in lung function. Pediatr Pulmonol. 2016; 51:936-942. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Bunyavanich, S; Boyce, J A; Raby, B A; Weiss, S T
2012-02-01
Distinct receptors likely exist for leukotriene (LT)E(4), a potent mediator of airway inflammation. Purinergic receptor P2Y12 is needed for LTE(4)-induced airways inflammation, and P2Y12 antagonism attenuates house dust mite-induced pulmonary eosinophilia in mice. Although experimental data support a role for P2Y12 in airway inflammation, its role in human asthma has never been studied. To test for association between variants in the P2Y12 gene (P2RY12) and lung function in human subjects with asthma, and to examine for gene-by-environment interaction with house dust mite exposure. Nineteen single nucleotide polymorphisms (SNPs) in P2RY12 were genotyped in 422 children with asthma and their parents (n = 1266). Using family based methods, we tested for associations between these SNPs and five lung function measures. We performed haplotype association analyses and tested for gene-by-environment interactions using house dust mite exposure. We used the false discovery rate to account for multiple comparisons. Five SNPs in P2RY12 were associated with multiple lung function measures (P-values 0.006–0.025). Haplotypes in P2RY12 were also associated with lung function (P-values 0.0055–0.046). House dust mite exposure modulated associations between P2RY12 and lung function, with minor allele homozygotes exposed to house dust mite demonstrating worse lung function than those unexposed (significant interaction P-values 0.0028–0.040). The P2RY12 variants were associated with lung function in a large family-based asthma cohort. House dust mite exposure caused significant gene-by-environment effects. Our findings add the first human evidence to experimental data supporting a role for P2Y12 in lung function. P2Y12 could represent a novel target for asthma treatment.
HARIRI, Azian; PAIMAN, Nuur Azreen; LEMAN, Abdul Mutalib; MD. YUSOF, Mohammad Zainal
2014-01-01
Abstract Background This study aimed to develop an index that can rank welding workplace that associate well with possible health risk of welders. Methods Welding Fumes Health Index (WFHI) were developed based on data from case studies conducted in Plant 1 and Plant 2. Personal sampling of welding fumes to assess the concentration of metal constituents along with series of lung function tests was conducted. Fifteen metal constituents were investigated in each case study. Index values were derived from aggregation analysis of metal constituent concentration while significant lung functions were recognized through statistical analysis in each plant. Results The results showed none of the metal constituent concentration was exceeding the permissible exposure limit (PEL) for all plants. However, statistical analysis showed significant mean differences of lung functions between welders and non-welders. The index was then applied to one of the welding industry (Plant 3) for verification purpose. The developed index showed its promising ability to rank welding workplace, according to the multiple constituent concentrations of welding fumes that associates well with lung functions of the investigated welders. Conclusion There was possibility that some of the metal constituents were below the detection limit leading to ‘0’ value of sub index, thus the multiplicative form of aggregation model was not suitable for analysis. On the other hand, maximum or minimum operator forms suffer from compensation issues and were not considered in this study. PMID:25927034
Mandryk, J; Alwis, K U; Hocking, A D
1999-05-01
Four sawmills, a wood chipping mill, and five joineries in New South Wales, Australia, were studied for the effects of personal exposure to wood dust, endotoxins. (1-->3)-beta-D-glucans, Gram-negative bacteria, and fungi on lung function among woodworkers. Personal inhalable and respirable dust sampling was carried out. The lung function tests of workers were conducted before and after a workshift. The mean percentage cross-shift decrease in lung function was markedly high for woodworkers compared with the controls. Dose-response relationships among personal exposures and percentage cross-shift decrease in lung function and percentage predicted lung function were more pronounced among joinery workers compared with sawmill and chip mill workers. Woodworkers had markedly high prevalence of regular cough, phlegm, and chronic bronchitis compared with controls. Significant associations were found between percentage cross-shift decrease in FVC and regular phlegm and blocked nose among sawmill and chip mill workers. Both joinery workers and sawmill and chip mill workers showed significant relationships between percentage predicted lung function (FVC, FEV1, FEV1/FVC, FEF25-75%) and respiratory symptoms. Wood dust and biohazards associated with wood dust are potential health hazards and should be controlled.
Ambient particulate matter and lung function growth in Chinese children.
Roy, Ananya; Hu, Wei; Wei, Fusheng; Korn, Leo; Chapman, Robert S; Zhang, Junfeng Jim
2012-05-01
Exposure to particulate matter (PM) has been associated with deficits in lung function growth among children in Western countries. However, few studies have explored this association in developing countries, where PM levels are often substantially higher. Children (n = 3273) 6-12 years of age were recruited from 8 schools in 4 Chinese cities. The lung function parameters of forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) were measured using computerized spirometers twice a year for up to 3 years (1993-1996). Dichotomous samplers placed in each schoolyard were used to measure PM2.5 and PM10 (PM with diameter ≤ 2.5 μm and ≤ 10 μm, respectively). Multivariable generalized estimating equations were used to examine the association between the quarterly average PM levels and lung function growth during the period of follow-up. Annual average PM2.5 and PM10 levels in the 4 cities ranged from 57 to 158 μg/m and 95 to 268 μg/m, respectively. In multivariable models, an increase of 10 μg/m of PM2.5 was associated with decreases of 2.7 mL FEV1 (95% confidence interval = -3.5 to -2.0), 3.5 mL FVC (-4.3 to -2.7), 1.4 mL/year FEV1 growth (-1.8 to -0.9), and 1.5 mL/year FVC growth (-2.0 to -1.0). Similar results were seen with PM10 exposure. Exposure to ambient particulate matter was associated with decreased growth in lung function among Chinese children.
Adam, Martin; Schikowski, Tamara; Carsin, Anne Elie; Cai, Yutong; Jacquemin, Benedicte; Sanchez, Margaux; Vierkötter, Andrea; Marcon, Alessandro; Keidel, Dirk; Sugiri, Dorothee; Al Kanani, Zaina; Nadif, Rachel; Siroux, Valérie; Hardy, Rebecca; Kuh, Diana; Rochat, Thierry; Bridevaux, Pierre-Olivier; Eeftens, Marloes; Tsai, Ming-Yi; Villani, Simona; Phuleria, Harish Chandra; Birk, Matthias; Cyrys, Josef; Cirach, Marta; de Nazelle, Audrey; Nieuwenhuijsen, Mark J; Forsberg, Bertil; de Hoogh, Kees; Declerq, Christophe; Bono, Roberto; Piccioni, Pavilio; Quass, Ulrich; Heinrich, Joachim; Jarvis, Deborah; Pin, Isabelle; Beelen, Rob; Hoek, Gerard; Brunekreef, Bert; Schindler, Christian; Sunyer, Jordi; Krämer, Ursula; Kauffmann, Francine; Hansell, Anna L; Künzli, Nino; Probst-Hensch, Nicole
2015-01-01
The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO₂, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV₁) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m(-3) increase in NO₂ exposure was associated with lower levels of FEV₁ (-14.0 mL, 95% CI -25.8 to -2.1) and FVC (-14.9 mL, 95% CI -28.7 to -1.1). An increase of 10 μg·m(-3) in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV₁ (-44.6 mL, 95% CI -85.4 to -3.8) and FVC (-59.0 mL, 95% CI -112.3 to -5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe. Copyright ©ERS 2015.
Wang, Yu; Shumansky, Karey; Sin, Don D; Man, SF Paul; Akhabir, Loubna; Connett, John E; Anthonisen, Nicholas R; Paré, Peter D; Sandford, Andrew J; He, Jian-Qing
2015-01-01
Objective: We reported association of haplotypes formed by IL-1b (IL1B)-511C/T (rs16944) and a variable number of tandem repeats (rs2234663) in intron 3 of IL-1 receptor antagonist (IL1RN) with rate of lung function decline in smoking-induced COPD. The aim of current study was to further investigate this association. Methods: We genotyped an additional 19 polymorphisms in IL1 cluster (including IL1A, IL1B and IL1RN) in non-Hispanic whites who had the fastest (n = 268) and the slowest (n = 292) decline of FEV1% predicted in the same study. We also analyzed the association of all 21 polymorphisms with serum CRP levels. Results: None of 21 polymorphisms showed significant association with rate of decline of lung function or CRP levels after adjusting for multiple comparisons. Before adjusting for multiple comparisons, only IL1RN_19327 (rs315949) showed significant association with lung function decline (P = 0.03, additive model). The frequencies of genotypes containing the IL1RN_19327A allele were 71.9% and 62.2%, respectively in the fast and slow decline groups (P = 0.02, odds ratio = 1.6, 95% confidence interval = 1.1-2.3); the IL1B_5200 (rs1143633) and rs2234663 in IL1RN were associated with serum CRP levels (P=0.04 and 0.03, respectively). Conclusions: No single marker was significantly associated with either rate of lung function decline or serum CRP levels. PMID:26722511
Ye, Ming; Beach, Jeremy; Martin, Jonathan W; Senthilselvan, Ambikaipakan
2015-05-01
Although DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] has been banned in many countries since the 1970s, it may still pose a risk to human respiratory health. In agriculture, DDT exposures have been associated with asthma and chronic bronchitis. However, little is known about the effect of DDT on lung function. We used data on 1,696 participants 20-79 years of age from the Canadian Health Measures Survey (CHMS) and conducted multiple regression analysis to estimate associations between plasma p,p´-DDT/DDE and lung function. Almost all participants (> 99.0%) had detectable concentrations of plasma p,p´-DDE, but only 10.0% had detectable p,p´-DDT. Participants with detectable p,p´-DDT had significantly lower mean FVC (difference = 311 mL; 95% CI: -492, -130; p = 0.003) and FEV1 (difference = 232 mL; 95% CI: -408, -55; p = 0.015) than those without. A 100-ng/g lipid increase in plasma p,p´-DDE was associated with an 18.8-mL decrease in mean FVC (95% CI: -29, -9) and an 11.8-mL decrease in mean FEV1 (95% CI: -21, -3). Neither exposure was associated with FEV1/FVC ratio or FEF25%-75%. DDT exposures, which may have occurred decades ago, were still detectable among Canadians. Plasma DDT and DDE were negatively associated with lung function parameters. Additional research on the potential effects of DDT use on lung function is warranted.
Abolmaali, Nasreddin; Koch, Arne; Götzelt, Knut; Hahn, Gabriele; Fitze, Guido; Vogelberg, Christian
2010-07-01
To compare MRI-based functional pulmonary and cardiac measurements in the long-term follow-up of children operated on for left-sided congenital diaphragmatic hernia (CDH) with age- and body size-matched healthy controls. Twelve children who received immediate postnatal surgery for closure of isolated left-sided CDH were included and received basic medical examinations, pulmonary function testing and echocardiography. MRI included measurement of lung volume, ventricular function assessment and velocity-encoded imaging of the pulmonary arteries and was compared with the data for 12 healthy children matched for age and body size. While patients' clinical test results were not suspicious, comparison between the MRI data for patients and those for healthy controls revealed significant differences. In patients, the volumes of the left lungs were increased and the tidal volume was larger on the right side. While the stroke volumes of both ventricles were reduced, heart rate and ejection fraction were increased. Flow, acceleration time and cross-sectional area of the left pulmonary artery were reduced. Functional MRI detected pulmonary and cardiac findings in the late follow-up of CDH children which may be missed by standard clinical methods and might be relevant for decisions regarding late outcome and treatment.
Sun, Xiaoli; Zhang, Yan; Yang, Wenlan; Liu, Jinming
2015-04-01
This study in healthy adults was conducted to explore the clinical application of capnovolumetric indices as compared to lung function parameters using histamine provocation. Forty healthy subjects received aerosol histamine or salbutamol in an automatic stimulation system with escalating doses of histamine. Dead space volumes of capnovolumetry and lung function parameters were examined with increased concentrations of histamine at a fixed time interval. The doses of histamine were selected from 0.0562 mg-2.2 mg and 0.1 mg salbutamol was inhaled when a maximal dose of histamine was reached. Baseline values in each group were calculated prior to histamine inhalation. Fowler dead space (VDF), Wolff dead space (VDW), threshold dead space (VDT), Bohr dead space (VDB), forced expiratory volume in 1 s (FEV1 ) and peak expiratory flow (PEF) showed a dose-dependent reduction following histamine provocation, but there were no statistical differences in the measurements at baseline and post S6 provocation. The value of dC3/DV at the maximal dose was significantly increased over its baseline value (P < 0.05). VDF, VDT and VDW were significantly increased after bronchodilator use (P < 0.05 or <0.01). The changes in capnovolumetry did not correspond with the results of lung function test. The dC3/DV and airway dead spaces of capnovolumetry in healthy adults are significantly increased compared to lung function parameters before or after bronchodilator use, suggesting that capnovolumetry is feasible in diagnostic evaluation of airway reactivity, especially for persons who are unable to undertake lung function test. © 2014 John Wiley & Sons Ltd.
Manji, Mohamed; Shayo, Grace; Mamuya, Simon; Mpembeni, Rose; Jusabani, Ahmed; Mugusi, Ferdinand
2016-04-23
Approximately 40-60 % of patients remain sufferers of sequela of obstructive, restrictive or mixed patterns of lung disease despite treatment for pulmonary tuberculosis (PTB). The prevalence of these abnormalities in Tanzania remains unknown. A descriptive cross-sectional study was carried out among 501 patients with PTB who had completed at least 20 weeks of treatment. These underwent spirometry and their lung functions were classified as normal or abnormal (obstructive, restrictive or mixed). Logistic regression models were used to explore factors associated with abnormal lung functions. Abnormal lung functions were present in 371 (74 %) patients. There were 210 (42 %) patients with obstructive, 65 (13 %) patients with restrictive and 96 (19 %) patients with mixed patterns respectively. Significant factors associated with abnormal lung functions included recurrent PTB (Adj OR 2.8, CI 1.274 - 6.106), Human Immunodeficiency Virus (HIV) negative status (Adj OR 1.7, CI 1.055 - 2.583), age more than 40 years (Adj OR 1.7, CI 1.080 - 2.804) and male sex (Adj OR 1.7, CI 1.123 - 2.614). The prevalence of abnormal lung functions is high and it is associated with male sex, age older than 40 years, recurrent PTB and HIV negative status.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichterfeld, A.; Widow, W.; Zahnert, R.
1961-08-01
Changes in respiratory function were evaluated after radiotherapy in 46 patients with lung cancer. Spirometric tests were conducted shortly before irradiation and 4 to 6 weeks after local gamma -radiation doses of 3500 r delivered over 2 to 3 weeks. A few patients received 6000 r over 4 to 5 weeks, and 40 unirradiated controls were also examined. In general, respiratory function was diminished following irradiation. The disturbances were most marked in the group receiving the higher dose, in which vital capacity fell by an average of 728 cm/sup 3/ (25%) postirradiation. With lower doses the decrease was 7%. Themore » decrease was greater after irradiation of supraclavicular fields. In over half the cases, radiotherapy resulted in regression of the tumor and an improvement of radioinduced atelectasis, which sometimes resulted in an improvement in the Tiffeneau test values. Radiation injury in the lung could be detected radiographically in only 8 cases, indicating that spirometry and histologic examination are more sensitive means of detecting the injury. It was concluded that preoperative radiotherapy of lung cancer may impair the patient's chances for recovery because of the resulting disorders in pulmonary function. (TCO)« less
Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues.
Anafi, Ron C; Pellegrino, Renata; Shockley, Keith R; Romer, Micah; Tufik, Sergio; Pack, Allan I
2013-05-30
Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed "sleep specific" changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a ubiquitous role in reducing cellular metabolic stress in both brain and peripheral tissues. Finally, our data suggest a novel role for sleep in synchronizing transcription in peripheral tissues.
Pope, Daniel; Diaz, Esperanza; Smith-Sivertsen, Tone; Lie, Rolv T; Bakke, Per; Balmes, John R; Smith, Kirk R; Bruce, Nigel G
2015-04-01
With 40% of the world's population relying on solid fuel, household air pollution (HAP) represents a major preventable risk factor for COPD (chronic obstructive pulmonary disease). Meta-analyses have confirmed this relationship; however, constituent studies are observational, with virtually none measuring exposure directly. We estimated associations between HAP exposure and respiratory symptoms and lung function in young, nonsmoking women in rural Guatemala, using measured carbon monoxide (CO) concentrations in exhaled breath and personal air to assess exposure. The Randomized Exposure Study of Pollution Indoors and Respiratory Effects (RESPIRE) Guatemala study was a trial comparing respiratory outcomes among 504 women using improved chimney stoves versus traditional cookstoves. The present analysis included 456 women with data from postintervention surveys including interviews at 6, 12, and 18 months (respiratory symptoms) and spirometry and CO (ppm) in exhaled breath measurements. Personal CO was measured using passive diffusion tubes at variable times during the study. Associations between CO concentrations and respiratory health were estimated using random intercept regression models. Respiratory symptoms (cough, phlegm, wheeze, or chest tightness) during the previous 6 months were positively associated with breath CO measured at the same time of symptom reporting and with average personal CO concentrations during the follow-up period. CO in exhaled breath at the same time as spirometry was associated with lower lung function [average reduction in FEV1 (forced expiratory volume in 1 sec) for a 10% increase in CO was 3.33 mL (95% CI: -0.86, -5.81)]. Lung function measures were not significantly associated with average postintervention personal CO concentrations. Our results provide further support for the effects of HAP exposures on airway inflammation. Further longitudinal research modeling continuous exposure to particulate matter against lung function will help us understand more fully the impact of HAP on COPD.
Abnormal lung function at preschool age asthma in adolescence?
Lajunen, Katariina; Kalliola, Satu; Kotaniemi-Syrjänen, Anne; Sarna, Seppo; Malmberg, L Pekka; Pelkonen, Anna S; Mäkelä, Mika J
2018-05-01
Asthma often begins early in childhood. However, the risk for persistence is challenging to evaluate. This longitudinal study relates lung function assessed with impulse oscillometry (IOS) in preschool children to asthma in adolescence. Lung function was measured with IOS in 255 children with asthma-like symptoms aged 4-7 years. Baseline measurements were followed by exercise challenge and bronchodilation tests. At age 12-16 years, 121 children participated in the follow-up visit, when lung function was assessed with spirometry, followed by a bronchodilation test. Asthma symptoms and medication were recorded by a questionnaire and atopy defined by skin prick tests. Abnormal baseline values in preschool IOS were significantly associated with low lung function, the need for asthma medication, and asthma symptoms in adolescence. Preschool abnormal R5 at baseline (z-score ≥1.645 SD) showed 9.2 odds ratio (95%CI 2.7;31.7) for abnormal FEV1/FVC, use of asthma medication in adolescence, and 9.9 odds ratio (95%CI 2.9;34.4) for asthma symptoms. Positive exercise challenge and modified asthma-predictive index at preschool age predicted asthma symptoms and the need for asthma medication, but not abnormal lung function at teenage. Abnormal preschool IOS is associated with asthma and poor lung function in adolescence and might be utilised for identification of asthma persistence. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Bayesian modelling of lung function data from multiple-breath washout tests.
Mahar, Robert K; Carlin, John B; Ranganathan, Sarath; Ponsonby, Anne-Louise; Vuillermin, Peter; Vukcevic, Damjan
2018-05-30
Paediatric respiratory researchers have widely adopted the multiple-breath washout (MBW) test because it allows assessment of lung function in unsedated infants and is well suited to longitudinal studies of lung development and disease. However, a substantial proportion of MBW tests in infants fail current acceptability criteria. We hypothesised that a model-based approach to analysing the data, in place of traditional simple empirical summaries, would enable more efficient use of these tests. We therefore developed a novel statistical model for infant MBW data and applied it to 1197 tests from 432 individuals from a large birth cohort study. We focus on Bayesian estimation of the lung clearance index, the most commonly used summary of lung function from MBW tests. Our results show that the model provides an excellent fit to the data and shed further light on statistical properties of the standard empirical approach. Furthermore, the modelling approach enables the lung clearance index to be estimated by using tests with different degrees of completeness, something not possible with the standard approach. Our model therefore allows previously unused data to be used rather than discarded, as well as routine use of shorter tests without significant loss of precision. Beyond our specific application, our work illustrates a number of important aspects of Bayesian modelling in practice, such as the importance of hierarchical specifications to account for repeated measurements and the value of model checking via posterior predictive distributions. Copyright © 2018 John Wiley & Sons, Ltd.
Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer
2012-01-01
Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression. PMID:23273253
Müller-Redetzky, Holger Christian; Kummer, Wolfgang; Pfeil, Uwe; Hellwig, Katharina; Will, Daniel; Paddenberg, Renate; Tabeling, Christoph; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin
2012-01-01
Background Even protective ventilation may aggravate or induce lung failure, particularly in preinjured lungs. Thus, new adjuvant pharmacologic strategies are needed to minimize ventilator-induced lung injury (VILI). Intermedin/Adrenomedullin-2 (IMD) stabilized pulmonary endothelial barrier function in vitro. We hypothesized that IMD may attenuate VILI-associated lung permeability in vivo. Methodology/Principal Findings Human pulmonary microvascular endothelial cell (HPMVEC) monolayers were incubated with IMD, and transcellular electrical resistance was measured to quantify endothelial barrier function. Expression and localization of endogenous pulmonary IMD, and its receptor complexes composed of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs) 1–3 were analyzed by qRT-PCR and immunofluorescence in non ventilated mouse lungs and in lungs ventilated for 6 h. In untreated and IMD treated mice, lung permeability, pulmonary leukocyte recruitment and cytokine levels were assessed after mechanical ventilation. Further, the impact of IMD on pulmonary vasoconstriction was investigated in precision cut lung slices (PCLS) and in isolated perfused and ventilated mouse lungs. IMD stabilized endothelial barrier function in HPMVECs. Mechanical ventilation reduced the expression of RAMP3, but not of IMD, CRLR, and RAMP1 and 2. Mechanical ventilation induced lung hyperpermeability, which was ameliorated by IMD treatment. Oxygenation was not improved by IMD, which may be attributed to impaired hypoxic vasoconstriction due to IMD treatment. IMD had minor impact on pulmonary leukocyte recruitment and did not reduce cytokine levels in VILI. Conclusions/Significance IMD may possibly provide a new approach to attenuate VILI. PMID:22563471
Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues
2013-01-01
Background Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. Results In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed “sleep specific” changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Conclusion Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a ubiquitous role in reducing cellular metabolic stress in both brain and peripheral tissues. Finally, our data suggest a novel role for sleep in synchronizing transcription in peripheral tissues. PMID:23721503
Role of natural killer cells in lung cancer.
