Sample records for reticular calcium release

  1. Nitric oxide in B6 mouse and nitric oxide-sensitive soluble guanylate cyclase in cat modulate acetylcholine release in pontine reticular formation.

    PubMed

    Lydic, Ralph; Garza-Grande, Ricardo; Struthers, Richard; Baghdoyan, Helen A

    2006-05-01

    ACh regulates arousal, and the present study was designed to provide insight into the neurochemical mechanisms modulating ACh release in the pontine reticular formation. Nitric oxide (NO)-releasing beads microinjected into the pontine reticular formation of C57BL/6J (B6) mice significantly (P < 0.0001) increased ACh release. Microdialysis delivery of the NO donor N-ethyl-2-(1-ethyl-2-hydroxy-2-nitrosohydrazino)-ethanamine (NOC-12) to the mouse pontine reticular formation also caused a concentration-dependent increase in ACh release (P < 0.001). These are the first neurochemical data showing that ACh release in the pontine reticular formation of the B6 mouse is modulated by NO. The signal transduction cascade through which NO modulates ACh release in the pontine reticular formation has not previously been characterized. Therefore, an additional series of studies quantified the effects of a soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), on ACh release in the cat medial pontine reticular formation. During naturally occurring states of sleep and wakefulness, but not anesthesia, ODQ caused a significant (P < 0.001) decrease in ACh release. These results show for the first time that NO modulates ACh in the medial pontine reticular formation of the cat via an NO-sensitive sGC signal transduction cascade. Isoflurane and halothane anesthesia have been shown to decrease ACh release in the medial pontine reticular formation. The finding that ODQ did not alter ACh release during isoflurane or halothane anesthesia demonstrates that these anesthetics disrupt the NO-sensitive sGC-cGMP pathway. Considered together, results from the mouse and cat indicate that NO modulates ACh release in arousal-promoting regions of the pontine reticular formation via an NO-sensitive sGC-cGMP pathway.

  2. Effects of inorganic phosphate and ADP on calcium handling by the sarcoplasmic reticulum in rat skinned cardiac muscles.

    PubMed

    Xiang, J Z; Kentish, J C

    1995-03-01

    The aim was to investigate whether, and how, increases in inorganic phosphate (Pi) and ADP, similar to those occurring intracellularly during early myocardial ischaemia, affect the calcium handling of the sarcoplasmic reticulum. Rat ventricular trabeculae were permeabilised with saponin. The physiological process of calcium induced calcium release (CICR) from the muscle sarcoplasmic reticulum was triggered via flash photolysis of the "caged Ca2+", nitr-5. Alternatively, calcium release was induced by rapid application of caffeine to give an estimate of sarcoplasmic reticular calcium loading. The initial rate of sarcoplasmic reticular calcium pumping was also assessed by photolysis of caged ATP at saturating [Ca2+]. Myoplasmic [Ca2+] (using fluo-3) and isometric force were measured. Pi (2-20 mM) significantly depressed the magnitude of CICR and the associated force transient. Sarcoplasmic reticular calcium loading was inhibited even more than CICR by Pi, suggesting that reduced calcium loading could account for all of the inhibitory effect of Pi on CICR and that Pi may slightly activate the calcium release mechanism. The reduced sarcoplasmic reticular calcium loading seemed to be due to a fall in the free energy of ATP hydrolysis (delta GATP) available for the calcium pump, since equal decreases in delta GATP produced by adding both Pi and ADP in various ratios caused similar falls in the calcium loading of the sarcoplasmic reticulum. The caged ATP experiments indicated that Pi (20 mM) did not affect the rate constant of sarcoplasmic reticular calcium uptake. ADP (10 mM) alone, or with 1 mM Pi, inhibited calcium loading. In spite of this, ADP (10 mM) did not alter CICR and, when 1 mM Pi was added, ADP increased CICR above control. An increase in intracellular Pi reduces sarcoplasmic reticular calcium loading and thus depresses the CICR. This could be an important contributing factor in the hypoxic or ischaemic contractile failure of the myocardium. However the

  3. Intracellular sphingosine releases calcium from lysosomes.

    PubMed

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-11-27

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC.

  4. Intracellular sphingosine releases calcium from lysosomes

    PubMed Central

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. DOI: http://dx.doi.org/10.7554/eLife.10616.001 PMID:26613410

  5. Burst discharges in neurons of the thalamic reticular nucleus are shaped by calcium-induced calcium release.

    PubMed

    Coulon, Philippe; Herr, David; Kanyshkova, Tatyana; Meuth, Patrick; Budde, Thomas; Pape, Hans-Christian

    2009-01-01

    The nucleus reticularis thalami (NRT) is a layer of inhibitory neurons that surrounds the dorsal thalamus. It appears to be the 'pacemaker' of certain forms of slow oscillations in the thalamus and was proposed to be a key determinant of the internal attentional searchlight as well as the origin of hypersynchronous activity during absence seizures. Neurons of the NRT exhibit a transient depolarization termed low threshold spike (LTS) following sustained hyperpolarization. This is caused by the activation of low-voltage-activated Ca2+ channels (LVACC). Although the role of these channels in thalamocortical oscillations was studied in great detail, little is known about the downstream intracellular Ca2+ signalling pathways and their feedback onto the oscillations. A signalling triad consisting of the sarco(endo)plasmic reticulum calcium ATPase (SERCA), Ca2+ activated K+ channels (SK2), and LVACC is active in dendrites of NRT neurons and shapes rhythmic oscillations. The aim of our study was to find out (i) if and how Ca2+-induced Ca2+ release (CICR) via ryanodine receptors (RyR) can be evoked in NRT neurons and (ii) how the released Ca2+ affects burst activity. Combining electrophysiological, immunohistochemical, and two-photon Ca2+ imaging techniques, we show that CICR in NRT neurons takes place by a cell-type specific coupling of LVACC and RyR. CICR could be evoked by the application of caffeine, by activation of LVACC, or by repetitive LTS generation. During the latter, CICR contributed 30% to the resulting build-up of [Ca2+]i. CICR was abolished by cyclopiazonic acid, a specific blocker for SERCA, or by high concentrations of ryanodine (50 microM). Unlike other thalamic nuclei, in the NRT the activation of high-voltage-activated Ca2+ channels failed to evoke CICR. While action potentials contributed little to the build-up of [Ca2+]i upon repetitive LTS generation, the Ca2+ released via RyR significantly reduced the number of action potentials during an LTS and

  6. ACUTE EFFECT OF ETHANOL ON HEPATIC RETICULAR G6Pase AND Ca2+ POOL

    PubMed Central

    Jacobs-Harper, Amy; Crumbly, Ashlee; Romani, Andrea

    2012-01-01

    Background Hydrolysis of glucose 6-phosphate via glucose 6-phosphatase enlarges the reticular Ca2+ pool of the hepatocyte. Exposure of liver cells to ethanol impairs reticular Ca2+ homeostasis. The present study investigated the effect of acute ethanol administration on glucose 6-phosphate supported Ca2+ accumulation in liver cells. Methods Total microsomes were isolated from rat livers acutely perfused with varying doses of ethanol (0.01%, 0.1%, or 1% v/v) for 8 minutes. Calcium uptake was assessed by 45Ca redistribution. Inorganic phosphate (Pi) formation was measured as an indicator of glucose 6-phosphatase hydrolytic activity. Results Glucose 6-phosphate-supported Ca2+ uptake decreased in a manner directly proportional to the dose of ethanol infused in the liver whereas Ca2+ uptake via SERCA pumps was decreased by ~25% only at the highest dose of alcohol administered. The reduced accumulation of Ca2+ within the microsomes resulted in a smaller IP3-induced Ca2+ release. Kinetic assessment of IP3 and passive Ca2+ release indicated a faster mobilization in microsomes from ethanol-treated livers, suggesting alcohol-induced alteration of Ca2+ releasing mechanisms. Pre-treatment of livers with chloromethiazole or dithio-threitol, but not 4-methyl-pyrazole prevented the inhibitory effect of ethanol on glucose 6-phosphatase activity and Ca2+ homeostasis. Conclusions Liver glucose 6-phosphatase activity and IP3-mediated Ca2+ release are rapidly inhibited following acute (8 min) exposure to ethanol, thus compromising the ability of the endoplasmic reticulum to dynamically modulate Ca2+ homeostasis in the hepatocyte. The protective effect of chloromethiazole and di-thio-threitol suggests that the inhibitory effect of ethanol is mediated through its metabolism via reticular cyP4502E1 and consequent free radicals formation. PMID:22958133

  7. Calsequestrin mediates changes in spontaneous calcium release profiles.

    PubMed

    Tania, Nessy; Keener, James P

    2010-08-07

    Calsequestrin (CSQ) is the primary calcium buffer within the sarcoplasmic reticulum (SR) of cardiac cells. It has also been identified as a regulator of Ryanodine receptor (RyR) calcium release channels by serving as a SR luminal sensor. When calsequestrin is free and unbound to calcium, it can bind to RyR and desensitize the channel from cytoplasmic calcium activation. In this paper, we study the role of CSQ as a buffer and RyR luminal sensor using a mechanistic model of RyR-CSQ interaction. By using various asymptotic approximations and mean first exit time calculation, we derive a minimal model of a calcium release unit which includes CSQ dependence. Using this model, we then analyze the effect of changing CSQ expression on the calcium release profile and the rate of spontaneous calcium release. We show that because of its buffering capability, increasing CSQ increases the spark duration and size. However, because of luminal sensing effects, increasing CSQ depresses the basal spark rate and increases the critical SR level for calcium release termination. Finally, we show that with increased bulk cytoplasmic calcium concentration, the CRU model exhibits deterministic oscillations.

  8. Teaching Calcium-Induced Calcium Release in Cardiomyocytes Using a Classic Paper by Fabiato

    ERIC Educational Resources Information Center

    Liang, Willmann

    2008-01-01

    This teaching paper utilizes the materials presented by Dr. Fabiato in his review article entitled "Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum." In the review, supporting evidence of calcium-induced calcium release (CICR) is presented. Data concerning potential objections to the CICR theory are discussed as well. In…

  9. The reticular formation.

    PubMed

    Horn, Anja K E

    2006-01-01

    The reticular formation of the brainstem contains functional cell groups that are important for the control of eye, head, or lid movements. The mesencephalic reticular formation is primarily involved in the control of vertical gaze, the paramedian pontine reticular formation in horizontal gaze, and the medullary pontine reticular formation in head movements and gaze holding. In this chapter, the locations, connections, and histochemical properties of the functional cell groups are reviewed and correlated with specific subdivisions of the reticular formation.

  10. Altered elementary calcium release events and enhanced calcium release by thymol in rat skeletal muscle.

    PubMed

    Szentesi, Péter; Szappanos, Henrietta; Szegedi, Csaba; Gönczi, Monika; Jona, István; Cseri, Julianna; Kovács, László; Csernoch, László

    2004-03-01

    The effects of thymol on steps of excitation-contraction coupling were studied on fast-twitch muscles of rodents. Thymol was found to increase the depolarization-induced release of calcium from the sarcoplasmic reticulum, which could not be attributed to a decreased calcium-dependent inactivation of calcium release channels/ryanodine receptors or altered intramembrane charge movement, but rather to a more efficient coupling of depolarization to channel opening. Thymol increased ryanodine binding to heavy sarcoplasmic reticulum vesicles, with a half-activating concentration of 144 micro M and a Hill coefficient of 1.89, and the open probability of the isolated and reconstituted ryanodine receptors, from 0.09 +/- 0.03 to 0.22 +/- 0.04 at 30 micro M. At higher concentrations the drug induced long-lasting open events on a full conducting state. Elementary calcium release events imaged using laser scanning confocal microscopy in the line-scan mode were reduced in size, 0.92 +/- 0.01 vs. 0.70 +/- 0.01, but increased in duration, 56 +/- 1 vs. 79 +/- 1 ms, by 30 micro M thymol, with an increase in the relative proportion of lone embers. Higher concentrations favored long events, resembling embers in control, with duration often exceeding 500 ms. These findings provide direct experimental evidence that the opening of a single release channel will generate an ember, rather than a spark, in mammalian skeletal muscle.

  11. Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping.

    PubMed

    Natale, L C; Rodrigues, M C; Xavier, T A; Simões, A; de Souza, D N; Braga, R R

    2015-01-01

    To compare the ion release and mechanical properties of a calcium hydroxide (Dycal) and two calcium silicate (MTA Angelus and Biodentine) cements. Calcium and hydroxyl ion release in water from 24-h set cements were calculated from titration with HCl (n = 3). Calcium release after 7, 14, 21 and 28 days at pH 5.5 and 7.0 was measured using ICP-OES (n = 6). Flexural strength (FS) and modulus (E) were tested after 48-h storage, and compressive strength (CS) was tested after 48 h and 7 days (n = 10). Ion release and mechanical data were subjected to anova/Tukey and Kruskal-Wallis/Mann-Whitney tests, respectively (α = 0.05). Titration curves revealed that Dycal released significantly fewer ions in solution than calcium silicates (P < 0.001). Calcium release remained constant at pH 7.0, whilst at pH 5.5, it dropped significantly by 24% after 21 days (P < 0.05). At pH 5.5, MTA Angelus released significantly more calcium than Dycal (P < 0.01), whilst Biodentine had superior ion release than Dycal at pH 7.0 (P < 0.01). Biodentine had superior flexural strength, flexural modulus and compressive strength than the other cements, whilst MTA Angelus had higher modulus than Dycal (P < 0.001). Immediate calcium and hydroxyl ion release in solution was significantly lower for Dycal. In general, all materials released constant calcium levels over 28 days, but release from Dycal was significantly lower than Biodentine and MTA Angelus depending on pH conditions. Biodentine had substantially higher strength and modulus than MTA Angelus and Dycal, both of which demonstrated low stress-bearing capabilities. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum

    PubMed Central

    Echevarría, Wihelma; Leite, M. Fatima; Guerra, Mateus T.; Zipfel, Warren R.; Nathanson, Michael H.

    2013-01-01

    Calcium is a second messenger in virtually all cells and tissues1. Calcium signals in the nucleus have effects on gene transcription and cell growth that are distinct from those of cytosolic calcium signals; however, it is unknown how nuclear calcium signals are regulated. Here we identify a reticular network of nuclear calcium stores that is continuous with the endoplasmic reticulum and the nuclear envelope. This network expresses inositol 1,4,5-trisphosphate (InsP3) receptors, and the nuclear component of InsP3-mediated calcium signals begins in its locality. Stimulation of these receptors with a little InsP3 results in small calcium signals that are initiated in this region of the nucleus. Localized release of calcium in the nucleus causes nuclear protein kinase C (PKC) to translocate to the region of the nuclear envelope, whereas release of calcium in the cytosol induces translocation of cytosolic PKC to the plasma membrane. Our findings show that the nucleus contains a nucleoplasmic reticulum with the capacity to regulate calcium signals in localized subnuclear regions. The presence of such machinery provides a potential mechanism by which calcium can simultaneously regulate many independent processes in the nucleus. PMID:12717445

  13. Calcium-Induced Calcium Release during Action Potential Firing in Developing Inner Hair Cells

    PubMed Central

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J.

    2015-01-01

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  14. Releasing effects in flame photometry: Determination of calcium

    USGS Publications Warehouse

    Dinnin, J.I.

    1960-01-01

    Strontium, lanthanum, neodymium, samarium, and yttrium completely release the flame emission of calcium from the depressive effects of sulfate, phosphate, and aluminate. Magnesium, beryllium, barium, and scandium release most of the calcium emission. These cations, when present in high concentration, preferentially form compounds with the depressing anions when the solution is evaporated rapidly in the flame. The mechanism of the interference and releasing effects is explained on the basis of the chemical equilibria in the evaporating droplets of solution and is shown to depend upon the nature of the compounds present in the aqueous phase of the solution. The need for background correction techniques is stressed. The releasing effect is used in the determination of calcium in silicate rocks without the need for separations.

  15. Putting out the fire: what terminates calcium-induced calcium release in cardiac muscle?

    PubMed

    Stern, Michael D; Cheng, Heping

    2004-06-01

    The majority of contractile calcium in cardiac muscle is released from stores in the sarcoplasmic reticulum (SR), by a process of calcium-induced calcium release (CICR) through ryanodine receptors. Because CICR is intrinsically self-reinforcing, the stability of and graded regulation of cardiac EC coupling appear paradoxical. It is now well established that this gradation results from the stochastic recruitment of varying numbers of elementary local release events, which may themselves be regenerative, and which can be directly observed as calcium sparks. Ryanodine receptors (RyRs) are clustered in dense lattices, and most calcium sparks are now believed to involve activation of multiple RyRs. This implies that local CICR is regenerative, requiring a mechanism to terminate it. It was initially assumed that this mechanism was inactivation of the RyR, but during the decade since the discovery of sparks, no sufficiently strong inactivation mechanism has been demonstrated in vitro and all empirically determined gating schemes for the RyR give unstable EC coupling in Monte Carlo simulations. We consider here possible release termination mechanisms. Stochastic attrition is the spontaneous decay of active clusters due to random channel closure; calculations show that it is much too slow unless assisted by another process. Calcium-dependent RyR inactivation involving third-party proteins remains a viable but speculative mechanism; current candidates include calmodulin and sorcin. Local depletion of SR release terminal calcium could terminate release, however calculations and measurements leave it uncertain whether a sufficient diffusion resistance exists within the SR to sustain such depletion. Depletion could be assisted by dependence of RyR activity on SR lumenal [Ca(2+)]. There is substantial evidence for such lumenal activation, but it is not clear if it is a strong enough effect to account for the robust termination of sparks. The existence of direct interactions

  16. Calcium-Induced calcium release during action potential firing in developing inner hair cells.

    PubMed

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J

    2015-03-10

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  17. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism

    PubMed Central

    Petrou, Terry; Olsen, Hervør L.; Thrasivoulou, Christopher; Masters, John R.; Ashmore, Jonathan F.

    2017-01-01

    Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i. We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds. PMID:27980039

  18. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivatesmore » a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release.« less

  19. Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels.

    PubMed

    Jarvis, Scott E; Zamponi, Gerald W

    2005-05-01

    Calcium entry through presynaptic voltage-gated calcium channels is essential for neurotransmitter release. The two major types of presynaptic calcium channels contain a synaptic protein interaction site that physically interacts with synaptic vesicle release proteins. This is thought to tighten the coupling between the sources of calcium entry and the neurotransmitter release machinery. Conversely, the binding of synaptic proteins to presynaptic calcium channels regulates calcium channel activity. Hence, presynaptic calcium channels act not only as the masters of the synaptic release process, but also as key targets for feedback inhibition.

  20. Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Reynolds, Mark A.; Xu, Hockin H. K.

    2016-11-01

    White spot lesions (WSL) due to enamel demineralization are major complications for orthodontic treatments. Calcium phosphate (CaP) dental resins with Ca and P ion releases are promising for remineralization. However, previous Ca and P releases lasted for only weeks. Experimental orthodontic cements were developed using pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at mass ratio of 1:1 (PE); and PE plus 10% of 2-hydroxyethyl methacrylate (HEMA) and 5% of bisphenol A glycidyl dimethacrylate (BisGMA) (PEHB). Particles of amorphous calcium phosphate (ACP) were incorporated into PE and PEHB at 40% filler level. Specimens were tested for bracket-enamel shear bond strength, water sorption, CaP release, and ion recharge and re-release. PEHB+40ACP had higher bracket-enamel bond strength and ion release and rechargeability than PE+40ACP. ACP incorporation into the novel orthodontic cement did not adversely affect the bracket-enamel bond strength. Ion release and re-release from the novel ACP orthodontic cement indicated favorable release and re-release patterns. The recharged orthodontic cement could release CaP ions continuously for four weeks without further recharge. Novel rechargeable orthodontic cement containing ACP was developed with a high bracket-enamel bond strength and the ability to be repeatedly recharged to maintain long-term high levels of CaP ion releases.

  1. Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release

    PubMed Central

    Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Reynolds, Mark A.; Xu, Hockin H. K.

    2016-01-01

    White spot lesions (WSL) due to enamel demineralization are major complications for orthodontic treatments. Calcium phosphate (CaP) dental resins with Ca and P ion releases are promising for remineralization. However, previous Ca and P releases lasted for only weeks. Experimental orthodontic cements were developed using pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at mass ratio of 1:1 (PE); and PE plus 10% of 2-hydroxyethyl methacrylate (HEMA) and 5% of bisphenol A glycidyl dimethacrylate (BisGMA) (PEHB). Particles of amorphous calcium phosphate (ACP) were incorporated into PE and PEHB at 40% filler level. Specimens were tested for bracket-enamel shear bond strength, water sorption, CaP release, and ion recharge and re-release. PEHB+40ACP had higher bracket-enamel bond strength and ion release and rechargeability than PE+40ACP. ACP incorporation into the novel orthodontic cement did not adversely affect the bracket-enamel bond strength. Ion release and re-release from the novel ACP orthodontic cement indicated favorable release and re-release patterns. The recharged orthodontic cement could release CaP ions continuously for four weeks without further recharge. Novel rechargeable orthodontic cement containing ACP was developed with a high bracket-enamel bond strength and the ability to be repeatedly recharged to maintain long-term high levels of CaP ion releases. PMID:27808251

  2. Reticular foreign bodies. Causative or coincidence?

    PubMed

    Farrow, C S

    1999-07-01

    A radiographically identified penetrating reticular foreign body is a near-certain cause of traumatic reticulitis, parareticular abscessation, or peritonitis. An extrareticular wire or nail is the most likely cause of reticulitis or peritonitis in an animal with compatible clinical signs. An immobile reticular foreign body may be trapped in the reticular mucosa, penetrating a mucosal fold (but not the reticular wall), or piercing the wall of the reticulum.

  3. Calcium-pH crosstalks in rat mast cells: cytosolic alkalinization, but not intracellular calcium release, is a sufficient signal for degranulation

    PubMed Central

    Alfonso, A; Cabado, A G; Vieytes, M R; Botana, L M

    2000-01-01

    The aim of this work was to study the relationship between intracellular alkalinization, calcium fluxes and histamine release in rat mast cells. Intracellular alkalinization was induced by nigericin, a monovalent cation ionophore, and by NH4Cl (ammonium chloride). Calcium cytosolic and intracellular pH were measured by fluorescence digital imaging using Fura-2-AM and BCECF-AM.In rat mast cells, nigericin and NH4Cl induce a dose-dependent intracellular alkalinization, a dose-dependent increase in intracellular calcium levels by releasing calcium from intracellular pools, and an activation of capacitative calcium influx.The increase in both intracellular calcium and pH activates exocytosis (histamine release) in the absence of external calcium. Under the same conditions, thapsigargin does not activate exocytosis, the main difference being that thapsigargin does not alkalinize the cytosol.After alkalinization, histamine release is intracellular-calcium dependent. With 2.5 mM EGTA and thapsigargin the cell response decreases by 62%.The cytosolic alkalinization, in addition to the calcium increase it is enough signal to elicit the exocytotic process in rat mast cells. PMID:10952669

  4. Porcine malignant hyperthermia susceptibility: hypersensitive calcium-release mechanism of skeletal muscle sarcoplasmic reticulum.

    PubMed Central

    O'Brien, P J

    1986-01-01

    This study tested the hypothesis that calcium-release from sarcoplasmic reticulum isolated from malignant hyperthermia swine had abnormal concentration-dependency on release modulators. Halothane stimulated half-maximal calcium-release at similar concentrations for malignant hyperthermia and control sarcoplasmic reticulum (0.10 +/- 0.04 mM). However, concentrations causing half-maximal calcium-release were lower for malignant hyperthermia sarcoplasmic reticulum (P less than 0.001) by an order of magnitude for Ca2+ (28.1 +/- 8.3 versus 1.23 +/- 0.45 nM), adenosine triphosphate (0.33 +/- 0.09 versus 0.023 +/- 0.014 mM) and caffeine (7.79 +/- 1.56 versus 0.80 +/- 0.44 mM). Half-maximal inhibition by Mg2+ occurred at threefold higher concentrations for malignant hyperthermia sarcoplasmic reticulum (0.23 +/- 0.02 versus 0.78 +/- 0.17 mM). The Ca2+-sensitivity curves for calcium-release by sarcoplasmic reticulum isolated from heterozygotes for the malignant hyperthermia-defect were indistinguishable from the averages of the curves for controls and malignant hyperthermia-homozygotes. Results of this study suggest that malignant hyperthermia is initiated due to a hypersensitive calcium-release mechanism which is inherited in an autosomal, codominant pattern and may be diagnosed using calcium-release sensitivity-tests on isolated sarcoplasmic reticulum. Images Fig. 1. PMID:3742367

  5. Down-regulation of L-type calcium channel and sarcoplasmic reticular Ca(2+)-ATPase mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor, calsequestrin and phospholamban: an insight into the mechanism of atrial electrical remodeling.

    PubMed

    Lai, L P; Su, M J; Lin, J L; Lin, F Y; Tsai, C H; Chen, Y S; Huang, S K; Tseng, Y Z; Lien, W P

    1999-04-01

    We investigated the gene expression of calcium-handling genes including L-type calcium channel, sarcoplasmic reticular calcium adenosine triphosphatase (Ca(2+)-ATPase), ryanodine receptor, calsequestrin and phospholamban in human atrial fibrillation. Recent studies have demonstrated that atrial electrical remodeling in atrial fibrillation is associated with intracellular calcium overload. However, the changes of calcium-handling proteins remain unclear. A total of 34 patients undergoing open heart surgery were included. Atrial tissue was obtained from the right atrial free wall, right atrial appendage, left atrial free wall and left atrial appendage, respectively. The messenger ribonucleic acid (mRNA) amount of the genes was measured by reverse transcription-polymerase chain reaction and normalized to the mRNA levels of glyceraldehyde 3-phosphate dehydrogenase. The mRNA of L-type calcium channel and of Ca(2+)-ATPase was significantly decreased in patients with persistent atrial fibrillation for more than 3 months (0.36+/-0.26 vs. 0.90+/-0.88 for L-type calcium channel; 0.69+/-0.42 vs. 1.21+/-0.68 for Ca(2+)-ATPase; both p < 0.05, all data in arbitrary unit). We further demonstrated that there was no spatial dispersion of the gene expression among the four atrial tissue sampling sites. Age, gender and underlying cardiac disease had no significant effects on the gene expression. In contrast, the mRNA levels of ryanodine receptor, calsequestrin and phospholamban showed no significant change in atrial fibrillation. L-type calcium channel and the sarcoplasmic reticular Ca(2+)-ATPase gene were down-regulated in atrial fibrillation. These changes may be a consequence of, as well as a contributory factor for, atrial fibrillation.

  6. Kinetic Studies of Calcium-Induced Calcium Release in Cardiac Sarcoplasmic Reticulum Vesicles

    PubMed Central

    Sánchez, Gina; Hidalgo, Cecilia; Donoso, Paulina

    2003-01-01

    Fast Ca2+ release kinetics were measured in cardiac sarcoplasmic reticulum vesicles actively loaded with Ca2+. Release was induced in solutions containing 1.2 mM free ATP and variable free [Ca2+] and [Mg2+]. Release rate constants (k) were 10-fold higher at pCa 6 than at pCa 5 whereas Ryanodine binding was highest at pCa ≤5. These results suggest that channels respond differently when exposed to sudden [Ca2+] changes than when exposed to Ca2+ for longer periods. Vesicles with severalfold different luminal calcium contents exhibited double exponential release kinetics at pCa 6, suggesting that channels undergo time-dependent activity changes. Addition of Mg2+ produced a marked inhibition of release kinetics at pCa 6 (K0.5 = 63 μM) but not at pCa 5. Coexistence of calcium activation and inhibition sites with equally fast binding kinetics is proposed to explain this behavior. Thimerosal activated release kinetics at pCa 5 at all [Mg2+] tested and increased at pCa 6 the K0.5 for Mg2+ inhibition, from 63 μM to 136 μM. We discuss the possible relevance of these results, which suggest release through RyR2 channels is subject to fast regulation by Ca2+ and Mg2+ followed by time-dependent regulation, to the physiological mechanisms of cardiac channel opening and closing. PMID:12668440

  7. Calcium modified edible Canna (Canna edulis L) starch for controlled released matrix

    NASA Astrophysics Data System (ADS)

    Putri, A. P.; Ridwan, M.; Darmawan, T. A.; Darusman, F.; Gadri, A.

    2017-07-01

    Canna edulis L starch was modified with calcium chloride in order to form controlled released matrix. Present study aim to analyze modified starch characteristic. Four different formulation of ondansetron granules was used to provide dissolution profile of controlled released, two formula consisted of 15% and 30% modified starch, one formula utilized matrix reference standards and the last granules was negative control. Methocel-hydroxypropyl methyl cellulose was used as controlled released matrix reference standards in the third formula. Calcium starch was synthesized in the presence of sodium hydroxide to form gelatinized mass and calcium chloride as the cross linking agent. Physicochemical and dissolution properties of modified starch for controlled released application were investigated. Modified starch has higher swelling index, water solubility and compressibility index. Three of four different formulation of granules provide dissolution profile of controlled released. The profiles indicate granules which employed calcium Canna edulis L starch as matrix are able to resemble controlled drug released profile of matrix reference, however their bigger detain ability lead to lower bioavailability.

  8. Evaluation of calcium ion, hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments: An in vitro study

    PubMed Central

    Fulzele, Punit; Baliga, Sudhindra; Thosar, Nilima; Pradhan, Debaprya

    2011-01-01

    Aims: Evaluation of calcium ion and hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments. Objective: The purpose of this study was to evaluate calcium and hydroxyl ion release and pH levels of calcium hydroxide based products, namely, RC Cal, Metapex, calcium hydroxide with distilled water, along with the new gutta-percha points with calcium hydroxide. Materials and Methods: The materials were inserted in polyethylene tubes and immersed in deionized water. The pH variation, Ca++ and OH- release were monitored periodically for 1 week. Statistical Analysis Used: Statistical analysis was carried out using one-way analysis of variance and Tukey's post hoc tests with PASW Statistics version 18 software to compare the statistical difference. Results: After 1 week, calcium hydroxide with distilled water and RC Cal raised the pH to 12.7 and 11.8, respectively, while a small change was observed for Metapex, calcium hydroxide gutta-percha points. The calcium released after 1 week was 15.36 mg/dL from RC Cal, followed by 13.04, 1.296, 3.064 mg/dL from calcium hydroxide with sterile water, Metapex and calcium hydroxide gutta-percha points, respectively. Conclusions: Calcium hydroxide with sterile water and RC Cal pastes liberate significantly more calcium and hydroxyl ions and raise the pH higher than Metapex and calcium hydroxidegutta-percha points. PMID:22346155

  9. A microstructural study of the degradation and calcium release from hydroxyapatite-calcium oxide ceramics made by infiltration.

    PubMed

    Zhang, Qinghao; Schmelzer, Eva; Gerlach, Jörg C; Nettleship, Ian

    2017-04-01

    Hydroxyapatite pellets, partially densified in a low-temperature heat treatment, were infiltrated with calcium nitrate solution followed by in-situ precipitation of Ca(OH) 2 and CaCO 3 . The infiltrated bodies were then densified to high relative density and the calcium carbonate transformed to calcium oxide during sintering and resulted in biphasic hydroxyapatite-CaO ceramics. This work investigated the influence of the infiltration on surface morphology, weight change, and microstructural-level degradation caused by exposure to saline at pH=7.4 and a temperature of 20°C. The CaO rendered the materials more susceptible to degradation, and released calcium into the saline faster than single phase, calcium deficient hydroxyapatite (HA) that were used as a control. In consequence, these ceramics could be used to release calcium into the culture microenvironments of bone tissue or bone marrow cells next to a scaffold surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Cutaneous microcystic/reticular schwannoma: a poorly recognized entity.

    PubMed

    Luzar, Boštjan; Tanaka, Maiko; Schneider, Johann; Calonje, Eduardo

    2016-02-01

    Microcystic/ reticular schwannoma is exceptionally rare yet distinctive morphological variant of schwannoma with predilection for visceral sites lacking association with neurofibromatosis. To further delineate clinicopathological features of cutaneous microcystic/reticular schwannoma and to discuss its differential diagnosis. We analyzed three cutaneous microcystic/reticular schwannomas, occurring in two males and one female (mean age: 37.6 years). The tumors presented as a non-painful slightly raised papule (mean: 0.7 cm) on upper arm (n = 2) and back (n = 1). No recurrences were observed despite marginal excision (mean follow up: 42 months). Histopathologically, a multilobular proliferation was present in the dermis composed of bland tumor cells forming distinctive microcystic, reticular, lace-like or pseudoglandular structures, containing abundant myxoid/mucinous material. By immunohistochemistry, tumor cells lining microcystic structures corresponded to Schwann cells (diffuse S100 positive, variable GFAP positivity). A discontinuous EMA-positive perineurium was present at the periphery of some of the lobules. Cutaneous microcystic/reticular schwannoma expands the spectrum of benign peripheral nerve sheath tumors with reticular morphology encountered in the skin. Other tumors in this group include reticular perineurioma and hybrid tumors with reticular morphology, e.g. reticular perineurioma/schwannoma and reticular perineurioma/neurofibroma. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Computational study of a calcium release-activated calcium channel

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2016-05-01

    The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.

  12. Calcium channel blockers and transmitter release at the normal human neuromuscular junction.

    PubMed

    Protti, D A; Reisin, R; Mackinley, T A; Uchitel, O D

    1996-05-01

    Transmitter release evoked by nerve stimulation is highly dependent on Ca2+ entry through voltage-activated plasma membrane channels. Calcium influx may be modified in some neuromuscular diseases like Lambert-Eaton syndrome and amyotrophic lateral sclerosis. We studied the pharmacologic sensitivity of the transmitter release process to different calcium channel blockers in normal human muscles and found that funnel web toxin and omega-Agatoxin-IVA, both P-type calcium channel blockers, blocked nerve-elicited muscle action potentials and inhibited evoked synaptic transmission. The transmitter release was not affected either by nitrendipine, an L-type channel blocker, or omega-Conotoxin-GVIA, an N-type channel blocker. The pharmacologic profile of neuromuscular transmission observed in normal human muscles indicates that P-like channels mediate transmitter release at the motor nerve terminals.

  13. The effect of radiopacifiers agents on pH, calcium release, radiopacity, and antimicrobial properties of different calcium hydroxide dressings.

    PubMed

    Ordinola-Zapata, Ronald; Bramante, Clovis Monteiro; García-Godoy, Franklin; Moldauer, Bertram Ivan; Gagliardi Minotti, Paloma; Tercília Grizzo, Larissa; Duarte, Marco Antonio Hungaro

    2015-07-01

    The aim of this study was to evaluate the antimicrobial activity, pH level, calcium ion release, and radiopacity of calcium hydroxide pastes associated with three radiopacifying agents (iodoform, zinc oxide, and barium sulfate). For the pH and calcium release tests, 45 acrylic teeth were utilized and immersed in ultrapure water. After 24 h, 72 h, and 7 days the solution was analyzed by using a pH meter and an atomic absorption spectrophotometer. Polyethylene tubes filled with the pastes were used to perform the radiopacity test. For the antimicrobial test, 25 dentin specimens were infected intraorally in order to induce the biofilm colonization and treated with the pastes for 7 days. The Live/Dead technique and a confocal microscope were used to obtain the ratio of live cells. Parametric and nonparametric statistical tests were performed to show differences among the groups (P < 0.05). The pH analysis at 7 days showed significant differences (P < 0.05) among the groups. No differences among the pastes were found in the calcium release test on the 7th day (P > 0.05). The calcium hydroxide/iodoform samples had the highest radiopacity and antimicrobial activity against the biofilm-infected dentin in comparison to the other pastes (P < 0.05). Calcium hydroxide mixed with 17% iodoform and 35% propylene glycol into a paste had the highest pH, calcium ion release, radiopacity, and the greatest antimicrobial action versus similar samples mixed with BaSO4 or ZnO. © 2015 Wiley Periodicals, Inc.

  14. Reticular telangiectatic erythema: case report and literature review

    PubMed Central

    Beutler, Bryce D.; Cohen, Philip R.

    2015-01-01

    Background: Reticular telangiectatic erythema is a benign cutaneous reaction that may occur in patients who have received a subcutaneous implantable cardioverter-defibrillator. Reticular telangiectatic erythema is characterized by asymptomatic telangiectasias, blanchable erythematous patches, or both overlying and/or adjacent to the subcutaneous implantable cardioverter-defibrillator. Purpose: We describe a man who developed reticular telangiectatic erythema after receiving a subcutaneous implantable cardioverter-defibrillator and review the salient features of this condition. We also summarize the conditions that can mimic reticular telangiectatic erythema. Materials and methods: The features of a man with reticular telangiectatic erythema are presented and the literature on reticular telangiectatic erythema is reviewed. Results: Our patient developed reticular telangiectatic erythema within one month of subcutaneous implantable cardioverter-defibrillator insertion. The subcutaneous manifestations were asymptomatic. The patient concurred to have periodic clinical follow up and his condition will be monitored for any changes. Conclusion: Reticular telangiectatic erythema is a benign condition characterized by the development of erythema, telangiectasia, or both following insertion of a subcutaneous implantable cardioverter-defibrillator. Other subcutaneous implantable cardioverter-defibrillator-related side effects, such as pressure dermatitis and contact dermatitis, can mimic the condition. Reticular telangiectatic erythema can also be observed following insertion of other devices or, rarely, in the absence of inserted devices. Local microcirculatory changes and subcutaneous implantable cardioverter-defibrillator-related obstruction of blood flow have been suggested as possible mechanisms of pathogenesis. The diagnosis can usually be established by clinical presentation. Therefore, patch testing can usually be omitted. Reticular telangiectatic erythema is

  15. Reticular telangiectatic erythema: case report and literature review.

    PubMed

    Beutler, Bryce D; Cohen, Philip R

    2015-01-01

    Reticular telangiectatic erythema is a benign cutaneous reaction that may occur in patients who have received a subcutaneous implantable cardioverter-defibrillator. Reticular telangiectatic erythema is characterized by asymptomatic telangiectasias, blanchable erythematous patches, or both overlying and/or adjacent to the subcutaneous implantable cardioverter-defibrillator. We describe a man who developed reticular telangiectatic erythema after receiving a subcutaneous implantable cardioverter-defibrillator and review the salient features of this condition. We also summarize the conditions that can mimic reticular telangiectatic erythema. The features of a man with reticular telangiectatic erythema are presented and the literature on reticular telangiectatic erythema is reviewed. Our patient developed reticular telangiectatic erythema within one month of subcutaneous implantable cardioverter-defibrillator insertion. The subcutaneous manifestations were asymptomatic. The patient concurred to have periodic clinical follow up and his condition will be monitored for any changes. Reticular telangiectatic erythema is a benign condition characterized by the development of erythema, telangiectasia, or both following insertion of a subcutaneous implantable cardioverter-defibrillator. Other subcutaneous implantable cardioverter-defibrillator-related side effects, such as pressure dermatitis and contact dermatitis, can mimic the condition. Reticular telangiectatic erythema can also be observed following insertion of other devices or, rarely, in the absence of inserted devices. Local microcirculatory changes and subcutaneous implantable cardioverter-defibrillator-related obstruction of blood flow have been suggested as possible mechanisms of pathogenesis. The diagnosis can usually be established by clinical presentation. Therefore, patch testing can usually be omitted. Reticular telangiectatic erythema is typically asymptomatic and thus removal of the device is not required.

  16. Calcium in the control of renin release.

    PubMed

    Park, C S; Malvin, R L

    1978-07-01

    The effect of Ca concentrations in the incubation medium and of estimated intracellular Ca concentrations on renin release was examined with use of pig renal cortical slices. In addition, the Ca requirement for the epinephrine stimulatory effect and for the ouabain inhibitory action on renin release was also tested. In mediums containing 5.9 mM K, variations in Ca concentration had no effect on renin release. In contrast, when the K concentration was 59 mM, a significant inhibition of renin release was attained with all concentrations of calcium. The inhibition of renin release in high K mediums by Ca was attributed to an increase in the intracellular Ca concentration. In addition, both the stimulatory effect of epinephrine and the inhibitory effect of ouabain on renin release required Ca in the medium. These results support the hypothesis that the control of renin secretion is mediated, in part, by changes in the intracellular concentration of Ca, most likely in the juxtaglomerular cells.

  17. Differential effects of tetracaine on two kinetic components of calcium release in frog skeletal muscle fibres.

    PubMed Central

    Pizarro, G; Csernoch, L; Uribe, I; Ríos, E

    1992-01-01

    1. Intramembrane charge movements and changes in intracellular calcium concentration were recorded simultaneously in voltage clamped cut skeletal muscle fibres of the frog in the presence and absence of tetracaine. 2. Extracellular application of 20 microM tetracaine reduced the increase in myoplasmic [Ca2+]. The effect on the underlying calcium release flux from the sarcoplasmic reticulum was to suppress the peak of the release while sparing the steady level attained at the end of 100 ms clamp depolarizations. 3. While the peak of the release flux at corresponding voltages was reduced by 62% after the addition of tetracaine, the rate of inactivation was the same when the pulses elicited release fluxes of similar amplitude. 4. Higher concentrations of tetracaine, 0.2 mM, abolished the calcium signal in stretched fibres whereas in slack fibres this concentration left a non-inactivating calcium release flux. 5. Lowering the extracellular pH antagonized the effect of the drug both on charge movements and on calcium signals. The permanently charged analogue tetracaine methobromide lacked effects on excitation-contraction coupling. 6. These results imply that the two kinetic components of calcium release flux have very different tetracaine sensitivities. They are also consistent with an intracellular site of action of the drug at low concentration. Taken together they strongly suggest that the inactivating and non-inactivating components of calcium release correspond to different pathways: one that inactivates, is sensitive to tetracaine and is controlled by calcium, and another that does not inactivate, is much less sensitive to tetracaine and is directly controlled by voltage. PMID:1297844

  18. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing.

    PubMed

    Rzhepetskyy, Yuriy; Lazniewska, Joanna; Blesneac, Iulia; Pamphlett, Roger; Weiss, Norbert

    2016-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. In a recent study by Steinberg and colleagues, 2 recessive missense mutations were identified in the Cav3.2 T-type calcium channel gene (CACNA1H), in a family with an affected proband (early onset, long duration ALS) and 2 unaffected parents. We have introduced and functionally characterized these mutations using transiently expressed human Cav3.2 channels in tsA-201 cells. Both of these mutations produced mild but significant changes on T-type channel activity that are consistent with a loss of channel function. Computer modeling in thalamic reticular neurons suggested that these mutations result in decreased neuronal excitability of thalamic structures. Taken together, these findings implicate CACNA1H as a susceptibility gene in amyotrophic lateral sclerosis.

  19. Calcium release-dependent inactivation precedes formation of the tubular system in developing rat cardiac myocytes.

    PubMed

    Macková, Katarina; Zahradníková, Alexandra; Hoťka, Matej; Hoffmannová, Barbora; Zahradník, Ivan; Zahradníková, Alexandra

    2017-12-01

    Developing cardiac myocytes undergo substantial structural and functional changes transforming the mechanism of excitation-contraction coupling from the embryonic form, based on calcium influx through sarcolemmal DHPR calcium channels, to the adult form, relying on local calcium release through RYR calcium channels of sarcoplasmic reticulum stimulated by calcium influx. We characterized day-by-day the postnatal development of the structure of sarcolemma, using techniques of confocal fluorescence microscopy, and the development of the calcium current, measured by the whole-cell patch-clamp in isolated rat ventricular myocytes. We characterized the appearance and expansion of the t-tubule system and compared it with the appearance and progress of the calcium current inactivation induced by the release of calcium ions from sarcoplasmic reticulum as structural and functional measures of direct DHPR-RYR interaction. The release-dependent inactivation of calcium current preceded the development of the t-tubular system by several days, indicating formation of the first DHPR-RYR couplons at the surface sarcolemma and their later spreading close to contractile myofibrils with the growing t-tubules. Large variability of both of the measured parameters among individual myocytes indicates uneven maturation of myocytes within the growing myocardium.

  20. Air bubble contact with endothelial cells in vitro induces calcium influx and IP3-dependent release of calcium stores

    PubMed Central

    Sobolewski, Peter; Kandel, Judith; Klinger, Alexandra L.

    2011-01-01

    Gas embolism is a serious complication of decompression events and clinical procedures, but the mechanism of resulting injury remains unclear. Previous work has demonstrated that contact between air microbubbles and endothelial cells causes a rapid intracellular calcium transient and can lead to cell death. Here we examined the mechanism responsible for the calcium rise. Single air microbubbles (50–150 μm), trapped at the tip of a micropipette, were micromanipulated into contact with individual human umbilical vein endothelial cells (HUVECs) loaded with Fluo-4 (a fluorescent calcium indicator). Changes in intracellular calcium were then recorded via epifluorescence microscopy. First, we confirmed that HUVECs rapidly respond to air bubble contact with a calcium transient. Next, we examined the involvement of extracellular calcium influx by conducting experiments in low calcium buffer, which markedly attenuated the response, or by pretreating cells with stretch-activated channel blockers (gadolinium chloride or ruthenium red), which abolished the response. Finally, we tested the role of intracellular calcium release by pretreating cells with an inositol 1,4,5-trisphosphate (IP3) receptor blocker (xestospongin C) or phospholipase C inhibitor (neomycin sulfate), which eliminated the response in 64% and 67% of cases, respectively. Collectively, our results lead us to conclude that air bubble contact with endothelial cells causes an influx of calcium through a stretch-activated channel, such as a transient receptor potential vanilloid family member, triggering the release of calcium from intracellular stores via the IP3 pathway. PMID:21633077

  1. Calcium-induced calcium release in rod photoreceptor terminals boosts synaptic transmission during maintained depolarization

    PubMed Central

    Cadetti, Lucia; Bryson, Eric J.; Ciccone, Cory A.; Rabl, Katalin; Thoreson, Wallace B.

    2008-01-01

    We examined the contribution of calcium-induced calcium release (CICR) to synaptic transmission from rod photoreceptor terminals. Whole-cell recording and confocal calcium imaging experiments were conducted on rods with intact synaptic terminals in a retinal slice preparation from salamander. Low concentrations of ryanodine stimulated calcium increases in rod terminals, consistent with the presence of ryanodine receptors. Application of strong depolarizing steps (−70 to −10 mV) exceeding 200 ms or longer in duration evoked a wave of calcium that spread across the synaptic terminals of voltage-clamped rods. This secondary calcium increase was blocked by high concentrations of ryanodine, indicating it was due to CICR. Ryanodine (50 μM) had no significant effect on rod calcium current (Ica) although it slightly diminished rod light-evoked voltage responses. Bath application of 50 μM ryanodine strongly inhibited light-evoked currents in horizontal cells. Whether applied extracellularly or delivered into the rod cell through the patch pipette, ryanodine (50 μM) also inhibited excitatory post-synaptic currents (EPSCs) evoked in horizontal cells by depolarizing steps applied to rods. Ryanodine caused a preferential reduction in the later portions of EPSCs evoked by depolarizing steps of 200 ms or longer. These results indicate that CICR enhances calcium increases in rod terminals evoked by sustained depolarization, which in turn acts to boost synaptic exocytosis from rods. PMID:16819987

  2. Lack of Intrinsic GABAergic Connections in the Thalamic Reticular Nucleus of the Mouse.

    PubMed

    Hou, Guoqiang; Smith, Alison G; Zhang, Zhong-Wei

    2016-07-06

    It is generally thought that neurons in the thalamic reticular nucleus (TRN) form GABAergic synapses with other TRN neurons and that these interconnections are important for the function of the TRN. However, the existence of such intrinsic connections is controversial. We combine two complementary approaches to examine intrinsic GABAergic connections in the TRN of the mouse. We find that optogenetic stimulation of TRN neurons and their axons evokes GABAergic IPSCs in TRN neurons in mice younger than 2 weeks of age but fails to do so after that age. Blocking synaptic release from TRN neurons through conditional deletion of vesicular GABA transporter has no effect on spontaneous IPSCs recorded in TRN neurons aged 2 weeks or older while dramatically reducing GABAergic transmission in thalamic relay neurons. These results demonstrate that except for a short period after birth, the TRN of the mouse lacks intrinsic GABAergic connections. The thalamic reticular nucleus has a critical role in modulating information transfer from the thalamus to the cortex. It has been proposed that neurons in the thalamic reticular nucleus are interconnected through GABAergic synapses and that these connections serve important functions. Our results show that except for the first 2 weeks after birth, the thalamic reticular nucleus of the mouse lacks intrinsic GABAergic connections. Copyright © 2016 the authors 0270-6474/16/367246-07$15.00/0.

  3. Overactive bladder and pontine reticular formation.

    PubMed

    Zorba, Orhan Ünal; Kırbaş, Serkan; Uzun, Hakkı; Cetinkaya, Mehmet; Önem, Kadir; Rifaioğlu, Mehmet Murat

    2013-01-01

    The etiology of overactive bladder (OAB) remains unclear. Observed neurogenic factors in the literature are limited to suprapontine or spinal pathologies. The blink reflex is a useful tool in the evaluation of brainstem functions. Blink reflex latency times were evaluated in order to reveal pathology in the brainstem. A total of 60 women, 30 patients with idiopathic OAB and 30 healthy controls, were enrolled in the study. Blink reflex latency times were analyzed by electrical stimulation of the supraorbital nerve. Two responses in the orbicularis oculi muscle, early ipsilateral response (R1) and late bilateral response (R2) latency times, were recorded. Mean ages of the patients and controls were 51.9 ± 5.3 and 49.2 ± 6.2 years, respectively. R2 latency times were significantly higher in patients than in controls. However, R1 latency times were similar between the two groups. The results of the study suggest a significant relation between late blink latency times and OAB. An oligosynaptic path via the trigeminal nuclei is responsible for R1; however, R2 response is relayed through the reticular formation. Stimulation of pontine reticular formation inhibits micturition contraction. In some patients, idiopathic OAB may result from reticular formation-originated pathology. Additional studies on other reticular formation-mediated reflexes are needed to reveal possible dysfunction of reticular formation. Copyright © 2013 S. Karger AG, Basel.

  4. Clinical characteristics of reticular pseudodrusen in Korean patients.

    PubMed

    Lee, Mee Yon; Yoon, Jaemoon; Ham, Don-Il

    2012-03-01

    To clarify the clinical characteristics of reticular pseudodrusen in Korean patients. Retrospective, observational, consecutive case series. A total of 255 eyes of 130 patients diagnosed with reticular pseudodrusen were evaluated. Reticular pseudodrusen were diagnosed by characteristic fundus findings using ophthalmoscopy, color fundus photography with blue-channel examination, near-infrared photography, red-free photography, autofluorescence imaging, fluorescein angiography, indocyanine green angiography, and spectral-domain optical coherence tomography. Age-related macular degeneration (AMD) was determined by the International Classification and Grading System. The mean age was 72.6 ± 9.0 years (range, 43 to 92 years). Most reticular pseudodrusen patients had bilateral disease (97.7%), with a female preponderance (86.2%). All 3 patients who showed unilateral reticular pseudodrusen had neovascular AMD in the eye with no reticular pseudodrusen. AMD was found in 183 eyes (71.8 %), among which early AMD was found in 115 eyes (45.1%), geographic atrophy was found in 41 eyes (16.1%), and neovascular AMD was found in 27 eyes (10.6%). The mean age of patients with AMD and with no AMD was 73.7 ± 9.2 years (range, 58 to 92 years) and 69.9 ± 11.7 years (range, 43 to 90 years), respectively, and there was a statistical difference between these 2 groups (P < .05). Classic choroidal neovascularization was found in 13 eyes (48.1%), and occult choroidal neovascularization was found in 14 eyes (51.9%) in the neovascular AMD group. Reticular pseudodrusen occurs in Koreans, and clinical manifestations of reticular pseudodrusen in Koreans did not differ significantly from those described in white persons. However, our study demonstrated a higher rate of bilaterality compared with those previously reported, and geographic atrophy was found to be associated more commonly with reticular pseudodrusen than with neovascular AMD. Ethnical differences may be associated with these

  5. Superresolution Modeling of Calcium Release in the Heart

    PubMed Central

    Walker, Mark A.; Williams, George S.B.; Kohl, Tobias; Lehnart, Stephan E.; Jafri, M. Saleet; Greenstein, Joseph L.; Lederer, W.J.; Winslow, Raimond L.

    2014-01-01

    Stable calcium-induced calcium release (CICR) is critical for maintaining normal cellular contraction during cardiac excitation-contraction coupling. The fundamental element of CICR in the heart is the calcium (Ca2+) spark, which arises from a cluster of ryanodine receptors (RyR). Opening of these RyR clusters is triggered to produce a local, regenerative release of Ca2+ from the sarcoplasmic reticulum (SR). The Ca2+ leak out of the SR is an important process for cellular Ca2+ management, and it is critically influenced by spark fidelity, i.e., the probability that a spontaneous RyR opening triggers a Ca2+ spark. Here, we present a detailed, three-dimensional model of a cardiac Ca2+ release unit that incorporates diffusion, intracellular buffering systems, and stochastically gated ion channels. The model exhibits realistic Ca2+ sparks and robust Ca2+ spark termination across a wide range of geometries and conditions. Furthermore, the model captures the details of Ca2+ spark and nonspark-based SR Ca2+ leak, and it produces normal excitation-contraction coupling gain. We show that SR luminal Ca2+-dependent regulation of the RyR is not critical for spark termination, but it can explain the exponential rise in the SR Ca2+ leak-load relationship demonstrated in previous experimental work. Perturbations to subspace dimensions, which have been observed in experimental models of disease, strongly alter Ca2+ spark dynamics. In addition, we find that the structure of RyR clusters also influences Ca2+ release properties due to variations in inter-RyR coupling via local subspace Ca2+ concentration ([Ca2+]ss). These results are illustrated for RyR clusters based on super-resolution stimulated emission depletion microscopy. Finally, we present a believed-novel approach by which the spark fidelity of a RyR cluster can be predicted from structural information of the cluster using the maximum eigenvalue of its adjacency matrix. These results provide critical insights into CICR

  6. Effect of particle size on calcium release and elevation of pH of endodontic cements.

    PubMed

    Saghiri, Mohammad Ali; Asatourian, Armen; Orangi, Jafar; Lotfi, Mehrdad; Soukup, Jason W; Garcia-Godoy, Franklin; Sheibani, Nader

    2015-06-01

    Elevation of pH and calcium ion release are of great importance in antibacterial activity and the promotion of dental soft and hard tissue healing process. In this study, we evaluated the effect of particle size on the elevation of pH and the calcium ion release from calcium silicate-based dental cements. Twelve plastic tubes were divided into three groups, filled with white mineral trioxide aggregate (WMTA), WMTA plus 1% methylcellulose, and nano-modified WMTA (nano-WMTA), and placed inside flasks containing 10 ml of distilled water. The pH values were measured using a pH sensor 3, 24, 72, and 168 h after setting of the cements. The calcium ion release was measured using an atomic absorption spectrophotometer with same sample preparation method. Data were subjected to two-way analysis of variance (anova) followed by post hoc Tukey tests with significance level of P < 0.05. Nano-WMTA showed significant pH elevation only after 24 h (P < 0.05) compared with WMTA, and after 3, 24, and 72 h compared with WMTA plus 1% methylcellulose (P < 0.05). Nano-WMTA showed significantly higher calcium ion release values compared to the other two groups (P < 0.05). Nano-modification of WMTA remarkably increased the calcium ion release at all time intervals postsetting, which can significantly influence the osteogenic properties of human dental pulp cells and as a consequence enhance mineralized matrix nodule formation to achieve desirable clinical outcomes. However, the increase in pH values mainly occurred during the short time postsetting. Addition of 1% methylcellulose imposed a delay in elevation of pH and calcium ion release by WMTA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Hydrostatic Pressure–Induced Release of Stored Calcium in Cultured Rat Optic Nerve Head Astrocytes

    PubMed Central

    Mandal, Amritlal; Delamere, Nicholas A.

    2010-01-01

    Purpose. Elevated intraocular pressure is associated with glaucomatous optic nerve damage. Other investigators have shown functional changes in optic nerve head astrocytes subjected to elevated hydrostatic pressure (HP) for 1 to 5 days. Recently, the authors reported ERK1/2, p90RSK and NHE1 phosphorylation after 2 hours. Here they examine calcium responses at the onset of HP to determine what precedes ERK1/2 phosphorylation. Methods. Cytoplasmic calcium concentration ([Ca2+]i) was measured in cultured rat optic nerve astrocytes loaded with fura-2. The cells were placed in a closed imaging chamber and subjected to an HP increase of 15 mm Hg. Protein phosphorylation was detected by Western blot analysis. Results. The increase of HP caused an immediate slow increase in [Ca2+]i. The response persisted in calcium-free solution and when nickel chloride (4 mM) was added to suppress channel-mediated calcium entry. Previous depletion of the ER calcium stores by cyclopiazonic acid abolished the HP-induced calcium level increase. The HP-induced increase persisted in cells exposed to xestospongin C, an inhibitor of IP3R-mediated calcium release. In contrast, ryanodine receptor (RyR) antagonist ruthenium red (10 μM) or dantrolene (25 μM) inhibited the HP-induced calcium increase. The HP-induced calcium increase was abolished when ryanodine-sensitive calcium stores were pre-depleted with caffeine (3 mM). HP caused ERK1/2 phosphorylation. The magnitude of the ERK1/2 phosphorylation response was reduced by ruthenium red and dantrolene. Conclusions. Increasing HP causes calcium release from a ryanodine-sensitive cytoplasmic store and subsequent ERK1/2 activation. Calcium store release appears to be a required early step in the initial astrocyte response to an HP increase. PMID:20071675

  8. Effect of degree of esterification of pectin and calcium amount on drug release from pectin-based matrix tablets.

    PubMed

    Sungthongjeen, Srisagul; Sriamornsak, Pornsak; Pitaksuteepong, Tasana; Somsiri, Atawit; Puttipipatkhachorn, Satit

    2004-02-12

    The aim of this work was to assess the effect of 2 formulation variables, the pectin type (with different degrees of esterification [DEs]) and the amount of calcium, on drug release from pectin-based matrix tablets. Pectin matrix tablets were prepared by blending indomethacin (a model drug), pectin powder, and various amounts of calcium acetate and then tableting by automatic hydraulic press machine. Differential scanning calorimetry, powder x-ray diffraction, and Fourier transformed-infrared spectroscopy studies of the compressed tablets revealed no drug-polymer interaction and the existence of drug with low crystallinity. The in-vitro release studies in phosphate buffer (United States Pharmacopeia) and tris buffer indicated that the lower the DE, the greater the time for 50% of drug release (T50). This finding is probably because of the increased binding capacity of pectin to calcium. However, when the calcium was excluded, the pectins with different DEs showed similar release pattern with insignificant difference of T50. When the amount of calcium acetate was increased from 0 to 12 mg/tablet, the drug release was significantly slower. However, a large amount of added calcium (ie, 24 mg/tablet) produced greater drug release because of the partial disintegration of tablets. The results were more pronounced in phosphate buffer, where the phosphate ions induced the precipitation of calcium phosphate. In conclusion, both pectin type and added calcium affect the drug release from the pectin-based matrix tablets.

  9. pH and calcium ion release evaluation of pure and calcium hydroxide-containing Epiphany for use in retrograde filling

    PubMed Central

    TANOMARU-FILHO, Mário; SAÇAKI, Juliana Nogueira; FALEIROS, Frederico Bordini Chaves; GUERREIRO-TANOMARU, Juliane Maria

    2011-01-01

    Objective Hydroxyl (OH-) and calcium (Ca++) ion release was evaluated in six materials: G1) Sealer 26, G2) White mineral trioxide aggregate (MTA), G3) epiphany, G4) epiphany + 10% calcium hydroxide (CH), G5) epiphany + 20% CH, and G6) zinc oxide and eugenol. Material and Methods Specimens were placed in polyethylene tubes and immersed in distilled water. After 3, 6, 12, 24, and 48 h, 7, 14, and 28 days, the water was assessed for pH with a pH meter and for Ca++ release by atomic absorption spectrophotometry. Results G1, G2, G4, and G5 had the highest pH until 14 days (p<0.05). G1 presented the highest Ca++ release until 6 h, and G4 and G5, from 12 h through 14 days. Ca++ release was greater for G1 and G2 at 28 days. G6 released the least Ca++. Conclusion MTA, Sealer 26, epiphany, and epiphany + CH release OH - and Ca++ ions. Epiphany + CH may be an alternative as retrofilling material. PMID:21437461

  10. Differential calcium dependence in basal and forskolin-potentiated spontaneous transmitter release in basolateral amygdala neurons.

    PubMed

    Miura, Yuki; Naka, Masamitsu; Matsuki, Norio; Nomura, Hiroshi

    2012-10-31

    Action potential-independent transmitter release, or spontaneous release, is postulated to produce multiple postsynaptic effects (e.g., maintenance of dendritic spines and suppression of local dendritic protein synthesis). Potentiation of spontaneous release may contribute to the precise modulation of synaptic function. However, the expression mechanism underlying potentiated spontaneous release remains unclear. In this study, we investigated the involvement of extracellular and intracellular calcium in basal and potentiated spontaneous release. Miniature excitatory postsynaptic currents (mEPSCs) of the basolateral amygdala neurons in acute brain slices were recorded. Forskolin, an adenylate cyclase activator, increased mEPSC frequency, and the increase lasted at least 25 min after washout. Removal of the extracellular calcium decreased mEPSC frequency in both naïve and forskolin-treated slices. On the other hand, chelation of intracellular calcium by BAPTA-AM decreased mEPSC frequency in naïve, but not in forskolin-treated slices. A blockade of the calcium-sensing receptor (CaSR) resulted in an increase in mEPSC frequency in forskolin-treated, but not in naïve slices. These findings indicate that forskolin-induced potentiation is accompanied by changes in the mechanisms underlying Ca(2+)-dependent spontaneous release. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. The removal of myoplasmic free calcium following calcium release in frog skeletal muscle.

    PubMed Central

    Melzer, W; Ríos, E; Schneider, M F

    1986-01-01

    +] after pulses of various amplitudes and durations in a given fibre. The basic procedure was to track delta [Ca2+] during each pulse when an undetermined calcium release was occurring, but to calculate the decay of delta [Ca2+] starting 14 ms after repolarization when release was assumed to be negligible. After appropriate selection of parameter values, the model reproduced most aspects of the decay of delta [Ca2+].(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3487641

  12. Calcium-dependent phosphodiesterase 1C inhibits renin release from isolated juxtaglomerular cells

    PubMed Central

    Ortiz-Capisano, M. Cecilia; Liao, Tang-Dong; Ortiz, Pablo A.

    2009-01-01

    Renin release from the juxtaglomerular (JG) cell is stimulated by the second messenger cAMP and inhibited by calcium. We previously showed JG cells contain a calcium sensing receptor (CaSR), which, when stimulated, decreases cAMP formation and inhibits renin release. We hypothesize CaSR activation decreases cAMP and renin release, in part, by stimulating a calcium calmodulin-activated phosphodiesterase 1 (PDE1). We incubated our primary culture of JG cells with two selective PDE1 inhibitors [8-methoxymethil-IBMX (8-MM-IBMX; 20 μM) and vinpocetine (40 μM)] and the calmodulin inhibitor W-7 (10 μM) and measured cAMP and renin release. Stimulation of the JG cell CaSR with the calcimimetic cinacalcet (1 μM) resulted in decreased cAMP from a basal of 1.13 ± 0.14 to 0.69 ± 0.08 pM/mg protein (P < 0.001) and in renin release from 0.89 ± 0.16 to 0.38 ± 0.08 μg ANG I/ml·h−1·mg protein−1 (P < 0.001). However, the addition of 8-MM-IBMX with cinacalcet returned both cAMP (1.10 ± 0.19 pM/mg protein) and renin (0.57 ± 0.16 μg ANG I/ml·h−1·mg protein−1) to basal levels. Similar results were obtained with vinpocetine, and also with W-7. Combining 8-MM-IBMX and W-7 had no additive effect. To determine which PDE1 isoform is involved, we performed Western blot analysis for PDE1A, B, and C. Only Western blot analysis for PDE1C showed a characteristic band apparent at 80 kDa. Immunofluorescence showed cytoplasmic distribution of PDE1C and renin in the JG cells. In conclusion, PDE1C is expressed in isolated JG cells, and contributes to calcium's inhibitory modulation of renin release from JG cells. PMID:19741056

  13. ATP Released by Electrical Stimuli Elicits Calcium Transients and Gene Expression in Skeletal Muscle*

    PubMed Central

    Buvinic, Sonja; Almarza, Gonzalo; Bustamante, Mario; Casas, Mariana; López, Javiera; Riquelme, Manuel; Sáez, Juan Carlos; Huidobro-Toro, Juan Pablo; Jaimovich, Enrique

    2009-01-01

    ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca2+ concentration, with an EC50 value of 7.8 ± 3.1 μm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 μm suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y2 receptor and pannexin-1. As reported previously for electrical stimulation, 500 μm ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca2+ homeostasis and muscle physiology. PMID:19822518

  14. The effects of thermal stimuli on intracellular calcium change and histamine releases in rat basophilic leukemia mast cells

    NASA Astrophysics Data System (ADS)

    Wu, Zu-Hui; Zhu, Dan; Chen, Ji-Yao; Zhou, Lu-Wei

    2012-05-01

    The effects of thermal stimuli on rat basophilic leukemia mast cells were studied. The cells in calcium-contained or calcium-free buffers were thermally stimulated in the temperature range of 25-60 °C. The corresponding calcium ion concentration in cells [Ca2+]i as well as the released histamine from cells was measured with fluorescence staining methods. The ruthenium red (RR), a block of membrane calcium channels (transient receptor potential family V (TRPV)), was used in experiments. Under the stimulus of 25-50 °C, no significant difference on [Ca2+]i was found between these three groups of the cells in calcium-contained buffer without or with RR and cells in calcium-free saline, indicating that the increased calcium in cytosol did not result from the extracellular buffer but came from the intracellular calcium stores. The [Ca2+]i continuously increased under the temperature of 50-60 °C, but the RR and calcium-free saline can obviously diminish the [Ca2+]i increase at these high temperatures, reflecting that the opening of the TRPV2 channels leads to a calcium influx resulting in the [Ca2+]i increment. The histamine release also became significant in these cases. Since the released histamine is a well-known mediator for the microcirculation promotion, the histamine release from mast cells could be one of the mechanisms of thermal therapy.

  15. Adenosine A1 Receptors in Mouse Pontine Reticular Formation Depress Breathing, Increase Anesthesia Recovery Time, and Decrease Acetylcholine Release

    PubMed Central

    Gettys, George C.; Liu, Fang; Kimlin, Ed; Baghdoyan, Helen A.; Lydic, Ralph

    2012-01-01

    Background Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcholine release. Methods Three sets of experiments used 51 mice. First, breathing was measured by plethysmography after PRF microinjection of the adenosine A1 receptor agonist N6-sulfophenyl adenosine (SPA) or saline. Second, mice were anesthetized with isoflurane and time to recovery of righting response (RoRR) was quantified after PRF microinjection of SPA or saline. Third, acetylcholine release in the PRF was measured before and during microdialysis delivery of SPA, the adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), or SPA and DPCPX. Results First, SPA significantly decreased respiratory rate (−18%), tidal volume (−12%) and minute ventilation (−16%). Second, SPA concentration accounted for 76% of the variance in RoRR. Third, SPA concentration accounted for a significant amount of the variance in acetylcholine release (52%), RoRR (98%), and breathing rate (86%). DPCPX alone caused a concentration-dependent increase in acetylcholine, decrease in RoRR, and decrease in breathing rate. Coadministration of SPA and DPCPX blocked the SPA-induced decrease in acetylcholine and increase in RoRR. Conclusions Endogenous adenosine acting at adenosine A1 receptors in the PRF modulates breathing, behavioral arousal, and acetylcholine release. The results support the interpretation that an adenosinergic-cholinergic interaction within the PRF comprises one neurochemical mechanism underlying the wakefulness stimulus for breathing. PMID:23263018

  16. Rechargeable dental adhesive with calcium phosphate nanoparticles for long-term ion release

    PubMed Central

    Zhang, Ling; Weir, Michael D.; Hack, Gary; Fouad, Ashraf F.; Xu, Hockin H. K.

    2015-01-01

    Objectives The tooth-resin bond is the weak link of restoration, with secondary caries as a main reason for failure. Calcium phosphate-containing resins are promising for remineralization; however, calcium (Ca) and phosphate (P) ion releases last only a couple of months. The objectives of this study were to develop the first rechargeable CaP bonding agent and investigate the key factors that determine CaP ion recharge and re-release. Methods Nanoparticles of amorphous calcium phosphate (NACP) were synthesized. Pyromellitic glycerol dimethacrylate (PMGDM), ethoxylated bisphenol-A dimethacrylate (EBPADMA), 2-hydroxyethyl methacrylate (HEMA), and bisphenol-A glycidyl dimethacrylate (BisGMA) were used to synthesize three adhesives (denoted PE, PEH and PEHB). NACP were mixed into adhesive at 0–30% by mass. Dentin shear bond strengths were measured. Adhesive specimens were tested for Ca and P initial ion release. Then the ion-exhausted specimens were immersed in Ca and P solution to recharge the specimens, and the recharged specimens were then used to measure ion re-release for 7 days as one cycle. Then these specimens were again recharged and the re-release was measured for 7 days as the second cycle. Three recharge/re-release cycles were tested. Results PEHB had the highest dentin bond strength (p<0.05). Increasing NACP content from 0 to 30% did not affect dentin bond strength (p>0.1), but increased CaP release and re-release (p<0.05). PEHB-NACP had the greatest recharge/re-release, and PE-NACP had the least (p<0.05). Ion release remained high and did not decrease with increasing the number of recharge/re-release cycles (p>0.1). After the third cycle, specimens without further recharge had continuous CaP ion release for 2–3 weeks. Significance Rechargeable CaP bonding agents were developed for the first time to provide long-term Ca and P ions to promote remineralization and reduce caries. Incorporation of NACP into adhesive had no negative effect on dentin bond

  17. Calcium Influx and Release Cooperatively Regulate AChR Patterning and Motor Axon Outgrowth during Neuromuscular Junction Formation.

    PubMed

    Kaplan, Mehmet Mahsum; Sultana, Nasreen; Benedetti, Ariane; Obermair, Gerald J; Linde, Nina F; Papadopoulos, Symeon; Dayal, Anamika; Grabner, Manfred; Flucher, Bernhard E

    2018-06-26

    Formation of synapses between motor neurons and muscles is initiated by clustering of acetylcholine receptors (AChRs) in the center of muscle fibers prior to nerve arrival. This AChR patterning is considered to be critically dependent on calcium influx through L-type channels (Ca V 1.1). Using a genetic approach in mice, we demonstrate here that either the L-type calcium currents (LTCCs) or sarcoplasmic reticulum (SR) calcium release is necessary and sufficient to regulate AChR clustering at the onset of neuromuscular junction (NMJ) development. The combined lack of both calcium signals results in loss of AChR patterning and excessive nerve branching. In the absence of SR calcium release, the severity of synapse formation defects inversely correlates with the magnitude of LTCCs. These findings highlight the importance of activity-dependent calcium signaling in early neuromuscular junction formation and indicate that both LTCC and SR calcium release individually support proper innervation of muscle by regulating AChR patterning and motor axon outgrowth. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Effect of soft drinks on the release of calcium from enamel surfaces.

    PubMed

    Rirattanapong, Praphasri; Vongsavan, Kadkao; Surarit, Rudee

    2013-09-01

    Continuous consumption of soft drinks is the main cause of potential oral health problems, including dental caries and erosion. The purpose of this study was to compare the effect of three different types of soft drinks on the release of calcium from the enamel surface of teeth. Forty bovine teeth were selected for the experiment. They were divided into four groups (n=10/group): Group 1 (Coke), Group 2 (Pepsi), Group 3 (Sprite), and Group 4 (distilled water, the control). The pH of each beverage was measured using a pH meter. The release of calcium ions was measured using an atomic absorption spectrophotometer at baseline, 15, 30, and 60 minutes. The results were assessed by analysis of variance and then by the Tukey test (p< 0.05). Coke, with a pH of 2.39, was the most acidic among the soft drinks. Coke, Pepsi, and Sprite showed no significant mean differences in the calcium released, but there was a significant mean difference of these soft drinks with distilled water at 60 minutes. We concluded that prolonged exposure to soft drinks could lead to significant enamel loss.

  19. Adsorption and release of amino acids mixture onto apatitic calcium phosphates analogous to bone mineral

    NASA Astrophysics Data System (ADS)

    El Rhilassi, A.; Mourabet, M.; El Boujaady, H.; Bennani-Ziatni, M.; Hamri, R. El; Taitai, A.

    2012-10-01

    Study focused on the interaction of adsorbate with poorly crystalline apatitic calcium phosphates analogous to bone mineral. Calcium phosphates prepared in water-ethanol medium at physiological temperature (37 °C) and neutral pH, their Ca/P ratio was between 1.33 and 1.67. Adsorbate used in this paper takes the mixture form of two essential amino acids L-lysine and DL-leucine which have respectively a character hydrophilic and hydrophobic. Adsorption and release are investigated experimentally; they are dependent on the phosphate type and on the nature of adsorbate L-lysine, DL-leucine and their mixture. Adsorption of mixture of amino acids on the apatitic calcium phosphates is influenced by the competition between the two amino acids: L-lysine and DL-leucine which exist in the medium reaction. The adsorption kinetics is very fast while the release kinetics is slow. The chemical composition of apatite has an influence on both adsorption and release. The interactions adsorbate-adsorbent are electrostatic type. Adsorption and release reactions of the amino acid mixture are explained by the existence of the hydrated surface layer of calcium phosphate apatite. The charged sbnd COOsbnd and sbnd NH3+ of adsorbates are the strongest groups that interact with the surface of apatites, the adsorption is mainly due to the electrostatic interaction between the groups sbnd COOsbnd of amino acids and calcium Ca2+ ions of the apatite. Comparative study of interactions between adsorbates (L-lysine, DL-leucine and their mixture) and apatitic calcium phosphates is carried out in vitro by using UV-vis and infrared spectroscopy IR techniques.

  20. Release of mitochondrial glutathione and calcium by a cyclosporin A-sensitive mechanism occurs without large amplitude swelling.

    PubMed

    Savage, M K; Reed, D J

    1994-11-15

    Treatment of isolated mitochondria with calcium and inorganic phosphate induces inner membrane permeability that is thought to be mediated through a non-selective, calcium-dependent pore. The inner membrane permeability results in the rapid efflux of small matrix solutes such as glutathione and calcium, loss of coupled functions, and large amplitude swelling. We have identified conditions of permeability transition without large amplitude swelling, a parameter often used to assess inner membrane permeability. The addition of either oligomycin, antimycin, or sulfide to incubation buffer containing calcium and inorganic phosphate abolished large-amplitude swelling of mitochondria but did not prevent inner membrane permeability as demonstrated by the release of mitochondrial glutathione and calcium. The release of both glutathione and calcium was inhibited by the addition of cyclosporin A, a potent inhibitor of permeability transition. Transmission electron microscopy analysis, combined with the glutathione and calcium release data, indicate that permeability transition can be observed in the absence of large-amplitude swelling. Permeability transition occurring both with and without large-amplitude swelling was accompanied by a collapse of the membrane potential. We conclude that cyclosporin A-sensitive permeability transition can occur without obvious morphological changes such as large-amplitude swelling. Monitoring the cyclosporin A-sensitive release of concentrated endogenous matrix solutes, such as GSH, may be a sensitive and useful indicator of permeability transition.

  1. Papillary fibroblasts differentiate into reticular fibroblasts after prolonged in vitro culture.

    PubMed

    Janson, David; Saintigny, Gaëlle; Mahé, Christian; El Ghalbzouri, Abdoelwaheb

    2013-01-01

    The dermis can be divided into two morphologically different layers: the papillary and reticular dermis. Fibroblasts isolated from these layers behave differently when cultured in vitro. During skin ageing, the papillary dermis decreases in volume. Based on the functional differences in vitro, it is hypothesized that the loss of papillary fibroblasts contributes to skin ageing. In this study, we aimed to mimic certain aspects of skin ageing by using high-passage cultures of reticular and papillary fibroblasts and investigated the effect of these cells on skin morphogenesis in reconstructed human skin equivalents. Skin equivalents generated with reticular fibroblasts showed a reduced terminal differentiation and fewer proliferating basal keratinocytes. Aged in vitro papillary fibroblasts had increased expression of biomarkers specific to reticular fibroblasts. The phenotype and morphology of skin equivalents generated with high-passage papillary fibroblasts resembled that of reticular fibroblasts. This demonstrates that papillary fibroblasts can differentiate into reticular fibroblasts in vitro. Therefore, we hypothesize that papillary fibroblasts represent an undifferentiated phenotype, while reticular fibroblasts represent a more differentiated population. The differentiation process could be a new target for anti-skin-ageing strategies. © 2013 John Wiley & Sons A/S.

  2. Regulation of Spinal Substance P Release by Intrathecal Calcium Channel Blockade

    PubMed Central

    Takasusuki, Toshifumi; Yaksh, Tony L.

    2012-01-01

    Background We investigated the role of different voltage sensitive calcium channels expressed at presynaptic afferent terminals in substance P release and on nociceptive behavior evoked by intraplantar formalin by examining the effects of intrathecally delivered N- (ziconotide), T- (mibefradil) and L-type voltage sensitive calcium channels blockers (diltiazem and verapamil). Methods Rats received intrathecal pretreatment with saline or doses of morphine, ziconotide, mibefradil, diltiazem or verapamil. The effect of these injections upon flinching evoked by intraplantar formalin (5%, 50μl) was quantified. To assess substance P release, the incidence of neurokinin 1 receptor internalization in the ipsilateral and contralateral lamina I was determined in immunofluorescent stained tissues. Results Intrathecal morphine (20μg), ziconotide (0.3, 0.6 and 1μg), mibefradil (100μg, but not 50μg), diltiazem (500μg, but not 300μg) and verapamil (200μg, but not 50 and 100μg) reduced paw flinching in phase 2 as compared to vehicle control (P < 0.05), with no effect upon phase 1. Ziconotide (0.3, 0.6 and 1μg) and morphine (20μg) significantly inhibited neurokinin 1 receptor internalization (P < 0.05), but mibefradil, diltiazem and verapamil at the highest doses had no effect. Conclusion These results emphasize the role in vivo of N-, but not T- and L-type voltage sensitive calcium channels in mediating the stimulus evoked substance P release from small primary afferents and suggest that T- and L-type voltage sensitive calcium channels blockers exert antihyperalgesic effects by an action on other populations of afferents or mechanisms involving post synaptic excitability. PMID:21577088

  3. Distribution of L-type calcium channels in rat thalamic neurones.

    PubMed

    Budde, T; Munsch, T; Pape, H C

    1998-02-01

    One major pathway for calcium entry into neurones is through voltage-activated calcium channels. The distribution of calcium channels over the membrane surface is important for their contribution to neuronal function. Electrophysiological recordings from thalamic cells in situ and after acute isolation demonstrated the presence of high-voltage activated calcium currents. The use of specific L-type calcium channel agonists and antagonists of the dihydropyridine type revealed an about 40% contribution of L-type channels to the total high-voltage-activated calcium current. In order to localize L-type calcium channels in thalamic neurones, fluorescent dihydropyridines were used. They were combined with the fluorescent dye RH414, which allowed the use of a ratio technique and thereby the determination of channel density. The distribution of L-type channels was analysed in the three main thalamic cell types: thalamocortical relay cells, local interneurones and reticular thalamic neurones. While channel density was highest in the soma and decreased significantly in the dendritic region, channels appeared to be clustered differentially in the three types of cells. In thalamocortical cells, L-type channels were clustered in high density around the base of dendrites, while they were more evenly distributed on the soma of interneurones. Reticular thalamic neurones exhibited high density of L-type channels in more central somatic regions. The differential localization of L-type calcium channels found in this study implies their predominate involvement in the regulation of somatic and proximal dendritic calcium-dependent processes, which may be of importance for specific thalamic functions, such as those mediating the transition from rhythmic burst activity during sleep to single spike activity during wakefulness or regulating the relay of visual information.

  4. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness.

    PubMed

    Vanini, Giancarlo; Baghdoyan, Helen A

    2013-03-01

    Gamma-aminobutyric acid (GABA) causes phasic inhibition via synaptic GABAA receptors and tonic inhibition via extrasynaptic GABAA receptors. GABA levels in the extracellular space regulate arousal state and cognition by volume transmission via extrasynaptic GABAA receptors. GABAergic transmission in the pontine reticular formation promotes wakefulness. No previous studies have determined whether an agonist at extrasynaptic GABAA receptors administered into the pontine reticular formation alters sleep and wakefulness. Therefore, this study used gaboxadol (THIP; agonist at extrasynaptic GABAA receptors that contain a δ subunit) to test the hypothesis that extrasynaptic GABAA receptors within the pontine reticular formation modulate sleep and wakefulness. Within/between subjects. University of Michigan. Adult male Crl:CD*(SD) (Sprague-Dawley) rats (n = 10). Microinjection of gaboxadol, the nonsubtype selective GABAA receptor agonist muscimol (positive control), and saline (negative control) into the rostral pontine reticular formation. Gaboxadol significantly increased wakefulness and decreased both nonrapid eye movement sleep and rapid eye movement sleep in a concentration-dependent manner. Relative to saline, gaboxadol did not alter electroencephalogram power. Microinjection of muscimol into the pontine reticular formation of the same rats that received gaboxadol increased wakefulness and decreased sleep. Tonic inhibition via extrasynaptic GABAA receptors that contain a δ subunit may be one mechanism by which the extracellular pool of endogenous GABA in the rostral pontine reticular formation promotes wakefulness. Vanini G; Baghdoyan HA. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. SLEEP 2013;36(3):337-343.

  5. Adenosine A(1) receptors in mouse pontine reticular formation depress breathing, increase anesthesia recovery time, and decrease acetylcholine release.

    PubMed

    Gettys, George C; Liu, Fang; Kimlin, Ed; Baghdoyan, Helen A; Lydic, Ralph

    2013-02-01

    Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcholine release. Three sets of experiments used 51 mice. First, breathing was measured by plethysmography after PRF microinjection of the adenosine A1 receptor agonist N-sulfophenyl adenosine (SPA) or saline. Second, mice were anesthetized with isoflurane and the time to recovery of righting response (RoRR) was quantified after a PRF microinjection of SPA or saline. Third, acetylcholine release in the PRF was measured before and during microdialysis delivery of SPA, the adenosine A1 receptor antagonist 1, 3-dipropyl-8-cyclopentylxanthine, or SPA and 1, 3-dipropyl-8-cyclopentylxanthine. First, SPA significantly decreased respiratory rate (-18%), tidal volume (-12%), and minute ventilation (-16%). Second, SPA concentration accounted for 76% of the variance in RoRR. Third, SPA concentration accounted for a significant amount of the variance in acetylcholine release (52%), RoRR (98%), and breathing rate (86%). 1, 3-dipropyl-8-cyclopentylxanthine alone caused a concentration-dependent increase in acetylcholine, a decrease in RoRR, and a decrease in breathing rate. Coadministration of SPA and 1, 3-dipropyl-8-cyclopentylxanthine blocked the SPA-induced decrease in acetylcholine and increase in RoRR. Endogenous adenosine acting at adenosine A1 receptors in the PRF modulates breathing, behavioral arousal, and acetylcholine release. The results support the interpretation that an adenosinergic-cholinergic interaction within the PRF comprises one neurochemical mechanism underlying the wakefulness stimulus for breathing.

  6. Extrasynaptic GABAA Receptors in Rat Pontine Reticular Formation Increase Wakefulness

    PubMed Central

    Vanini, Giancarlo; Baghdoyan, Helen A.

    2013-01-01

    Study Objectives: Gamma-aminobutyric acid (GABA) causes phasic inhibition via synaptic GABAA receptors and tonic inhibition via extrasynaptic GABAA receptors. GABA levels in the extracellular space regulate arousal state and cognition by volume transmission via extrasynaptic GABAA receptors. GABAergic transmission in the pontine reticular formation promotes wakefulness. No previous studies have determined whether an agonist at extrasynaptic GABAA receptors administered into the pontine reticular formation alters sleep and wakefulness. Therefore, this study used gaboxadol (THIP; agonist at extrasynaptic GABAA receptors that contain a δ subunit) to test the hypothesis that extrasynaptic GABAA receptors within the pontine reticular formation modulate sleep and wakefulness. Design: Within/between subjects. Setting: University of Michigan. Patients or Participants: Adult male Crl:CD*(SD) (Sprague-Dawley) rats (n = 10). Interventions: Microinjection of gaboxadol, the nonsubtype selective GABAA receptor agonist muscimol (positive control), and saline (negative control) into the rostral pontine reticular formation. Measurements and Results: Gaboxadol significantly increased wakefulness and decreased both nonrapid eye movement sleep and rapid eye movement sleep in a concentration-dependent manner. Relative to saline, gaboxadol did not alter electroencephalogram power. Microinjection of muscimol into the pontine reticular formation of the same rats that received gaboxadol increased wakefulness and decreased sleep. Conclusion: Tonic inhibition via extrasynaptic GABAA receptors that contain a δ subunit may be one mechanism by which the extracellular pool of endogenous GABA in the rostral pontine reticular formation promotes wakefulness. Citation: Vanini G; Baghdoyan HA. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. SLEEP 2013;36(3):337-343. PMID:23450652

  7. Dimebon Inhibits Calcium-Induced Swelling of Rat Brain Mitochondria But Does Not Alter Calcium Retention or Cytochrome C Release

    PubMed Central

    Naga, Kranthi Kumari

    2012-01-01

    Dimebon was originally introduced as an antihistamine and subsequently investigated as a possible therapeutic for a variety of disorders, including Alzheimer's disease. One putative mechanism underlying the neuroprotective properties of Dimebon is inhibition of mitochondrial permeability transition, based on the observation that Dimebon inhibited the swelling of rat liver mitochondria induced by calcium and other agents that induce permeability transition. Because liver and brain mitochondria differ substantially in their properties and response to conditions associated with opening of the permeability transition pore, we sought to determine whether Dimebon inhibited permeability transition in brain mitochondria. Dimebon reduced calcium-induced mitochondrial swelling but did not enhance the calcium retention capacity or impair calcium-induced cytochrome C release from non-synaptic mitochondria isolated from rat brain cerebral cortex. These findings indicate that Dimebon does not inhibit mitochondrial permeability transition, induced by excessive calcium uptake, in brain mitochondria. PMID:20625939

  8. Dimebon inhibits calcium-induced swelling of rat brain mitochondria but does not alter calcium retention or cytochrome C release.

    PubMed

    Naga, Kranthi Kumari; Geddes, James W

    2011-03-01

    Dimebon was originally introduced as an antihistamine and subsequently investigated as a possible therapeutic for a variety of disorders, including Alzheimer's disease. One putative mechanism underlying the neuroprotective properties of Dimebon is inhibition of mitochondrial permeability transition, based on the observation that Dimebon inhibited the swelling of rat liver mitochondria induced by calcium and other agents that induce permeability transition. Because liver and brain mitochondria differ substantially in their properties and response to conditions associated with opening of the permeability transition pore, we sought to determine whether Dimebon inhibited permeability transition in brain mitochondria. Dimebon reduced calcium-induced mitochondrial swelling but did not enhance the calcium retention capacity or impair calcium-induced cytochrome C release from non-synaptic mitochondria isolated from rat brain cerebral cortex. These findings indicate that Dimebon does not inhibit mitochondrial permeability transition, induced by excessive calcium uptake, in brain mitochondria.

  9. Self-organization of the reticular structure of polyurethane

    NASA Astrophysics Data System (ADS)

    Kiselev, M. R.; Roldugin, V. I.

    2010-08-01

    The morphology of block samples and coatings of reticular polyurethane were studied by transmission electron microscopy. The morphology was correlated with the internal stresses that appeared in the coatings during their formation. A scenario of the self-assembly of complex structures in reticular polymers was suggested. The boundary between the structural elements of the supermolecular level was found to be strained.

  10. Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents

    PubMed Central

    Clarke, Stephen G.; Scarnati, Matthew S.

    2016-01-01

    At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. SIGNIFICANCE STATEMENT The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large

  11. Calcium release rates from tooth enamel treated with dentifrices containing whitening agents and abrasives.

    PubMed

    Araujo, Danilo Barral; Silva, Luciana Rodrigues; de Araujo, Roberto Paulo Correia

    2010-01-01

    Tooth whitening agents containing hydrogen peroxide and carbamide peroxide are used frequently in esthetic dental procedures. However, lesions on the enamel surface have been attributed to the action of these products. Using conventional procedures for separating and isolating biological structures, powdered enamel was obtained and treated with hydrogen peroxide, carbamide peroxide, and sodium bicarbonate, ingredients typically found in dentifrices. The enamel was exposed to different pH levels, and atomic emission spectrometry was used to determine calcium release rates. As the pH level increased, the rate of calcium release from enamel treated with dentifrices containing whitening agents decreased. Carbamide peroxide produced the lowest amount of decalcification, while sodium bicarbonate produced the highest release rates at all pH levels.

  12. Thalamic reticular nucleus in Caiman crocodilus: Relationship with the dorsal thalamus.

    PubMed

    Pritz, M B

    2016-05-13

    The thalamic reticular nucleus was investigated in one group of crocodilians, Caiman crocodilus. This neuronal aggregate is composed of two parts: a compact portion and a diffuse region made up of scattered cells within the forebrain bundles. In Caiman, both the lateral and medial forebrain bundles project to the telencephalon and the thalamic reticular nucleus is associated with each fiber tract. In the lateral forebrain bundle, the compact area is termed the nucleus of the dorsal peduncle (dorsal peduncular nucleus) while the diffuse part is called the perireticular area. In the medial forebrain bundle, the interstitial nucleus comprises one part of the compact area while another region without a specific neuronal label is also present. Similar to the perireticular cells of the lateral forebrain bundle, scattered cells are also present in the medial forebrain bundle. Morphological features of the thalamic reticular nucleus are revealed with stains for the following: fibers; cells; succinic acid dehydrogenase; and acetylcholinesterase. Regardless of which dorsal thalamic nucleus was injected, a localized region of the thalamic reticular nucleus contained retrogradely labeled cells and anterogradely labeled axons and terminals. This grouping was termed clusters and was felt to represent the densest interconnection between the dorsal thalamus and the reticular nucleus. Using clusters as an index of interconnections, the reticular nucleus was divided into sectors, each of which was associated with a specific dorsal thalamic nucleus. An organization similar to that found in Caiman is present in other sauropsids as well as in mammals. These data suggest that a thalamic reticular nucleus is present in all amniotes and has morphological properties similar to those described in this analysis. Lastly, a hypothesis is presented to explain how the external shape of the reticular nucleus in Caiman might be transformed into the homologous area in a representative bird and

  13. Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents.

    PubMed

    Clarke, Stephen G; Scarnati, Matthew S; Paradiso, Kenneth G

    2016-11-09

    At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in

  14. Membrane properties involved in calcium-stimulated microparticle release from the plasma membranes of S49 lymphoma cells.

    PubMed

    Campbell, Lauryl E; Nelson, Jennifer; Gibbons, Elizabeth; Judd, Allan M; Bell, John D

    2014-01-01

    This study answered the question of whether biophysical mechanisms for microparticle shedding discovered in platelets and erythrocytes also apply to nucleated cells: cytoskeletal disruption, potassium efflux, transbilayer phospholipid migration, and membrane disordering. The calcium ionophore, ionomycin, disrupted the actin cytoskeleton of S49 lymphoma cells and produced rapid release of microparticles. This release was significantly inhibited by interventions that impaired calcium-activated potassium current. Microparticle release was also greatly reduced in a lymphocyte cell line deficient in the expression of scramblase, the enzyme responsible for calcium-stimulated dismantling of the normal phospholipid transbilayer asymmetry. Rescue of the scrambling function at high ionophore concentration also resulted in enhanced particle shedding. The effect of membrane physical properties was addressed by varying the experimental temperature (32-42°C). A significant positive trend in the rate of microparticle release as a function of temperature was observed. Fluorescence experiments with trimethylammonium diphenylhexatriene and Patman revealed significant decrease in the level of apparent membrane order along that temperature range. These results demonstrated that biophysical mechanisms involved in microparticle release from platelets and erythrocytes apply also to lymphocytes.

  15. Omega-conotoxin- and nifedipine-insensitive voltage-operated calcium channels mediate K(+)-induced release of pro-thyrotropin-releasing hormone-connecting peptides Ps4 and Ps5 from perifused rat hypothalamic slices.

    PubMed

    Valentijn, K; Tranchand Bunel, D; Vaudry, H

    1992-07-01

    The rat thyrotropin-releasing hormone (TRH) precursor (prepro-TRH) contains five copies of the TRH progenitor sequence linked together by intervening sequences. Recently, we have shown that the connecting peptides prepro-TRH-(160-169) (Ps4) and prepro-TRH-(178-199) (Ps5) are released from rat hypothalamic neurones in response to elevated potassium concentrations, in a calcium-dependent manner. In the present study, the role of voltage-operated calcium channels in potassium-induced release of Ps4 and Ps5 was investigated, using a perifusion system for rat hypothalamic slices. The release of Ps4 and Ps5 stimulated by potassium (70 mM) was blocked by the inorganic ions Co2+ (2.6 mM) and Ni2+ (5 mM). In contrast, the stimulatory effect of KCl was insensitive to Cd2+ (100 microM). The dihydropyridine antagonist nifedipine (10 microM) had no effect on K(+)-evoked release of Ps4 and Ps5. Furthermore, the response to KCl was not affected by nifedipine (10 microM) in combination with diltiazem (1 microM), a benzothiazepine which increases the affinity of dihydropyridine antagonists for their receptor. The dihydropyridine agonist BAY K 8644, at concentrations as high as 1 mM, did not stimulate the basal secretion of Ps4 and Ps5. In addition, BAY K 8644 had no potentiating effect on K(+)-induced release of Ps4 and Ps5. The marine cone snail toxin omega-conotoxin, a blocker of both L- and N-type calcium channels had no effect on the release of Ps4 and Ps5 stimulated by potassium. Similarly, the omega-conopeptide SNX-111, a selective blocker of N-type calcium channels, did not inhibit the stimulatory effect of potassium. The release of Ps4 and Ps5 evoked by high K+ was insensitive to the non-selective calcium channel blocker verapamil (20 microM). Amiloride (1 microM), a putative blocker of T-type calcium channels, did not affect KCl-induced secretion of the two connecting peptides. Taken together, these results indicate that two connecting peptides derived from the pro-TRH, Ps

  16. Protein encapsulation and release from PEO-b-polyphosphoester templated calcium carbonate particles.

    PubMed

    Ergul Yilmaz, Zeynep; Cordonnier, Thomas; Debuigne, Antoine; Calvignac, Brice; Jerome, Christine; Boury, Frank

    2016-11-20

    Calcium carbonate particles are promising candidates as proteins carriers for their controlled delivery in the body. The present paper aims at investigating the protein encapsulation by in situ precipitation of calcium carbonate particles prepared by a process based on supercritical CO 2 and using a new type of degradable well-defined double hydrophilic block copolymers composed of poly(ethylene oxide) and polyphosphoester blocks acting as templating agent for the calcium carbonate. For this study, lysozyme was chosen as a model for therapeutic protein for its availability and ease of detection. It was found that by this green process, loading into the CaCO 3 microparticles with a diameter about 2μm can be obtained as determined by scanning electron microscopy. A protein loading up to 6.5% active lysozyme was measured by a specific bioassay (Micrococcus lysodeikticus). By encapsulating fluorescent-labelled lysozyme (lysozyme-FITC), the confocal microscopy images confirmed its encapsulation and suggested a core-shell distribution of lysozyme into CaCO 3 , leading to a release profile reaching a steady state at 59% of release after 90min. Copyright © 2016. Published by Elsevier B.V.

  17. The Effects of Electrical Stimuli on Calcium Change and Histamine Release in Rat Basophilic Leukemia Mast Cells

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Wu, Zu-Hui; Chen, Ji-Yao; Zhou, Lu-Wei

    2013-06-01

    We apply electric fields at different frequencies of 0.1, 1, 10 and 100 kHz to the rat basophilic leukemia (RBL) mast cells in calcium-containing or calcium-free buffers. The stimuli cause changes of the intracellular calcium ion concentration [Ca2+]i as well as the histamine. The [Ca2+]i increases when the frequency of the external electric field increases from 100 Hz to 10 kHz, and then decreases when the frequency further increases from 10 kHz to 100 kHz, showing a peak at 100 kHz. A similar frequency dependence of the histamine release is also found. The [Ca2+]i and the histamine releases at 100 Hz are about the same as the values of the control group with no electrical stimulation. The ruthenium red (RR), an inhibitor to the TRPV (transient receptor potential (TRP) family V) channels across the cell membrane, is used in the experiment to check whether the electric field stimuli act on the TRPV channels. Under an electric field of 10 kHz, the [Ca2+]i in a calcium-concentration buffer is about 3.5 times as much as that of the control group with no electric stimulation, while the [Ca2+]i in a calcium-free buffer is only about 2.2 times. Similar behavior is also found for the histamine release. RR blockage effect on the [Ca2+]i decrease is statistically significant (~75%) when mast cells in the buffer with calcium are stimulated with a 10 kHz electric field in comparison with the result without the RR treatment. This proves that TRPVs are the channels that calcium ions inflow through from the extracellular environment under electrical stimuli. Under this condition, the histamine is also released following a similar way. We suggest that, as far as an electric stimulation is concerned, an application of ac electric field of 10 kHz is better than other frequencies to open TRPV channels in mast cells, and this would cause a significant calcium influx resulting in a significant histamine release, which could be one of the mechanisms for electric therapy.

  18. The physical properties and ion release of CPP-ACP-modified calcium silicate-based cements.

    PubMed

    Dawood, A E; Manton, D J; Parashos, P; Wong, Rhk; Palamara, Jea; Stanton, D P; Reynolds, E C

    2015-12-01

    This study investigated the physical properties and ion release of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-modified calcium silicate-based cements (CSCs) and compared the properties of a trial mineral trioxide aggregate (MTA) with two commercially available CSCs, Biodentine(™) and Angelus(®) MTA. The setting time, solubility, compressive strength and Vickers surface microhardness of the three CSCs incorporated with 0%, 0.5%, 1.0%, 2.0% and 3.0% (w/w) CPP-ACP were investigated. Release of calcium (Ca(2+) ), phosphate ions (Pi ) and pH of the test cements were measured after 24, 72, 168 and 336 h of storage. The addition of up to 1.0% CPP-ACP into Biodentine(™) and 0.5% into the other cements did not adversely affect their physical properties except for the setting time. The addition of 0.5% CPP-ACP increased Ca(2+) released from Biodentine(™) (after 168 and 336 h), Angelus(®) MTA (after 168 h) and the trial MTA (after 72 h). The addition of 1.0-3.0% CPP-ACP increased Ca(2+) and Pi released from all the cements. Biodentine(™) released more Ca(2+) particularly in the early stages and showed shorter setting time and higher mechanical properties than the other cements. The mechanical properties of Angelus(®) MTA and the trial MTA were similar. All the cements produced highly alkaline storage solutions. Up to 1.0% CPP-ACP in Biodentine(™) improves Ca(2+) and Pi release and 0.5% CPP-ACP in Angelus(®) MTA and the trial MTA improves Ca(2+) release without altering the mechanical properties and solubility. The addition of CPP-ACP into CSCs prolonged the setting time. © 2015 Australian Dental Association.

  19. Molecular Dynamics Simulations of Membrane-Bound STIM1 to Investigate Conformational Changes during STIM1 Activation upon Calcium Release.

    PubMed

    Mukherjee, Sreya; Karolak, Aleksandra; Debant, Marjolaine; Buscaglia, Paul; Renaudineau, Yves; Mignen, Olivier; Guida, Wayne C; Brooks, Wesley H

    2017-02-27

    Calcium is involved in important intracellular processes, such as intracellular signaling from cell membrane receptors to the nucleus. Typically, calcium levels are kept at less than 100 nM in the nucleus and cytosol, but some calcium is stored in the endoplasmic reticulum (ER) lumen for rapid release to activate intracellular calcium-dependent functions. Stromal interacting molecule 1 (STIM1) plays a critical role in early sensing of changes in the ER's calcium level, especially when there is a sudden release of stored calcium from the ER. Inactive STIM1, which has a bound calcium ion, is activated upon ion release. Following activation of STIM1, there is STIM1-assisted initiation of extracellular calcium entry through channels in the cell membrane. This extracellular calcium entering the cell then amplifies intracellular calcium-dependent actions. At the end of the process, ER levels of stored calcium are reestablished. The main focus of this work was to study the conformational changes accompanying homo- or heterodimerization of STIM1. For this purpose, the ER luminal portion of STIM1 (residues 58-236), which includes the sterile alpha motif (SAM) domain plus the calcium-binding EF-hand domains 1 and 2 attached to the STIM1 transmembrane region (TM), was modeled and embedded in a virtual membrane. Next, molecular dynamics simulations were performed to study the conformational changes that take place during STIM1 activation and subsequent protein-protein interactions. Indeed, the simulations revealed exposure of residues in the EF-hand domains, which may be important for dimerization steps. Altogether, understanding conformational changes in STIM1 can help in drug discovery when targeting this key protein in intracellular calcium functions.

  20. In Vivo Release of Vancomycin from Calcium Phosphate Cement.

    PubMed

    Uchida, Kentaro; Sugo, Ken; Nakajima, Takehiko; Nakawaki, Mitsufumi; Takano, Shotaro; Nagura, Naoshige; Takaso, Masashi; Urabe, Ken

    2018-01-01

    Calcium phosphate cement (CPC) has good release efficiency and has therefore been used as a drug delivery system for postoperative infection. The release profile of CPC has mainly been evaluated by in vitro studies, which are carried out by immersing test specimens in a relatively large amount of solvent. However, it remains unclear whether antibiotic-impregnated CPC has sufficient clinical effects and release in vivo . We examined the in vivo release profile of CPC impregnated with vancomycin (VCM) and compared this with that of polymethylmethacrylate (PMMA) cement. To evaluate the release profile in vitro , the test specimens were immersed in 10 mL sterile phosphate-buffered saline per gram of test specimen and incubated at 37°C for 56 days in triplicate. For in vivo experiments, the test specimens were implanted between the fascia and muscle of the femur of rats. Residual VCM was extracted from the removed test specimens to determine the amount of VCM released into rat tissues. CPC released more VCM over a longer duration than PMMA in vitro . Released levels of VCM from CPC/VCM in vivo were 3.4-fold, 5.0-fold, and 8.6-fold greater on days 1, 7, and 28, respectively, than those released on the corresponding days from PMMA/VCM and were drastically greater on day 56 due to inefficient release from PMMA/VCM. The amount of VCM released from CPC and PMMA was much higher than the minimum inhibitory concentration (1.56  μ g) and lower than the detection limit, respectively. Our findings suggest that CPC is a suitable material for releasing antibiotics for local action against established postoperative infection.

  1. Effect of Exposed Surface Area, Volume and Environmental pH on the Calcium Ion Release of Three Commercially Available Tricalcium Silicate Based Dental Cements.

    PubMed

    Rajasekharan, Sivaprakash; Vercruysse, Chris; Martens, Luc; Verbeeck, Ronald

    2018-01-13

    Tricalcium silicate cements (TSC) are used in dental traumatology and endodontics for their bioactivity which is mostly attributed to formation of calcium hydroxide during TSC hydration and its subsequent release of calcium and hydroxide ions. The aim of this study was to determine the effect of volume (Vol), exposed surface area (ESA) and pH of surrounding medium on calcium ion release. Three commercially available hydraulic alkaline dental cements were mixed and condensed into cylindrical tubes of varying length and diameter ( n = 6/group). For the effect of ESA and Vol, tubes were immersed in 10 mL of deionized water. To analyze the effect of environmental pH, the tubes were randomly immersed in 10 mL of buffer solutions with varying pH (10.4, 7.4 or 4.4). The solutions were collected and renewed at various time intervals. pH and/or calcium ion release was measured using a pH glass electrode and atomic absorption spectrophotometer respectively. The change of pH, short-term calcium ion release and rate at which calcium ion release reaches maximum were dependent on ESA ( p < 0.05) while maximum calcium ion release was dependent on Vol of TSC ( p < 0.05). Maximum calcium ion release was significantly higher in acidic solution followed by neutral and alkaline solution ( p < 0.05).

  2. Effect of Exposed Surface Area, Volume and Environmental pH on the Calcium Ion Release of Three Commercially Available Tricalcium Silicate Based Dental Cements

    PubMed Central

    Rajasekharan, Sivaprakash; Vercruysse, Chris; Martens, Luc; Verbeeck, Ronald

    2018-01-01

    Tricalcium silicate cements (TSC) are used in dental traumatology and endodontics for their bioactivity which is mostly attributed to formation of calcium hydroxide during TSC hydration and its subsequent release of calcium and hydroxide ions. The aim of this study was to determine the effect of volume (Vol), exposed surface area (ESA) and pH of surrounding medium on calcium ion release. Three commercially available hydraulic alkaline dental cements were mixed and condensed into cylindrical tubes of varying length and diameter (n = 6/group). For the effect of ESA and Vol, tubes were immersed in 10 mL of deionized water. To analyze the effect of environmental pH, the tubes were randomly immersed in 10 mL of buffer solutions with varying pH (10.4, 7.4 or 4.4). The solutions were collected and renewed at various time intervals. pH and/or calcium ion release was measured using a pH glass electrode and atomic absorption spectrophotometer respectively. The change of pH, short-term calcium ion release and rate at which calcium ion release reaches maximum were dependent on ESA (p < 0.05) while maximum calcium ion release was dependent on Vol of TSC (p < 0.05). Maximum calcium ion release was significantly higher in acidic solution followed by neutral and alkaline solution (p < 0.05). PMID:29342837

  3. Sarcoplasmic Reticulum Calcium Release Channels in Ventricles of Older Adult Hamsters

    ERIC Educational Resources Information Center

    Nicholl, Peter A.; Howlett, Susan E.

    2006-01-01

    Whether the density of sarcoplasmic reticulum (SR) calcium release channels/ryanodine receptors in the heart declines with age is not clear. We investigated age-related changes in the density of [3H]-ryanodine receptors in crude ventricular homogenates, which contained all ligand binding sites in heart and in isolated junctional SR membranes.…

  4. Characterization of selective Calcium-Release Activated Calcium channel blockers in mast cells and T-cells from human, rat, mouse and guinea-pig preparations.

    PubMed

    Rice, Louise V; Bax, Heather J; Russell, Linda J; Barrett, Victoria J; Walton, Sarah E; Deakin, Angela M; Thomson, Sally A; Lucas, Fiona; Solari, Roberto; House, David; Begg, Malcolm

    2013-03-15

    Loss of function mutations in the two key proteins which constitute Calcium-Release Activated Calcium (CRAC) channels demonstrate the critical role of this ion channel in immune cell function. The aim of this study was to demonstrate that inhibition of immune cell activation could be achieved with highly selective inhibitors of CRAC channels in vitro using cell preparations from human, rat, mouse and guinea-pig. Two selective small molecule blockers of CRAC channels; GSK-5498A and GSK-7975A were tested to demonstrate their ability to inhibit mediator release from mast cells, and pro-inflammatory cytokine release from T-cells in a variety of species. Both GSK-5498A and GSK-7975A completely inhibited calcium influx through CRAC channels. This led to inhibition of the release of mast cell mediators and T-cell cytokines from multiple human and rat preparations. Mast cells from guinea-pig and mouse preparations were not inhibited by GSK-5498A or GSK-7975A; however cytokine release was fully blocked from T-cells in a mouse preparation. GSK-5498A and GSK-7975A confirm the critical role of CRAC channels in human mast cell and T-cell function, and that inhibition can be achieved in vitro. The rat displays a similar pharmacology to human, promoting this species for future in vivo research with this series of molecules. Together these observations provide a critical forward step in the identification of CRAC blockers suitable for clinical development in the treatment of inflammatory disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Excitation-calcium release uncoupling in aged single human skeletal muscle fibers.

    PubMed

    Delbono, O; O'Rourke, K S; Ettinger, W H

    1995-12-01

    The biological mechanisms underlying decline in muscle power and fatigue with age are not completely understood. The contribution of alterations in the excitation-calcium release coupling in single muscle fibers was explored in this work. Single muscle fibers were voltage-clamped using the double Vaseline gap technique. The samples were obtained by needle biopsy of the vastus lateralis (quadriceps) from 9 young (25-35 years; 25.9 +/- 9.1; 5 female and 4 male) and 11 old subjects (65-75 years; 70.5 +/- 2.3; 6 f, 5 m). Data were obtained from 36 and 39 fibers from young and old subjects, respectively. Subjects included in this study had similar physical activity. Denervated and slow-twitch muscle fibers were excluded from this study. A significant reduction of maximum charge movement (Qmax) and DHP-sensitive Ca current were recorded in muscle fibers from the 65-75 group. Qmax values were 7.6 +/- 0.9 and 3.2 +/- 0.3 nC/muF for young and old muscle fibers, respectively (P < 0.01). No evidences of charge inactivation or interconversion (charge 1 to charge 2) were found. The peak Ca current was (-)4.7 +/- 0.08 and (-)2.15 +/- 0.11 muA/muF for young and old fibers, respectively (P < 0.01). The peak calcium transient studied with mag-fura-2 (400 microM) was 6.3 +/- 0.4 microM and 4.2 +/- 0.3 microM for young and old muscle fibers, respectively. Caffeine (0.5 mM) induced potentiation of the peak calcium transient in both groups. The decrease in the voltage-/Ca-dependent Ca release ratio in old fibers (0.18 +/- 0.02) compared to young fibers (0.47 +/- 0.03) (P < 0.01), was recorded in the absence of sarcoplasmic reticulum calcium depletion. These data support a significant reduction of the amount of Ca available for triggering mechanical responses in aged skeletal muscle and, the reduction of Ca release is due to DHPR-ryanodine receptor uncoupling in fast-twitch fibers. These alterations can account, at least partially for the skeletal muscle function impairment associated

  6. Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells.

    PubMed

    Konermann, A; Staubwasser, M; Dirk, C; Keilig, L; Bourauel, C; Götz, W; Jäger, A; Reichert, C

    2014-04-01

    The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Transcription factors define the neuroanatomical organization of the medullary reticular formation

    PubMed Central

    Gray, Paul A.

    2013-01-01

    The medullary reticular formation contains large populations of inadequately described, excitatory interneurons that have been implicated in multiple homeostatic behaviors including breathing, viserosensory processing, vascular tone, and pain. Many hindbrain nuclei show a highly stereotyped pattern of localization across vertebrates suggesting a strong underlying genetic organization. Whether this is true for neurons within the reticular regions of hindbrain is unknown. Hindbrain neurons are derived from distinct developmental progenitor domains each of which expresses distinct patterns of transcription factors (TFs). These neuronal populations have distinct characteristics such as transmitter identity, migration, and connectivity suggesting developmentally expressed TFs might identify unique subpopulations of neurons within the reticular formation. A fate-mapping strategy using perinatal expression of reporter genes within Atoh1, Dbx1, Lmx1b, and Ptf1a transgenic mice coupled with immunohistochemistry (IHC) and in situ hybridization (ISH) were used to address the developmental organization of a large subset of reticular formation glutamatergic neurons. All hindbrain lineages have relatively large populations that extend the entire length of the hindbrain. Importantly, the location of neurons within each lineage was highly constrained. Lmx1b- and Dbx1- derived populations were both present in partially overlapping stripes within the reticular formation extending from dorsal to ventral brain. Within each lineage, distinct patterns of gene expression and organization were localized to specific hindbrain regions. Rostro-caudally sub-populations differ sequentially corresponding to proposed pseudo-rhombomereic boundaries. Dorsal-ventrally, sub-populations correspond to specific migratory positions. Together these data suggests the reticular formation is organized by a highly stereotyped developmental logic. PMID:23717265

  8. Transcription factors define the neuroanatomical organization of the medullary reticular formation.

    PubMed

    Gray, Paul A

    2013-01-01

    The medullary reticular formation contains large populations of inadequately described, excitatory interneurons that have been implicated in multiple homeostatic behaviors including breathing, viserosensory processing, vascular tone, and pain. Many hindbrain nuclei show a highly stereotyped pattern of localization across vertebrates suggesting a strong underlying genetic organization. Whether this is true for neurons within the reticular regions of hindbrain is unknown. Hindbrain neurons are derived from distinct developmental progenitor domains each of which expresses distinct patterns of transcription factors (TFs). These neuronal populations have distinct characteristics such as transmitter identity, migration, and connectivity suggesting developmentally expressed TFs might identify unique subpopulations of neurons within the reticular formation. A fate-mapping strategy using perinatal expression of reporter genes within Atoh1, Dbx1, Lmx1b, and Ptf1a transgenic mice coupled with immunohistochemistry (IHC) and in situ hybridization (ISH) were used to address the developmental organization of a large subset of reticular formation glutamatergic neurons. All hindbrain lineages have relatively large populations that extend the entire length of the hindbrain. Importantly, the location of neurons within each lineage was highly constrained. Lmx1b- and Dbx1- derived populations were both present in partially overlapping stripes within the reticular formation extending from dorsal to ventral brain. Within each lineage, distinct patterns of gene expression and organization were localized to specific hindbrain regions. Rostro-caudally sub-populations differ sequentially corresponding to proposed pseudo-rhombomereic boundaries. Dorsal-ventrally, sub-populations correspond to specific migratory positions. Together these data suggests the reticular formation is organized by a highly stereotyped developmental logic.

  9. Association of age-related macular degeneration and reticular macular disease with cardiovascular disease.

    PubMed

    Rastogi, Neelesh; Smith, R Theodore

    2016-01-01

    Age-related macular degeneration is the leading cause of adult blindness in the developed world. Thus, major endeavors to understand the risk factors and pathogenesis of this disease have been undertaken. Reticular macular disease is a proposed subtype of age-related macular degeneration correlating histologically with subretinal drusenoid deposits located between the retinal pigment epithelium and the inner segment ellipsoid zone. Reticular lesions are more prevalent in females and in older age groups and are associated with a higher mortality rate. Risk factors for developing age-related macular degeneration include hypertension, smoking, and angina. Several genes related to increased risk for age-related macular degeneration and reticular macular disease are also associated with cardiovascular disease. Better understanding of the clinical and genetic risk factors for age-related macular degeneration and reticular macular disease has led to the hypothesis that these eye diseases are systemic. A systemic origin may help to explain why reticular disease is diagnosed more frequently in females as males suffer cardiovascular mortality at an earlier age, before the age of diagnosis of reticular macular disease and age-related macular degeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. In Vitro Release and Bioavailability of Silybin from Micelle-Templated Porous Calcium Phosphate Microparticles.

    PubMed

    Zhu, Yuan; Wang, Miaomiao; Zhang, Ya; Zeng, Jin; Omari-Siaw, E; Yu, Jiangnan; Xu, Ximing

    2016-10-01

    Developing a promising carrier for the delivery of poorly water-soluble drugs, such as silybin, to improve oral absorption has become a very worthy of consideration. The goal of this study was to prepare a novel porous calcium phosphate microparticle using povidone-mixed micelles as template while evaluating its in vitro and in vivo properties with silybin as a model drug. The particle characterization, in vitro drug release behavior, and pharmacokinetic parameters of the prepared silybin-loaded calcium phosphate microparticle were investigated. The mean particle size was found to be 3.54 ± 0.32 μm with a rough surface porous structure. Additionally, the silybin-loaded calcium phosphate microparticle compared with the free silybin showed a prolonged 72-h release in vitro and a higher C max (418.5 ± 23.7 ng mL(-1)) with 167.5% oral relative bioavailability. A level A in vitro-in vivo correlation (IVIVC), established for the first time, demonstrated an excellent IVIVC of the formulated silybin in oral administration. In conclusion, this povidone-mixed micelle-based microparticle was successfully prepared to enhance the oral bioavailability of silybin. Therefore, application of this novel porous calcium phosphate microparticle holds a significant potential for the development of poorly water-soluble drugs.

  11. Regulation of calcium release from the endoplasmic reticulum by the serine hydrolase ABHD2.

    PubMed

    Yun, Bogeon; Lee, HeeJung; Powell, Roger; Reisdorph, Nichole; Ewing, Heather; Gelb, Michael H; Hsu, Ku-Lung; Cravatt, Benjamin F; Leslie, Christina C

    2017-09-02

    The serine hydrolase inhibitors pyrrophenone and KT195 inhibit cell death induced by A23187 and H 2 O 2 by blocking the release of calcium from the endoplasmic reticulum and mitochondrial calcium uptake. The effect of pyrrophenone and KT195 on these processes is not due to inhibition of their known targets, cytosolic phospholipase A 2 and α/β-hydrolase domain-containing (ABHD) 6, respectively, but represent off-target effects. To identify targets of KT195, fibroblasts were treated with KT195-alkyne to covalently label protein targets followed by click chemistry with biotin azide, enrichment on streptavidin beads and tryptic peptide analysis by mass spectrometry. Although several serine hydrolases were identified, α/β-hydrolase domain-containing 2 (ABHD2) was the only target in which both KT195 and pyrrophenone competed for binding to KT195-alkyne. ABHD2 is a serine hydrolase with a predicted transmembrane domain consistent with its pull-down from the membrane proteome. Subcellular fractionation showed localization of ABHD2 to the endoplasmic reticulum but not to mitochondria or mitochondrial-associated membranes. Knockdown of ABHD2 with shRNA attenuated calcium release from the endoplasmic reticulum, mitochondrial calcium uptake and cell death in fibroblasts stimulated with A23187. The results describe a novel mechanism for regulating calcium transfer from the endoplasmic reticulum to mitochondria that involves the serine hydrolase ABHD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Evolution of reticular pseudodrusen.

    PubMed

    Sarks, John; Arnold, Jennifer; Ho, I-Van; Sarks, Shirley; Killingsworth, Murray

    2011-07-01

    To report observations relating to the clinical recognition and possible basis of reticular pseudodrusen (RPD). This retrospective study reports the evolution of RPD in 166 patients who had follow-up of over 1 year using multiple imaging techniques. Mean age when first seen was 73.3 years and the mean period of observation was 4.9 years (range 1-18 years). Associated macular changes were recorded. RPD were first identified in the upper fundus as a reticular network, which then became less obvious, developing a diffuse yellowish appearance. RPD also faded around choroidal neovascularisation (CNV). RPD therefore could be transient but the pattern often remained visible outside the macula or nasal to the discs. Manifestations of age-related macular degeneration (AMD) were present in nearly all eyes and there was a particularly high association with CNV (52.1%). In one clinicopathological case abnormal material was found in the subretinal space. The prevalence of RPD may be underestimated because their recognition depends upon the imaging method used, the area of fundus examined and the confusion with typical drusen. The pathology of one eye suggests that RPD may correspond to material in the subretinal space.

  13. [Changes induced by hypertonic solutions in the transportation of calcium by the cardiac reticular sarcoplasma].

    PubMed

    Sierra, M; Holguín, J A

    1979-01-01

    In the sarcoplasmic reticulum of the myocardium, celular organell which function is to regulate the cytoplasmic concentration of calcium in contraction and relaxation, we have studied the effect of hypertonic solutions of sucrose between 1 and 6.96 times the normal tonicity in order to observe the behavior of the internal linked or free calcium of this structure, as well as to prove the hypothesis that hypertonic solutions encourage the calcium exit of the sarcoplasmatic reticulum with the resulting signs of contractures. The following results were obtained: 1. The ATP hydrolisis and calcium transport rate are 14% and 90% respectively of the maximum speeds of 10(-5) M in calcium, while for concentrations of 10(-7) M or ess of the said cation, the transport rates and the ATPase do not reach 5% of the maximum values. 2. Between 1 and 2.54 times of the normal tonicity the calcium uptake remains between 400 and 500 nmoles of calcium/mg protein/min, the transported amount of calcium varies between 14 and 16 nmoles/mg protein and the rate of the ATP hydrolysis increases a 37% to 0.4 M in sucrose. 3. Between 0.4 and 1.2 M in sucrose of 2.54 to 6.96 times the isotonicity, the calcium transport rate velocity as well as the ATP hydrolisis are strongly inhibited. The vesicles volume minimizes and the amount of linked calcium remains within the control values, proving that the capacity of linking this cathion is independent from sarcoplasmic reticulum volume. These results show that the sarcoplasmic reticulum is involved in the contractures induced by hypertonic solutions in intact cells, since the osmolarity increase produces changes of volume which results in a decrease of the calcium transportation velocity or in an increase of the exit of said cathion.

  14. Transgenic Analysis of the Role of FKBP12.6 in Cardiac Function and Intracellular Calcium Release

    PubMed Central

    Liu, Ying; Chen, Hanying; Ji, Guangju; Li, Baiyan; Mohler, Peter J.; Zhu, Zhiming; Yong, Weidong; Chen, Zhuang; Xu, Xuehong

    2011-01-01

    Abstract FK506 binding protein12.6 (FKBP12.6) binds to the Ca2+ release channel ryanodine receptor (RyR2) in cardiomyocytes and stabilizes RyR2 to prevent premature sarcoplasmic reticulum Ca2+ release. Previously, two different mouse strains deficient in FKBP12.6 were reported to have different abnormal cardiac phenotypes. The first mutant strain displayed sex-dependent cardiac hypertrophy, while the second displayed exercise-induced cardiac arrhythmia and sudden death. In this study, we tested whether FKBP12.6-deficient mice that display hypertrophic hearts can develop exercise-induced cardiac sudden death and whether the hypertrophic heart is a direct consequence of abnormal calcium handling in mutant cardiomyocytes. Our data show that FKBP12.6-deficient mice with cardiac hypertrophy do not display exercise-induced arrhythmia and/or sudden cardiac death. To investigate the role of FKBP12.6 overexpression for cardiac function and cardiomyocyte calcium release, we generated a transgenic mouse line with cardiac specific overexpression of FKBP12.6 using α-myosin heavy chain (αMHC) promoter. MHC-FKBP12.6 mice displayed normal cardiac development and function. We demonstrated that MHC-FKBP12.6 mice are able to rescue abnormal cardiac hypertrophy and abnormal calcium release in FKBP12.6-deficient mice. PMID:22087651

  15. Diagnosis of subacute ruminal acidosis (SARA) by continuous reticular pH measurements in cows.

    PubMed

    Sato, Shigeru; Ikeda, Aya; Tsuchiya, Yoshiyuki; Ikuta, Kentaro; Murayama, Isao; Kanehira, Masahiro; Okada, Keiji; Mizuguchi, Hitoshi

    2012-09-01

    The objective of this study was to determine whether subacute ruminal acidosis (SARA) could be diagnosed by continuous measurements of the reticular pH, as compared with the ruminal pH, using healthy cows fed a control diet and SARA cows fed a rumen acidosis-inducing diet. The reticular and ruminal pH were measured simultaneously by a radio transmission pH measurement system. The mean reticular pH at 1-h intervals decreased gradually from the morning feeding to the next feeding time in both healthy and SARA cows, though the decrease in the ruminal pH was observed to be more drastic as compared with that observed in the reticular pH. The threshold of the 1-h mean pH in the reticulum for a diagnosis of SARA was considered to be 6.3, and a significant positive correlation was observed between the reticular and ruminal pH. No differences in the concentrations of lactic acid, ammonia nitrogen, and volatile fatty acids were noted between the reticular and ruminal fluids in SARA cows. These results demonstrate that the reticular pH can be used to detect SARA in cows, as opposed to using the ruminal pH.