Aktaş, Ozge Nur; Öztürk, Ayşe Bilge; Erman, Baran; Erus, Suat; Tanju, Serhan; Dilege, Şükrü
2018-06-01
One of the key immune cells involved in the pathogenesis of lung cancer is natural killer (NK) cells and these cells are novel targets for therapeutic applications in lung cancer. The purpose of this review is to summarize the current literature on lung cancer pathogenesis with a focus on the interaction between NK cells and smoking, how these factors are related to the pathogenesis of lung cancer and how NK cell-based immunotherapy effect lung cancer survival. The relevant literature from PubMed and Medline databases is reviewed in this article. The cytolytic potential of NK cells are reduced in lung cancer and increasing evidence suggests that improving NK cell functioning may induce tumor regression. Recent clinical trials on NK cell-based novel therapies such as cytokines including interleukin (IL)-15, IL-12 and IL-2, NK-92 cell lines and allogenic NK cell immunotherapy showed promising results with less adverse effects on the lung cancer survival. The NK cell targeting strategy has not yet been approved for lung cancer treatment. More clinical studies focusing on the role of NK cells in lung cancer pathogenesis are warranted to develop novel NK cell-based therapeutic approaches for the treatment of lung cancer.
de Alvarenga, Guilherme Medeiros; Charkovski, Simone Arando; dos Santos, Larissa Kelin; da Silva, Mayara Alves Barbosa; Tomaz, Guilherme Oliveira; Gamba, Humberto Remigio
2018-01-01
OBJECTIVE: Aging is progressive, and its effects on the respiratory system include changes in the composition of the connective tissues of the lung that influence thoracic and lung compliance. The Powerbreathe® K5 is a device used for inspiratory muscle training with resistance adapted to the level of the inspiratory muscles to be trained. The Pilates method promotes muscle rebalancing exercises that emphasize the powerhouse. The aim of this study was to evaluate the influence of inspiratory muscle training combined with the Pilates method on lung function in elderly women. METHODS: The participants were aged sixty years or older, were active women with no recent fractures, and were not gait device users. They were randomly divided into a Pilates with inspiratory training group (n=11), a Pilates group (n=11) and a control group (n=9). Spirometry, manovacuometry, a six-minute walk test, an abdominal curl-up test, and pulmonary variables were assessed before and after twenty intervention sessions. RESULTS: The intervention led to an increase in maximal inspiratory muscle strength and pressure and power pulmonary variables (p<0.0001), maximal expiratory muscle strength (p<0.0014), six-minute walk test performance (p<0.01), and abdominal curl-up test performance (p<0.00001). The control group showed no differences in the analyzed variables (p>0.05). CONCLUSION: The results of this study suggest inspiratory muscle training associated with the Pilates method provides an improvement in the lung function and physical conditioning of elderly patients. PMID:29924184
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatramani, Rajkumar, E-mail: rvenkatramani@chla.usc.edu; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California; Kamath, Sunil
Purpose: To identify the incidence and the risk factors for pulmonary toxicity in children treated for cancer with contemporary lung irradiation. Methods and Materials: We analyzed clinical features, radiographic findings, pulmonary function tests, and dosimetric parameters of children receiving irradiation to the lung fields over a 10-year period. Results: We identified 109 patients (75 male patients). The median age at irradiation was 13.8 years (range, 0.04-20.9 years). The median follow-up period was 3.4 years. The median prescribed radiation dose was 21 Gy (range, 0.4-64.8 Gy). Pulmonary toxic chemotherapy included bleomycin in 58.7% of patients and cyclophosphamide in 83.5%. The followingmore » pulmonary outcomes were identified and the 5-year cumulative incidence after irradiation was determined: pneumonitis, 6%; chronic cough, 10%; pneumonia, 35%; dyspnea, 11%; supplemental oxygen requirement, 2%; radiographic interstitial lung disease, 40%; and chest wall deformity, 12%. One patient died of progressive respiratory failure. Post-irradiation pulmonary function tests available from 44 patients showed evidence of obstructive lung disease (25%), restrictive disease (11%), hyperinflation (32%), and abnormal diffusion capacity (12%). Thoracic surgery, bleomycin, age, mean lung irradiation dose (MLD), maximum lung dose, prescribed dose, and dosimetric parameters between V{sub 22} (volume of lung exposed to a radiation dose ≥22 Gy) and V{sub 30} (volume of lung exposed to a radiation dose ≥30 Gy) were significant for the development of adverse pulmonary outcomes on univariate analysis. MLD, maximum lung dose, and V{sub dose} (percentage of volume of lung receiving the threshold dose or greater) were highly correlated. On multivariate analysis, MLD was the sole significant predictor of adverse pulmonary outcome (P=.01). Conclusions: Significant pulmonary dysfunction occurs in children receiving lung irradiation by contemporary techniques. MLD rather than prescribed dose should be used to perform risk stratification of patients receiving lung irradiation.« less
Labor, Marina; Vrbica, Žarko; Gudelj, Ivan; Labor, Slavica; Plavec, Davor
2016-08-19
COPD-6™ is a lung function testing device for a rapid pre-spirometry testing to screen-out at-risk individuals not having COPD and indicating those at risk. The aim of this study was to validate COPD-6™ lung function testing (index test) in general practice in discriminating patients with COPD out of the population at risk - smokers/ex-smokers with no previous diagnosis of COPD, using measurements at tertiary care as reference standard. Consecutive 227 subjects (115 women, 185 smokers/42 ex-smokers, ≥20 pack-years) with no previous diagnosis of COPD, aged 52.5 (SD 6.8) years from 26 general practitioners (GPs) were recruited, lung function tested with COPD-6™, referred to the tertiary institution for repeated COPD-6™ testing followed by spirometry with a bronchodilator (salbutamol), examination, and pulmonologist consultation for the diagnosis and severity of COPD. COPD was diagnosed in 43 subjects (18.9 %), with an AUC of 0.827 (95 % CI 0.769-0.875, P < 0.001) for the diagnosis of COPD when lung function was measured using COPD-6™ in GP's office with a specificity of 100 % (95 % CI, 97.95-100 %) but a very low sensitivity of 32.56 % (95 % CI, 20.49-47.48 %). Significant agreement for forced expiratory volume in 1 s measured at GP's office and at lung function lab was found (mean difference 0.01 L, p = 0.667) but not for other measured parameters (p < 0.001 for all). Our study results point out that active case finding in a population at risk for COPD should be instituted (almost 20 % of undiagnosed COPD). Based on our results lung function testing with COPD-6™ can substitute spirometry testing in cases where it is not readily available to the patient/physician taken into account that the traditional FEV1/FEV6 cutoff value of <0.7 is not the only criterion for diagnosis and/or further referral. ClinicalTrials.gov Identifier NCT01550679 Registered 28 September 2014, retrospectively registered.
Ueno, Fumika; Kitaguchi, Yoshiaki; Shiina, Takayuki; Asaka, Shiho; Miura, Kentaro; Yasuo, Masanori; Wada, Yosuke; Yoshizawa, Akihiko; Hanaoka, Masayuki
2017-01-01
It remains unclear whether the preoperative pulmonary function parameters and prognostic indices that are indicative of nutritional and immunological status are associated with prognosis in lung cancer patients with combined pulmonary fibrosis and emphysema (CPFE) who have undergone surgery. The aim of this study is to identify prognostic determinants in these patients. The medical records of all patients with lung cancer associated with CPFE who had undergone surgery at Shinshu University Hospital were retrospectively reviewed to obtain clinical data, including the results of preoperative pulmonary function tests and laboratory examinations, chest high-resolution computed tomography (HRCT), and survival. Univariate Cox proportional hazards regression analysis showed that a high pathological stage of the lung cancer, a higher preoperative serum carcinoembryonic antigen level, and a higher preoperative composite physiologic index (CPI) were associated with a high risk of death. Multivariate analysis showed that a high pathological stage of the lung cancer (HR: 1.579; p = 0.0305) and a higher preoperative CPI (HR: 1.034; p = 0.0174) were independently associated with a high risk of death. In contrast, the severity of fibrosis or emphysema on chest HRCT, the individual pulmonary function parameters, the prognostic nutritional index, the neutrophil-to-lymphocyte ratio, and the platelet-to-lymphocyte ratio were not associated with prognosis. In the Kaplan-Meier analysis, the log-rank test showed significant differences in survival between the high-CPI and the low-CPI group (p = 0.0234). The preoperative CPI may predict mortality and provide more powerful prognostic information than individual pulmonary function parameters in lung cancer patients with CPFE who have undergone surgery. © 2017 S. Karger AG, Basel.
Secreted Phosphoprotein 1 Is a Determinant of Lung Function Development in Mice
Martin, Timothy M.; Concel, Vincent J.; Upadhyay, Swapna; Bein, Kiflai; Brant, Kelly A.; George, Leema; Mitra, Ankita; Thimraj, Tania A.; Fabisiak, James P.; Vuga, Louis J.; Fattman, Cheryl; Kaminski, Naftali; Schulz, Holger; Leikauf, George D.
2014-01-01
Secreted phosphoprotein 1 (Spp1) is located within quantitative trait loci associated with lung function that was previously identified by contrasting C3H/HeJ and JF1/Msf mouse strains that have extremely divergent lung function. JF1/Msf mice with diminished lung function had reduced lung SPP1 transcript and protein during the peak stage of alveologenesis (postnatal day [P]14–P28) as compared with C3H/HeJ mice. In addition to a previously identified genetic variant that altered runt-related transcription factor 2 (RUNX2) binding in the Spp1 promoter, we identified another promoter variant in a putative RUNX2 binding site that increased the DNA protein binding. SPP1 induced dose-dependent mouse lung epithelial-15 cell proliferation. Spp1(−/−) mice have decreased specific total lung capacity/body weight, higher specific compliance, and increased mean airspace chord length (Lm) compared with Spp1(+/+) mice. Microarray analysis revealed enriched gene ontogeny categories, with numerous genes associated with lung development and/or respiratory disease. Insulin-like growth factor 1, Hedgehog-interacting protein, wingless-related mouse mammary tumor virus integration site 5A, and NOTCH1 transcripts decreased in the lung of P14 Spp1(−/−) mice as determined by quantitative RT-PCR analysis. SPP1 promotes pneumocyte growth, and mice lacking SPP1 have smaller, more compliant lungs with enlarged airspace (i.e., increased Lm). Microarray analysis suggests a dysregulation of key lung developmental transcripts in gene-targeted Spp1(−/−) mice, particularly during the peak phase of alveologenesis. In addition to its known roles in lung disease, this study supports SPP1 as a determinant of lung development in mice. PMID:24816281
Xu, Dandan; Zhang, Yi; Zhou, Lian; Li, Tiantian
2018-03-17
The association between exposure to ambient particulate matter (PM) and reduced lung function parameters has been reported in many works. However, few studies have been conducted in developing countries with high levels of air pollution like China, and little attention has been paid to the acute effects of short-term exposure to air pollution on lung function. The study design consisted of a panel comprising 86 children from the same school in Nanjing, China. Four measurements of lung function were performed. A mixed-effects regression model with study participant as a random effect was used to investigate the relationship between PM 2.5 and lung function. An increase in the current day, 1-day and 2-day moving average PM 2.5 concentration was associated with decreases in lung function indicators. The greatest effect of PM 2.5 on lung function was detected at 1-day moving average PM 2.5 exposure. An increase of 10 μg/m 3 in the 1-day moving average PM 2.5 concentration was associated with a 23.22 mL decrease (95% CI: 13.19, 33.25) in Forced Vital Capacity (FVC), a 18.93 mL decrease (95% CI: 9.34, 28.52) in 1-s Forced Expiratory Volume (FEV 1 ), a 29.38 mL/s decrease (95% CI: -0.40, 59.15) in Peak Expiratory Flow (PEF), and a 27.21 mL/s decrease (95% CI: 8.38, 46.04) in forced expiratory flow 25-75% (FEF 25-75% ). The effects of PM 2.5 on lung function had significant lag effects. After an air pollution event, the health effects last for several days and we still need to pay attention to health protection.
Zarogoulidis, Paul; Kerenidi, Theodora; Huang, Haidong; Kontakiotis, Theodoros; Tremma, Ourania; Porpodis, Konstantinos; Kalianos, Anastasios; Rapti, Ageliki; Foroulis, Christoforos; Zissimopoulos, Athanasios; Courcoutsakis, Nikolaos; Zarogoulidis, Konstantinos
2012-12-01
Several studies have demonstrated that reduced lung function is a significant risk factor for lung cancer and increased surgical risk in patients with operable stages of lung cancer. The aim of the study was to perform pulmonary function tests and investigate which is a favorable respiratory function test for overall survival between lung cancer stages. Lung function tests were performed to lung cancer patients with non-small cell lung cancer of stage I, II, III and IV (241 patients in total). They had the last follow-up consecutively between December 2006 and July 2008. The staging was decided according to the sixth edition of TNM classification of NSCLC. The Forced Expiratory Volume in 1sec (FEV1), Forced Vital Capacity (FVC) and Carbon Monoxide Diffusing Capacity (DLCO) were measured according to American Thoracic Society/European Respiratory Society guidelines. The 6 Minute Walking Test (6MWT) was measured according to the American Thoracic Society. There was a significant association of the DLCO upon diagnosis and overall survival for stage II (P<0.007) and IV (P<0.003). Furthermore, there was a significant association between 6MWT and overall survival for stage III (P<0.001) and stage IV (P<0.010). The significance for each lung function test is different among the stages of NSCLC. DLCO and 6MWT upon admission are the most valuable prognostic factors for overall survival of NSCLC.
Why does the lung hyperinflate?
Ferguson, Gary T
2006-04-01
Patients with chronic obstructive pulmonary disease (COPD) often have some degree of hyperinflation of the lungs. Hyperinflated lungs can produce significant detrimental effects on breathing, as highlighted by improvements in patient symptoms after lung volume reduction surgery. Measures of lung volumes correlate better with impairment of patient functional capabilities than do measures of airflow. Understanding the mechanisms by which hyperinflation occurs in COPD provides better insight into how treatments can improve patients' health. Both static and dynamic processes can contribute to lung hyperinflation in COPD. Static hyperinflation is caused by a decrease in elasticity of the lung due to emphysema. The lungs exert less recoil pressure to counter the recoil pressure of the chest wall, resulting in an equilibrium of recoil forces at a higher resting volume than normal. Dynamic hyperinflation is more common and can occur independent of or in addition to static hyperinflation. It results from air being trapped within the lungs after each breath due to a disequilibrium between the volumes inhaled and exhaled. The ability to fully exhale depends on the degree of airflow limitation and the time available for exhalation. These can both vary, causing greater hyperinflation during exacerbations or increased respiratory demand, such as during exercise. Reversibility of dynamic hyperinflation offers the possibility for intervention. Use of bronchodilators with prolonged durations of action, such as tiotropium, can sustain significant reductions in lung inflation similar in effect to lung volume reduction surgery. How efficacy of bronchodilators is assessed may, therefore, need to be reevaluated.
2017-04-12
Cachexia; Fatigue; Pulmonary Complications; Radiation Toxicity; Recurrent Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer
Couraud, L; Baudet, E; Martigne, C; Roques, X; Velly, J F; Laborde, N; Clerc, P
1989-01-01
Since January 1988, the Bordeaux group has performed 15 transplantations for lung disease: 9 heart-lung transplants, 1 heart + left lung, 1 double lung, 2 right lungs and 2 left lungs. The transplantations were performed for pulmonary emphysema (10 cases), pulmonary artery hypertension (2 cases), cystic fibrosis (1 case), pulmonary fibrosis (2 cases). Cardiopulmonary transplantation was not always performed because of associated heart failure but sometimes because of large intrahilar adenopathy or intractable bronchial infection. Pulmonary transplantation is recommended on the right side in cases of pulmonary fibrosis. One patient died postoperatively (ischaemia of the transplant). Four others died during the 2nd and 3rd months from poorly defined but probably infectious pulmonary syndromes. The tracheobronchial patency of the 10 survivors was 80% or 100% of the predicted value. The respiratory functional result was excellent in the short and intermediate term. Specific difficulties essentially consisted of pleural symphyses, hilar adenopathy, bronchial infection, steroid dependence of certain subjects, the difficulty of identifying the cause and treating lung opacities during the 2nd and 3rd months.
Aokage, Keiju; Saji, Hisashi; Suzuki, Kenji; Mizutani, Tomonori; Katayama, Hiroshi; Shibata, Taro; Watanabe, Syunichi; Asamura, Hisao
2017-05-01
Lobectomy has been the standard surgery for even stage I lung cancer since the validity of limited resection for stage I lung cancer was denied by the randomized study reported in 1995. The aim of this non-randomized confirmatory going on since September 2013 is to confirm the efficacy of a segmentectomy for clinical T1N0 lung cancer with dominant ground glass opacity based on thin-slice computed tomography. A total of 390 patients from 42 Japanese institutions are recruited within 4 years. The primary endpoint of this study is a 5-year relapse-free survival in all of the patients who undergo a segmentectomy for a lung nodule. The secondary endpoints are overall survival, annual relapse-free survival, disease-free survival, proportion of local relapse, postoperative pulmonary function, proportion of segmentectomy completion, proportion of R0 resection completion by segmentectomy, adverse events, and serious adverse events. This trial has been registered at the UMIN Clinical Trials Registry as UMIN000011819 ( http://www.umin.ac.jp/ctr/ ). Patient's accrual has been already finished in November, 2015 and the primary analysis will be performed in 2021. This study is one of the pivotal trial of lung segmentectomy for early lung cancer. The result will provide a clear evidence for our daily clinics and will be possible contribution to preserving pulmonary function for lung cancer patients.
Correction of Spinal Deformity on a Lung Transplantation Recipient.
Andrés Peiró, José Vicente; Granell, Joan Bagó; Moret, Montserrat Feliu; Galdó, Antonio Moreno
2017-01-01
The coexistence of lung disease and scoliosis entails a dramatic situation. There are no papers reporting scoliosis surgery in patients who suffered lung transplantation. To describe the case of a patient who underwent surgery to correct progressive spinal deformity after two consecutive lung transplants. Case report, including review of patient records, imaging and pulmonary function tests, and literature review. A 9-year-old woman diagnosed of idiopathic pulmonary fibrosis and progressive scoliosis underwent lung transplant. Retransplantation of right lung was performed at the age of 14 due to chronic rejection. When she was 16, respiratory function was stable and spinal deformity severely impaired her quality of life. Patient and family demanded a surgical correction. At that moment, she had severe osteoporosis and immunosuppression as a result of anti-rejection therapy. The pattern was a severe double thoracic curve T1-T6 89° and T7-L1 139°. To correct it, a posterior instrumented spine fusion from T2 to L4 using a hybrid configuration was performed. No significant complications occurred in perioperative, postoperative, and midterm follow-up periods. Solid fusion was achieved and patient was satisfied with surgery. Unfortunately, chronic lung graft rejection worsened her long-term general status. Scoliosis surgery on lung transplant recipients is feasible, regardless of potential complications related to immunosuppression and osteoporosis. The goal is to improve quality of life. Copyright © 2016 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Identification of Key Transcription Factors Associated with Lung Squamous Cell Carcinoma
Zhang, Feng; Chen, Xia; Wei, Ke; Liu, Daoming; Xu, Xiaodong; Zhang, Xing; Shi, Hong
2017-01-01
Background Lung squamous cell carcinoma (lung SCC) is a common type of lung cancer, but its mechanism of pathogenesis is unclear. The aim of this study was to identify key transcription factors in lung SCC and elucidate its mechanism. Material/Methods Six published microarray datasets of lung SCC were downloaded from Gene Expression Omnibus (GEO) for integrated bioinformatics analysis. Significance analysis of microarrays was used to identify differentially expressed genes (DEGs) between lung SCC and normal controls. The biological functions and signaling pathways of DEGs were mapped in the Gene Otology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, respectively. A transcription factor gene regulatory network was used to obtain insights into the functions of DEGs. Results A total of 1,011 genes, including 539 upregulated genes and 462 downregulated genes, were filtered as DEGs between lung SCC and normal controls. DEGs were significantly enriched in cell cycle, DNA replication, p53 signaling pathway, pathways in cancer, adherens junction, and cell adhesion molecules signaling pathways. There were 57 transcription factors identified, which were used to construct a regulatory network. The network consisted of 736 interactions between 49 transcription factors and 486 DEGs. NFIC, BRCA1, and NFATC2 were the top 3 transcription factors that had the highest connectivity with DEGs and that regulated 83, 82, and 75 DEGs in the network, respectively. Conclusions NFIC, BRCA1, and NFATC2 might be the key transcription factors in the development of lung SCC by regulating the genes involved in cell cycle and DNA replication pathways. PMID:28081052
van den Brule, Sybille; Wallemme, Laurent; Uwambayinema, Francine; Huaux, François; Lison, Dominique
2010-11-01
Prostaglandin (PG) D(2) exerts contrasting activities in the inflamed lung via two receptors, the D prostanoid receptor (DP) and the chemoattractant receptor-homologous molecule expressed on T helper 2 lymphocytes. DP activation is known mainly to inhibit proinflammatory cell functions. We tested the effect of a DP-specific agonist, (4S)-(3-[(3R,S)-3-cyclohexyl-3-hydroxypropyl]-2,5-dioxo)-4-imidazolidineheptanoic acid (BW245C), on pulmonary fibroblast functions in vitro and in a mouse model of lung fibrosis induced by bleomycin. DP mRNA expression was detected in cultured mouse lung primary fibroblasts and human fetal lung fibroblasts and found to be up- and down-regulated by interleukin-13 and transforming growth factor (TGF)-β, respectively. Although micromolar concentrations of BW245C and PGD(2) did not affect mouse fibroblast collagen synthesis or differentiation in myofibroblasts, they both inhibited fibroblast basal and TGF-β-induced proliferation in vitro. The repeated administration of BW245C (500 nmol/kg body weight instilled transorally in the lungs 2 days before and three times per week for 3 weeks) in bleomycin-treated mice significantly decreased both inflammatory cell recruitment and collagen accumulation in the lung (21 days). Our results indicate that BW245C can reduce lung fibrosis in part via its activity on fibroblast proliferation and suggest that DP activation should be considered as a new therapeutic target in fibroproliferative lung diseases.
Beers, Michael F; Moodley, Yuben
2017-07-01
Generating mature, differentiated, adult lung cells from pluripotent cells, such as induced pluripotent stem cells and embryonic stem cells, offers the hope of both generating disease-specific in vitro models and creating definitive and personalized therapies for a host of debilitating lung parenchymal and airway diseases. With the goal of advancing lung-regenerative medicine, several groups have developed and reported on protocols using defined media, coculture with mesenchymal components, or sequential treatments mimicking lung development, to obtain distal lung epithelial cells from stem cell precursors. However, there remains significant controversy about the degree of differentiation of these cells compared with their primary counterparts, coupled with a lack of consistency or uniformity in assessing the resultant phenotypes. Given the inevitable, exponential expansion of these approaches and the probable, but yet-to-emerge second and higher generation techniques to create such assets, we were prompted to pose the question, what makes a lung epithelial cell a lung epithelial cell? More specifically for this Perspective, we also posed the question, what are the minimum features that constitute an alveolar type (AT) 2 epithelial cell? In addressing this, we summarize a body of work spanning nearly five decades, amassed by a series of "lung epithelial cell biology pioneers," which carefully describes well characterized molecular, functional, and morphological features critical for discriminately assessing an AT2 phenotype. Armed with this, we propose a series of core criteria to assist the field in confirming that cells obtained following a differentiation protocol are indeed mature and functional AT2 epithelial cells.
Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.
Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama
2009-04-15
Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.
2011-01-01
Background Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures. Results The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme. We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2. Conclusions The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality. PMID:21672206
Effects of Aspergillus fumigatus colonization on lung function in cystic fibrosis.
Speirs, Jennifer J; van der Ent, Cornelis K; Beekman, Jeffrey M
2012-11-01
Aspergillus fumigatus is frequently isolated from cystic fibrosis (CF) patients and is notorious for its role in the debilitating condition of allergic bronchopulmonary aspergillosis (ABPA). Although CF patients suffer from perpetual microorganism-related lung disease, it is unclear whether A. fumigatus colonization has a role in causing accelerated lung function decline and whether intervention is necessary. A. fumigatus morbidity appears to be related to cystic fibrosis transmembrane conductance regulator-dependant function of the innate immune system. A. fumigatus-colonized patients have a lower lung capacity, more frequent hospitalizations and more prominent radiological abnormalities than noncolonized patients. Treatment with antifungal agents can be of value but has several drawbacks and a direct effect on lung function is yet to be shown. A. fumigatus appears to have an important role in CF lung disease, not exclusive to the context of ABPA. However, a causal relationship still needs to be confirmed. Study observations and trends indicate a need to further elucidate the mechanisms of A. fumigatus interactions with the host innate immune system and its role in CF lung morbidity.
The respiratory health and lung function of Anglo-American children in a smelter town
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodge, R.