  16. Reverse micelle-mediated synthesis of calcium phosphate nanocarriers for controlled release of bovine serum albumin.

    PubMed

    Dasgupta, Sudip; Bandyopadhyay, Amit; Bose, Susmita

    2009-10-01

    Calcium phosphate (CaP) nanoparticles with a calcium to phosphorus (Ca:P) molar ratio of 1.5:1 were synthesized using reverse microemulsion. Ca(NO(3))(2).4H(2)O and H(3)PO(4) were used as the aqueous phase, cyclohexane as the organic phase and poly(oxyethylene)(12) nonylphenol ether (NP-12) as the surfactant. Depending on the calcination temperature between 600 and 800 degrees C, CaP nanoparticle showed different phases of calcium-deficient hydroxyapatite (CDHA) and beta-tricalcium phosphate (beta-TCP), particle size between 48 and 69 nm, and a BET specific average surface area between 73 and 57 m(2)g(-1). Bovine serum albumin (BSA) was used as a model protein to study loading and release behavior. The adsorptive property of BSA was investigated by the change in BET surface area of these nanoparticles and the pH of the suspension. At pH 7.5, the maximum amount of BSA was adsorbed onto CaP nanoparticle. The release kinetics of BSA showed a gradual time-dependent increase in pH 4.0 and 6.0 buffer solutions. However, the amount of protein released was significantly smaller at pH 7.2. The BSA release rate also varied depending on the presence of different phases of CaPs in the system, beta-TCP or CDHA. These results suggest that the BSA protein release rate can be controlled by changing the particle size, surface area and phase composition of the CaP nanocarriers.

  17. Eye movements evoked by electrical microstimulation of the mesencephalic reticular formation in goldfish.

    PubMed

    Luque, M A; Pérez-Pérez, M P; Herrero, L; Waitzman, D M; Torres, B

    2006-02-01

    Anatomical studies in goldfish show that the tectofugal axons provide a large number of boutons within the mesencephalic reticular formation. Electrical stimulation, reversible inactivation and cell recording in the primate central mesencephalic reticular formation have suggested that it participates in the control of rapid eye movements (saccades). Moreover, the role of this tecto-recipient area in the generation of saccadic eye movements in fish is unknown. In this study we show that the electrical microstimulation of the mesencephalic reticular formation of goldfish evoked short latency saccadic eye movements in any direction (contraversive or ipsiversive, upward or downward). Movements of the eyes were usually disjunctive. Based on the location of the sites from which eye movements were evoked and the preferred saccade direction, eye movements were divided into different groups: pure vertical saccades were mainly elicited from the rostral mesencephalic reticular formation, while oblique and pure horizontal were largely evoked from middle and caudal mesencephalic reticular formation zones. The direction and amplitude of pure vertical and horizontal saccades were unaffected by initial eye position. However the amplitude, but not the direction of most oblique saccades was systematically modified by initial eye position. At the same time, the amplitude of elicited saccades did not vary in any consistent manner along either the anteroposterior, dorsoventral or mediolateral axes (i.e. there was no topographic organization of the mesencephalic reticular formation with respect to amplitude). In addition to these groups of movements, we found convergent and goal-directed saccades evoked primarily from the anterior and posterior mesencephalic reticular formation, respectively. Finally, the metric and kinetic characteristics of saccades could be manipulated by changes in the stimulation parameters. We conclude that the mesencephalic reticular formation in goldfish shares

  18. Calcium channel dynamics limit synaptic release in response to prosthetic stimulation with sinusoidal waveforms

    PubMed Central

    Freeman, Daniel K.; Jeng, Jed S.; Kelly, Shawn K.; Hartveit, Espen; Fried, Shelley I.

    2011-01-01

    Extracellular electric stimulation with sinusoidal waveforms has been shown to allow preferential activation of individual types of retinal neurons by varying stimulus frequency. It is important to understand the mechanisms underlying this frequency dependence as a step towards improving methods of preferential activation. In order to elucidate these mechanisms, we implemented a morphologically realistic model of a retinal bipolar cell and measured the response to extracellular stimulation with sinusoidal waveforms. We compared the frequency response of a passive membrane model to the kinetics of voltage-gated calcium channels that mediate synaptic release. The passive electrical properties of the membrane exhibited lowpass filtering with a relatively high cutoff frequency (nominal value = 717 Hz). This cutoff frequency was dependent on intra-axonal resistance, with shorter and wider axons yielding higher cutoff frequencies. However, we found that the cutoff frequency of bipolar cell synaptic release was primarily limited by the relatively slow opening kinetics of Land T-type calcium channels. The cutoff frequency of calcium currents depended nonlinearly on stimulus amplitude, but remained lower than the cutoff frequency of the passive membrane model for a large range of membrane potential fluctuations. These results suggest that while it may be possible to modulate the membrane potential of bipolar cells over a wide range of stimulus frequencies, synaptic release will only be initiated at the lower end of this range. PMID:21628768

  19. Model of the Reticular Formation of the Brainstem Based on Glial-Neuronal Interactions.

    PubMed

    Mitterauer, Bernhard J

    A new model of the reticular formation of the brainstem is proposed. It refers to the neuronal and glial cell systems. Thus, it is biomimetically founded. The reticular formation generates modes of behavior (sleeping, eating, etc.) and commands all behavior according to the most appropriate environmental information. The reticular formation works on an abductive logic and is dominated by a redundancy of potential command. Formally, a special mode of behavior is represented by a comprehensive cycle (Hamilton loop) located in the glial network (syncytium) and embodied in gap junctional plaques. Whereas for the neuronal network of the reticular formation, a computer simulation has already been presented; here, the necessary devices for computation in the whole network are outlined.

  20. Differential effect of extracellular matrix derived from papillary and reticular fibroblasts on epidermal development in vitro.

    PubMed

    Janson, David; Rietveld, Marion; Mahé, Christian; Saintigny, Gaëlle; El Ghalbzouri, Abdoelwaheb

    2017-06-01

    Papillary and reticular fibroblasts have different effects on keratinocyte proliferation and differentiation. The aim of this study was to investigate whether these effects are caused by differential secretion of soluble factors or by differential generation of extracellular matrix from papillary and reticular fibroblasts. To study the effect of soluble factors, keratinocyte monolayer cultures were grown in papillary or reticular fibroblast-conditioned medium. To study the effect of extracellular matrix, keratinocytes were grown on papillary or reticular-derived matrix. Conditioned medium from papillary or reticular fibroblasts did not differentially affect keratinocyte viability or epidermal development. However, keratinocyte viability was increased when grown on matrix derived from papillary, compared with reticular, fibroblasts. In addition, the longevity of the epidermis was increased when cultured on papillary fibroblast-derived matrix skin equivalents compared with reticular-derived matrix skin equivalents. The findings indicate that the matrix secreted by papillary and reticular fibroblasts is the main causal factor to account for the differences in keratinocyte growth and viability observed in our study. Differences in response to soluble factors between both populations were less significant. Matrix components specific to the papillary dermis may account for the preferential growth of keratinocytes on papillary dermis.

  1. Reverse Micelle Mediated synthesis of Calcium Phosphate Nanocarriers for Controlled Release of Bovine Serum Albumin (BSA)

    PubMed Central

    Dasgupta, Sudip; Bandyopadhyay, Amit; Bose, Susmita

    2010-01-01

    Calcium phosphate (CaP) nanoparticle with calcium to phosphorus (Ca:P) molar ratio of 1.5:1 were synthesized using reverse micro emulsion. Ca(NO3)2.4H2O and H3PO4 were used as aqueous phase, cyclohexane as organic phase, and poly(oxyethylene)12 nonylphenol ether (NP-12) as surfactant. Depending on calcination temperature between 600 and 800 °C, CaP nanoparticle showed different phases calcium deficient hydroxyapatite (CDHA) and β-tricalcium phosphate (β-TCP), particle size between 48 and 69 nm, the BET specific average surface area between 73 m2/g and 57 m2/g. Bovine serum albumin (BSA) was used as a model protein to study loading and release behavior. Adsorptive property of BSA was investigated with the change in BET surface area of these nanoparticle and the pH of the suspension. At pH 7.5, maximum amount of BSA was adsorbed onto CaP nanoparticle. The release kinetics of BSA showed a gradual time dependent increase at pH 4.0 and 6.0 buffer solutions. However, the amount of released protein was significantly smaller at pH 7.2. BSA release rate also varied depending on the presence of different phases of CaPs in the system, β-TCP or CDHA. These results suggest that BSA protein release rate can be controlled by changing particle size, surface area and phase composition of CaP nanocarriers. PMID:19435617

  2. Genetically Encoded Calcium Indicators For Studying Long-Term Calcium Dynamics During Apoptosis

    PubMed Central

    Garcia, M. Iveth; Chen, Jessica J.; Boehning, Darren

    2017-01-01

    Intracellular calcium release is essential for regulating almost all cellular functions. Specific spatio-temporal patterns of cytosolic calcium elevations are critical determinants of cell fate in response to pro-apoptotic cellular stressors. As the apoptotic program can take hours or days, measurement of long-term calcium dynamics are essential for understanding the mechanistic role of calcium in apoptotic cell death. Due to the technical limitations of using calcium-sensitive dyes to measure cytosolic calcium little is known about long-term calcium dynamics in living cells after treatment with apoptosis-inducing drugs. Genetically encoded calcium indicators could potentially overcome some of the limitations of calcium-sensitive dyes. Here, we compared the performance of the genetically encoded calcium indicators GCaMP6s and GCaMP6f with the ratiometric dye Fura-2. GCaMP6s performed as well or better than Fura-2 in detecting agonist-induced calcium transients. We then examined the utility of GCaMP6s for continuously measuring apoptotic calcium release over the course of ten hours after treatment with staurosporine. We found that GCaMP6s was suitable for measuring apoptotic calcium release over long time courses and revealed significant heterogeneity in calcium release dynamics in individual cells challenged with staurosporine. Our results suggest GCaMP6s is an excellent indicator for monitoring long-term changes cytosolic calcium during apoptosis. PMID:28073595

  3. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    PubMed

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium.

  4. Gamma Band Activity in the Reticular Activating System

    PubMed Central

    Urbano, Francisco J.; Kezunovic, Nebojsa; Hyde, James; Simon, Christen; Beck, Paige; Garcia-Rill, Edgar

    2012-01-01

    This review considers recent evidence showing that cells in three regions of the reticular activating system (RAS) exhibit gamma band activity, and describes the mechanisms behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanisms behind this ceiling effect have been recently elucidated. We describe recent findings showing that every cell in the PPN have high-threshold, voltage-dependent P/Q-type calcium channels that are essential, while N-type calcium channels are permissive, to gamma band activity. Every cell in the Pf also showed that P/Q-type and N-type calcium channels are responsible for this activity. On the other hand, every SubCD cell exhibited sodium-dependent subthreshold oscillations. A novel mechanism for sleep–wake control based on well-known transmitter interactions, electrical coupling, and gamma band activity is described. The data presented here on inherent gamma band activity demonstrates the global nature of sleep–wake oscillation that is orchestrated by brainstem–thalamic mechanism, and questions the undue importance given to the hypothalamus for regulation of sleep–wakefulness. The discovery of gamma band activity in the RAS follows recent reports of such activity in other subcortical regions like the hippocampus and cerebellum. We hypothesize that, rather than participating in the temporal binding of sensory events as seen in the cortex, gamma band activity manifested in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking and paradoxical sleep. Most of our thoughts and actions are driven by pre-conscious processes. We speculate that continuous sensory input will induce gamma band activity in the RAS that could participate in the processes of

  5. Aneurysmal subarachnoid hemorrhage causes injury of the ascending reticular activating system: relation to consciousness.

    PubMed

    Jang, S H; Kim, H S

    2015-04-01

    Little is known about the pathogenetic mechanism of impaired consciousness following subarachnoid hemorrhage. Using diffusion tensor imaging, we attempted to investigate the presence of injury of the lower portion of the ascending reticular activating system between the pontine reticular formation and the intralaminar thalamic nuclei, and the relation between this injury and consciousness level in patients with SAH. We recruited 24 consecutive patients with spontaneous SAH following aneurysmal rupture and 21 healthy control subjects. Consciousness level was rated by using the Glasgow Coma Scale. Using diffusion tensor tractography, we reconstructed the lower portion of the ascending reticular activating system between the pontine reticular formation and the intralaminar thalamic nuclei. Values of fractional anisotropy, apparent diffusion coefficient, and tract number of the ascending reticular activating system were measured. A significant difference in the tract number was observed between the patient and control groups (P < .05); however, there was no significant difference in terms of fractional anisotropy and apparent diffusion coefficient values (P > .05). In addition, regarding the tract number of the patient group, the Glasgow Coma Scale showed strong positive correlations with the tract number on the more affected side (r = 0.890, P < .05), the less affected side (r = 0.798, P < .05), and both sides (r = 0.919, P < .05), respectively. We found injury of the lower portion of the ascending reticular activating system between the pontine reticular formation and the thalamus in patients with SAH. In addition, we observed a close association between injury of the lower portion of the ascending reticular activating system and impaired consciousness in patients with SAH. © 2015 by American Journal of Neuroradiology.

  6. Genetically encoded calcium indicators for studying long-term calcium dynamics during apoptosis.

    PubMed

    Garcia, M Iveth; Chen, Jessica J; Boehning, Darren

    2017-01-01

    Intracellular calcium release is essential for regulating almost all cellular functions. Specific spatio-temporal patterns of cytosolic calcium elevations are critical determinants of cell fate in response to pro-apoptotic cellular stressors. As the apoptotic program can take hours or days, measurement of long-term calcium dynamics are essential for understanding the mechanistic role of calcium in apoptotic cell death. Due to the technical limitations of using calcium-sensitive dyes to measure cytosolic calcium little is known about long-term calcium dynamics in living cells after treatment with apoptosis-inducing drugs. Genetically encoded calcium indicators could potentially overcome some of the limitations of calcium-sensitive dyes. Here, we compared the performance of the genetically encoded calcium indicators GCaMP6s and GCaMP6f with the ratiometric dye Fura-2. GCaMP6s performed as well or better than Fura-2 in detecting agonist-induced calcium transients. We then examined the utility of GCaMP6s for continuously measuring apoptotic calcium release over the course of ten hours after treatment with staurosporine. We found that GCaMP6s was suitable for measuring apoptotic calcium release over long time courses and revealed significant heterogeneity in calcium release dynamics in individual cells challenged with staurosporine. Our results suggest GCaMP6s is an excellent indicator for monitoring long-term changes cytosolic calcium during apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Influence of calcium salts and bovine thrombin on growth factor release from equine platelet-rich gel supernatants.

    PubMed

    Giraldo, Carlos E; Álvarez, María E; Carmona, Jorge U

    2017-01-16

    To compare five activation methods in equine platelet-rich plasma (PRP) by determination of platelet-derived growth factor BB (PDGF-BB) and transforming growth factor beta 1 (TGF-β1) concentrations in platelet-rich gel (PRG) supernatants. Platelet-rich plasma from 20 horses was activated by calcium chloride (CC), calcium gluconate (CG), bovine thrombin (BT), and their combinations, BTCC and BTCG. Both growth factor concentrations in PRG supernatants were measured by ELISA and compared with plasma and platelet lysates (PL) over time. Growth factor concentrations were significantly lower in plasma and higher for all PRG supernatants. Platelet lysates contained a significantly lower concentration of PDGF-BB than PRG supernatants and a significantly higher concentration of TGF-β1 than PRG supernatants. Clots from PRP activated with sodium salts were more stable over time and had significant growth factor release, whereas CC produced gross salt deposition. Significant correlations were noticed for platelet with leukocyte concentrations in PRP (r s : 0.76), platelet counts in PRP with TGF-β1 concentrations in PRG supernatants (r s : 0.86), platelet counts in PRP with PDGF-BB concentrations in PRG supernatants (r s : 0.78), leukocyte counts in PRP with TGF-β1 concentrations in PRG supernatants (r s : 0.76), and PDGF-BB concentrations with activating substances (r s : 0.72). Calcium gluconate was the better substance to induce PRP activation. It induced growth factor release free from calcium precipitates in the clots. Use of BT alone or combined with calcium salts was not advantageous for growth factor release.

  8. Reticular pseudodrusen in age-related macular degeneration.

    PubMed

    Hogg, Ruth Esther

    2014-08-01

    Historically, drusen, which are recognized as the hallmark of age-related macular degeneration (AMD), have been described in terms of size, margins, and texture, and several studies have emphasized the importance of large soft drusen particularly when combined with focal pigmentary irregularities in determining the risk of progression to neovascular AMD. However, recent developments in imaging over the past decade have revealed a further distinct phenotype strongly associated with the development of late AMD, namely, reticular pseudodrusen (RPD) or reticular drusen. Reticular pseudodrusen appear as yellowish interlacing networks in the fundus and, although visible on color photography, are better visualized using infrared imaging or spectral domain optical coherence tomography. Studies correlating spectral domain optical coherence tomography and confocal scanning laser ophthalmoscopy have shown that RPD are subretinal deposits located internal to the retinal pigment epithelium in contrast to traditional drusen, which are located external to the retinal pigment epithelium. As multiple longitudinal studies have revealed RPD are strong predictors for progression to both neovascular AMD and geographic atrophy, the interest in understanding the role that RPD play in the pathogenesis of AMD has grown. This review focuses on the current literature concerning RPD and considers what is currently known regarding their epidemiology, risk factors, appearance in both retinal imaging and histology, impact on visual function, relationship to other AMD lesions, and association with the development of late AMD.

  9. Leptin alters somatosensory thalamic networks by decreasing gaba release from reticular thalamic nucleus and action potential frequency at ventrobasal neurons.

    PubMed

    Perissinotti, Paula P; Rivero-Echeto, María Celeste; Garcia-Rill, Edgar; Bisagno, Verónica; Urbano, Francisco J

    2018-06-01

    Leptin is an adipose-derived hormone that controls appetite and energy expenditure. Leptin receptors are expressed on extra-hypothalamic ventrobasal (VB) and reticular thalamic (RTN) nuclei from embryonic stages. Here, we studied the effects of pressure-puff, local application of leptin on both synaptic transmission and action potential properties of thalamic neurons in thalamocortical slices. We used whole-cell patch-clamp recordings of thalamocortical VB neurons from wild-type (WT) and leptin-deficient obese (ob/ob) mice. We observed differences in VB neurons action potentials and synaptic currents kinetics when comparing WT vs. ob/ob. Leptin reduced GABA release onto VB neurons throughout the activation of a JAK2-dependent pathway, without affecting excitatory glutamate transmission. We observed a rapid and reversible reduction by leptin of the number of action potentials of VB neurons via the activation of large conductance Ca 2+ -dependent potassium channels. These leptin effects were observed in thalamocortical slices from up to 5-week-old WT but not in leptin-deficient obese mice. Results described here suggest the existence of a leptin-mediated trophic modulation of thalamocortical excitability during postnatal development. These findings could contribute to a better understanding of leptin within the thalamocortical system and sleep deficits in obesity.

  10. Subretinal drusenoid deposits with increased autofluorescence in eyes with reticular pseudodrusen.

    PubMed

    Lee, Mee Yon; Ham, Don-Il

    2014-01-01

    To characterize a variant type of drusenoid deposit with different imaging features in comparison to reticular pseudodrusen. Retrospective observational consecutive case series. Eyes showing atypical drusenoid lesions were sorted out from 257 eyes of 133 patients previously diagnosed as reticular pseudodrusen. Eyes were evaluated using color fundus photography, confocal scanning laser ophthalmoscopy, and spectral domain optical coherence tomography. A variant type of drusenoid deposits showing different imaging features from reticular pseudodrusen was found in 17 eyes of 12 patients (6.6%). The mean age of patients was 62.7 ± 11.6 years, and all patients were women. These deposits were observed as yellowish white, round to oval lesions on color photographs, located under the sensory retina and above the retinal pigment epithelium on spectral domain optical coherence tomography similar to reticular pseudodrusen. However, they were present in a smaller number as discrete lesions and showed increased autofluorescence. None of them were accompanied by late age-related macular degeneration. Subretinal drusenoid deposits are not homogeneous and can be classified into two types according to the fundus autofluorescence. Multimodal imaging tests are needed for the differential diagnosis of subretinal drusenoid deposits.

  11. A central mesencephalic reticular formation projection to the Edinger-Westphal nuclei.

    PubMed

    May, Paul J; Warren, Susan; Bohlen, Martin O; Barnerssoi, Miriam; Horn, Anja K E

    2016-11-01

    The central mesencephalic reticular formation, a region associated with horizontal gaze control, has recently been shown to project to the supraoculomotor area in primates. The Edinger-Westphal nucleus is found within the supraoculomotor area. It has two functionally and anatomically distinct divisions: (1) the preganglionic division, which contains motoneurons that control both the actions of the ciliary muscle, which focuses the lens, and the sphincter pupillae muscle, which constricts the iris, and (2) the centrally projecting division, which contains peptidergic neurons that play a role in food and fluid intake, and in stress responses. In this study, we used neuroanatomical tracers in conjunction with immunohistochemistry in Macaca fascicularis monkeys to examine whether either of these Edinger-Westphal divisions receives synaptic input from the central mesencephalic reticular formation. Anterogradely labeled reticular axons were observed making numerous boutonal associations with the cholinergic, preganglionic motoneurons of the Edinger-Westphal nucleus. These associations were confirmed to be synaptic contacts through the use of confocal and electron microscopic analysis. The latter indicated that these terminals generally contained pleomorphic vesicles and displayed symmetric, synaptic densities. Examination of urocortin-1-positive cells in the same cases revealed fewer examples of unambiguous synaptic relationships, suggesting the centrally projecting Edinger-Westphal nucleus is not the primary target of the projection from the central mesencephalic reticular formation. We conclude from these data that the central mesencephalic reticular formation must play a here-to-for unexpected role in control of the near triad (vergence, lens accommodation and pupillary constriction), which is used to examine objects in near space.

  12. A central mesencephalic reticular formation projection to the Edinger–Westphal nuclei

    PubMed Central

    May, Paul J.; Warren, Susan; Bohlen, Martin O.; Barnerssoi, Miriam

    2016-01-01

    The central mesencephalic reticular formation, a region associated with horizontal gaze control, has recently been shown to project to the supraoculomotor area in primates. The Edinger–Westphal nucleus is found within the supraoculomotor area. It has two functionally and anatomically distinct divisions: (1) the preganglionic division, which contains motoneurons that control both the actions of the ciliary muscle, which focuses the lens, and the sphincter pupillae muscle, which constricts the iris, and (2) the centrally projecting division, which contains peptidergic neurons that play a role in food and fluid intake, and in stress responses. In this study, we used neuroanatomical tracers in conjunction with immunohistochemistry in Macaca fascicularis monkeys to examine whether either of these Edinger–Westphal divisions receives synaptic input from the central mesencephalic reticular formation. Anterogradely labeled reticular axons were observed making numerous boutonal associations with the cholinergic, preganglionic motoneurons of the Edinger–Westphal nucleus. These associations were confirmed to be synaptic contacts through the use of confocal and electron microscopic analysis. The latter indicated that these terminals generally contained pleomorphic vesicles and displayed symmetric, synaptic densities. Examination of urocortin-1-positive cells in the same cases revealed fewer examples of unambiguous synaptic relationships, suggesting the centrally projecting Edinger–Westphal nucleus is not the primary target of the projection from the central mesencephalic reticular formation. We conclude from these data that the central mesencephalic reticular formation must play a here-to-for unexpected role in control of the near triad (vergence, lens accommodation and pupillary constriction), which is used to examine objects in near space. PMID:26615603

  13. Mini-dystrophin Expression Down-regulates IP3-mediated Calcium Release Events in Resting Dystrophin-deficient Muscle Cells

    PubMed Central

    Balghi, Haouaria; Sebille, Stéphane; Mondin, Ludivine; Cantereau, Anne; Constantin, Bruno; Raymond, Guy; Cognard, Christian

    2006-01-01

    We present here evidence for the enhancement, at rest, of an inositol 1,4,5-trisphosphate (IP3)–mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(−)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, the number of sites discharging calcium (release site density [RSD]) was quantified and found more elevated in SolC1(−) than in SolD(+) myotubes. Variations of membrane potential had no significant effect on this difference, and higher resting [Ca2+]i in SolC1(−) (Marchand, E., B. Constantin, H. Balghi, M.C. Claudepierre, A. Cantereau, C. Magaud, A. Mouzou, G. Raymond, S. Braun, and C. Cognard. 2004. Exp. Cell Res. 297:363–379) cannot explain alone higher RSD. The exposure with SR Ca2+ channel inhibitors (ryanodine and 2-APB) and phospholipase C inhibitor (U73122) significantly reduced RSD in both cell types but with a stronger effect in dystrophin-deficient SolC1(−) myotubes. Immunocytochemistry allowed us to localize ryanodine receptors (RyRs) as well as IP3 receptors (IP3Rs), IP3R-1 and IP3R-2 isoforms, indicating the presence of both RyRs-dependent and IP3-dependent release systems in both cells. We previously reported evidence for the enhancement, through a Gi protein, of the IP3-mediated calcium signaling pathway in SolC1(−) as compared to SolD(+) myotubes during a high K+ stimulation (Balghi, H., S. Sebille, B. Constantin, S. Patri, V. Thoreau, L. Mondin, E. Mok, A. Kitzis, G. Raymond, and C. Cognard. 2006. J. Gen. Physiol. 127:171–182). Here we show that, at rest, these regulation mechanisms are also involved in the modulation of calcium release activities. The enhancement of resting release activity may participate in the calcium overload observed in dystrophin-deficient myotubes, and our findings support the hypothesis of the regulatory role of mini-dystrophin on intracellular signaling. PMID:16847098

  14. ATP Releasing Connexin 30 Hemichannels Mediate Flow-Induced Calcium Signaling in the Collecting Duct

    PubMed Central

    Svenningsen, Per; Burford, James L.; Peti-Peterdi, János

    2013-01-01

    ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC, and AQP2. Recently, we have shown that connexin (Cx) 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD) and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30−/− mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca2+]i) signaling in the CD. Cortical CDs (CCDs) from wild type and Cx30−/− mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca2+]i in wild type CCDs. This response was blunted in Cx30−/− CCDs ([Ca2+]i increased only 1.2-fold, p < 0.0001 vs. WT, n = 6 each). To further test our hypothesis we performed CD [Ca2+]i imaging in intact mouse kidneys in vivo using multiphoton microscopy and micropuncture delivery of the calcium-sensitive fluorophore Rhod-2. We found intrinsic, spontaneous [Ca2+]i oscillations in free-flowing CDs of wild type but not Cx30−/− mice. The [Ca2+]i oscillations were sensitive also to P2-receptor inhibition by suramin. Taken together, these data confirm that mechanosensitive Cx30 hemichannels mediate tubular ATP release and purinergic calcium signaling in the CD which mechanism plays an important role in the regulation of CD salt and water reabsorption. PMID:24137132

  15. Development of a calcium phosphate co-precipitate/poly(lactide-co-glycolide) DNA delivery system: release kinetics and cellular transfection studies.

    PubMed

    Kofron, Michelle D; Laurencin, Cato T

    2004-06-01

    One of the most common non-viral methods for the introduction of foreign deoxyribonucleic acid (DNA) into cultured cells is calcium phosphate co-precipitate transfection. This technique involves the encapsulation of DNA within a calcium phosphate co-precipitate, particulate addition to in vitro cell culture, endocytosis of the co-precipitate, and exogenous DNA expression by the transfected cell. In this study, we fabricated a novel non-viral gene transfer system by adsorbing DNA, encapsulated in calcium phosphate (DNA/Ca-P) co-precipitates, to biodegradable two- and three-dimensional poly(lactide-co-glycolide) matrices (2D-DNA/Ca-P/PLAGA, 3D-DNA/Ca-P/PLAGA). Co-precipitate release studies demonstrated an initial burst release over the first 48 h. By day 7, approximately 96% of the initially adsorbed DNA/Ca-P co-precipitate had been released. This was followed by low levels of co-precipitate release for 42 days. Polymerase chain reaction was used to demonstrate the ability of the released DNA containing co-precipitates to transfect SaOS-2 cells cultured in vitro on the 3D-DNA/Ca-P/PLAGA matrix and maintenance of the structural integrity of the exogenous DNA. In summary, a promising system for the incorporation and controlled delivery of exogenous genes encapsulated within a calcium phosphate co-precipitate from biodegradable polymeric matrices has been developed and may have applicability to the delivery of therapeutic genes and the transfection of other cell types.

  16. Effects of diltiazem or verapamil on calcium uptake and release from chicken skeletal muscle sarcoplasmic reticulum.

    PubMed

    Paydar, Mehrak Javadi; Pousti, Abbas; Farsam, Hasan; Amanlou, Massoud; Mehr, Shahram Ejtemaei; Dehpour, Ahmad Reza

    2005-11-01

    The purpose of this study was to determine the effects of 2 Ca2+ channel blockers, verapamil and diltiazem, on calcium loading (active Ca2+ uptake) and the following Ca2+ release induced by silver ion (Ag+) and Ca2+ from the membrane of heavy sarcoplasmic reticulum (SR) of chicken skeletal muscle. A fluorescent probe technique was employed to determine the calcium movement through the SR. Pretreatment of the medium with diltiazem and verapamil resulted in a significant decrease in the active Ca2+ uptake, with IC50 of about 290 micromol/L for verapamil and 260 micromol/L for diltiazem. Inhibition of Ca2+ uptake was not due to the development of a substantial drug-dependent leak of Ca2+ from the SR. It might, in part, have been mediated by a direct inhibitory effect of these drugs on the Ca2+ ATPase activity of the SR Ca2+ pump. We confirmed that Ca2+ channel blockers, administered after SR Ca2+ loading and before induction of Ca2+ release, caused a dose-dependent inhibition of both Ca2+- and Ag+-induced Ca2+ release rate. Moreover, if Ca2+ channel blockers were administered prior to SR Ca2+ loading, in spite of Ca2+ uptake inhibition the same reduction in Ca2+- and Ag+-induced Ca2+ release rate was seen. We showed that the inhibition of Ag+-induced Ca2+ release by L-channel blockers is more sensitive than Ca2+-induced Ca2+ release inhibition, so the IC50 for Ag+- and Ca2+-induced Ca2+ release was about 100 and 310 micromol/L for verapamil and 79 and 330 micromol/L for diltiazem, respectively. Our results support the evidence that Ca2+ channel blockers affect muscle microsome of chicken skeletal muscle by 2 independent mechanisms: first, reduction of Ca2+ uptake rate and Ca2+-ATPase activity inhibition, and second, inhibition of both Ag+- and Ca2+-induced Ca2+ release by Ca2+ release channels. These findings confirm the direct effect of Ca2+ channel blockers on calcium release channels. Our results suggest that even if the SR is incompletely preloaded with Ca2

  17. Releasing-addition method for the flame-photometric determination of calcium in thermal waters

    USGS Publications Warehouse

    Rowe, J.J.

    1963-01-01

    Study of the interferences of silica and sulfate in the flame-photometric determination of calcium in thermal waters has led to the development of a method requiring no prior chemical separations. The interference effects of silica, sulfate, potassium, sodium, aluminum, and phosphate are overcome by an addition technique coupled with the use of magnesium as a releasing agent. ?? 1963.

  18. GABAergic Neurotransmission in the Pontine Reticular Formation Modulates Hypnosis, Immobility, and Breathing during Isoflurane Anesthesia

    PubMed Central

    Vanini, Giancarlo; Watson, Christopher J.; Lydic, Ralph; Baghdoyan, Helen A.

    2009-01-01

    Background Many general anesthetics are thought to produce a loss of wakefulness, in part, by enhancing gamma-aminobutyric acid (GABA) neurotransmission. However, GABAergic neurotransmission in the pontine reticular formation promotes wakefulness. This study tested the hypotheses that: 1) relative to wakefulness, isoflurane decreases GABA levels in the pontine reticular formation; and 2) pontine reticular formation administration of drugs that increase or decrease GABA levels increases or decreases, respectively, isoflurane induction time. Methods To test hypothesis 1, cats (n = 5) received a craniotomy and permanent electrodes for recording the electroencephalogram and electromyogram. Dialysis samples were collected from the pontine reticular formation during isoflurane anesthesia and wakefulness. GABA levels were quantified using high performance liquid chromatography. For hypothesis 2, rats (n = 10) were implanted with a guide cannula aimed for the pontine reticular formation. Each rat received microinjections of Ringer’s (vehicle control), the GABA uptake inhibitor nipecotic acid, and the GABA synthesis inhibitor 3-mercaptopropionic acid. Rats were then anesthetized with isoflurane and induction time was quantified as loss of righting reflex. Breathing rate was also measured. Results Relative to wakefulness, GABA levels were significantly decreased by isoflurane. Increased power in the electroencephalogram and decreased activity in the electromyogram caused by isoflurane co-varied with pontine reticular formation GABA levels. Nipecotic acid and 3-mercaptopropionic acid significantly increased and decreased, respectively, isoflurane induction time. Nipecotic acid also increased breathing rate. Conclusion Decreasing pontine reticular formation GABA levels comprises one mechanism by which isoflurane causes loss of consciousness, altered cortical excitability, muscular hypotonia, and decreased respiratory rate. PMID:19034094

  19. Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons

    NASA Technical Reports Server (NTRS)

    Mohamed, Habib A.; Mosier, Dennis R.; Zou, Ling L.; Siklos, Laszlo; Alexianu, Maria E.; Engelhardt, Jozsef I.; Beers, David R.; Le, Wei-dong; Appel, Stanley H.

    2002-01-01

    Receptors for the Fc portion of immunoglobulin G (IgG; FcgammaRs) facilitate IgG uptake by effector cells as well as cellular responses initiated by IgG binding. In earlier studies, we demonstrated that amyotrophic lateral sclerosis (ALS) patient IgG can be taken up by motor neuron terminals and transported retrogradely to the cell body and can alter the function of neuromuscular synapses, such as increasing intracellular calcium and spontaneous transmitter release from motor axon terminals after passive transfer. In the present study, we examined whether FcgammaR-mediated processes can contribute to these effects of ALS patient immunoglobulins. F(ab')(2) fragments (which lack the Fc portion) of ALS patient IgG were not taken up by motor axon terminals and were not retrogradely transported. Furthermore, in a genetically modified mouse lacking the gamma subunit of the FcR, the uptake of whole ALS IgG and its ability to enhance intracellular calcium and acetylcholine release were markedly attenuated. These data suggest that FcgammaRs appear to participate in IgG uptake into motor neurons as well as IgG-mediated increases in intracellular calcium and acetylcholine release from motor axon terminals. Copyright 2002 Wiley-Liss, Inc.

  20. Calcium Coordination Solids for pH-Triggered Release of Olsalazine

    DOE PAGES

    Levine, Dana J.; Gonzalez, Miguel I.; Legendre, Christina M.; ...

    2017-09-12

    Here, calcium coordination solids were synthesized and evaluated for delivery of olsalazine (H 4olz), an anti-inflammatory compound used for treatment of ulcerative colitis. The materials include one-dimensional Ca(H 2olz)•4H 2O chains, two-dimensional Ca(H 2olz)•2H 2O sheets, and a three-dimensional metal-organic framework Ca(H 2olz)•2DMF (DMF= N,N-dimethylformamide). The framework undergoes structural changes in response to solvent, forming a dense Ca(H 2olz) phase when exposed to aqueous HCl. The compounds Ca(H 2olz)•xH 2O (x=0, 2, 4) were each pressed into pellets and exposed to simulated gastrointestinal fluids to mimic the passage of a pill from the acidic stomach to the pH-neutral intestines. Allmore » three calcium materials exhibited a delayed release of olsalazine relative to Na 2(H 2olz), the commercial formulation, illustrating how formulation of a drug within an extended coordination solid can serve to tune its solubility and performance.« less

  1. Calcium Coordination Solids for pH-Triggered Release of Olsalazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Dana J.; Gonzalez, Miguel I.; Legendre, Christina M.

    Here, calcium coordination solids were synthesized and evaluated for delivery of olsalazine (H 4olz), an anti-inflammatory compound used for treatment of ulcerative colitis. The materials include one-dimensional Ca(H 2olz)•4H 2O chains, two-dimensional Ca(H 2olz)•2H 2O sheets, and a three-dimensional metal-organic framework Ca(H 2olz)•2DMF (DMF= N,N-dimethylformamide). The framework undergoes structural changes in response to solvent, forming a dense Ca(H 2olz) phase when exposed to aqueous HCl. The compounds Ca(H 2olz)•xH 2O (x=0, 2, 4) were each pressed into pellets and exposed to simulated gastrointestinal fluids to mimic the passage of a pill from the acidic stomach to the pH-neutral intestines. Allmore » three calcium materials exhibited a delayed release of olsalazine relative to Na 2(H 2olz), the commercial formulation, illustrating how formulation of a drug within an extended coordination solid can serve to tune its solubility and performance.« less

  2. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus.

    PubMed

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further studies are needed for introducing aldehyde dehydrogenase as a prognostic

  3. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus*

    PubMed Central

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Background Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. Objective This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Method Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. Results The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. Limitations of the study This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. Conclusions The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further

  4. Is There a Relation between Reticular Formation and Storage Symptoms in Men.

    PubMed

    Zorba, Orhan Ü; Kirbaş, Serkan; Uzun, Hakkı; Önem, Kadir; Çetinkaya, Mehmet; Rifaioğlu, Mehmet M

    2014-01-01

    To reveal brainstem originated pathology in men with different types of lower urinary tract symptoms blink reflex latency times were assessed. A total of 32 men, 16 with storage and 16 with voiding symptoms, were enrolled in the study. Blink reflex latency times were analyzed through electrical stimulation of the supraorbital nerve. Two responses in the orbicularis oculi muscle were recorded: the latency times for the early ipsilateral response, R1, and the late bilateral responses, R2. The mean ages of the patients with storage and voiding symptoms were 57.31 ± 6.87 and 58.06 ± 6.29 years, respectively. The R2 latency times were significantly longer in men with storage symptoms. However, the R1 latency times were similar for the two groups. Late blink latency times were long only in patients who had storage symptoms. An oligosynaptic path through the trigeminal nuclei, which includes one or two interneurons, is responsible for early response; however, late response is relayed through a polysynaptic path, including neurons in the reticular formation. It has also been shown that stimulation of the pontine reticular formation inhibits the micturition contraction. In some patients, storage symptoms may result from pathology that originates with the reticular formation and this pathology may lead to increases in late blink latency times. Additional studies are needed on other reflexes that are mediated through reticular formation, in order to show the possible dysfunction of the reticular formation in men with storage symptoms. © 2013 Wiley Publishing Asia Pty Ltd.

  5. Reticular lamina and basilar membrane vibrations in the basal turn of gerbil and mouse cochleae

    NASA Astrophysics Data System (ADS)

    Ren, Tianying; He, Wenxuan

    2018-05-01

    Low-coherence interferometry in living cochleae has provided valuable information for understanding cochlear micromechanics. A recent measurement of the reticular lamina and basilar membrane vibrations in mouse cochleae, however, is inconsistent with data collected from guinea pig cochleae. To determine whether a species difference accounts for the observed difference, a custom-built heterodyne low-coherence interferometer was used to measure reticular lamina and basilar membrane vibrations at the basal turn of sensitive gerbil and mouse cochleae. For the gerbil and mouse, both the reticular lamina and basilar membrane vibrations show sharp tuning and nonlinear compressive growth near the best frequency. The magnitude of the reticular lamina vibration is significantly greater than that of the basilar membrane vibration not only near the best frequency, but also at low frequencies. The phase of the reticular lamina vibration leads the basilar membrane phase by up to 180-degrees at low frequencies, and this phase lead decreases with frequency, approaching zero near the best frequency. The best frequency of the reticular lamina and basilar membrane vibrations at the cochlear basal turn in mice is significantly higher than that in gerbils. Besides this difference, cochlear micromechanical responses in the gerbil are similar to those in the mouse. Thus, the current results indicate that gerbil and mouse cochleae detect and process sounds likely through a similar micromechanical mechanism.

  6. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles

    PubMed Central

    Chen, Chen; Weir, Michael D.; Cheng, Lei; Lin, Nancy; Lin-Gibson, Sheng; Chow, Laurence C.; Zhou, Xuedong; Xu, Hockin H. K.

    2015-01-01

    Objectives Recurrent caries at the margins is a primary reason for restoration failure. The objectives of this study were to develop bonding agent with the double benefits of antibacterial and remineralizing capabilities, to investigate the effects of NACP filler level and solution pH on Ca and P ion release from adhesive, and to examine the antibacterial and dentin bond properties. Methods Nanoparticles of amorphous calcium phosphate (NACP) and a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) were synthesized. Scotchbond Multi-Purpose (SBMP) primer and adhesive served as control. DMADDM was incorporated into primer and adhesive at 5% by mass. NACP was incorporated into adhesive at filler mass fractions of 10%, 20%, 30% and 40%. A dental plaque microcosm biofilm model was used to test the antibacterial bonding agents. Calcium (Ca) and phosphate (P) ion releases from the cured adhesive samples were measured vs. filler level and solution pH of 7, 5.5 and 4. Results Adding 5% DMADDM and 10–40% NACP into bonding agent, and water-aging for 28 days, did not affect dentin bond strength, compared to SBMP control at 1 day (p > 0.1). Adding DMADDM into bonding agent substantially decreased the biofilm metabolic activity and lactic acid production. Total microorganisms, total streptococci, and mutans streptococci were greatly reduced for bonding agents containing DMADDM. Increasing NACP filler level from 10% to 40% in adhesive increased the Ca and P ion release by an order of magnitude. Decreasing solution pH from 7 to 4 increased the ion release from adhesive by 6–10 folds. Significance Bonding agents containing antibacterial DMADDM and remineralizer NACP were formulated to have Ca and P ion release, which increased with NACP filler level from 10% to 40% in adhesive. NACP adhesive was “smart” and dramatically increased the ion release at cariogenic pH 4, when these ions would be most-needed to inhibit caries. Therefore, bonding agent

  7. "Reticular" and "Areticular" Nissl Bodies in Sympathetic Neurons of a Lizard

    PubMed Central

    Smith, Stuart W.

    1959-01-01

    Sympathetic ganglia of the horned lizard, Phrynosoma cornutum, were fixed in OsO4 and imbedded in methacrylate. Thin sections were cut for electron microscopy. Some adjacent thick sections were cut for light microscopy and were stained in acidified, dilute thionine both before and after digestion by RNase. In the light microscope two types of Nissl bodies are found, both removable by RNase: (1) a deep, diffuse, indistinctly bounded, metachromatic variety, and (2) a superficial, dense, sharply delimited, orthochromatic sort. Electron microscopically, the former ("reticular" Nissl bodies) corresponds to the granulated endoplasmic reticular structure of Nissl material previously described by others, whereas the latter ("areticular" Nissl bodies) comprises compact masses of particles of varying internal density and devoid of elements of endoplasmic reticulum. The constituent particles of the areticular Nissl material are 4 to 8 x the diameter of single ribonucleoprotein granules of the reticular Nissl substance and seem, near zones of junction with the reticular type, to arise by clustering of such granules with subsequent partial dispersion of the substance of the granules into an added, less dense material. It is suggested that the observed orthochromasia of the areticular Nissl substance is due to accumulation of a large amount of protein bound to RNA and, further, that these Nissl bodies may represent storage depots of RNA and protein. PMID:13673051

  8. Crosstalk between reticular adherens junctions and platelet endothelial cell adhesion molecule-1 regulates endothelial barrier function.

    PubMed

    Fernández-Martín, Laura; Marcos-Ramiro, Beatriz; Bigarella, Carolina L; Graupera, Mariona; Cain, Robert J; Reglero-Real, Natalia; Jiménez, Anaïs; Cernuda-Morollón, Eva; Correas, Isabel; Cox, Susan; Ridley, Anne J; Millán, Jaime

    2012-08-01

    Endothelial cells provide a barrier between the blood and tissues, which is reduced during inflammation to allow selective passage of molecules and cells. Adherens junctions (AJ) play a central role in regulating this barrier. We aim to investigate the role of a distinctive 3-dimensional reticular network of AJ found in the endothelium. In endothelial AJ, vascular endothelial-cadherin recruits the cytoplasmic proteins β-catenin and p120-catenin. β-catenin binds to α-catenin, which links AJ to actin filaments. AJ are usually described as linear structures along the actin-rich intercellular contacts. Here, we show that these AJ components can also be organized in reticular domains that contain low levels of actin. Reticular AJ are localized in areas where neighboring cells overlap and encompass the cell adhesion receptor platelet endothelial cell adhesion molecule-1 (PECAM-1). Superresolution microscopy revealed that PECAM-1 forms discrete structures distinct from and distributed along AJ, within the voids of reticular domains. Inflammatory tumor necrosis factor-α increases permeability by mechanisms that are independent of actomyosin-mediated tension and remain incompletely understood. Reticular AJ, but not actin-rich linear AJ, were disorganized by tumor necrosis factor-α. This correlated with PECAM-1 dispersal from cell borders. PECAM-1 inhibition with blocking antibodies or small interfering RNA specifically disrupted reticular AJ, leaving linear AJ intact. This disruption recapitulated typical tumor necrosis factor-α-induced alterations of barrier function, including increased β-catenin phosphorylation, without altering the actomyosin cytoskeleton. We propose that reticular AJ act coordinately with PECAM-1 to maintain endothelial barrier function in regions of low actomyosin-mediated tension. Selective disruption of reticular AJ contributes to permeability increase in response to tumor necrosis factor-α.

  9. Propofol, more than halothane, depresses electroencephalographic activation resulting from electrical stimulation in reticular formation.

    PubMed

    Antognini, J F; Bravo, E; Atherley, R; Carstens, E

    2006-09-01

    Halothane and propofol depress the central nervous system, and this is partly manifested by a decrease in electroencephalographic (EEG) activity. Little work has been performed to determine the differences between these anesthetics with regard to their effects on evoked EEG activity. We examined the effects of halothane and propofol on EEG responses to electrical stimulation of the reticular formation. Rats (n= 12) were anesthetized with either halothane or propofol, and EEG responses were recorded before and after electrical stimulation of the reticular formation. Two anesthetic concentrations were used (0.8 and 1.2 times the amount needed to prevent gross, purposeful movement in response to supramaximal noxious stimulation), and both anesthetics were studied in each rat using a cross-over design. Electrical stimulation in the reticular formation increased the spectral edge (SEF) and median edge (MEF) frequencies by approximately 1-2 Hz during halothane anesthesia at low and high concentrations. During propofol anesthesia, MEF increased at the low propofol infusion rate, but SEF was unaffected. At the high propofol infusion rate, SEF and MEF decreased following electrical stimulation in the reticular formation. At immobilizing concentrations, propofol produces a larger decrease than halothane in EEG responses to reticular formation stimulation, consistent with propofol having a more profound depressant effect on cortical and subcortical structures.

  10. Control of calcium release and the effect of ryanodine in skinned muscle fibres of the toad.

    PubMed Central

    Lamb, G D; Stephenson, D G

    1990-01-01

    1. Skinned muscle fibres from the toad were used to investigate the roles of T-system membrane potential and Ca2+ in controlling the calcium release channels of the sarcoplasmic reticulum (SR). 2. Replacement of K+ in the bathing solution with Na+ produced a large contraction which could last for 30 s or more under certain circumstances. This prolonged contraction could be quickly and completely terminated by repolarizing the fibre in the K+ solution and then immediately re-initiated by returning to the Na+ solution. These data indicate that the membrane potential tightly controlled the substantial and prolonged release of calcium. 3. T-system depolarization in the presence of 10 mM-free EGTA (pCa greater than 9) markedly depleted the SR of Ca2+. This implies that depolarization of the T-system can still trigger substantial release of Ca2+ from the SR even when the myoplasmic [Ca2+] is very low and very heavily buffered by EGTA. 4. When the SR was heavily loaded with Ca2+, substitution of a weakly buffered high [Ca2+] solution (pCa 5.4, 50 microM-EGTA) could produce a small to moderate, transient contraction taking between 3 and 12 s to reach a peak and lasting 30 s or more. 5. This contraction may be produced at least partly by 'calcium-induced calcium release' as ruthenium red (2 microM) completely blocked the responses. Moreover, repeated substitutions produced successively smaller responses in parallel with the 'run-down' of the depolarization-induced contractions. 6. Depolarization could always produce an additional large and fast response at any stage during a 'Ca2(+)-induced' response. 7. In the presence of 25 microM-ryanodine, the rapid contraction produced by T-system depolarization was prolonged and could not be stopped by repolarization. During and after this contraction no depolarizing stimulus could induce a further contraction, even though in some fibres addition of 30 mM-caffeine produced a maximum response which indicated that there was still a

  11. Influence of 2% chlorhexidine on pH, calcium release and setting time of a resinous MTA-based root-end filling material.

    PubMed

    Jacinto, Rogério Castilho; Linhares-Farina, Giane; Sposito, Otávio da Silva; Zanchi, César Henrique; Cenci, Maximiliano Sérgio

    2015-01-01

    The addition of chlorhexidine (CHX) to a resinous experimental Mineral Trioxide Aggregate (E-MTA) based root-end filling material is an alternative to boost its antimicrobial activity. However, the influence of chlorhexidine on the properties of this material is unclear. The aim of this study was to evaluate the influence of 2% chlorhexidine on the pH, calcium ion release and setting time of a Bisphenol A Ethoxylate Dimethacrylate/Mineral Trioxide Aggregate (Bis-EMA/MTA) based dual-cure experimental root-end filling material (E-MTA), in comparison with E-MTA without the addition of CHX and with conventional white MTA (W-MTA). The materials were placed in polyethylene tubes, and immersed in deionized water to determine pH (digital pH meter) and calcium ion release (atomic absorption spectrometry technique). The setting time of each material was analyzed using Gilmore needles. The data were statistically analyzed at a significance level of 5%. E-MTA + CHX showed an alkaline pH in the 3 h period of evaluation, the alkalinity of which decreased but remained as such for 15 days. The pH of E-MTA + CHX was higher than the other two materials after 7 days, and lower after 30 days (p < 0.05). All of the materials were found to release calcium ions throughout the 30 days of the study. The addition of CHX increased the calcium ion release of E-MTA to levels statistically similar to W-MTA. E-MTA showed shorter initial and final setting time, compared with W-MTA (p < 0.05). The addition of 2% CHX to MTA prevented setting of the material. The addition of CHX to E-MTA increased its pH and calcium ion release. However, it also prevented setting of the material.

  12. Association of reticular cells with CD34+/Sca-1+ apoptotic cells in the hemopoietic organ of grasshopper, Euprepocnemis shirakii.

    PubMed

    Lim, Jong Yeon; Lee, Bong Hee; Kang, Seok Woo; Wago, Haruhisa; Han, Sung Sik

    2004-07-01

    Hemopoiesis in orthopteran insects occurs in a hemopoietic organ that is located bilaterally along the aorta. This organ is also known as a reticulo-hemopoietic organ because of the rich presence of reticular cells. This study was performed to further elucidate hemopoiesis in the reticulo-hemopoietic organ of an orthopteran, Euprepocnemis shirakii. We focused on the question why reticular cells are so abundant (35% of cells in hemopoietic organ). Interestingly, 21% of these reticular cells surrounded hemocytes with their reticular cytoplasm. The surrounded hemocytes were distinguished by their different size and darkly stained nucleus. These cells were characterized by immunostaining using antibodies against several types of hemocytes: 45% of the surrounded hemocytes were CD34+, and these positive cells were double stained (over 85%) when immunostained by another hemopoietic pluripotent cell marker, Sca-1. Transmission electron microscopic analysis showed that reticular cells surrounded hemocytes containing large nuclei and poorly developed cytoplasmic organelles. This strongly suggests that the reticular cells surround hemopoietic stem cells. Additionally, surrounded hemopoietic progenitor cells are undergoing apoptosis as indicated by the TUNEL assay. The enclosed apoptotic cells are engulfed and then phagocytosed by reticular cells. Our results suggest that reticular cells are related to the differentiation and apoptosis of hemopoietic stem cells.

  13. A Central Mesencephalic Reticular Formation Projection to the Supraoculomotor Area in Macaque Monkeys

    PubMed Central

    Bohlen, Martin O.; Warren, Susan; May, Paul J.

    2015-01-01

    The central mesencephalic reticular formation is physiologically implicated in oculomotor function and anatomically interwoven with many parts of the oculomotor system’s premotor circuitry. This study in Macaca fascicularis monkeys investigates the pattern of central mesencephalic reticular formation projections to the area in and around the extraocular motor nuclei, with special emphasis on the supraoculomotor area. It also examines the location of the cells responsible for this projection. Injections of biotinylated dextran amine were stereotaxically placed within the central mesencephalic reticular formation to anterogradely label axons and terminals. These revealed bilateral terminal fields in the supraoculomotor area. In addition, dense terminations were found in both the preganglionic Edinger-Westphal nuclei. The dense terminations just dorsal to the oculomotor nucleus overlap with the location of the C-group medial rectus motoneurons projecting to multiply innervated muscle fibers suggesting they may be targeted. Minor terminal fields were observed bilaterally within the borders of the oculomotor and abducens nuclei. Injections including the supraoculomotor area and oculomotor nucleus retrogradely labeled a tight band of neurons crossing the central third of the central mesencephalic reticular formation at all rostrocaudal levels, indicating a subregion of the nucleus provides this projection. Thus, these experiments reveal that a subregion of the central mesencephalic reticular formation may directly project to motoneurons in the oculomotor and abducens nuclei, as well as to preganglionic neurons controlling the tone of intraocular muscles. This pattern of projections suggests an as yet undetermined role in regulating the near triad. PMID:25859632

  14. A central mesencephalic reticular formation projection to the supraoculomotor area in macaque monkeys.

    PubMed

    Bohlen, Martin O; Warren, Susan; May, Paul J

    2016-05-01

    The central mesencephalic reticular formation is physiologically implicated in oculomotor function and anatomically interwoven with many parts of the oculomotor system's premotor circuitry. This study in Macaca fascicularis monkeys investigates the pattern of central mesencephalic reticular formation projections to the area in and around the extraocular motor nuclei, with special emphasis on the supraoculomotor area. It also examines the location of the cells responsible for this projection. Injections of biotinylated dextran amine were stereotaxically placed within the central mesencephalic reticular formation to anterogradely label axons and terminals. These revealed bilateral terminal fields in the supraoculomotor area. In addition, dense terminations were found in both the preganglionic Edinger-Westphal nuclei. The dense terminations just dorsal to the oculomotor nucleus overlap with the location of the C-group medial rectus motoneurons projecting to multiply innervated muscle fibers suggesting they may be targeted. Minor terminal fields were observed bilaterally within the borders of the oculomotor and abducens nuclei. Injections including the supraoculomotor area and oculomotor nucleus retrogradely labeled a tight band of neurons crossing the central third of the central mesencephalic reticular formation at all rostrocaudal levels, indicating a subregion of the nucleus provides this projection. Thus, these experiments reveal that a subregion of the central mesencephalic reticular formation may directly project to motoneurons in the oculomotor and abducens nuclei, as well as to preganglionic neurons controlling the tone of intraocular muscles. This pattern of projections suggests an as yet undetermined role in regulating the near triad.

  15. Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens.

    PubMed

    Ng, Enoch; Varaschin, Rafael K; Su, Ping; Browne, Caleb J; Hermainski, Joanna; Le Foll, Bernard; Pongs, Olaf; Liu, Fang; Trudeau, Louis-Eric; Roder, John C; Wong, Albert H C

    2016-03-15

    Calcium sensors detect intracellular calcium changes and interact with downstream targets to regulate many functions. Neuronal Calcium Sensor-1 (NCS-1) or Frequenin is widely expressed in the nervous system, and involved in neurotransmission, synaptic plasticity and learning. NCS-1 interacts with and regulates dopamine D2 receptor (D2R) internalization and is implicated in disorders like schizophrenia and substance abuse. However, the role of NCS-1 in behaviors dependent on dopamine signaling in the striatum, where D2R is most highly expressed, is unknown. We show that Ncs-1 deletion in the mouse decreases willingness to work for food. Moreover, Ncs-1 knockout mice have significantly lower activity-dependent dopamine release in the nucleus accumbens core in acute slice recordings. In contrast, food preference, responding for conditioned reinforcement, ability to represent changes in reward value, and locomotor response to amphetamine are not impaired. These studies identify novel roles for NCS-1 in regulating activity-dependent striatal dopamine release and aspects of motivated behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. L1 Antibodies Block Lymph Node Fibroblastic Reticular Matrix Remodeling In Vivo

    PubMed Central

    Di Sciullo, Gino; Donahue, Tim; Schachner, Melitta; Bogen, Steven A.

    1998-01-01

    L1 is an immunoglobulin superfamily adhesion molecule highly expressed on neurons and involved in cell motility, neurite outgrowth, axon fasciculation, myelination, and synaptic plasticity. L1 is also expressed by nonneural cells, but its function outside of the nervous system has not been studied extensively. We find that administration of an L1 monoclonal antibody in vivo disrupts the normal remodeling of lymph node reticular matrix during an immune response. Ultrastructural examination reveals that reticular fibroblasts in mice treated with L1 monoclonal antibodies fail to spread and envelop collagen fibers with their cellular processes. The induced defect in the remodeling of the fibroblastic reticular system results in the loss of normal nodal architecture, collapsed cortical sinusoids, and macrophage accumulation in malformed sinuses. Surprisingly, such profound architectural abnormalities have no detectable effects on the primary immune response to protein antigens. PMID:9625755

  17. Coherence and frequency in the reticular activating system (RAS)

    PubMed Central

    Garcia-Rill, Edgar; Kezunovic, Nebojsa; Hyde, James; Simon, Christen; Beck, Paige; Urbano, Francisco J.

    2012-01-01

    SUMMARY This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit 1) electrical coupling mainly in GABAergic cells, and 2) gamma band activity in virtually all of the cells. Specifically, cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine dorsal subcoeruleus nucleus dorsalis (SubCD) 1) show electrical coupling, and 2) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanism behind electrical coupling is important because the stimulant modafinil was shown to increase electrical coupling. We also provide recent findings demonstrating that all cells in the PPN and Pf have high threshold, voltage-dependent P/Q-type calcium channels that are essential to gamma band activity. On the other hand, all SubCD, and some PPN, cells manifested sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on transmitter interactions, electrical coupling, and gamma band activity is described. We speculate that continuous sensory input will modulate coupling and induce gamma band activity in the RAS that could participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. PMID:23044219

  18. Coherence and frequency in the reticular activating system (RAS).

    PubMed

    Garcia-Rill, Edgar; Kezunovic, Nebojsa; Hyde, James; Simon, Christen; Beck, Paige; Urbano, Francisco J

    2013-06-01

    This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit (1) electrical coupling mainly in GABAergic cells, and (2) gamma band activity in virtually all of the cells. Specifically, cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine dorsal subcoeruleus nucleus dorsalis (SubCD) (1) show electrical coupling, and (2) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanism behind electrical coupling is important because the stimulant modafinil was shown to increase electrical coupling. We also provide recent findings demonstrating that all cells in the PPN and Pf have high threshold, voltage-dependent P/Q-type calcium channels that are essential to gamma band activity. On the other hand, all SubCD, and some PPN, cells manifested sodium-dependent subthreshold oscillations. A novel mechanism for sleep-wake control based on transmitter interactions, electrical coupling, and gamma band activity is described. We speculate that continuous sensory input will modulate coupling and induce gamma band activity in the RAS that could participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Pathology of experimental Ebola virus infection in African green monkeys. Involvement of fibroblastic reticular cells.

    PubMed

    Davis, K J; Anderson, A O; Geisbert, T W; Steele, K E; Geisbert, J B; Vogel, P; Connolly, B M; Huggins, J W; Jahrling, P B; Jaax, N K

    1997-08-01

    Ebola virus has been responsible for explosive lethal outbreaks of hemorrhagic fever in both humans and nonhuman primates. Previous studies showed a predilection of Ebola virus for cells of the mononuclear phagocyte system and endothelial cells. To examine the distribution of lesions and Ebola virus antigen in the tissues of six adult male African green monkeys (Cercopithecus aethiops) that died 6 to 7 days after intraperitoneal inoculation of Ebola-Zaire (Mayinga) virus. Tissues were examined histologically, immunohistochemically, and ultrastructurally. A major novel finding of this study was that fibroblastic reticular cells were immunohistochemically and ultrastructurally identified as targets of Ebola virus infection. The role of Ebola virus-infected fibroblastic reticular cells in the pathogenesis of Ebola hemorrhagic fever warrants further investigation. This is especially important because of recent observations indicating that fibroblastic reticular cells, along with the reticular fibers they produce, maximize the efficiency of the immune response.

  20. Calcium Activates Nedd4 E3 Ubiquitin Ligases by Releasing the C2 Domain-mediated Auto-inhibition*

    PubMed Central

    Wang, Jian; Peng, Qisheng; Lin, Qiong; Childress, Chandra; Carey, David; Yang, Wannian

    2010-01-01

    Nedd4 E3 ligases are members of the HECT E3 ubiquitin ligase family and regulate ubiquitination-mediated protein degradation. In this report, we demonstrate that calcium releases the C2 domain-mediated auto-inhibition in both Nedd4-1 and Nedd4-2. Calcium disrupts binding of the C2 domain to the HECT domain. Consistent with this, calcium activates the E3 ubiquitin ligase activity of Nedd4. Elevation of intracellular calcium by ionomycin treatment, or activation of acetylcholine receptor or epidermal growth factor receptor by carbachol or epidermal growth factor stimulation induced activation of endogenous Nedd4 in vivo evaluated by assays of either Nedd4 E3 ligase activity or ubiquitination of Nedd4 substrate ENaC-β. The activation effect of calcium on Nedd4 E3 ligase activity was dramatically enhanced by a membrane-rich fraction, suggesting that calcium-mediated membrane translocation through the C2 domain might be an activation mechanism of Nedd4 in vivo. Our studies have revealed an activation mechanism of Nedd4 E3 ubiquitin ligases and established a connection of intracellular calcium signaling to regulation of protein ubiquitination. PMID:20172859

  1. Parallel temperature dependence of contracture-associated enzyme release due to anoxia, 2,4-dinitrophenol (DNP), or caffeine and the calcium paradox.

    PubMed Central

    Ganote, C. E.; Sims, M. A.

    1984-01-01

    Hypothermia during calcium-free perfusion of hearts protects them from injury caused by subsequent calcium repletion at 37 C (calcium paradox). Injury to calcium-free hearts is also associated with contracture caused by anoxia, 2,4-dinitrophenol (DNP), or caffeine. This study was done for the purpose of determining whether hypothermia during calcium-free perfusions protects hearts from contracture-associated injury. Langendorff-perfused rat hearts were studied in four experimental groups: I) Anoxia: Thirty minutes of anoxic perfusion at 37 C was followed by thirty minutes of anoxic calcium-free perfusion at 37-18 C. II) Calcium paradox: Five minutes of calcium-free perfusion at 37-18 C was followed by calcium repletion at 37 C. III, IVa) Caffeine or DNP: Five minutes of calcium-free perfusion at 37-18 C was followed by addition of 10 mM caffeine or 1 mM DNP in calcium-free medium at 37 C or, IVb) 1 mM DNP in calcium-free medium at 22 C. Injury was assessed by measurement of serial releases of creatine kinase (CK) in effluents and by cellular morphology. The results show that progressive hypothermia to 22 C during calcium-free perfusion periods produced a progressive reduction of CK release and morphologic evidence of injury due to anoxia, caffeine, or DNP, which closely paralleled protection of hearts from the calcium paradox. Protection from injury in all experimental groups was associated with preservation of sarcolemmal membrane integrity and prevention of cell separations at intercalated disk junctions. It is proposed that weakening of intercalated disks occurs during calcium-free perfusions and may be a cause of mechanical fragility of the sarcolemma. Hypothermia may protect hearts from contracture-associated injury by preserving the integrity of intercalated disk junctions during periods of extracellular calcium depletion. Images Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:6742111

  2. Propofol and etomidate depress cortical, thalamic, and reticular formation neurons during anesthetic-induced unconsciousness.

    PubMed

    Andrada, Jason; Livingston, Preetha; Lee, Bong Jae; Antognini, Joseph

    2012-03-01

    The sites where anesthetics produce unconsciousness are not well understood. Likely sites include the cerebral cortex, thalamus, and reticular formation. We examined the effects of propofol and etomidate on neuronal function in the cortex, thalamus, and reticular formation in intact animals. Five cats had a recording well and electroencephalogram screws placed under anesthesia. After a 5-day recovery period, the cats were repeatedly studied 3 to 4 times per week. Neuronal (single-unit) activity in the cerebral cortex (areas 7, 18 and 19), thalamus (ventral posterolateral and ventral posteromedial nuclei and medial geniculate body), and reticular formation (mesencephalic reticular nucleus and central tegmental field) was recorded before, during, and after infusion of either propofol or etomidate. Cortical neuronal action potentials were analyzed separately as either regular spiking neurons or fast spiking neurons. Propofol and etomidate decreased the spontaneous firing rate of cortical neurons by 37% to 41%; fast spiking neurons and regular spiking neurons were similarly affected by the anesthetics. The neuronal firing rate in the thalamus and reticular formation decreased 30% to 49% by propofol and etomidate. The electroencephalogram shifted from a low-amplitude, high-frequency pattern to a high-amplitude, low-frequency pattern during drug infusion suggesting an anesthetic effect; peak power occurred at 12 to 13 Hz during propofol infusion. There were 2 major peaks during etomidate anesthesia: one at 12 to 14 Hz and another at 7 to 8 Hz. The cats were heavily sedated, with depressed corneal and whisker reflexes; withdrawal to noxious stimulation remained intact. These data show that neurons in the cortex, thalamus, and reticular formation are similarly depressed by propofol and etomidate. Although anesthetic depression of neuronal activity likely contributes to anesthetic-induced unconsciousness, further work is needed to determine how anesthetic effects at these

  3. Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass.

    PubMed

    Ummadi, Jyothir Ganesh; Downs, Corey J; Joshi, Vrushali S; Ferracane, Jack L; Koley, Dipankar

    2016-03-15

    Solid-state ion-selective electrodes are used as scanning electrochemical microscope (SECM) probes because of their inherent fast response time and ease of miniaturization. In this study, we report the development of a solid-state, low-poly(vinyl chloride), carbon-based calcium ion-selective microelectrode (Ca(2+)-ISME), 25 μm in diameter, capable of performing an amperometric approach curve and serving as a potentiometric sensor. The Ca(2+)-ISME has a broad linear response range of 5 μM to 200 mM with a near Nernstian slope of 28 mV/log[a(Ca(2+))]. The calculated detection limit for Ca(2+)-ISME is 1 μM. The selectivity coefficients of this Ca(2+)-ISME are log K(Ca(2+),A) = -5.88, -5.54, and -6.31 for Mg(2+), Na(+), and K(+), respectively. We used this new type of Ca(2+)-ISME as an SECM probe to quantitatively map the chemical microenvironment produced by a model substrate, bioactive glass (BAG). In acidic conditions (pH 4.5), BAG was found to increase the calcium ion concentration from 0.7 mM ([Ca(2+)] in artificial saliva) to 1.4 mM at 20 μm above the surface. In addition, a solid-state dual SECM pH probe was used to correlate the release of calcium ions with the change in local pH. Three-dimensional pH and calcium ion distribution mapping were also obtained by using these solid-state probes. The quantitative mapping of pH and Ca(2+) above the BAG elucidates the effectiveness of BAG in neutralizing and releasing calcium ions in acidic conditions.

  4. On the role of the reticular formation in vocal pattern generation.

    PubMed

    Jürgens, Uwe; Hage, Steffen R

    2007-09-04

    This review is an attempt to localize the brain region responsible for pattern generation of species-specific vocalizations. A catalogue is set up, listing the criteria considered to be essential for a vocal pattern generator. According to this catalogue, a vocal pattern generator should show vocalization-correlated activity, starting before vocal onset and reflecting specific acoustic features of the vocalization. Artificial activation by electrical or glutamatergic stimulation should produce artificially sounding vocalization. Lesioning is expected to have an inhibitory or deteriorating effect on vocalization. Anatomically, a vocal pattern generator can be assumed to have direct or, at least, oligosynaptic connections with all the motoneuron pools involved in phonation. A survey of the literature reveals that the only area meeting all these criteria is a region, reaching from the parvocellular pontine reticular formation just above the superior olive through the lateral reticular formation around the facial nucleus and nucleus ambiguus down to the caudalmost medulla, including the dorsal and ventral reticular nuclei and nucleus retroambiguus. It is proposed that vocal pattern generation takes place within this whole region.

  5. Reticular formation responses to magnetic brain stimulation of primary motor cortex

    PubMed Central

    Fisher, Karen M; Zaaimi, Boubker; Baker, Stuart N

    2012-01-01

    Transcranial magnetic stimulation (TMS) of cerebral cortex is a popular technique for the non-invasive investigation of motor function. TMS is often assumed to influence spinal circuits solely via the corticospinal tract. We were interested in possible trans-synaptic effects of cortical TMS on the ponto-medullary reticular formation in the brainstem, which is the source of the reticulospinal tract and could also generate spinal motor output. We recorded from 210 single units in the reticular formation of three anaesthetized macaque monkeys whilst TMS was performed over primary motor cortex. Short latency responses were observed consistent with activation of a cortico-reticular pathway. However, we also demonstrated surprisingly powerful responses at longer latency, which often appeared at lower threshold than the earlier effects. These late responses seemed to be generated partly as a consequence of the sound click made by coil discharge, and changed little with coil location. This novel finding has implications for the design of future studies using TMS, as well as suggesting a means of non-invasively probing an otherwise inaccessible important motor centre. PMID:22674723

  6. Reticular formation responses to magnetic brain stimulation of primary motor cortex.

    PubMed

    Fisher, Karen M; Zaaimi, Boubker; Baker, Stuart N

    2012-08-15

    Transcranial magnetic stimulation (TMS) of cerebral cortex is a popular technique for the non-invasive investigation of motor function. TMS is often assumed to influence spinal circuits solely via the corticospinal tract. We were interested in possible trans-synaptic effects of cortical TMS on the ponto-medullary reticular formation in the brainstem, which is the source of the reticulospinal tract and could also generate spinal motor output. We recorded from 210 single units in the reticular formation of three anaesthetized macaque monkeys whilst TMS was performed over primary motor cortex. Short latency responses were observed consistent with activation of a cortico-reticular pathway. However, we also demonstrated surprisingly powerful responses at longer latency, which often appeared at lower threshold than the earlier effects. These late responses seemed to be generated partly as a consequence of the sound click made by coil discharge, and changed little with coil location. This novel finding has implications for the design of future studies using TMS, as well as suggesting a means of non-invasively probing an otherwise inaccessible important motor centre.

  7. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles.

    PubMed

    Chen, Chen; Weir, Michael D; Cheng, Lei; Lin, Nancy J; Lin-Gibson, Sheng; Chow, Laurence C; Zhou, Xuedong; Xu, Hockin H K

    2014-08-01

    Recurrent caries at the margins is a primary reason for restoration failure. The objectives of this study were to develop bonding agent with the double benefits of antibacterial and remineralizing capabilities, to investigate the effects of NACP filler level and solution pH on Ca and P ion release from adhesive, and to examine the antibacterial and dentin bond properties. Nanoparticles of amorphous calcium phosphate (NACP) and a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) were synthesized. Scotchbond Multi-Purpose (SBMP) primer and adhesive served as control. DMADDM was incorporated into primer and adhesive at 5% by mass. NACP was incorporated into adhesive at filler mass fractions of 10%, 20%, 30% and 40%. A dental plaque microcosm biofilm model was used to test the antibacterial bonding agents. Calcium (Ca) and phosphate (P) ion releases from the cured adhesive samples were measured vs. filler level and solution pH of 7, 5.5 and 4. Adding 5% DMADDM and 10-40% NACP into bonding agent, and water-aging for 28 days, did not affect dentin bond strength, compared to SBMP control at 1 day (p>0.1). Adding DMADDM into bonding agent substantially decreased the biofilm metabolic activity and lactic acid production. Total microorganisms, total streptococci, and mutans streptococci were greatly reduced for bonding agents containing DMADDM. Increasing NACP filler level from 10% to 40% in adhesive increased the Ca and P ion release by an order of magnitude. Decreasing solution pH from 7 to 4 increased the ion release from adhesive by 6-10 folds. Bonding agents containing antibacterial DMADDM and remineralizer NACP were formulated to have Ca and P ion release, which increased with NACP filler level from 10% to 40% in adhesive. NACP adhesive was "smart" and dramatically increased the ion release at cariogenic pH 4, when these ions would be most-needed to inhibit caries. Therefore, bonding agent containing DMADDM and NACP may be promising to inhibit

  8. Calcium buffering properties of sarcoplasmic reticulum and calcium-induced Ca2+ release during the quasi-steady level of release in twitch fibers from frog skeletal muscle

    PubMed Central

    Fénelon, Karine; Lamboley, Cédric R.H.; Carrier, Nicole

    2012-01-01

    Experiments were performed to characterize the properties of the intrinsic Ca2+ buffers in the sarcoplasmic reticulum (SR) of cut fibers from frog twitch muscle. The concentrations of total and free calcium ions within the SR ([CaT]SR and [Ca2+]SR) were measured, respectively, with the EGTA/phenol red method and tetramethylmurexide (a low affinity Ca2+ indicator). Results indicate SR Ca2+ buffering was consistent with a single cooperative-binding component or a combination of a cooperative-binding component and a linear binding component accounting for 20% or less of the bound Ca2+. Under the assumption of a single cooperative-binding component, the most likely resting values of [Ca2+]SR and [CaT]SR are 0.67 and 17.1 mM, respectively, and the dissociation constant, Hill coefficient, and concentration of the Ca-binding sites are 0.78 mM, 3.0, and 44 mM, respectively. This information can be used to calculate a variable proportional to the Ca2+ permeability of the SR, namely d[CaT]SR/dt ÷ [Ca2+]SR (denoted release permeability), in experiments in which only [CaT]SR or [Ca2+]SR is measured. In response to a voltage-clamp step to −20 mV at 15°C, the release permeability reaches an early peak followed by a rapid decline to a quasi-steady level that lasts ∼50 ms, followed by a slower decline during which the release permeability decreases by at least threefold. During the quasi-steady level of release, the release amplitude is 3.3-fold greater than expected from voltage activation alone, a result consistent with the recruitment by Ca-induced Ca2+ release of 2.3 SR Ca2+ release channels neighboring each channel activated by its associated voltage sensor. Release permeability at −60 mV increases as [CaT]SR decreases from its resting physiological level to ∼0.1 of this level. This result argues against a release termination mechanism proposed in mammalian muscle fibers in which a luminal sensor of [Ca2+]SR inhibits release when [CaT]SR declines to a low level

  9. Calcium buffering properties of sarcoplasmic reticulum and calcium-induced Ca(2+) release during the quasi-steady level of release in twitch fibers from frog skeletal muscle.

    PubMed

    Fénelon, Karine; Lamboley, Cédric R H; Carrier, Nicole; Pape, Paul C

    2012-10-01

    Experiments were performed to characterize the properties of the intrinsic Ca(2+) buffers in the sarcoplasmic reticulum (SR) of cut fibers from frog twitch muscle. The concentrations of total and free calcium ions within the SR ([Ca(T)](SR) and [Ca(2+)](SR)) were measured, respectively, with the EGTA/phenol red method and tetramethylmurexide (a low affinity Ca(2+) indicator). Results indicate SR Ca(2+) buffering was consistent with a single cooperative-binding component or a combination of a cooperative-binding component and a linear binding component accounting for 20% or less of the bound Ca(2+). Under the assumption of a single cooperative-binding component, the most likely resting values of [Ca(2+)](SR) and [Ca(T)](SR) are 0.67 and 17.1 mM, respectively, and the dissociation constant, Hill coefficient, and concentration of the Ca-binding sites are 0.78 mM, 3.0, and 44 mM, respectively. This information can be used to calculate a variable proportional to the Ca(2+) permeability of the SR, namely d[Ca(T)](SR)/dt ÷ [Ca(2+)](SR) (denoted release permeability), in experiments in which only [Ca(T)](SR) or [Ca(2+)](SR) is measured. In response to a voltage-clamp step to -20 mV at 15°C, the release permeability reaches an early peak followed by a rapid decline to a quasi-steady level that lasts ~50 ms, followed by a slower decline during which the release permeability decreases by at least threefold. During the quasi-steady level of release, the release amplitude is 3.3-fold greater than expected from voltage activation alone, a result consistent with the recruitment by Ca-induced Ca(2+) release of 2.3 SR Ca(2+) release channels neighboring each channel activated by its associated voltage sensor. Release permeability at -60 mV increases as [Ca(T)](SR) decreases from its resting physiological level to ~0.1 of this level. This result argues against a release termination mechanism proposed in mammalian muscle fibers in which a luminal sensor of [Ca(2+)](SR) inhibits

  10. Cortical and reticular contributions to human precision and power grip.

    PubMed

    Tazoe, Toshiki; Perez, Monica A

    2017-04-15

    The corticospinal tract contributes to the control of finger muscles during precision and power grip. We explored the neural mechanisms contributing to changes in corticospinal excitability during these gripping configurations. Motor evoked potentials (MEPs) elicited by cortical, but not by subcortical, stimulation were more suppressed during power grip compared with precision grip and index finger abduction. Intracortical inhibition was more reduced during power grip compared with the other tasks. An acoustic startle cue, a stimulus that engages the reticular system, suppressed MEP size during power grip to a lesser extent than during the other tasks at a cortical level and this positively correlated with changes in intracortical inhibition. Our findings suggest that changes in corticospinal excitability during gross more than fine finger manipulations are largely cortical in origin and that the reticular system contributed, at least in part, to these effects. It is well accepted that the corticospinal tract contributes to the control of finger muscles during precision and power grip in humans but the neural mechanisms involved remain poorly understood. Here, we examined motor evoked potentials elicited by cortical and subcortical stimulation of corticospinal axons (MEPs and CMEPs, respectively) and the activity in intracortical circuits (suppression of voluntary electromyography) and spinal motoneurons (F-waves) in an intrinsic hand muscle during index finger abduction, precision grip and power grip. We found that the size of MEPs, but not CMEPs, was more suppressed during power grip compared with precision grip and index finger abduction, suggesting a cortical origin for these effects. Notably, intracortical inhibition was more reduced during power grip compared with the other tasks. To further examine the origin of changes in intracortical inhibition we assessed the contribution of the reticular system, which projects to cortical neurons, and projects to spinal

  11. Development of sustained-release lipophilic calcium stearate pellets via hot melt extrusion.

    PubMed

    Roblegg, Eva; Jäger, Evelyn; Hodzic, Aden; Koscher, Gerold; Mohr, Stefan; Zimmer, Andreas; Khinast, Johannes

    2011-11-01

    The objective of this study was the development of retarded release pellets using vegetable calcium stearate (CaSt) as a thermoplastic excipient. The matrix carrier was hot melt extruded and pelletized with a hot-strand cutter in a one step continuous process. Vegetable CaSt was extruded at temperatures between 100 and 130°C, since at these temperatures cutable extrudates with a suitable melt viscosity may be obtained. Pellets with a drug loading of 20% paracetamol released 11.54% of the drug after 8h due to the great densification of the pellets. As expected, the drug release was influenced by the pellet size and the drug loading. To increase the release rate, functional additives were necessary. Therefore, two plasticizers including glyceryl monostearate (GMS) and tributyl citrate (TBC) were investigated for plasticization efficiency and impact on the in vitro drug release. GMS increased the release rate due to the formation of pores at the surface (after dissolution) and showed no influence on the process parameters. The addition of TBC increased the drug release to a higher extent. After dissolving, the pellets exhibited pores at the surface and in the inner layer. Small- and Wide-Angle X-ray Scattering (SWAXS) revealed no major change in crystalline peaks. The results demonstrated that (nearly) spherical CaSt pellets could be successfully prepared by hot melt extrusion using a hot-strand cutter as downstreaming system. Paracetamol did not melt during the process indicating a solid suspension. Due to the addition of plasticizers, the in vitro release rate could be tailored as desired. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. The ascending reticular activating system from pontine reticular formation to the thalamus in the human brain.

    PubMed

    Yeo, Sang Seok; Chang, Pyung Hun; Jang, Sung Ho

    2013-01-01

    Action of the ascending reticular activating system (ARAS) on the cerebral cortex is responsible for achievement of consciousness. In this study, we attempted to reconstruct the lower single component of the ARAS from the reticular formation (RF) to the thalamus in the normal human brain using diffusion tensor imaging (DTI). Twenty six normal healthy subjects were recruited for this study. A 1.5-T scanner was used for scanning of diffusion tensor images, and the lower single component of the ARAS was reconstructed using FMRIB software. We utilized two ROIs for reconstruction of the lower single component of the ARAS: the seed ROI - the RF of the pons at the level of the trigeminal nerve entry zone, the target ROI - the intralaminar nuclei of the thalamus at the level of the commissural plane. The reconstructed ARAS originated from the pontine RF, ascended through the mesencephalic tegmentum just posterior to the red nucleus, and then terminated on the intralaminar nuclei of the thalamus. No significant differences in fractional anisotropy, mean diffusivity, and tract number were observed between hemispheres (p > 0.05). We reconstructed the lower single component of the ARAS from the RF to the thalamus in the human brain using DTI. The results of this study might be of value for the diagnosis and prognosis of patients with impaired consciousness.

  13. Endomorphin-2 is Released from Newborn Rat Primary Sensory Neurons in a Frequency- and Calcium- Dependent Manner

    PubMed Central

    Scanlin, Heather L.; Carroll, Elizabeth A.; Jenkins, Victoria K.; Balkowiec, Agnieszka

    2008-01-01

    Recent evidence indicates that endomorphins, endogenous mu-opioid receptor (MOR) agonists, modulate synaptic transmission in both somatic and visceral sensory pathways. Here we show that endomorphin-2 (END-2) is expressed in newborn rat dorsal root ganglion (DRG) and nodose-petrosal ganglion complex (NPG) neurons, and rarely co-localizes with brain-derived neurotrophic factor (BDNF). In order to examine activity-dependent release of END-2 from neurons, we established a model using dispersed cultures of DRG and NPG cells activated by patterned electrical field stimulation. To detect release of END-2, we developed a novel rapid capture ELISA, in which END-2 capture antibody was added to neuronal cultures shortly before their electrical stimulation. The conventional assay was effective at reliably detecting END-2 only when the cells were stimulated in the presence of CTAP, a MOR-selective antagonist. This suggests that the strength of the novel assay is related primarily to rapid capture of released END-2 before it binds to endogenous MORs. Using the rapid capture ELISA, we found that stimulation protocols known to induce plastic changes at sensory synapses were highly effective at releasing END-2. Removal of extracellular calcium or blocking voltage-activated calcium channels significantly reduced the release. Together, our data provide the first evidence that END-2 is expressed by newborn DRG neurons of all sizes found in this age group, and can be released from these, as well as from NPG neurons, in an activity-dependent manner. These results point to END-2 as a likely mediator of activity-dependent plasticity in sensory pathways. PMID:18513316

  14. Calcium silicate-based drug delivery systems.

    PubMed

    Zhu, Ying-Jie; Guo, Xiao-Xuan; Sham, Tsun-Kong

    2017-02-01

    Compared with other inorganic materials such as silica, metal oxides, noble metals and carbon, calcium silicate-based materials, especially nanostructured calcium silicate materials, have high biocompatibility, bioactivity and biodegradability, high specific surface area, nanoporous/hollow structure, high drug-loading capacity, pH-responsive drug release behavior and desirable drug release properties, and thus they are promising for the application in drug delivery. Calcium silicate-based drug delivery systems have a long drug-release time, which can significantly prolong the therapeutic effect of drugs. Another advantage of calcium silicate-based drug delivery systems is their pH-responsive drug release property, which can act as an ideal platform for targeted drug delivery. Areas covered: In recent years, studies have been carried out on calcium silicate-based drug delivery systems, and important results and insights have been documented. This article is not intended to offer a comprehensive review on the research on calcium silicate-based drug delivery systems, but presents some examples reported in the literature, and includes new insights obtained by tracking the interactions between drug molecules and calcium silicate carriers on the molecular level using the synchrotron-based X-ray spectroscopy. Expert opinion: Finally, our opinions on calcium silicate-based drug delivery systems are provided, and several research directions for the future studies are proposed.

  15. Effects of trunk-to-head rotation on the labyrinthine responses of rat reticular neurons.

    PubMed

    Barresi, M; Grasso, C; Bruschini, L; Berrettini, S; Manzoni, D

    2012-11-08

    Vestibulospinal reflexes elicited by head displacement become appropriate for body stabilization owing to the integration of neck input by the cerebellar anterior vermis. Due to this integration, the preferred direction of spinal motoneurons' responses to animal tilt rotates by the same angle and by the same direction as the head over the body, which makes it dependent on the direction of body displacement rather than on head displacement. It is known that the cerebellar control of spinal motoneurons involves the reticular formation. Since the preferred directions of corticocerebellar units' responses to animal tilt are tuned by neck rotation, as occuring in spinal motoneurons, we investigated whether a similar tuning can be observed also in the intermediate station of reticular formation. In anaesthetized rats, the activity of neurons in the medullary reticular formation was recorded during wobble of the whole animal at 0.156 Hz, a stimulus that tilted the animal's head by a constant amplitude (5°), in a direction rotating clockwise or counter clockwise over the horizontal plane. The response gain and the direction of tilt eliciting the maximal activity were evaluated with the head and body axes aligned and during a maintained body-to-head displacement of 5-20° over the horizontal plane, in either direction. We found that the neck displacement modified the response gain and/or the average activity of most of the responsive neurons. Rotation of the response direction was observed only in a minor percentage of the recorded neurons. The modifications of reticular neurons' responses were different from those observed in the P-cells of the cerebellar anterior vermis, which rarely showed gain and activity changes and often exhibited a rotation of their response directions. In conclusion, reticular neurons take part in the neck tuning of vestibulospinal reflexes by transforming a head-driven sensory input into a body-centred postural response. The present findings

  16. Gamma-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia.

    PubMed

    Vanini, Giancarlo; Watson, Christopher J; Lydic, Ralph; Baghdoyan, Helen A

    2008-12-01

    Many general anesthetics are thought to produce a loss of wakefulness, in part, by enhancing gamma-aminobutyric acid (GABA) neurotransmission. However, GABAergic neurotransmission in the pontine reticular formation promotes wakefulness. This study tested the hypotheses that (1) relative to wakefulness, isoflurane decreases GABA levels in the pontine reticular formation; and (2) pontine reticular formation administration of drugs that increase or decrease GABA levels increases or decreases, respectively, isoflurane induction time. To test hypothesis 1, cats (n = 5) received a craniotomy and permanent electrodes for recording the electroencephalogram and electromyogram. Dialysis samples were collected from the pontine reticular formation during isoflurane anesthesia and wakefulness. GABA levels were quantified using high-performance liquid chromatography. For hypothesis 2, rats (n = 10) were implanted with a guide cannula aimed for the pontine reticular formation. Each rat received microinjections of Ringer's (vehicle control), the GABA uptake inhibitor nipecotic acid, and the GABA synthesis inhibitor 3-mercaptopropionic acid. Rats were then anesthetized with isoflurane, and induction time was quantified as loss of righting reflex. Breathing rate was also measured. Relative to wakefulness, GABA levels were significantly decreased by isoflurane. Increased power in the electroencephalogram and decreased activity in the electromyogram caused by isoflurane covaried with pontine reticular formation GABA levels. Nipecotic acid and 3-mercaptopropionic acid significantly increased and decreased, respectively, isoflurane induction time. Nipecotic acid also increased breathing rate. Decreasing pontine reticular formation GABA levels comprises one mechanism by which isoflurane causes loss of consciousness, altered cortical excitability, muscular hypotonia, and decreased respiratory rate.

  17. C-terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation.

    PubMed

    Matsui, Toshiyasu; Hongo, Yu; Haizuka, Yoshinori; Kaida, Kenichi; Matsumura, George; Martin, Donna M; Kobayashi, Yasushi

    2013-08-26

    Large cholinergic synaptic boutons called "C-terminals" contact motoneurons and regulate their excitability. C-terminals in the spinal somatic motor nuclei originate from cholinergic interneurons in laminae VII and X that express a transcription factor Pitx2. Cranial motor nuclei contain another type of motoneuron: branchiomotor neurons. Although branchiomotor neurons receive abundant C-terminal projections, the neural source of these C-terminals remains unknown. In the present study, we first examined whether cholinergic neurons express Pitx2 in the reticular formation of the adult mouse brainstem, as in the spinal cord. Although Pitx2-positive cholinergic neurons were observed in the magnocellular reticular formation and region around the central canal in the caudal medulla, none was present more rostrally in the brainstem tegmentum. We next explored the origin of C-terminals in the branchiomotor nuclei by using biotinylated dextran amine (BDA). BDA injections into the magnocellular reticular formation of the medulla and pons resulted in the labeling of numerous C-terminals in the branchiomotor nuclei: the ambiguous, facial, and trigeminal motor nuclei. Our results revealed that the origins of C-terminals in the branchiomotor nuclei are cholinergic neurons in the magnocellular reticular formation not only in the caudal medulla, but also at more rostral levels of the brainstem, which lacks Pitx2-positive neurons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. C-terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation

    PubMed Central

    Matsui, Toshiyasu; Hongo, Yu; Haizuka, Yoshinori; Kaida, Kenichi; Matsumura, George; Martin, Donna M.; Kobayashi, Yasushi

    2013-01-01

    Large cholinergic synaptic boutons called "C-terminals" contact motoneurons and regulate their excitability. C-terminals in the spinal somatic motor nuclei originate from cholinergic interneurons in laminae VII and X that express a transcription factor Pitx2. Cranial motor nuclei contain another type of motoneuron: branchiomotor neurons. Although branchiomotor neurons receive abundant C-terminal projections, the neural source of these C-terminals remains unknown. In the present study, we first examined whether cholinergic neurons express Pitx2 in the reticular formation of the adult mouse brainstem, as in the spinal cord. Although Pitx2-positive cholinergic neurons were observed in the magnocellular reticular formation and region around the central canal in the caudal medulla, none was present more rostrally in the brainstem tegmentum. We next explored the origin of C-terminals in the branchiomotor nuclei by using biotinylated dextran amine (BDA). BDA injections into the magnocellular reticular formation of the medulla and pons resulted in the labeling of numerous C-terminals in the branchiomotor nuclei: the ambiguous, facial, and trigeminal motor nuclei. Our results revealed that the origins of C-terminals in the branchiomotor nuclei are cholinergic neurons in the magnocellular reticular formation not only in the caudal medulla, but also at more rostral levels of the brainstem, which lacks Pitx2-positive neurons. PMID:23756176

  19. Expression of a monocarboxylate transporter in reticular cells of the mouse lymph node and its involvement in the uptake of exogenous particles.

    PubMed

    Zheng, Miao; Ishiguro-Oonuma, Toshina; Iwanaga, Toshihiko

    2014-01-01

    The monocarboxylate transporter (MCT)-1 plays an important role in the transfer of monocarboxylate metabolites such as lactate, ketone bodies, and acetic acid. The present study revealed the selective localization of MCT1 in reticular cells of the murine lymph node. An intense MCT1 immunoreactivity was found in the reticular cells forming a cellular network together with sinus-lining cells in the medullary sinuses and in cells covering the inside of subcapsular sinuses.Electron-microscopically, MCT1 was localized along the plasma membrane of the reticular cells.The medullary reticular cells vigorously ingested carboxylate-modified latex particles, but any reticular cells within the cortical lymphoid follicles and medullary cords neither expressed MCT1 nor incorporated latex particles. MCT1-immunoreactive reticular cells also expressed LYVE-1,which is a hyaluronan receptor abundant in both the lymphatic endothelium and hepatic sinusoidal epithelium. The selective localization of MCT1 and LYVE-1 suggests a high level of activity for lymphoid reticular cells in the uptake of carboxylate-modified and hyaluronate waste substances circulating in the body.

  20. Reticulospinal neurons in the pontomedullary reticular formation of the monkey (Macaca fascicularis).

    PubMed

    Sakai, S T; Davidson, A G; Buford, J A

    2009-11-10

    Recent neurophysiological studies indicate a role for reticulospinal neurons of the pontomedullary reticular formation (PMRF) in motor preparation and goal-directed reaching in the monkey. Although the macaque monkey is an important model for such investigations, little is known regarding the organization of the PMRF in the monkey. In the present study, we investigated the distribution of reticulospinal neurons in the macaque. Bilateral injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) were made into the cervical spinal cord. A wide band of retrogradely labeled cells was found in the gigantocellular reticular nucleus (Gi) and labeled cells continued rostrally into the caudal pontine reticular nucleus (PnC) and into the oral pontine reticular nucleus (PnO). Additional retrograde tracing studies following unilateral cervical spinal cord injections of cholera toxin subunit B revealed that there were more ipsilateral (60%) than contralateral (40%) projecting cells in Gi, while an approximately 50:50 ratio contralateral to ipsilateral split was found in PnC and more contralateral projections arose from PnO. Reticulospinal neurons in PMRF ranged widely in size from over 50 microm to under 25 microm across the major somatic axis. Labeled giant cells (soma diameters greater than 50 microm) comprised a small percentage of the neurons and were found in Gi, PnC and PnO. The present results define the origins of the reticulospinal system in the monkey and provide an important foundation for future investigations of the anatomy and physiology of this system in primates.

  1. The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat.

    PubMed

    Cavdar, Safiye; Onat, Filiz Y; Cakmak, Yusuf Ozgür; Yananli, Hasan R; Gülçebi, Medine; Aker, Rezzan

    2008-03-01

    Most dorsal thalamic nuclei send axons to specific areas of the neocortex and to specific sectors of the thalamic reticular nucleus; the neocortex then sends reciprocal connections back to the same thalamic nucleus, directly as well indirectly through a relay in the thalamic reticular nucleus. This can be regarded as a 'canonical' circuit of the sensory thalamus. For the pathways that link the thalamus and the hippocampal formation, only a few comparable connections have been described. The reuniens nucleus of the thalamus sends some of its major cortical efferents to the hippocampal formation. The present study shows that cells of the hippocampal formation as well as cells in the reuniens nucleus are retrogradely labelled following injections of horseradish peroxidase or fluoro-gold into the rostral part of the thalamic reticular nucleus in the rat. Within the hippocampal formation, labelled neurons were localized in the subiculum, predominantly on the ipsilateral side, with fewer neurons labelled contralaterally. Labelled neurons were seen in the hippocampal formation and nucleus reuniens only after injections made in the rostral thalamic reticular nucleus (1.6-1.8 mm caudal to bregma). In addition, the present study confirmed the presence of afferent connections to the rostral thalamic reticular nucleus from cortical (cingulate, orbital and infralimbic, retrosplenial and frontal), midline thalamic (paraventricular, anteromedial, centromedial and mediodorsal thalamic nuclei) and brainstem structures (substantia nigra pars reticularis, ventral tegmental area, periaqueductal grey, superior vestibular and pontine reticular nuclei). These results demonstrate a potential for the thalamo-hippocampal circuitry to influence the functional roles of the thalamic reticular nucleus, and show that thalamo-hippocampal connections resemble the circuitry that links the sensory thalamus and neocortex.

  2. The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat

    PubMed Central

    Çavdar, Safiye; Onat, Filiz Y; Çakmak, Yusuf Özgür; Yananli, Hasan R; Gülçebi, Medine; Aker, Rezzan

    2008-01-01

    Most dorsal thalamic nuclei send axons to specific areas of the neocortex and to specific sectors of the thalamic reticular nucleus; the neocortex then sends reciprocal connections back to the same thalamic nucleus, directly as well indirectly through a relay in the thalamic reticular nucleus. This can be regarded as a ‘canonical’ circuit of the sensory thalamus. For the pathways that link the thalamus and the hippocampal formation, only a few comparable connections have been described. The reuniens nucleus of the thalamus sends some of its major cortical efferents to the hippocampal formation. The present study shows that cells of the hippocampal formation as well as cells in the reuniens nucleus are retrogradely labelled following injections of horseradish peroxidase or fluoro-gold into the rostral part of the thalamic reticular nucleus in the rat. Within the hippocampal formation, labelled neurons were localized in the subiculum, predominantly on the ipsilateral side, with fewer neurons labelled contralaterally. Labelled neurons were seen in the hippocampal formation and nucleus reuniens only after injections made in the rostral thalamic reticular nucleus (1.6–1.8 mm caudal to bregma). In addition, the present study confirmed the presence of afferent connections to the rostral thalamic reticular nucleus from cortical (cingulate, orbital and infralimbic, retrosplenial and frontal), midline thalamic (paraventricular, anteromedial, centromedial and mediodorsal thalamic nuclei) and brainstem structures (substantia nigra pars reticularis, ventral tegmental area, periaqueductal grey, superior vestibular and pontine reticular nuclei). These results demonstrate a potential for the thalamo-hippocampal circuitry to influence the functional roles of the thalamic reticular nucleus, and show that thalamo-hippocampal connections resemble the circuitry that links the sensory thalamus and neocortex. PMID:18221482

  3. Effects of calcium hydroxide addition on the physical and chemical properties of a calcium silicate-based sealer.

    PubMed

    Kuga, Milton Carlos; Duarte, Marco Antonio Hungaro; Sant'anna-Júnior, Arnaldo; Keine, Kátia Cristina; Faria, Gisele; Dantas, Andrea Abi Rached; Guiotti, Flávia Angélica

    2014-06-01

    Recently, various calcium silicate-based sealers have been introduced for use in root canal filling. The MTA Fillapex is one of these sealers, but some of its physicochemical properties are not in accordance with the ISO requirements. The aim of this study was to evaluate the flowability, pH level and calcium release of pure MTA Fillapex (MTAF) or containing 5% (MTAF5) or 10% (MTAF10) calcium hydroxide (CH), in weight, in comparison with AH Plus sealer. The flowability test was performed according to the ISO 6876:2001 requirements. For the pH level and calcium ion release analyses, the sealers were placed individually (n=10) in plastic tubes and immersed in deionized water. After 24 hours, 7 and 14 days, the water in which each specimen had been immersed was evaluated to determine the pH level changes and calcium released. Flowability, pH level and calcium release data were analyzed statistically by the ANOVA test (α=5%). In relation to flowability: MTAF>AH Plus>MTAF5>MTAF10. In relation to the pH level, for 24 h: MTAF5=MTAF10=MTAF>AH Plus; for 7 and 14 days: MTAF5=MTAF10>MTAF>AH Plus. For the calcium release, for all periods: MTAF>MTAF5=MTAF10>AH Plus. The addition of 5% CH to the MTA Fillapex (in weight) is an alternative to reduce the high flowability presented by the sealer, without interfering in its alkalization potential.

  4. Caffeine Modulates Vesicle Release and Recovery at Cerebellar Parallel Fibre Terminals, Independently of Calcium and Cyclic AMP Signalling

    PubMed Central

    Dobson, Katharine L.; Jackson, Claire; Balakrishnan, Saju; Bellamy, Tomas C.

    2015-01-01

    Background Cerebellar parallel fibres release glutamate at both the synaptic active zone and at extrasynaptic sites—a process known as ectopic release. These sites exhibit different short-term and long-term plasticity, the basis of which is incompletely understood but depends on the efficiency of vesicle release and recycling. To investigate whether release of calcium from internal stores contributes to these differences in plasticity, we tested the effects of the ryanodine receptor agonist caffeine on both synaptic and ectopic transmission. Methods Whole cell patch clamp recordings from Purkinje neurons and Bergmann glia were carried out in transverse cerebellar slices from juvenile (P16-20) Wistar rats. Key Results Caffeine caused complex changes in transmission at both synaptic and ectopic sites. The amplitude of postsynaptic currents in Purkinje neurons and extrasynaptic currents in Bergmann glia were increased 2-fold and 4-fold respectively, but paired pulse ratio was substantially reduced, reversing the short-term facilitation observed under control conditions. Caffeine treatment also caused synaptic sites to depress during 1 Hz stimulation, consistent with inhibition of the usual mechanisms for replenishing vesicles at the active zone. Unexpectedly, pharmacological intervention at known targets for caffeine—intracellular calcium release, and cAMP signalling—had no impact on these effects. Conclusions We conclude that caffeine increases release probability and inhibits vesicle recovery at parallel fibre synapses, independently of known pharmacological targets. This complex effect would lead to potentiation of transmission at fibres firing at low frequencies, but depression of transmission at high frequency connections. PMID:25933382

  5. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development

    PubMed Central

    Stith, Bradley J.

    2015-01-01

    This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG. PMID:25748412

  6. Calcium-Responsive Liposomes via a Synthetic Lipid Switch.

    PubMed

    Lou, Jinchao; Carr, Adam J; Watson, Alexa J; Mattern-Schain, Samuel I; Best, Michael D

    2018-03-07

    Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The pronociceptive dorsal reticular nucleus contains mostly tonic neurons and shows a high prevalence of spontaneous activity in block preparation.

    PubMed

    Sousa, Mafalda; Szucs, Peter; Lima, Deolinda; Aguiar, Paulo

    2014-04-01

    Despite the importance and significant clinical impact of understanding information processing in the nociceptive system, the functional properties of neurons in many parts of this system are still unknown. In this work we performed whole cell patch-clamp recording in rat brain stem blocks to characterize the electrophysiological properties of neurons in the dorsal reticular nucleus (DRt), a region known to be involved in pronociceptive modulation. We also compared properties of DRt neurons with those in the adjacent parvicellular reticular nucleus and in neighboring regions outside the reticular formation. We found that neurons in the DRt and parvicellular reticular nucleus had similar electrophysiological properties and exhibited mostly toniclike firing patterns, whereas neurons outside the reticular formation showed a larger diversity of firing patterns. Interestingly, more than one-half of the neurons also showed spontaneous activity. While the general view of the reticular formation, being a loosely associated mesh of groups of neurons with diverse function, and earlier reports suggests more electrophysiological heterogeneity, we showed that this is indeed not the case. Our results indicate that functional difference of neurons in the reticular formation may mostly be determined by their connectivity profiles and not by their intrinsic electrophysiological properties. The dominance of tonic neurons in the DRt supports previous conclusions that these neurons encode stimulus intensity through their firing frequency, while the high prevalence of spontaneous activity most likely shapes nociceptive modulation by this brain stem region.

  8. Adenosine A₁ receptors in mouse pontine reticular formation modulate nociception only in the presence of systemic leptin.

    PubMed

    Watson, S L; Watson, C J; Baghdoyan, H A; Lydic, R

    2014-09-05

    Human obesity is associated with increased leptin levels and pain, but the specific brain regions and neurochemical mechanisms underlying this association remain poorly understood. This study used adult male C57BL/6J (B6, n=14) mice and leptin-deficient, obese B6.Cg-Lep(ob)/J (obese, n=10) mice to evaluate the hypothesis that nociception is altered by systemic leptin levels and by adenosine A₁ receptors in the pontine reticular formation. Nociception was quantified as paw withdrawal latency (PWL) in s after onset of a thermal stimulus. PWL was converted to percent maximum possible effect (%MPE). After obtaining baseline PWL measures, the pontine reticular formation was microinjected with saline (control), three concentrations of the adenosine A₁ receptor agonist N(6)-p-sulfophenyladenosine (SPA), or super-active mouse leptin receptor antagonist (SMLA) followed by SPA 15 min later, and PWL was again quantified. In obese, leptin-deficient mice, nociception was quantified before and during leptin replacement via subcutaneous osmotic pumps. SPA was administered into the pontine reticular formation of leptin-replaced mice and PWL testing was repeated. During baseline (before vehicle or SPA administration), PWL was significantly (p=0.0013) lower in leptin-replaced obese mice than in B6 mice. Microinjecting SPA into the pontine reticular formation of B6 mice caused a significant (p=0.0003) concentration-dependent increase in %MPE. SPA also significantly (p<0.05) increased %MPE in B6 mice and in leptin-replaced obese mice, but not in leptin-deficient obese mice. Microinjection of SMLA into the pontine reticular formation before SPA did not alter PWL. The results show for the first time that pontine reticular formation administration of the adenosine A₁ receptor agonist SPA produced antinociception only in the presence of systemic leptin. The concentration-response data support the interpretation that adenosine A₁ receptors localized to the pontine reticular

  9. Thalamic reticular impairment underlies attention deficit in Ptchd1(Y/-) mice.

    PubMed

    Wells, Michael F; Wimmer, Ralf D; Schmitt, L Ian; Feng, Guoping; Halassa, Michael M

    2016-04-07

    Developmental disabilities, including attention-deficit hyperactivity disorder (ADHD), intellectual disability (ID), and autism spectrum disorders (ASD), affect one in six children in the USA. Recently, gene mutations in patched domain containing 1 (PTCHD1) have been found in ~1% of patients with ID and ASD. Individuals with PTCHD1 deletion show symptoms of ADHD, sleep disruption, hypotonia, aggression, ASD, and ID. Although PTCHD1 is probably critical for normal development, the connection between its deletion and the ensuing behavioural defects is poorly understood. Here we report that during early post-natal development, mouse Ptchd1 is selectively expressed in the thalamic reticular nucleus (TRN), a group of GABAergic neurons that regulate thalamocortical transmission, sleep rhythms, and attention. Ptchd1 deletion attenuates TRN activity through mechanisms involving small conductance calcium-dependent potassium currents (SK). TRN-restricted deletion of Ptchd1 leads to attention deficits and hyperactivity, both of which are rescued by pharmacological augmentation of SK channel activity. Global Ptchd1 deletion recapitulates learning impairment, hyper-aggression, and motor defects, all of which are insensitive to SK pharmacological targeting and not found in the TRN-restricted deletion mouse. This study maps clinically relevant behavioural phenotypes onto TRN dysfunction in a human disease model, while also identifying molecular and circuit targets for intervention.

  10. Spontaneous, local diastolic subsarcolemmal calcium releases in single, isolated guinea-pig sinoatrial nodal cells.

    PubMed

    Sirenko, Syevda G; Yang, Dongmei; Maltseva, Larissa A; Kim, Mary S; Lakatta, Edward G; Maltsev, Victor A

    2017-01-01

    Uptake and release calcium from the sarcoplasmic reticulum (SR) (dubbed "calcium clock"), in the form of spontaneous, rhythmic, local diastolic calcium releases (LCRs), together with voltage-sensitive ion channels (membrane clock) form a coupled system that regulates the action potential (AP) firing rate. LCRs activate Sodium/Calcium exchanger (NCX) that accelerates diastolic depolarization and thus participating in regulation of the time at which the next AP will occur. Previous studies in rabbit SA node cells (SANC) demonstrated that the basal AP cycle length (APCL) is tightly coupled to the basal LCR period (time from the prior AP-induced Ca2+ transient to the diastolic LCR occurrence), and that this coupling is further modulated by autonomic receptor stimulation. Although spontaneous LCRs during diastolic depolarization have been reported in SANC of various species (rabbit, cat, mouse, toad), prior studies have failed to detect LCRs in spontaneously beating SANC of guinea-pig, a species that has been traditionally used in studies of cardiac pacemaker cell function. We performed a detailed investigation of whether guinea-pig SANC generate LCRs and whether they play a similar key role in regulation of the AP firing rate. We used two different approaches, 2D high-speed camera and classical line-scan confocal imaging. Positioning the scan-line beneath sarcolemma, parallel to the long axis of the cell, we found that rhythmically beating guinea-pig SANC do, indeed, generate spontaneous, diastolic LCRs beneath the surface membrane. The average key LCR characteristics measured in confocal images in guinea-pig SANC were comparable to rabbit SANC, both in the basal state and in the presence of β-adrenergic receptor stimulation. Moreover, the relationship between the LCR period and APCL was subtended by the same linear function. Thus, LCRs in guinea-pig SANC contribute to the diastolic depolarization and APCL regulation. Our findings indicate that coupled-clock system

  11. Spontaneous, local diastolic subsarcolemmal calcium releases in single, isolated guinea-pig sinoatrial nodal cells

    PubMed Central

    Sirenko, Syevda G.; Yang, Dongmei; Maltseva, Larissa A.; Kim, Mary S.; Lakatta, Edward G.

    2017-01-01

    Uptake and release calcium from the sarcoplasmic reticulum (SR) (dubbed “calcium clock”), in the form of spontaneous, rhythmic, local diastolic calcium releases (LCRs), together with voltage-sensitive ion channels (membrane clock) form a coupled system that regulates the action potential (AP) firing rate. LCRs activate Sodium/Calcium exchanger (NCX) that accelerates diastolic depolarization and thus participating in regulation of the time at which the next AP will occur. Previous studies in rabbit SA node cells (SANC) demonstrated that the basal AP cycle length (APCL) is tightly coupled to the basal LCR period (time from the prior AP-induced Ca2+ transient to the diastolic LCR occurrence), and that this coupling is further modulated by autonomic receptor stimulation. Although spontaneous LCRs during diastolic depolarization have been reported in SANC of various species (rabbit, cat, mouse, toad), prior studies have failed to detect LCRs in spontaneously beating SANC of guinea-pig, a species that has been traditionally used in studies of cardiac pacemaker cell function. We performed a detailed investigation of whether guinea-pig SANC generate LCRs and whether they play a similar key role in regulation of the AP firing rate. We used two different approaches, 2D high-speed camera and classical line-scan confocal imaging. Positioning the scan-line beneath sarcolemma, parallel to the long axis of the cell, we found that rhythmically beating guinea-pig SANC do, indeed, generate spontaneous, diastolic LCRs beneath the surface membrane. The average key LCR characteristics measured in confocal images in guinea-pig SANC were comparable to rabbit SANC, both in the basal state and in the presence of β-adrenergic receptor stimulation. Moreover, the relationship between the LCR period and APCL was subtended by the same linear function. Thus, LCRs in guinea-pig SANC contribute to the diastolic depolarization and APCL regulation. Our findings indicate that coupled

  12. ATP release due to Thy-1–integrin binding induces P2X7-mediated calcium entry required for focal adhesion formation

    PubMed Central

    Henríquez, Mauricio; Herrera-Molina, Rodrigo; Valdivia, Alejandra; Alvarez, Alvaro; Kong, Milene; Muñoz, Nicolás; Eisner, Verónica; Jaimovich, Enrique; Schneider, Pascal; Quest, Andrew F. G.; Leyton, Lisette

    2011-01-01

    Thy-1, an abundant mammalian glycoprotein, interacts with αvβ3 integrin and syndecan-4 in astrocytes and thus triggers signaling events that involve RhoA and its effector p160ROCK, thereby increasing astrocyte adhesion to the extracellular matrix. The signaling cascade includes calcium-dependent activation of protein kinase Cα upstream of Rho; however, what causes the intracellular calcium transients required to promote adhesion remains unclear. Purinergic P2X7 receptors are important for astrocyte function and form large non-selective cation pores upon binding to their ligand, ATP. Thus, we evaluated whether the intracellular calcium required for Thy-1-induced cell adhesion stems from influx mediated by ATP-activated P2X7 receptors. Results show that adhesion induced by the fusion protein Thy-1-Fc was preceded by both ATP release and sustained intracellular calcium elevation. Elimination of extracellular ATP with Apyrase, chelation of extracellular calcium with EGTA, or inhibition of P2X7 with oxidized ATP, all individually blocked intracellular calcium increase and Thy-1-stimulated adhesion. Moreover, Thy-1 mutated in the integrin-binding site did not trigger ATP release, and silencing of P2X7 with specific siRNA blocked Thy-1-induced adhesion. This study is the first to demonstrate a functional link between αvβ3 integrin and P2X7 receptors, and to reveal an important, hitherto unanticipated, role for P2X7 in calcium-dependent signaling required for Thy-1-stimulated astrocyte adhesion. PMID:21502139

  13. Mechanical characterization and ion release of bioactive dental composites containing calcium phosphate particles.

    PubMed

    Natale, Livia C; Rodrigues, Marcela C; Alania, Yvette; Chiari, Marina D S; Boaro, Leticia C C; Cotrim, Marycel; Vega, Oscar; Braga, Roberto R

    2018-08-01

    to verify the effect of the addition of dicalcium phosphate dihydrate (DCPD) particles functionalized with di- or triethylene glycol dimethacrylate (DEGDMA or TEGDMA) on the degree of conversion (DC), post-gel shrinkage (PS), mechanical properties, and ion release of experimental composites. Four composites were prepared containing a BisGMA/TEGDMA matrix and 60 vol% of fillers. The positive control contained only barium glass fillers, while in the other composites 15 vol% of the barium was replaced by DCPD. Besides the functionalized particles, non-functionalized DCPD was also tested. DC after 24 h (n = 3) was determined by FTIR spectroscopy. The strain gage method was used to obtain PS 5 min after photoactivation (n = 5). Flexural strength and modulus (n = 10) were calculated based on the biaxial flexural test results, after specimen storage for 24 h or 60 days in water. The same storage times were used for fracture toughness testing (FT, n = 10). Calcium and phosphate release up to 60 days was quantified by ICP-OES (n = 3). Data were analyzed by ANOVA/Tukey test (alpha: 5%). Composites containing functionalized DCPD presented higher DC than the control (p < 0.001). The material containing DEGDMA-functionalized particles showed higher PS than the other composites (p < 0.001). After 60 days, only the composite with DEGDMA-functionalized DCPD presented fracture strength similar to the control, while for flexural modulus only the composite with TEGDMA-functionalized particles was lower than the control (p < 0.001). FT of all composites containing DCPD was higher than the control after 60 days (p < 0.005). Calcium release was higher for the composite with non-functionalized DCPD at 15 days and no significant reductions were observed for composites with functionalized DCPD during the observation period (p < 0.001). For all the tested composites, phosphate release was higher at 15 days than in the subsequent periods, and

  14. Effects of calcium hydroxide addition on the physical and chemical properties of a calcium silicate-based sealer

    PubMed Central

    KUGA, Milton Carlos; DUARTE, Marco Antonio Hungaro; SANT'ANNA-JÚNIOR, Arnaldo; KEINE, Kátia Cristina; FARIA, Gisele; DANTAS, Andrea Abi Rached; GUIOTTI, Flávia Angélica

    2014-01-01

    Recently, various calcium silicate-based sealers have been introduced for use in root canal filling. The MTA Fillapex is one of these sealers, but some of its physicochemical properties are not in accordance with the ISO requirements. Objective The aim of this study was to evaluate the flowability, pH level and calcium release of pure MTA Fillapex (MTAF) or containing 5% (MTAF5) or 10% (MTAF10) calcium hydroxide (CH), in weight, in comparison with AH Plus sealer. Material and Methods The flowability test was performed according to the ISO 6876:2001 requirements. For the pH level and calcium ion release analyses, the sealers were placed individually (n=10) in plastic tubes and immersed in deionized water. After 24 hours, 7 and 14 days, the water in which each specimen had been immersed was evaluated to determine the pH level changes and calcium released. Flowability, pH level and calcium release data were analyzed statistically by the ANOVA test (α=5%). Results In relation to flowability: MTAF>AH Plus>MTAF5>MTAF10. In relation to the pH level, for 24 h: MTAF5=MTAF10=MTAF>AH Plus; for 7 and 14 days: MTAF5=MTAF10>MTAF>AH Plus. For the calcium release, for all periods: MTAF>MTAF5=MTAF10>AH Plus. Conclusions The addition of 5% CH to the MTA Fillapex (in weight) is an alternative to reduce the high flowability presented by the sealer, without interfering in its alkalization potential. PMID:25025558

  15. Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles.

    PubMed

    Chiari, Marina D S; Rodrigues, Marcela C; Xavier, Tathy A; de Souza, Eugen M N; Arana-Chavez, Victor E; Braga, Roberto R

    2015-06-01

    To evaluate the effect of the replacement of barium glass by dicalcium phosphate dihydrate (DCPD) particles on the mechanical properties and degree of conversion (DC) of composites. Additionally, calcium and hydrogen phosphate (HPO4(2-)) release were followed for 28 days. Nine composites containing equal parts (in mols) of BisGMA and TEGDMA and 40, 50 or 60 vol% of total filler were manipulated. Filler phase was constituted by silanated barium glass and 0%, 10% or 20% of DCPD particles. DC was determined by near-FTIR. Biaxial flexural strength (BFS) and modulus (E) were tested using the "piston on three balls" method, while fracture toughness (KIc) used the "single edge notched beam" method. Specimens were tested after 24h and 28 days in water. Ion release was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Data were analyzed by ANOVA/Tukey (DC and ion release) or Kruskal-Wallis/Mann-Whitney (mechanical properties; alpha: 5%). DC was not affected by DCPD. The presence of DCPD reduced BFS for both storage times, while differences in E became evident after 28 days. After 24h, KIc increased with the addition of DCPD; after 28 days, however, KIc decreased only for DCPD-containing composites. Calcium release was similar for both DCPD contents and remained fairly constant during the 28-day period. Overall, HPO4(2-) release was higher at 7 days and did not decrease after 14 days. The composite with the highest filler level and 10% DCPD represented the best compromise between mechanical properties after aging in water and ion release. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Collapsed Reticular Network and its Possible Mechanism during the Initiation and/or Progression of Hepatic Fibrosis

    PubMed Central

    Wen, Shi-Lei; Feng, Shi; Tang, Shi-Hang; Gao, Jin-Hang; Zhang, Lin-hao; Tong, Huan; Yan, Zhao-Ping; Fang, Ding Zhi

    2016-01-01

    Among the researches on hepatic fibrosis, great attention was paid to both hepatocytes and extracellular matrix (ECM). However, little focus was drawn on reticular fibrous network, which is important for demarcation and support of hepatocytes. The aim of this study was to investigate the change pattern of reticular fibers in hepatic fibrosis/cirrhosis and its underlying mechanism. In this study, thioacetamide (TAA) and bile duct ligation (BDL) were utilized to induce rat hepatic fibrosis respectively, and Human liver cirrhotic microassay was analyzed with IHC to confirm the results in animal experiment and to detect the metalloproteinases (MMPs) expressions. As a result, the reticular fibers decreased markedly after 1 week in TAA and 1 day in BDL treated rats. Multiple representative regulators of MMPs and MMPs increased significantly in their expressions and activities. Further more, in human liver cirrhotic microassay, MMPs expressions also showed similar patterns as that of animal experiment. In Conclusions: Degradation or collapse of reticular fibers in hepatic sinusoid can be considered as a pathological feature during the initiation and/or progression of hepatic fibrosis. Moreover, such degradation is associated with and probably caused by the over/dysregulated expression of MMPs. PMID:27739503

  17. PRESENILIN-NULL CELLS HAVE ALTERED TWO-PORE CALCIUM CHANNEL EXPRESSION AND LYSOSOMAL CALCIUM; IMPLICATIONS FOR LYSOSOMAL FUNCTION

    PubMed Central

    Kayala, Kara M Neely; Dickinson, George D; Minassian, Anet; Walls, Ken C; Green, Kim N; LaFerla, Frank M

    2012-01-01

    Presenilins are necessary for calcium homeostasis and also for efficient proteolysis through the autophagy/lysosome system. Presenilin regulates both endoplasmic reticulum calcium stores and autophagic proteolysis in a γ-secretase independent fashion. The endo-lysosome system can also act as a calcium store, with calcium efflux channels being recently identified as two-pore channels 1 and 2. Here we investigated lysosomal calcium content and the channels that mediate calcium release from these acidic stores in presenilin knockout cells. We report that presenilin loss leads to a lower total lysosomal calcium store despite the buildup of lysosomes found in these cells. Additionally, we find alterations in two-pore calcium channel protein expression, with loss of presenilin preventing the formation of a high molecular weight species of TPC1 and TPC2. Finally, we find that treatments that disturb lysosomal calcium release lead to a reduction in autophagy function yet lysosomal inhibitors do not alter two-pore calcium channel expression. These data indicate that alterations in lysosomal calcium in the absence of presenilins might be leading to disruptions in autophagy. PMID:23103503

  18. Classification of Neurons in the Primate Reticular Formation and Changes After Recovery From Pyramidal Tract Lesion.

    PubMed

    Zaaimi, Boubker; Soteropoulos, Demetris S; Fisher, Karen M; Riddle, C Nicholas; Baker, Stuart N

    2018-05-23

    The reticular formation is important in primate motor control, both in health and during recovery after brain damage. Little is known about the different neurons present in the reticular nuclei. Here we recorded extracellular spikes from the reticular formation in five healthy female awake behaving monkeys (193 cells), and in two female monkeys one year after recovery from a unilateral pyramidal tract lesion (125 cells). Analysis of spike shape, and four measures derived from the inter-spike interval distribution identified four clusters of neurons in control animals. Cluster 1 cells had slow firing rate; Cluster 2 had narrow spikes, and irregular firing which often included high frequency bursts. Cluster 3 were highly rhythmic and fast firing. Cluster 4 showed negative spikes. A separate population of 42 cells were antidromically identified as reticulospinal neurons in five anesthetized female monkeys. The distribution of spike width in these cells closely overlaid the distribution for cluster 2, leading us tentatively to suggest that cluster 2 included neurons with reticulospinal projections. In animals after corticospinal lesion, cells could be identified in all four clusters. The firing rate of cells in clusters 1 and 2 was increased in lesioned relative to control animals (by 52% and 60%, respectively); cells in cluster 2 were also more regular and more bursting in the lesioned animals. We suggest that changes in both membrane properties and local circuits within the reticular formation occur following lesion, potentially increasing reticulospinal output to help compensate for lost corticospinal descending drive. SIGNIFICANCE STATEMENT This work is the first to sub-classify neurons in the reticular formation, providing insights into the local circuitry of this important but little-understood structure. The approach developed can be applied to any extracellular recording from this region, allowing future studies to place their data within our current framework

  19. Adenosine A1 Receptors in Mouse Pontine Reticular Formation Modulate Nociception Only in the Presence of Systemic Leptin

    PubMed Central

    Watson, Sarah L.; Watson, Christopher J.; Baghdoyan, Helen A.; Lydic, Ralph

    2014-01-01

    Human obesity is associated with increased leptin levels and pain, but the specific brain regions and neurochemical mechanisms underlying this association remain poorly understood. This study used adult male C57BL/6J (B6, n = 14) mice and leptin-deficient, obese B6.Cg-Lepob/J (obese, n = 10) mice to evaluate the hypothesis that nociception is altered by systemic leptin levels and by adenosine A1 receptors in the pontine reticular formation. Nociception was quantified as paw withdrawal latency (PWL) in s after onset of a thermal stimulus. PWL was converted to percent maximum possible effect (%MPE). After obtaining baseline PWL measures, the pontine reticular formation was microinjected with saline (control), three concentrations of the adenosine A1 receptor agonist N6-p-sulfophenyladenosine (SPA), or super-active mouse leptin receptor antagonist (SMLA) followed by SPA 15 min later, and PWL was again quantified. In obese, leptin-deficient mice, nociception was quantified before and during leptin replacement via subcutaneous osmotic pumps. SPA was administered into the pontine reticular formation of leptin-replaced mice and PWL testing was repeated. During baseline (before vehicle or SPA administration), PWL was significantly (p = 0.0013) lower in leptin-replaced obese mice than in B6 mice. Microinjecting SPA into the pontine reticular formation of B6 mice caused a significant (p = 0.0003) concentration-dependent increase in %MPE. SPA also significantly (p < 0.05) increased %MPE in B6 mice and in leptin-replaced obese mice, but not in leptin-deficient obese mice. Microinjection of the mouse super-active leptin antagonist (SMLA) into the pontine reticular formation before SPA did not alter PWL. The results show for the first time that pontine reticular formation administration of the adenosine A1 receptor agonist SPA produced antinociception only in the presence of systemic leptin. The concentration-response data support the interpretation that adenosine A1 receptors

  20. Properties of calcium silicate-monobasic calcium phosphate materials for endodontics containing tantalum pentoxide and zirconium oxide.