1983-02-01
Cooper smelters are large, usually isolated, sources of air pollution. Arizona has several such plants on the periphery of small communities. The smelters emit predominantly sulfur oxides and particulates, and the residents of these communities intermittently are exposed to high concentrations (24-h sulfur dioxide (SO2) . 250 to 500 micrograms/m3) of smelter smoke but little other pollution. This study compared the respiratory health of Anglo-American school children who lived in one smelter community with children living in another small community in Arizona that was free of smelter air pollution. The prevalence of cough, as determined by questionnaire, was 25.6% inmore » the smelter town children and 14.3% in the nonsmelter town children (p less than 0.05). Pulmonary function at the study onset was equal in the two groups. Over the course of the 4 yr of study, lung function growth (measured as actual forced expiratory volume in one second (FEV1) after 4 yr of study minus predicted FEV1) was also equal in the smelter town and nonsmelter town children. These results suggest that children in smelter communities have slightly more cough when compared with children living in other communities, but no differences in initial lung function or lung function at yearly testing over the period of the study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardcastle, Nicholas, E-mail: nick.hardcastle@gmail.com; Centre for Medical Radiation Physics, University of Wollongong, Wollongong; Hofman, Michael S.
2015-09-01
Purpose: Measuring changes in lung perfusion resulting from radiation therapy dose requires registration of the functional imaging to the radiation therapy treatment planning scan. This study investigates registration accuracy and utility for positron emission tomography (PET)/computed tomography (CT) perfusion imaging in radiation therapy for non–small cell lung cancer. Methods: {sup 68}Ga 4-dimensional PET/CT ventilation-perfusion imaging was performed before, during, and after radiation therapy for 5 patients. Rigid registration and deformable image registration (DIR) using B-splines and Demons algorithms was performed with the CT data to obtain a deformation map between the functional images and planning CT. Contour propagation accuracy andmore » correspondence of anatomic features were used to assess registration accuracy. Wilcoxon signed-rank test was used to determine statistical significance. Changes in lung perfusion resulting from radiation therapy dose were calculated for each registration method for each patient and averaged over all patients. Results: With B-splines/Demons DIR, median distance to agreement between lung contours reduced modestly by 0.9/1.1 mm, 1.3/1.6 mm, and 1.3/1.6 mm for pretreatment, midtreatment, and posttreatment (P<.01 for all), and median Dice score between lung contours improved by 0.04/0.04, 0.05/0.05, and 0.05/0.05 for pretreatment, midtreatment, and posttreatment (P<.001 for all). Distance between anatomic features reduced with DIR by median 2.5 mm and 2.8 for pretreatment and midtreatment time points, respectively (P=.001) and 1.4 mm for posttreatment (P>.2). Poorer posttreatment results were likely caused by posttreatment pneumonitis and tumor regression. Up to 80% standardized uptake value loss in perfusion scans was observed. There was limited change in the loss in lung perfusion between registration methods; however, Demons resulted in larger interpatient variation compared with rigid and B-splines registration. Conclusions: DIR accuracy in the data sets studied was variable depending on anatomic changes resulting from radiation therapy; caution must be exercised when using DIR in regions of low contrast or radiation pneumonitis. Lung perfusion reduces with increasing radiation therapy dose; however, DIR did not translate into significant changes in dose–response assessment.« less
Accuracy of mini peak flow meters in indicating changes in lung function in children with asthma.
Sly, P. D.; Cahill, P.; Willet, K.; Burton, P.
1994-01-01
OBJECTIVE--To assess whether mini flow meters used to measure peak expiratory flow can track changes in lung function and indicate clinically important changes. DESIGN--Comparison of measurements with a spirometer and different brands of mini flow meter; the meters were allocated to subjects haphazardly. SUBJECTS--12 boys with asthma aged 11 to 17 attending boarding school. MAIN OUTCOME MEASURES--Peak expiratory flow measured twice daily for three months with a spirometer and at least one of four brands of mini flow meter. RESULTS--The relation between changes in lung function measured with the spirometer and those measured with the mini flow meters was generally poor. In all, 26 episodes (range 1-3 in an individual child) of clinically important deterioration in lung function were detected from the records obtained with the spirometer. One mini flow meter detected six of 19 episodes, one detected six of 15, one detected six of 18, and one detected three of 21. CONCLUSIONS--Not only are the absolute values of peak expiratory flow obtained with mini flow meters inaccurate but the clinical message may also be incorrect. These findings do not imply that home monitoring of peak expiratory flow has no place in the management of childhood asthma but that the values obtained should be interpreted cautiously. PMID:8148680
NASA Astrophysics Data System (ADS)
Recheis, Wolfgang A.; Kleinsasser, Axel; Hatschenberger, Robert; Knapp, Rudolf; zur Nedden, Dieter; Hoermann, Christoph
1999-05-01
The purpose of this project is to evaluate the dynamic changes during expiration at different levels of positive end- expiratory pressure (PEEP) in the ventilated patient. We wanted to discriminate between normal lung function and acute respiratory distress syndrome (ARDS). After approval by the local Ethic Committee we studied two ventilated patients: (1) with normal lung function; (2) ARDS). We used the 50 ms scan mode of the EBCT. The beam was positioned 1 cm above the diaphragm. The table position remained unchanged. An electronic trigger was developed, that utilizes the respirators synchronizing signal to start the EBCT at the onset of expiration. During controlled mechanical expiration at two levels of PEEP (0 and 15 cm H2O), pulmonary aeration was rated as: well-aerated (-900HU/-500HU), poorly- aerated (-500HU/-100HU) and non-aerated (-100HU/+100HU). Pathological and normal lung function showed different dynamic changes (FIG.4-12). The different PEEP levels resulted in a significant change of pulmonary aeration in the same patient. Although we studied only a very limited number of patients, respirator triggered EBCT may be accurate in discriminating pathological changes due to the abnormal lung function in the mechanically ventilated patient.
Mbatchou Ngahane, Bertrand Hugo; Afane Ze, Emmanuel; Chebu, Cyrille; Mapoure, Njankouo Yacouba; Temfack, Elvis; Nganda, Malea; Luma, Namme Henry
2015-01-01
Background: Indoor air pollution is a major health problem in the developing world. In sub-Saharan Africa more than 90% of people rely on biomass to meet their domestic energy demands. Pollution from biomass fuel ranks 10th among preventable risk factors contributing to the global burden of diseases. Objectives: The present study aimed to determine the prevalence of respiratory symptoms and the factors associated with reduced lung function in a population of women exposed to cooking fuel smoke. Methods: A cross-sectional study was conducted in a semi-rural area in Cameroon. We compared forced respiratory volume between women using wood (n = 145) and women using alternative sources of energy (n = 155) for cooking. Results: Chronic bronchitis was found in 7·6% of the wood smoke group and 0·6% in the alternative fuels group. We observed two cases of airflow obstruction in the wood smoke group. Factors associated with lung function impairment were chronic bronchitis, use of wood as cooking fuel, age, and height. Conclusion: Respiratory symptoms and reduced lung function are more pronounced among women using wood as cooking fuel. Improved stoves technology should be developed to reduce the effects of wood smoke on respiratory health. PMID:25384259
Færden, Karl; Lund, May Brit; Aaløkken, Trond Mogens; Eduard, Wijnand; Søstrand, Per; Langård, Sverre; Kongerud, Johny
2014-01-01
Background: The long-term prognosis of repeated acute episodes of hypersensitivity pneumonitis (HP) is not well described. We report on a 10-year follow-up of a 10-person cluster from a Norwegian sawmill who had all experienced relapsing episodes of HP. Objectives: To evaluate the health symptoms, work-related sick-leave, and lung function of 10 workers exposed to mold in a Norwegian sawmill. Methods: Participants were evaluated at baseline and 10 years later at follow-up. A structured interview, measurement of serum IgG antibodies to Rhizopus microsporus (R. microsporus) antigens, lung function tests, high resolution computed tomography (HRCT) of the chest, and personal measurements of exposure to mold spores and dust were completed for each participant. Results: At baseline, nearly all workers reported acute episodes of HP more than twice a month. At follow-up, both the frequency and intensity of symptoms had declined. Sick-leave was reduced and gas diffusing capacity improved – paralleling the gradually reduced air levels of mold spores. Conclusions: In spite of an initially high occurrence of symptoms, long-term clinical and physiological outcome was good. With reduced exposure to mold spores, symptoms declined and lung function was restored. PMID:24999852
Fibulin-1 functions as a prognostic factor in lung adenocarcinoma.
Cui, Yuan; Liu, Jian; Yin, Hai-Bing; Liu, Yi-Fei; Liu, Jun-Hua
2015-09-01
Fibulin-1 is a member of the fibulin gene family, characterized by tandem arrays of epidermal growth factor-like domains and a C-terminal fibulin-type module. Fibulin-1 plays important roles in a range of cellular functions including morphology, growth, adhesion and mobility. It acts as a tumor suppressor gene in cutaneous melanoma, prostate cancer and gastric cancer. However, whether fibulin-1 also acts as a tumor suppressor gene in lung adenocarcinoma remains unknown. We also determined the association of fibulin-1 expression with various clinical and pathological parameters, which would show its potential role in clinical prognosis. We investigated and followed up 140 lung adenocarcinoma patients who underwent lung resection without pre- and post-operative systemic chemotherapy at the Affiliated Hospital of Nantong University from 2009 to 2013. Western blot assay and immunohistochemistry were used to evaluate the expression of fibulin-1 in lung adenocarcinoma tissues. We then analyzed the correlations between fibulin-1 expression and clinicopathological variables as well as the patients' overall survival rate. Both western blot assay and immunohistochemistry demonstrated that the level of fibulin-1 was downregulated in human lung adenocarcinoma tissues compared with that of normal lung tissues. Fibulin-1 expression significantly correlated with histological differentiation (P = 0.046), clinical stage (P< 0.01), lymph node status (P = 0.038) and expression of Ki-67 (P = 0.013). More importantly, multivariate analysis revealed that fibulin-1 was an independent prognostic marker for lung adenocarcinoma, and high expression of fibulin-1 was significantly associated with better prognosis of lung adenocarcinoma patients. The results supported our hypothesis that fibulin-1 can act as a prognostic factor in lung adenocarcinoma progression. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ventilatory function in rubber processing workers: acute changes over the workshift.
Governa, M; Comai, M; Valentino, M; Antonicelli, L; Rinaldi, F; Pisani, E
1987-02-01
When considering rubber tyre manufacturing from an occupational health viewpoint, three areas may be identified in which exposure to respirable materials are potentially harmful: the processing, curing, and talc areas. A study of the ventilatory function of the entire work force employed in the processing area in a rubber tyre manufacturing plant was undertaken to determine whether an acute reduction in lung function occurs over the course of their working shift (the plant worked a three shift system) and whether a chronic exposure to the occupational airborne contaminants causes permanent changes in lung function. The ventilatory function was measured at the worksite at the beginning and immediately after the end of the workshift. No evidence of chronic obstructive pulmonary disease was found and in most cases no significant decline in FEV1 was observed. Only one of the 79 individuals showed a moderate obstruction, measured by the ratio FEV1/FVC which gave the value of 0.55, with no variation over the shift. For non-smokers, the FVC, FEV1, and FEF25-75% were lower in those exposed for more than five years than in those exposed for five years or less. A similar pattern was also observed in the FVC and FEV1 of the smokers. None of these differences was statistically significant. Within each exposure group the pulmonary function of the smokers was lower than that of the non-smokers, but the only significant difference was found in the values of FEF25-75%. Only one man showed a decline in the FEV1/FVC ratio over the shift, but during each shift, a decrease in all the lung function tests was observed. The decrease was smallest during the first of the three shifts. These results are thought to support the hypothesis that there are acute adverse effects over an eight hour shift. Further investigations are needed to discover whether these acute changes in lung function result from a chemical stimulation or irritant receptors in the airways.
Konstan, Michael W; VanDevanter, Donald R; Sawicki, Gregory S; Pasta, David J; Foreman, Aimee J; Neiman, Evgueni A; Morgan, Wayne J
2018-04-01
Cystic fibrosis deaths result primarily from lung function loss, so chronic respiratory therapies, intended to preserve lung function, are cornerstones of cystic fibrosis care. Although treatment-associated reduction in rate of lung function loss should ultimately improve cystic fibrosis survival, no such relationship has been described for any chronic cystic fibrosis therapy. In part, this is because the ages of most rapid lung function decline-early adolescence-precede the median age of cystic fibrosis deaths by more than a decade. To study associations of high-dose ibuprofen treatment with the rate of forced expiratory volume in 1 second decline and mortality among children followed in the Epidemiologic Study of Cystic Fibrosis and subsequently in the U.S. Cystic Fibrosis Foundation Patient Registry. We performed a matched cohort study using data from Epidemiologic Study of Cystic Fibrosis. Exposure was defined as high-dose ibuprofen use reported at ≥80% of encounters over 2 years. Unexposed children were matched to exposed children 5:1 using propensity scores on the basis of demographic, clinical, and treatment covariates. The rate of decline of percent predicted forced expiratory volume in 1 second during the 2-year follow-up period was estimated by mixed-effects modeling with random slopes and intercepts. Survival over 16 follow-up years in the U.S. Cystic Fibrosis Foundation Patient Registry was compared between treatment groups by using proportional hazards modeling controlling for matching and covariates. We included 775 high-dose ibuprofen users and 3,665 nonusers who were well matched on demographic, clinical, and treatment variables. High-dose ibuprofen users declined on average 1.10 percent predicted forced expiratory volume in 1 second/yr (95% confidence interval; 0.51, 1.69) during the 2-year treatment period, whereas nonusers declined at a rate of 1.76% percent predicted forced expiratory volume in 1 second/yr (95% confidence interval; 1.48, 2.04) during the corresponding 2-year period, a 37.5% slower decline among users compared with nonusers (95% confidence interval; 0.4%, 71.3%; P = 0.046). The users had better subsequent survival (P < 0.001): the unadjusted and adjusted hazard ratios for mortality (high-dose ibuprofen/non-high-dose ibuprofen) (95% confidence interval) were 0.75 (0.64, 0.87) and 0.82 (0.69, 0.96). In a propensity-score matched cohort study of children with cystic fibrosis, we observed an association between high-dose ibuprofen use and both slower lung function decline and improved long-term survival. These results are consistent with the hypothesis that treatment-associated reduction of lung function decline in children with cystic fibrosis leads to improved survival.
Suga, K; Yasuhiko, K; Iwanaga, H; Tokuda, O; Matsunaga, N
2009-01-01
The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Although further validation is required, our results indicate that heterogeneous pulmonary arterial perfusion may be a dominant mechanism of MCA in PVD and OAD.
Aging effects on airflow dynamics and lung function in human bronchioles.
Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M
2017-01-01
The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies.
Aging effects on airflow dynamics and lung function in human bronchioles
Kim, JongWon; Heise, Rebecca L.; Reynolds, Angela M.; Pidaparti, Ramana M.
2017-01-01
Background and objective The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Materials and methods Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. Findings The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Conclusion Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies. PMID:28846719
[Modern Views on Children's Interstitial Lung Disease].
Boĭtsova, E V; Beliashova, M A; Ovsiannikov, D Iu
2015-01-01
Interstitial lung diseases (ILD, diffuse lung diseases) are a heterogeneous group of diseases in which a pathological process primarily involved alveoli and perialveolar interstitium, resulting in impaired gas exchange, restrictive changes of lung ventilation function and diffuse interstitial changes detectable by X-ray. Children's interstitial lung diseases is an topical problem ofpediatricpulmonoogy. The article presents current information about classification, epidemiology, clinical presentation, diagnostics, treatment and prognosis of these rare diseases. The article describes the differences in the structure, pathogenesis, detection of various histological changes in children's ILD compared with adult patients with ILD. Authors cite an instance of registers pediatric patients with ILD. The clinical semiotics of ILD, the possible results of objective research, the frequency of symptoms, the features of medical history, the changes detected on chest X-rays, CT semiotics described in detail. Particular attention was paid to interstitial lung diseases, occurring mainly in newborns and children during the first two years of life, such as congenital deficiencies of surfactant proteins, neuroendocrine cell hyperplasia of infancy, pulmonary interstitial glycogenosis. The diagnostic program for children's ILD, therapy options are presented in this article.
A Recurrent Mutation in PARK2 Is Associated with Familial Lung Cancer
Xiong, Donghai; Wang, Yian; Kupert, Elena; Simpson, Claire; Pinney, Susan M.; Gaba, Colette R.; Mandal, Diptasri; Schwartz, Ann G.; Yang, Ping; de Andrade, Mariza; Pikielny, Claudio; Byun, Jinyoung; Li, Yafang; Stambolian, Dwight; Spitz, Margaret R.; Liu, Yanhong; Amos, Christopher I.; Bailey-Wilson, Joan E.; Anderson, Marshall; You, Ming
2015-01-01
PARK2, a gene associated with Parkinson disease, is a tumor suppressor in human malignancies. Here, we show that c.823C>T (p.Arg275Trp), a germline mutation in PARK2, is present in a family with eight cases of lung cancer. The resulting amino acid change, p.Arg275Trp, is located in the highly conserved RING finger 1 domain of PARK2, which encodes an E3 ubiquitin ligase. Upon further analysis, the c.823C>T mutation was detected in three additional families affected by lung cancer. The effect size for PARK2 c.823C>T (odds ratio = 5.24) in white individuals was larger than those reported for variants from lung cancer genome-wide association studies. These data implicate this PARK2 germline mutation as a genetic susceptibility factor for lung cancer. Our results provide a rationale for further investigations of this specific mutation and gene for evaluation of the possibility of developing targeted therapies against lung cancer in individuals with PARK2 variants by compensating for the loss-of-function effect caused by the associated variation. PMID:25640678
Das, Nilakash; Topalovic, Marko; Janssens, Wim
2018-03-01
The application of artificial intelligence in the diagnosis of obstructive lung diseases is an exciting phenomenon. Artificial intelligence algorithms work by finding patterns in data obtained from diagnostic tests, which can be used to predict clinical outcomes or to detect obstructive phenotypes. The purpose of this review is to describe the latest trends and to discuss the future potential of artificial intelligence in the diagnosis of obstructive lung diseases. Machine learning has been successfully used in automated interpretation of pulmonary function tests for differential diagnosis of obstructive lung diseases. Deep learning models such as convolutional neural network are state-of-the art for obstructive pattern recognition in computed tomography. Machine learning has also been applied in other diagnostic approaches such as forced oscillation test, breath analysis, lung sound analysis and telemedicine with promising results in small-scale studies. Overall, the application of artificial intelligence has produced encouraging results in the diagnosis of obstructive lung diseases. However, large-scale studies are still required to validate current findings and to boost its adoption by the medical community.
Zhou, Juan; Ben, Suqin
2018-02-01
We compared the therapeutic effect of EGFR-tyrosine kinase inhibitors (TKIs) on 19Del and L858R mutations in advanced lung adenocarcinoma on cellular immune function and explored the factors influencing the curative effect and prognosis. Clinical efficacy in the selected 71 patients with lung adenocarcinoma, including 52 patients with 19Del and L858R mutations and 19 wild type patients treated with EGFR-TKIs was retrospectively analyzed. The response rate (RR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and cellular immune function were analyzed. The RR, DCR, PFS, and OS of the 19Del group were higher than those of the L858R group; however, there were no statistically significant differences between the groups. χ 2 test results revealed that gender, smoking, and EGFR mutations were associated with DCR. Log-rank analytical results showed that EGFR mutation type was correlated to PFS and OS. Multivariate analysis implied that disease control and mutation type of EGFR were independent prognostic factors of OS. Following TKI treatment, the number of CD3+, CD4+, and NK cells and the CD4+/CD8+ratio increased in both mutation groups; however the results were not statistically significant. There was also no significant difference in the upregulation of immunological function observed, with 46.43% in the 19Del mutation and 45.83% in the L858R mutation group. EGFR 19Del and L858R mutations are good biomarkers for predicting the clinical response of EGFR-TKIs. 19Del mutations may have a better clinical outcome. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
NASA Astrophysics Data System (ADS)
Zeng, Xiao-Wen; Vivian, Elaina; Mohammed, Kahee A.; Jakhar, Shailja; Vaughn, Michael; Huang, Jin; Zelicoff, Alan; Xaverius, Pamela; Bai, Zhipeng; Lin, Shao; Hao, Yuan-Tao; Paul, Gunther; Morawska, Lidia; Wang, Si-Quan; Qian, Zhengmin; Dong, Guang-Hui
2016-08-01
Epidemiological studies have reported inconsistent and inconclusive associations between long-term exposure to ambient air pollution and lung function in children from Europe and America, where air pollution levels were typically low. The aim of the present study is to examine the relationship between air pollutants and lung function in children selected from heavily industrialized and polluted cities in northeastern China. During 2012, 6740 boys and girls aged 7-14 years were recruited in 24 districts of seven northeastern cities. Portable electronic spirometers were used to measure lung function. Four-year average concentrations of particulate matter with an aerodynamic diameter ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) were measured at monitoring stations in the 24 districts. Two-staged regression models were used in the data analysis, controlling for covariates. Overall, for all subjects, the increased odds of lung function impairment associated with exposure to air pollutants, ranged from 5% (adjusted odds ratio [aOR] = 1.05; 95% confidence interval [CI] = 1.01, 1.10) for FVC < 85% predicted per 46.3 μg/m3 for O3 to 81% (aOR = 1.81; 95%CI = 1.44, 2.28) for FEV1 < 85% predicted per 30.6 μg/m3 for PM10. The linear regression models consistently showed a negative relationship between all air pollutants and lung function measures across subjects. There were significant interaction terms indicating gender differences for lung function impairment and pulmonary function from exposure to some pollutants (P < 0.10). In conclusion, long term exposure to high concentrations of ambient air pollution is associated with decreased pulmonary function and lung function impairment, and females appear to be more susceptible than males.
Saito, Ryoko; Miki, Yasuhiro; Ishida, Naoya; Inoue, Chihiro; Kobayashi, Masayuki; Hata, Shuko; Yamada-Okabe, Hisafumi; Okada, Yoshinori; Sasano, Hironobu
2018-02-18
Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance is one of the most important problems in lung cancer therapy. Lung adenocarcinoma with EGFR-TKI resistance was reported to have higher abilities of invasion and migration than cancers sensitive to EGFR-TKI, but the function of matrix metalloproteinases (MMPs) has not been explored in EGFR-TKI-resistant lung adenocarcinoma. This study aims to clarify the significance of MMP-1 in EGFR-TKI-resistant lung adenocarcinoma. From the results of in vitro studies of migration and invasion assays using EGFR-TKI-sensitive and -resistant cell lines and phosphorylation antibody arrays using EGF and rapamycin, we first demonstrate that overexpression of MMP-1, which might follow activation of a mammalian target of rapamycin (mTOR) pathway, plays an important role in the migration and invasion abilities of EGFR-TKI-resistant lung adenocarcinoma. Additionally, immunohistochemical studies using 89 cases of lung adenocarcinoma demonstrate that high expression of MMP-1 is significantly correlated with poor prognosis and factors such as smoking history and the subtype of invasive mucinous adenocarcinoma. These are consistent with the results of this in vitro study. To conclude, this study provides insights into the development of a possible alternative therapy manipulating MMP-1 and the mTOR signaling pathway in EGFR-TKI-resistant lung adenocarcinoma.