    PubMed

    Zamparini, Fausto; Siboni, Francesco; Prati, Carlo; Taddei, Paola; Gandolfi, Maria Giovanna

    2018-05-08

    The aim of the study was to evaluate chemical-physical properties and apatite-forming ability of three premixed calcium silicate materials containing monobasic calcium phosphate (CaH 4 P 2 O 8 ) bioceramic, tantalum pentoxide and zirconium oxide, recently marketed for endodontics (TotalFill BC-Sealer, BC-RRM-Paste, BC-RRM-Putty). Microchemical and micromorphological analyses, radiopacity, initial and final setting times, calcium release and alkalising activity were tested. The nucleation of calcium phosphates (CaPs) and/or apatite after 28 days ageing was evaluated by ESEM-EDX and micro-Raman spectroscopy. BC-Sealer and BC-RRM-Paste showed similar initial (23 h), prolonged final (52 h) setting times and good radiopacity (> 7 mm Al); BC-RRM-Putty showed fast initial (2 h) and final setting times (27 h) and excellent radiopacity (> 9 mm Al). All materials induced a marked alkalisation (pH 11-12) up to 28 days and showed the release of calcium ions throughout the entire test period (cumulative calcium release 641-806 ppm). After 28 days ageing, a well-distributed mineral layer was present on all samples surface; EDX demonstrated relevant calcium and phosphorous peaks. B-type carbonated apatite and calcite deposits were identified by micro-Raman spectroscopy on all the 28-day-aged samples; the deposit thickness was higher on BC-RRM-Paste and BC-RRM-Putty, in agreement with calcium release data. These materials met the required chemical and physical standards and released biologically relevant ions. The CaSi-CaH 4 P 2 O 8 system present in the materials provided Ca and OH ions release with marked abilities to nucleate a layer of B-type carbonated apatite favoured/accelerated by the bioceramic presence. The ability to nucleate apatite may lead many clinical advantages: In orthograde endodontics, it may improve the sealing ability by the deposition of CaPs at the material-root dentine interface, and in endodontic surgery, it could promote bone and

  1. Molecular Dynamics Simulations of Orai Reveal How the Third Transmembrane Segment Contributes to Hydration and Ca2+ Selectivity in Calcium Release-Activated Calcium Channels.

    PubMed

    Alavizargar, Azadeh; Berti, Claudio; Ejtehadi, Mohammad Reza; Furini, Simone

    2018-04-26

    Calcium release-activated calcium (CRAC) channels open upon depletion of Ca 2+ from the endoplasmic reticulum, and when open, they are permeable to a selective flux of calcium ions. The atomic structure of Orai, the pore domain of CRAC channels, from Drosophila melanogaster has revealed many details about conduction and selectivity in this family of ion channels. However, it is still unclear how residues on the third transmembrane helix can affect the conduction properties of the channel. Here, molecular dynamics and Brownian dynamics simulations were employed to analyze how a conserved glutamate residue on the third transmembrane helix (E262) contributes to selectivity. The comparison between the wild-type and mutated channels revealed a severe impact of the mutation on the hydration pattern of the pore domain and on the dynamics of residues K270, and Brownian dynamics simulations proved that the altered configuration of residues K270 in the mutated channel impairs selectivity to Ca 2+ over Na + . The crevices of water molecules, revealed by molecular dynamics simulations, are perfectly located to contribute to the dynamics of the hydrophobic gate and the basic gate, suggesting a possible role in channel opening and in selectivity function.

  2. Spotlight on reticular pseudodrusen

    PubMed Central

    Rabiolo, Alessandro; Sacconi, Riccardo; Cicinelli, Maria Vittoria; Querques, Lea; Bandello, Francesco; Querques, Giuseppe

    2017-01-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss in patients >50 years old. The hallmark of the disease is represented by the accumulation of extracellular material between retinal pigment epithelium and the inner collagenous layer of Bruch’s membrane, called drusen. Although identified almost 30 years ago, reticular pseudodrusen (RPD) have been recently recognized as a distinctive phenotype. Unlike drusen, they are located in the subretinal space. RPD are strongly associated with late AMD, especially geographic atrophy, type 2 and 3 choroidal neovascularization, which, in turn, are less common in typical AMD. RPD identification is not straightforward at fundus examination, and their identification should employ at least 2 different imaging modalities. In this narrative review, we embrace all aspects of RPD, including history, epidemiology, histology, imaging, functional test, natural history and therapy. PMID:29033536

  3. Heterogeneity of cell firing properties and opioid sensitivity in the thalamic reticular nucleus.

    PubMed

    Brunton, J; Charpak, S

    1997-05-01

    The thalamic reticular nucleus receives afferents from the dorsal thalamus, cortex and brainstem, and projects back onto most cortically projecting thalamic nuclei thus playing a key role in the synchronization of the thalamocortical network. Although this nucleus was initially thought to consist of a homogeneous population of cells using GABA as a transmitter, and sharing identical intrinsic membrane properties, some heterogeneity was subsequently reported. The morphological diversity is generally acknowledged, but only two studies have shown functional differences between two classes of cells which vary in their ability to discharge in bursts. However, the location of the non-bursting cells was not characterized with anatomical techniques. Our recent work on the action of mu-opioid agonists in the thalamus revealed a widespread K+-mediated inhibition of most, if not all, thalamic relay and diffuse projection neurons. However, in the reticular nucleus, preliminary experiments suggested that the opioid sensitivity was variable. Based on these results and on observations of a discrete localization of mu-opioid receptors in the reticular nucleus, we investigated cellular heterogeneity within the nucleus using opioid agonists as markers. Using the whole cell patch clamp technique in young rat thalamic slices, we tested the responses of 28 neurons to opioids, the intrinsic membrane properties of each cell, and their relative location within the nucleus. Two types of intrinsic membrane properties underlying distinct discharge behaviours were seen in neurobiotin-labelled cells clearly located in the reticular nucleus: type I with the typical bursting behaviour previously reported in reticularis neurons, and type II in which bursting was greatly reduced or absent. Each class of cell could be further divided into subpopulations based on their opioid sensitivity. About half of both bursting (20) and non-bursting or tonic (8) cells were strongly inhibited by the mu

  4. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons.

    PubMed

    Kwon, Seok-Kyu; Sando, Richard; Lewis, Tommy L; Hirabayashi, Yusuke; Maximov, Anton; Polleux, Franck

    2016-07-01

    Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance.

  5. Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization

    PubMed Central

    Bates, Ryan C.; Fees, Colby P.; Holland, William L.; Winger, Courtney C.; Batbayar, Khulan; Ancar, Rachel; Bergren, Todd; Petcoff, Douglas; Stith, Bradley J.

    2014-01-01

    We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC- γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca]i). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 minute after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca]i and other fertilization events. As compared to 14 other lipids, PA strongly bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca]i, PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca]i release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca]i release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization. PMID:24269904

  6. Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization.

    PubMed

    Bates, Ryan C; Fees, Colby P; Holland, William L; Winger, Courtney C; Batbayar, Khulan; Ancar, Rachel; Bergren, Todd; Petcoff, Douglas; Stith, Bradley J

    2014-02-01

    We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC-γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca](i)). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 min after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca](i) and other fertilization events. As compared to 14 other lipids, PA specifically bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca](i), PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca](i) release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca](i) release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. A comparative analysis of reticular crack on ceramic plate driven by thermal shock

    NASA Astrophysics Data System (ADS)

    Xu, XiangHong; Sheng, ShiLong; Tian, Cheng; Yuan, WenJun

    2016-07-01

    Reticular crack is generally found on the surface of ceramic material that has been subjected to a thermal-shock condition. In the present study, a quantitative effect of thermal shock and quench temperature has been studied and investigated. Experimental tests were carried out to characterize the reticular crack that has been found in the Ge Kiln, which is a famous art of the ancient Chinese culture. After comparative analysis between thermal-shock cracks and the glaze crack patterns of the Ge Kiln porcelain, it is found that this study is expected to provide a powerful tool for recurrence of the long-lost firing and cooling process of the Ge Kiln porcelain.

  8. Variable Action Potential Backpropagation during Tonic Firing and Low-Threshold Spike Bursts in Thalamocortical But Not Thalamic Reticular Nucleus Neurons.

    PubMed

    Connelly, William M; Crunelli, Vincenzo; Errington, Adam C

    2017-05-24

    Backpropagating action potentials (bAPs) are indispensable in dendritic signaling. Conflicting Ca 2+ -imaging data and an absence of dendritic recording data means that the extent of backpropagation in thalamocortical (TC) and thalamic reticular nucleus (TRN) neurons remains unknown. Because TRN neurons signal electrically through dendrodendritic gap junctions and possibly via chemical dendritic GABAergic synapses, as well as classical axonal GABA release, this lack of knowledge is problematic. To address this issue, we made two-photon targeted patch-clamp recordings from rat TC and TRN neuron dendrites to measure bAPs directly. These recordings reveal that "tonic"' and low-threshold-spike (LTS) "burst" APs in both cell types are always recorded first at the soma before backpropagating into the dendrites while undergoing substantial distance-dependent dendritic amplitude attenuation. In TC neurons, bAP attenuation strength varies according to firing mode. During LTS bursts, somatic AP half-width increases progressively with increasing spike number, allowing late-burst spikes to propagate more efficiently into the dendritic tree compared with spikes occurring at burst onset. Tonic spikes have similar somatic half-widths to late burst spikes and undergo similar dendritic attenuation. In contrast, in TRN neurons, AP properties are unchanged between LTS bursts and tonic firing and, as a result, distance-dependent dendritic attenuation remains consistent across different firing modes. Therefore, unlike LTS-associated global electrical and calcium signals, the spatial influence of bAP signaling in TC and TRN neurons is more restricted, with potentially important behavioral-state-dependent consequences for synaptic integration and plasticity in thalamic neurons. SIGNIFICANCE STATEMENT In most neurons, action potentials (APs) initiate in the axosomatic region and propagate into the dendritic tree to provide a retrograde signal that conveys information about the level of

  9. Pontine cholinergic reticular mechanisms cause state-dependent changes in the discharge of parabrachial neurons.

    PubMed

    Gilbert, K A; Lydic, R

    1994-01-01

    The present study examined the hypothesis that cholinoceptive reticular mechanisms in the gigantocellular tegmental field (FTG) of the medial pontine reticular formation cause state-dependent changes in the discharge of parabrachial neurons. In chronically implanted, unanesthetized cats, extracellular recordings were made from nonrespiratory and respiratory neurons in the parabrachial nuclear complex (PBNC) during the natural sleep-wake cycle and during the rapid eye movement (REM) sleeplike state caused by FTG microinjection of carbachol or neostigmine. PBNC cells that increased discharge during natural REM sleep (REM-on cells) revealed similar increased discharge during the carbachol-induced REM sleeplike state (DCarb). Cells that decreased discharge in natural REM sleep (REM-off cells) displayed decreased discharge during both DCarb and the neostigmine-induced REM sleeplike states. The limited sample of parabrachial respiratory neurons revealed significantly diminished discharge during the cholinergically induced REM sleeplike state. Thus cholinoceptive mechanisms localized to specific regions of the pontine reticular formation can cause state-dependent changes in the firing rates of respiratory and nonrespiratory neurons in the PBNC.

  10. Altered stored calcium release in skeletal myotubes deficient of triadin and junctin

    PubMed Central

    Wang, Ying; Li, Xinghai; Duan, Hongzhe; Fulton, Timothy R.; Eu, Jerry P.; Meissner, Gerhard

    2008-01-01

    Summary Triadin and junctin are integral sarcoplasmic reticulum membrane proteins that form a macromolecular complex with the skeletal muscle ryanodine receptor (RyR1) but their roles in skeletal muscle calcium homeostasis remain incompletely understood. Here we report that delivery of siRNAs specific for triadin or junctin into C2C12 skeletal myoblasts reduced the expression of triadin and junctin in 8-day-old myotubes by 80 and 100%, respectively. Knocking down either triadin or junctin in these cells reduced Ca2+ release induced by depolarization (10 mM KCl) by 20–25%. Unlike triadin knockdown myotubes, junctin knockdown and junctin/triadin double knockdown myotubes also had reduced Ca2+ release induced by 400 μM 4-chloro-m-cresol, 10 mM caffeine, 400 μM UTP, or 1 μM thapsigargin. Thus, knocking down junctin compromised the Ca2+ stores in the sarcoplasmic reticulum of these cells. Our subsequent studies showed that in junctin knockdown myotubes at least two sarcoplasmic reticulum proteins (RyR1 and skeletal muscle calsequestrin) were down-regulated while these proteins’ mRNA expression was not affected. The results suggest that triadin has a role in facilitating KCl depolarization-induced Ca2+ release in contrast to junctin which has a role in maintaining sarcoplasmic reticulum Ca2+ store size in C2C12 myotubes. PMID:18620751

  11. The differential effects of halothane and isoflurane on electroencephalographic responses to electrical microstimulation of the reticular formation.

    PubMed

    Orth, Mashawn; Bravo, Emigdio; Barter, Linda; Carstens, Earl; Antognini, Joseph F

    2006-06-01

    Isoflurane and halothane cause electroencephalographic (EEG) depression and neuronal depression in the reticular formation, a site critical to consciousness. We hypothesized that isoflurane, more than halothane, would depress EEG activation elicited by electrical microstimulation of the reticular formation. Rats were anesthetized with either halothane or isoflurane and stimulating electrodes were positioned in the reticular formation. In a crossover design, anesthetic concentration was adjusted to 0.8 and 1.2 minimum alveolar concentration (MAC) of halothane or isoflurane and electrical microstimulation was performed and the EEG responses were recorded. Microstimulation increased the spectral edge and median edge frequencies 2-2.5 Hz at 0.8 MAC for halothane and isoflurane and 1.2 MAC halothane. At 1.2 MAC isoflurane, burst suppression occurred and microstimulation decreased the period of isoelectricity (24% +/- 19% to 8% +/- 7%; P < 0.05), whereas the spectral edge and median edge frequencies were unchanged. At anesthetic concentrations required to produce immobility, the cortex remains responsive to electrical microstimulation of the reticular formation, although the EEG response is depressed in the transition from 0.8 to 1.2 MAC. These data indicate that cortical neurons remain responsive to synaptic input during isoflurane and halothane anesthesia.

  12. Calcium Binding-Mediated Sustained Release of Minocycline from Hydrophilic Multilayer Coatings Targeting Infection and Inflammation

    PubMed Central

    Zhang, Zhiling; Nix, Camilla A.; Ercan, Utku K.; Gerstenhaber, Jonathan A.; Joshi, Suresh G.; Zhong, Yinghui

    2014-01-01

    Infection and inflammation are common complications that seriously affect the functionality and longevity of implanted medical implants. Systemic administration of antibiotics and anti-inflammatory drugs often cannot achieve sufficient local concentration to be effective, and elicits serious side effects. Local delivery of therapeutics from drug-eluting coatings presents a promising solution. However, hydrophobic and thick coatings are commonly used to ensure sufficient drug loading and sustained release, which may limit tissue integration and tissue device communications. A calcium-mediated drug delivery mechanism was developed and characterized in this study. This novel mechanism allows controlled, sustained release of minocycline, an effective antibiotic and anti-inflammatory drug, from nanoscale thin hydrophilic polyelectrolyte multilayers for over 35 days at physiologically relevant concentrations. pH-responsive minocycline release was observed as the chelation between minocycline and Ca2+ is less stable at acidic pH, enabling ‘smart’ drug delivery in response to infection and/or inflammation-induced tissue acidosis. The release kinetics of minocycline can be controlled by varying initial loading, Ca2+ concentration, and Ca2+ incorporation into different layers, enabling facile development of implant coatings with versatile release kinetics. This drug delivery platform can potentially be used for releasing any drug that has high Ca2+ binding affinity, enabling its use in a variety of biomedical applications. PMID:24409292

  13. Orthodontic cement with protein-repellent and antibacterial properties and the release of calcium and phosphate ions.

    PubMed

    Zhang, Ning; Weir, Michael D; Chen, Chen; Melo, Mary A S; Bai, Yuxing; Xu, Hockin H K

    2016-07-01

    White spot lesions often occur in orthodontic treatments. The objective of this study was to develop a novel resin-modified glass ionomer cement (RMGI) as an orthodontic cement with protein-repellent, antibacterial and remineralization capabilities. Protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC), antibacterial dimethylaminohexadecyl methacrylate (DMAHDM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP) were incorporated into a RMGI. Enamel shear bond strength (SBS) was determined. Calcium (Ca) and phosphate (P) ion releases were measured. Protein adsorption onto specimens was determined by a micro bicinchoninic acid method. A dental plaque microcosm biofilm model was tested. Increasing the NACP filler level increased the Ca and P ion release. Decreasing the solution pH increased the ion release. Incorporating MPC into RMGI reduced protein adsorption, which was an order of magnitude less than that of commercial controls. Adding DMAHDM and NAg into RMGI yielded a strong antibacterial function, greatly reducing biofilm viability and acid production. Biofilm CFU counts on the multifunctional orthodontic cement were 3 orders of magnitude less than that of commercial control (p<0.05). These benefits were achieved without compromising the enamel shear bond strength (p>0.1). A novel multifunctional orthodontic cement was developed with strong antibacterial and protein-repellent capabilities for preventing enamel demineralization. The new cement is promising to prevent white spot lesions in orthodontic treatments. The method of incorporating four bioactive agents may have wide applicability to the development of other bioactive dental materials to inhibit caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The quantal nature of calcium release to caffeine in single smooth muscle cells results from activation of the sarcoplasmic reticulum Ca(2+)-ATPase.

    PubMed

    Steenbergen, J M; Fay, F S

    1996-01-26

    Calcium release from intracellular stores occurs in a graded manner in response to increasing concentrations of either inositol 1,4,5-trisphosphate or caffeine. To investigate the mechanism responsible for this quantal release phenomenon, [Ca2+] changes inside intracellular stores in isolated single smooth muscle cells were monitored with mag-fura 2. Following permeabilization with saponin or alpha-toxin the dye, loaded via its acetoxymethyl ester, was predominantly trapped in the sarcoplasmic reticulum (SR). Low caffeine concentrations in the absence of ATP induced only partial Ca2+ release; however, after inhibiting the calcium pump with thapsigargin the same stimulus released twice as much Ca2+. When the SR Ca(2+)-ATPase was rendered non-functional by depleting its "ATP pool," submaximal caffeine doses almost fully emptied the stores of Ca2+. We conclude that quantal release of Ca2+ in response to caffeine in these smooth muscle cells is largely due to the activity of the SR Ca(2+)-ATPase, which appears to return a portion of the released Ca2+ back to the SR, even in the absence of ATP. Apparently the SR Ca(2+)-ATPase is fueled by ATP, which is either compartmentalized or bound to the SR.

  15. Calcium mobilization in HeLa cells induced by nitric oxide.

    PubMed

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-01-01

    Nitric oxide (NO) has been proposed to be involved in tumor growth and metastasis. However, the mechanism by which nitric oxide modulates cancer cell growth and metastasis on cellular and molecular level is still not fully understood. This work utilized confocal microscopy and fluorescence microplate reader to investigate the effects of exogenous NO on the mobilization of calcium, which is one of the regulators of cell migration, in HeLa cells. The results show that NO elevates calcium in concentration-dependent manner in HeLa cells. And the elevation of calcium induced by NO is due to calcium influx and calcium release from intracellular calcium stores. Moreover, calcium release from intracellular stores is dominant. Furthermore, calcium release from mitochondria is one of the modulation pathways of NO. These findings would contribute to recognizing the significance of NO in cancer cell proliferation and metastasis. © Wiley Periodicals, Inc.

  16. Effects of copyrolysis of sludge with calcium carbonate and calcium hydrogen phosphate on chemical stability of carbon and release of toxic elements in the resultant biochars.

    PubMed

    Xu, Xuebin; Hu, Xin; Ding, Zhuhong; Chen, Yijun

    2017-12-01

    The potential release of toxic elements and the stability of carbon in sludge-based biochars are important on their application in soil remediation and wastewater treatment. In this study, municipal sludge was co-pyrolyzed with calcium carbonate (CaCO 3 ) and calcium dihydrogen phosphate [Ca(H 2 PO 4 ) 2 ] under 300 and 600 °C, respectively. The basic physicochemical properties of the resultant biochars were characterized and laboratory chemical oxidation and leaching experiments of toxic elements were conducted to evaluate the chemical stability of carbon in biochars and the potential release of toxic elements from biochars. Results show that the exogenous minerals changed the physico-chemical properties of the resultant biochars greatly. Biochars with exogenous minerals, especially Ca(H 2 PO 4 ) 2 , decreased the release of Zn, Cr, Ni, Cu, Pb, and As and the release ratios were less than 1%. Tessier's sequential extraction analysis revealed that labile toxic elements were transferred to residual fraction in the biochars with high pyrolysis temperature (600 °C) and exogenous minerals. Low risks for biochar-bound Pb, Zn, Cd, As, Cr, and Cu were confirmed according to risk assessment code (RAC) while the potential ecological risk index (PERI) revealed that the exogenous Ca(H 2 PO 4 ) 2 significantly decreased the risks from considerable to moderate level. Moreover, the exogenous minerals significantly increased the chemical stability of carbon in 600 °C-pyrolyzed biochars by 10-20%. These results indicated that the copyrolysis of sludge with phosphate and carbonate, especially phosphate, were effective methods to prepare the sludge-based biochars with immobilized toxic elements and enhanced chemical stability of carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy.

    PubMed

    Liu, Yanlei; Zhi, Xiao; Yang, Meng; Zhang, Jingpu; Lin, Lingnan; Zhao, Xin; Hou, Wenxiu; Zhang, Chunlei; Zhang, Qian; Pan, Fei; Alfranca, Gabriel; Yang, Yuming; de la Fuente, Jesús M; Ni, Jian; Cui, Daxiang

    2017-01-01

    Different stimulus including pH, light and temperature have been used for controlled drug release to prevent drug inactivation and minimize side-effects. Herein a novel nano-platform (GNS@CaCO 3 /ICG) consisting of calcium carbonate-encapsulated gold nanostars loaded with ICG was established to couple the photothermal properties of gold nanostars (GNSs) and the photodynamic properties of indocyanine green (ICG) in the photodynamic/photothermal combination therapy (PDT/PTT). In this study, the calcium carbonate worked not only a drug keeper to entrap ICG on the surface of GNSs in the form of a stable aggregate which was protected from blood clearance, but also as the a pH-responder to achieve highly effective tumor-triggered drug release locally. The application of GNS@CaCO 3 /ICG for in vitro and in vivo therapy achieved the combined antitumor effects upon the NIR irradiation, which was superior to the single PDT or PTT. Meanwhile, the distinct pH-triggered drug release performance of GNS@CaCO 3 /ICG implemented the tumor-targeted NIR fluorescence imaging. In addition, we monitored the bio-distribution and excretion pathway of GNS@CaCO 3 /ICG based on the NIR fluorescence from ICG and two-photon fluorescence and photoacoustic signal from GNSs, and the results proved that GNS@CaCO 3 /ICG had a great ability for tumor-specific and tumor-triggered drug release. We therefore conclude that the GNS@CaCO 3 /ICG holds great promise for clinical applications in anti-tumor therapy with tumor imaging or drug tracing.

  18. Glycerolized Reticular Dermis as a New Human Acellular Dermal Matrix: An Exploratory Study

    PubMed Central

    Ferrando, Pietro Maria; Balmativola, Davide; Cambieri, Irene; Scalzo, Maria Stella; Bergallo, Massimiliano; Annaratone, Laura; Casarin, Stefania; Fumagalli, Mara; Stella, Maurizio; Sapino, Anna; Castagnoli, Carlotta

    2016-01-01

    Human Acellular Dermal Matrices (HADM) are employed in various reconstructive surgery procedures as scaffolds for autologous tissue regeneration. The aim of this project was to develop a new type of HADM for clinical use, composed of glycerolized reticular dermis decellularized through incubation and tilting in Dulbecco’s Modified Eagle’s Medium (DMEM). This manufacturing method was compared with a decellularization procedure already described in the literature, based on the use of sodium hydroxide (NaOH), on samples from 28 donors. Cell viability was assessed using an MTT assay and microbiological monitoring was performed on all samples processed after each step. Two surgeons evaluated the biomechanical characteristics of grafts of increasing thickness. The effects of the different decellularization protocols were assessed by means of histological examination and immunohistochemistry, and residual DNA after decellularization was quantified using a real-time TaqMan MGB probe. Finally, we compared the results of DMEM based decellularization protocol on reticular dermis derived samples with the results of the same protocol applied on papillary dermis derived grafts. Our experimental results indicated that the use of glycerolized reticular dermis after 5 weeks of treatment with DMEM results in an HADM with good handling and biocompatibility properties. PMID:26918526

  19. Keloid and Hypertrophic Scars Are the Result of Chronic Inflammation in the Reticular Dermis.

    PubMed

    Ogawa, Rei

    2017-03-10

    Keloids and hypertrophic scars are caused by cutaneous injury and irritation, including trauma, insect bite, burn, surgery, vaccination, skin piercing, acne, folliculitis, chicken pox, and herpes zoster infection. Notably, superficial injuries that do not reach the reticular dermis never cause keloidal and hypertrophic scarring. This suggests that these pathological scars are due to injury to this skin layer and the subsequent aberrant wound healing therein. The latter is characterized by continuous and histologically localized inflammation. As a result, the reticular layer of keloids and hypertrophic scars contains inflammatory cells, increased numbers of fibroblasts, newly formed blood vessels, and collagen deposits. Moreover, proinflammatory factors, such as interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosis factor-α are upregulated in keloid tissues, which suggests that, in patients with keloids, proinflammatory genes in the skin are sensitive to trauma. This may promote chronic inflammation, which in turn may cause the invasive growth of keloids. In addition, the upregulation of proinflammatory factors in pathological scars suggests that, rather than being skin tumors, keloids and hypertrophic scars are inflammatory disorders of skin, specifically inflammatory disorders of the reticular dermis. Various external and internal post-wounding stimuli may promote reticular inflammation. The nature of these stimuli most likely shapes the characteristics, quantity, and course of keloids and hypertrophic scars. Specifically, it is likely that the intensity, frequency, and duration of these stimuli determine how quickly the scars appear, the direction and speed of growth, and the intensity of symptoms. These proinflammatory stimuli include a variety of local, systemic, and genetic factors. These observations together suggest that the clinical differences between keloids and hypertrophic scars merely reflect differences in the intensity, frequency, and duration of

  20. Toward compositional design of reticular type porous films by mixing and coating titania-based frameworks with silica

    NASA Astrophysics Data System (ADS)

    Kimura, T.

    2015-12-01

    A recently developed reticular type porous structure, which can be fabricated as the film through the soft colloidal block copolymer (e.g., PS-b-PEO) templating, is very promising as the porous platform showing high-performance based on its high surface area as well as high diffusivity of targeted organic molecules and effective accommodation of bulky molecules, but the compositional design of oxide frameworks has not been developed so enough to date. Here, I report reliable synthetic methods of the reticular type porous structure toward simple compositional variations. Due to the reproducibility of reticular type porous titania films from titanium alkoxide (e.g., TTIP; titanium tetraisopropoxide), a titania-silica film having similar porous structure was obtained by mixing silicon alkoxide (e.g., tetraethoxysilane) and TTIP followed by their pre-hydrolysis, and the mixing ratio of Ti to Si composition was easily reached to 1.0. For further compositional design, a concept of surface coating was widely applicable; the reticular type porous titania surfaces can be coated with other oxides such as silica. Here, a silica coating was successfully achieved by the simple chemical vapor deposition of silicon alkoxide (e.g., tetramethoxysilane) without water (with water at the humidity level), which was also utilized for pore filling with silica by the similar process with water.

  1. Mitochondrial permeability transition in the crustacean Artemia franciscana: absence of a calcium-regulated pore in the face of profound calcium storage.

    PubMed

    Menze, Michael A; Hutchinson, Kirk; Laborde, Susan M; Hand, Steven C

    2005-07-01

    When mammalian mitochondria are exposed to high calcium and phosphate, a massive swelling, uncoupling of respiration, and release of cytochrome c occur. These changes are mediated by opening of the mitochondrial permeability transition pore (MPTP). Activation of the MPTP in vivo in response to hypoxic and oxidative stress leads to necrotic and apoptotic cell death. Considering that embryos of the brine shrimp Artemia franciscana tolerate anoxia for years, we investigated the MPTP in this crustacean to reveal whether pore opening occurs. Minimum molecular constituents of the regulated MPTP in mammals are believed to be the voltage-dependent anion channel, the adenine nucleotide translocators, and cyclophilin D. Western blot analysis revealed that mitochondria from A. franciscana possess all three required components. When measured with a calcium-sensitive fluorescent probe, rat liver mitochondria are shown to release matrix calcium after addition of >/=100 microM extramitochondrial calcium (MPTP opening), whereas brine shrimp mitochondria continue to take up extramitochondrial calcium and do not release internal stores even up to 1.0 mM exogenously added calcium (no MPTP opening). Furthermore, no swelling of A. franciscana mitochondria in response to added calcium was observed, and no release of cytochrome c could be detected. HgCl(2)-dependent swelling and cytochrome c release were readily confirmed, which is consistent with the presence of an "unregulated pore." Although the absence of a regulated MPTP in A. franciscana mitochondria could contribute to the extreme hypoxia tolerance in this species, we speculate that absence of the regulated MPTP may be a general feature of invertebrates.

  2. Single-Cell Phenotypic Characterization of Human Pituitary GHomas and Non-Functioning Adenomas Based on Hormone Content and Calcium Responses to Hypothalamic Releasing Hormones

    PubMed Central

    Senovilla, Laura; Núñez, Lucía; de Campos, José María; de Luis, Daniel A.; Romero, Enrique; García-Sancho, Javier; Villalobos, Carlos

    2015-01-01

    Human pituitary tumors are generally benign adenomas causing considerable morbidity due to excess hormone secretion, hypopituitarism, and other tumor mass effects. Pituitary tumors are highly heterogeneous and difficult to type, often containing mixed cell phenotypes. We have used calcium imaging followed by multiple immunocytochemistry to type growth hormone secreting (GHomas) and non-functioning pituitary adenomas (NFPAs). Individual cells were typed for stored hormones and calcium responses to classic hypothalamic releasing hormones (HRHs). We found that GHomas contained growth hormone cells either lacking responses to HRHs or responding to all four HRHs. However, most GHoma cells were polyhormonal cells responsive to both thyrotropin-releasing hormone (TRH) and GH-releasing hormone. NFPAs were also highly heterogeneous. Some of them contained ACTH cells lacking responses to HRHs or polyhormonal gonadotropes responsive to LHRH and TRH. However, most NFPAs were made of cells storing no hormone and responded only to TRH. These results may provide new insights on the ontogeny of GHomas and NFPAs. PMID:26106585

  3. Two-pore channels: Regulation by NAADP and customized roles in triggering calcium signals

    PubMed Central

    Patel, Sandip; Marchant, Jonathan; Brailoiu, Eugen

    2010-01-01

    NAADP is a potent regulator of cytosolic calcium levels. Much evidence suggests that NAADP activates a novel channel located on an acidic (lysosomal-like) calcium store, the mobilisation of which results in further calcium release from the endoplasmic reticulum. Here, we discuss the recent identification of a family of poorly characterized ion channels (the two-pore channels) as endo-lysosomal NAADP receptors. The generation of calcium signals by these channels is likened to those evoked by depolarisation during excitation-contraction coupling in muscle. We discuss the idea that two pore-channels can mediate a trigger release of calcium which is then amplified by calcium-induced calcium release from the endoplasmic reticulum. This is similar to the activation of voltage-sensitive calcium channels and subsequent mobilisation of sarcoplasmic reticulum calcium stores in cardiac tissue. We suggest that two-pore channels may physically interact with ryanodine receptors to account for more direct release of calcium from the endoplasmic reticulum in analogy with the conformational coupling of voltage-sensitive calcium channels and ryanodine receptors in skeletal muscle. Interaction of two-pore channels with other calcium release channels likely occurs between stores “trans-chatter” and possibly within the same store “cis-chatter”. We also speculate that trafficking of two-pore channels through the endolysosomal system facilitates interactions with calcium entry channels. Strategic placing of two-pore channels thus provides a versatile means of generating spatiotemporally complex cellular calcium signals. PMID:20621760

  4. A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons.

    PubMed

    Richhariya, Shlesha; Jayakumar, Siddharth; Abruzzi, Katharine; Rosbash, Michael; Hasan, Gaiti

    2017-02-14

    Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation.

  5. Release of superoxide and change in morphology by neutrophils in response to phorbol esters: antagonism by inhibitors of calcium-binding proteins

    PubMed Central

    1985-01-01

    The ability of phorbol derivatives to function as stimulating agents for superoxide (O2-) release by guinea pig neutrophils has been evaluated and compared to the known ability of each compound to activate protein kinase C. Those that activate the kinase also stimulate O2- release, while those that are inactive with respect to the kinase have no effect on O2- release. The same correlation was observed with respect to the ability of phorbol esters to induce morphological changes in neutrophils, i.e., vesiculation and reduction in granule content. Certain phenothiazines and naphthalene sulfonamides that are known antagonists of calcium-binding proteins blocked both phorbol ester-induced O2- release and morphological changes in these cells. PMID:2993312

  6. The effects of monobromobimane on calcium and phenylarsineoxide-induced mitochondrial swelling and cytochrome C release in isolated brain mitochondria.

    PubMed

    Abe, Tsutomu; Takagi, Norio; Nakano, Midori; Tanonaka, Kouichi; Takeo, Satoshi

    2004-04-01

    A possible involvement of inhibitory effects of monobromobimane (MBM), a thiol reagent, on the swelling and the release of cytochrome c in the isolated brain mitochondria was examined. MBM dose-dependently inhibited the calcium and phenylarsineoxide-induced mitochondrial swelling and cytochrome c release. Significant relationships between mitochondrial swelling and cytochrome c release were detected. Furthermore, effects of in vivo treatment with MBM on neuronal cell damage after transient (15 min) global ischemia in rats were examined. Infusion of MBM (1 or 3 microg/animal) to cerebral ventricles attenuated an increased number of TUNEL-positive cells and neuronal cell death in the hippocampal CA1 region at 72 h of reperfusion. These results suggest that MBM may have an ability to inhibit mitochondria-associated apoptotic pathways through attenuation of the mitochondrial swelling and the release of cytochrome c.

  7. 3D Reticular Li1.2Ni0.2Mn0.6O2 Cathode Material for Lithium-Ion Batteries.

    PubMed

    Li, Li; Wang, Lecai; Zhang, Xiaoxiao; Xue, Qing; Wei, Lei; Wu, Feng; Chen, Renjie

    2017-01-18

    In this study, a hard-templating route was developed to synthesize a 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 cathode material using ordered mesoporous silica as the hard template. The synthesized 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 microparticles consisted of two interlaced 3D nanonetworks and a mesopore channel system. When used as the cathode material in a lithium-ion battery, the as-synthesized 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 exhibited remarkably enhanced electrochemical performance, namely, superior rate capability and better cycling stability than those of its bulk counterpart. Specifically, a high discharge capacity of 195.6 mA h g -1 at 1 C with 95.6% capacity retention after 50 cycles was achieved with the 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 . A high discharge capacity of 135.7 mA h g -1 even at a high current of 1000 mA g -1 was also obtained. This excellent electrochemical performance of the 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 is attributed to its designed structure, which provided nanoscale lithium pathways, large specific surface area, good thermal and mechanical stability, and easy access to the material center.

  8. Performance characteristics of multicolor versus blue light and infrared imaging in the identification of reticular pseudodrusen.

    PubMed

    Badal, Josep; Biarnés, Marc; Monés, Jordi

    2018-02-01

    To describe the appearance of reticular pseudodrusen on multicolor imaging and to evaluate its diagnostic accuracy as compared with the two modalities that may be considered the current reference standard, blue light and infrared imaging. Retrospective study in which all multicolor images (constructed from images acquired at 486 nm-blue, 518 nm-green and 815 nm-infrared) of 45 consecutive patients visited in a single center was reviewed. Inclusion criteria involved the presence of >1 reticular pseudodrusen on a 30° × 30° image centered on the fovea as seen with the blue light channel derived from the multicolor imaging. Three experienced observers, masked to each other's results with other imaging modalities, independently classified the number of reticular pseudodrusen with each modality. The median interobserver agreement (kappa) was 0.58 using blue light; 0.65 using infrared; and 0.64 using multicolor images. Multicolor and infrared modalities identified a higher number of reticular pseudodrusen than blue light modality in all fields for all observers (p < 0.0001). Results were not different when multicolor and infrared were compared (p ≥ 0.27). These results suggest that multicolor and infrared are more sensitive and reproducible than blue light in the identification of RPD. Multicolor did not appear to add a significant value to infrared in the evaluation of RDP. Clinicians using infrared do not need to incorporate multicolor for the identification and quantification of RPD.

  9. Retention and release of oil-in-water emulsions from filled hydrogel beads composed of calcium alginate: impact of emulsifier type and pH.

    PubMed

    Zeeb, Benjamin; Saberi, Amir Hossein; Weiss, Jochen; McClements, David Julian

    2015-03-21

    Delivery systems based on filled hydrogel particles (microgels) can be fabricated from natural food-grade lipids and biopolymers. The potential for controlling release characteristics by modulating the electrostatic interactions between emulsifier-coated lipid droplets and the biopolymer matrix within hydrogel particles was investigated. A multistage procedure was used to fabricate calcium alginate beads filled with lipid droplets stabilized by non-ionic, cationic, anionic, or zwitterionic emulsifiers. Oil-in-water emulsions stabilized by Tween 60, DTAB, SDS, or whey protein were prepared by microfluidization, mixed with various alginate solutions, and then microgels were formed by simple extrusion into calcium solutions. The microgels were placed into a series of buffer solutions with different pH values (2 to 11). Lipid droplets remained encapsulated under acidic and neutral conditions, but were released under highly basic conditions (pH 11) due to hydrogel swelling when the alginate concentration was sufficiently high. Lipid droplet release increased with decreasing alginate concentration, which could be attributed to an increase in the pore size of the hydrogel matrix. These results have important implications for the design of delivery systems to entrap and control the release of lipophilic bioactive components within filled hydrogel particles.

  10. Direct reticular projections of trigeminal sensory fibers immunoreactive to CGRP: potential monosynaptic somatoautonomic projections

    PubMed Central

    Panneton, W. Michael; Gan, Qi

    2014-01-01

    Few trigeminal sensory fibers project centrally beyond the trigeminal sensory complex, with only projections of fibers carried in its sensory anterior ethmoidal (AEN) and intraoral nerves described. Fibers of the AEN project into the brainstem reticular formation where immunoreactivity against substance P and CGRP are found. We investigated whether the source of these peptides could be from trigeminal ganglion neurons by performing unilateral rhizotomies of the trigeminal root and looking for absence of label. After an 8–14 days survival, substance P immunoreactivity in the trigeminal sensory complex was diminished, but we could not conclude that the sole source of this peptide in the lateral parabrachial area and lateral reticular formation arises from primary afferent fibers. Immunoreactivity to CGRP after rhizotomy however was greatly diminished in the trigeminal sensory complex, confirming the observations of others. Moreover, CGRP immunoreactivity was nearly eliminated in fibers in the lateral parabrachial area, the caudal ventrolateral medulla, both the peri-ambiguus and ventral parts of the rostral ventrolateral medulla, in the external formation of the nucleus ambiguus, and diminished in the caudal pressor area. The nearly complete elimination of CGRP in the lateral reticular formation after rhizotomy suggests this peptide is carried in primary afferent fibers. Moreover, the arborization of CGRP immunoreactive fibers in these areas mimics that of direct projections from the AEN. Since electrical stimulation of the AEN induces cardiorespiratory adjustments including an apnea, peripheral vasoconstriction, and bradycardia similar to those seen in the mammalian diving response, we suggest these perturbations of autonomic behavior are enhanced by direct somatic primary afferent projections to these reticular neurons. We believe this to be first description of potential direct somatoautonomic projections to brainstem neurons regulating autonomic activity. PMID

  11. Direct reticular projections of trigeminal sensory fibers immunoreactive to CGRP: potential monosynaptic somatoautonomic projections.

    PubMed

    Panneton, W Michael; Gan, Qi

    2014-01-01

    Few trigeminal sensory fibers project centrally beyond the trigeminal sensory complex, with only projections of fibers carried in its sensory anterior ethmoidal (AEN) and intraoral nerves described. Fibers of the AEN project into the brainstem reticular formation where immunoreactivity against substance P and CGRP are found. We investigated whether the source of these peptides could be from trigeminal ganglion neurons by performing unilateral rhizotomies of the trigeminal root and looking for absence of label. After an 8-14 days survival, substance P immunoreactivity in the trigeminal sensory complex was diminished, but we could not conclude that the sole source of this peptide in the lateral parabrachial area and lateral reticular formation arises from primary afferent fibers. Immunoreactivity to CGRP after rhizotomy however was greatly diminished in the trigeminal sensory complex, confirming the observations of others. Moreover, CGRP immunoreactivity was nearly eliminated in fibers in the lateral parabrachial area, the caudal ventrolateral medulla, both the peri-ambiguus and ventral parts of the rostral ventrolateral medulla, in the external formation of the nucleus ambiguus, and diminished in the caudal pressor area. The nearly complete elimination of CGRP in the lateral reticular formation after rhizotomy suggests this peptide is carried in primary afferent fibers. Moreover, the arborization of CGRP immunoreactive fibers in these areas mimics that of direct projections from the AEN. Since electrical stimulation of the AEN induces cardiorespiratory adjustments including an apnea, peripheral vasoconstriction, and bradycardia similar to those seen in the mammalian diving response, we suggest these perturbations of autonomic behavior are enhanced by direct somatic primary afferent projections to these reticular neurons. We believe this to be first description of potential direct somatoautonomic projections to brainstem neurons regulating autonomic activity.

  12. Afferent and efferent connections of the mesencephalic reticular formation in goldfish.

    PubMed

    Luque, M A; Pérez-Pérez, M P; Herrero, L; Torres, B

    2008-03-18

    The physiology of the mesencephalic reticular formation (MRF) in goldfish suggests its contribution to eye and body movements, but the afferent and efferent connections underlying such movements have not been determined. Therefore, we injected the bidirectional tracer biotinylated dextran amine into functionally identified MRF sites. We found retrogradely labelled neurons and anterogradely labelled boutons within nuclei of the following brain regions: (1) the telencephalon: a weak and reciprocal connectivity was confined to the central zone of area dorsalis and ventral nucleus of area ventralis; (2) the diencephalon: reciprocal connections were abundant in the ventral and dorsal thalamic nuclei; the central pretectal nucleus was also reciprocally wired with the MRF, but only boutons were present in the superficial pretectal nucleus; the preoptic and suprachiasmatic nuclei showed abundant neurons and boutons; the MRF was reciprocally connected with the preglomerular complex and the anterior tuberal nucleus; (3) the mesencephalon: neurons and boutons were abundant within deep tectal layers; reciprocal connections were also present within the torus semicircularis and the contralateral MRF; neurons were abundant within the nucleus isthmi; and (4) the rhombencephalon: the superior and middle parts of the reticular formation received strong projections from the MRF, while the projection to the inferior area was weaker; sparse neurons were present throughout the reticular formation; a reciprocal connectivity was observed with the sensory trigeminal nucleus; the medial and magnocellular nuclei of the octaval column projected to the MRF. These results support the participation of the MRF in the orienting response. The MRF could also be involved in other motor tasks triggered by visual, auditory, vestibular, or somatosensory signals.

  13. Treatment of reticular and telangiectatic leg veins: double-blind, prospective comparative trial of polidocanol and hypertonic saline.

    PubMed

    Peterson, Jennifer D; Goldman, Mitchel P; Weiss, Robert A; Duffy, David M; Fabi, Sabrina G; Weiss, Margaret A; Guiha, Isabella

    2012-08-01

    Sixty-three subjects' legs were randomized to receive treatment with polidocanol (POL) or hypertonic saline (HS) for telangiectasias and reticular leg veins. To compare the safety and efficacy of two sclerosing agents in three dermatologic surgery practices. After exclusion of saphenofemoral junction incompetence, each subject's veins were categorized (telangiectasias <1 mm and reticular veins 1-3 mm) and randomized. Telangiectasias were treated with POL 0.5% or 11.7% HS and reticular veins with POL 1% or 23.4% HS. An independent, blinded physician determined efficacy and adverse events. Subject satisfaction questionnaires were administered and global clinical improvement assessments performed. All patients completed four visits at 0, 1, 4, and 12 weeks. Patients reported significantly greater pain during treatment with HS (2.42) than POL (1.03) (p < .001). There were no significant differences in physician-assessed improvement of reticular leg veins or telangiectasias; subject- or physician-assessed overall improvement; or physician-assessed phlebitis, pigmentation, edema, or matting in either of the three practices or the entire cohort. Two subjects developed ulcerations with HS. No ulcerations or allergic reactions developed after POL injections. Both agents provided effective treatment, but HS caused 2.35 times as much pain during injections and resulted in two episodes of tissue necrosis. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  14. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken.

    PubMed

    Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul

    2007-09-15

    Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels ( approximately 100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current-voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 +/- 0.18 s (mean +/- s.e.m., n = 12) at 20-22 degrees C, while recovery occurred with a half-time of approximately 10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (-50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in

  15. Calcium phosphate particles stimulate interleukin-1β release from human vascular smooth muscle cells: A role for spleen tyrosine kinase and exosome release.

    PubMed

    Dautova, Yana; Kapustin, Alexander N; Pappert, Kevin; Epple, Matthias; Okkenhaug, Hanneke; Cook, Simon J; Shanahan, Catherine M; Bootman, Martin D; Proudfoot, Diane

    2018-02-01

    Calcium phosphate (CaP) particle deposits are found in several inflammatory diseases including atherosclerosis and osteoarthritis. CaP, and other forms of crystals and particles, can promote inflammasome formation in macrophages leading to caspase-1 activation and secretion of mature interleukin-1β (IL-1β). Given the close association of small CaP particles with vascular smooth muscle cells (VSMCs) in atherosclerotic fibrous caps, we aimed to determine if CaP particles affected pro-inflammatory signalling in human VSMCs. Using ELISA to measure IL-1β release from VSMCs, we demonstrated that CaP particles stimulated IL-1β release from proliferating and senescent human VSMCs, but with substantially greater IL-1β release from senescent cells; this required caspase-1 activity but not LPS-priming of cells. Potential inflammasome agonists including ATP, nigericin and monosodium urate crystals did not stimulate IL-1β release from VSMCs. Western blot analysis demonstrated that CaP particles induced rapid activation of spleen tyrosine kinase (SYK) (increased phospho-Y525/526). The SYK inhibitor R406 reduced IL-1β release and caspase-1 activation in CaP particle-treated VSMCs, indicating that SYK activation occurs upstream of and is required for caspase-1 activation. In addition, IL-1β and caspase-1 colocalised in intracellular endosome-like vesicles and we detected IL-1β in exosomes isolated from VSMC media. Furthermore, CaP particle treatment stimulated exosome secretion by VSMCs in a SYK-dependent manner, while the exosome-release inhibitor spiroepoxide reduced IL-1β release. CaP particles stimulate SYK and caspase-1 activation in VSMCs, leading to the release of IL-1β, at least in part via exosomes. These novel findings in human VSMCs highlight the pro-inflammatory and pro-calcific potential of microcalcification. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Floating dosage forms to prolong gastro-retention--the characterisation of calcium alginate beads.

    PubMed

    Stops, Frances; Fell, John T; Collett, John H; Martini, Luigi G

    2008-02-28

    Floating calcium alginate beads, designed to improve drug bioavailability from oral preparations compared with that from many commercially available and modified release products, have been investigated as a possible gastro-retentive dosage form. A model drug, riboflavin, was also incorporated into the formula. The aims of the current work were (a) to obtain information regarding the structure, floating ability and changes that occurred when the dosage form was placed in aqueous media, (b) to investigate riboflavin release from the calcium alginate beads in physiologically relevant media prior to in vivo investigations. Physical properties of the calcium alginate beads were investigated. Using SEM and ESEM, externally the calcium alginate beads were spherical in shape, and internally, air filled cavities were present thereby enabling floatation of the beads. The calcium alginate beads remained buoyant for times in excess of 13h, and the density of the calcium alginate beads was <1.000gcm(-3). Riboflavin release from the calcium alginate beads showed that riboflavin release was slow in acidic media, whilst in more alkali media, riboflavin release was more rapid. The characterisation studies showed that the calcium alginate beads could be considered as a potential gastro-retentive dosage form.

  17. Enhanced drug encapsulation and extended release profiles of calcium-alginate nanoparticles by using tannic acid as a bridging cross-linking agent.

    PubMed

    Abulateefeh, Samer R; Taha, Mutasem O

    2015-01-01

    Calcium alginate nanoparticles (NPs) suffer from sub-optimal stability in bio-relevant media leading to low drug encapsulation efficiency and uncontrolled release profiles. To sort out these drawbacks, a novel approach is proposed herein based on introducing tannic acid into these NPs to act as a bridging cross-linking aid agent. Calcium-alginate NPs were prepared by the ionotropic gelation method and loaded with diltiazem hydrochloride as a model drug. These NPs were characterized in terms of particle size, zeta potential, and morphology, and results were explained in accordance with Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The incorporation of tannic acid led to more than four folds increase in drug encapsulation efficiency (i.e. from 15.3% to 69.5%) and reduced burst drug release from 44% to around 10% within the first 30 min. These findings suggest the possibility of improving the properties of Ca-alginate NPs by incorporating cross-linking aid agents under mild conditions.

  18. Dental glass-reinforced composite for caries inhibition: Calcium phosphate ion release and mechanical properties

    PubMed Central

    Xu, Hockin H. K.; Moreau, Jennifer L.

    2010-01-01

    The two main challenges facing dental composite restorations are secondary caries and bulk fracture. Previous studies developed whisker-reinforced Ca-PO4 composites that were relatively opaque. The objective of this study was to develop an esthetic glass particle-reinforced, photo-cured calcium phosphate composite. Tetracalcium phosphate (TTCP) particles were incorporated into a resin for Ca and PO4 release, while glass particles provided reinforcement. Ion release and mechanical properties were measured after immersion in solutions with pH of 7, 5.5, and 4. For the composite containing 40% mass fraction of TTCP, incorporating glass fillers increased the strength (p < 0.05). Flexural strength (mean ± sd; n = 6) at 30% glass was (99 ± 18) MPa, higher than (54 ± 20) MPa at 0% glass (p < 0.05). Elastic modulus was 11 GPa at 30% glass, compared to 2 GPa without glass. At 28 d, the released Ca ion concentration was (4.61 ± 0.18) mmol/L at pH of 4, much higher than (1.14 ± 0.07) at pH of 5.5, and (0.27 ± 0.01) at pH of 7 (p < 0.05). PO4 release was also dramatically increased at cariogenic, acidic pH. The TTCP-glass composite had strength 2-3 fold that of a resin-modified glass ionomer control. In conclusion, the photo-cured TTCP-glass composite was “smart” and substantially increased the Ca and PO4 release when the pH was reduced from neutral to a cariogenic pH of 4, when these ions are most needed to inhibit tooth caries. Its mechanical properties were significantly higher than previous Ca, PO4 and fluoride releasing restoratives. Hence, the photo-cured TTCP-glass composite may have potential to provide the necessary combination of load-bearing and caries-inhibiting capabilities. PMID:19810118

  19. The role of PIP2 and the IP3/DAG pathway in intracellular calcium release and cell survival during nanosecond electric pulse exposures

    NASA Astrophysics Data System (ADS)

    Steelman, Zachary A.; Tolstykh, Gleb P.; Estlack, Larry E.; Roth, Caleb C.; Ibey, Bennett L.

    2015-03-01

    Phosphatidylinositol4,5-biphosphate (PIP2) is a membrane phospholipid of particular importance in cell-signaling pathways. Hydrolysis of PIP2 releases inositol-1,4,5-triphosphate (IP3) from the membrane, activating IP3 receptors on the smooth endoplasmic reticulum (ER) and facilitating a release of intracellular calcium stores and activation of protein kinase C (PKC). Recent studies suggest that nanosecond pulsed electric fields (nsPEF) cause depletion of PIP2 in the cellular membrane, activating the IP3 signaling pathway. However, the exact mechanism(s) causing this observed depletion of PIP2 are unknown. Complicating the matter, nsPEF create nanopores in the plasma membrane, allowing calcium to enter the cell and thus causing an increase in intracellular calcium. While elevated intracellular calcium can cause activation of phospholipase C (PLC) (a known catalyst of PIP2 hydrolysis), PIP2 depletion has been shown to occur in the absence of both extracellular and intracellular calcium. These observations have led to the hypothesis that the high electric field itself may be playing a direct role in the hydrolysis of PIP2 from the plasma membrane. To support this hypothesis, we used edelfosine to block PLC and prevent activation of the IP3/DAG pathway in Chinese Hamster Ovarian (CHO) cells prior to applying nsPEF. Fluorescence microscopy was used to monitor intracellular calcium bursts during nsPEF, while MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) survivability assays were utilized to determine whether edelfosine improved cell survival during nsPEF exposure. This work is critical to refine the role of PIP2 in the cellular response to nsPEF, and also to determine the fundamental biological effects of high electric field exposures.

  20. Phase Composition Control of Calcium Phosphate Nanoparticles for Tunable Drug Delivery Kinetics and Treatment of Osteomyelitis. Part 1: Preparation and Drug Release

    PubMed Central

    Uskoković, Vuk; Desai, Tejal A.

    2012-01-01

    Developed in this study is a multifunctional material for simultaneous osseoinduction and drug delivery, potentially applicable in the treatment of osteomyelitis. It is composed of agglomerates of nanoparticles of calcium phosphate (CAP) with different monophasic contents. The drug loading capacity and the release kinetics were investigated on two model drug compounds with different chemical structures, sizes and adsorption propensities: bovine serum albumin and fluorescein. Loading of CAP powders with small molecule drugs was achieved by physisorption and desiccation-induced agglomeration of nanoparticulate subunits into microscopic blocks. The material dissolution rate and the drug release rate depended on the nature of the CAP phase, decreasing from monocalcium phosphate to monetite to amorphous CAP and calcium pyrophosphate to hydroxyapatite. The sustained release of the two model drugs was shown to be directly relatable to the degradation rate of CAP carriers. It was demonstrated that the degradation rate of the carrier and the drug release kinetics could be made tunable within the time scale of 1–2 h for the most soluble CAP phase, monocalcium phosphate, to 1–2 years for the least soluble one, hydroxyapatite. From the standpoint of antibiotic therapy for osteomyelitis, typically lasting for six weeks, the most prospective CAP powder was amorphous CAP with its release time scale for a small organic molecule, the same category to which antibiotics belong, of 1 – 2 months under the conditions applied in our experiments. By combining these different CAP phases in various proportions, drug release profiles could be tailored to the therapeutic occasion. PMID:23115118

  1. Lattice model for calcium dynamics

    NASA Astrophysics Data System (ADS)

    Guisoni, Nara; de Oliveira, Mario José

    2005-06-01

    We present a simplified lattice model to study calcium dynamics in the endoplasmic reticulum membrane. Calcium channels and calcium ions are placed in two interpenetrating square lattices which are connected in two ways: (i) via calcium release and (ii) because transitions between channel states are calcium dependent. The opening or closing of a channel is a stochastic process controlled by two functions which depend on the calcium density on the channel neighborhood. The model is studied through mean field calculations and simulations. We show that the critical behavior of the model changes drastically depending on the opening/closing functions. For certain choices of these functions, all channels are closed at very low and high calcium densities and the model presents one absorbing state.

  2. Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells.

    PubMed

    Dejeans, Nicolas; Tajeddine, Nicolas; Beck, Raphaël; Verrax, Julien; Taper, Henryk; Gailly, Philippe; Calderon, Pedro Buc

    2010-05-01

    Increase in cytosolic calcium concentration ([Ca2+](c)), release of endoplasmic reticulum (ER) calcium ([Ca2+](er)) and ER stress have been proposed to be involved in oxidative toxicity. Nevertheless, their relative involvements in the processes leading to cell death are not well defined. In this study, we investigated whether oxidative stress generated during ascorbate-driven menadione redox cycling (Asc/Men) could trigger these three events, and, if so, whether they contributed to Asc/Men cytoxicity in MCF-7 cells. Using microspectrofluorimetry, we demonstrated that Asc/Men-generated oxidative stress was associated with a slow and moderate increase in [Ca2+](c), largely preceding permeation of propidium iodide, and thus cell death. Asc/Men treatment was shown to partially deplete ER calcium stores after 90 min (decrease by 45% compared to control). This event was associated with ER stress activation, as shown by analysis of eIF2 phosphorylation and expression of the molecular chaperone GRP94. Thapsigargin (TG) was then used to study the effect of complete [Ca2+](er) emptying during the oxidative stress generated by Asc/Men. Surprisingly, the combination of TG and Asc/Men increased ER stress to a level considerably higher than that observed for either treatment alone, suggesting that [Ca2+](er) release alone is not sufficient to explain ER stress activation during oxidative stress. Finally, TG-mediated [Ca2+](er) release largely potentiated ER stress, DNA fragmentation and cell death caused by Asc/Men, supporting a role of ER stress in the process of Asc/Men cytotoxicity. Taken together, our results highlight the involvement of ER stress and [Ca2+](er) decrease in the process of oxidative stress-induced cell death in MCF-7 cells. 2009 Elsevier Inc. All rights reserved.

  3. Calcitonin control of calcium metabolism during weightlessness

    NASA Technical Reports Server (NTRS)

    Soliman, Karam F. A.

    1993-01-01

    The main objective of this proposal is to elucidate calcitonin role in calcium homeostasis during weightlessness. In this investigation our objectives are to study: the effect of weightlessness on thyroid and serum calcitonin, the effect of weightlessness on the circadian variation of calcitonin in serum and the thyroid gland, the role of light as zeitgeber for calcitonin circadian rhythm, the circadian pattern of thyroid sensitivity to release calcitonin in response to calcium load, and the role of serotonin and norepinephrine in the control of calcitonin release. The main objective of this research/proposal is to establish the role of calcitonin in calcium metabolism during weightlessness condition. Understanding the mechanism of these abnormalities will help in developing therapeutic means to counter calcium imbalance in spaceflights.

  4. The ascending reticular activating system from pontine reticular formation to the hypothalamus in the human brain: a diffusion tensor imaging study.

    PubMed

    Jang, Sung Ho; Kwon, Hyeok Gyu

    2015-03-17

    The ascending reticular activating system (ARAS) is responsible for regulation of consciousness. Precise evaluation of the ARAS is important for diagnosis and management of patients with impaired consciousness. In the current study, we attempted to reconstruct the portion of the ARAS from the pontine reticular formation (RF) to the hypothalamus in normal subjects, using diffusion tensor imaging (DTI). A total of 31 healthy subjects were recruited for this study. DTI scanning was performed using 1.5-T, and the ARAS from the pontine RF to the hypothalamus was reconstructed. Values of fractional anisotropy, mean diffusivity, and tract volume of the ARAS from the pontine RF to the hypothalamus were measured. In all subjects, the ARAS from the pontine RF to the hypothalamus originated from the RF at the level of the mid-pons, where the trigeminal nerve could be seen, ascended through the periaqueductal gray matter of the midbrain anterolaterally to the anterior commissure level, and then terminated into the hypothalamus. No significant differences in DTI parameters were observed between the left and right hemispheres and between males and females (p<0.05). We identified the ARAS between the pontine RF and the hypothalamus in normal subjects using DTI. We believe that the reconstruction methodology and the results of this study would be useful to clinicians involved in the care of patients with impaired consciousness and researchers in studies of the ARAS. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Drug Release as a function of bioactivity, incubation regime, liquid, and initial load: Release of bortezomib from calcium phosphate-containing silica/collagen xerogels.

    PubMed

    Kruppke, Benjamin; Hose, Dirk; Schnettler, Reinhard; Seckinger, Anja; Rößler, Sina; Hanke, Thomas; Heinemann, Sascha

    2018-04-01

    The ability of silica-/collagen-based composite xerogels to act as drug delivery systems was evaluated by taking into account the initial drug concentration, bioactivity of the xerogels, liquid, and incubation regime. The proteasome inhibitor bortezomib was chosen as a model drug, used for the systemic treatment of multiple myeloma. Incubation during 14 days in phosphate-buffered saline (PBS) or simulated body fluid (SBF) showed a weak initial burst and was identified to be of first order with subsequent release being independent from the initial load of 0.1 or 0.2 mg bortezomib per 60 mg monolithic sample. Faster drug release occurred during incubation in SBF compared to PBS, and during static incubation without changing the liquid, compared to dynamic incubation with daily liquid changes. Drug-loaded xerogels with hydroxyapatite as a third component exhibited enhanced bioactivity retarding drug release, explained by formation of a surface calcium phosphate layer. The fastest release of 50% of the total drug load was observed for biphasic xerogels after 7 days during dynamic incubation in SBF. As a result, the presented concept is suitable for the intended combination of the advantageous bone substitution properties of xerogels and local application of drugs exemplified by bortezomib. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1165-1173, 2018. © 2017 Wiley Periodicals, Inc.

  6. Feed-forward and feedback projections of midbrain reticular formation neurons in the cat

    PubMed Central

    Perkins, Eddie; May, Paul J.; Warren, Susan

    2014-01-01

    Gaze changes involving the eyes and head are orchestrated by brainstem gaze centers found within the superior colliculus (SC), paramedian pontine reticular formation (PPRF), and medullary reticular formation (MdRF). The mesencephalic reticular formation (MRF) also plays a role in gaze. It receives a major input from the ipsilateral SC and contains cells that fire in relation to gaze changes. Moreover, it provides a feedback projection to the SC and feed-forward projections to the PPRF and MdRF. We sought to determine whether these MRF feedback and feed-forward projections originate from the same or different neuronal populations by utilizing paired fluorescent retrograde tracers in cats. Specifically, we tested: 1. whether MRF neurons that control eye movements form a single population by injecting the SC and PPRF with different tracers, and 2. whether MRF neurons that control head movements form a single population by injecting the SC and MdRF with different tracers. In neither case were double labeled neurons observed, indicating that feedback and feed-forward projections originate from separate MRF populations. In both cases, the labeled reticulotectal and reticuloreticular neurons were distributed bilaterally in the MRF. However, neurons projecting to the MdRF were generally constrained to the medial half of the MRF, while those projecting to the PPRF, like MRF reticulotectal neurons, were spread throughout the mediolateral axis. Thus, the medial MRF may be specialized for control of head movements, with control of eye movements being more widespread in this structure. PMID:24454280

  7. Feed-forward and feedback projections of midbrain reticular formation neurons in the cat.

    PubMed

    Perkins, Eddie; May, Paul J; Warren, Susan

    2014-01-10

    Gaze changes involving the eyes and head are orchestrated by brainstem gaze centers found within the superior colliculus (SC), paramedian pontine reticular formation (PPRF), and medullary reticular formation (MdRF). The mesencephalic reticular formation (MRF) also plays a role in gaze. It receives a major input from the ipsilateral SC and contains cells that fire in relation to gaze changes. Moreover, it provides a feedback projection to the SC and feed-forward projections to the PPRF and MdRF. We sought to determine whether these MRF feedback and feed-forward projections originate from the same or different neuronal populations by utilizing paired fluorescent retrograde tracers in cats. Specifically, we tested: 1. whether MRF neurons that control eye movements form a single population by injecting the SC and PPRF with different tracers, and 2. whether MRF neurons that control head movements form a single population by injecting the SC and MdRF with different tracers. In neither case were double labeled neurons observed, indicating that feedback and feed-forward projections originate from separate MRF populations. In both cases, the labeled reticulotectal and reticuloreticular neurons were distributed bilaterally in the MRF. However, neurons projecting to the MdRF were generally constrained to the medial half of the MRF, while those projecting to the PPRF, like MRF reticulotectal neurons, were spread throughout the mediolateral axis. Thus, the medial MRF may be specialized for control of head movements, with control of eye movements being more widespread in this structure.