Prx I Suppresses K-ras-Driven Lung Tumorigenesis by Opposing Redox-Sensitive ERK/Cyclin D1 Pathway
Park, Young-Ho; Kim, Sun-Uk; Lee, Bo-Kyoung; Kim, Hyun-Sun; Song, In-Sung; Shin, Hye-Jun; Han, Ying-Hao; Chang, Kyu-Tae; Kim, Jin-Man; Lee, Dong-Seok; Kim, Yeul-Hong; Choi, Chang-Min; Kim, Bo-Yeon
2013-01-01
Abstract Aims: Coupled responses of mutated K-ras and oxidative stress are often an important etiological factor in non–small-cell lung cancer (NSCLC). However, relatively few studies have examined the control mechanism of oxidative stress in oncogenic K-ras-driven NSCLC progression. Here, we studied whether the redox signaling pathway governed by peroxiredoxin I (Prx I) is involved in K-rasG12D-mediated lung adenocarcinogenesis. Results: Using human-lung adenocarcinoma tissues and lung-specific K-rasG12D-transgenic mice, we found that Prx I was significantly up-regulated in the tumor regions via activation of nuclear erythroid 2-related factor 2 (Nrf2) transcription. Interestingly, the increased reactive oxygen species (ROS) by null mutation of Prx I greatly promoted K-rasG12D-driven lung tumorigenesis in number and size, which appeared to require the activation of the ROS-dependent extracellular signal-regulated kinase (ERK)/cyclin D1 pathway. Innovation: Taken together, these results suggest that Prx I functions as an Nrf2-dependently inducible tumor suppressant in K-ras-driven lung adenocarcinogenesis by opposing ROS/ERK/cyclin D1 pathway activation. Conclusion: These findings provide a better understanding of oxidative stress-mediated lung tumorigenesis. Antioxid. Redox Signal. 19, 482–496. PMID:23186333
Cheng, Hang; Jin, Chengyan; Wu, Jing; Zhu, Shan; Liu, Yong-Jun; Chen, Jingtao
2017-12-01
The lung is an important open organ and the primary site of respiration. Many life-threatening diseases develop in the lung, e.g., pneumonia, asthma, chronic obstructive pulmonary diseases (COPDs), pulmonary fibrosis, and lung cancer. In the lung, innate immunity serves as the frontline in both anti-irritant response and anti-tumor defense and is also critical for mucosal homeostasis; thus, it plays an important role in containing these pulmonary diseases. Innate lymphoid cells (ILCs), characterized by their strict tissue residence and distinct function in the mucosa, are attracting increased attention in innate immunity. Upon sensing the danger signals from damaged epithelium, ILCs activate, proliferate, and release numerous cytokines with specific local functions; they also participate in mucosal immune-surveillance, immune-regulation, and homeostasis. However, when their functions become uncontrolled, ILCs can enhance pathological states and induce diseases. In this review, we discuss the physiological and pathological functions of ILC subsets 1 to 3 in the lung, and how the pathogenic environment affects the function and plasticity of ILCs.
Involvement of MicroRNAs in Lung Cancer Biology and Therapy
Liu, Xi; Sempere, Lorenzo F.; Guo, Yongli; Korc, Murray; Kauppinen, Sakari; Freemantle, Sarah J.; Dmitrovsky, Ethan
2011-01-01
MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. Expression profiles of specific miRNAs have improved cancer diagnosis and classification and even provided prognostic information in many human cancers, including lung cancer. Tumor suppressive and oncogenic miRNAs were uncovered in lung carcinogenesis. The biological functions of these miRNAs in lung cancer were recently validated in well characterized cellular, murine transgenic as well as transplantable lung cancer models and in human paired normal-malignant lung tissue banks and tissue arrays. Tumor suppressive and oncogenic miRNAs that were identified in lung cancer will be reviewed here. Emphasis is placed on highlighting those functionally validated miRNAs that are not only biomarkers of lung carcinogenesis, but also candidate pharmacologic targets. How these miRNA findings advance an understanding of lung cancer biology and could improve lung cancer therapy are discussed in this article. PMID:21420030
Kanwal, Richard; Kullman, Greg; Fedan, Kathleen B; Kreiss, Kathleen
2011-01-01
After an outbreak of severe lung disease among workers exposed to butter-flavoring chemicals at a microwave popcorn plant, we determined whether or not lung disease risk declined after implementation of exposure controls. National Institute for Occupational Safety and Health staff performed eight serial cross-sectional medical and industrial hygiene surveys at the plant from November 2000 through August 2003. Medical surveys included standardized questionnaires and spirometry testing. Industrial hygiene surveys measured levels of production-related air contaminants, including butter-flavoring chemicals such as diacetyl. All diacetyl concentrations above detectable limits were corrected for the effects of absolute humidity and days to sample extraction. Ventilation and isolation of the production process resulted in one to three orders of magnitude reductions in diacetyl air concentrations in different areas of the plant. Workers with past high exposures had stable chest symptoms over time; nasal, eye, and skin irritation symptoms declined. New workers had lower symptom prevalences and higher lung function than workers with past high exposures, and they did not worsen over time. In workers who had at least three spirometry tests, those with past high exposures were more likely to experience rapid declines in lung function than new workers. Implemented controls lowered exposures to butter-flavoring chemicals and decreased lung disease risk for much of the plant workforce. Some workers with continuing potential for intermittent, short-term peak and measurable time-weighted exposures remain at risk and should use respiratory protection and have regularly scheduled spirometry to detect rapid lung function declines that may be work-related. Close follow-up of such workers is likely to yield additional information on risks due to peak and time-weighted exposure levels.
Radon Exposure, IL-6 Promoter Variants, and Lung Squamous Cell Carcinoma in Former Uranium Miners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Shuguang; Thomas, Cynthia L.; Snider, Amanda M.
Background: High radon exposure is a risk factor for squamous cell carcinoma, a major lung cancer histology observed in former uranium miners. Radon exposure can cause oxidative stress, leading to pulmonary inflammation. Interleukin-6 (IL-6) is a pro-carcinogenic inflammatory cytokine that plays a pivotal role in lung cancer development. Objectives: We assessed whether single nucleotide polymorphisms (SNPs) in the IL6 promoter are associated with lung cancer in former uranium miners with high occupational exposure to radon gas. Methods: Genetic associations were assessed in a case–control study of former uranium miners (242 cases and 336 controls). A replication study was performed usingmore » data from the Gene Environment Association Studies (GENEVA) Genome Wide Association Study (GWAS) of Lung Cancer and Smoking. Functional relevance of the SNPs was characterized using in vitro approaches. Results: We found that rs1800797 was associated with squamous cell carcinoma in miners and with a shorter time between the midpoint of the period of substantial exposure and diagnosis among the cases. Furthermore, rs1800797 was also associated with lung cancer among never smokers in the GENEVA dataset. Functional studies identified that the risk allele was associated with increased basal IL-6 mRNA level and greater promoter activity. Furthermore, fibroblasts with the risk allele showed greater induction of IL-6 secretion by hydrogen peroxide or benzo[a]pyrene diolepoxide treatments. Conclusions: An IL6 promoter variant was associated with lung cancer in uranium miners and never smokers in two external study populations. Lastly, the associations are strongly supported by the functional relevance that the IL6 promoter SNP affects basal expression and carcinogen-induced IL-6 secretion« less
Kocher, Gregor J; Mauss, Karl; Carboni, Giovanni L; Hoksch, Beatrix; Kuster, Roland; Ott, Sebastian R; Schmid, Ralph A
2013-12-01
The issue of phrenic nerve preservation during pneumonectomy is still an unanswered question. So far, its direct effect on immediate postoperative pulmonary lung function has never been evaluated in a prospective trial. We conducted a prospective crossover study including 10 patients undergoing pneumonectomy for lung cancer between July 2011 and July 2012. After written informed consent, all consecutive patients who agreed to take part in the study and in whom preservation of the phrenic nerve during operation was possible, were included in the study. Upon completion of lung resection, a catheter was placed in the proximal paraphrenic tissue on the pericardial surface. After an initial phase of recovery of 5 days all patients underwent ultrasonographic assessment of diaphragmatic motion followed by lung function testing with and without induced phrenic nerve palsy. The controlled, temporary paralysis of the ipsilateral hemidiaphragm was achieved by local administration of lidocaine 1% at a rate of 3 mL/h (30 mg/h) via the above-mentioned catheter. Temporary phrenic nerve palsy was accomplished in all but 1 patient with suspected catheter dislocation. Spirometry showed a significant decrease in dynamic lung volumes (forced expiratory volume in 1 second and forced vital capacity; p < 0.05) with the paralyzed hemidiaphragm. Blood oxygen saturation levels did not change significantly. Our results show that phrenic nerve palsy causes a significant impairment of dynamic lung volumes during the early postoperative period after pneumonectomy. Therefore, in these already compromised patients, intraoperative phrenic nerve injury should be avoided whenever possible. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Smolich, Joseph J
2014-02-15
Although a reduction in lung liquid volume increases fetal pulmonary blood flow, the changes in central flow patterns that sustain this increased pulmonary perfusion are unknown. To address this issue, eight anesthetized late-gestation fetal sheep were instrumented with pulmonary trunk (PT), ductus arteriosus (DA), and left pulmonary artery (PA) micromanometer catheters and transit-time flow probes, with blood flow profile and wave intensity analyses performed at baseline and after withdrawal of lung liquid via an endotracheal tube. Reducing lung liquid volume by 19 ± 6 ml/kg (mean ± SD) augmented right ventricular power by 34% (P < 0.001), with distribution of an accompanying increase in mean PT blood flow (245 ± 63 ml/min, P < 0.001) to the lungs (169 ± 91 ml/min, P = 0.001) and across the DA (77 ± 92 ml/min, P = 0.04). However, although PT and DA flow increments were confined to systole and were related to an increased magnitude of flow-increasing, forward-running compression waves, the rise in PA flow spanned both systole (108 ± 66 ml/min) and diastole (61 ± 32 ml/min). Flow profile analysis showed that the step-up in PA diastolic flow was associated with diminished PA diastolic backflow and accompanied by a lesser degree of diastolic right-to-left DA shunting. These data suggest that an increased pulmonary blood flow after reduction of lung liquid volume is associated with substantial changes in PT-DA-PA interactions and underpinned by two main factors: 1) enhanced right ventricular pump function that increases PA systolic inflow and 2) decreased PA diastolic backflow that arises from a fundamental change in PA reservoir function, thereby resulting in greater passage of systolic inflow through the lungs.
Radon Exposure, IL-6 Promoter Variants, and Lung Squamous Cell Carcinoma in Former Uranium Miners
Leng, Shuguang; Thomas, Cynthia L.; Snider, Amanda M.; ...
2015-09-15
Background: High radon exposure is a risk factor for squamous cell carcinoma, a major lung cancer histology observed in former uranium miners. Radon exposure can cause oxidative stress, leading to pulmonary inflammation. Interleukin-6 (IL-6) is a pro-carcinogenic inflammatory cytokine that plays a pivotal role in lung cancer development. Objectives: We assessed whether single nucleotide polymorphisms (SNPs) in the IL6 promoter are associated with lung cancer in former uranium miners with high occupational exposure to radon gas. Methods: Genetic associations were assessed in a case–control study of former uranium miners (242 cases and 336 controls). A replication study was performed usingmore » data from the Gene Environment Association Studies (GENEVA) Genome Wide Association Study (GWAS) of Lung Cancer and Smoking. Functional relevance of the SNPs was characterized using in vitro approaches. Results: We found that rs1800797 was associated with squamous cell carcinoma in miners and with a shorter time between the midpoint of the period of substantial exposure and diagnosis among the cases. Furthermore, rs1800797 was also associated with lung cancer among never smokers in the GENEVA dataset. Functional studies identified that the risk allele was associated with increased basal IL-6 mRNA level and greater promoter activity. Furthermore, fibroblasts with the risk allele showed greater induction of IL-6 secretion by hydrogen peroxide or benzo[a]pyrene diolepoxide treatments. Conclusions: An IL6 promoter variant was associated with lung cancer in uranium miners and never smokers in two external study populations. Lastly, the associations are strongly supported by the functional relevance that the IL6 promoter SNP affects basal expression and carcinogen-induced IL-6 secretion« less
NASA Astrophysics Data System (ADS)
Kawata, Y.; Niki, N.; Ohmatsu, H.; Aokage, K.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.
2015-03-01
Advantages of CT scanners with high resolution have allowed the improved detection of lung cancers. In the recent release of positive results from the National Lung Screening Trial (NLST) in the US showing that CT screening does in fact have a positive impact on the reduction of lung cancer related mortality. While this study does show the efficacy of CT based screening, physicians often face the problems of deciding appropriate management strategies for maximizing patient survival and for preserving lung function. Several key manifold-learning approaches efficiently reveal intrinsic low-dimensional structures latent in high-dimensional data spaces. This study was performed to investigate whether the dimensionality reduction can identify embedded structures from the CT histogram feature of non-small-cell lung cancer (NSCLC) space to improve the performance in predicting the likelihood of RFS for patients with NSCLC.
Early respiratory infection is associated with reduced spirometry in children with cystic fibrosis.
Ramsey, Kathryn A; Ranganathan, Sarath; Park, Judy; Skoric, Billy; Adams, Anne-Marie; Simpson, Shannon J; Robins-Browne, Roy M; Franklin, Peter J; de Klerk, Nick H; Sly, Peter D; Stick, Steve M; Hall, Graham L
2014-11-15
Pulmonary inflammation, infection, and structural lung disease occur early in life in children with cystic fibrosis. We hypothesized that the presence of these markers of cystic fibrosis lung disease in the first 2 years of life would be associated with reduced lung function in childhood. Lung function (forced expiratory volume in the first three-quarters of a second [FEV0.75], FVC) was assessed in individuals with cystic fibrosis diagnosed after newborn screening and healthy subjects during infancy (0-2 yr) and again at early school age (4-8 yr). Individuals with cystic fibrosis underwent annual bronchoalveolar lavage fluid examination, and chest computed tomography. We examined which clinical outcomes (pulmonary inflammation, infection, structural lung disease, respiratory hospitalizations, antibiotic prophylaxis) measured in the first 2 years of life were associated with reduced lung function in infants and young children with cystic fibrosis, using a mixed effects model. Children with cystic fibrosis (n = 56) had 8.3% (95% confidence interval [CI], -15.9 to -6.6; P = 0.04) lower FEV0.75 compared with healthy subjects (n = 18). Detection of proinflammatory bacterial pathogens (Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, Aspergillus species, Streptococcus pneumoniae) in bronchoalveolar lavage fluid was associated with clinically significant reductions in FEV0.75 (ranging between 11.3 and 15.6%). The onset of lung disease in infancy, specifically the occurrence of lower respiratory tract infection, is associated with low lung function in young children with cystic fibrosis. Deficits in lung function measured in infancy persist into childhood, emphasizing the need for targeted therapeutic interventions in infancy to maximize functional outcomes later in life.
The pulmonary neuroendocrine system and drainage of the fetal lung: effects of serotonin.
Chua, B A; Perks, A M
1999-03-01
The neuroendocrine system of the lungs is maximally developed and activated at birth, but has no clear function. Here, one of its products, serotonin, was tested for an ability to stop lung fluid production or activate reabsorption. Lungs from fetal guinea pigs (61 +/- 2 days of gestation) were supported in vitro for 3 h; lung liquid production was monitored by a dye dilution method. Initial studies on 36 young fetuses (61 +/- 1 days of gestation) showed that untreated controls produced fluid at 1.17 +/- 0.23 ml.kg-1.h-1, with no significant change over 3 h (ANOVA; regression analysis); those given 10(-8) M serotonin during the middle hour showed no significant changes, but those given 5 x 10(-8), 10(-7), 10(-6), or 10(-5) M serotonin reduced production significantly (P < 0.01 to P < 0.0005). Responses were linear up to 10(-7) M (threshold, 10(-9) M) and then become maximal at 50% reduction. However, responses increased with age. Comparison of 40 fetuses divided into groups of 60-61 or 65-67 days of gestation showed a large and significant increase in responses in the older fetuses (P < 0.01), where half the preparations reabsorbed fluid. Serotonin receptors were involved, since 10(-6) M cyproheptadine abolished responses (based on 24 preparations). Amiloride-sensitive Na+ channels were involved, since 10(-6) M amiloride abolished responses (based on 24 preparations). These results, in combination with earlier results from somatostatin and dopamine, together with histochemical and clinical observations, strongly suggest that the neuroendocrine system of the lungs may find a function in clearing fluid from the lungs at time of birth. Copyright 1999 Academic Press.
Virji, M. Abbas; Trapnell, Bruce C.; Carey, Brenna; Healey, Terrance; Kreiss, Kathleen
2014-01-01
Rationale: Occupational exposure to indium compounds, including indium–tin oxide, can result in potentially fatal indium lung disease. However, the early effects of exposure on the lungs are not well understood. Objectives: To determine the relationship between short-term occupational exposures to indium compounds and the development of early lung abnormalities. Methods: Among indium–tin oxide production and reclamation facility workers, we measured plasma indium, respiratory symptoms, pulmonary function, chest computed tomography, and serum biomarkers of lung disease. Relationships between plasma indium concentration and health outcome variables were evaluated using restricted cubic spline and linear regression models. Measurements and Main Results: Eighty-seven (93%) of 94 indium–tin oxide facility workers (median tenure, 2 yr; median plasma indium, 1.0 μg/l) participated in the study. Spirometric abnormalities were not increased compared with the general population, and few subjects had radiographic evidence of alveolar proteinosis (n = 0), fibrosis (n = 2), or emphysema (n = 4). However, in internal comparisons, participants with plasma indium concentrations ≥ 1.0 μg/l had more dyspnea, lower mean FEV1 and FVC, and higher median serum Krebs von den Lungen-6 and surfactant protein-D levels. Spline regression demonstrated nonlinear exposure response, with significant differences occurring at plasma indium concentrations as low as 1.0 μg/l compared with the reference. Associations between health outcomes and the natural log of plasma indium concentration were evident in linear regression models. Associations were not explained by age, smoking status, facility tenure, or prior occupational exposures. Conclusions: In indium–tin oxide facility workers with short-term, low-level exposure, plasma indium concentrations lower than previously reported were associated with lung symptoms, decreased spirometric parameters, and increased serum biomarkers of lung disease. PMID:25295756
H2O2 sensors of lungs and blood vessels and their role in the antioxidant defense of the body.
Skulachev, V P
2001-10-01
This paper considers the composition and function of sensory systems monitoring H2O2 level by the lung neuroepithelial cells and carotid bodies. These systems are localized in the plasma membrane of the corresponding cells and are composed of (O2*-)-generating NADPH-oxidase and an H2O2-activated K+ channel. This complex structure of the H2O2 sensors is probably due to their function in antioxidant defense. By means of these sensors, an increase in the H2O2 level in lung or blood results in a decrease in lung ventilation and constriction of blood vessels. This action lowers the O2 flux to the tissues and, hence, intracellular [O2]. The [O2] decrease, in turn, inhibits intracellular generation of reactive oxygen species. The possible roles of such systems under normal conditions (e.g., the effect of O2*- in air) and in some pathologies (e.g., pneumonia) is discussed.
Effect of hyperinflation on inspiratory function of the diaphragm.
Minh, V D; Dolan, G F; Konopka, R F; Moser, K M
1976-01-01
The inspiratory efficiency of the diaphragm during unilateral and bilateral phrenic stimulation (UEPS and BEPS) with constant stimulus was studied in seven dogs from FRC to 120% TLC. Alveolar pressures (PAl) were recorded during relaxation, BEPS and UEPS at each lung volume in the closed respiratory system. From the PAl-lung volume curves, tidal volume (VT), and pressure developed by the diaphragm (Pmus) were derived. Results are summarized below. a) Hyperinflation impaired the inspiratory efficiency of the diaphragm which behaved as an expiratory muscle beyond the lung volume of 103.7% TLC (Vinef). b) The diaphragm during UEPS became expiratory at the same Vinef as during (BEPS. C) The VT-lung volume relationship was linear during BEPS, allowing simple quantitation of VT loss with hyperinflation and prediction of Vinef. d) With only one phrenic nerve stimulated, the functional loss is less pronounced in VT than in Pmus, as compared to BEPS, indicating that the respiratory system was more compliant during UEPS than BEPS. This compliance difference from UEPS to BEPS diminished with severe hyperinflation.
Quist, Morten; Langer, Seppo W; Rørth, Mikael; Christensen, Karl Bang; Adamsen, Lis
2013-10-14
Lung cancer is the leading cause of cancer death in North America and Western Europe. Patients with lung cancer in general have reduced physical capacity, functional capacity, poor quality of life and increased levels of anxiety and depression. Intervention studies indicate that physical training can address these issues. However, there is a lack of decisive evidence regarding the effect of physical exercise in patients with advanced lung cancer. The aim of this study is to evaluate the effects of a twelve weeks, twice weekly program consisting of: supervised, structured training in a group of advanced lung cancer patients (cardiovascular and strength training, relaxation). A randomized controlled trial will test the effects of the exercise intervention in 216 patients with advanced lung cancer (non-small cell lung cancer (NSCLC) stage IIIb-IV and small cell lung cancer (SCLC) extensive disease (ED)). Primary outcome is maximal oxygen uptake (VO₂peak). Secondary outcomes are muscle strength (1RM), functional capacity (6MWD), lung capacity (Fev1) and patient reported outcome (including anxiety, depression (HADS) and quality of life (HRQOL)). The present randomized controlled study will provide data on the effectiveness of a supervised exercise intervention in patients receiving systemic therapy for advanced lung cancer. It is hoped that the intervention can improve physical capacity and functional level, during rehabilitation of cancer patients with complex symptom burden and help them to maintain independent function for as long as possible. http://ClinicalTrials.gov, NCT01881906.
Zeng, Xiang; Xu, Xijin; Boezen, H Marike; Vonk, Judith M; Wu, Weidong; Huo, Xia
2017-11-01
Blood lead (Pb) and cadmium (Cd) levels have been associated with lower lung function in adults and smokers, but whether this also holds for children from electronic waste (e-waste) recycling areas is still unknown. To investigate the contribution of blood heavy metals and lung function levels, and the relationship among living area, the blood parameter levels, and the lung function levels, a total of 206 preschool children from Guiyu (exposed area), and Haojiang and Xiashan (reference areas) were recruited and required to undergo blood tests and lung function tests during the study period. Preschool children living in e-waste exposed areas were found to have a 1.37 μg/dL increase in blood Pb, 1.18 μg/L increase in blood Cd, and a 41.00 × 10 9 /L increase in platelet counts, while having a 2.82 g/L decrease in hemoglobin, 92 mL decrease in FVC and 86 mL decrease in FEV 1 . Each unit of hemoglobin (1 g/L) decline was associated with 5 mL decrease in FVC and 4 mL decrease in FEV 1 . We conclude that children living in e-waste exposed area have higher levels of blood Pb, Cd and platelets, and lower levels of hemoglobin and lung function. Hemoglobin can be a good predictor for lung function levels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Benmerad, Meriem; Slama, Rémy; Botturi, Karine; Claustre, Johanna; Roux, Antoine; Sage, Edouard; Reynaud-Gaubert, Martine; Gomez, Carine; Kessler, Romain; Brugière, Olivier; Mornex, Jean-François; Mussot, Sacha; Dahan, Marcel; Boussaud, Véronique; Danner-Boucher, Isabelle; Dromer, Claire; Knoop, Christiane; Auffray, Annick; Lepeule, Johanna; Malherbe, Laure; Meleux, Frederik; Nicod, Laurent; Magnan, Antoine; Pison, Christophe; Siroux, Valérie
2017-01-01
An irreversible loss in lung function limits the long-term success in lung transplantation. We evaluated the role of chronic exposure to ambient air pollution on lung function levels in lung transplant recipients (LTRs).The lung function of 520 LTRs from the Cohort in Lung Transplantation (COLT) study was measured every 6 months. The levels of air pollutants (nitrogen dioxide (NO 2 ), particulate matter with an aerodynamic cut-off diameter of x µm (PM x ) and ozone (O 3 )) at the patients' home address were averaged in the 12 months before each spirometry test. The effects of air pollutants on forced expiratory volume in 1 s (FEV 1 ) and forced vital capacity (FVC) in % predicted were estimated using mixed linear regressions. We assessed the effect modification of macrolide antibiotics in this relationship.Increased 12-month levels of pollutants were associated with lower levels of FVC % pred (-2.56%, 95% CI -3.86--1.25 for 5 µg·m -3 of PM 10 ; -0.75%, 95% CI -1.38--0.12 for 2 µg·m -3 of PM 2.5 and -2.58%, 95% CI -4.63--0.53 for 10 µg·m -3 of NO 2 ). In patients not taking macrolides, the deleterious association between PM and FVC tended to be stronger and PM 10 was associated with lower FEV 1 Our study suggests a deleterious effect of chronic exposure to air pollutants on lung function levels in LTRs, which might be modified with macrolides. Copyright ©ERS 2017.
Clinical and Radiographic Predictors of GOLD–Unclassified Smokers in the COPDGene Study
Hokanson, John E.; Murphy, James R.; Regan, Elizabeth A.; Make, Barry J.; Lynch, David A.; Crapo, James D.; Silverman, Edwin K.
2011-01-01
Rationale: A significant proportion of smokers have lung function impairment characterized by a reduced FEV1 with a preserved FEV1/FVC ratio. These smokers are a poorly characterized group due to their systematic exclusion from chronic obstructive pulmonary disease (COPD) studies. Objectives: To characterize the clinical, functional, and radiographic features of Global Initiative for Chronic Obstructive Lung Disease (GOLD)-Unclassified (FEV1/FVC ≥ 0.7 and FEV1 < 80% predicted) and lower limits of normal (LLN)-unclassified (FEV1/FVC ≥ LLN and FEV1 < LLN) subjects compared to smokers with normal lung function and subjects with COPD. Methods: Data from the first 2,500 subjects enrolled in the COPDGene study were analyzed. All subjects had 10 or more pack-years of smoking and were between the ages of 45 and 80 years. Multivariate regression models were constructed to determine the clinical and radiological variables associated with GOLD-Unclassified (GOLD-U) and LLN-Unclassified status. Separate multivariate regressions were performed in the subgroups of subjects with complete radiologic measurement variables available. Measurements and Main Results: GOLD-U smokers account for 9% of smokers in COPDGene and have increased body mass index (BMI), a disproportionately reduced total lung capacity, and a higher proportion of nonwhite subjects and subjects with diabetes. GOLD-U subjects exhibit increased airway wall thickness compared to smoking control subjects and decreased gas trapping and bronchodilator responsiveness compared to subjects with COPD. When LLN criteria were used to define the “unclassified” group, African American subjects were no longer overrepresented. Both GOLD-U and LLN-Unclassified subjects demonstrated a wide range of lung function impairment, BMI, and percentage of total lung emphysema. Conclusions: Subjects with reduced FEV1 and a preserved FEV1/FVC ratio are a heterogeneous group with significant symptoms and functional limitation who likely have a variety of underlying etiologies beyond increased BMI. Clinical trial registered with www.clinicaltrials.gov (NCT000608764). PMID:21493737
Waidyatillake, N T; Stoney, R; Thien, F; Lodge, C J; Simpson, J A; Allen, K J; Abramson, M J; Erbas, B; Svanes, C; Dharmage, S C; Lowe, A J
2017-08-01
It has been hypothesized that n-3 PUFA in breast milk may assist immune and lung development. There are very limited data on possible long-term effects on allergic disease and lung function. The aim was to investigate associations of n-3 and n-6 PUFA levels in colostrum and breast milk with allergic disease and lung function at ages 12 and 18 years. Polyunsaturated fatty acids were measured in 194 colostrum samples and in 118 three-month expressed breast milk samples from mothers of children enrolled in the Melbourne Atopy Cohort (MACS) Study, a high-risk birth cohort study. Associations with allergic diseases, skin prick tests and lung function assessed at 12 and 18 years were estimated using multivariable regression. Higher levels of n-3 but not n-6 PUFAs in colostrum were associated with a trend towards increased odds of allergic diseases, with strong associations observed for allergic rhinitis at 12 (OR = 5.69[95% CI: 1.83,17.60] per weight%) and 18 years (4.43[1.46,13.39]) and eczema at 18 years (9.89[1.44, 68.49]). Higher levels of colostrum n-3 PUFAs were associated with reduced sensitization (3.37[1.18, 9.6]), mean FEV 1 (-166 ml [-332, -1]) and FEV 1 /FVC ratio (-4.6%, [-8.1, -1.1]) at 12 years. Higher levels of colostrum n-3 PUFAs were associated with increased risks of allergic rhinitis and eczema up to 18 years, and sensitization and reduced lung function at 12 years. As residual confounding may have caused these associations, they should be replicated, but these results could indicate that strategies that increase maternal n-3 PUFA intake may not aid in allergic disease prevention. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Metabolic Syndrome Biomarkers Predict Lung Function Impairment
Naveed, Bushra; Weiden, Michael D.; Kwon, Sophia; Gracely, Edward J.; Comfort, Ashley L.; Ferrier, Natalia; Kasturiarachchi, Kusali J.; Cohen, Hillel W.; Aldrich, Thomas K.; Rom, William N.; Kelly, Kerry; Prezant, David J.
2012-01-01
Rationale: Cross-sectional studies demonstrate an association between metabolic syndrome and impaired lung function. Objectives: To define if metabolic syndrome biomarkers are risk factors for loss of lung function after irritant exposure. Methods: A nested case-control study of Fire Department of New York personnel with normal pre–September 11th FEV1 and who presented for subspecialty pulmonary evaluation before March 10, 2008. We correlated metabolic syndrome biomarkers obtained within 6 months of World Trade Center dust exposure with subsequent FEV1. FEV1 at subspecialty pulmonary evaluation within 6.5 years defined disease status; cases had FEV1 less than lower limit of normal, whereas control subjects had FEV1 greater than or equal to lower limit of normal. Measurements and Main Results: Clinical data and serum sampled at the first monitoring examination within 6 months of September 11, 2001, assessed body mass index, heart rate, serum glucose, triglycerides and high-density lipoprotein (HDL), leptin, pancreatic polypeptide, and amylin. Cases and control subjects had significant differences in HDL less than 40 mg/dl with triglycerides greater than or equal to 150 mg/dl, heart rate greater than or equal to 66 bpm, and leptin greater than or equal to 10,300 pg/ml. Each increased the odds of abnormal FEV1 at pulmonary evaluation by more than twofold, whereas amylin greater than or equal to 116 pg/ml decreased the odds by 84%, in a multibiomarker model adjusting for age, race, body mass index, and World Trade Center arrival time. This model had a sensitivity of 41%, a specificity of 86%, and a receiver operating characteristic area under the curve of 0.77. Conclusions: Abnormal triglycerides and HDL and elevated heart rate and leptin are independent risk factors of greater susceptibility to lung function impairment after September 11, 2001, whereas elevated amylin is protective. Metabolic biomarkers are predictors of lung disease, and may be useful for assessing risk of impaired lung function in response to particulate inhalation. PMID:22095549
Hwang, Jae-Woong; Sundar, Isaac K.; Yao, Hongwei; Sellix, Michael T.; Rahman, Irfan
2014-01-01
Patients with obstructive lung diseases display abnormal circadian rhythms in lung function. We determined the mechanism whereby environmental tobacco/cigarette smoke (CS) modulates expression of the core clock gene BMAL1, through Sirtuin1 (SIRT1) deacetylase during lung inflammatory and injurious responses. Adult C57BL6/J and various mice mutant for SIRT1 and BMAL1 were exposed to both chronic (6 mo) and acute (3 and 10 d) CS, and we measured the rhythmic expression of clock genes, circadian rhythms of locomotor activity, lung function, and inflammatory and emphysematous responses in the lungs. CS exposure (100–300 mg/m3 particulates) altered clock gene expression and reduced locomotor activity by disrupting the central and peripheral clocks and increased lung inflammation, causing emphysema in mice. BMAL1 was acetylated and degraded in the lungs of mice exposed to CS and in patients with chronic obstructive pulmonary disease (COPD), compared with lungs of the nonsmoking controls, linking it mechanistically to CS-induced reduction of SIRT1. Targeted deletion of Bmal1 in lung epithelium augmented inflammation in response to CS, which was not attenuated by the selective SIRT1 activator SRT1720 (EC50=0.16 μM) in these mice. Thus, the circadian clock, specifically the enhancer BMAL1 in epithelium, plays a pivotal role, mediated by SIRT1-dependent BMAL1, in the regulation of CS-induced lung inflammatory and injurious responses.— Hwang, J.-W., Sundar, I. K., Yao, H., Sellix, M. T., Rahman, I. Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. PMID:24025728
Lung transplantation in children. Specific aspects.
Moreno Galdó, Antonio; Solé Montserrat, Juan; Roman Broto, Antonio
2013-12-01
Lung transplantation has become in recent years a therapeutic option for infantswith terminal lung disease with similar results to transplantation in adults.In Spain, since 1996 114 children lung transplants have been performed; this corresponds to3.9% of the total transplant number.The most common indication in children is cystic fibrosis, which represents between 70-80% of the transplants performed in adolescents. In infants common indications areinterstitial lung disease and pulmonary hypertension.In most children a sequential double lung transplant is performed, generally with the help ofextracorporeal circulation. Lung transplantation in children presents special challenges in monitoring and follow-up, especially in infants, given the difficulty in assessing lung function and performing transbronchial biopsies.There are some more specific complications in children like postransplant lymphoproliferative syndrome or a greater severity of respiratory virus infections .After lung transplantation children usually experiment a very important improvement in their quality of life. Eighty eight per cent of children have no limitations in their activity after 3 years of transplantation.According to the registry of the International Society for Heart & Lung Transplantation (ISHLT) survival at 5 years of transplantation is 54% and at 10 years is around 35%. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.
Sage, Edouard; Mussot, Sacha; Trebbia, Grégoire; Puyo, Philippe; Stern, Marc; Dartevelle, Philippe; Chapelier, Alain; Fischler, Marc
2014-11-01
Only 15% of brain death donors are considered suitable for lung transplantation (LTx). The normothermic ex vivo lung perfusion technique is used to potentially increase the availability of high-risk lung donors. We report our experience of LTx with initially rejected donors after ex vivo lung reconditioning (EVLR). From April 2011 to May 2013, we performed EVLR for 32 pairs of donor lungs deemed unsuitable for transplantation and rejected by the 11 French lung transplant teams. After EVLR, lungs with acceptable function were transplanted. During the same period, 81 double-lung transplantations (DLTx) were used as controls. During EVLR, 31 of 32 donor lungs recovered physiological function with a median PO2/FiO2 ratio increasing from 274 (range 162-404) mmHg to 511 (378-668) mmHg at the end of EVLR (P < 0.0001). Thirty-one DLTx were performed. The incidence of primary graft dysfunction 72 h after LTx was 9.5% in the EVLR group and 8.5% in the control group (P = 1). The median time of extubation, intensive care unit and hospital lengths of stay were 1, 9 and 37 days in the EVLR group and 1 (P = 0.17), 6 (P = 0.06) and 28 days (P = 0.09) in the control group, respectively. Thirty-day mortality rates were 3.3% (n = 1) in the EVLR group and 3.7% (n = 3) in the control group (P = 0.69). One-year survival rates were 93% in the EVLR group and 91% in the control group. EVLR is a reliable and repeatable technique that offers a significant increase of available donors. The results of LTx with EVLR lungs are similar to those obtained with conventional donors. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
NASA Astrophysics Data System (ADS)
Yablonskiy, Dmitriy A.; Sukstanskii, Alexander L.; Leawoods, Jason C.; Gierada, David S.; Bretthorst, G. Larry; Lefrak, Stephen S.; Cooper, Joel D.; Conradi, Mark S.
2002-03-01
The study of lung emphysema dates back to the beginning of the 17th century. Nevertheless, a number of important questions remain unanswered because a quantitative localized characterization of emphysema requires knowledge of lung structure at the alveolar level in the intact living lung. This information is not available from traditional imaging modalities and pulmonary function tests. Herein, we report the first in vivo measurements of lung geometrical parameters at the alveolar level obtained with 3He diffusion MRI in healthy human subjects and patients with severe emphysema. We also provide the first experimental data demonstrating that 3He gas diffusivity in the acinus of human lung is highly anisotropic. A theory of anisotropic diffusion is presented. Our results clearly demonstrate substantial differences between healthy and emphysematous lung at the acinar level and may provide new insights into emphysema progression. The technique offers promise as a clinical tool for early diagnosis of emphysema.
Shan, Changting; Fei, Fan; Li, Fengzhu; Zhuang, Bo; Zheng, Yulong; Wan, Yufeng; Chen, Jianhui
2017-05-01
MicroRNA-448 (miR-448) has been showed to be low-expressed and function as tumor suppressor in most human cancers. However, there are limited reports on the clinical significance and biological function of miR-448 in lung squamous cell carcinoma. In this study, we observed that miR-448 expression was decreased in lung squamous cell carcinoma tissues and cell lines. Meanwhile, miR-448 expression associated with differentiated degree, T classification (tumor size), N classification (lymph node metastasis), M classification (distant metastasis), clinical stage and prognosis of lung squamous cell carcinoma patients. In survival analysis, low expression of miR-448 was a poor independent prognostic factor for lung squamous cell carcinoma patients. Moreover, gain-of-function and loss-of-function studies showed miR-448 acted as a tumor suppressor regulating lung squamous cell carcinoma cells growth and metastasis. Furthermore, DCLK1 has been identified as a potential target for miR-448 to regulate lung squamous cell carcinoma cells growth and metastasis. In conclusion, miR-448 low-expression was a poor prognostic factor for lung squamous cell carcinoma patients, and miR-448 served as a tumor suppressor in lung squamous cell carcinoma cells via targeting DCLK1. Copyright © 2017. Published by Elsevier Masson SAS.
Regeneration of the lung: Lung stem cells and the development of lung mimicking devices.
Schilders, Kim A A; Eenjes, Evelien; van Riet, Sander; Poot, André A; Stamatialis, Dimitrios; Truckenmüller, Roman; Hiemstra, Pieter S; Rottier, Robbert J
2016-04-23
Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients.
Relation between lung function, exercise capacity, and exposure to asbestos cement.
Wollmer, P; Eriksson, L; Jonson, B; Jakobsson, K; Albin, M; Skerfving, S; Welinder, H
1987-01-01
A group of 137 male workers with known exposure (mean 20 fibre years per millilitre) to asbestos cement who had symptoms or signs of pulmonary disease was studied together with a reference group of 49 healthy industrial workers with no exposure to asbestos. Lung function measurements were made at rest and during exercise. Evidence of lung fibrosis was found as well as of obstructive airways disease in the exposed group compared with the reference group. Asbestos cement exposure was related to variables reflecting lung fibrosis but not to variables reflecting airflow obstruction. Smoking was related to variables reflecting obstructive lung disease. Exercise capacity was reduced in the exposed workers and was related to smoking and to lung function variables, reflecting obstructive airways disease. There was no significant correlation between exercise capacity and exposure to asbestos cement. PMID:3651353
Bokov, P; Delclaux, C
2016-02-01
Resting pulmonary function tests (PFT) include the assessment of ventilatory capacity: spirometry (forced expiratory flows and mobilisable volumes) and static volume assessment, notably using body plethysmography. Spirometry allows the potential definition of obstructive defect, while static volume assessment allows the potential definition of restrictive defect (decrease in total lung capacity) and thoracic hyperinflation (increase in static volumes). It must be kept in mind that this evaluation is incomplete and that an assessment of ventilatory demand is often warranted, especially when facing dyspnoea: evaluation of arterial blood gas (searching for respiratory insufficiency) and measurement of the transfer coefficient of the lung, allowing with the measurement of alveolar volume to calculate the diffusing capacity of the lung for CO (DLCO: assessment of alveolar-capillary wall and capillary blood volume). All these pulmonary function tests have been the subject of an Americano-European Task force (standardisation of lung function testing) published in 2005, and translated in French in 2007. Interpretative strategies for lung function tests have been recommended, which define abnormal lung function tests using the 5th and 95th percentiles of predicted values (lower and upper limits of normal values). Thus, these recommendations need to be implemented in all pulmonary function test units. A methacholine challenge test will only be performed in the presence of an intermediate pre-test probability for asthma (diagnostic uncertainty), which is an infrequent setting. The most convenient exertional test is the 6-minute walk test that allows the assessment of walking performance, the search for arterial desaturation and the quantification of dyspnoea complaint. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.
Common cold decreases lung function in infants with recurrent wheezing.
Mallol, J; Aguirre, V; Wandalsen, G
2010-01-01
Common acute viral respiratory infections (colds) are the most frequent cause of exacerbations in infants with recurrent wheezing (RW). However, there is no quantitative information about the effect of colds on the lung function of infants with RW. This study was undertaken to determine the effect of common cold on forced expiratory parameters measured from raised lung volume in infants with RW. Spirometric lung function (expiratory flows from raised lung volume) was randomly assessed in 28 infants with RW while they had a common cold and when asymptomatic. It was found that during colds there was a significant decrease in all forced expiratory parameters and this was much more evident for flows (FEF(50%), FEF(75%) and FEF(25-75%)) which were definitively abnormal (less than -1.65 z-score) in the majority of infants. There was not association between family asthma, tobacco exposure, and other factors, with the extent of lung function decrease during colds. Tobacco during pregnancy but not a history of family asthma was significantly associated to lower expiratory flows; however, the association was significant only when infants were asymptomatic. This study shows that common colds cause a marked reduction of lung function in infants with RW. 2009 SEICAP. Published by Elsevier Espana. All rights reserved.
Clinical pulmonary function and industrial respirator wear
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raven, P.B.; Moss, R.F.; Page, K.
1981-12-01
This investigation was the initial step in determining a clinical pulmonary test which could be used to evaluate workers as to their suitability to industrial respirator wear. Sixty subjects, 12 superior, 37 normal, and 11 moderately impaired with respect to lung function tests were evaluated with a battery of clinical pulmonary tests while wearing an industrial respirator. The respirator was a full-face mask (MSA-Ultravue) demand breathing type equipped with an inspiratory resistance of 85mm H/sub 2/O at 85 L/min air flow and an expiratory resistance of 25mm H/sub 2/O at 85 L/min air flow. Comparisons of these tests were mademore » between the three groups of subjects both with and without a respirator. It appears that those lung tests which measure the flow characteristics of the lung especially those that are effort dependant are more susceptible to change as a result of respirator wear. Hence, the respirator affects the person with superior lung function to a greater degree than the moderately impaired person. It was suggested that the clinical test of 15 second maximum voluntary ventilations (MVV./sub 25/) may be the test of choice for determining worker capability in wearing an industrial respirator.« less
Functional MUC4 suppress epithelial-mesenchymal transition in lung adenocarcinoma metastasis.
Gao, Liuwei; Liu, Jun; Zhang, Bin; Zhang, Hua; Wang, Daowei; Zhang, Tiemei; Liu, Yang; Wang, Changli
2014-02-01
The mucin MUC4 is a high molecular weight membrane-bound transmembrane glycoprotein that is frequently detected in invasive and metastatic cancer. The overexpression of MUC4 is associated with increased risks for several types of cancer. However, the functional role of MUC4 is poorly understood in lung adenocarcinoma. Using antisense-MUC4-RNA transfected adenocarcinoma cells, we discovered that the loss of MUC4 expression results in epithelial-mesenchymal transition (EMT). We found morphological alterations and the repression of the epithelial marker E-cadherin in transfected cells. Additionally, the loss of MUC4 caused the upregulation of the mesenchymal marker vimentin compared to control cells. Using a MUC4-knockdown versus control LTEP xenograft mice model (129/sv mice), we also found that EMT happened in lung tissues of MUC4-knockdown-LTEP xenograft mice. Moreover, antisense-MUC4-RNA transfected cells had a significantly increased cellular migration ability in vitro. The loss of MUC4 also occurred in lung adenocarcinoma patients with lymph node metastases. We further investigated MUC4 and found that it plays a critical role in regulating EMT by modulating β-catenin. Taken together, our study reveals a novel role for MUC4 in suppressing EMT and suggests that the assessment of MUC4 may function as a prognostic biomarker and could be a potential therapeutic target for lung adenocarcinoma metastasis.
2010-01-01
Background Infection by infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) causes acute respiratory diseases in chickens often with high mortality. To better understand host-ILTV interactions at the host transcriptional level, a microarray analysis was performed using 4 × 44 K Agilent chicken custom oligo microarrays. Results Microarrays were hybridized using the two color hybridization method with total RNA extracted from ILTV infected chicken embryo lung cells at 0, 1, 3, 5, and 7 days post infection (dpi). Results showed that 789 genes were differentially expressed in response to ILTV infection that include genes involved in the immune system (cytokines, chemokines, MHC, and NF-κB), cell cycle regulation (cyclin B2, CDK1, and CKI3), matrix metalloproteinases (MMPs) and cellular metabolism. Differential expression for 20 out of 789 genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of 789 differentially expressed genes revealed that 21 possible gene networks with intermolecular connections among 275 functionally identified genes. These 275 genes were classified into a number of functional groups that included cancer, genetic disorder, cellular growth and proliferation, and cell death. Conclusion The results of this study provide comprehensive knowledge on global gene expression, and biological functionalities of differentially expressed genes in chicken embryo lung cells in response to ILTV infections. PMID:20663125
[Lung transplant therapy for suppurative diseases].
de Pablo, A; López, S; Ussetti, P; Carreño, M C; Laporta, R; López García-Gallo, C; Ferreiro, M J
2005-05-01
Lung transplantation is a valid therapeutic approach for patients with bronchiectasis. The objective of the present study was to evaluate our experience with bronchiectasis patients and compare the results in patients with cystic fibrosis to results in those with bronchiectasis caused by other processes. We carried out a retrospective study of bronchiectasis patients treated by lung transplantation in order to analyze demographic, functional and microbiological characteristics before and after transplantation, and survival. From 1991 to 2002 lung transplants were performed on 171 patients, 44 of whom had suppurative lung disease (27 had cystic fibrosis and 17 had bronchiectasis caused by other processes). There were no significant differences in the demographic variables between the 2 groups. At transplantation, lung function variables showed severe bronchial obstruction (mean [SD] forced expiratory volume in 1 second of 808 [342] mL and forced vital capacity of 1,390 [611] mL) and respiratory insufficiency (PaO2 at 52 [10] mm Hg and PaCO2 at 48 [9] mm Hg). Only PaO2 was significantly lower in patients with bronchiectasis from causes other than cystic fibrosis. Airway colonization was present in 91% of the patients; Pseudomonas spp germs were detected in 64% of the cases and were multiresistant in 9%. In the early postoperative period germs were isolated in 59% of the cases, half of which involved the same germ as had been isolated before transplantation. One year after lung transplantation, 34% of the patients continued to have bronchial colonization. Survival at 1 year was 79% and at 5 years, 49%, with no significant difference between the patients with cystic fibrosis and those with other suppurative diseases, nor between the patients with and without Pseudomonas colonization. Only 2 patients had died of bacterial pneumonia at 1 month after transplantation. Although airway colonization in patients with suppurative diseases complicates postoperative management, the results in terms of survival are good.