  8. Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves.

    PubMed

    Haas, Brigitte; Schipke, Carola G; Peters, Oliver; Söhl, Goran; Willecke, Klaus; Kettenmann, Helmut

    2006-02-01

    In the corpus callosum, astrocytic calcium waves propagate via a mechanism involving ATP-release but not gap junctional coupling. In the present study, we report for the neocortex that calcium wave propagation depends on functional astrocytic gap junctions but is still accompanied by ATP-release. In acute slices obtained from the neocortex of mice deficient for astrocytic expression of connexin43, the calcium wave did not propagate. In contrast, in the corpus callosum and hippocampus of these mice, the wave propagated as in control animals. In addition to calcium wave propagation in astrocytes, ATP-release was recorded as a calcium signal from 'sniffer cells', a cell line expressing high-affinity purinergic receptors placed on the surface of the slice. The astrocyte calcium wave in the neocortex was accompanied by calcium signals in the 'sniffer cell' population. In the connexin43-deficient mice we recorded calcium signals from sniffer cells also in the absence of an astrocytic calcium wave. Our findings indicate that astrocytes propagate calcium signals by two separate mechanisms depending on the brain region and that ATP release can propagate within the neocortex independent from calcium waves.

  9. [A histological study and three-dimensional reconstruction of F4/80-positive reticular cells and macrophages at the onset of murine bone marrow hematopoiesis].

    PubMed

    Notsu, Eiji; Sonoda, Yuji; Sasaki, Kazunobu

    2007-06-01

    Adult bone marrow consists of two different compartments, a vascular compartment of sinusoid and a hematopoietic compartment consisting of stromal cells and hematopoietic cells. In the hematopoietic compartment, stromal cells play an important role in the formation of the microenvironment for hematopoiesis. To clarify the relationship between hematopoietic cells and stromal cells, particularly reticular cells and macrophages, we examined the femur bone marrow of ICR mouse fetuses and neonates using F4/80 immunostaining and three-dimensional reconstruction under light and electron microscopy. In the fetal femurs, the marrow cavity formed early from 15 days of gestation, and it showed a marked increase in volume thereafter. On the basis of the appearance of hematopoietic cells, marrow development could be classified into two stages, a pre-hematopoietic stage from 15 days of gestation to two days of age, and a beginning stage of hematopoiesis thereafter. The pre-hematopoietic bone marrow contains not only stromal reticular cells but also macrophages, and both types of stromal cells were strongly positive to F4/80 monoclonal antibody. These F4/80-positive reticular cells had a triangular cell profile with long and slender cytoplasmic processes. Reticular cells often contained large lysosomes of not only dying neutrophils but also erythroblast nuclei. A few erythroblasts accumulated around the processes, and the number of erythroblasts around reticular cells increased with bone marrow development. On the other hand, macrophages were located either close to sinusoids or in sinusoid lumen, and a close relationship to hematopoietic cells was hardly noticeable. At the beginning stage of hematopoiesis, F4/80-positive reticular cells extended their long and slender cytoplasmic processes, and the number and length of the processes appeared markedly increased. The three-dimensional cell surface of the F4/80-positive reticular cells became very complex. Numerous erythroblasts

  10. Reticular synthesis of porous molecular 1D nanotubes and 3D networks.

    PubMed

    Slater, A G; Little, M A; Pulido, A; Chong, S Y; Holden, D; Chen, L; Morgan, C; Wu, X; Cheng, G; Clowes, R; Briggs, M E; Hasell, T; Jelfs, K E; Day, G M; Cooper, A I

    2017-01-01

    Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.

  11. Reticular synthesis of porous molecular 1D nanotubes and 3D networks

    NASA Astrophysics Data System (ADS)

    Slater, A. G.; Little, M. A.; Pulido, A.; Chong, S. Y.; Holden, D.; Chen, L.; Morgan, C.; Wu, X.; Cheng, G.; Clowes, R.; Briggs, M. E.; Hasell, T.; Jelfs, K. E.; Day, G. M.; Cooper, A. I.

    2017-01-01

    Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.

  12. Selection of intracellular calcium patterns in a model with clustered Ca2+ release channels

    NASA Astrophysics Data System (ADS)

    Shuai, J. W.; Jung, P.

    2003-03-01

    A two-dimensional model is proposed for intracellular Ca2+ waves, which incorporates both the discrete nature of Ca2+ release sites in the endoplasmic reticulum membrane and the stochastic dynamics of the clustered inositol 1,4,5-triphosphate (IP3) receptors. Depending on the Ca2+ diffusion coefficient and concentration of IP3, various spontaneous Ca2+ patterns, such as calcium puffs, local waves, abortive waves, global oscillation, and tide waves, can be observed. We further investigate the speed of the global waves as a function of the IP3 concentration and the Ca2+ diffusion coefficient and under what conditions the spatially averaged Ca2+ response can be described by a simple set of ordinary differential equations.

  13. Calcium-dependent inactivation of calcium channels in cochlear hair cells of the chicken

    PubMed Central

    Lee, Seunghwan; Briklin, Olga; Hiel, Hakim; Fuchs, Paul

    2007-01-01

    Voltage-gated calcium channels support both spontaneous and sound-evoked neurotransmitter release from ribbon synapses of cochlear hair cells. A variety of regulatory mechanisms must cooperate to ensure the appropriate level of activity in the restricted pool of synaptic calcium channels (∼100) available to each synaptic ribbon. One potential feedback mechanism, calcium-dependent inactivation (CDI) of voltage-gated, L-type calcium channels, can be modulated by calmodulin-like calcium-binding proteins. CDI of voltage-gated calcium current was studied in hair cells of the chicken's basilar papilla (analogous to the mammalian cochlea) after blocking the predominant potassium conductances. For inactivating currents produced by 2.5 s steps to the peak of the current–voltage relation (1 mm EGTA internal calcium buffer), single exponential fits yielded an average decay time constant of 1.92 ± 0.18 s (mean ±s.e.m., n = 12) at 20–22°C, while recovery occurred with a half-time of ∼10 s. Inactivation produced no change in reversal potential, arguing that the observed relaxation did not result from alternative processes such as calcium accumulation or activation of residual potassium currents. Substitution of external calcium with barium greatly reduced inactivation, while inhibition of endoplasmic calcium pumps with t-benzohydroquinone (BHQ) or thapsigargin made inactivation occur faster and to a greater extent. Raising external calcium 10-fold (from 2 to 20 mm) increased peak current 3-fold, but did not alter the extent or time course of CDI. However, increasing levels of internal calcium buffer consistently reduced the rate and extent of inactivation. With 1 mm EGTA buffering and in 2 mm external calcium, the available pool of calcium channels was half-inactivated near the resting membrane potential (−50 mV). CDI may be further regulated by calmodulin-like calcium-binding proteins (CaBPs). mRNAs for several CaBPs are expressed in chicken cochlear tissue, and

  14. Chronic diabetes alters function and expression of ryanodine receptor calcium-release channels in rat hearts.

    PubMed

    Bidasee, Keshore R; Nallani, Karuna; Henry, Bruce; Dincer, U Deniz; Besch, Henry R

    2003-07-01

    Alteration in cardiac function is one of the hallmarks of diabetes and in late stage is manifested as a decrease in contractility. While it is established that the release of calcium ions from internal sarcoplasmic reticulum via type 2 ryanodine receptor calcium-release channels (RyR2) is vital for efficient contraction, the relationship between diabetes-induced decrease in cardiac performance and alterations in expression and/or function of RyR2 is not well delineated. The present study was designed to address this question and to determine whether changes to RyR2 induced by chronic diabetes could be minimized with insulin-treatment. When paced at 3.3 Hz (200 beats per minute), hearts from 8-week streptozotocin-induced diabetic rats showed decreased responsiveness to isoproterenol stimulation; +dT/dt and -dT/dt were 56.5 +/- 11.4% and 42.1 +/- 12.1% that of control, respectively. Hearts from 8-week diabetic rats expressed 51.2% less RyR2 than controls, In addition, RyR2 from diabetic rats also showed decreased ability to bind the specific ligand [3H]ryanodine (22.4 +/- 1.8% less [3H]ryanodine per microg of RyR2 protein), suggesting dysfunction. Two-weeks of insulin treatment, initiated after 6 weeks of untreated diabetes was able to minimize loss in function and expression of RyR2. Taken collectively, these data suggest that the decrease in cardiac contractility induced by chronic diabetes results in part from decreases in expression and alteration in function of RyR2 and these changes could be attenuated with insulin treatment.

  15. A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons

    PubMed Central

    Richhariya, Shlesha; Jayakumar, Siddharth; Abruzzi, Katharine; Rosbash, Michael; Hasan, Gaiti

    2017-01-01

    Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation. PMID:28195208

  16. Intravenous or local injections of flavoxate in the rostral pontine reticular formation inhibit urinary frequency induced by activation of medial frontal lobe neurons in rats.

    PubMed

    Sugaya, Kimio; Nishijima, Saori; Kadekawa, Katsumi; Ashitomi, Katsuhiro; Ueda, Tomoyuki; Yamamoto, Hideyuki

    2014-10-01

    The rostral pontine reticular formation has a strong inhibitory effect on micturition by facilitating lumbosacral glycinergic neurons. We assessed the influence of the rostral pontine reticular formation on the micturition reflex after noradrenaline injection in the medial frontal lobe. We also examined the relation between the medial frontal lobe and the rostral pontine reticular formation. Continuous cystometry was performed in 28 female rats. After the interval between bladder contractions was shortened by noradrenaline injection in the medial frontal lobe we injected glutamate or flavoxate hydrochloride in the rostral pontine reticular formation or intravenously injected flavoxate or propiverine. The change in bladder activity was examined. Noradrenaline injection in the medial frontal lobe shortened the interval between bladder contractions. In contrast to the bladder contraction interval before and after noradrenaline injection in the medial frontal lobe, the interval was prolonged after noradrenaline injection when glutamate or flavoxate was injected in the rostral pontine reticular formation, or flavoxate was injected intravenously. Noradrenaline injection in the medial frontal lobe plus intravenous propiverine injection also prolonged the interval compared to that after noradrenaline injection alone. However, the interval after noradrenaline injection in the medial frontal lobe plus intravenous injection of propiverine was shorter than that before noradrenaline injection only. Medial frontal lobe neurons excited by noradrenaline may facilitate the micturition reflex via activation of inhibitory interneurons, which inhibit descending rostral pontine reticular formation neurons that innervate the lumbosacral glycinergic inhibitory neurons. Therefore, the mechanism of micturition reflex facilitation by the activation of medial frontal lobe neurons involves the rostral pontine reticular formation. Copyright © 2014 American Urological Association Education

  17. [An experimental study on a slow-release complex with rifampicin-polylactic-co-glycolic acid-calcium 
phosphate cement].

    PubMed

    Wu, Jianhuang; Ding, Zhou; Lei, Qing; Li, Miao; Liang, Yan; Lu, Tao

    2016-09-28

    To prepare the slow-release complex with rifampicin (RFP)-polylactic-co-glycolic acid (PLGA)-calcium phosphate cement (CPC) (RFP-PLGA-CPC complex), and to study its physical and chemical properties and drug release properties in vitro.
 The emulsification-solvent evaporation method was adopted to prepare rifampicin polylactic acid-glycolic acid (RFP-PLGA) slow-release microspheres, which were divided into 3 groups: a calcium phosphate bone cement group (CPC group), a CPC embedded with RFP group (RFP-CPC group), and a PLGA slow-release microspheres carrying RFP and the self-curing CPC group (RFP- PLGA-CPC complex group). The solidification time and porosity of materials were determined. The drug release experiments in vitro were carried out to observe the compressive strength, the change of section morphology before and after drug release. 
 The CPC group showed the shortest solidification time, while the RFP-PLGA-CPC complex group had the longest one. There was statistical difference in the porosity between the CPC group and the RFP-CPC group (P<0.05); Compared to the RFP-PLGA-CPC complex group, the porosity in the CPC group and the RFP-CPC group were significantly changed (both P<0.01). There was significant difference in the compressive strength between the RFP- PLGA-CPC complex group and the CPC group (P<0.01), while there was significant difference in the compressive strength between the RFP-CPC group and the CPC group (3 days: P<0.05; 30 and 60 days: P<0.01). The change of the compressive strength in the CPC was not significant in the whole process of degradation. The sizes of PLGA microspheres were uniform, with the particle size between 100-150 μm. The microspheres were spheres or spheroids, and their surface was smooth without the attached impurities. There was no significant change in the section gap in the CPC group after soaking for 3 to 60 days. The microstructure change in the RFP-CPC group was small, and the cross section was formed by small

  18. Medium Calcium Concentration Determines Keratin Intermediate Filament Density and Distribution in Immortalized Cultured Thymic Epithelial Cells (TECs)

    NASA Astrophysics Data System (ADS)

    Sands, Sandra S.; Meek, William D.; Hayashi, Jun; Ketchum, Robert J.

    2005-08-01

    Isolation and culture of thymic epithelial cells (TECs) using conventional primary tissue culture techniques under conditions employing supplemented low calcium medium yielded an immortalized cell line derived from the LDA rat (Lewis [Rt1l] cross DA [Rt1a]) that could be manipulated in vitro. Thymi were harvested from 4 5-day-old neonates, enzymically digested using collagenase (1 mg/ml, 37°C, 1 h) and cultured in low calcium WAJC404A medium containing cholera toxin (20 ng/ml), dexamethasone (10 nM), epidermal growth factor (10 ng/ml), insulin (10 [mu]g/ml), transferrin (10 [mu]g/ml), 2% calf serum, 2.5% Dulbecco's Modified Eagle's Medium (DMEM), and 1% antibiotic/antimycotic. TECs cultured in low calcium displayed round to spindle-shaped morphology, distinct intercellular spaces (even at confluence), and dense reticular-like keratin patterns. In high calcium (0.188 mM), TECs formed cobblestone-like confluent monolayers that were resistant to trypsinization (0.05%) and displayed keratin intermediate filaments concentrated at desmosomal junctions between contiguous cells. Changes in cultured TEC morphology were quantified by an analysis of desmosome/membrane relationships in high and low calcium media. Desmosomes were significantly increased in the high calcium medium. These studies may have value when considering the growth conditions of cultured primary cell lines like TECs.

  19. Relationship between reticular pseudodrusen and choroidal thickness in intermediate age-related macular degeneration: response.

    PubMed

    Ho, Chi Yd; Lek, Jia J; Aung, Khin Z; McGuinness, Myra B; Luu, Chi D; Guymer, Robyn H

    2018-05-07

    We thank Invernizzi, Nguyen and Gillies 1 for their interest in our paper "Relationship between reticular pseudodrusen and choroidal thickness in intermediate age-related macular degeneration". 2 . This article is protected by copyright. All rights reserved.

  20. Intracellular Calcium Release Channels Mediate Their Own Countercurrent: The Ryanodine Receptor Case Study

    PubMed Central

    Gillespie, Dirk; Fill, Michael

    2008-01-01

    Intracellular calcium release channels like ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP3Rs) mediate large Ca2+ release events from Ca2+ storage organelles lasting >5 ms. To have such long-lasting Ca2+ efflux, a countercurrent of other ions is necessary to prevent the membrane potential from becoming the Ca2+ Nernst potential in <1 ms. A recent model of ion permeation through a single, open RyR channel is used here to show that the vast majority of this countercurrent is conducted by the RyR itself. Consequently, changes in membrane potential are minimized locally and instantly, assuring maintenance of a Ca2+-driving force. This RyR autocountercurrent is possible because of the poor Ca2+ selectivity and high conductance for both monovalent and divalent cations of these channels. The model shows that, under physiological conditions, the autocountercurrent clamps the membrane potential near 0 mV within ∼150 μs. Consistent with experiments, the model shows how RyR unit Ca2+ current is defined by luminal [Ca2+], permeable ion composition and concentration, and pore selectivity and conductance. This very likely is true of the highly homologous pore of the IP3R channel. PMID:18621826

  1. Reticular Appearance on Gadolinium-enhanced T1- and Diffusion-weighted MRI, and Low Apparent Diffusion Coefficient Values in Microcystic Meningioma Cysts.

    PubMed

    Terada, Yukinori; Toda, Hiroki; Okumura, Ryosuke; Ikeda, Naokado; Yuba, Yoshiaki; Katayama, Toshiro; Iwasaki, Koichi

    2018-03-01

    Microcystic meningioma, a rare meningioma subtype, can present diagnostic difficulty. We aimed to investigate the historadiological properties of microcystic meningioma using conventional magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) analysis. We retrospectively analyzed conventional MRI and DWI results of six microcystic meningioma cases by examining their appearance and determining their apparent diffusion coefficient (ADC) values. The ADC values of the intratumoral components were normalized with ADC values of the cerebrospinal fluid in the lateral ventricle (ADC ratios). As cystic formations are frequently associated with microcystic meningiomas, their MRI characteristics were compared with the imaging data from 11 cystic meningiomas of non-microcystic subtypes. We found that cysts in microcystic meningioma tended to have a reticular appearance on DWI, as they did on gadolinium-enhanced T1-weighted imaging. Additionally, these reticular cysts had significantly lower ADC ratios than microcystic non-reticular and non-microcystic cysts. These DWI characteristics likely reflect the histological properties of microcystic meningioma. A reticular appearance on gadolinium-enhanced T1-weighted MRI and DWI, and cyst formation with relatively low ADC values can be diagnostic markers of microcystic meningiomas.

  2. The effect of CPP-ACP-propolis chewing gum on calcium and phosphate ion release on caries-active subjects’ saliva and the formation of Streptococcus mutans biofilm

    NASA Astrophysics Data System (ADS)

    Hasnamudhia, F.; Bachtiar, E. W.; Sahlan, M.; Soekanto, S. A.

    2017-08-01

    The aim of this study was to analyze the effect of CPP-APP and propolis wax if they are combined in a chewing gum formulation, observed from the calcium and phosphate ion level released by CPP-ACP and the emphasis of Streptococcus mutans mass in the biofilm by propolis wax on caries-active subjects’ saliva. Chewing gum simulation was done in vitro on 25 caries-active subjects’ saliva using five concentrations of chewing gum (0% propolis + 0% CPP-ACP, 0% propolis + CPP-ACP, 2% propolis + CPP-ACP, 4% propolis + CPP-ACP, and 6% propolis + CPP-ACP) and was then tested using an atomic absorption spectrophotometer to analyze calcium ion levels, an ultraviolet-visible spectrophotometer to analyze phosphate ion levels, and a biofilm assay using crystal violet to analyze the decline in biofilm mass. After the chewing simulation, calcium ion levels on saliva+gum eluent increased significantly compared to the saliva control, with the highest calcium level released by CPP-ACP + 2% propolis chewing gum. There was an insignificant phosphate level change between the saliva control and saliva+gum eluent. There was also a significant decline of S. mutans biofilm mass in the saliva+gum eluent, mostly by the CPP-ACP chewing gum and CPP-ACP + 6% propolis. The CPP-ACP-propolis chewing gum simulation generated the largest increase in calcium and phosphate ion level and the largest decline in S. mutans biofilm mass.

  3. Calcium Signaling in Taste Cells

    PubMed Central

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  4. Prostaglandin E2 Stimulates EP2, Adenylate Cyclase, Phospholipase C, and Intracellular Calcium Release to Mediate Cyclic Adenosine Monophosphate Production in Dental Pulp Cells.

    PubMed

    Chang, Mei-Chi; Lin, Szu-I; Lin, Li-Deh; Chan, Chiu-Po; Lee, Ming-Shu; Wang, Tong-Mei; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2016-04-01

    Prostaglandin E2 (PGE2) plays a crucial role in pulpal inflammation and repair. However, its induction of signal transduction pathways is not clear but is crucial for future control of pulpal inflammation. Primary dental pulp cells were exposed to PGE2 and 19R-OH PGE2 (EP2 agonist) or sulprostone (EP1/EP3 agonist) for 5 to 40 minutes. Cellular cyclic adenosine monophosphate (cAMP) levels were measured using the enzyme-linked immunosorbent assay. In some experiments, cells were pretreated with SQ22536 (adenylate cyclase inhibitor), H89 (protein kinase A inhibitor), dorsomorphin (adenosine monophosphate-activated protein kinase inhibitor), U73122 (phospholipase C inhibitor), thapsigargin (inhibitor of intracellular calcium release), W7 (calmodulin antagonist), verapamil (L-type calcium channel blocker), and EGTA (extracellular calcium chelator) for 20 minutes before the addition of PGE2. PGE2 and 19R-OH PGE2 (EP2 agonist) stimulated cAMP production, whereas sulprostone (EP1/EP3 agonist) shows little effect. PGE2-induced cAMP production was attenuated by SQ22536 and U73122 but not H89 and dorsomorphin. Intriguingly, thapsigargin and W7 prevented PGE2-induced cAMP production, but verapamil and EGTA showed little effect. These results indicate that PGE2-induced cAMP production is associated with EP2 receptor and adenylate cyclase activation. These events are mediated by phospholipase C, intracellular calcium release, and calcium-calmodulin signaling. These results are helpful for understanding the role of PGE2 in pulpal inflammation and repair and possible future drug intervention. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Depletion of intracellular calcium stores facilitates the influx of extracellular calcium in platelet derived growth factor stimulated A172 glioblastoma cells.

    PubMed

    Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G

    1996-05-01

    Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.

  6. Glutamate and Dynorphin Release from a Subcellular Fraction Enriched in Hippocampal Mossy Fiber Synaptosomes

    DTIC Science & Technology

    1988-01-01

    presence of extrasynaptosomal calcium . while only 3(0- of the evoked release of glutamate was calcium -dependent. D-aspartate. which exchanges glutamate...out of the cytoplasmic pool. virtually eliminated the calcium -independent component of glutamate release. This synaptosomal preparation will be useful...investigation of their presynaptic mechanisms ol action. l" Hippocampus Mossy fiber expansions Synaptosomes Glutamate Dynorphin Peptides Opioids Release Calcium

  7. Appearance of medium-large drusen and reticular pseudodrusen on adaptive optics in age-related macular degeneration.

    PubMed

    Querques, Giuseppe; Kamami-Levy, Cynthia; Blanco-Garavito, Rocio; Georges, Anouk; Pedinielli, Alexandre; Capuano, Vittorio; Poulon, Fanny; Souied, Eric H

    2014-11-01

    To investigate the appearance of medium-large drusen and reticular pseudodrusen on adaptive optics (AO). In 14 consecutive patients, AO infrared (IR) images were overlaid with confocal scanning-laser-ophthalmoscope IR reflectance images and IR-referenced spectral-domain optical coherence tomography. In eight eyes of six patients, a total of 19 images of medium-large drusen were investigated by AO imaging. En face AO revealed medium-large drusen as highly hyper-reflective round/oval lesions, always centred and/or surrounded by a continuous/discontinuous hyporeflectivity. Cone photoreceptors were detected overlying drusen, appearing either as continuous 'bright' hyper-reflective dots over a 'dark' hyporeflective background, or as continuous 'dark' hyporeflective dots over a 'bright' hyper-reflective background. In eight eyes from eight patients, a total of 14 images of pseudodrusen were investigated by AO imaging. En face AO revealed reticular pseudodrusen as isoreflective lesions, always surrounded by a continuous/discontinuous hyporeflectivity. Cone photoreceptors were detected overlying pseudodrusen as 'bright' hyper-reflective dots over either a hyporeflective or isoreflective background. No 'dark' hyporeflective dots were detected in eyes with reticular pseudodrusen only. Cone photoreceptors were counted on the border of the drusen and pseudodrusen, respectively, and in a visibly healthy zone in its absolute vicinity. A similar decrease in cone appearance was observed for drusen and pseudodrusen (15.7% vs 16.2%). AO allows differences in reflectivity between medium-large drusen and reticular pseudodrusen to be appreciated. The cone mosaics may be detected as continuous 'bright' hyper-reflective dots overlying/on the border of drusen and pseudodrusen deposits, and possibly as continuous 'dark' hyporeflective dots overlying drusen only. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  8. Polyamine FTX-3.3 and polyamine amide sFTX-3.3 inhibit presynaptic calcium currents and acetylcholine release at mouse motor nerve terminals.

    PubMed

    Fatehi, M; Rowan, E G; Harvey, A L; Moya, E; Blagbrough, I S

    1997-02-01

    FTX-3.3 is the proposed structure of a calcium-channel blocking toxin that has been isolated from the funnel web spider (Agelenopsis aperta). The effects of FTX-3.3 and one of its analogues, sFTX-3.3, on acetylcholine release, on presynaptic currents at mouse motor nerve terminals and on whole-cell sodium currents in SK.N.SH cells (a human neuroblastoma cell line) have been studied. FTX-3.3 (10-30 microM) and sFTX-3.3 (100-300 microM) reversibly reduced release of acetylcholine by approximately 70-90% and 40-60%, respectively. FTX-3.3 (10 microM) blocked the fast component of presynaptic calcium currents by approximately 60%. sFTX-3.3 (100 microM) reduced the duration of the slow component of presynaptic calcium currents by about 50% of the control and also reduced presynaptic sodium current by approximately 20% of the control. sFTX-3.3 (100 microM) reduced whole-cell sodium current recorded from SK.N.SH cells by approximately 15%, whereas FTX-3.3, even at 200 microM, did not affect this current. Since the only difference in chemical structures of these toxins is that sFTX-3.3 has an amide function which is absent in FTX-3.3, the amide function may be responsible for the reduced potency and selectivity of sFTX-3.3. This study also provides further support for the existence of P-type calcium channels at mouse motor nerve terminals.

  9. Microstructural changes in memory and reticular formation neural pathway after simple concussion☆

    PubMed Central

    Ouyang, Lin; Shi, Rongyue; Xiao, Yuhui; Meng, Jiarong; Guo, Yihe; Lu, Guangming

    2012-01-01

    Patients with concussion often present with temporary disturbance of consciousness. The microstructural and functional changes in the brain associated with concussion, as well as the relationship with transient cognitive disorders, are currently unclear. In the present study, a rabbit model of simple concussion was established. Magnetic resonance-diffusion tensor imaging results revealed that the corona radiata and midbrain exhibited significantly decreased fractional anisotropy values in the neural pathways associated with memory and the reticular formation. In addition, the apparent diffusion coefficient values were significantly increased following injury compared with those before injury. Following a 1-hour period of quiet rest, the fractional anisotropy values significantly increased, and apparent diffusion coefficient values significantly decreased, returning to normal pre-injury levels. In contrast, the fractional anisotropy values and apparent diffusion coefficient values in the corpus callosum, thalamus and hippocampus showed no statistical significant alterations following injury. These findings indicate that the neural pathways associated with memory and the reticular formation pathway exhibit reversible microstructural white matter changes when concussion occurs, and these changes are exhibited to a different extent in different regions. PMID:25538741

  10. Microstructural changes in memory and reticular formation neural pathway after simple concussion.

    PubMed

    Ouyang, Lin; Shi, Rongyue; Xiao, Yuhui; Meng, Jiarong; Guo, Yihe; Lu, Guangming

    2012-10-05

    Patients with concussion often present with temporary disturbance of consciousness. The microstructural and functional changes in the brain associated with concussion, as well as the relationship with transient cognitive disorders, are currently unclear. In the present study, a rabbit model of simple concussion was established. Magnetic resonance-diffusion tensor imaging results revealed that the corona radiata and midbrain exhibited significantly decreased fractional anisotropy values in the neural pathways associated with memory and the reticular formation. In addition, the apparent diffusion coefficient values were significantly increased following injury compared with those before injury. Following a 1-hour period of quiet rest, the fractional anisotropy values significantly increased, and apparent diffusion coefficient values significantly decreased, returning to normal pre-injury levels. In contrast, the fractional anisotropy values and apparent diffusion coefficient values in the corpus callosum, thalamus and hippocampus showed no statistical significant alterations following injury. These findings indicate that the neural pathways associated with memory and the reticular formation pathway exhibit reversible microstructural white matter changes when concussion occurs, and these changes are exhibited to a different extent in different regions.

  11. Lead-induced ER calcium release and inhibitory effects of methionine choline in cultured rat hippocampal neurons.

    PubMed

    Fan, Guangqin; Zhou, Fankun; Feng, Chang; Wu, Fengyun; Ye, Weiwei; Wang, Chunhong; Lin, Fen; Yan, Ji; Li, Yanshu; Chen, Ying; Bi, Yongyi

    2013-02-01

    Lead, a ubiquitous neurotoxicant, can result in learning and memory dysfunction. Long term potentiation in the hippocampus, a potential neural substrate for learning and memory, is thought to be linked to calcium-triggered intracellular events. In this study, laser scanning confocal microscopy was used to examine the effects of Pb(2+) on intracellular and endoplasmic reticulum free calcium concentration ([Ca(2+)](i) and [Ca(2+)](ER)) in cultured neonatal rat hippocampal neurons and their possible antagonism by methionine choline; understanding these effects would help explain the lead-induced cognitive and learning dysfunction and explore efficient safety and relief strategies. The results showed that Pb(2+) increased [Ca(2+)](i) and decreased [Ca(2+)](ER) linearly in a time- and concentration-dependant manner, and Pb(2+) addition after the applying of a ryanodine receptor (RyR) antagonist and an inositol-1,4,5-triphosphate receptor (IP(3)R) antagonist did not increase [Ca(2+)](i). The addition of 10, 20, or 40 mmol/L methionine choline simultaneously with addition of 10 μmol/L Pb(2+) decreased [Ca(2+)](i) in Ca(2+)-free culture medium by 39.0%, 66.0%, and 61.6%, respectively, in a concentration-dependant manner in a certain dose range. Our results suggest that Pb(2+) induces ER calcium release to increase the resting [Ca(2+)](i); and methionine choline inhibit this increase in [Ca(2+)](i). Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Active Outer Hair Cells Affect the Sound-Evoked Vibration of the Reticular Lamina

    NASA Astrophysics Data System (ADS)

    Jacob, Stefan; Fridberger, Anders

    2011-11-01

    It is well established that the organ of Corti uses active mechanisms to enhance its sensitivity and frequency selectivity. Two possible mechanisms have been identified, both capable of producing mechanical forces, which can alter the sound-evoked vibration of the hearing organ. However, little is known about the effect of these forces on the sound-evoked vibration pattern of the reticular lamina. Current injections into scala media were used to alter the amplitude of the active mechanisms in the apex of the guinea pig temporal bone. We used time-resolved confocal imaging to access the vibration pattern of individual outer hair cells. During positive current injection the the sound-evoked vibration of outer hair cell row three increased while row one showed a small decrease. Negative currents reversed the observed effect. We conclude that the outer hair cell mediated modification of reticular lamina vibration patterns could contribute to the inner hair cell stimulation.

  13. Genetic Ablation of Calcium-independent Phospholipase A2γ (iPLA2γ) Attenuates Calcium-induced Opening of the Mitochondrial Permeability Transition Pore and Resultant Cytochrome c Release*

    PubMed Central

    Moon, Sung Ho; Jenkins, Christopher M.; Kiebish, Michael A.; Sims, Harold F.; Mancuso, David J.; Gross, Richard W.

    2012-01-01

    Herein, we demonstrate that calcium-independent phospholipase A2γ (iPLA2γ) is a critical mechanistic participant in the calcium-induced opening of the mitochondrial permeability transition pore (mPTP). Liver mitochondria from iPLA2γ−/− mice were markedly resistant to calcium-induced swelling in the presence or absence of phosphate in comparison with wild-type littermates. Furthermore, the iPLA2γ enantioselective inhibitor (R)-(E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one ((R)-BEL) was markedly more potent than (S)-BEL in inhibiting mPTP opening in mitochondria from wild-type liver in comparison with hepatic mitochondria from iPLA2γ−/− mice. Intriguingly, low micromolar concentrations of long chain fatty acyl-CoAs and the non-hydrolyzable thioether analog of palmitoyl-CoA markedly accelerated Ca2+-induced mPTP opening in liver mitochondria from wild-type mice. The addition of l-carnitine enabled the metabolic channeling of acyl-CoA through carnitine palmitoyltransferases (CPT-1/2) and attenuated the palmitoyl-CoA-mediated amplification of calcium-induced mPTP opening. In contrast, mitochondria from iPLA2γ−/− mice were insensitive to fatty acyl-CoA-mediated augmentation of calcium-induced mPTP opening. Moreover, mitochondria from iPLA2γ−/− mouse liver were resistant to Ca2+/t-butyl hydroperoxide-induced mPTP opening in comparison with wild-type littermates. In support of these findings, cytochrome c release from iPLA2γ−/− mitochondria was dramatically decreased in response to calcium in the presence or absence of either t-butyl hydroperoxide or phenylarsine oxide in comparison with wild-type littermates. Collectively, these results identify iPLA2γ as an important mechanistic component of the mPTP, define its downstream products as potent regulators of mPTP opening, and demonstrate the integrated roles of mitochondrial bioenergetics and lipidomic flux in modulating mPTP opening promoting the activation of necrotic and

  14. Aspects of Solvent Chemistry for Calcium Hydroxide Medicaments

    PubMed Central

    Athanassiadis, Basil

    2017-01-01

    Calcium hydroxide pastes have been used in endodontics since 1947. Most current calcium hydroxide endodontic pastes use water as the vehicle, which limits the dissolution of calcium hydroxide that can be achieved and, thereby, the maximum pH that can be achieved within the root canal system. Using polyethylene glycol as a solvent, rather than water, can achieve an increase in hydroxyl ions release compared to water or saline. By adopting non-aqueous solvents such as the polyethylene glycols (PEG), greater dissolution and faster hydroxyl ion release can be achieved, leading to enhanced antimicrobial actions, and other improvements in performance and biocompatibility. PMID:29065542

  15. Aqueous Black Colloids of Reticular Nanostructured Gold

    NASA Astrophysics Data System (ADS)

    Stanca, S. E.; Fritzsche, W.; Dellith, J.; Froehlich, F.; Undisz, A.; Deckert, V.; Krafft, C.; Popp, J.

    2015-01-01

    Since ancient times, noble gold has continuously contributed to several aspects of life from medicine to electronics. It perpetually reveals its new features. We report the finding of a unique form of gold, reticular nanostructured gold (RNG), as an aqueous black colloid, for which we present a one-step synthesis. The reticules consist of gold crystals that interconnect to form compact strands. RNG exhibits high conductivity and low reflection, and these features, coupled with the high specific surface area of the material, could prove valuable for applications in electronics and catalysis. Due to high absorption throughout the visible and infrared domain, RNG has the potential to be applied in the construction of sensitive solar cells or as a substrate for Raman spectroscopy.

  16. Calcium-dependent transferrin receptor recycling in bovine chromaffin cells.

    PubMed

    Knight, Derek E

    2002-04-01

    The release of regulated secretory granules is known to be calcium dependent. To examine the Ca2+-dependence of other exocytic fusion events, transferrin recycling in bovine chromaffin cells was examined. Internalised 125I-transferrin was released constitutively from cells with a half-time of about 7 min. Secretagogues that triggered catecholamine secretion doubled the rate of 125I-transferrin release, the time courses of the two triggered secretory responses being similar. The triggered 125I-transferrin release came from recycling endosomes rather than from sorting endosomes or a triggered secretory vesicle pool. Triggered 125I-transferrin release, like catecholamine secretion from the same cells, was calcium dependent but the affinities for calcium were very different. The extracellular calcium concentrations that gave rise to half-maximal evoked secretion were 0.1 mm for 125I-transferrin and 1.0 mm for catecholamine, and the intracellular concentrations were 0.1 microm and 1 microm, respectively. There was significant 125I-transferrin recycling in the virtual absence of intracellular Ca2+, but the rate increased when Ca2+ was raised above 1 nm, and peaked at 1 microm when the rate had doubled. Botulinum toxin type D blocked both transferrin recycling and catecholamine secretion. These results indicate that a major component of the vesicular transport required for the constitutive recycling of transferrin in quiescent cells is calcium dependent and thus under physiological control, and also that some of the molecular machinery involved in transferrin recycling/fusion processes is shared with that for triggered neurosecretion.

  17. Malignant melanoma. Prognostic significance of "microscopic satellites" in the reticular dermis and subcutaneous fat.

    PubMed Central

    Day, C L; Harrist, T J; Gorstein, F; Sober, A J; Lew, R A; Friedman, R J; Pasternack, B S; Kopf, A W; Fitzpatrick, T B; Mihm, M C

    1981-01-01

    A review of the microscope slides of the primary tumors for 596 patients with clinical Stage I melanoma revealed that primary lesions displayed two distinct patterns of invasion: 1) single cell invasion with direct extension of the main body of tumor into the reticular dermis or subcutaneous fat, and 2) invasion with "microscope satellites" (i.e. discrete tumor nests greater than 0.05 mm in diameter, that were separated from the main body of the tumor by normal reticular dermal collagen or subcutaneous fat). The five-year disease free survival rate for 95 patients with "microscopic satellites" was 36% +/- 6%. This is in contrast to a five-year disease free survival rate of 89% +/- 2% for 501 patients without these satellites (p = 4.3 x 10(-29), generalized Wilcoxon test). "Microscopic satellites" (present vs absent) was comparable to histologic ulceration in its additive prognostic effect of tumor thickness (Breslow). PMID:7247529

  18. Somato-axodendritic release of oxytocin into the brain due to calcium amplification is essential for social memory.

    PubMed

    Higashida, Haruhiro

    2016-07-01

    Oxytocin (OT) is released into the brain from the cell soma, axons, and dendrites of neurosecretory cells in the hypothalamus. Locally released OT can activate OT receptors, form inositol-1,4,5-trisphosphate and elevate intracellular free calcium (Ca(2+)) concentrations [(Ca(2+)) i ] in self and neighboring neurons in the hypothalamus, resulting in further OT release: i.e., autocrine or paracrine systems of OT-induced OT release. CD38-dependent cyclic ADP-ribose (cADPR) is also involved in this autoregulation by elevating [Ca(2+)] i via Ca(2+) mobilization through ryanodine receptors on intracellular Ca(2+) pools that are sensitive to both Ca(2+) and cADPR. In addition, it has recently been reported that heat stimulation and hyperthermia enhance [Ca(2+)] i increases by Ca(2+) influx, probably through TRPM2 cation channels, suggesting that cADPR and TRPM2 molecules act as Ca(2+) signal amplifiers. Thus, OT release is not simply due to depolarization-secretion coupling. Both of these molecules play critical roles not only during labor and milk ejection in reproductive females, but also during social behavior in daily life in both genders. This was clearly demonstrated in CD38 knockout mice in that social behavior was impaired by reduction of [Ca(2+)] i elevation and subsequent OT secretion. Evidence for the associations of CD38 with social behavior and psychiatric disorder is discussed, especially in subjects with autism spectrum disorder.

  19. [Traffic-related PM2.5 regulates IL-2 releasing in Jurkat T cells by calcium signaling pathway].

    PubMed

    Tong, Guoqiang; Zhang, Zhihong; Han, Jianbiao; Qiu, Yong; Xu, Jianjun

    2013-09-01

    To explore the effects of traffic-related PM2.5 on interleukin-2 (IL-2) in Jurkat T cells and the regulatory action of calcium signaling pathway. The cells were exposed to 100 microg/ml of PM2.5 for 3, 6 and 24 h. Normal saline group, blank filter group, calcium chelating agent EGTA group and the calcineurin antagonist cyclosporine A (CSA) group were as parallel control. The level of IL-2 was detected by ELISA kits, the mRNA expression of CaN, NFAT were determined by QRT-PCR. The nuclear distribution of NFAT was observed by immunofluorescence microscopy. The level of IL-2 in Jurkat T cells exposed to 100 microg/ml PM2.5 was significantly lower than parallel groups, but higher than PM2.5 + CSA group and PM2.5 + EGTA group (P < 0.05). With the increase of time, the releasing level of IL-2 appeared reducing trend in 100 microg/ml of PM2.5 group. The mRNA expression level of NFAT and CaN were higher than parallel groups, PM2.5 + CSA group and PM2.5 + EGTA group (P < 0.05). PM2.5 can induce NFAT protein with dephosphorylation and be activated, and NFAT protein can shift into nuclear. The level of IL-2 was negatively associated with the expression level of NFAT and CaN gene (P < 0.05). Traffic-related PM2.5 may inhibit the releasing of IL-2, Ca(2+)-CaN-NFAT signal pathway may involve in the regulation of IL-2.

  20. Hybrid Markov-mass action law model for cell activation by rare binding events: Application to calcium induced vesicular release at neuronal synapses.

    PubMed

    Guerrier, Claire; Holcman, David

    2016-10-18

    Binding of molecules, ions or proteins to small target sites is a generic step of cell activation. This process relies on rare stochastic events where a particle located in a large bulk has to find small and often hidden targets. We present here a hybrid discrete-continuum model that takes into account a stochastic regime governed by rare events and a continuous regime in the bulk. The rare discrete binding events are modeled by a Markov chain for the encounter of small targets by few Brownian particles, for which the arrival time is Poissonian. The large ensemble of particles is described by mass action laws. We use this novel model to predict the time distribution of vesicular release at neuronal synapses. Vesicular release is triggered by the binding of few calcium ions that can originate either from the synaptic bulk or from the entry through calcium channels. We report here that the distribution of release time is bimodal although it is triggered by a single fast action potential. While the first peak follows a stimulation, the second corresponds to the random arrival over much longer time of ions located in the synaptic terminal to small binding vesicular targets. To conclude, the present multiscale stochastic modeling approach allows studying cellular events based on integrating discrete molecular events over several time scales.

  1. Electrospinning of calcium phosphate-poly (d,l-lactic acid) nanofibers for sustained release of water-soluble drug and fast mineralization

    PubMed Central

    Fu, Qi-Wei; Zi, Yun-Peng; Xu, Wei; Zhou, Rong; Cai, Zhu-Yun; Zheng, Wei-Jie; Chen, Feng; Qian, Qi-Rong

    2016-01-01

    Calcium phosphate-based biomaterials have been well studied in biomedical fields due to their outstanding chemical and biological properties which are similar to the inorganic constituents in bone tissue. In this study, amorphous calcium phosphate (ACP) nanoparticles were prepared by a precipitation method, and used for preparation of ACP-poly(d,l-lactic acid) (ACP-PLA) nanofibers and water-soluble drug-containing ACP-PLA nanofibers by electrospinning. Promoting the encapsulation efficiency of water-soluble drugs in electrospun hydrophobic polymer nanofibers is a common problem due to the incompatibility between the water-soluble drug molecules and hydrophobic polymers solution. Herein, we used a native biomolecule of lecithin as a biocompatible surfactant to overcome this problem, and successfully prepared water-soluble drug-containing ACP-PLA nanofibers. The lecithin and ACP nanoparticles played important roles in stabilizing water-soluble drug in the electrospinning composite solution. The electrospun drug-containing ACP-PLA nanofibers exhibited fast mineralization in simulated body fluid. The ACP nanoparticles played the key role of seeds in the process of mineralization. Furthermore, the drug-containing ACP-PLA nanofibers exhibited sustained drug release which simultaneously occurred with the in situ mineralization in simulated body fluid. The osteoblast-like (MG63) cells with spreading filopodia were well observed on the as-prepared nanofibrous mats after culturing for 24 hours, indicating a high cytocompatibility. Due to the high biocompatibility, sustained drug release, and fast mineralization, the as-prepared composite nanofibers may have potential applications in water-soluble drug loading and release for tissue engineering. PMID:27785016

  2. The spontaneous and evoked release of spermine from rat brain in vitro.

    PubMed Central

    Harman, R. J.; Shaw, G. G.

    1981-01-01

    1 The efflux of previously accumulated [3H]-spermine from brain slices was measured using a continuous perfusion system. The spontaneous efflux was biphasic, consisting of an initial rapid efflux followed by a much slower release. 2 The slices were depolarized by the addition to the medium of high potassium concentrations, ouabain or veratrine. 3 At concentrations greater than 30 mM, potassium evoked a striking increase in the release of [3H]-spermine. Following uptake in the presence of 5.7 x 10(-9)M [3H]-spermine, K+-evoked release was dependent on the presence of calcium ions. Release of spermine after uptake at 5.6 x 10(-8)M or 5.0 x 10(-7)M was not calcium-dependent. 4 The calcium-dependent, K+-stimulated release of spermine was inhibited in the presence of diphenylhydantoin (5 x 10(-5)M) or ruthenium red (10(-5)M). 5 Following uptake of 5.7 x 10(-9)M [3H]-spermine in a sodium-free medium, the calcium-dependent, K+-stimulated release was significantly inhibited. 5 Ouabain (10(-4)M) caused a large but calcium-independent increase in the efflux of [3H]-spermine. 7 Veratrine-induced release was less substantial but was increased in a calcium-free medium. Release evoked by veratrine was abolished in the absence of sodium. 8 These results are discussed with respect to a possible 'neurotransmitter' or 'neuromodulator' role for spermine. PMID:6169383

  3. Blockade of GABA, type A, receptors in the rat pontine reticular formation induces rapid eye movement sleep that is dependent upon the cholinergic system.

    PubMed

    Marks, G A; Sachs, O W; Birabil, C G

    2008-09-22

    The brainstem reticular formation is an area important to the control of rapid eye movement (REM) sleep. The antagonist of GABA-type A (GABA(A)) receptors, bicuculline methiodide (BMI), injected into the rat nucleus pontis oralis (PnO) of the reticular formation resulted in a long-lasting increase in REM sleep. Thus, one factor controlling REM sleep appears to be the number of functional GABA(A) receptors in the PnO. The long-lasting effect produced by BMI may result from secondary influences on other neurotransmitter systems known to have long-lasting effects. To study this question, rats were surgically prepared for chronic sleep recording and additionally implanted with guide cannulas aimed at sites in the PnO. Multiple, 60 nl, unilateral injections were made either singly or in combination. GABA(A) receptor antagonists, BMI and gabazine (GBZ), produced dose-dependent increases in REM sleep with GBZ being approximately 35 times more potent than BMI. GBZ and the cholinergic agonist, carbachol, produced very similar results, both increasing REM sleep for about 8 h, mainly through increased period frequency, with little reduction in REM latency. Pre-injection of the muscarinic antagonist, atropine, completely blocked the REM sleep-increase by GBZ. GABAergic control of REM sleep in the PnO requires the cholinergic system and may be acting through presynaptic modulation of acetylcholine release.

  4. Dependency of Calcium Alternans on Ryanodine Receptor Refractoriness

    PubMed Central

    Alvarez-Lacalle, Enric; Cantalapiedra, Inma R.; Peñaranda, Angelina; Cinca, Juan; Hove-Madsen, Leif; Echebarria, Blas

    2013-01-01

    Background Rapid pacing rates induce alternations in the cytosolic calcium concentration caused by fluctuations in calcium released from the sarcoplasmic reticulum (SR). However, the relationship between calcium alternans and refractoriness of the SR calcium release channel (RyR2) remains elusive. Methodology/Principal Findings To investigate how ryanodine receptor (RyR2) refractoriness modulates calcium handling on a beat-to-beat basis using a numerical rabbit cardiomyocyte model. We used a mathematical rabbit cardiomyocyte model to study the beat-to-beat calcium response as a function of RyR2 activation and inactivation. Bi-dimensional maps were constructed depicting the beat-to-beat response. When alternans was observed, a novel numerical clamping protocol was used to determine whether alternans was caused by oscillations in SR calcium loading or by RyR2 refractoriness. Using this protocol, we identified regions of RyR2 gating parameters where SR calcium loading or RyR2 refractoriness underlie the induction of calcium alternans, and we found that at the onset of alternans both mechanisms contribute. At low inactivation rates of the RyR2, calcium alternans was caused by alternation in SR calcium loading, while at low activation rates it was caused by alternation in the level of available RyR2s. Conclusions/Significance We have mapped cardiomyocyte beat-to-beat responses as a function of RyR2 activation and inactivation, identifying domains where SR calcium load or RyR2 refractoriness underlie the induction of calcium alternans. A corollary of this work is that RyR2 refractoriness due to slow recovery from inactivation can be the cause of calcium alternans even when alternation in SR calcium load is present. PMID:23390511

  5. Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum

    NASA Astrophysics Data System (ADS)

    Bezprozvanny, Llya; Watras, James; Ehrlich, Barbara E.

    1991-06-01

    RELEASE of calcium from intracellular stores occurs by two pathways, an inositol 1,4,5-trisphosphate (InsP3)-gated channel1-3 and a calcium-gated channel (ryanodine receptor)4-6. Using specific antibodies, both receptors were found in Purkinje cells of cerebellum7,8. We have now compared the functional properties of the channels corresponding to the two receptors by incorporating endoplasmic reticulum vesicles from canine cerebellum into planar bilayers. InsP3-gated channels were observed most frequently. Another channel type was activated by adenine nucleotides or caffeine, inhibited by ruthenium red, and modified by ryanodine, characteristics of the ryanodine receptor/channel6. The open probability of both channel types displayed a bell-shaped curve for dependence on calcium. For the InsP3-gated channel, the maximum probability of opening occurred at 0.2 µM free calcium, with sharp decreases on either side of the maximum. Maximum activity for the ryanodine receptor/channel was maintained between 1 and 100 µM calcium. Thus, within the physiological range of cytoplasmic calcium, the InsP3-gated channel itself allows positive feed-back and then negative feedback for calcium release, whereas the ryanodine receptor/channel behaves solely as a calcium-activated channel. The existence in the same cell of two channels with different responses to calcium and different ligand sensitivities provides a basis for complex patterns of intracellular calcium regulation.

  6. Effects of crystallinity and surface modification of calcium phosphate nanoparticles on the loading and release of tetracycline hydro-chloride

    NASA Astrophysics Data System (ADS)

    Zhang, Huaizhi; Yan, Dong; Menike Korale Gedara, Sriyani; Dingiri Marakkalage, Sajith Sudeepa Fernando; Gamage Kasun Methlal, Jothirathna; Han, YingChao; Dai, HongLian

    2017-03-01

    The influences of crystallinity and surface modification of calcium phosphate nanoparticles (nCaP) on their drug loading capacity and drug release profile were studied in the present investigation. The CaP nanoparticles with different crystallinity were prepared by precipitation method under different temperatures. CaP nanoparticles with lower crystallinity exhibited higher drug loading capacity. The samples were characterized by XRD, FT-IR, SEM, TEM and BET surface area analyzer respectively. The drug loading capacity of nCaP was evaluated to tetracycline hydro-chloride (TCH). The internalization of TCH loaded nCaP in cancer cell was observed by florescence microscope. nCaP could be stabilized and dispersed in aqueous solution by poly(acrylic acid) surface modification agent, leading to enhanced drug loading capacity. The drug release was conducted in different pH environment and the experimental data proved that nCaP were pH sensitive drug carrier, suggesting that nCaP could achieve the controlled drug release in intracellular acidic environment. Furthermore, nCaP with higher crystallinity showed lower drug release rate than that of lower crystallinity, indicating that the drug release profile could be adjusted by crystallinity of nCaP. nCaP with adjustable drug loading and release properties are promising candidate as drug carrier for disease treatment.

  7. Observations on the connectivity of the parvicellular reticular formation with respect to a vomiting center

    NASA Technical Reports Server (NTRS)

    Mehler, W. R.

    1983-01-01

    The intrinsic and extrinsic connections of the parvicellular reticular formation (PCRF) that have been demonstrated by fiber degeneration studies and studied by more recently introduced horseradish peroxidase retrograde cell labeling are reviewed in an attempt to delimit the connectivity of the region in the PCRF where electrical stimulation produced emesis. Evidence is presented that certain specific functional subdivisions in PCRF such as the salivatory nuclei and the cells which give rise to the vestibular efferent projections can be delimited. An attempt is made to differentiate the sources of brain stem afferent connections with the nucleus of the tractus solitarius, the vagal nucleus and the nucleus ambiguus complex. The literature bearing on the histochemistry of the brain stem is reviewed in a search for clues to possible unique histo- or immunochemical cytological subdivisions in the parvicellular reticular formation.

  8. Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: switching from enteric coating release into biphasic profiles.

    PubMed

    Taha, Mutasem O; Nasser, Wissam; Ardakani, Adel; Alkhatib, Hatim S

    2008-02-28

    The aim of this research is to investigate the effects of sodium lauryl sulfate (SLS) on ionotropically cross-linked alginate beads. Different levels of SLS were mixed with sodium alginate and chlorpheniramine maleate (as loaded model drug). The resulting viscous solutions were dropped onto aqueous solutions of zinc or calcium ions for ionotropic curing. The generated beads were assessed by their drug releasing profiles, infrared and differential scanning colorimetery (DSC) traits. SLS was found to exert profound concentration-dependent impacts on the characteristics of zinc-crosslinked alginate beads such that moderate modifications in the levels of SLS switched drug release from enteric coating-like behavior to a biphasic release modifiable to sustained-release by the addition of minute amounts of xanthan gum. Calcium cross-linking failed to reproduce the same behavior, probably due to the mainly ionic nature of calcium-carboxylate bonds compared to the coordinate character of their zinc-carboxylate counterparts. Apparently, moderate levels of SLS repel water penetration into the beads, and therefore minimize chlorpheniramine release. However, higher SLS levels seem to discourage polymeric cross-linking and therefore allow biphasic drug release.

  9. Morphology of Dbx1 respiratory neurons in the preBötzinger complex and reticular formation of neonatal mice.

    PubMed

    Akins, Victoria T; Weragalaarachchi, Krishanthi; Picardo, Maria Cristina D; Revill, Ann L; Del Negro, Christopher A

    2017-08-01

    The relationship between neuron morphology and function is a perennial issue in neuroscience. Information about synaptic integration, network connectivity, and the specific roles of neuronal subpopulations can be obtained through morphological analysis of key neurons within a microcircuit. Here we present morphologies of two classes of brainstem respiratory neurons. First, interneurons derived from Dbx1-expressing precursors (Dbx1 neurons) in the preBötzinger complex (preBötC) of the ventral medulla that generate the rhythm for inspiratory breathing movements. Second, Dbx1 neurons of the intermediate reticular formation that influence the motor pattern of pharyngeal and lingual movements during the inspiratory phase of the breathing cycle. We describe the image acquisition and subsequent digitization of morphologies of respiratory Dbx1 neurons from the preBötC and the intermediate reticular formation that were first recorded in vitro. These data can be analyzed comparatively to examine how morphology influences the roles of Dbx1 preBötC and Dbx1 reticular interneurons in respiration and can also be utilized to create morphologically accurate compartmental models for simulation and modeling of respiratory circuits.

  10. Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential

    PubMed Central

    Worthley, Daniel L.; Churchill, Michael; Compton, Jocelyn T.; Tailor, Yagnesh; Rao, Meenakshi; Si, Yiling; Levin, Daniel; Schwartz, Matthew G.; Uygur, Aysu; Hayakawa, Yoku; Gross, Stefanie; Renz, Bernhard W.; Setlik, Wanda; Martinez, Ashley N.; Chen, Xiaowei; Nizami, Saqib; Lee, Heon Goo; Kang, H. Paco; Caldwell, Jon-Michael; Asfaha, Samuel; Westphalen, C. Benedikt; Graham, Trevor; Jin, Guangchun; Nagar, Karan; Wang, Hongshan; Kheirbek, Mazen A.; Kolhe, Alka; Carpenter, Jared; Glaire, Mark; Nair, Abhinav; Renders, Simon; Manieri, Nicholas; Muthupalani, Sureshkumar; Fox, James G.; Reichert, Maximilian; Giraud, Andrew S.; Schwabe, Robert F.; Pradere, Jean-Phillipe; Walton, Katherine; Prakash, Ajay; Gumucio, Deborah; Rustgi, Anil K.; Stappenbeck, Thaddeus S.; Friedman, Richard A.; Gershon, Michael D.; Sims, Peter; Grikscheit, Tracy; Lee, Francis Y.; Karsenty, Gerard; Mukherjee, Siddhartha; Wang, Timothy C.

    2014-01-01

    The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs). PMID:25594183

  11. Marginal reticular cells: a stromal subset directly descended from the lymphoid tissue organizer

    PubMed Central

    Katakai, Tomoya

    2012-01-01

    The architecture of secondary lymphoid organs (SLOs) is supported by several non-hematopoietic stromal cells. Currently it is established that two distinct stromal subsets, follicular dendritic cells and fibroblastic reticular cells, play crucial roles in the formation of tissue compartments within SLOs, i.e., the follicle and T zone, respectively. Although stromal cells in the anlagen are essential for SLO development, the relationship between these primordial cells and the subsets in adulthood remains poorly understood. In addition, the roles of stromal cells in the entry of antigens into the compartments through some tissue structures peculiar to SLOs remain unclear. A recently identified stromal subset, marginal reticular cells (MRCs), covers the margin of SLOs that are primarily located in the outer edge of follicles and construct a unique reticulum. MRCs are closely associated with specialized endothelial or epithelial structures for antigen transport. The similarities in marker expression profiles and successive localization during development suggest that MRCs directly descend from organizer stromal cells in the anlagen. Therefore, MRCs are thought to be a crucial stromal component for the organization and function of SLOs. PMID:22807928

  12. Potential pathogenetic role of Th17, Th0, and Th2 cells in erosive and reticular oral lichen planus.

    PubMed

    Piccinni, M-P; Lombardelli, L; Logiodice, F; Tesi, D; Kullolli, O; Biagiotti, R; Giudizi, Mg; Romagnani, S; Maggi, E; Ficarra, G

    2014-03-01

    The role of Th17 cells and associated cytokines was investigated in oral lichen planus. 14 consecutive patients with oral lichen planus were investigated. For biological studies, tissues were taken from reticular or erosive lesions and from normal oral mucosa (controls) of the same patient. mRNA expression for IL-17F, IL-17A, MCP-1, IL-13, IL-2, IL-10, IL-1β, RANTES, IL-4, IL-12B, IL-8, IFN-γ, TNF-α, IL-1α, IL-18, TGF-β1, IL-23R, IL-7, IL-15, IL-6, MIG, IP-10, LTB, VEGF, IL-5, IL-27, IL-23A, GAPDH, PPIB, Foxp3, GATA3, and RORC was measured using the QuantiGene 2.0. Results showed that Th17-type and Th0-type molecules' mRNAs, when compared with results obtained from tissue controls, were increased in biopsies of erosive lesions, whereas Th2-type molecules' mRNAs were increased in reticular lesions. When the CD4+ T-cell clones, derived from oral lichen planus tissues and tissue controls, were analyzed, a higher prevalence of Th17 (confirmed by an increased CD161 expression) and Th0 CD4+ T clones was found in erosive lesions, whereas a prevalence of Th2 clones was observed in reticular lesions. Our data suggest that Th17, Th0, and Th2 cells, respectively, may have a role in the pathogenesis of erosive and reticular oral lichen planus. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Detection of Early Loss of Color Vision in Age-Related Macular Degeneration - With Emphasis on Drusen and Reticular Pseudodrusen.

    PubMed

    Vemala, Roopa; Sivaprasad, Sobha; Barbur, John L

    2017-05-01

    To evaluate chromatic sensitivity in patients with age-related macular degeneration (AMD) characterized by drusen and reticular pseudodrusen. To investigate whether the severity of color vision loss can distinguish between various stages of AMD and hence be used as an index of progression toward advanced AMD. Chromatic sensitivity was measured by using the Color Assessment and Diagnosis (CAD) test in asymptomatic individuals with early and intermediate AMD and compared to normative data. All study participants had logMAR visual acuity of 0.3 or better. The CAD thresholds measured in eyes with and without reticular pseudodrusen were also compared and related to central macular thickness (CMT). Student's t-test P values < 0.05 were considered significant. All early- and intermediate-AMD eyes (n = 90) had chromatic sensitivity loss in either RG (red/green) or YB (yellow/blue), or both (P < 0.0001) as compared to age-matched normal subjects. The eyes exhibited a range of CAD thresholds affecting both color mechanisms, but YB color thresholds were in general higher than RG thresholds (P < 0.001). Intermediate-AMD patients exhibited large intersubject variability. In general, eyes with reticular pseudodrusen and eyes with CMT < 200 μm had significantly higher CAD thresholds. The anatomic integrity of cone photoreceptors remains relatively unaffected in early and intermediate stages of AMD. The processing of cone signals in the retina can, however, be heavily disrupted with subsequent loss of both YB and RG chromatic sensitivity. The greatest losses were observed in eyes with reticular pseudodrusen.

  14. Ryanodine receptors/calcium release channels in heart failure and sudden cardiac death.

    PubMed

    Marks, A R

    2001-04-01

    Calcium (Ca2+) ions are second messengers in signaling pathways in all types of cells. They regulate muscle contraction, electrical signals which determine the cardiac rhythm and cell growth pathways in the heart. In the past decade cDNA cloning has provided clues as to the molecular structure of the intracellular Ca2+ release channels (ryanodine receptors, RyR, and inositol 1,4,5-trisphosphate receptors, IP3R) on the sarcoplasmic and endoplasmic reticulum (SR/ER) and an understanding of how these molecules regulate Ca2+ homeostasis in the heart is beginning to emerge. The intracellular Ca2+ release channels form a distinct class of ion channels distinguished by their structure, size, and function. Both RyRs and IP3Rs have gigantic cytoplasmic domains that serve as scaffolds for modulatory proteins that regulate the channel pore located in the carboxy terminal 10% of the channel sequence. The channels are tetramers comprised of four RyR or IP3R subunits. RyR2 is required for excitation-contraction (EC) coupling in the heart. Using co-sedimentation and co-immunoprecipitation we have defined a macromolecular complex comprised of RyR2, FKBP12.6, PKA, the protein phosphatases PP1 and PP2A, and an anchoring protein mAKAP. We have shown that protein kinase A (PKA) phosphorylation of RyR2 dissociates FKBP12.6 and regulates the channel open probability (P(o)). In failing human hearts RyR2 is PKA hyperphosphorylated resulting in defective channel function due to increased sensitivity to Ca2+-induced activation.