Kim, Bu-Yeo; Jin, Hee; Lee, Yoon-Jin; Kang, Ga-Young; Cho, Jaeho; Lee, Yun-Sil
2016-01-27
Despite the emergence of stereotactic body radiotherapy (SBRT) for treatment of medically inoperable early-stage non-small-cell lung cancer patients, the molecular effects of focal exposure of limited lung volumes to high-dose radiation have not been fully characterized. This study was designed to identify molecular changes induced by focal high-dose irradiation using a mouse model of SBRT. Central areas of the mouse left lung were focally-irradiated (3 mm in diameter) with a single high-dose of radiation (90 Gy). Temporal changes in gene expression in the irradiated and non-irradiated neighboring lung regions were analyzed by microarray. For comparison, the long-term effect (12 months) of 20 Gy radiation on a diffuse region of lung was also measured. The majority of genes were down-regulated in the focally-irradiated lung areas at 2 to 3 weeks after irradiation. This pattern of gene expression was clearly different than gene expression in the diffuse region of lungs exposed to low-dose radiation. Ontological and pathway analyses indicated these down-regulated genes were mainly associated with organ development. Although the number was small, genes that were up-regulated after focal irradiation were associated with immune-related functions. The temporal patterns of gene expression and the associated biological functions were also similar in non-irradiated neighboring lung regions, although statistical significance was greatly reduced when compared with those from focally-irradiated areas of the lung. From network analysis of temporally regulated genes, we identified inter-related modules associated with diverse functions, including organ development and the immune response, in both the focally-irradiated regions and non-irradiated neighboring lung regions. Focal exposure of lung tissue to high-dose radiation induced expression of genes associated with organ development and the immune response. This pattern of gene expression was also observed in non-irradiated neighboring areas of lung tissue, indicating a global lung response to focal high-dose irradiation.
San José Estépar, Raúl; Mendoza, Carlos S.; Hersh, Craig P.; Laird, Nan; Crapo, James D.; Lynch, David A.; Silverman, Edwin K.; Washko, George R.
2013-01-01
Rationale: Emphysema occurs in distinct pathologic patterns, but little is known about the epidemiologic associations of these patterns. Standard quantitative measures of emphysema from computed tomography (CT) do not distinguish between distinct patterns of parenchymal destruction. Objectives: To study the epidemiologic associations of distinct emphysema patterns with measures of lung-related physiology, function, and health care use in smokers. Methods: Using a local histogram-based assessment of lung density, we quantified distinct patterns of low attenuation in 9,313 smokers in the COPDGene Study. To determine if such patterns provide novel insights into chronic obstructive pulmonary disease epidemiology, we tested for their association with measures of physiology, function, and health care use. Measurements and Main Results: Compared with percentage of low-attenuation area less than −950 Hounsfield units (%LAA-950), local histogram-based measures of distinct CT low-attenuation patterns are more predictive of measures of lung function, dyspnea, quality of life, and health care use. These patterns are strongly associated with a wide array of measures of respiratory physiology and function, and most of these associations remain highly significant (P < 0.005) after adjusting for %LAA-950. In smokers without evidence of chronic obstructive pulmonary disease, the mild centrilobular disease pattern is associated with lower FEV1 and worse functional status (P < 0.005). Conclusions: Measures of distinct CT emphysema patterns provide novel information about the relationship between emphysema and key measures of physiology, physical function, and health care use. Measures of mild emphysema in smokers with preserved lung function can be extracted from CT scans and are significantly associated with functional measures. PMID:23980521
Boncoeur, Emilie; Roque, Telma; Bonvin, Elise; Saint-Criq, Vinciane; Bonora, Monique; Clement, Annick; Tabary, Olivier; Henrion-Caude, Alexandra; Jacquot, Jacky
2008-01-01
Cystic fibrosis is a lethal inherited disorder caused by mutations in a single gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, resulting in progressive oxidative lung damage. In this study, we evaluated the role of CFTR in the control of ubiquitin-proteasome activity and nuclear factor (NF)-κB/IκB-α signaling after lung oxidative stress. After a 64-hour exposure to hyperoxia-mediated oxidative stress, CFTR-deficient (cftr−/−) mice exhibited significantly elevated lung proteasomal activity compared with wild-type (cftr+/+) animals. This was accompanied by reduced lung caspase-3 activity and defective degradation of NF-κB inhibitor IκB-α. In vitro, human CFTR-deficient lung cells exposed to oxidative stress exhibited increased proteasomal activity and decreased NF-κB-dependent transcriptional activity compared with CFTR-sufficient lung cells. Inhibition of the CFTR Cl− channel by CFTRinh-172 in the normal bronchial immortalized cell line 16HBE14o− increased proteasomal degradation after exposure to oxidative stress. Caspase-3 inhibition by Z-DQMD in CFTR-sufficient lung cells mimicked the response profile of increased proteasomal degradation and reduced NF-κB activity observed in CFTR-deficient lung cells exposed to oxidative stress. Taken together, these results suggest that functional CFTR Cl− channel activity is crucial for regulation of lung proteasomal degradation and NF-κB activity in conditions of oxidative stress. PMID:18372427
Comeglio, Paolo; Filippi, Sandra; Sarchielli, Erica; Morelli, Annamaria; Cellai, Ilaria; Corcetto, Francesca; Corno, Chiara; Maneschi, Elena; Pini, Alessandro; Adorini, Luciano; Vannelli, Gabriella Barbara; Maggi, Mario; Vignozzi, Linda
2017-04-01
Farnesoid X receptor (FXR) activation by obeticholic acid (OCA) has been demonstrated to inhibit inflammation and fibrosis development in liver, kidney and intestine in multiple disease models. FXR activation has also been demonstrated to suppress the inflammatory response and to promote lung repair after lung injury. This study investigated the protective effects of OCA treatment (3 or 10mg/kg/day) on inflammation, tissue remodeling and fibrosis in the bleomycin-induced pulmonary fibrosis rat model. Effects of OCA treatment on morphological and molecular alterations of the lung, as well as remodeling of the alveoli and the right ventricle were also evaluated. Lung function was assessed by measuring airway resistance to inflation. In the acute phase (7days), bleomycin promoted an initial thickening and fibrosis of the lung interstitium, with upregulation of genes related to epithelial proliferation, tissue remodeling and hypoxia. At 28days, an evident increase in the deposition of collagen in the lungs was observed. This excessive deposition was accompanied by an upregulation of transcripts related to the extracellular matrix (TGFβ1, SNAI1 and SNAI2), indicating lung fibrosis. Administration of OCA protected against bleomycin-induced lung damage by suppressing molecular mechanisms related to epithelial-to-mesenchymal transition (EMT), inflammation and collagen deposition, with a dose-dependent reduction of proinflammatory cytokines such as IL-1β and IL-6, as well as TGF-β1 and SNAI1 expression. Pirfenidone, a recently approved treatment for idiopathic pulmonary fibrosis (IPF), significantly counteracted bleomycin-induced pro-fibrotic genes expression, but did not exert significant effects on IL-1β and IL-6. OCA treatment in bleomycin-challenged rats also improved pulmonary function, by effectively normalizing airway resistance to inflation and lung stiffness in vivo. Results with OCA were similar, or even superior, to those obtained with pirfenidone. In conclusion, our results suggest an important protective effect of OCA against bleomycin-induced lung fibrosis by blunting critical mediators in the pathogenesis of IPF. Copyright © 2017 Elsevier Ltd. All rights reserved.
Post-tuberculous lung function impairment in a tuberculosis reference clinic in Cameroon.
Mbatchou Ngahane, Bertrand Hugo; Nouyep, Junior; Nganda Motto, Malea; Mapoure Njankouo, Yacouba; Wandji, Adeline; Endale, Mireille; Afane Ze, Emmanuel
2016-05-01
After completion of treatment, a proportion of pulmonary TB (pTB) patients experience lung function impairment which can influence their quality of life. This study aimed to determine the prevalence of lung function impairment in patients treated for pTB and investigate its associated factors. A cross-sectional study was conducted in TB clinic of the Douala Laquintinie Hospital in Cameroon. Patients aged 15 and above who were treated for pTB between 2008 and 2012 were included in the study. Demographic data, respiratory symptoms prior TB diagnosis, comorbidities and chest radiography findings prior to TB treatment were collected. All participants underwent spirometric measurements. Airflow obstruction was defined as a post-bronchodilation FEV1/FVC <70% with FVC >80%, restrictive defects as an FEV1/FVC ratio of ≥70% with an FVC <80% predicted, and mixed defects as FVC of <80% predicted and an FEV1/FVC ratio of <70%. Lung function impairment was defined by the presence of at least one of these three abnormalities. Logistic regression analysis was employed to investigate risk factors of lung function impairment. Of a total of 269 participants included in the study, 146 (54.3%) were male. The median age of participants was 33 years. The median duration of symptoms before diagnosis of TB was 4 weeks [interquartile range (IQR) 3-8]. The prevalence of lung function impairment was 45.4% (95% CI 39-51). The multivariate analysis identified duration of symptoms [OR 1.08; 95% CI (1.01-1.15)] and fibrotic pattern [OR 3.54; 95% CI (1.40-8.95)] as independent risk factors for lung function impairment. Post-tuberculous pulmonary function impairment is frequent in Douala. Sensitization of patient with symptoms of pulmonary TB for an earlier visit to healthcare facilities could reduce the impact of pTB on lung function of patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adam, Martin; Schikowski, Tamara; Carsin, Anne Elie; Cai, Yutong; Jacquemin, Benedicte; Sanchez, Margaux; Vierkötter, Andrea; Marcon, Alessandro; Keidel, Dirk; Sugiri, Dorothee; Al Kanani, Zaina; Nadif, Rachel; Siroux, Valérie; Hardy, Rebecca; Kuh, Diana; Rochat, Thierry; Bridevaux, Pierre-Olivier; Eeftens, Marloes; Tsai, Ming-Yi; Villani, Simona; Phuleria, Harish Chandra; Birk, Matthias; Cyrys, Josef; Cirach, Marta; de Nazelle, Audrey; Nieuwenhuijsen, Mark J.; Forsberg, Bertil; de Hoogh, Kees; Declerq, Christophe; Bono, Roberto; Piccioni, Pavilio; Quass, Ulrich; Heinrich, Joachim; Jarvis, Deborah; Pin, Isabelle; Beelen, Rob; Hoek, Gerard; Brunekreef, Bert; Schindler, Christian; Sunyer, Jordi; Krämer, Ursula; Kauffmann, Francine; Hansell, Anna L.; Künzli, Nino; Probst-Hensch, Nicole
2015-01-01
The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO2, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m−3 increase in NO2 exposure was associated with lower levels of FEV1 (−14.0 mL, 95% CI −25.8 to −2.1) and FVC (−14.9 mL, 95% CI −28.7 to −1.1). An increase of 10 μg·m−3 in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV1 (−44.6 mL, 95% CI −85.4 to −3.8) and FVC (−59.0 mL, 95% CI −112.3 to −5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe. PMID:25193994
Oguonu, Tagbo; Obumneme-Anyim, Ijeoma N; Eze, Joy N; Ayuk, Adaeze C; Okoli, Chinyere V; Ndu, Ikenna K
2018-05-01
Background Biofuels and other cooking fuels are used in households in low- and middle-income countries. Aim To investigate the impact of cooking fuels on lung function in children in urban and rural households in South-East Nigeria. Methods The multi-stage sampling method was used to enroll children exposed to cooking fuel in the communities. Lung function values FEV1, FVC and the FEV1/FVC ratio, were measured with ndd EasyOne R spirometer. Airflow limitation was determined with FEV1/FVC Z-score values at -1.64 as the lower limit of normal (LLN5). The Global Lung Function Initiative 2012 software was used to calculate the lung function indices. Results The median age (range) of the 912 children enrolled was 10.6 years (6-18). Altogether, 468 (51.6%) children lived in rural areas. Seven hundred and thirty-seven (80.7%) were directly exposed to cooking fuels (418/737, 56.5% in rural areas). Wood and kerosene were the dominant fuels in rural and urban households. The respective mean Z-scores of the exposed children in rural and urban were zFEV1 -0.62, FVC -0.21, FEV1/FVC -0.83 and zFEV1 -0.57, zFVC -0.14, FEV1/FVC -0.75. Few (5.2%, 38/737) of the children had airflow limitation. Most of them (60.5%, 25/38) lived in the rural community; the lowest FEV1/FVC Z-scores were those of exposed to a combination of fuels. Conclusion Exposure to cooking fuels affects lung function in children with airway limitation in a small proportion, Control measures are advocated to reduce the morbidity related to cooking fuels exposure.
Genetics and Genomics of Longitudinal Lung Function Patterns in Individuals with Asthma
Yates, Katherine P.; Zhou, Xiaobo; Guo, Feng; Sternberg, Alice L.; Van Natta, Mark L.; Wise, Robert A.; Szefler, Stanley J.; Sharma, Sunita; Kho, Alvin T.; Cho, Michael H.; Croteau-Chonka, Damien C.; Castaldi, Peter J.; Jain, Gaurav; Sanyal, Amartya; Zhan, Ye; Lajoie, Bryan R.; Dekker, Job; Stamatoyannopoulos, John; Covar, Ronina A.; Zeiger, Robert S.; Adkinson, N. Franklin; Williams, Paul V.; Kelly, H. William; Grasemann, Hartmut; Vonk, Judith M.; Koppelman, Gerard H.; Postma, Dirkje S.; Raby, Benjamin A.; Houston, Isaac; Lu, Quan; Fuhlbrigge, Anne L.; Tantisira, Kelan G.; Silverman, Edwin K.; Tonascia, James; Strunk, Robert C.; Weiss, Scott T.
2016-01-01
Rationale: Patterns of longitudinal lung function growth and decline in childhood asthma have been shown to be important in determining risk for future respiratory ailments including chronic airway obstruction and chronic obstructive pulmonary disease. Objectives: To determine the genetic underpinnings of lung function patterns in subjects with childhood asthma. Methods: We performed a genome-wide association study of 581 non-Hispanic white individuals with asthma that were previously classified by patterns of lung function growth and decline (normal growth, normal growth with early decline, reduced growth, and reduced growth with early decline). The strongest association was also measured in two additional cohorts: a small asthma cohort and a large chronic obstructive pulmonary disease metaanalysis cohort. Interaction between the genomic region encompassing the most strongly associated single-nucleotide polymorphism and nearby genes was assessed by two chromosome conformation capture assays. Measurements and Main Results: An intergenic single-nucleotide polymorphism (rs4445257) on chromosome 8 was strongly associated with the normal growth with early decline pattern compared with all other pattern groups (P = 6.7 × 10−9; odds ratio, 2.8; 95% confidence interval, 2.0–4.0); replication analysis suggested this variant had opposite effects in normal growth with early decline and reduced growth with early decline pattern groups. Chromosome conformation capture experiments indicated a chromatin interaction between rs4445257 and the promoter of the distal CSMD3 gene. Conclusions: Early decline in lung function after normal growth is associated with a genetic polymorphism that may also protect against early decline in reduced growth groups. Clinical trial registered with www.clinicaltrials.gov (NCT00000575). PMID:27367781
Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott
2013-01-01
Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408
Collin, Simon M.; Granell, Raquel; Westgarth, Carri; Murray, Jane; Paul, Elizabeth S.; Sterne, Jonathan A. C.; Henderson, A. John
2015-01-01
Background Asthma is a heterogeneous condition and differential effects of pet ownership on non-atopic versus atopic asthma have been reported. The aim of this study was to investigate whether pet ownership during pregnancy and early childhood was associated with wheezing from birth to age 7 years and with lung function at age 8 years in a UK population-based birth cohort. Methods Data from the Avon Longitudinal Study of Parents and Children (ALSPAC) were used to investigate associations of pet ownership at six time-points from pregnancy to age 7 years with concurrent episodes of wheezing, wheezing trajectories (phenotypes) and lung function at age 8 years using logistic regression models adjusted for child’s sex, maternal history of asthma/atopy, maternal smoking during pregnancy, and family adversity. Results 4,706 children had complete data on pet ownership and wheezing. From birth to age 7 years, cat ownership was associated with an overall 6% lower odds of wheezing (OR=0.94 (0.89-0.99)). Rabbit and rodent ownership was associated with 21% (OR=1.21 (1.12-1.31)) and 11% (OR=1.11 (1.02–1.21)) higher odds of wheezing, respectively, with strongest effects evident during infancy. Rabbit and rodent ownership was positively associated with a ‘persistent wheeze’ phenotype. Pet ownership was not associated with lung function at age 8 years, with the exception of positive associations of rodent and bird ownership with better lung function. Conclusions Cat ownership was associated with reduced risk, and rabbit and rodent ownership with increased risk, of wheezing during childhood. The mechanisms behind these differential effects warrant further investigation. PMID:26061067
Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system.
Burrowes, K S; Swan, A J; Warren, N J; Tawhai, M H
2008-09-28
The essential function of the lung, gas exchange, is dependent on adequate matching of ventilation and perfusion, where air and blood are delivered through complex branching systems exposed to regionally varying transpulmonary and transmural pressures. Structure and function in the lung are intimately related, yet computational models in pulmonary physiology usually simplify or neglect structure. The geometries of the airway and vascular systems and their interaction with parenchymal tissue have an important bearing on regional distributions of air and blood, and therefore on whole lung gas exchange, but this has not yet been addressed by modelling studies. Models for gas exchange have typically incorporated considerable detail at the level of chemical reactions, with little thought for the influence of structure. To date, relatively little attention has been paid to modelling at the cellular or subcellular level in the lung, or to linking information from the protein structure/interaction and cellular levels to the operation of the whole lung. We review previous work in developing anatomically based models of the lung, airways, parenchyma and pulmonary vasculature, and some functional studies in which these models have been used. Models for gas exchange at several spatial scales are briefly reviewed, and the challenges and benefits from modelling cellular function in the lung are discussed.
Chang, Rui; You, Jiacong; Zhou, Qinghua
2013-04-01
Lung cancer is one of the most common diseases that endanger health and life of people domestically. A number of recurrence and death of lung cancer originated from metastasis. As a key step in metastasis of lung cancer, epithelial to mesenchymal transition involved down-regulation of E-cadherin, as well as regulated by EMT transcription factors. HATs and HDACs is a protein family that catalyzes acetylation and deacetylation of histones. Not only they have vital functions in tumor pathogenesis, but also participate in the EMT of lung cancer. HATs and HDACs interact with certain EMT transcription factors. Moreover, the function of these EMT transcription factors may be regulated by acetylation, which has influence on EMT program in lung cancer. Therefore, this review introduces the event of HATs and HDACs function in EMT of lung cancer, and investigate the molecular mechanism of their interaction. Then, the potential of HDAC inhibitor utilization in the inhibition of EMT and lung cancer therapy were discussed, as to pave the way for the related basic research and clinical practice.
Matalon, Sadis
2014-01-01
CFTR is a cAMP-activated chloride and bicarbonate channel that is critical for lung homeostasis. Decreases in CFTR expression have dire consequences in cystic fibrosis (CF) and have been suggested to be a component of the lung pathology in chronic obstructive pulmonary disease. Decreases or loss of channel function often lead to mucus stasis, chronic bacterial infections, and the accompanying chronic inflammatory responses that promote progressive lung destruction, and, eventually in CF, lung failure. Here we discuss CFTR's functional role airway surface liquid hydration and pH, in regulation of other channels such as the epithelial sodium channel, and in regulating inflammatory responses in the lung. PMID:25381027
Fernandez, Isis E; Heinzelmann, Katharina; Verleden, Stijn; Eickelberg, Oliver
2015-03-01
Tissue fibrosis, a major cause of death worldwide, leads to significant organ dysfunction in any organ of the human body. In the lung, fibrosis critically impairs gas exchange, tissue oxygenation, and immune function. Idiopathic pulmonary fibrosis (IPF) is the most detrimental and lethal fibrotic disease of the lung, with an estimated median survival of 50% after 3-5 years. Lung transplantation currently remains the only therapeutic alternative for IPF and other end-stage pulmonary disorders. Posttransplant lung function, however, is compromised by short- and long-term complications, most importantly chronic lung allograft dysfunction (CLAD). CLAD affects up to 50% of all transplanted lungs after 5 years, and is characterized by small airway obstruction with pronounced epithelial injury, aberrant wound healing, and subepithelial and interstitial fibrosis. Intriguingly, the mechanisms leading to the fibrotic processes in the engrafted lung exhibit striking similarities to those in IPF; therefore, antifibrotic therapies may contribute to increased graft function and survival in CLAD. In this review, we focus on these common fibrosis-related mechanisms in IPF and CLAD, comparing and contrasting clinical phenotypes, the mechanisms of fibrogenesis, and biomarkers to monitor, predict, or prognosticate disease status.
Mondoñedo, Jarred R; Suki, Béla
2017-02-01
Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction.
Mondoñedo, Jarred R.
2017-01-01
Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction. PMID:28182686
Sterilization of Lung Matrices by Supercritical Carbon Dioxide
Balestrini, Jenna L.; Liu, Angela; Gard, Ashley L.; Huie, Janet; Blatt, Kelly M.S.; Schwan, Jonas; Zhao, Liping; Broekelmann, Tom J.; Mecham, Robert P.; Wilcox, Elise C.
2016-01-01
Lung engineering is a potential alternative to transplantation for patients with end-stage pulmonary failure. Two challenges critical to the successful development of an engineered lung developed from a decellularized scaffold include (i) the suppression of resident infectious bioburden in the lung matrix, and (ii) the ability to sterilize decellularized tissues while preserving the essential biological and mechanical features intact. To date, the majority of lungs are sterilized using high concentrations of peracetic acid (PAA) resulting in extracellular matrix (ECM) depletion. These mechanically altered tissues have little to no storage potential. In this study, we report a sterilizing technique using supercritical carbon dioxide (ScCO2) that can achieve a sterility assurance level 10−6 in decellularized lung matrix. The effects of ScCO2 treatment on the histological, mechanical, and biochemical properties of the sterile decellularized lung were evaluated and compared with those of freshly decellularized lung matrix and with PAA-treated acellular lung. Exposure of the decellularized tissue to ScCO2 did not significantly alter tissue architecture, ECM content or organization (glycosaminoglycans, elastin, collagen, and laminin), observations of cell engraftment, or mechanical integrity of the tissue. Furthermore, these attributes of lung matrix did not change after 6 months in sterile buffer following sterilization with ScCO2, indicating that ScCO2 produces a matrix that is stable during storage. The current study's results indicate that ScCO2 can be used to sterilize acellular lung tissue while simultaneously preserving key biological components required for the function of the scaffold for regenerative medicine purposes. PMID:26697757
USDA-ARS?s Scientific Manuscript database
Pulmonary neuroendocrine cells (PNECs) are proposed to be the first specialized cell type to appear in the lung, but their ontogeny remains obscure. Although studies of PNECs have suggested their involvement in a number of lung functions, neither their in vivo significance nor the molecular mechanis...
Imaging Lung Function in Mice Using SPECT/CT and Per-Voxel Analysis
Jobse, Brian N.; Rhem, Rod G.; McCurry, Cory A. J. R.; Wang, Iris Q.; Labiris, N. Renée
2012-01-01
Chronic lung disease is a major worldwide health concern but better tools are required to understand the underlying pathologies. Ventilation/perfusion (V/Q) single photon emission computed tomography (SPECT) with per-voxel analysis allows for non-invasive measurement of regional lung function. A clinically adapted V/Q methodology was used in healthy mice to investigate V/Q relationships. Twelve week-old mice were imaged to describe normal lung function while 36 week-old mice were imaged to determine how age affects V/Q. Mice were ventilated with Technegas™ and injected with 99mTc-macroaggregated albumin to trace ventilation and perfusion, respectively. For both processes, SPECT and CT images were acquired, co-registered, and quantitatively analyzed. On a per-voxel basis, ventilation and perfusion were moderately correlated (R = 0.58±0.03) in 12 week old animals and a mean log(V/Q) ratio of −0.07±0.01 and standard deviation of 0.36±0.02 were found, defining the extent of V/Q matching. In contrast, 36 week old animals had significantly increased levels of V/Q mismatching throughout the periphery of the lung. Measures of V/Q were consistent across healthy animals and differences were observed with age demonstrating the capability of this technique in quantifying lung function. Per-voxel analysis and the ability to non-invasively assess lung function will aid in the investigation of chronic lung disease models and drug efficacy studies. PMID:22870297
High resolution multidetector CT aided tissue analysis and quantification of lung fibrosis
NASA Astrophysics Data System (ADS)
Zavaletta, Vanessa A.; Karwoski, Ronald A.; Bartholmai, Brian; Robb, Richard A.
2006-03-01
Idiopathic pulmonary fibrosis (IPF, also known as Idiopathic Usual Interstitial Pneumontis, pathologically) is a progressive diffuse lung disease which has a median survival rate of less than four years with a prevalence of 15-20/100,000 in the United States. Global function changes are measured by pulmonary function tests and the diagnosis and extent of pulmonary structural changes are typically assessed by acquiring two-dimensional high resolution CT (HRCT) images. The acquisition and analysis of volumetric high resolution Multi-Detector CT (MDCT) images with nearly isotropic pixels offers the potential to measure both lung function and structure. This paper presents a new approach to three dimensional lung image analysis and classification of normal and abnormal structures in lungs with IPF.
Hopkins, Susan R; Prisk, G Kim
2010-12-01
Since the lung receives the entire cardiac output, sophisticated imaging techniques are not required in order to measure total organ perfusion. However, for many years studying lung function has required physiologists to consider the lung as a single entity: in imaging terms as a single voxel. Since imaging, and in particular functional imaging, allows the acquisition of spatial information important for studying lung function, these techniques provide considerable promise and are of great interest for pulmonary physiologists. In particular, despite the challenges of low proton density and short T2* in the lung, noncontrast MRI techniques to measure pulmonary perfusion have several advantages including high reliability and the ability to make repeated measurements under a number of physiologic conditions. This brief review focuses on the application of a particular arterial spin labeling (ASL) technique, ASL-FAIRER (flow sensitive inversion recovery with an extra radiofrequency pulse), to answer physiologic questions related to pulmonary function in health and disease. The associated measurement of regional proton density to correct for gravitational-based lung deformation (the "Slinky" effect (Slinky is a registered trademark of Pauf-Slinky incorporated)) and issues related to absolute quantification are also discussed. Copyright © 2010 Wiley-Liss, Inc.
Li, Shicheng; Sun, Xiao; Miao, Shuncheng; Liu, Jia; Jiao, Wenjie
2017-11-01
Cigarette smoking is one of the greatest preventable risk factors for developing cancer, and most cases of lung squamous cell carcinoma (lung SCC) are associated with smoking. The pathogenesis mechanism of tumor progress is unclear. This study aimed to identify biomarkers in smoking-related lung cancer, including protein-coding gene, long noncoding RNA, and transcription factors. We selected and obtained messenger RNA microarray datasets and clinical data from the Gene Expression Omnibus database to identify gene expression altered by cigarette smoking. Integrated bioinformatic analysis was used to clarify biological functions of the identified genes, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the construction of a protein-protein interaction network, transcription factor, and statistical analyses. Subsequent quantitative real-time PCR was utilized to verify these bioinformatic analyses. Five hundred and ninety-eight differentially expressed genes and 21 long noncoding RNA were identified in smoking-related lung SCC. GO and KEGG pathway analysis showed that identified genes were enriched in the cancer-related functions and pathways. The protein-protein interaction network revealed seven hub genes identified in lung SCC. Several transcription factors and their binding sites were predicted. The results of real-time quantitative PCR revealed that AURKA and BIRC5 were significantly upregulated and LINC00094 was downregulated in the tumor tissues of smoking patients. Further statistical analysis indicated that dysregulation of AURKA, BIRC5, and LINC00094 indicated poor prognosis in lung SCC. Protein-coding genes AURKA, BIRC5, and LINC00094 could be biomarkers or therapeutic targets for smoking-related lung SCC. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Invited commentary: on population subgroups, mathematics, and interventions.
Jacobs, David R; Meyer, Katie A
2011-02-15
New sex-specific equations, each with race/ethnic-specific intercept, for predicted lung function illustrate a methodological point, that complex differences between groups may not imply interactions with other predictors, such as age and height. The new equations find that race/ethnic identity does not interact with either age or height in the prediction equations, although there are race/ethnic-specific offsets. Further study is warranted of the effect of possible small race/ethnic interactions on disease classification. Additional study of repeated measures of lung function is warranted, given that the new equations were developed in cross-sectional designs. Predicting lung function is more than a methodological exercise. Predicted values are important in disease diagnosis and monitoring. It is suggested that measurement and tracking of lung function throughout young adulthood could be used to provide an early warning of potential long-term lung function losses to encourage improvement of risky behaviors including smoking and failure to maintain normal body weight in the general population.
Automated pulmonary lobar ventilation measurements using volume-matched thoracic CT and MRI
NASA Astrophysics Data System (ADS)
Guo, F.; Svenningsen, S.; Bluemke, E.; Rajchl, M.; Yuan, J.; Fenster, A.; Parraga, G.
2015-03-01
Objectives: To develop and evaluate an automated registration and segmentation pipeline for regional lobar pulmonary structure-function measurements, using volume-matched thoracic CT and MRI in order to guide therapy. Methods: Ten subjects underwent pulmonary function tests and volume-matched 1H and 3He MRI and thoracic CT during a single 2-hr visit. CT was registered to 1H MRI using an affine method that incorporated block-matching and this was followed by a deformable step using free-form deformation. The resultant deformation field was used to deform the associated CT lobe mask that was generated using commercial software. 3He-1H image registration used the same two-step registration method and 3He ventilation was segmented using hierarchical k-means clustering. Whole lung and lobar 3He ventilation and ventilation defect percent (VDP) were generated by mapping ventilation defects to CT-defined whole lung and lobe volumes. Target CT-3He registration accuracy was evaluated using region- , surface distance- and volume-based metrics. Automated whole lung and lobar VDP was compared with semi-automated and manual results using paired t-tests. Results: The proposed pipeline yielded regional spatial agreement of 88.0+/-0.9% and surface distance error of 3.9+/-0.5 mm. Automated and manual whole lung and lobar ventilation and VDP were not significantly different and they were significantly correlated (r = 0.77, p < 0.0001). Conclusion: The proposed automated pipeline can be used to generate regional pulmonary structural-functional maps with high accuracy and robustness, providing an important tool for image-guided pulmonary interventions.
Nutritional state and lung disease in cystic fibrosis.
Bakker, W
1992-10-01
The life expectancy of patients with cystic fibrosis (CF) is largely dependent on the severity and progress of the pulmonary involvement associated with the disease. Many data support the view that malnutrition and deterioration of lung function are closely interrelated and interdependent, with each affecting the other, leading to a spiral decline in both. The occurrence of malnutrition appears to be associated with poor lung function and poor survival, and conversely prevention of malnutrition appears to be associated with better lung function and improved survival. Nutritional intervention may lead to an improvement in body weight, lung function and exercise tolerance, provided that the intervention is combined with exercise training in order to increase both respiratory and other muscle mass. These improvements can be preserved when patients have the stamina to continue with a high-energy, high-fat diet and daily exercise training at home.
The biology, function and clinical implications of exosomes in lung cancer.
Zhou, Li; Lv, Tangfeng; Zhang, Qun; Zhu, Qingqing; Zhan, Ping; Zhu, Suhua; Zhang, Jianya; Song, Yong
2017-10-28
Exosomes are 30-100 nm small membrane vesicles of endocytic origin that are secreted by all types of cells, and can also be found in various body fluids. Increasing evidence implicates that exosomes confer stability and can deliver their cargos such as proteins and nucleic acids to specific cell types, which subsequently serve as important messengers and carriers in lung carcinogenesis. Here, we describe the biogenesis and components of exosomes mainly in lung cancer, we summarize their function in lung carcinogenesis (epithelial mesenchymal transition, oncogenic cell transformation, angiogenesis, metastasis and immune response in tumor microenvironment), and importantly we focus on the clinical potential of exosomes as biomarkers and therapeutics in lung cancer. In addition, we also discuss current challenges that might impede the clinical use of exosomes. Further studies on the functional roles of exosomes in lung cancer requires thorough research. Copyright © 2017 Elsevier B.V. All rights reserved.
Ji, Bo; Zhao, Guo-Zhen; Sakurai, Reiko; Cao, Yu; Zhang, Zi-Jian; Wang, Dan; Yan, Ming-Na; Rehan, Virender K
2016-08-01
Pregnant women exposed to tobacco smoke predispose the offspring to many adverse consequences including an altered lung development and function. There is no effective therapeutic intervention to block the effects of smoke exposure on the developing lung. Clinical and animal studies demonstrate that acupuncture can modulate a variety of pathophysiological processes, including those involving the respiratory system; however, whether acupuncture affects the lung damage caused by perinatal smoke exposure is not known. To determine the effect of acupuncture on perinatal nicotine exposure on the developing lung, pregnant rat dams were administered (1) saline, (2) nicotine, or (3) nicotine + electroacupuncture (EA). Nicotine was administered (1 mg/kg subcutaneously) once a day and EA was applied to both "Zusanli" (ST 36) points. Both interventions were administered from gestational day 6 to postnatal day 21 (PND21), following which pups were sacrificed. Lungs, blood, and brain were collected to examine markers of lung injury, repair, and hypothalamic pituitary adrenal (HPA) axis. Concomitant EA application blocked nicotine-induced changes in lung morphology, lung peroxisome proliferator-activated receptor γ and wingless-int signaling, two key lung developmental signaling pathways, hypothalamic pituitary adrenal axis (hypothalamic corticotropic releasing hormone and lung glucocorticoid receptor levels), and plasma β-endorphin levels. Electroacupuncture blocks the nicotine-induced changes in lung developmental signaling pathways and the resultant myogenic lung phenotype, known to be present in the affected offspring. We conclude that EA is a promising novel intervention against the smoke exposed lung damage to the developing lung.
Association between the Type of Workplace and Lung Function in Copper Miners
Gruszczyński, Leszek; Wojakowska, Anna; Ścieszka, Marek; Turczyn, Barbara; Schmidt, Edward
2016-01-01
The aim of the analysis was to retrospectively assess changes in lung function in copper miners depending on the type of workplace. In the groups of 225 operators, 188 welders, and 475 representatives of other jobs, spirometry was performed at the start of employment and subsequently after 10, 20, and 25 years of work. Spirometry Longitudinal Data Analysis software was used to estimate changes in group means for FEV1 and FVC. Multiple linear regression analysis was used to assess an association between workplace and lung function. Lung function assessed on the basis of calculation of longitudinal FEV1 (FVC) decline was similar in all studied groups. However, multiple linear regression model used in cross-sectional analysis revealed an association between workplace and lung function. In the group of welders, FEF75 was lower in comparison to operators and other miners as early as after 10 years of work. Simultaneously, in smoking welders, the FEV1/FVC ratio was lower than in nonsmokers (p < 0,05). The interactions between type of workplace and smoking (p < 0,05) in their effect on FVC, FEV1, PEF, and FEF50 were shown. Among underground working copper miners, the group of smoking welders is especially threatened by impairment of lung ventilatory function. PMID:27274987
Association of area socioeconomic status with lung function in children.
Wu, Yi-Fan; Wu, Cho-Kai; Chen, Duan-Rung; Chie, Wei-Chu; Lee, Yungling Leo
2012-12-01
The study investigates the association between area-level socioeconomic status (SES) and children's lung function. Participants were 3994 seventh grade students from the Taiwan Children Health Study living in 14 communities in Taiwan and were recruited in 2007. Area-level SES predictors were population size, occupation type, income and education level. Hierarchical linear models (HLM) were used to examine the effects of area-level SES on lung function, after accounting for area air pollution and individual SES (parental education and family income). Areas with high income were independently associated with lower child lung function. The coefficients for log transformation of area tax per person in HLM were -47.8 (95% confidence interval (CI): -80.9, -14.8) in FEV(1), -43.8 (95% CI: -75.2, -12.5) in FVC, -93.4 (95% CI: -179.3, -7.5) in FEF(25-75) and -203.2 (95% CI: -349.1, -57.2) in PEF. All SES predictors influenced in the same direction and affected males more. The interaction of area tax per person with parental educational level was significant on PEF, suggesting significant association of greater parental education with lower lung function in children. High area SES was inversely associated with lung function in Taiwanese children. Copyright © 2012 Elsevier Inc. All rights reserved.
Wong, Suzy L; Coates, Allan L; To, Teresa
2016-02-01
Long-term exposure to ambient air pollution has been associated with adverse effects on children's lung function. Few studies have examined lung function in relation to industrial emissions of air pollutants. This cross-sectional study was based on 2,833 respondents aged 6 to 18 for whom spirometry data were collected by the Canadian Health Measures Survey, 2007 to 2011. The weighted sum of industrial air emissions of nitrogen oxides (NOₓ) and fine particulate matter (PM2.5) within 25 km of the respondent's residence was derived using National Pollutant Release Inventory data. Multivariate linear regression was used to examine the relationship between NOₓ and PM2.5 emissions and forced vital capacity (FVC), the forced expiratory volume in 1 sec (FEV₁), and the ratio of the two (FEV₁/FVC). Industrial air emissions of NOₓ were not significantly associated with lung function among males or females. Emissions of PM2.5 were negatively associated with FEV₁ and FEV₁/FVC, but not FVC, among males. PM2.5 was not significantly related to lung function among females. The associations that emerged between lung function and industrial emissions of PM2.5 among males were consistent with airway obstruction. Further research is warranted to investigate the gender differences observed in this study.
Lung function imaging methods in Cystic Fibrosis pulmonary disease.
Kołodziej, Magdalena; de Veer, Michael J; Cholewa, Marian; Egan, Gary F; Thompson, Bruce R
2017-05-17
Monitoring of pulmonary physiology is fundamental to the clinical management of patients with Cystic Fibrosis. The current standard clinical practise uses spirometry to assess lung function which delivers a clinically relevant functional readout of total lung function, however does not supply any visible or localised information. High Resolution Computed Tomography (HRCT) is a well-established current 'gold standard' method for monitoring lung anatomical changes in Cystic Fibrosis patients. HRCT provides excellent morphological information, however, the X-ray radiation dose can become significant if multiple scans are required to monitor chronic diseases such as cystic fibrosis. X-ray phase-contrast imaging is another emerging X-ray based methodology for Cystic Fibrosis lung assessment which provides dynamic morphological and functional information, albeit with even higher X-ray doses than HRCT. Magnetic Resonance Imaging (MRI) is a non-ionising radiation imaging method that is garnering growing interest among researchers and clinicians working with Cystic Fibrosis patients. Recent advances in MRI have opened up the possibilities to observe lung function in real time to potentially allow sensitive and accurate assessment of disease progression. The use of hyperpolarized gas or non-contrast enhanced MRI can be tailored to clinical needs. While MRI offers significant promise it still suffers from poor spatial resolution and the development of an objective scoring system especially for ventilation assessment.
Aerosol deposition in the human respiratory tract
NASA Astrophysics Data System (ADS)
Winchester, John W.; Jones, Donald L.; Mu-tian, Bi
1984-04-01
Rising sulfur dioxide emissions from increased coal combustion present risks, not only of acid rain, but also to health by inhalation of the SO 2 and acid to the lung. We are investigating human inhalation of ppm SO 2 concentrations mixed with aerosol of submicrometer aqueous salt droplets to determine the effects on lung function and body chemistry. Unlike some investigators, we emphasize ammonium sulfate and trace element aerosol composition which simulates ambient air; aerosol pH, relative humidity, and temperature control to reveal gas-particle reaction mechanisms; and dose estimates from length of exposure, SO 2 concentration, and a direct measurement of respiratory deposition of aerosol as a function of particle size by cascade impactor sampling and elemental analysis by PIXE. Exposures, at rest or during exercise, are in a walk-in chamber at body temperature and high humidity to simulate Florida's summer climate. Lung function measurement by spirometry is carried out immediately after exposure. The results are significant in relating air quality to athletic performance and to public health in the southeastern United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holness, D.L.; Batten, B.; Broder, I.
1985-05-01
Thirty-six smelter workers examined in this pilot study were found to have a higher prevalence of cough and dyspnea and lower baseline lung function than did 31 controls. They also experienced decreases in forced vital capacity (FVC) and forced expiratory volume in 1s (FEV1) over the workweek while the controls did not. Baseline airflow rates and change in FVC and FEV1 over the workweek varied with levels of sulfur dioxide and particulates. Twenty-three smelter workers and 21 controls were seen on a second occasion, six months into an extended shutdown. The smelter workers continued to have a higher prevalence ofmore » cough and dyspnea and lower baseline lung function than the controls. There was, however, a slight increase in lung function in both the exposed workers and the controls during the shutdown. The results suggest that smelter workers may develop both acute and chronic work-related pulmonary effects and that the chronic effects may be nonreversible.« less
Johari, Hanapi M; Zainudin, Hakimi A; Knight, Victor F; Lumley, Steven A; Subramanium, Ananthan S; Caszo, Brinnell A; Gnanou, Justin V
2017-04-01
Anthropometric and lung function characteristics of triathletes are important for the implementation of individual specific training and recovery recommendations. However, limited data are available for these parameters in triathletes. Hence, the aim of this study was to characterize and examine the gender differences of lung function and anthropometry parameters in competitive triathletes from Malaysia. Body composition assessment and lung function tests were performed on sixteen competitive triathletes (nine male and seven female). The subject's body composition profile including muscle mass (kg), fat free mass (kg), and percent body fat was measured using a bio-impedance segmental body composition analyzer. Forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) were measured by Quark PFT2 spirometer. The anthropometric measurements revealed that male triathletes were significantly taller than female triathletes and had significantly more protein and skeletal muscle mass. The female triathletes, however, had significantly higher percent body fat. Male triathletes had statistically significant higher FVC and FEV1 than female triathletes. Both the male and female triathletes showed a positive correlation between height, fat free mass and the lung function markers FVC and FEV1. This association was not seen with Body Mass Index (BMI) in female triathletes. The data from our study shows that anthropometric parameters are directly linked to lung function of a triathlete. We also found the relationship between BMI and lung function to be gender specific in triathletes and is dependent on the body protein and fat content. Hence, body composition characterization is essential and provides valuable information for developing individual specific training modules.
Botelho, Danielle J; Leo, Bey Fen; Massa, Christopher B; Sarkar, Srijata; Tetley, Terry D; Chung, Kian Fan; Chen, Shu; Ryan, Mary P; Porter, Alexandra E; Zhang, Junfeng; Schwander, Stephan K; Gow, Andrew J
2016-01-01
Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 μg/g body weight) 20 and 110 nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110 nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered.
Menopause Is Associated with Accelerated Lung Function Decline.
Triebner, Kai; Matulonga, Bobette; Johannessen, Ane; Suske, Sandra; Benediktsdóttir, Bryndís; Demoly, Pascal; Dharmage, Shyamali C; Franklin, Karl A; Garcia-Aymerich, Judith; Gullón Blanco, José Antonio; Heinrich, Joachim; Holm, Mathias; Jarvis, Debbie; Jõgi, Rain; Lindberg, Eva; Moratalla Rovira, Jesús Martínez; Muniozguren Agirre, Nerea; Pin, Isabelle; Probst-Hensch, Nicole; Puggini, Luca; Raherison, Chantal; Sánchez-Ramos, José Luis; Schlünssen, Vivi; Sunyer, Jordi; Svanes, Cecilie; Hustad, Steinar; Leynaert, Bénédicte; Gómez Real, Francisco
2017-04-15
Menopause is associated with changes in sex hormones, which affect immunity, inflammation, and osteoporosis and may impair lung function. Lung function decline has not previously been investigated in relation to menopause. To study whether lung function decline, assessed by FVC and FEV 1 , is accelerated in women who undergo menopause. The population-based longitudinal European Community Respiratory Health Survey provided serum samples, spirometry, and questionnaire data about respiratory and reproductive health from three study waves (n = 1,438). We measured follicle-stimulating hormone and luteinizing hormone and added information on menstrual patterns to determine menopausal status using latent class analysis. Associations with lung function decline were investigated using linear mixed effects models, adjusting for age, height, weight, pack-years, current smoking, age at completed full-time education, spirometer, and including study center as random effect. Menopausal status was associated with accelerated lung function decline. The adjusted mean FVC decline was increased by -10.2 ml/yr (95% confidence interval [CI], -13.1 to -7.2) in transitional women and -12.5 ml/yr (95% CI, -16.2 to -8.9) in post-menopausal women, compared with women menstruating regularly. The adjusted mean FEV 1 decline increased by -3.8 ml/yr (95% CI, -6.3 to -2.9) in transitional women and -5.2 ml/yr (95% CI, -8.3 to -2.0) in post-menopausal women. Lung function declined more rapidly among transitional and post-menopausal women, in particular for FVC, beyond the expected age change. Clinicians should be aware that respiratory health often deteriorates during reproductive aging.
NASA Astrophysics Data System (ADS)
Carpenter, Laurie Jean
When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in this model. To determine whether TxA_2 was involved in toxicity induced by PMN and PMA, lungs were coperfused with the cyclooxygenase inhibitor, indomethacin or the thromboxane synthase inhibitor, Dazmegrel. Experiments were also performed using lungs and/or PMN that had been pretreated with aspirin. These drug treatments had little effect, if any, on the pressure increase; however, they protected lungs against edema development. These results suggest that TxA_2 may participate in the pathogenesis of edema by some other mechanism than by increasing vascular pressure. In conclusion, results from studies performed in this thesis suggest that both active oxygen species and thromboxane are involved in toxicity to the isolated rat lung induced by PMA and PMN. How both of these interact to produce lung injury is a question which remains to be answered.
Extracellular matrix in lung development, homeostasis and disease
Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra; ...
2018-03-08
Here, the lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECMmore » in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less
Extracellular matrix in lung development, homeostasis and disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra
Here, the lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECMmore » in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less
Extracellular matrix in lung development, homeostasis and disease
Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra; ...
2018-03-08
The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this paper, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM inmore » normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. Finally, we identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less
Therapeutic lymphangiogenesis ameliorates established acute lung allograft rejection
Cui, Ye; Liu, Kaifeng; Monzon-Medina, Maria E.; Padera, Robert F.; Wang, Hao; George, Gautam; Toprak, Demet; Abdelnour, Elie; D’Agostino, Emmanuel; Goldberg, Hilary J.; Perrella, Mark A.; Forteza, Rosanna Malbran; Rosas, Ivan O.; Visner, Gary; El-Chemaly, Souheil
2015-01-01
Lung transplantation is the only viable option for patients suffering from otherwise incurable end-stage pulmonary diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Despite aggressive immunosuppression, acute rejection of the lung allograft occurs in over half of transplant recipients, and the factors that promote lung acceptance are poorly understood. The contribution of lymphatic vessels to transplant pathophysiology remains controversial, and data that directly address the exact roles of lymphatic vessels in lung allograft function and survival are limited. Here, we have shown that there is a marked decline in the density of lymphatic vessels, accompanied by accumulation of low-MW hyaluronan (HA) in mouse orthotopic allografts undergoing rejection. We found that stimulation of lymphangiogenesis with VEGF-C156S, a mutant form of VEGF-C with selective VEGFR-3 binding, alleviates an established rejection response and improves clearance of HA from the lung allograft. Longitudinal analysis of transbronchial biopsies from human lung transplant recipients demonstrated an association between resolution of acute lung rejection and decreased HA in the graft tissue. Taken together, these results indicate that lymphatic vessel formation after lung transplantation mediates HA drainage and suggest that treatments to stimulate lymphangiogenesis have promise for improving graft outcomes. PMID:26485284
Overweight, Obesity, and Lung Function in Children and Adults-A Meta-analysis.