  15. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    PubMed

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue; Seah, Tingting; Xu, Jun; Radda, George K; Südhof, Thomas C; Han, Weiping

    2010-11-09

    Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  16. Synaptic Calcium Regulation in Hair Cells of the Chicken Basilar Papilla

    PubMed Central

    Im, Gi Jung; Moskowitz, Howard S.; Lehar, Mohammed; Hiel, Hakim

    2014-01-01

    Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents (“minis”) resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. PMID:25505321

  17. Properties of a novel polysiloxane-guttapercha calcium silicate-bioglass-containing root canal sealer.

    PubMed

    Gandolfi, M G; Siboni, F; Prati, C

    2016-05-01

    Root canal filling sealers based on polymethyl hydrogensiloxane or polymethyl hydrogensiloxane-guttapercha--introduced to improve the quality of conventional guttapercha-based and resin-based systems--showed advantages in handiness and clinical application. The aim of the study was to evaluate the chemical-physical properties of a novel polysiloxane-guttapercha calcium silicate-containing root canal sealer (GuttaFlow bioseal). GuttaFlow bioseal was examined and compared with GuttaFlow2, RoekoSeal and MTA Fillapex sealers. Setting times, open and impervious porosity and apparent porosity, water sorption, weight loss, calcium release, and alkalinizing activity were evaluated. ESEM-EDX-Raman analyses of fresh materials and after soaking in simulated body fluid were also performed. Marked differences were obtained among the materials. GuttaFlow bioseal showed low solubility and porosity, high water sorption, moderate calcium release and good alkalinizing activity. MTA Fillapex showed the highest calcium release, alkalinizing activity and solubility, RoekoSeal the lowest calcium release, no alkalinizing activity, very low solubility and water sorption. Only GuttaFlow bioseal showed apatite forming ability. GuttaFlow bioseal showed alkalinizing activity together with negligible solubility and slight calcium release. Therefore, the notable nucleation of apatite and apatite precursors can be related to the co-operation of CaSi particles (SiOH groups) with polysiloxane (SiOSi groups). The incorporation of a calcium silicate component into polydimethyl polymethylhydrogensiloxane guttapercha sealers may represent an attractive strategy to obtain a bioactive biointeractive flowable guttapercha sealer for moist/bleeding apices with bone defects in endodontic therapy. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Calcium signaling in taste cells: regulation required.

    PubMed

    Medler, Kathryn F

    2010-11-01

    Peripheral taste receptor cells depend on distinct calcium signals to generate appropriate cellular responses that relay taste information to the central nervous system. Some taste cells have conventional chemical synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release from stores to formulate an output signal through a hemichannel. Despite the importance of calcium signaling in taste cells, little is known about how these signals are regulated. This review summarizes recent studies that have identified 2 calcium clearance mechanisms expressed in taste cells, including mitochondrial calcium uptake and sodium/calcium exchangers (NCXs). These studies identified a unique constitutive calcium influx that contributes to maintaining appropriate calcium homeostasis in taste cells and the role of the mitochondria and exchangers in this process. The additional role of NCXs in the regulation of evoked calcium responses is also discussed. Clearly, calcium signaling is a dynamic process in taste cells and appears to be more complex than has previously been appreciated.

  19. Terminations of reticulospinal fibers originating from the gigantocellular reticular formation in the mouse spinal cord.

    PubMed

    Liang, Huazheng; Watson, Charles; Paxinos, George

    2016-04-01

    The present study investigated the projections of the gigantocellular reticular nucleus (Gi) and its neighbors--the dorsal paragigantocellular reticular nucleus (DPGi), the alpha/ventral part of the gigantocellular reticular nucleus (GiA/V), and the lateral paragigantocellular reticular nucleus (LPGi)--to the mouse spinal cord by injecting the anterograde tracer biotinylated dextran amine (BDA) into the Gi, DPGi, GiA/GiV, and LPGi. The Gi projected to the entire spinal cord bilaterally with an ipsilateral predominance. Its fibers traveled in both the ventral and lateral funiculi with a greater presence in the ventral funiculus. As the fibers descended in the spinal cord, their density in the lateral funiculus increased. The terminals were present mainly in laminae 7-10 with a dorsolateral expansion caudally. In the lumbar and sacral cord, a considerable number of terminals were also present in laminae 5 and 6. Contralateral fibers shared a similar pattern to their ipsilateral counterparts and some fibers were seen to cross the midline. Fibers arising from the DPGi were similarly distributed in the spinal cord except that there was no dorsolateral expansion in the lumbar and sacral segments and there were fewer fiber terminals. Fibers arising from GiA/V predominantly traveled in the ventral and lateral funiculi ipsilaterally. Ipsilaterally, the density of fibers in the ventral funiculus decreased along the rostrocaudal axis, whereas the density of fibers in the lateral funiculus increased. They terminate mainly in the medial ventral horn and lamina 10 with a smaller number of fibers in the dorsal horn. Fibers arising from the LPGi traveled in both the ventral and lateral funiculi and the density of these fibers in the ventral and lateral funiculi decreased dramatically in the lumbar and sacral segments. Their terminals were present in the ventral horn with a large portion of them terminating in the motor neuron columns. The present study is the first demonstration

  20. Carbon monoxide releasing molecule induces endothelial nitric oxide synthase activation through a calcium and phosphatidylinositol 3-kinase/Akt mechanism.

    PubMed

    Yang, Po-Min; Huang, Yu-Ting; Zhang, Yu-Qi; Hsieh, Chia-Wen; Wung, Being-Sun

    2016-12-01

    The production of nitric oxide (NO) by endothelial NO synthase (eNOS) plays a major role in maintaining vascular homeostasis. This study elucidated the potential role of carbon monoxide (CO)-releasing molecules (CORMs) in NO production and explored the underlying mechanisms in endothelial cells. We observed that 25μM CORM-2 could increase NO production and stimulate an increase in the intracellular Ca 2+ level. Furthermore, ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetra acetic acid caused CORM-2-induced NO production, which was abolished by 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetraacetoxy-methyl ester (BAPTA-AM), indicating that intracellular Ca 2+ release plays a major role in eNOS activation. The inhibition of the IP3 receptor diminished the CORM-2-induced intracellular Ca 2+ increase and NO production. Furthermore, CORM-2 induced eNOS Ser 1179 phosphorylation and eNOS dimerization, but it did not alter eNOS expression. CORM-2 (25μM) also prolonged Akt phosphorylation, lasting for at least 12h. Pretreatment with phosphatidylinositol 3-kinase inhibitors (wortmannin or LY294002) inhibited the increases in NO production and phosphorylation but did not affect eNOS dimerization. CORM-2-induced eNOS Ser 1179 phosphorylation was intracellularly calcium-dependent, because pretreatment with an intracellular Ca 2+ chelator (BAPTA-AM) inhibited this process. Although CORM-2 increases intracellular reactive oxygen species (ROS), pretreatment with antioxidant enzyme catalase and N-acetyl-cysteine did not abolish the CORM-2-induced eNOS activity or phosphorylation, signifying that ROS is not involved in this activity. Hence, CORM-2 enhances eNOS activation through intracellular calcium release, Akt phosphorylation, and eNOS dimerization. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Hemispheric asymmetry of macroscopic and elementary calcium signals mediated by InsP3 in Xenopus oocytes.

    PubMed

    Callamaras, N; Sun, X P; Ivorra, I; Parker, I

    1998-09-01

    1. The mechanisms underlying hemispheric asymmetry of the inositol 1, 4,5-trisphosphate (InsP3)-calcium signalling pathway in Xenopus oocytes were examined by fluorescence imaging of calcium signals and recording calcium-activated Cl- currents (ICl,Ca) evoked by intracellular calcium injections and photorelease of InsP3. 2. The maximal ICl,Ca evoked by strong photorelease of InsP3 was 8 times greater in the animal than the vegetal hemisphere, but the average threshold amounts of InsP3 required to evoke detectable currents were similar in each hemisphere. 3. Currents evoked by injections of calcium were about 2.5 times greater near the animal pole than near the vegetal pole, whereas fluorescence signals evoked by injections were similar in each hemisphere. 4. Calcium waves were evoked by photolysis flashes of similar strengths in both hemispheres of albino oocytes, but peak calcium levels evoked by supramaximal stimuli were 70 % greater in the animal hemisphere. 5. Elementary calcium release events (puffs) in the animal hemisphere had amplitudes about double that in the vegetal hemisphere, and more often involved coupled release from adjacent sites. Calcium release sites were more closely packed in the animal hemisphere, with a mean spacing of about 1.5 micro m compared with 2.25 micro m in the vegetal hemisphere. 6. The larger amplitude of currents mediated by InsP3 in the animal hemisphere, therefore, involves an increased flux of calcium at individual release units, a more dense packing of release units and a higher density of Cl- channels.

  2. Hemispheric asymmetry of macroscopic and elementary calcium signals mediated by InsP3 in Xenopus oocytes

    PubMed Central

    Callamaras, Nick; Sun, Xiao-Ping; Ivorra, Isabel; Parker, Ian

    1998-01-01

    The mechanisms underlying hemispheric asymmetry of the inositol 1,4,5-trisphosphate (InsP3)-calcium signalling pathway in Xenopus oocytes were examined by fluorescence imaging of calcium signals and recording calcium-activated Cl− currents (ICl,Ca) evoked by intracellular calcium injections and photorelease of InsP3. The maximal ICl,Ca evoked by strong photorelease of InsP3 was 8 times greater in the animal than the vegetal hemisphere, but the average threshold amounts of InsP3 required to evoke detectable currents were similar in each hemisphere. Currents evoked by injections of calcium were about 2.5 times greater near the animal pole than near the vegetal pole, whereas fluorescence signals evoked by injections were similar in each hemisphere. Calcium waves were evoked by photolysis flashes of similar strengths in both hemispheres of albino oocytes, but peak calcium levels evoked by supramaximal stimuli were 70% greater in the animal hemisphere. Elementary calcium release events (puffs) in the animal hemisphere had amplitudes about double that in the vegetal hemisphere, and more often involved coupled release from adjacent sites. Calcium release sites were more closely packed in the animal hemisphere, with a mean spacing of about 1.5 μm compared with 2.25 μm in the vegetal hemisphere. The larger amplitude of currents mediated by InsP3 in the animal hemisphere, therefore, involves an increased flux of calcium at individual release units, a more dense packing of release units and a higher density of Cl− channels. PMID:9706018

  3. Yolk-Shell Porous Microspheres of Calcium Phosphate Prepared by Using Calcium L-Lactate and Adenosine 5'-Triphosphate Disodium Salt: Application in Protein/Drug Delivery.

    PubMed

    Ding, Guan-Jun; Zhu, Ying-Jie; Qi, Chao; Sun, Tuan-Wei; Wu, Jin; Chen, Feng

    2015-06-26

    A facile and environmentally friendly approach has been developed to prepare yolk-shell porous microspheres of calcium phosphate by using calcium L-lactate pentahydrate (CL) as the calcium source and adenosine 5'-triphosphate disodium salt (ATP) as the phosphate source through the microwave-assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk-shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk-shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as-prepared yolk-shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH-responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk-shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fluoride varnishes with calcium glycerophosphate: fluoride release and effect on in vitro enamel demineralization.

    PubMed

    Carvalho, Thiago Saads; Peters, Bianca Glerean; Rios, Daniela; Magalhães, Ana Carolina; Sampaio, Fabio Correia; Buzalaf, Marília Afonso Rabelo; Bönecker, Marcelo José Strazzeri

    2015-01-01

    The aims of this study were (1) to assess the amount of fluoride (F) released from varnishes containing calcium glycerophosphate (CaGP) and (2) to assess the effect of the experimental varnishes on in vitro demineralization. Six test groups using 5 varnishes: base varnish (no active ingredients); Duraphat® (2.26% NaF); Duofluorid® (5.63% NaF/CaF2); experimental varnish 1 (1% CaGP/5.63% NaF/CaF2); experimental varnish 2 (5% CaGP/5.63% NaF/CaF2); and no varnish were set up. In stage 1, 60 acrylic blocks were randomly distributed into 6 groups (n = 10). Then 300 µg of each varnish was applied to each block. The blocks were immersed in deionized water, which was changed after 1, 8, 12, 24, 48 and 72 hours. Fluoride concentration in the water was analyzed using a fluoride electrode. In stage 2, 60 bovine enamel samples were distributed into 6 groups (n = 10), and treated with 300 µg of the respective varnish. After 6 h the varnish was removed and the samples were subjected to a 7-day in vitro pH cycle (6 h demineralization/18 h remineralization per day). The demineralization was measured using surface hardness. The results showed that both experimental varnishes released more fluoride than Duofluorid® and Duraphat® (p < 0.05), but Duraphat® showed the best preventive effect by decreasing enamel hardness loss (p < 0.05). Therefore, we conclude that even though (1) the experimental varnishes containing CaGP released greater amounts of F, (2) they did not increase in the preventive effect against enamel demineralization.

  5. Synaptic calcium regulation in hair cells of the chicken basilar papilla.

    PubMed

    Im, Gi Jung; Moskowitz, Howard S; Lehar, Mohammed; Hiel, Hakim; Fuchs, Paul Albert

    2014-12-10

    Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents ("minis") resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. Copyright © 2014 the authors 0270-6474/14/3416688-10$15.00/0.

  6. The direct pathway from the brainstem reticular formation to the cerebral cortex in the ascending reticular activating system: A diffusion tensor imaging study.

    PubMed

    Jang, Sung Ho; Kwon, Hyeok Gyu

    2015-10-08

    Precise evaluation of the ascending reticular activating system (ARAS) is important for diagnosis, prediction of prognosis, and management of patients with disorders of impaired consciousness. In the current study, we attempted to reconstruct the direct neural pathway between the brainstem reticular formation (RF) and the cerebral cortex in normal subjects, using diffusion tensor imaging (DTI). Forty-one healthy subjects were recruited for this study. DTIs were performed using a sensitivity-encoding head coil at 1.5Tesla with FMRIB Software Library. For connectivity of the brainstem RF, we used two regions of interest (ROIs) for the brainstem RF (seed ROI) and the thalamus and hypothalamus (exclusion ROI). Connectivity was defined as the incidence of connection between the brainstem RF and target brain regions at the threshold of 5 and 50 streamlines. Regarding the thresholds of 5 and 50, the brainstem RF showed high connectivity to the lateral prefrontal cortex (lPFC, 67.1% and 20.7%) and ventromedial prefrontal cortex (vmPFC, 50.0% and 18.3%), respectively. In contrast, the brainstem RF showed low connectivity to the primary motor cortex (31.7% and 3.7%), premotor cortex (24.4% and 3.7%), primary somatosensory cortex (23.2% and 2.4%), orbitofrontal cortex (17.1% and 7.3%), and posterior parietal cortex (12.2% and 0%), respectively. The brainstem RF was mainly connected to the prefrontal cortex, particularly lPFC and vmPFC. We believe that the methodology and results of this study would be useful to clinicians involved in the care of patients with impaired consciousness and researchers in studies of the ARAS. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Contributions of two types of calcium channels to synaptic transmission and plasticity.

    PubMed

    Edmonds, B; Klein, M; Dale, N; Kandel, E R

    1990-11-23

    In Aplysia sensory and motor neurons in culture, the contributions of the major classes of calcium current can be selectively examined while transmitter release and its modulation are examined. A slowly inactivating, dihydropyridine-sensitive calcium current does not contribute either to normal synaptic transmission or to any of three different forms of plasticity: presynaptic inhibition, homosynaptic depression, and presynaptic facilitation. This current does contribute, however, to a fourth form of plasticity--modulation of transmitter release by tonic depolarization of the sensory neuron. By contrast, a second calcium current, which is rapidly inactivating and dihydropyridine-insensitive, contributes to release elicited by the transient depolarization of an action potential and to the other three forms of plasticity.

  8. Ionotropic and Metabotropic Mechanisms of Allosteric Modulation of α7 Nicotinic Receptor Intracellular Calcium.

    PubMed

    King, Justin R; Ullah, Aman; Bak, Ellen; Jafri, M Saleet; Kabbani, Nadine

    2018-06-01

    The pharmacological targeting of the α 7 nicotinic acetylcholine receptor ( α 7) is a promising strategy in the development of new drugs for neurologic diseases. Because α 7 receptors regulate cellular calcium, we investigated how the prototypical type II-positive allosteric modulator PNU120596 affects α 7-mediated calcium signaling. Live imaging experiments show that PNU120596 augments ryanodine receptor-driven calcium-induced calcium release (CICR), inositol-induced calcium release (IICR), and phospholipase C activation by the α 7 receptor. Both influx of calcium through the α 7 nicotinic acetylcholine receptor (nAChR) channel as well as the binding of intracellular G proteins were involved in the effect of PNU120596 on intracellular calcium. This is evidenced by the findings that chelation of extracellular calcium, expression of α 7 D44A or α 7 345-348A mutant subunits, or blockade of calcium store release compromised the ability of PNU120596 to increase intracellular calcium transients generated by α 7 ligand activation. Spatiotemporal stochastic modeling of calcium transient responses corroborates these results and indicates that α 7 receptor activation enables calcium microdomains locally and to lesser extent in the distant cytosol. From the model, allosteric modulation of the receptor activates CICR locally via ryanodine receptors and augments IICR through enhanced calcium influx due to prolonged α 7 nAChR opening. These findings provide a new mechanistic framework for understanding the effect of α 7 receptor allosteric modulation on both local and global calcium dynamics. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Reticular reflex myoclonus: a physiological type of human post-hypoxic myoclonus.

    PubMed Central

    Hallett, M; Chadwick, D; Adam, J; Marsden, C D

    1977-01-01

    A patient with post-hypoxic myoclonus, sensitive to therapy with 5-hydroxytryptophan and clonazepam, was subjected to detailed electrophysiological investigation. Brief generalised jerks followed the critical stimulus of muscle stretch. The electroencephalogram showed generalised spikes that were associated with, but not time locked to, the myoclonus. The cranial nerve nuclei were activated upward. Analysis of the findings suggests that the mechanism of the myoclonus is hyperactivity of a reflex mediated in the reticular formation of the medulla oblongata. PMID:301926

  10. Skin Barrier and Calcium.

    PubMed

    Lee, Sang Eun; Lee, Seung Hun

    2018-06-01

    Epidermal barrier formation and the maintenance of barrier homeostasis are essential to protect us from the external environments and organisms. Moreover, impaired keratinocytes differentiation and dysfunctional skin barrier can be the primary causes or aggravating factors for many inflammatory skin diseases including atopic dermatitis and psoriasis. Therefore, understanding the regulation mechanisms of keratinocytes differentiation and skin barrier homeostasis is important to understand many skin diseases and establish an effective treatment strategy. Calcium ions (Ca 2+ ) and their concentration gradient in the epidermis are essential in regulating many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis. Recent studies have suggested that the intracellular Ca 2+ stores such as the endoplasmic reticulum (ER) are the major components that form the epidermal calcium gradient and the ER calcium homeostasis is crucial for regulating keratinocytes differentiation, intercellular junction formation, antimicrobial barrier, and permeability barrier homeostasis. Thus, both Ca 2+ release from intracellular stores, such as the ER and Ca 2+ influx mechanisms are important in skin barrier. In addition, growing evidences identified the functional existence and the role of many types of calcium channels which mediate calcium flux in keratinocytes. In this review, the origin of epidermal calcium gradient and their role in the formation and regulation of skin barrier are focused. We also focus on the role of ER calcium homeostasis in skin barrier. Furthermore, the distribution and role of epidermal calcium channels, including transient receptor potential channels, store-operated calcium entry channel Orai1, and voltage-gated calcium channels in skin barrier are discussed.

  11. Novel cyclodextrin nanosponges for delivery of calcium in hyperphosphatemia.

    PubMed

    Shende, Pravin; Deshmukh, Kiran; Trotta, Fransesco; Caldera, Fabrizio

    2013-11-01

    Cyclodextrin nanosponges are solid, porous nanoparticulate three dimensional structures, have been used as delivery system of different drugs. In this work, new cyclodextrin-based nanosponges of calcium carbonate were prepared by polymer condensation method to release the calcium in controlled manner in the treatment of hyperphosphatemia as novel carriers. SEM measurements revealed their roughly spherical shape, porous nature and mean particle size of about 400 nm. Zeta potentials of the nanosponges were sufficiently high to obtain stable formulations. The encapsulation efficiencies of calcium in nanosponge formulations were found to be 81-95%. The moisture contents of the nanosponges were in the range of 0.1-0.7%. The optimized formulation produces enteric and controlled release kinetics of calcium in the management and treatment of hyperphosphatemia. It was also observed that calcium ions bound efficiently to free phosphate in a pH-dependent fashion especially at pH 7. In accelerated stability study no significant changes occurred in physical appearance, size and nature of drug in formulation for 3 months. The results of FTIR and DSC confirmed that calcium carbonate was encapsulated in nanosponges structure. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Simvastatin Potently Induces Calcium-dependent Apoptosis of Human Leiomyoma Cells*

    PubMed Central

    Borahay, Mostafa A.; Kilic, Gokhan S.; Yallampalli, Chandrasekha; Snyder, Russell R.; Hankins, Gary D. V.; Al-Hendy, Ayman; Boehning, Darren

    2014-01-01

    Statins are drugs commonly used for the treatment of high plasma cholesterol levels. Beyond these well known lipid-lowering properties, they possess broad-reaching effects in vivo, including antitumor effects. Statins inhibit the growth of multiple tumors. However, the mechanisms remain incompletely understood. Here we show that simvastatin inhibits the proliferation of human leiomyoma cells. This was associated with decreased mitogen-activated protein kinase signaling and multiple changes in cell cycle progression. Simvastatin potently stimulated leiomyoma cell apoptosis in a manner mechanistically dependent upon apoptotic calcium release from voltage-gated calcium channels. Therefore, simvastatin possesses antitumor effects that are dependent upon the apoptotic calcium release machinery. PMID:25359773

  13. A Non-canonical Reticular-Limbic Central Auditory Pathway via Medial Septum Contributes to Fear Conditioning.

    PubMed

    Zhang, Guang-Wei; Sun, Wen-Jian; Zingg, Brian; Shen, Li; He, Jufang; Xiong, Ying; Tao, Huizhong W; Zhang, Li I

    2018-01-17

    In the mammalian brain, auditory information is known to be processed along a central ascending pathway leading to auditory cortex (AC). Whether there exist any major pathways beyond this canonical auditory neuraxis remains unclear. In awake mice, we found that auditory responses in entorhinal cortex (EC) cannot be explained by a previously proposed relay from AC based on response properties. By combining anatomical tracing and optogenetic/pharmacological manipulations, we discovered that EC received auditory input primarily from the medial septum (MS), rather than AC. A previously uncharacterized auditory pathway was then revealed: it branched from the cochlear nucleus, and via caudal pontine reticular nucleus, pontine central gray, and MS, reached EC. Neurons along this non-canonical auditory pathway responded selectively to high-intensity broadband noise, but not pure tones. Disruption of the pathway resulted in an impairment of specifically noise-cued fear conditioning. This reticular-limbic pathway may thus function in processing aversive acoustic signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Readily releasable pool of synaptic vesicles measured at single synaptic contacts.

    PubMed

    Trigo, Federico F; Sakaba, Takeshi; Ogden, David; Marty, Alain

    2012-10-30

    To distinguish between different models of vesicular release in brain synapses, it is necessary to know the number of vesicles of transmitter that can be released immediately at individual synapses by a high-calcium stimulus, the readily releasable pool (RRP). We used direct stimulation by calcium uncaging at identified, single-site inhibitory synapses to investigate the statistics of vesicular release and the size of the RRP. Vesicular release, detected as quantal responses in the postsynaptic neuron, showed an unexpected stochastic variation in the number of quanta from stimulus to stimulus at high intracellular calcium, with a mean of 1.9 per stimulus and a maximum of three or four. The results provide direct measurement of the RRP at single synaptic sites. They are consistent with models in which release proceeds from a small number of vesicle docking sites with an average occupancy around 0.7.

  15. Treatment of deep underlying reticular veins by Nd:Yag laser and IPL source.

    PubMed

    Colaiuda, S; Colaiuda, F; Gasparotti, M

    2000-10-01

    The purpose of this paper is to estimate the efficacy of Nd:Yag laser and IPL combined action for the treatment of deep (up to 5 mm) and large (up to 3 mm in diameter) reticular varicosity of the lower extremity. A group of 38 subjects (2 male and 36 female) aged from 34 to 65 years were treated for deep reticular varicosity of the legs. All patients underwent various clinical analyses in order to evaluate and exclude pre-existing cardiovascular pathology, coagulation disorders as well as pathology due to saphena incontinence. Also, for the first three months they underwent ambulatory specialistic treatments at 21-days intertreatment interval. A reduction of venous network of 80-90% after 2 treatment sessions with Nd:Yag laser was obtained in 84% of subjects. Successive 3 treatment sessions with IPL have achieved complete vanishing of the treated venous network in 36 patients (95%). A combined action of Nd:Yag laser and IPL has demonstrated its particular efficacy in non-invasive treatment of deep and extensive reticolar varicosity of the lower extremity, considering also that it is well tolerated by patients and applicable in each single case on out patient basis.

  16. A bifractal nature of reticular patterns induced by oxygen plasma on polymer films

    NASA Astrophysics Data System (ADS)

    Bae, Junwan; Lee, I. J.

    2015-05-01

    Plasma etching was demonstrated to be a promising tool for generating self-organized nano-patterns on various commercial films. Unfortunately, dynamic scaling approach toward fundamental understanding of the formation and growth of the plasma-induced nano-structure has not always been straightforward. The temporal evolution of self-aligned nano-patterns may often evolve with an additional scale-invariance, which leads to breakdown of the well-established dynamic scaling law. The concept of a bifractal interface is successfully applied to reticular patterns induced by oxygen plasma on the surface of polymer films. The reticular pattern, composed of nano-size self-aligned protuberances and underlying structure, develops two types of anomalous dynamic scaling characterized by super-roughening and intrinsic anomalous scaling, respectively. The diffusion and aggregation of short-cleaved chains under the plasma environment are responsible for the regular distribution of the nano-size protuberances. Remarkably, it is uncovered that the dynamic roughening of the underlying structure is governed by a relaxation mechanism described by the Edwards-Wilkinson universality class with a conservative noise. The evidence for the basic phase, characterized by the negative roughness and growth exponents, has been elusive since its first theoretical consideration more than two decades ago.

  17. Effect of sepsis on calcium uptake and content in skeletal muscle and regulation in vitro by calcium of total and myofibrillar protein breakdown in control and septic muscle: Results from a preliminary study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, D.W.; Hasselgren, P.O.; Hiyama, D.T.

    Because high calcium concentration in vitro stimulates muscle proteolysis, calcium has been implicated in the pathogenesis of increased muscle breakdown in different catabolic conditions. Protein breakdown in skeletal muscle is increased during sepsis, but the effect of sepsis on muscle calcium uptake and content is not known. In this study the influence of sepsis, induced in rats by cecal ligation and puncture, on muscle calcium uptake and content was studied. Sixteen hours after cecal ligation and puncture or sham operation, calcium content of the extensor digitorum longus (EDL) and soleus (SOL) muscles was determined with an atomic absorption spectrometer. Calciummore » uptake was measured in intact SOL muscles incubated in the presence of calcium 45 (45Ca) for between 1 and 120 minutes. Total and myofibrillar protein breakdown was determined in SOL muscles, incubated in the presence of different calcium concentrations (0; 2.5; 5.0 mmol/L), and measured as release into the incubation medium of tyrosine and 3-methylhistidine (3-MH), respectively. Calcium content was increased by 51% (p less than 0.001) during sepsis in SOL and by 10% (p less than 0.05) in EDL muscle. There was no difference in 45Ca uptake between control and septic muscles during the early phase (1 to 5 minutes) of incubation. During more extended incubation (30 to 120 minutes), muscles from septic rats took up significantly more 45Ca than control muscles (p less than 0.05). Tyrosine release by incubated SOL muscles from control and septic rats was increased when calcium was added to the incubation medium, and at a calcium concentration of 2.5 mmol/L, the increase in tyrosine release was greater in septic than in control muscle. Addition of calcium to the incubation medium did not affect 3-MH release in control or septic muscle.« less

  18. Neurons in the pontomedullary reticular formation receive converging inputs from the hindlimb and labyrinth.

    PubMed

    Miller, Derek M; DeMayo, William M; Bourdages, George H; Wittman, Samuel R; Yates, Bill J; McCall, Andrew A

    2017-04-01

    The integration of inputs from vestibular and proprioceptive sensors within the central nervous system is critical to postural regulation. We recently demonstrated in both decerebrate and conscious cats that labyrinthine and hindlimb inputs converge onto vestibular nucleus neurons. The pontomedullary reticular formation (pmRF) also plays a key role in postural control, and additionally participates in regulating locomotion. Thus, we hypothesized that like vestibular nucleus neurons, pmRF neurons integrate inputs from the limb and labyrinth. To test this hypothesis, we recorded the responses of pmRF neurons to passive ramp-and-hold movements of the hindlimb and to whole-body tilts, in both decerebrate and conscious felines. We found that pmRF neuronal activity was modulated by hindlimb movement in the rostral-caudal plane. Most neurons in both decerebrate (83% of units) and conscious (61% of units) animals encoded both flexion and extension movements of the hindlimb. In addition, hindlimb somatosensory inputs converged with vestibular inputs onto pmRF neurons in both preparations. Pontomedullary reticular formation neurons receiving convergent vestibular and limb inputs likely participate in balance control by governing reticulospinal outflow.

  19. Design of calcium phosphate ceramics for drug delivery applications in bone diseases: A review of the parameters affecting the loading and release of the therapeutic substance.

    PubMed

    Parent, Marianne; Baradari, Hiva; Champion, Eric; Damia, Chantal; Viana-Trecant, Marylène

    2017-04-28

    Effective treatment of critical-size defects is a key challenge in restorative surgery of bone. The strategy covers the implantation of biocompatible, osteoconductive, bioactive and biodegradable devices which (1) well interact with native tissue, mimic multi-dimensional and hierarchical structure of bone and (2) are able to enhance bone repair, treating post implantation pathologies or bone diseases by local delivery of therapeutic agents. Among different options, calcium phosphate biomaterials are found to be attractive choices, due to their excellent biocompatibility, customisable bioactivity and biodegradability. Several approaches have been established to enhance this material ability to be loaded with a therapeutic agent, in order to obtain an in situ controlled release that meets the clinical needs. This article reviews the most important factors influencing on both drug loading and release capacity of porous calcium phosphate bone substitutes. Characteristics of the carrier, drug/carrier interactions, experimental conditions of drug loading and evaluation of drug delivery are considered successively. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Calcium released by photolysis of DM-nitrophen stimulates transmitter release at squid giant synapse.

    PubMed

    Delaney, K R; Zucker, R S

    1990-07-01

    1. Transmitter release at the squid giant synapse was stimulated by photolytic release of Ca2+ from the 'caged' Ca2+ compound DM-nitrophen (Kaplan & Ellis-Davies, 1988) inserted into presynaptic terminals. 2. Competing binding reactions cause the amount of Ca2+ released by DM-nitrophen photolysis to depend on the concentrations of DM-nitrophen, total Ca2+, Mg+, ATP and native cytoplasmic Ca2+ buffer. Measurements of presynaptic [Ca2+] changes by co-injection of the fluorescent indicator dye Fura-2 show that DM-nitrophen photolysis causes a transient rise in Ca2+ followed by decay within about 150 ms to an increased steady-state level. 3. Rapid photolysis of Ca2(+)-loaded nitrophen within the presynaptic terminal was followed in less than a millisecond by depolarization of the postsynaptic membrane. As with action potential-evoked excitatory postsynaptic potentials (EPSPs), the light-evoked response was partially and reversibly blocked by 1-3 mM-kainic acid which desensitizes postsynaptic glutamate receptors. 4. Release was similar in magnitude and rate to normal action potential-mediated EPSPs. 5. The release of transmitter by photolysis of Ca2(+)-loaded DM-nitrophen was not affected by removal of Ca2+ from the saline or addition of tetrodotoxin. Photolysis of DM-nitrophen injected into presynaptic terminals without added Ca2+ did not stimulate release of transmitter nor did it interfere with normal action potential-mediated release. 6. Stimulation of presynaptic action potentials in Ca2(+)-free saline during the light-evoked response did not elicit increased release of transmitter if the ganglion was bathed in Ca2(+)-free saline, i.e. in the absence of Ca2+ influx. Increasing the intensity of the light or stimulating presynaptic action potentials in Ca2(+)-containing saline increased the release of transmitter. Therefore the failure of presynaptic voltage change to increase transmitter release resulting from release of caged Ca2+ was not due to saturation or

  1. Direct single-molecule observation of calcium-dependent misfolding in human neuronal calcium sensor-1.

    PubMed

    Heidarsson, Pétur O; Naqvi, Mohsin M; Otazo, Mariela R; Mossa, Alessandro; Kragelund, Birthe B; Cecconi, Ciro

    2014-09-09

    Neurodegenerative disorders are strongly linked to protein misfolding, and crucial to their explication is a detailed understanding of the underlying structural rearrangements and pathways that govern the formation of misfolded states. Here we use single-molecule optical tweezers to monitor misfolding reactions of the human neuronal calcium sensor-1, a multispecific EF-hand protein involved in neurotransmitter release and linked to severe neurological diseases. We directly observed two misfolding trajectories leading to distinct kinetically trapped misfolded conformations. Both trajectories originate from an on-pathway intermediate state and compete with native folding in a calcium-dependent manner. The relative probability of the different trajectories could be affected by modulating the relaxation rate of applied force, demonstrating an unprecedented real-time control over the free-energy landscape of a protein. Constant-force experiments in combination with hidden Markov analysis revealed the free-energy landscape of the misfolding transitions under both physiological and pathological calcium concentrations. Remarkably for a calcium sensor, we found that higher calcium concentrations increased the lifetimes of the misfolded conformations, slowing productive folding to the native state. We propose a rugged, multidimensional energy landscape for neuronal calcium sensor-1 and speculate on a direct link between protein misfolding and calcium dysregulation that could play a role in neurodegeneration.

  2. Short-Term Facilitation at a Detonator Synapse Requires the Distinct Contribution of Multiple Types of Voltage-Gated Calcium Channels.

    PubMed

    Chamberland, Simon; Evstratova, Alesya; Tóth, Katalin

    2017-05-10

    Neuronal calcium elevations are shaped by several key parameters, including the properties, density, and the spatial location of voltage-gated calcium channels (VGCCs). These features allow presynaptic terminals to translate complex firing frequencies and tune the amount of neurotransmitter released. Although synchronous neurotransmitter release relies on both P/Q- and N-type VGCCs at hippocampal mossy fiber-CA3 synapses, the specific contribution of VGCCs to calcium dynamics, neurotransmitter release, and short-term facilitation remains unknown. Here, we used random-access two-photon calcium imaging together with electrophysiology in acute mouse hippocampal slices to dissect the roles of P/Q- and N-type VGCCs. Our results show that N-type VGCCs control glutamate release at a limited number of release sites through highly localized Ca 2+ elevations and support short-term facilitation by enhancing multivesicular release. In contrast, Ca 2+ entry via P/Q-type VGCCs promotes the recruitment of additional release sites through spatially homogeneous Ca 2+ elevations. Altogether, our results highlight the specialized contribution of P/Q- and N-types VGCCs to neurotransmitter release. SIGNIFICANCE STATEMENT In presynaptic terminals, neurotransmitter release is dynamically regulated by the transient opening of different types of voltage-gated calcium channels. Hippocampal giant mossy fiber terminals display extensive short-term facilitation during repetitive activity, with a large several fold postsynaptic response increase. Though, how giant mossy fiber terminals leverage distinct types of voltage-gated calcium channels to mediate short-term facilitation remains unexplored. Here, we find that P/Q- and N-type VGCCs generate different spatial patterns of calcium elevations in giant mossy fiber terminals and support short-term facilitation through specific participation in two mechanisms. Whereas N-type VGCCs contribute only to the synchronization of multivesicular release

  3. Acceleration of bone regeneration by activating Wnt/β-catenin signalling pathway via lithium released from lithium chloride/calcium phosphate cement in osteoporosis

    NASA Astrophysics Data System (ADS)

    Li, Li; Peng, Xiaozhong; Qin, Yongbao; Wang, Renchong; Tang, Jingli; Cui, Xu; Wang, Ting; Liu, Wenlong; Pan, Haobo; Li, Bing

    2017-03-01

    By virtue of its excellent bioactivity and osteoconductivity, calcium phosphate cement (CPC) has been applied extensively in bone engineering. Doping a trace element into CPC can change physical characteristics and enhance osteogenesis. The trace element lithium has been demonstrated to stimulate the proliferation and differentiation of osteoblasts. We investigated the fracture-healing effect of osteoporotic defects with lithium-doped calcium phosphate cement (Li/CPC) and the underlying mechanism. Li/CPC bodies immersed in simulated body fluid converted gradually to hydroxyapatite. Li/CPC extracts stimulated the proliferation and differentiation of osteoblasts upon release of lithium ions (Li+) at 25.35 ± 0.12 to 50.74 ± 0.13 mg/l through activation of the Wnt/β-catenin pathway in vitro. We also examined the effect of locally administered Li+ on defects in rat tibia between CPC and Li/CPC in vivo. Micro-computed tomography and histological staining showed that Li/CPC had better osteogenesis by increasing bone mass and promoting repair in defects compared with CPC (P < 0.05). Li/CPC also showed better osteoconductivity and osseointegration. These findings suggest that local release of Li+ from Li/CPC may accelerate bone regeneration from injury through activation of the Wnt/β-catenin pathway in osteoporosis.

  4. Generalization of experimental data on heat transfer in permeable shells made of porous reticular materials

    NASA Astrophysics Data System (ADS)

    Polyakov, A. F.; Strat'ev, V. K.; Tret'yakov, A. F.; Shekhter, Yu. L.

    2010-06-01

    Heat transfer from six samples of porous reticular material to cooling gas (air) at small Reynolds numbers is experimentally studied. The specific features pertinent to heat transfer essentially affected by longitudinal heat conductivity along gas flow are analyzed. The experimental results are generalized in the form of dimensionless empirical relations.

  5. [New opportunities of magnetic-resonance imaging: an algorithm of CSD-HARDI tractography in reconstruction of the brainstem reticular formation fibers].

    PubMed

    Aleksandrova, E V; Batalov, A I; Pogosbekyan, E L; Zakharova, N E; Fadeeva, L M; Kravchuk, A D; Pronin, I N; Potapov, A A

    2018-01-01

    The study purpose was to develop a technique for intravital visualization of the brainstem reticular formation fibers in healthy volunteers using magnetic resonance imaging (MRI). The study included 21 subjects (13 males and 8 females) aged 21 to 62 years. The study was performed on a magnetic resonance imaging scanner with a magnetic field strength of 3 T in T1, T2, T2-FLAIR, DWI, and SWI modes. A CSD-HARDI algorithm was used to identify thin intersecting fibers of the reticular formatio. We developed a technique for reconstructing the reticular formation pathways, tested it in healthy volunteers, and obtained standard quantitative indicators (fractional anisotropy (FA), apparent diffusion coefficient (ACD), fiber length and density, and axial and radial diffusion). We performed a comparative analysis of these indicators in males and females. There was no difference between these groups and between indicators for the right and left brainstem. Our findings will enable comparative analysis of examination results in patients with brain pathology accompanied by brainstem injury, which may help predict the outcome. This work was supported by a grant of the Russian Foundation for Basic Research (#16-04-01472).

  6. Zinc release from Schaffer collaterals and its significance.

    PubMed

    Takeda, Atsushi; Nakajima, Satoko; Fuke, Sayuri; Sakurada, Naomi; Minami, Akira; Oku, Naoto

    2006-02-15

    On the basis of the evidence that approximately 45% of Schaffer collateral boutons are zinc-positive, zinc release from Schaffer collaterals and its action were examined in hippocampal slices. When zinc release from Schaffer collaterals was examined using ZnAF-2, a membrane-impermeable zinc indicator, ZnAF-2 signal in the stratum radiatum of the CA1 was increased by tetanic stimuli at 100 Hz for 1s, suggesting that zinc is released from Schaffer collaterals in a calcium- and impulse-dependent manner. An in vivo microdialysis experiment indicated that the perfusion with 10 microM zinc significantly decreases extracellular glutamate concentration in the CA1. When tetanic stimuli at 100 Hz for 5s were delivered to the dentate granule cells, the increase in calcium signal in the stratum radiatum of the CA1, as well as in the stratum lucidum of the CA3, was attenuated by addition of 10 microM zinc, while enhanced by addition of 1mM CaEDTA, a membrane-impermeable zinc chelator. The increase in calcium signal in the CA1, in which Schaffer collateral synapses exist, during delivery of tetanic stimuli at 100 Hz for 1s to the Schaffer collateral-commissural pathway was also significantly enhanced by addition of 1mM CaEDTA. These results suggest that zinc released from Schaffer collaterals suppressively modulates presynaptic and postsynaptic calcium signaling in the CA1, followed by the suppression of glutamate release.

  7. The Nitric Oxide Donor SNAP-Induced Amino Acid Neurotransmitter Release in Cortical Neurons. Effects of Blockers of Voltage-Dependent Sodium and Calcium Channels

    PubMed Central

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    Background The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. Findings The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Conclusions Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons. PMID:24598811

  8. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    PubMed

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  9. Control of arachidonic acid release in chick muscle cultures

    NASA Technical Reports Server (NTRS)

    Templeton, G. H.; Padalino, M.; Wright, W.

    1985-01-01

    Cultures from thigh muscles of 12 day old embryonic chicks are utilized to examine arachidonic release, prostaglandin (PG) biosynthesis, and protein synthesis. The preparation of the cultures is described. It is observed that exogenous arachidonic acid is formed into photsphatidylethanolamine and phosphatidylcholine, is released by a calcium ionosphere or phospholiphase simulator, and is the substrate for the biosynthesis of PG; the epidermal growth factor and PGF do not stimulate protein synthesis over the basal levels. The relationship between arachidonate release and melittin is studied. The data reveal that a change in intracellular calcium stimulates phospholiphase activity, arachidonate release, and PG synthesis in chick muscle culture.

  10. Role of the Lymphotoxin/LIGHT System in the Development and Maintenance of Reticular Networks and Vasculature in Lymphoid Tissues

    PubMed Central

    Lu, Theresa T.; Browning, Jeffrey L.

    2014-01-01

    Lymphoid organs are meeting zones where lymphocytes come together and encounter antigens present in the blood and lymph or as delivered by cells migrating from the draining tissue bed. The exquisite efficiency of this process relies heavily on highly specialized anatomy to direct and position the various players. Gated entry and exit control access to these theaters and reticular networks and associated chemokines guide cells into the proper sections. Lymphoid tissues are remarkably plastic, being able to expand dramatically and then involute upon resolution of the danger. All of the reticular scaffolds and vascular and lymphatic components adapt accordingly. As such, the lymph node (LN) is a wonderful example of a physiologic remodeling process and is potentially a guide to study such elements in pathological settings such as fibrosis, chronic infection, and tumor metastasis. The lymphotoxin/LIGHT axis delivers critical differentiation signals that direct and hone differentiation of both reticular networks and the vasculature. Considerable progress has been made recently in understanding the mesenchymal differentiation pathways leading to these specialized networks and in the remodeling that occurs in reactive LNs. In this article, we will review some new advances in the area in terms of developmental, differentiation, and maintenance events mediated by this axis. PMID:24575096

  11. Heat-triggered reticular telangiectatic erythema induced by a spinal cord stimulator.

    PubMed

    Inzinger, Martin; Tilz, Hemma; Komericki, Peter; Schuster, Christian; Wolf, Peter; Kränke, Birger

    2013-01-01

    In recent years, cutaneous complications have been reported after implantation of medical devices as a result of their widespread use. We report a case of reticular telangiectatic erythema (RTE) after replacement of a spinal cord stimulator. To date, the pathogenesis of RTE has been poorly understood. Some reports have suggested that heat is involved, whereas others seem to contradict this observation. In our thermographic study, we found that heat can cause RTE. Copyright © 2013 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  12. Multitrophic effects of calcium availability on invasive alien plants, birds, and bird prey items

    Treesearch

    Vince D' Amico; Greg Shriver; Jake Bowman; Meg Ballard; Whitney Wiest; Liz Tymkiw; Melissa Miller

    2011-01-01

    Acid rain alters forest soil calcium concentrations in two ways: (1) hydrogen ions displace exchangeable calcium adsorbed to soil surfaces, and (2) aluminum is released to soil water by acid rain and displaces adsorbed calcium. This increases the absorption of aluminum by plant roots, and decreases the absorption of calcium, causing calcium to be more readily leached...

  13. The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons.

    PubMed

    Albéri, Lavinia; Lintas, Alessandra; Kretz, Robert; Schwaller, Beat; Villa, Alessandro E P

    2013-06-01

    The reticular thalamic nucleus (RTN) of the mouse is characterized by an overwhelming majority of GABAergic neurons receiving afferences from both the thalamus and the cerebral cortex and sending projections mainly on thalamocortical neurons. The RTN neurons express high levels of the "slow Ca(2+) buffer" parvalbumin (PV) and are characterized by low-threshold Ca(2+) currents, I(T). We performed extracellular recordings in ketamine/xylazine anesthetized mice in the rostromedial portion of the RTN. In the RTN of wild-type and PV knockout (PVKO) mice we distinguished four types of neurons characterized on the basis of their firing pattern: irregular firing (type I), medium bursting (type II), long bursting (type III), and tonically firing (type IV). Compared with wild-type mice, we observed in the PVKOs the medium bursting (type II) more frequently than the long bursting type and longer interspike intervals within the burst without affecting the number of spikes. This suggests that PV may affect the firing properties of RTN neurons via a mechanism associated with the kinetics of burst discharges. Ca(v)3.2 channels, which mediate the I(T) currents, were more localized to the somatic plasma membrane of RTN neurons in PVKO mice, whereas Ca(v)3.3 expression was similar in both genotypes. The immunoelectron microscopy analysis showed that Ca(v)3.2 channels were localized at active axosomatic synapses, thus suggesting that the differential localization of Ca(v)3.2 in the PVKOs may affect bursting dynamics. Cross-correlation analysis of simultaneously recorded neurons from the same electrode tip showed that about one-third of the cell pairs tended to fire synchronously in both genotypes, independent of PV expression. In summary, PV deficiency does not affect the functional connectivity between RTN neurons but affects the distribution of Ca(v)3.2 channels and the dynamics of burst discharges of RTN cells, which in turn regulate the activity in the thalamocortical circuit.

  14. Release of Applied Mechanical Loading Stimulates Intercellular Calcium Waves in Drosophila Wing Discs.

    PubMed

    Narciso, Cody E; Contento, Nicholas M; Storey, Thomas J; Hoelzle, David J; Zartman, Jeremiah J

    2017-07-25

    Mechanical forces are critical but poorly understood inputs for organogenesis and wound healing. Calcium ions (Ca 2+ ) are critical second messengers in cells for integrating environmental and mechanical cues, but the regulation of Ca 2+ signaling is poorly understood in developing epithelial tissues. Here we report a chip-based regulated environment for microorgans that enables systematic investigations of the crosstalk between an organ's mechanical stress environment and biochemical signaling under genetic and chemical perturbations. This method enabled us to define the essential conditions for generating organ-scale intercellular Ca 2+ waves in Drosophila wing discs that are also observed in vivo during organ development. We discovered that mechanically induced intercellular Ca 2+ waves require fly extract growth serum as a chemical stimulus. Using the chip-based regulated environment for microorgans, we demonstrate that not the initial application but instead the release of mechanical loading is sufficient, but not necessary, to initiate intercellular Ca 2+ waves. The Ca 2+ response depends on the prestress intercellular Ca 2+ activity and not on the magnitude or duration of the mechanical stimulation applied. Mechanically induced intercellular Ca 2+ waves rely on IP 3 R-mediated Ca 2+ -induced Ca 2+ release and propagation through gap junctions. Thus, intercellular Ca 2+ waves in developing epithelia may be a consequence of stress dissipation during organ growth. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Calcium silicate-based sealers: Assessment of physicochemical properties, porosity and hydration.

    PubMed

    Marciano, Marina Angélica; Duarte, Marco Antonio Hungaro; Camilleri, Josette

    2016-02-01

    Investigation of hydration, chemical, physical properties and porosity of experimental calcium silicate-based sealers. Experimental calcium silicate-based sealers with calcium tungstate and zirconium oxide radio-opacifiers were prepared by mixing 1g of powder to 0.3 mL of 80% distilled water and 20% propylene glycol. MTA and MTA Fillapex were used as controls. The raw materials and set sealers were characterized using a combination of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Physical properties were analyzed according to ANSI/ADA. The pH and calcium ion release were assessed after 3, 24, 72 and 168 h. The porosity was assessed using mercury intrusion porosimetry. The analysis of hydration of prototype sealers revealed calcium hydroxide as a by-product resulting in alkaline pH and detection of calcium ion release, with high values in initial periods. The radiopacity was similar to MTA for the sealers containing high amounts of radio-opacifiers (p>0.05). Flowability was higher and film thickness was lower for resinous MTA Fillapex sealer (p<0.05). The test sealers showed water sorption and porosity similar to MTA (p>0.05). The prototype sealers presented adequate hydration, elevated pH and calcium ion release. Regarding physical properties, elevated proportions of radio-opacifiers were necessary to accomplish adequate radiopacity, enhance flowability and reduce film thickness. All the tested sealers presented water sorption and porosity similar to MTA. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. T-cell movement on the reticular network.

    PubMed

    Donovan, Graham M; Lythe, Grant

    2012-02-21

    The idea that the apparently random motion of T cells in lymph nodes is a result of movement on a reticular network (RN) has received support from dynamic imaging experiments and theoretical studies. We present a mathematical representation of the RN consisting of edges connecting vertices that are randomly distributed in three-dimensional space, and models of lymphocyte movement on such networks including constant speed motion along edges and Brownian motion, not in three-dimensions, but only along edges. The simplest model, in which a cell moves with a constant speed along edges, is consistent with mean-squared displacement proportional to time over intervals long enough to include several changes of direction. A non-random distribution of turning angles is one consequence of motion on a preformed network. Confining cell movement to a network does not, in itself, increase the frequency of cell-cell encounters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Ethanol suppresses carbamylcholine-induced intracellular calcium oscillation in mouse pancreatic acinar cells.

    PubMed

    Yoon, Mi Na; Kim, Min Jae; Koong, Hwa Soo; Kim, Dong Kwan; Kim, Se Hoon; Park, Hyung Seo

    2017-09-01

    Oscillation of intracellular calcium levels is closely linked to initiating secretion of digestive enzymes from pancreatic acinar cells. Excessive alcohol consumption is known to relate to a variety of disorders in the digestive system, including the exocrine pancreas. In this study, we have investigated the role and mechanism of ethanol on carbamylcholine (CCh)-induced intracellular calcium oscillation in murine pancreatic acinar cells. Ethanol at concentrations of 30 and 100 mM reversibly suppressed CCh-induced Ca 2+ oscillation in a dose-dependent manner. Pretreatment of ethanol has no effect on the store-operated calcium entry induced by 10 μM of CCh. Ethanol significantly reduced the initial calcium peak induced by low concentrations of CCh and therefore, the CCh-induced dose-response curve of the initial calcium peak was shifted to the right by ethanol pretreatment. Furthermore, ethanol significantly dose-dependently reduced inositol 1,4,5-trisphosphate-induced calcium release from the internal stores in permeabilized acinar cells. These results provide evidence that excessive alcohol intake could impair cytosolic calcium oscillation through inhibiting calcium release from intracellular stores in mouse pancreatic acinar cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem.

    PubMed

    Guimarães, Bruno Martini; Prati, Carlo; Duarte, Marco Antonio Hungaro; Bramante, Clovis Monteiro; Gandolfi, Maria Giovanna

    2018-04-05

    This study aimed to analyze the following physicochemical properties: radiopacity, final setting time, calcium release, pH change, solubility, water sorption, porosity, surface morphology, and apatite-forming ability of two calcium silicate-based materials. We tested MTA Repair HP and MTA Vitalcem in comparison with conventional MTA, analyzing radiopacity and final setting time. Water absorption, interconnected pores and apparent porosity were measured after 24-h immersion in deionized water at 37°C. Calcium and pH were tested up to 28 d in deionized water. We analyzed data using two-way ANOVA with Student-Newman-Keuls tests (p<0.05). We performed morphological and chemical analyses of the material surfaces using ESEM/EDX after 28 d in HBSS. MTA Repair HP showed similar radiopacity to that of conventional MTA. All materials showed a marked alkalinizing activity within 3 h, which continued for 28 d. MTA Repair HP showed the highest calcium release at 28 d (p<0.05). MTA Vitalcem showed statistically higher water sorption and solubility values (p<0.05). All materials showed the ability to nucleate calcium phosphate on their surface after 28 d in HBSS. MTA Repair HP and MTA Vitalcem had extended alkalinizing activity and calcium release that favored calcium phosphate nucleation. The presence of the plasticizer in MTA HP might increase its solubility and porosity. The radiopacifier calcium tungstate can be used to replace bismuth oxide.

  19. Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem

    PubMed Central

    Guimarães, Bruno Martini; Prati, Carlo; Duarte, Marco Antonio Hungaro; Bramante, Clovis Monteiro; Gandolfi, Maria Giovanna

    2018-01-01

    Abstract Objective This study aimed to analyze the following physicochemical properties: radiopacity, final setting time, calcium release, pH change, solubility, water sorption, porosity, surface morphology, and apatite-forming ability of two calcium silicate-based materials. Material and methods We tested MTA Repair HP and MTA Vitalcem in comparison with conventional MTA, analyzing radiopacity and final setting time. Water absorption, interconnected pores and apparent porosity were measured after 24-h immersion in deionized water at 37°C. Calcium and pH were tested up to 28 d in deionized water. We analyzed data using two-way ANOVA with Student-Newman-Keuls tests (p<0.05). We performed morphological and chemical analyses of the material surfaces using ESEM/EDX after 28 d in HBSS. Results MTA Repair HP showed similar radiopacity to that of conventional MTA. All materials showed a marked alkalinizing activity within 3 h, which continued for 28 d. MTA Repair HP showed the highest calcium release at 28 d (p<0.05). MTA Vitalcem showed statistically higher water sorption and solubility values (p<0.05). All materials showed the ability to nucleate calcium phosphate on their surface after 28 d in HBSS. Conclusions MTA Repair HP and MTA Vitalcem had extended alkalinizing activity and calcium release that favored calcium phosphate nucleation. The presence of the plasticizer in MTA HP might increase its solubility and porosity. The radiopacifier calcium tungstate can be used to replace bismuth oxide. PMID:29641748

  20. Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients.

    PubMed

    Ueda-Arakawa, Naoko; Ooto, Sotaro; Tsujikawa, Akitaka; Yamashiro, Kenji; Oishi, Akio; Yoshimura, Nagahisa

    2013-03-01

    To identify reticular pseudodrusen (RPD) in age-related macular degeneration using multiple imaging modalities, including the blue channel image of fundus photography, infrared reflectance (IR), fundus autofluorescence, near-infrared fundus autofluorescence, confocal blue reflectance, indocyanine green angiography, and spectral-domain optical coherence tomography (SD-OCT), and to compare the sensitivities and specificities of these modalities for detecting RPD. This study included 220 eyes from 114 patients with newly diagnosed age-related macular degeneration. Patients underwent fundus photography, IR, fundus autofluorescence, near-infrared fundus autofluorescence, confocal blue reflectance, indocyanine green angiography, and SD-OCT in both eyes. Eyes were diagnosed with RPD if they showed reticular patterns on at least two of the seven imaging modalities. Thirty-seven eyes were diagnosed with RPD. However, SD-OCT and IR had the highest sensitivity (94.6%), and at the same time, SD-OCT had a high specificity (98.4%). The blue channel of color fundus photography, confocal blue reflectance, and indocyanine green angiography had a specificity of 100% but had lower sensitivity than that of SD-OCT and IR. For detecting RPD, IR and SD-OCT had the highest sensitivity. Although SD-OCT had the highest sensitivity and specificity, RPD detection should be confirmed using more than one modality for increased accuracy.

  1. Neurons in the pontomedullary reticular formation receive converging inputs from the hindlimb and labyrinth

    PubMed Central

    Miller, Derek M.; DeMayo, William M.; Bourdages, George H.; Wittman, Samuel; Yates, Bill J.; McCall, Andrew A.

    2017-01-01

    The integration of inputs from vestibular and proprioceptive sensors within the central nervous system is critical to postural regulation. We recently demonstrated in both decerebrate and conscious cats that labyrinthine and hindlimb inputs converge onto vestibular nucleus neurons. The pontomedullary reticular formation (pmRF) also plays a key role in postural control, and additionally participates in regulating locomotion. Thus, we hypothesized that like vestibular nucleus neurons, pmRF neurons integrate inputs from the limb and labyrinth. To test this hypothesis, we recorded the responses of pmRF neurons to passive ramp-and-hold movements of the hindlimb and to whole-body tilts, in both decerebrate and conscious felines. We found that pmRF neuronal activity was modulated by hindlimb movement in the rostral-caudal plane. Most neurons in both decerebrate (83% of units) and conscious (61% of units) animals encoded both flexion and extension movements of the hindlimb. Additionally, hindlimb somatosensory inputs converged with vestibular inputs onto pmRF neurons in both preparations. Pontomedullary reticular formation neurons receiving convergent vestibular and limb inputs likely participate in balance control by governing reticulospinal outflow. PMID:28188328

  2. Efficacy of graduated compression stockings for an additional 3 weeks after sclerotherapy treatment of reticular and telangiectatic leg veins.

    PubMed

    Nootheti, Pavan K; Cadag, Kristian M; Magpantay, Angela; Goldman, Mitchel P

    2009-01-01

    Sclerotherapy with post-treatment graduated compression remains the criterion standard for treating lower leg telangiectatic, reticular, and varicose veins, but the optimal duration for that postsclerotherapy compression is unknown. To determine whether 3 weeks of additional graduated compression with Class I compression stockings (20-30 mmHg) improves efficacy when used immediately after 1 week of Class II (30-40 mmHg) graduated compression stockings. Twenty-nine patients with reticular or telangiectatic leg veins were treated with sclerotherapy; one leg was assigned to wear Class II compression stocking for 1 week only, and the contralateral leg was assigned an additional 3 weeks of Class I graduated compression stocking. Postsclerotherapy pigmentation and bruising was significantly less with the addition of 3 weeks of Class I graduated compression stockings.

  3. Evolution and modulation of intracellular calcium release during long-lasting, depleting depolarization in mouse muscle

    PubMed Central

    Royer, Leandro; Pouvreau, Sandrine; Ríos, Eduardo

    2008-01-01

    Intracellular calcium signals regulate multiple cellular functions. They depend on release of Ca2+ from cellular stores into the cytosol, a process that in many types of cells appears to be tightly controlled by changes in [Ca2+] within the store. In contrast with cardiac muscle, where depletion of Ca2+ in the sarcoplasmic reticulum is a crucial determinant of termination of Ca2+ release, in skeletal muscle there is no agreement regarding the sign, or even the existence of an effect of SR Ca2+ level on Ca2+ release. To address this issue we measured Ca2+ transients in mouse flexor digitorum brevis (FDB) skeletal muscle fibres under voltage clamp, using confocal microscopy and the Ca2+ monitor rhod-2. The evolution of Ca2+ release flux was quantified during long-lasting depolarizations that reduced severely the Ca2+ content of the SR. As in all previous determinations in mammals and non-mammals, release flux consisted of an early peak, relaxing to a lower level from which it continued to decay more slowly. Decay of flux in this second stage, which has been attributed largely to depletion of SR Ca2+, was studied in detail. A simple depletion mechanism without change in release permeability predicts an exponential decay with time. In contrast, flux decreased non-exponentially, to a finite, measurable level that could be maintained for the longest pulses applied (1.8 s). An algorithm on the flux record allowed us to define a quantitative index, the normalized flux rate of change (NFRC), which was shown to be proportional to the ratio of release permeability P and inversely proportional to Ca2+ buffering power B of the SR, thus quantifying the ‘evacuability’ or ability of the SR to empty its content. When P and B were constant, flux then decayed exponentially, and NFRC was equal to the exponential rate constant. Instead, in most cases NFRC increased during the pulse, from a minimum reached immediately after the early peak in flux, to a time between 200 and 250 ms

  4. Regulation of serotonin release from enterochromaffin cells of rat cecum mucosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, C.; Ternaux, J.P.

    1990-05-01

    The release of endogenous serotonin or previously taken up tritiated serotonin from isolated strips of rat cecum mucosa containing enterochromaffin cells was studied in vitro. Release of tritiated serotonin was increased by potassium depolarization and was decreased by tetrodotoxin, veratridine and the absence of calcium. Endogenous serotonin was released at a lower rate than tritiated serotonin; endogenous serotonin release was stimulated by potassium depolarization but was unaffected by tetrodotoxin, veratridine or the absence of calcium. Carbachol, norepinephrine, clonidine and isoproterenol decreased release of tritiated serotonin but had less or reverse effect on release of endogenous serotonin. The results suggest twomore » different serotoninergic pools within the enterochromaffin cell population.« less

  5. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess.

    PubMed

    González, Alberto; Cabrera, M de Los Ángeles; Henríquez, M Josefa; Contreras, Rodrigo A; Morales, Bernardo; Moenne, Alejandra

    2012-03-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H(2)O(2)) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H(2)O(2), ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H(2)O(2) increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H(2)O(2) accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H(2)O(2). In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H(2)O(2), and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein

  6. Sustained release of neurotrophin-3 via calcium phosphate-coated sutures promotes axonal regeneration after spinal cord injury.