Forno, Erick; Han, Yueh-Ying; Mullen, James; Celedón, Juan C
There is conflicting evidence on the effect of obesity on lung function in adults and children with and without asthma. We aimed to evaluate the relation between overweight or obesity and lung function, and whether such relationship varies by age, sex, or asthma status. We searched PubMed, Scopus, CINAHL, Cochrane, and EMBASE for all studies (in English) reporting on obesity status (by body mass index) and lung function, from 2005 to 2017. Main outcomes were forced expiratory volume in 1 second (FEV 1 ), forced vital capacity (FVC), FEV 1 /FVC, forced expiratory flow between 25th and 75th percentile of the forced vital capacity (FEF 25-75 ), total lung capacity (TLC), residual volume (RV), and functional residual capacity (FRC). Random-effects models were used to calculate the pooled risk estimates; each study was weighed by the inverse effect size variance. For each outcome, we compared overweight or obese ("obese") subjects with those of normal weight. All measures of lung function were decreased among obese subjects. Obese adults showed a pattern (lower FEV 1 , FVC, TLC, and RV) different from obese children (more pronounced FEV 1 /FVC deficit with unchanged FEV 1 or FVC). There were also seemingly different patterns by asthma status, in that subjects without asthma had more marked decreases in FEV 1 , TLC, RV, and FRC than subjects with asthma. Subjects who were obese (as compared with overweight) had even further decreased FEV 1 , FVC, TLC, RV, and FRC. Obesity is detrimental to lung function, but specific patterns differ between children and adults. Physicians should be aware of adverse effects of obesity on lung function, and weight control should be considered in the management of airway disease among the obese. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Byberg, Kristine Kjer; Mikalsen, Ingvild Bruun; Eide, Geir Egil; Forman, Michele R; Júlíusson, Pétur Benedikt; Øymar, Knut
2018-01-19
An association between body weight in childhood and subsequent lung function and asthma has been suggested, but few longitudinal studies exist. Our aim was to explore whether weight-related anthropometric measurements through childhood were associated with lung function in late childhood. From an original nested case-control study, a cohort study was conducted, where lung function was measured in 463 children aged 12.8 years, and anthropometry was measured at several ages from birth through 12.8 years of age. Associations between anthropometrics and lung function were analysed using multiple linear and fractional polynomial regression analysis. Birthweight and body mass index (BMI; kg/m 2 ) at different ages through childhood were positively associated with forced vital capacity in percent of predicted (FVC %) and forced expiratory volume in the first second in percent of predicted (FEV 1 %) at 12.8 years of age. BMI, waist circumference, waist-to-height ratio and skinfolds at 12.8 years of age and the change in BMI from early to late childhood were positively associated with FVC % and FEV 1 % and negatively associated with FEV 1 /FVC and forced expiratory flow at 25-75% of FVC/FVC. Interaction analyses showed that positive associations between anthropometrics other than BMI and lung function were mainly found in girls. Inverse U-shaped associations were found between BMI at the ages of 10.8/11.8 (girls/boys) and 12.8 years (both genders) and FVC % and FEV 1 % at 12.8 years of age. Weight-related anthropometrics through childhood may influence lung function in late childhood. These findings may be physiological or associated with air flow limitation. Inverse U-shaped associations suggest a differential impact on lung function in normal-weight and overweight children. This study was observational without any health care intervention for the participants. Therefore, no trial registration number is available.
Influenza A virus-dependent remodeling of pulmonary clock function in a mouse model of COPD
Sundar, Isaac K.; Ahmad, Tanveer; Yao, Hongwei; Hwang, Jae-woong; Gerloff, Janice; Lawrence, B. Paige; Sellix, Michael T.; Rahman, Irfan
2015-01-01
Daily oscillations of pulmonary function depend on the rhythmic activity of the circadian timing system. Environmental tobacco/cigarette smoke (CS) disrupts circadian clock leading to enhanced inflammatory responses. Infection with influenza A virus (IAV) increases hospitalization rates and death in susceptible individuals, including patients with Chronic Obstructive Pulmonary Disease (COPD). We hypothesized that molecular clock disruption is enhanced by IAV infection, altering cellular and lung function, leading to severity in airway disease phenotypes. C57BL/6J mice exposed to chronic CS, BMAL1 knockout (KO) mice and wild-type littermates were infected with IAV. Following infection, we measured diurnal rhythms of clock gene expression in the lung, locomotor activity, pulmonary function, inflammatory, pro-fibrotic and emphysematous responses. Chronic CS exposure combined with IAV infection altered the timing of clock gene expression and reduced locomotor activity in parallel with increased lung inflammation, disrupted rhythms of pulmonary function, and emphysema. BMAL1 KO mice infected with IAV showed pronounced detriments in behavior and survival, and increased lung inflammatory and pro-fibrotic responses. This suggests that remodeling of lung clock function following IAV infection alters clock-dependent gene expression and normal rhythms of lung function, enhanced emphysematous and injurious responses. This may have implications for the pathobiology of respiratory virus-induced airway disease severity and exacerbations. PMID:25923474
Long-term sequelae after lung abscess in children - Two tertiary centers' experience.
Wojsyk-Banaszak, I; Krenke, K; Jończyk-Potoczna, K; Ksepko, K; Wielebska, A; Mikoś, M; Bręborowicz, A
2018-05-01
The aim of the study was to describe the epidemiology and clinical characteristic of children hospitalized with pneumonia complicated by lung abscess, as well as to evaluate the long-term sequelae of the disease. A retrospective review of medical records of all patients treated for pulmonary abscess in two tertiary centers was undertaken. Pulmonary function tests and lung ultrasound were performed at a follow-up. During the study period, 5151 children with pneumonia were admitted, and 49 (0.95%) cases were complicated with lung abscess. In 38 (77.5%) patients, lung abscess was treated solely with antibiotics, and in nine cases (16.3%) surgically. In 21 (51.21%) children complete radiological regression was documented. The mean time for radiological abnormalities regression was 84.14 ± 51.57 days, regardless of the treatment mode. Fifteen patients were followed up at 61.6 ± 28.3 months after discharge. Lung ultrasound revealed minor residual abnormalities: pleural thickening, subpleural consolidations and line B artefacts in 11 (73.3%) children. Pulmonary function tests results were abnormal in eight (53.3%) patients, the most frequent abnormality being hyperinflation. We did not find a restrictive disorder in any of the children. There were no deaths in our study. Lung abscess is a rare but severe complication of pneumonia in children. Most children recover uneventfully with no significant long-term pulmonary sequelae. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Tazi, Abdellatif; de Margerie, Constance; Naccache, Jean Marc; Fry, Stéphanie; Dominique, Stéphane; Jouneau, Stéphane; Lorillon, Gwenaël; Bugnet, Emmanuelle; Chiron, Raphael; Wallaert, Benoit; Valeyre, Dominique; Chevret, Sylvie
2015-03-14
The natural history of pulmonary Langerhans cell histiocytosis (PLCH) has been unclear due to the absence of prospective studies. The rate of patients who experience an early progression of their disease is unknown. Additionally, conflicting effects of smoking cessation on the outcome of PLCH have been reported. In this prospective, multicentre study, 58 consecutive patients with newly diagnosed PLCH were comprehensively evaluated over a two-year period. Our objectives were to estimate the incidence of early progression of the disease and to evaluate the impact of smoking status on lung function outcomes. Lung function deterioration was defined as a decrease of at least 15% in FEV1 and/or FVC and/or DLCO, compared with baseline values. At each visit, smoking status was recorded based on the patients' self-reports and urinary cotinine measurements that were blinded for the patients. The cumulative incidence of lung function outcomes over time was estimated using the non-parametric Kaplan-Meier method. Multivariate Cox models with time-dependent covariates were used to calculate the hazards ratios of the lung function deterioration associated with smoking status with adjustment for potential confounders. The cumulative incidence of lung function deterioration at 24 months was 38% (22% for FEV1 and DLCO, and 9% for FVC). In the multivariate analysis, smoking status and PaO2 at inclusion were the only factors associated with the risk of lung function deterioration. The patients' smoking statuses markedly changed over time. Only 20% of the patients quit using tobacco for the entire study period. Nevertheless, being a non-smoker was associated with a decreased risk of subsequent lung function deterioration, even after adjustment for baseline predictive factors. By serial lung computed tomography, the extent of cystic lesions increased in only 11% of patients. Serial lung function evaluation on a three- to six-month basis is essential for the follow-up of patients with recently diagnosed PLCH to identify those who experience an early progression of their disease. These patients are highly addicted to tobacco, and robust efforts should be undertaken to include them in smoking cessation programs. ClinicalTrials.gov: No: NCT01225601 .
Respiratory status of stainless steel and mild steel welders.
Kalliomäki, P L; Kalliomäki, K; Korhonen, O; Nordman, H; Rahkonen, E; Vaaranen, V
1982-01-01
Eighty-three full-time stainless steel and 29 mild steel welders from one shipyard were examined clinically, and their lung function was measured. The stainless steel welders had used both tungsten inert-gas (low-fume concentration) and manual metal-arc (MMA) (high-fume concentration) welding methods. The individual exposure of the welders was estimated based on the time spent doing MMA welding, the amount of retained contaminants in the lungs (magnetopulmography), and urinary chromium excretion. The results suggest that there is a greater prevalence of small airway disease among shipyard mild steel MMA welders than among stainless steel welders. Among the stainless steel welders the impairment of lung function parameters was associated with the MMA welding method. The type of welding, then, is important when the health hazards of welders are studied, and welders cannot be regarded as a single, homogeneous group.
Thompson, Sophie M; Connell, Marilyn G; van Kuppevelt, Toin H; Xu, Ruoyan; Turnbull, Jeremy E; Losty, Paul D; Fernig, David G; Jesudason, Edwin C
2011-06-14
Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures. The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme.We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2. The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality.
Koo, Hyeon-Kyoung; Jin, Kwang Nam; Kim, Deog Kyeom; Chung, Hee Soon; Lee, Chang-Hoon
2016-01-01
Objectives Emphysema is one of the prognostic factors for rapid lung function decline in patients with COPD, but the impact of incidentally detected emphysema on population without spirometric abnormalities has not been evaluated. This study aimed to determine whether emphysema detected upon computed tomography (CT) screening would accelerate the rate of lung function decline and influence the possibility of future development of airflow limitation in a population without spirometric abnormalities. Materials and methods Subjects who participated in a routine screening for health checkup and follow-up pulmonary function tests for at least 3 years between 2004 and 2010 were retrospectively enrolled. The percentage of low-attenuation area below −950 Hounsfield units (%LAA−950) was calculated automatically. A calculated value of %LAA−950 that exceeded 10% was defined as emphysema. Adjusted annual lung function decline was analyzed using random-slope, random-intercept mixed linear regression models. Results A total of 628 healthy subjects within the normal range of spriometric values were included. Multivariable analysis showed that the emphysema group exhibited a faster decline in forced vital capacity (−33.9 versus −18.8 mL/year; P=0.02). Emphysema was not associated with the development of airflow limitation during follow-up. Conclusion Incidental emphysema quantified using CT scan was significantly associated with a more rapid decline in forced vital capacity in the population with normative spirometric values. However, an association between emphysema and future development of airflow limitation was not observed. PMID:26893550
Evidence for a Cystic Fibrosis Enteropathy
Adriaanse, Marlou P. M.; van der Sande, Linda J. T. M.; van den Neucker, Anita M.; Menheere, Paul P. C. A.; Dompeling, Edward; Buurman, Wim A.; Vreugdenhil, Anita C. E.
2015-01-01
Background Previous studies have suggested the existence of enteropathy in cystic fibrosis (CF), which may contribute to intestinal function impairment, a poor nutritional status and decline in lung function. This study evaluated enterocyte damage and intestinal inflammation in CF and studied its associations with nutritional status, CF-related morbidities such as impaired lung function and diabetes, and medication use. Methods Sixty-eight CF patients and 107 controls were studied. Levels of serum intestinal-fatty acid binding protein (I-FABP), a specific marker for enterocyte damage, were retrospectively determined. The faecal intestinal inflammation marker calprotectin was prospectively studied. Nutritional status, lung function (FEV1), exocrine pancreatic insufficiency (EPI), CF-related diabetes (CFRD) and use of proton pump inhibitors (PPI) were obtained from the medical charts. Results Serum I-FABP levels were elevated in CF patients as compared with controls (p<0.001), and correlated negatively with FEV1 predicted value in children (r-.734, p<0.05). Faecal calprotectin level was elevated in 93% of CF patients, and correlated negatively with FEV1 predicted value in adults (r-.484, p<0.05). No correlation was found between calprotectin levels in faeces and sputum. Faecal calprotectin level was significantly associated with the presence of CFRD, EPI, and PPI use. Conclusion This study demonstrated enterocyte damage and intestinal inflammation in CF patients, and provides evidence for an inverse correlation between enteropathy and lung function. The presented associations of enteropathy with important CF-related morbidities further emphasize the clinical relevance. PMID:26484665
Reoma, Junewai L; Rojas, Alvaro; Krause, Eric M; Obeid, Nabeel R; Lafayette, Nathan G; Pohlmann, Joshua R; Padiyar, Niru P; Punch, Jeffery D; Cook, Keith E; Bartlett, Robert H
2009-01-01
Extracorporeal cardiopulmonary support (ECS) of donors after cardiac death (DCD) has been shown to improve abdominal organs for transplantation. This study assesses whether pulmonary congestion occurs during ECS with the heart arrested and describes an in vivo method to assess if lungs are suitable for transplantation from DCD donors after ECS resuscitation. Cardiac arrest was induced in 30 kg pigs, followed by 10 min of warm ischemia. Cannulae were placed into the right atrium (RA) and iliac artery, and veno-arterial ECS was initiated for 90 min with lungs inflated, group 1 (n = 5) or deflated, group 2 (n = 3). Left atrial pressures were measured as a marker for pulmonary congestion. After 90 min of ECS, lung function was evaluated. Cannulae were placed into the pulmonary artery (PA) and left ventricle (LV). A second pump was included, and ECS was converted to a bi-ventricular (bi-VAD) system. The RVAD drained from the RA and pumped into the PA, and the LVAD drained the LV and pumped into the iliac. This brought the lungs back into circulation for a 1-hr assessment period. The oxygenator was turned off, and ventilation was restarted. Flows, blood gases, PA and left atrial pressures, and compliance were recorded. In both the groups, LA pressure was <15 mm Hg during ECS. During the lung assessment period, PA flows were 1.4-2.2 L/min. PO2 was >300 mm Hg, with normal PCO2. Extracorporeal cardiopulmonary support resuscitation of DCD donors is feasible and allows for assessment of function before procurement. Extracorporeal cardiopulmonary support does not cause pulmonary congestion, and the lungs retain adequate function for transplantation. Compliance correlated with lung function.
Reoma, Junewai L.; Rojas, Alvaro; Krause, Eric M.; Obeid, Nabeel R.; Lafayette, Nathan G.; Pohlmann, Joshua R.; Padiyar, Niru P.; Punch, Jeffery D; Cook, Keith E.; Bartlett, Robert H
2009-01-01
Extracorporeal cardiopulmonary support(ECS) of donors following cardiac death(DCD) has been shown to improve abdominal organs for transplantation. This study assesses whether pulmonary congestion occurs during ECS with the heart arrested and describes an in-vivo method to assess if lungs are suitable for transplantation from DCD donors following ECS resuscitation. Cardiac arrest was induced in 30 kg pigs, followed by 10min. of warm ischemia. Cannulas were placed into right atrium (RA) and iliac artery, and veno-arterial ECS was initiated for 90min with lungs inflated, Group 1 (n=5) or deflated Group 2 (n=3). Left atrial pressures were measured as a marker for pulmonary congestion. After 90 min of ECS, lung function was evaluated. Cannulae were placed into the pulmonary artery (PA) and left ventricle (LV). A second pump was included, and ECS was converted to a bi-VAD system. The RVAD drained from the RA and pumped into the PA, and the LVAD drained the LV and pumped into the iliac. This brought the lungs back into circulation for a 1hr assessment period. The oxygenator was turned off, and ventilation restarted. Flows, blood gases, pulmonary artery and left atrial pressures, and compliance were recorded. In both groups: LA pressure was <15mmHg during ECS. During the lung assessment period, PA flows were 1.4−2.2 liter/min. PO2 was >300mmHg, with normal PCO2. ECS resuscitation of DCD donors is feasible and allows for assessment of function prior to procurement. ECS does not cause pulmonary congestion, and lungs retain adequate function for transplantation. Compliance correlated with lung function. PMID:19506464
Groves, Angela M.; Gow, Andrew J.; Massa, Christopher B.; Laskin, Jeffrey D.
2012-01-01
Surfactant protein–D (Sftpd) is a pulmonary collectin important in down-regulating macrophage inflammatory responses. In these experiments, we analyzed the effects of chronic macrophage inflammation attributable to loss of Sftpd on the persistence of ozone-induced injury, macrophage activation, and altered functioning in the lung. Wild-type (Sftpd+/+) and Sftpd−/− mice (aged 8 wk) were exposed to air or ozone (0.8 parts per million, 3 h). Bronchoalveolar lavage (BAL) fluid and tissue were collected 72 hours later. In Sftpd−/− mice, but not Sftpd+/+ mice, increased BAL protein and nitrogen oxides were observed after ozone inhalation, indicating prolonged lung injury and oxidative stress. Increased numbers of macrophages were also present in BAL fluid and in histologic sections from Sftpd−/− mice. These cells were enlarged and foamy, suggesting that they were activated. This conclusion was supported by findings of increased BAL chemotactic activity, and increased expression of inducible nitric oxide synthase in lung macrophages. In both Sftpd+/+ and Sftpd−/− mice, inhalation of ozone was associated with functional alterations in the lung. Although these alterations were limited to central airway mechanics in Sftpd+/+ mice, both central airway and parenchymal mechanics were modified by ozone exposure in Sftpd−/− mice. The most notable changes were evident in resistance and elastance spectra and baseline lung function, and in lung responsiveness to changes in positive end-expiratory pressure. These data demonstrate that a loss of Sftpd is associated with prolonged lung injury, oxidative stress, and macrophage accumulation and activation in response to ozone, and with more extensive functional changes consistent with the loss of parenchymal integrity. PMID:22878412
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Nilesh N., E-mail: nmistry@som.umaryland.edu; Diwanji, Tejan; Shi, Xiutao
2013-11-15
Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1more » session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R{sup 2} of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic resonance imaging. These results were demonstrated on retrospective analysis of patient data, and further research using prospective data is under way to validate this technique against established clinical tests.« less
Quintana, Harry Karmouty; Cannet, Catherine; Zurbruegg, Stefan; Blé, François-Xavier; Fozard, John R; Page, Clive P; Beckmann, Nicolau
2006-12-01
Elastase-induced changes in lung morphology and function were detected in spontaneously breathing rats using conventional proton MRI at 4.7 T. A single dose of porcine pancreatic elastase (75 U/100 g body weight) or vehicle (saline) was administered intratracheally (i.t.) to male Brown Norway (BN) rats. MRI fluid signals were detected in the lungs 24 hr after administration of elastase and resolved within 2 weeks. These results correlated with perivascular edema and cellular infiltration observed histologically. Reductions in MRI signal intensity of the lung parenchyma, and increases in lung volume were detected as early as 2 weeks following elastase administration and remained uniform throughout the study, which lasted 8 weeks. Observations were consistent with air trapping resulting from emphysema detected histologically. In a separate experiment, animals were treated daily intraperitoneally (i.p.) with all-trans-retinoic acid (ATRA; 500 microg/kg body weight) or its vehicle (triglyceride oil) starting on day 21 after elastase administration and continuing for 12 days. Under these conditions, ATRA did not elicit a reversal of elastase-induced lung damage as measured by MRI and histology. The present approach complements other validated applications of proton MRI in experimental lung research as a method for assessing drugs in rat models of respiratory diseases.
NASA Astrophysics Data System (ADS)
Tan, Kok Liang; Tanaka, Toshiyuki; Nakamura, Hidetoshi; Shirahata, Toru; Sugiura, Hiroaki
Chronic Obstructive Pulmonary Disease is a disease in which the airways and tiny air sacs (alveoli) inside the lung are partially obstructed or destroyed. Emphysema is what occurs as more and more of the walls between air sacs get destroyed. The goal of this paper is to produce a more practical emphysema-quantification algorithm that has higher correlation with the parameters of pulmonary function tests compared to classical methods. The use of the threshold range from approximately -900 Hounsfield Unit to -990 Hounsfield Unit for extracting emphysema from CT has been reported in many papers. From our experiments, we realize that a threshold which is optimal for a particular CT data set might not be optimal for other CT data sets due to the subtle radiographic variations in the CT images. Consequently, we propose a multi-threshold method that utilizes ten thresholds between and including -900 Hounsfield Unit and -990 Hounsfield Unit for identifying the different potential emphysematous regions in the lung. Subsequently, we divide the lung into eight sub-volumes. From each sub-volume, we calculate the ratio of the voxels with the intensity below a certain threshold. The respective ratios of the voxels below the ten thresholds are employed as the features for classifying the sub-volumes into four emphysema severity classes. Neural network is used as the classifier. The neural network is trained using 80 training sub-volumes. The performance of the classifier is assessed by classifying 248 test sub-volumes of the lung obtained from 31 subjects. Actual diagnoses of the sub-volumes are hand-annotated and consensus-classified by radiologists. The four-class classification accuracy of the proposed method is 89.82%. The sub-volumetric classification results produced in this study encompass not only the information of emphysema severity but also the distribution of emphysema severity from the top to the bottom of the lung. We hypothesize that besides emphysema severity, the distribution of emphysema severity in the lung also plays an important role in the assessment of the overall functionality of the lung. We confirm our hypothesis by showing that the proposed sub-volumetric classification results correlate with the parameters of pulmonary function tests better than classical methods. We also visualize emphysema using a technique called the transparent lung model.
Airway Pressure Release Ventilation During Ex Vivo Lung Perfusion Attenuates Injury
Mehaffey, J. Hunter; Charles, Eric J.; Sharma, Ashish K.; Money, Dustin; Zhao, Yunge; Stoler, Mark H; Lau, Christine L; Tribble, Curtis G.; Laubach, Victor E.; Roeser, Mark E.; Kron, Irving L.
2016-01-01
Objective Critical organ shortages have resulted in Ex Vivo Lung Perfusion (EVLP) gaining clinical acceptance for lung evaluation and rehabilitation to expand the use of Donation after Circulatory Death (DCD) organs for lung transplantation. We hypothesized that an innovative use of airway pressure release ventilation (APRV) during EVLP improves lung function after transplantation. Methods Two groups (n=4 animals/group) of porcine DCD donor lungs were procured after hypoxic cardiac arrest and a 2-hour period of warm ischemia, followed by a 4-hour period of EVLP rehabilitation with either standard conventional volume-based ventilation or pressure-based APRV. Left lungs were subsequently transplanted into recipient animals and reperfused for 4 hours. Blood gases for PaO2/FiO2 ratios, airway pressures for calculation of compliance, and percent wet weight gain during EVLP and reperfusion were measured. Results APRV during EVLP significantly improved left-lung oxygenation at 2-hours (561.5±83.9 vs 341.1±136.1 mmHg) and 4-hours (569.1±18.3 vs 463.5±78.4 mmHg). Similarly, compliance was significantly higher at 2-hours (26.0±5.2 vs 15.0±4.6 mL/cmH2O) and 4-hours (30.6±1.3 vs 17.7±5.9 mL/cmH2O) after transplantation. Finally, APRV significantly reduced lung edema development on EVLP based on percentage weight gain (36.9±14.6 vs 73.9±4.9%). There was no difference in additional edema accumulation 4 hours after reperfusion. Conclusions Pressure-directed APRV ventilation strategy during EVLP improves rehabilitation of severely injured DCD lungs. After transplant these lungs demonstrate superior lung-specific oxygenation and dynamic compliance compared to lungs ventilated with standard conventional ventilation. This strategy, if implemented into clinical EVLP protocols, could advance the field of DCD lung rehabilitation to expand the lung donor pool. PMID:27742245