    PubMed

    Hanna, Amgad; Thompson, Daniel L; Hellenbrand, Daniel J; Lee, Jae-Sung; Madura, Casey J; Wesley, Meredith G; Dillon, Natalie J; Sharma, Tapan; Enright, Connor J; Murphy, William L

    2016-07-01

    Because of the dynamics of spinal cord injury (SCI), the optimal treatment will almost certainly be a combination approach to control the environment and promote axonal growth. This study uses peripheral nerve grafts (PNGs) as scaffolds for axonal growth while delivering neurotrophin-3 (NT-3) via calcium phosphate (CaP) coatings on surgical sutures. CaP coating was grown on sutures, and NT-3 binding and release were characterized in vitro. Then, the NT-3-loaded sutures were tested in a complete SCI model. Rats were analyzed for functional improvement and axonal growth into the grafts. The CaP-coated sutures exhibited a burst release of NT-3, followed by a sustained release for at least 20 days. Functionally, the rats with PNGs + NT-3-loaded sutures and the rats treated with PNGs scored significantly higher than controls on day 56 postoperatively. However, functional scores in rats treated with PNGs + NT-3-loaded suture were not significantly different from those of rats treated with PNGs alone. Cholera toxin subunit B (CTB) labeling rostral to the graft was not observed in any controls, but CTB labeling rostral to the graft was observed in almost all rats that had had a PNG. Neurofilament labeling on transverse sections of the graft revealed that the rats treated with the NT-3-loaded sutures had significantly more axons per graft than rats treated with an NT-3 injection and rats without NT-3. These data demonstrate that PNGs serve as scaffolds for axonal growth after SCI and that CaP-coated sutures can efficiently release NT-3 to increase axonal regeneration. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. SIDT2 is involved in the NAADP-mediated release of calcium from insulin secretory granules.

    PubMed

    Chang, Guoying; Yang, Rui; Cao, Yanan; Nie, Aifang; Gu, Xuefan; Zhang, Huiwen

    2016-04-01

    The Sidt2 global knockout mouse (Sidt2(-/-)) has impaired insulin secretion. The aim of this study was to assess the role of SIDT2 protein in glucose-induced insulin secretion in primary cultured mouse β-cells. The major metabolic and electrophysiological steps of glucose-induced insulin secretion of primary cultured β-cells from Sidt2(-/-) mice were investigated. The β-cells from Sidt2(-/-) mice had normal NAD(P)H responses and KATP and KV currents. However, they exhibited a lower [Ca(2+)]i peak height when stimulated with 20mM glucose compared with those from WT mice. Furthermore, it took a longer time for the [Ca(2+)]i of β-cell from Sidt2(-/-) mice to reach the peak. Pretreatment with ryanodine or 2-aminoethoxydiphenyl borate (2-APB) did not change [Ca(2+)]i the response pattern to glucose in Sidt2(-/-) cells. Extraordinarily, pretreatment with bafilomycin A1(Baf-A1) led to a comparable [Ca(2+)]i increase pattern between these two groups, suggesting that calcium traffic from the intracellular acidic compartment is defective in Sidt2(-/-) β-cells. Bath-mediated application of 50nM nicotinic acid adenine dinucleotide phosphate (NAADP) normalized the [Ca(2+)]i response of Sidt2(-/-) β-cells. Finally, glucose-induced CD38 expression increased to a comparable level between Sidt2(-/-) and WT islets, suggesting that Sidt2(-/-) islets generated NAADP normally. We conclude that Sidt2 is involved in NAADP-mediated release of calcium from insulin secretory granules and thus regulates insulin secretion. © 2016 Society for Endocrinology.

  8. Effect of particle size of calcium phosphate based bioceramic drug delivery carrier on the release kinetics of ciprofloxacin hydrochloride: an in vitro study

    NASA Astrophysics Data System (ADS)

    Sasikumar, Swamiappan

    2013-09-01

    Hydroxyapatite (HAP) is the constituent of calcium phosphate based bone cement and it is extensively used as a bone substitute and drug delivery vehicle in various biomedical applications. In the present study we investigated the release kinetics of ciprofloxacin loaded HAP and analyzed its ability to function as a targeted and sustained release drug carrier. Synthesis of HAP was carried out by combustion method using tartaric acid as a fuel and nitric acid as an oxidizer. Powder XRD and FTIR techniques were employed to characterize the phase purity of the drug carrier and to verify the chemical interaction between the drug and carrier. The synthesized powders were sieve separated to make two different drug carriers with different particle sizes and the surface topography of the pellets of the drug carrier was imaged by AFM. Surface area and porosity of the drug carrier was carried out using surface area analyzer. The in-vitro drug release kinetics was performed in simulated body fluid, at 37.3°C. The amount of ciprofloxacin released is measured using UV-visible spectroscopy following the characteristic λ max of 278 nm. The release saturates around 450 h which indicates that it can be used as a targeted and sustained release carrier for bone infections.

  9. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells.

    PubMed

    Carr, Lynn; Bardet, Sylvia M; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    Cytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators. Application of 100 pulses, to cells containing plasma membrane targeted indicators, revealed a wave of calcium across the cell initiating at the cathode side. A similar spatial wave was not observed with cytosolic indicators with mobile calcium buffering properties. The speed of the wave was related to pulse application frequency and it was not propagated by calcium induced calcium release. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Intrathecal P/Q- and R-type calcium channel blockades on spinal substance P release and c-Fos expression

    PubMed Central

    Terashima, Tetsuji; Xu, Qinghao; Yamaguchi, Shigeki; Yaksh, Tony L.

    2013-01-01

    Intrathecal (IT) studies have shown that several voltage sensitive calcium channels (VSCCs), such as the L-, N- and T-type may play roles in nociception and that of these only the N-type regulates primary afferent substance P (SP) release. However, the actions of other VSCCs at the spinal level are not well known. We investigated the roles of spinal P/Q- and R-type VSCCs, by IT administration of R-type (SNX-482) and P/Q-type (ω-agatoxin IVA) VSCC blockers on intraplantar formalin-evoked flinching, SP release from primary afferents and c-Fos expression in spinal dorsal horn. Intraplantar injection of formalin (2.5%, 50 µL) produced an intense, characteristic biphasic paw flinching response. In rats with IT catheters, IT SNX-482 (0.5 µg) reduced formalin-evoked paw flinching in both phase 1 and 2 compared with vehicle. Intraplantar formalin caused robust neurokinin 1 receptor (NK1r) internalization (indicating SP release) and c-Fos expression in the ipsilateral dorsal horn, which were blocked by IT SNX-482. IT ω-agatoxin IVA (0.03, 0.125 and 0.5 µg) did not reduce formalin-evoked paw flinching or c-Fos expression at any doses, with higher doses resulting in motor dysfunction. Thus, we demonstrated that blockade of spinal R-type, but not P/Q type VSCCs attenuated formalin-induced pain behavior, NK1r internalization and c-Fos expression in the superficial dorsal horn. This study supports a role for Cav2.3 in presynaptic neurotransmitter release from peptidergic nociceptive afferents and pain behaviors. PMID:23810829

  11. Spermine selectively inhibits high-conductance, but not low-conductance calcium-induced permeability transition pore.

    PubMed

    Elustondo, Pia A; Negoda, Alexander; Kane, Constance L; Kane, Daniel A; Pavlov, Evgeny V

    2015-02-01

    The permeability transition pore (PTP) is a large channel of the mitochondrial inner membrane, the opening of which is the central event in many types of stress-induced cell death. PTP opening is induced by elevated concentrations of mitochondrial calcium. It has been demonstrated that spermine and other polyamines can delay calcium-induced swelling of isolated mitochondria, suggesting their role as inhibitors of the mitochondrial PTP. Here we further investigated the mechanism by which spermine inhibits the calcium-induced, cyclosporine A (CSA) -sensitive PTP by using three indicators: 1) calcium release from the mitochondria detected with calcium green, 2) mitochondrial membrane depolarization using TMRM, and 3) mitochondrial swelling by measuring light absorbance. We found that despite calcium release and membrane depolarization, indicative of PTP activation, mitochondria underwent only partial swelling in the presence of spermine. This was in striking contrast to the high-amplitude swelling detected in control mitochondria and in mitochondria treated with the PTP inhibitor CSA. We conclude that spermine selectively prevents opening of the high-conductance state, while allowing activation of the lower conductance state of the PTP. We propose that the existence of lower conductance, stress-induced PTP might play an important physiological role, as it is expected to allow the release of toxic levels of calcium, while keeping important molecules (e.g., NAD) within the mitochondrial matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Electrosynthesis of magnetoresponsive microrobot for targeted drug delivery using calcium alginate.

    PubMed

    Chengzhi Hu; Riederer, Katharina; Klemmer, Michael; Pane, Salvador; Nelson, Bradley J

    2016-08-01

    Targeted drug delivery systems deliver drugs precisely to a specific targeted site inside the body, and can also release the drugs with controlled kinetics to prolong the efficacy of single dose administration. The advantageous properties of hydrogels make them attractive for use in the area of drug delivery. Calcium alginate is a pH sensitive hydrogel stable in acidic media and soluble in basic media. This enables the hydrogel to absorb and release aqueous solutions at certain ranges of pH values. By absorbing an aqueous solution containing a drug, an active drug release can be triggered at a specified range of pH value. In this paper, we combined calcium alginate with cobalt nickel (CoNi) in a cylindrical hybrid micro robot by electrodeposition. The designed microrobot can be wirelessly actuated with an external magnetic manipulation system and, hence, targeted to a specific location in the human body. At this specific location, characterized by its pH range, the absorbed drug will be released. Here, the fabrication steps of the specified microrobot are characterized, namely the production of a template on a silicon chip and the subsequent template-assisted electrodeposition of CoNi and alginate. Additionally, the dynamics of drug release of calcium alginate is studied.

  13. Evaluation of pH and calcium ion diffusion from calcium hydroxide pastes and MTA.

    PubMed

    Sáez, María Del M; López, Gabriela L; Atlas, Diana; de la Casa, María L

    2017-04-01

    The aim of this ex vivo study was to evaluate changes in pH and calcium ion diffusion through root dentin from calcium hydroxide (Ca (OH) 2 ) and mineral trioxide aggregate (MTA) pastes at 7, 30 and 60 days; and the relationship between pH and ion diffusion. Thirty-two human premolars were used. Crowns were sectioned and root canals instrumented and filled in with the following preparations: 1) Ca(OH) 2 + distilled water (n=7); 2) Ca(OH) 2 + 0.1% chlorhexidine gluconate (n=7); 3) MTA + distilled water (n=7); 4) MTA + 0.1% chlorhexidine gluconate (CHX) (n=7); 5) distilled water (n=2) (control); 6) 0.1% chlorhexidine gluconate (n=2) (control). The apex and coronary opening were sealed with IRM. Roots were placed in Eppendorf tubes with 1 ml distilled water at 37°C and 100% humidity. At baseline, 7, 30 and 60 days, pH was measured with pH meter, and calcium ion content in the solution was analyzed by atomic absorption spectrophotometry. The data were statistically analyzed using ANOVA, simple linear regression analysis and Pearson's correlation test. The highest pH values were achieved with calcium hydroxide pastes at 60 days (p ≤ 0.05). Calcium ions were released in all groups. The calcium hydroxide paste with distilled water at 60 days had the highest calcium ion value (p ≤ 0.01). There was a positive correlation between calcium and pH values. Sociedad Argentina de Investigación Odontológica.

  14. Reticular Formation and Pain: The Past and the Future

    PubMed Central

    Martins, Isabel; Tavares, Isaura

    2017-01-01

    The involvement of the reticular formation (RF) in the transmission and modulation of nociceptive information has been extensively studied. The brainstem RF contains several areas which are targeted by spinal cord afferents conveying nociceptive input. The arrival of nociceptive input to the RF may trigger alert reactions which generate a protective/defense reaction to pain. RF neurons located at the medulla oblongata and targeted by ascending nociceptive information are also involved in the control of vital functions that can be affected by pain, namely cardiovascular control. The RF contains centers that belong to the pain modulatory system, namely areas involved in bidirectional balance (decrease or enhancement) of pain responses. It is currently accepted that the imbalance of pain modulation towards pain facilitation accounts for chronic pain. The medullary RF has the peculiarity of harboring areas involved in bidirectional pain control namely by the existence of specific neuronal populations involved in antinociceptive or pronociceptive behavioral responses, namely at the rostroventromedial medulla (RVM) and the caudal ventrolateral medulla (VLM). Furthermore the dorsal reticular nucleus (also known as subnucleus reticularis dorsalis; DRt) may enhance nociceptive responses, through a reverberative circuit established with spinal lamina I neurons and inhibit wide-dynamic range (WDR) neurons of the deep dorsal horn. The components of the triad RVM-VLM-DRt are reciprocally connected and represent a key gateway for top-down pain modulation. The RVM-VLM-DRt triad also represents the neurobiological substrate for the emotional and cognitive modulation of pain, through pathways that involve the periaqueductal gray (PAG)-RVM connection. Collectively, we propose that the RVM-VLM-DRt triad represents a key component of the “dynamic pain connectome” with special features to provide integrated and rapid responses in situations which are life-threatening and involve

  15. Reticular Formation and Pain: The Past and the Future.

    PubMed

    Martins, Isabel; Tavares, Isaura

    2017-01-01

    The involvement of the reticular formation (RF) in the transmission and modulation of nociceptive information has been extensively studied. The brainstem RF contains several areas which are targeted by spinal cord afferents conveying nociceptive input. The arrival of nociceptive input to the RF may trigger alert reactions which generate a protective/defense reaction to pain. RF neurons located at the medulla oblongata and targeted by ascending nociceptive information are also involved in the control of vital functions that can be affected by pain, namely cardiovascular control. The RF contains centers that belong to the pain modulatory system, namely areas involved in bidirectional balance (decrease or enhancement) of pain responses. It is currently accepted that the imbalance of pain modulation towards pain facilitation accounts for chronic pain. The medullary RF has the peculiarity of harboring areas involved in bidirectional pain control namely by the existence of specific neuronal populations involved in antinociceptive or pronociceptive behavioral responses, namely at the rostroventromedial medulla (RVM) and the caudal ventrolateral medulla (VLM). Furthermore the dorsal reticular nucleus (also known as subnucleus reticularis dorsalis; DRt) may enhance nociceptive responses, through a reverberative circuit established with spinal lamina I neurons and inhibit wide-dynamic range (WDR) neurons of the deep dorsal horn. The components of the triad RVM-VLM-DRt are reciprocally connected and represent a key gateway for top-down pain modulation. The RVM-VLM-DRt triad also represents the neurobiological substrate for the emotional and cognitive modulation of pain, through pathways that involve the periaqueductal gray (PAG)-RVM connection. Collectively, we propose that the RVM-VLM-DRt triad represents a key component of the "dynamic pain connectome" with special features to provide integrated and rapid responses in situations which are life-threatening and involve pain

  16. Calcium movements during pigment aggregation in freshwater shrimp chromatophores.

    PubMed

    Ribeiro, Márcia; McNamara, John Campbell

    2007-02-01

    Pigment granule migration within crustacean chromatophores provides an excellent model with which to investigate cytoplasmic movements, given the antagonistic, neurosecretory peptide regulation of granule translocation, and the absence of innervation in these large, brightly colored cells. Red pigment-concentrating hormone (RPCH) induces pigment aggregation in shrimp chromatophores via an increase in intracellular Ca2+; however, how this increase is brought about is not known. To examine the putative Ca2+ movements leading to pigment translocation in red, ovarian chromatophores of the freshwater shrimp, Macrobrachium olfersii, this study manipulates intra- and extracellular Ca2+ employing ER Ca2+-ATPase inhibitors, ryanodine-sensitive, ER Ca2+ channel blockers, and EDTA/EGTA-buffered A23187/Ca2+-containing salines. Our findings reveal that during pigment aggregation, cytosolic Ca2+ apparently increases from an intracellular source, the abundant SER, loaded by the SERCA and released through ryanodine-sensitive receptor/channels, triggered by capacitative calcium influx and/or calcium-induced calcium release mechanisms. Aggregation also depends on external calcium, which may modulate RPCH/receptor coupling. Such calcium-regulated pigment movements form the basis of a complex system of chromatic adaptation, which confers selective advantages like camouflage and protection against ultra-violet radiation to this palaemonid shrimp.

  17. Electrically evoked reticular lamina and basilar membrane vibrations in mice with alpha tectorin C1509G mutation

    NASA Astrophysics Data System (ADS)

    Ren, Tianying; He, Wenxuan

    2015-12-01

    Mechanical coupling between the tectorial membrane and the hair bundles of outer hair cells is crucial for stimulating mechanoelectrical transduction channels, which convert sound-induced vibrations into electrical signal, and for transmitting outer hair cell-generated force back to the basilar membrane to boost hearing sensitivity. It has been demonstrated that the detached tectorial membrane in mice with C1509G alpha tectorin mutation caused hearing loss, but enhanced electrically evoked otoacoustic emissions. To understand how the mutated cochlea emits sounds, the reticular lamina and basilar membrane vibrations were measured in the electrically stimulated cochlea in this study. The results showed that the electrically evoked basilar membrane vibration decreased dramatically while the reticular lamina vibration and otoacoustic emissions exhibited no significant change in C1509G mutation mice. This result indicates that a functional cochlear amplifier and a normal basilar membrane vibration are not required for the outer hair cell-generated sound to exit the cochlea.

  18. Importance of vesicle release stochasticity in neuro-spike communication.

    PubMed

    Ramezani, Hamideh; Akan, Ozgur B

    2017-07-01

    Aim of this paper is proposing a stochastic model for vesicle release process, a part of neuro-spike communication. Hence, we study biological events occurring in this process and use microphysiological simulations to observe functionality of these events. Since the most important source of variability in vesicle release probability is opening of voltage dependent calcium channels (VDCCs) followed by influx of calcium ions through these channels, we propose a stochastic model for this event, while using a deterministic model for other variability sources. To capture the stochasticity of calcium influx to pre-synaptic neuron in our model, we study its statistics and find that it can be modeled by a distribution defined based on Normal and Logistic distributions.

  19. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging

    PubMed Central

    Jayasinghe, Isuru D.; Munro, Michelle; Baddeley, David; Launikonis, Bradley S.; Soeller, Christian

    2014-01-01

    Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres in the molecular organization of ryanodine receptors (RyRs; the primary calcium release channels) within triads. With the improved resolution offered by dSTORM, abutting arrays of RyRs in transverse view of fast fibres were observed in contrast to the fragmented distribution on slow-twitch muscle that were approximately 1.8 times shorter and consisted of approximately 1.6 times fewer receptors. To the best of our knowledge, for the first time, we have quantified the nanometre-scale spatial association between triadic proteins using multi-colour super-resolution, an analysis difficult to conduct with electron microscopy. Our findings confirm that junctophilin-1 (JPH1), which tethers the sarcoplasmic reticulum ((SR) intracellular calcium store) to the tubular (t-) system at triads, was present throughout the RyR array, whereas JPH2 was contained within much smaller nanodomains. Similar imaging of the primary SR calcium buffer, calsequestrin (CSQ), detected less overlap of the triad with CSQ in slow-twitch muscle supporting greater spatial heterogeneity in the luminal Ca2+ buffering when compared with fast twitch muscle. Taken together, these nanoscale differences can explain the fundamentally different physiologies of fast- and slow-twitch muscle. PMID:25100314

  20. Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp release.

    PubMed

    Dahal, Giri Raj; Pradhan, Sarala Joshi; Bates, Emily Anne

    2017-08-01

    Loss of embryonic ion channel function leads to morphological defects, but the underlying reason for these defects remains elusive. Here, we show that inwardly rectifying potassium (Irk) channels regulate release of the Drosophila bone morphogenetic protein Dpp in the developing fly wing and that this is necessary for developmental signaling. Inhibition of Irk channels decreases the incidence of distinct Dpp-GFP release events above baseline fluorescence while leading to a broader distribution of Dpp-GFP. Work by others in different cell types has shown that Irk channels regulate peptide release by modulating membrane potential and calcium levels. We found calcium transients in the developing wing, and inhibition of Irk channels reduces the duration and amplitude of calcium transients. Depolarization with high extracellular potassium evokes Dpp release. Taken together, our data implicate Irk channels as a requirement for regulated release of Dpp, highlighting the importance of the temporal pattern of Dpp presentation for morphogenesis of the wing. © 2017. Published by The Company of Biologists Ltd.

  1. Reticular Formation Connections Underlying Horizontal Gaze: The Central Mesencephalic Reticular Formation (cMRF) as a Conduit for the Collicular Saccade Signal.

    PubMed

    Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan; May, Paul J

    2017-01-01

    The central mesencephalic reticular formation (cMRF) occupies much of the core of the midbrain tegmentum. Physiological studies indicate that it is involved in controlling gaze changes, particularly horizontal saccades. Anatomically, it receives input from the ipsilateral superior colliculus (SC) and it has downstream projections to the brainstem, including the horizontal gaze center located in the paramedian pontine reticular formation (PPRF). Consequently, it has been hypothesized that the cMRF plays a role in the spatiotemporal transformation needed to convert spatially coded collicular saccade signals into the temporally coded signals utilized by the premotor neurons of the horizontal gaze center. In this study, we used neuroanatomical tracers to examine the patterns of connectivity of the cMRF in macaque monkeys in order to determine whether the circuit organization supports this hypothesis. Since stimulation of the cMRF produces contraversive horizontal saccades and stimulation of the horizontal gaze center produces ipsiversive saccades, this would require an excitatory cMRF projection to the contralateral PPRF. Injections of anterograde tracers into the cMRF did produce labeled terminals within the PPRF. However, the terminations were denser ipsilaterally. Since the PPRF located contralateral to the movement direction is generally considered to be silent during a horizontal saccade, we then tested the hypothesis that this ipsilateral reticuloreticular pathway might be inhibitory. The ultrastructure of ipsilateral terminals was heterogeneous, with some displaying more extensive postsynaptic densities than others. Postembedding immunohistochemistry for gamma-aminobutyric acid (GABA) indicated that only a portion (35%) of these cMRF terminals are GABAergic. Dual tracer experiments were undertaken to determine whether the SC provides input to cMRF reticuloreticular neurons projecting to the ipsilateral pons. Retrogradely labeled reticuloreticular neurons were

  2. Reticular Formation Connections Underlying Horizontal Gaze: The Central Mesencephalic Reticular Formation (cMRF) as a Conduit for the Collicular Saccade Signal

    PubMed Central

    Wang, Niping; Perkins, Eddie; Zhou, Lan; Warren, Susan; May, Paul J.

    2017-01-01

    The central mesencephalic reticular formation (cMRF) occupies much of the core of the midbrain tegmentum. Physiological studies indicate that it is involved in controlling gaze changes, particularly horizontal saccades. Anatomically, it receives input from the ipsilateral superior colliculus (SC) and it has downstream projections to the brainstem, including the horizontal gaze center located in the paramedian pontine reticular formation (PPRF). Consequently, it has been hypothesized that the cMRF plays a role in the spatiotemporal transformation needed to convert spatially coded collicular saccade signals into the temporally coded signals utilized by the premotor neurons of the horizontal gaze center. In this study, we used neuroanatomical tracers to examine the patterns of connectivity of the cMRF in macaque monkeys in order to determine whether the circuit organization supports this hypothesis. Since stimulation of the cMRF produces contraversive horizontal saccades and stimulation of the horizontal gaze center produces ipsiversive saccades, this would require an excitatory cMRF projection to the contralateral PPRF. Injections of anterograde tracers into the cMRF did produce labeled terminals within the PPRF. However, the terminations were denser ipsilaterally. Since the PPRF located contralateral to the movement direction is generally considered to be silent during a horizontal saccade, we then tested the hypothesis that this ipsilateral reticuloreticular pathway might be inhibitory. The ultrastructure of ipsilateral terminals was heterogeneous, with some displaying more extensive postsynaptic densities than others. Postembedding immunohistochemistry for gamma-aminobutyric acid (GABA) indicated that only a portion (35%) of these cMRF terminals are GABAergic. Dual tracer experiments were undertaken to determine whether the SC provides input to cMRF reticuloreticular neurons projecting to the ipsilateral pons. Retrogradely labeled reticuloreticular neurons were

  3. Calcium signalling silencing in atrial fibrillation.

    PubMed

    Greiser, Maura

    2017-06-15

    Subcellular calcium signalling silencing is a novel and distinct cellular and molecular adaptive response to rapid cardiac activation. Calcium signalling silencing develops during short-term sustained rapid atrial activation as seen clinically during paroxysmal atrial fibrillation (AF). It is the first 'anti-arrhythmic' adaptive response in the setting of AF and appears to counteract the maladaptive changes that lead to intracellular Ca 2+ signalling instability and Ca 2+ -based arrhythmogenicity. Calcium signalling silencing results in a failed propagation of the [Ca 2+ ] i signal to the myocyte centre both in patients with AF and in a rabbit model. This adaptive mechanism leads to a substantial reduction in the expression levels of calcium release channels (ryanodine receptors, RyR2) in the sarcoplasmic reticulum, and the frequency of Ca 2+ sparks and arrhythmogenic Ca 2+ waves remains low. Less Ca 2+ release per [Ca 2+ ] i transient, increased fast Ca 2+ buffering strength, shortened action potentials and reduced L-type Ca 2+ current contribute to a substantial reduction of intracellular [Na + ]. These features of Ca 2+ signalling silencing are distinct and in contrast to the changes attributed to Ca 2+ -based arrhythmogenicity. Some features of Ca 2+ signalling silencing prevail in human AF suggesting that the Ca 2+ signalling 'phenotype' in AF is a sum of Ca 2+ stabilizing (Ca 2+ signalling silencing) and Ca 2+ destabilizing (arrhythmogenic unstable Ca 2+ signalling) factors. Calcium signalling silencing is a part of the mechanisms that contribute to the natural progression of AF and may limit the role of Ca 2+ -based arrhythmogenicity after the onset of AF. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  4. Vincristine-sulphate-loaded liposome-templated calcium phosphate nanoshell as potential tumor-targeting delivery system.

    PubMed

    Thakkar, Hetal Paresh; Baser, Amit Kumar; Parmar, Mayur Prakashbhai; Patel, Ketul Harshadbhai; Ramachandra Murthy, Rayasa

    2012-06-01

    Vincristine-sulfate-loaded liposomes were prepared with an aim to improve stability, reduce drug leakage during systemic circulation, and increase intracellular uptake. Liposomes were prepared by the thin-film hydration method, followed by coating with calcium phosphate, using the sequential addition approach. Prepared formulations were characterized for size, zeta potential, drug-entrapment efficiency, morphology by transmission electron microscopy (TEM), in vitro drug-release profile, and in vitro cell cytotoxicity study. Effect of formulation variables, such as drug:lipid ratio as well as nature and volume of hydration media, were found to affect drug entrapment, and the concentration of calcium chloride in coating was found to affect size and coating efficiency. Size, zeta potential, and TEM images confirmed that the liposomes were effectively coated with calcium phosphate. The calcium phosphate nanoshell exhibited pH-dependent drug release, showing significantly lower release at pH 7.4, compared to the release at pH 4.5, which is the pH of the tumor interstitium. The in vitro cytotoxicity study done on the lung cancer cell line indicated that coated liposomes are more cytotoxic than plain liposomes and drug solution, indicating their potential for intracellular drug delivery. The cell-uptake study done on the lung cancer cell line indicated that calcium-phosphate-coated liposomes show higher cell uptake than uncoated liposomes.

  5. Calcium Domains around Single and Clustered IP3 Receptors and Their Modulation by Buffers

    PubMed Central

    Rüdiger, S.; Nagaiah, Ch.; Warnecke, G.; Shuai, J.W.

    2010-01-01

    Abstract We study Ca2+ release through single and clustered IP3 receptor channels on the ER membrane under presence of buffer proteins. Our computational scheme couples reaction-diffusion equations and a Markovian channel model and allows our investigating the effects of buffer proteins on local calcium concentrations and channel gating. We find transient and stationary elevations of calcium concentrations around active channels and show how they determine release amplitude. Transient calcium domains occur after closing of isolated channels and constitute an important part of the channel's feedback. They cause repeated openings (bursts) and mediate increased release due to Ca2+ buffering by immobile proteins. Stationary domains occur during prolonged activity of clustered channels, where the spatial proximity of IP3Rs produces a distinct [Ca2+] scale (0.5–10 μM), which is smaller than channel pore concentrations (>100 μM) but larger than transient levels. While immobile buffer affects transient levels only, mobile buffers in general reduce both transient and stationary domains, giving rise to Ca2+ evacuation and biphasic modulation of release amplitude. Our findings explain recent experiments in oocytes and provide a general framework for the understanding of calcium signals. PMID:20655827

  6. Binding and release of brain calcium by low-level electromagnetic fields: A review

    NASA Astrophysics Data System (ADS)

    Adey, W. R.; Bawin, S. M.

    Evidence has accumulated that sensitivity of brain tissue to specific weak oscillating electromagnetic fields occurs in the absence of significant tissue heating (less than 0.1°C). This review focuses on the ‘windowed’ character of sensitivities of calcium binding and electrical activity in brain tissue to low-frequency modulation and intensity characteristics of impressed RF fields. ELF fields decrease calcium efflux from isolated chick and cat cerebral tissue by about 15% only in narrow amplitude and frequency ‘windows,’ between 6 and 20 Hz and between 10 and 100 V/m (approximate tissue gradient, 10-7 V/cm). VHF (147 MHz) and UHF (450 MHz) fields increase calcium efflux from isolated chick brain by about 15% when amplitude modulated between 6 and 20 Hz, but only for incident fields in the vicinity of 1.0 mW/cm2. We have now shown that this increased efflux in response to 16-Hz amplitude-modulated 450-MHz, 0.75-mW/cm2 field exposure is insensitive to variations in calcium concentration from 0 to 4.16 mM in the testing solution but is enhanced by addition of hydrogen ions (0.108 mM 0.1 N HCl) and inhibited in the absence of normal bicarbonate ion levels (2.4 mM). In the presence of lanthanum ions (2.0 mM), which block transmembrane movement of calcium, exposure to these EM fields decreases the 45Ca2 + efflux. Low-frequency gradients may be transduced in a specific class of extracellular binding sites, normally occupied by calcium ions and susceptible to competitive hydrogen ion binding. Transductive coupling may involve coherent charge states between anionic sites on membrane surface glycoproteins, with longrange cooperative interactions triggered by weak extracellular electric fields. Proton ‘tunneling’ may occur at boundaries between coherent and noncoherent charge zones.

  7. Transition dynamics of generalized multiple epileptic seizures associated with thalamic reticular nucleus excitability: A computational study

    NASA Astrophysics Data System (ADS)

    Liu, Suyu; Wang, Qingyun

    2017-11-01

    Presently, we improve a computational framework of thalamocortical circuits related to the Taylor's model to investigate the relationship between thalamic reticular nucleus (RE) excitability and epilepsy. By using bifurcation analysis, we explore the RE's excitability dynamics mechanism in the processes of seizure generation, development and transition. Results show that the seizure-free state, absence seizures, clonic seizures and tonic seizures can be formed as the RE excitability is changed in this established model. Importantly, it is verified that physiological changing GABAA inhibition in RE can elicit absence seizures and clonic seizures and the pathological transitions between these two seizures. Furthermore, when the level of AMPA connection is decreased or increased, this proposed model embraces absence seizures and clonic seizures, and tonic seizures, respectively. Except that, bifurcation mechanisms of dynamical transition of different seizures are analyzed in detail. In addition, hybrid regulations of the reticular nucleus excitability for epileptic seizures are proven to be valid within the suitable levels of AMPA and GABAA connection. Hopefully, the obtained results could be helpful for effective control of epileptic activities with additional pharmacological interference.

  8. Rapid frequency‐dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes

    PubMed Central

    Wüst, Rob C. I.; Helmes, Michiel; Martin, Jody L.; van der Wardt, Thomas J. T.; Musters, René J. P.; van der Velden, Jolanda

    2017-01-01

    Key points Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle.The magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiac myocytes are largely unknown.Rapid stimulation frequency‐dependent increases but relatively slow decreases in free mitochondrial calcium concentration were observed in rat cardiac myocytes. This asymmetry caused a rise in the mitochondrial calcium concentration with stimulation frequency.These results provide insight into the mechanisms of mitochondrial calcium uptake and release that are important in healthy and diseased myocardium. Abstract Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle. Little is known about the magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiomyocytes. Using adenoviral infection, a ratiometric mitochondrially targeted Förster resonance energy transfer (FRET)‐based calcium indicator (4mtD3cpv, MitoCam) was expressed in cultured adult rat cardiomyocytes and the free mitochondrial calcium concentration ([Ca2+]m) was measured at different stimulation frequencies (0.1–4 Hz) and external calcium concentrations (1.8–3.6 mm) at 37°C. Cytosolic calcium concentrations were assessed under the same experimental conditions in separate experiments using Fura‐4AM. The increases in [Ca2+]m during electrical stimulation at 0.1 Hz were rapid (rise time = 49 ± 2 ms), while the decreases in [Ca2+]m occurred more slowly (decay half time = 1.17 ± 0.07 s). Model calculations confirmed that this asymmetry caused the rise in [Ca2+]m during diastole observed at elevated stimulation frequencies. Inhibition of the mitochondrial sodium–calcium exchanger (mNCE) resulted in a rise in [Ca2+]m at baseline and, paradoxically, in an

  9. Formation of fibroblastic reticular network in the brain after infection with neurovirulent murine coronavirus.

    PubMed

    Watanabe, Rihito; Kakizaki, Masatoshi; Ikehara, Yuzuru; Togayachi, Akira

    2016-12-01

    cl-2 virus is an extremely neurovirulent murine coronavirus. However, during the initial phase of infection between 12 and 24 h post-inoculation (hpi), the viral antigens are detected only in the meninges, followed by viral spread into the ventricular wall before invasion into the brain parenchyma, indicating that the viruses employ a passage between the meninges and ventricular wall as an entry route into the brain parenchyma. At 48 hpi, the passage was found to be constructed by ER-TR7 antigen (ERag)-positive fibers (ERfibs) associated with laminin and collagen III between the fourth ventricle and meninges at the cerebellopontine angle. The construct of the fibers mimics the reticular fibers of the fibroblastic reticular network, which comprises a conduit system in the lymphoid organs. In the meninges, ERfibs together with collagen fibers, lining in a striped pattern, made up a pile of thin sheets. In the brain parenchyma, mature ERfibs associated with laminin were found around blood vessels. Besides mature ERfibs, immature Erfibs without associations with other extracellular matrix components like laminin and collagen appeared after infection, suggesting that the CNS creates a unique conduit system for immune communication triggered by viral invasion. © 2016 Japanese Society of Neuropathology.

  10. Hydrogeochemical signatures of catchment evolution - the role of calcium and sulphate release in the constructed Hühnerwasser ("Chicken Creek") catchment

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Hu, Yuzhu; Schaaf, Wolfgang; Gerwin, Werner; Hinz, Christoph

    2016-04-01

    The constructed Hühnerwasser ("Chicken Creek") catchment is an ecohydrological system in an initial state of development. The catchment with an area of 6 ha was built up from quaternary sediments in the post-mining landscape of Lusatia in Eastern Germany and serves as a critical zone observatory for detecting ecosystem transition. The soil substrate is characterized as sands to loamy sands with low carbonate contents but significant amounts of gypsum in the sediments of the catchment. The catchment undergoes a strong transition from an abiotic system in the initial years to a system with growing influence of biota. Concerning the hydrology, a regime shift from surface runoff to groundwater flow dominated processes is significant. It is of interest, whether the catchment transition is also reflected by hydrogeochemical indicators. We assume gypsum dissolution as dominant process at the catchment scale. In order to investigate the hydrogeochemical evolution of the catchment we analysed electric conductivity, calcium and sulphate concentrations and pH-values of biweekly composite samples from 2007-2013 of the atmospheric deposition, of runoff and soil water. The two observation points in the flowing water represent surface runoff and groundwater discharge respectively. Soil water has been analysed at four soil pits in three depths. The monitoring data were provided by the Research Platform Chicken Creek (https://www.tu-cottbus.de/projekte/en/oekosysteme/startseite.html). From the macroscopic data analysis we found an exponential decay of the electric conductivity, calcium and sulphate concentrations in the flowing waters and some of the soil pits. In the flowing water, the decrease slope of the electric conductivity and the calcium and sulphate concentrations is almost identical. The calcium / sulphate molar ratio as an indicator of gypsum dissolution is almost equal to one up to 2010, afterwards more calcium than sulphate is released. The pH-values in the flowing

  11. Sleep Duration Varies as a Function of Glutamate and GABA in Rat Pontine Reticular Formation

    PubMed Central

    Watson, Christopher J.; Lydic, Ralph; Baghdoyan, Helen A.

    2011-01-01

    The oral part of the pontine reticular formation (PnO) is a component of the ascending reticular activating system and plays a role in the regulation of sleep and wakefulness. The PnO receives glutamatergic and GABAergic projections from many brain regions that regulate behavioral state. Indirect, pharmacological evidence has suggested that glutamatergic and GABAergic signaling within the PnO alters traits that characterize wakefulness and sleep. No previous studies have simultaneously measured endogenous glutamate and GABA from rat PnO in relation to sleep and wakefulness. The present study utilized in vivo microdialysis coupled on-line to capillary electrophoresis with laser-induced fluorescence to test the hypothesis that concentrations of glutamate and GABA in the PnO vary across the sleep/wake cycle. Concentrations of glutamate and GABA were significantly higher during wakefulness than during NREM sleep and REM sleep. Regression analysis revealed that decreases in glutamate and GABA accounted for a significant portion of the variance in the duration of NREM sleep and REM sleep episodes. These data provide novel support for the hypothesis that endogenous glutamate and GABA in the PnO contribute to the regulation of sleep duration. PMID:21679185

  12. The Monoamine Brainstem Reticular Formation as a Paradigm for Re-Defining Various Phenotypes of Parkinson's Disease Owing Genetic and Anatomical Specificity.

    PubMed

    Gambardella, Stefano; Ferese, Rosangela; Biagioni, Francesca; Busceti, Carla L; Campopiano, Rosa; Griguoli, Anna M P; Limanaqi, Fiona; Novelli, Giuseppe; Storto, Marianna; Fornai, Francesco

    2017-01-01

    The functional anatomy of the reticular formation (RF) encompasses a constellation of brain regions which are reciprocally connected to sub-serve a variety of functions. Recent evidence indicates that neuronal degeneration within one of these regions spreads synaptically along brainstem circuitries. This is exemplified by the recruitment of various brainstem reticular nuclei in specific Parkinson's disease (PD) phenotypes, and by retrospective analysis of lethargic post-encephalitic parkinsonism. In fact, the spreading to various monoamine reticular nuclei can be associated with occurrence of specific motor and non-motor symptoms (NMS). This led to re-consider PD as a brainstem monoamine disorder (BMD). This definition surpasses the anatomy of meso-striatal motor control to include a variety of non-motor domains. This concept clearly emerges from the quite specific clinical-anatomical correlation which can be drawn in specific paradigms of PD genotypes. Therefore, this review article focuses on the genetics and neuroanatomy of three PD genotypes/phenotypes which can be selected as prototype paradigms for a differential recruitment of the RF leading to differential occurrence of NMS: (i) Parkin-PD, where NMS are rarely reported; (ii) LRRK2-PD and slight SNC point mutations, where the prevalence of NMS resembles idiopathic PD; (iii) Severe SNCA point mutations and multiplications, where NMS are highly represented.

  13. Acetylcholine released by endothelial cells facilitates flow‐mediated dilatation

    PubMed Central

    Wilson, Calum; Lee, Matthew D.

    2016-01-01

    Key points The endothelium plays a pivotal role in the vascular response to chemical and mechanical stimuli.The endothelium is exquisitely sensitive to ACh, although the physiological significance of ACh‐induced activation of the endothelium is unknown.In the present study, we investigated the mechanisms of flow‐mediated endothelial calcium signalling.Our data establish that flow‐mediated endothelial calcium responses arise from the autocrine action of non‐neuronal ACh released by the endothelium. Abstract Circulating blood generates frictional forces (shear stress) on the walls of blood vessels. These frictional forces critically regulate vascular function. The endothelium senses these frictional forces and, in response, releases various vasodilators that relax smooth muscle cells in a process termed flow‐mediated dilatation. Although some elements of the signalling mechanisms have been identified, precisely how flow is sensed and transduced to cause the release of relaxing factors is poorly understood. By imaging signalling in large areas of the endothelium of intact arteries, we show that the endothelium responds to flow by releasing ACh. Once liberated, ACh acts to trigger calcium release from the internal store in endothelial cells, nitric oxide production and artery relaxation. Flow‐activated release of ACh from the endothelium is non‐vesicular and occurs via organic cation transporters. ACh is generated following mitochondrial production of acetylCoA. Thus, we show ACh is an autocrine signalling molecule released from endothelial cells, and identify a new role for the classical neurotransmitter in endothelial mechanotransduction. PMID:27730645

  14. [Study on solid dispersion of precipitated calcium carbonate-based oleanolic acid].

    PubMed

    Yan, Hong-mei; Zhang, Zhen-hai; Jia, Xiao-bin; Jiang, Yan-rong; Sun, E

    2015-05-01

    Oleanolic acid-precipitated calcium carbonate solid dispersion was prepared by using solvent evaporation method. The microscopic structure and physicochemical properties of solid dispersion were analyzed using differential scanning calorimetry and scanning electron microscopy (SEM). And its in vitro release also was investigated. The properties of the precipitated calcium carbonate was studied which was as a carrier of oleanolic acid solid dispersion. Differential scanning calorimetry analysis suggested that oleanolic acid may be present in solid dispersion as amorphous substance. The in vitro release determination results of oleanolic acid-precipitated calcium carbonate (1: 5) solid dispersion showed accumulated dissolution rate of.oleanolic acid was up to 90% at 45 min. Accelerating experiment showed that content and in vitro dissolution of oleanolic acid solid dispersion did not change after storing over 6 months. The results indicated that in vitro dissolution of oleanolic acid was improved greatly by the solid dispersion with precipitated calcium carbonate as a carrier. The solid dispersion is a stabilizing system which has actual applied value.

  15. Filamin and Phospholipase C-ε Are Required for Calcium Signaling in the Caenorhabditis elegans Spermatheca

    PubMed Central

    Kovacevic, Ismar; Orozco, Jose M.; Cram, Erin J.

    2013-01-01

    The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue. PMID:23671426

  16. Modification of caffeine-induced injury in Ca2+-free perfused rat hearts. Relationship to the calcium paradox.

    PubMed Central

    Vander Heide, R. S.; Altschuld, R. A.; Lamka, K. G.; Ganote, C. E.

    1986-01-01

    The pathogenesis of the calcium paradox has not been established. In calcium-free perfused hearts, caffeine, which releases calcium from the sarcoplasmic reticulum, causes severe myocardial injury, with creatine kinase (CK) release and contraction band necrosis similar in many respects to the calcium paradox. It has been postulated that contracture, initiated by a small rise in intracellular calcium, may cause sarcolemmal injury in both the calcium paradox and caffeine-induced myocardial injury. The present study was initiated to determine whether interventions which modulate caffeine-induced contracture will also correspondingly alter cellular injury. The effects of caffeine dose, procaine, extended calcium-free perfusion, elevated potassium, temperature, and increasing intracellular sodium on caffeine-induced contracture were examined in Langendorff-perfused adult rat hearts. Caffeine-induced contracture at 22 C increased over a dose range of 5-40 mM caffeine. Procaine, which inhibits caffeine-induced calcium release at doses between 5 and 20 mM, progressively reduced contracture caused by addition of 20 mM caffeine at 22 C. Hearts perfused with calcium-free solution containing 16 mM K+ showed a reduction in caffeine-induced contracture. Extended calcium-free perfusion (20 minutes) at temperatures from 18 to 37 C resulted in a progressive reduction of caffeine-induced contracture. Each of these interventions was also found to inhibit caffeine-induced injury at 37 C. Low temperature was found to have complex effects. Hypothermia enhanced caffeine contractures but also protected hearts from cell separations and CK release. Increasing intracellular sodium was found to enhance caffeine-induced contracture at 37 C. There was a direct correlation between measured intracellular sodium levels and the magnitude and duration of caffeine-induced contracture. These results demonstrate a direct correlation between the magnitude of contracture and myocardial injury in calcium

  17. The Amino Terminus of Herpes Simplex Virus 1 Glycoprotein K (gK) Is Required for gB Binding to Akt, Release of Intracellular Calcium, and Fusion of the Viral Envelope with Plasma Membranes.

    PubMed

    Musarrat, Farhana; Jambunathan, Nithya; Rider, Paul J F; Chouljenko, V N; Kousoulas, K G

    2018-03-15

    Previously, we have shown that the amino terminus of glycoprotein K (gK) binds to the amino terminus of gB and that deletion of the amino-terminal 38 amino acids of gK prevents herpes simplex virus 1 (HSV-1) infection of mouse trigeminal ganglia after ocular infection and virus entry into neuronal axons. Recently, it has been shown that gB binds to Akt during virus entry and induces Akt phosphorylation and intracellular calcium release. Proximity ligation and two-way immunoprecipitation assays using monoclonal antibodies against gB and Akt-1 phosphorylated at S473 [Akt-1(S473)] confirmed that HSV-1(McKrae) gB interacted with Akt-1(S473) during virus entry into human neuroblastoma (SK-N-SH) cells and induced the release of intracellular calcium. In contrast, the gB specified by HSV-1(McKrae) gKΔ31-68, lacking the amino-terminal 38 amino acids of gK, failed to interact with Akt-1(S473) and induce intracellular calcium release. The Akt inhibitor miltefosine inhibited the entry of McKrae but not the gKΔ31-68 mutant into SK-N-SH cells. Importantly, the entry of the gKΔ31-68 mutant but not McKrae into SK-N-SH cells treated with the endocytosis inhibitors pitstop-2 and dynasore hydrate was significantly inhibited, indicating that McKrae gKΔ31-68 entered via endocytosis. These results suggest that the amino terminus of gK functions to regulate the fusion of the viral envelope with cellular plasma membranes. IMPORTANCE HSV-1 glycoprotein B (gB) functions in the fusion of the viral envelope with cellular membranes during virus entry. Herein, we show that a deletion in the amino terminus of glycoprotein K (gK) inhibits gB binding to Akt-1(S473), the release of intracellular calcium, and virus entry via fusion of the viral envelope with cellular plasma membranes. Copyright © 2018 American Society for Microbiology.

  18. Signal transduction at fertilization: the Ca2+ release pathway in echinoderms and other invertebrate deuterostomes.

    PubMed

    Townley, Ian K; Roux, Michelle M; Foltz, Kathy R

    2006-04-01

    Gamete interaction and fusion triggers a number of events that lead to egg activation and development of a new organism. A key event at fertilization is the rise in intracellular calcium. In deuterostomes, this calcium is released from the egg's endoplasmic reticulum and is necessary for proper activation. This article reviews recent data regarding how gamete interaction triggers the initial calcium release, focusing on the echinoderms (invertebrate deuterostomes) as model systems. In eggs of these animals, Src-type kinases and phospholipase C-gamma are required components of the initial calcium trigger pathway in eggs.

  19. Targeting Chronic and Neuropathic Pain: The N-type Calcium Channel Comes of Age

    PubMed Central

    Snutch, Terrance P.

    2005-01-01

    Summary: The rapid entry of calcium into cells through activation of voltage-gated calcium channels directly affects membrane potential and contributes to electrical excitability, repetitive firing patterns, excitation-contraction coupling, and gene expression. At presynaptic nerve terminals, calcium entry is the initial trigger mediating the release of neurotransmitters via the calcium-dependent fusion of synaptic vesicles and involves interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex of synaptic release proteins. Physiological factors or drugs that affect either presynaptic calcium channel activity or the efficacy of calcium-dependent vesicle fusion have dramatic consequences on synaptic transmission, including that mediating pain signaling. The N-type calcium channel exhibits a number of characteristics that make it an attractive target for therapeutic intervention concerning chronic and neuropathic pain conditions. Within the past year, both U.S. and European regulatory agencies have approved the use of the cationic peptide Prialt for the treatment of intractable pain. Prialt is the first N-type calcium channel blocker approved for clinical use and represents the first new proven mechanism of action for chronic pain intervention in many years. The present review discusses the rationale behind targeting the N-type calcium channel, some of the limitations confronting the widespread clinical application of Prialt, and outlines possible strategies to improve upon Prialt's relatively narrow therapeutic window. PMID:16489373

  20. Gonadotrophin-releasing activity of neurohypophysial hormones: II. The pituitary oxytocin receptor mediating gonadotrophin release differs from that of corticotrophs.

    PubMed

    Evans, J J; Catt, K J

    1989-07-01

    Neurohypophysial hormones stimulate gonadotrophin release from dispersed rat anterior pituitary cells in vitro, acting through receptors distinct from those which mediate the secretory response to gonadotrophin-releasing hormone (GnRH). The LH response to oxytocin was not affected by the presence of the phosphodiesterase inhibitor, methyl isobutylxanthine, but was diminished in the absence of extracellular calcium and was progressively increased as the calcium concentration in the medium was raised to normal. In addition, the calcium channel antagonist, nifedipine, suppressed oxytocin-stimulated secretion of LH. It is likely that the mechanisms of LH release induced by GnRH and neurohypophysial hormones are similar, although stimulation of gonadotrophin secretion is mediated by separate receptor systems. Oxytocin was more active than vasopressin in releasing LH, but less active in releasing ACTH. The highly selective oxytocin agonist, [Thr4,Gly7]oxytocin, elicited concentration-dependent secretion of LH but had little effect on corticotrophin secretion. The neurohypophysial hormone antagonist analogues, [d(CH2)5Tyr(Me)2]vasopressin, [d(CH2)5Tyr(Me)2,Orn8]vasotocin and [d(CH2)5D-Tyr(Et)2Val4,Cit8]vasopressin, inhibited the LH response to both oxytocin and vasopressin. However, [d(CH2)5Tyr(Me)2]vasopressin was much less effective in inhibiting the ACTH response to the neurohypophysial hormones, and [d(CH2)5Tyr-(Me)2,Orn8]vasotocin and [d(CH2)5D-Tyr(Et)2,Val4,Cit8]vasopressin exhibited no inhibitory activity against ACTH release. Thus, agonist and antagonist analogues of neurohypophysial hormones display divergent activities with regard to LH and ACTH responses, and the neuropeptide receptor mediating gonadotroph activation is clearly different from that on the corticotroph. Whereas the corticotroph receptor is a vasopressin-type receptor an oxytocin-type receptor is responsible for gonadotrophin release by neurohypophysial hormones.

  1. Regulation of insulin exocytosis by calcium-dependent protein kinase C in beta cells.

    PubMed

    Trexler, Adam J; Taraska, Justin W

    2017-11-01

    The control of insulin release from pancreatic beta cells helps ensure proper blood glucose level, which is critical for human health. Protein kinase C has been shown to be one key control mechanism for this process. After glucose stimulation, calcium influx into beta cells triggers exocytosis of insulin-containing dense-core granules and activates protein kinase C via calcium-dependent phospholipase C-mediated generation of diacylglycerol. Activated protein kinase C potentiates insulin release by enhancing the calcium sensitivity of exocytosis, likely by affecting two main pathways that could be linked: (1) the reorganization of the cortical actin network, and (2) the direct phosphorylation of critical exocytotic proteins such as munc18, SNAP25, and synaptotagmin. Here, we review what is currently known about the molecular mechanisms of protein kinase C action on each of these pathways and how these effects relate to the control of insulin release by exocytosis. We identify remaining challenges in the field and suggest how these challenges might be addressed to advance our understanding of the regulation of insulin release in health and disease. Published by Elsevier Ltd.

  2. Agelenopsis aperta venom and FTX, a purified toxin, inhibit acetylcholine release in Torpedo synaptosomes.

    PubMed

    Moulian, N; Gaudry-Talarmain, Y M

    1993-06-01

    The presence of P-type calcium channels in synaptosomes prepared from electric organ of Torpedo marmorata was investigated by using the venom of Agelenopsis aperta, a toxin purified from it, FTX, and its synthetic analog. We analysed the action of these agents on acetylcholine release which was continuously followed using a chemiluminescent assay. Agelenopsis aperta venom, FTX and synthetic FTX inhibit acetylcholine release from synaptosomes induced by a presynaptic membrane depolarization with 60 mM KCl. A stronger inhibition of acetylcholine release was observed with the venom than with FTX (70 and 50%, respectively). Another way of triggering acetylcholine release from Torpedo synaptosomes is to insert in the presynaptic membrane a calcium ionophore A23187 which allows the bypass of the natural calcium channels. The venom of Agelenopsis aperta inhibits A23187-evoked acetylcholine release. Purified and synthetic FTX does not possess this property, suggesting that this inhibition of acetylcholine release was due to other toxins of the venom. Another type of pharmacological sensitivity of Torpedo calcium channels was also demonstrated using omega-conotoxin GVIA. At a concentration of 20 microM, this toxin was able to inhibit about 35% of KCl-evoked acetylcholine release. When FTX + omega-conotoxin GVIA were applied together, the inhibitory effect on KCl-evoked acetylcholine release was not significantly increased in comparison with the one observed with FTX alone. In conclusion, we examined the effect of different agents on acetylcholine release from Torpedo marmorata electric organ synaptosomes; acetylcholine release was elicited with KCl depolarization and followed continuously with a chemiluminescent assay.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging.

    PubMed

    Jayasinghe, Isuru D; Munro, Michelle; Baddeley, David; Launikonis, Bradley S; Soeller, Christian

    2014-10-06

    Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres in the molecular organization of ryanodine receptors (RyRs; the primary calcium release channels) within triads. With the improved resolution offered by dSTORM, abutting arrays of RyRs in transverse view of fast fibres were observed in contrast to the fragmented distribution on slow-twitch muscle that were approximately 1.8 times shorter and consisted of approximately 1.6 times fewer receptors. To the best of our knowledge, for the first time, we have quantified the nanometre-scale spatial association between triadic proteins using multi-colour super-resolution, an analysis difficult to conduct with electron microscopy. Our findings confirm that junctophilin-1 (JPH1), which tethers the sarcoplasmic reticulum ((SR) intracellular calcium store) to the tubular (t-) system at triads, was present throughout the RyR array, whereas JPH2 was contained within much smaller nanodomains. Similar imaging of the primary SR calcium buffer, calsequestrin (CSQ), detected less overlap of the triad with CSQ in slow-twitch muscle supporting greater spatial heterogeneity in the luminal Ca2+ buffering when compared with fast twitch muscle. Taken together, these nanoscale differences can explain the fundamentally different physiologies of fast- and slow-twitch muscle. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Cross Talk among Calcium, Hydrogen Peroxide, and Nitric Oxide and Activation of Gene Expression Involving Calmodulins and Calcium-Dependent Protein Kinases in Ulva compressa Exposed to Copper Excess1[C][W][OA

    PubMed Central

    González, Alberto; Cabrera, M. de los Ángeles; Henríquez, M. Josefa; Contreras, Rodrigo A.; Morales, Bernardo; Moenne, Alejandra

    2012-01-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H2O2) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H2O2, ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H2O2 increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H2O2 accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H2O2. In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H2O2, and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein kinases. PMID:22234999

  5. Copper retention, calcium release and ultrastructural evidence indicate specific Cuprolinic Blue uptake and peculiar modifications in mineralizing aortic valves.

    PubMed

    Ortolani, F; Tubaro, F; Petrelli, L; Gandaglia, A; Spina, M; Marchini, M

    2002-01-01

    Previously, reactions with copper phthalocyanines at 0.05 M critical electrolyte concentration were found to cause demineralization in calcifying porcine aortic valves after subdermal implantation in rat, as well as simultaneous visualization of peculiar phthalocyanine-positive layers around cells and cell-derived matrix vesicles. In the present investigation, an appraisal was made of the mechanism and specificity of reactions with Cuprolinic Blue by comparing quantitatively calcium release and copper retention by calcified aortic valves reacted with this phthalocyanine under different critical electrolyte concentration conditions, and the corresponding ultrastructural patterns. It was found that (i) decalcifying properties are inversely proportional to salt molarity; (ii) reactivity to Cuprolinic Blue is critical electrolyte concentration-dependent, since the greatest copper retention occurred in 0.05 M critical electrolyte concentration Cuprolinic Blue-reacted samples, the only ones that also exhibited phthalocyanine-positive layers; (iii) the appearance of phthalocyanine-positive layers depends on Cuprolinic Blue uptake, revealing pericellular clustering of calcium-binding, anionic molecules; and (iv) minor Cuprolinic Blue uptake occurs by residual proteoglycans which still remain in the extracellular matrix after 6-week-long subdermal implantation. The present results indicate that this method is appropriate for the study of mineralized tissues and illustrate peculiar tissue modifications occurring at least in the experimental conditions used here.

  6. The Monoamine Brainstem Reticular Formation as a Paradigm for Re-Defining Various Phenotypes of Parkinson’s Disease Owing Genetic and Anatomical Specificity

    PubMed Central

    Gambardella, Stefano; Ferese, Rosangela; Biagioni, Francesca; Busceti, Carla L.; Campopiano, Rosa; Griguoli, Anna M. P.; Limanaqi, Fiona; Novelli, Giuseppe; Storto, Marianna; Fornai, Francesco

    2017-01-01

    The functional anatomy of the reticular formation (RF) encompasses a constellation of brain regions which are reciprocally connected to sub-serve a variety of functions. Recent evidence indicates that neuronal degeneration within one of these regions spreads synaptically along brainstem circuitries. This is exemplified by the recruitment of various brainstem reticular nuclei in specific Parkinson’s disease (PD) phenotypes, and by retrospective analysis of lethargic post-encephalitic parkinsonism. In fact, the spreading to various monoamine reticular nuclei can be associated with occurrence of specific motor and non-motor symptoms (NMS). This led to re-consider PD as a brainstem monoamine disorder (BMD). This definition surpasses the anatomy of meso-striatal motor control to include a variety of non-motor domains. This concept clearly emerges from the quite specific clinical-anatomical correlation which can be drawn in specific paradigms of PD genotypes. Therefore, this review article focuses on the genetics and neuroanatomy of three PD genotypes/phenotypes which can be selected as prototype paradigms for a differential recruitment of the RF leading to differential occurrence of NMS: (i) Parkin-PD, where NMS are rarely reported; (ii) LRRK2-PD and slight SNC point mutations, where the prevalence of NMS resembles idiopathic PD; (iii) Severe SNCA point mutations and multiplications, where NMS are highly represented. PMID:28458632

  7. Quantitative properties and receptor reserve of the IP3 and calcium branch of Gq-coupled receptor signaling

    PubMed Central

    Dickson, Eamonn J.; Falkenburger, Björn H.

    2013-01-01

    Gq-coupled plasma membrane receptors activate phospholipase C (PLC), which hydrolyzes membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to calcium release, protein kinase C (PKC) activation, and sometimes PIP2 depletion. To understand mechanisms governing these diverging signals and to determine which of these signals is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels, we monitored levels of PIP2, IP3, and calcium in single living cells. DAG and PKC are monitored in our companion paper (Falkenburger et al. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210887). The results extend our previous kinetic model of Gq-coupled receptor signaling to IP3 and calcium. We find that activation of low-abundance endogenous P2Y2 receptors by a saturating concentration of uridine 5′-triphosphate (UTP; 100 µM) leads to calcium release but not to PIP2 depletion. Activation of overexpressed M1 muscarinic receptors by 10 µM Oxo-M leads to a similar calcium release but also depletes PIP2. KCNQ2/3 channels are inhibited by Oxo-M (by 85%), but not by UTP (<1%). These differences can be attributed purely to differences in receptor abundance. Full amplitude calcium responses can be elicited even after PIP2 was partially depleted by overexpressed inducible phosphatidylinositol 5-phosphatases, suggesting that very low amounts of IP3 suffice to elicit a full calcium release. Hence, weak PLC activation can elicit robust calcium signals without net PIP2 depletion or KCNQ2/3 channel inhibition. PMID:23630337

  8. Genetic analysis of hyperemesis gravidarum reveals association with intracellular calcium release channel (RYR2).

    PubMed

    Fejzo, Marlena Schoenberg; Myhre, Ronny; Colodro-Conde, Lucía; MacGibbon, Kimber W; Sinsheimer, Janet S; Reddy, M V Prasad Linga; Pajukanta, Päivi; Nyholt, Dale R; Wright, Margaret J; Martin, Nicholas G; Engel, Stephanie M; Medland, Sarah E; Magnus, Per; Mullin, Patrick M

    2017-01-05

    Hyperemesis Gravidarum (HG), severe nausea/vomiting in pregnancy (NVP), can cause poor maternal/fetal outcomes. Genetic predisposition suggests the genetic component is essential in discovering an etiology. We performed whole-exome sequencing of 5 families followed by analysis of variants in 584 cases/431 controls. Variants in RYR2 segregated with disease in 2 families. The novel variant L3277R was not found in any case/control. The rare variant, G1886S was more common in cases (p = 0.046) and extreme cases (p = 0.023). Replication of G1886S using Norwegian/Australian data was supportive. Common variants rs790899 and rs1891246 were significantly associated with HG and weight loss. Copy-number analysis revealed a deletion in a patient. RYR2 encodes an intracellular calcium release channel involved in vomiting, cyclic-vomiting syndrome, and is a thyroid hormone target gene. Additionally, RYR2 is a downstream drug target of Inderal, used to treat HG and CVS. Thus, herein we provide genetic evidence for a pathway and therapy for HG. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Contractile function is unaltered in diaphragm from mice lacking calcium release channel isoform 3

    NASA Technical Reports Server (NTRS)

    Clancy, J. S.; Takeshima, H.; Hamilton, S. L.; Reid, M. B.

    1999-01-01

    Skeletal muscle expresses at least two isoforms of the calcium release channel in the sarcoplasmic reticulum (RyR1 and RyR3). Whereas the function of RyR1 is well defined, the physiological significance of RyR3 is unclear. Some authors have suggested that RyR3 participates in excitation-contraction coupling and that RyR3 may specifically confer resistance to fatigue. To test this hypothesis, we measured contractile function of diaphragm strips from adult RyR3-deficient mice (exon 2-targeted mutation) and their heterozygous and wild-type littermates. In unfatigued diaphragm, there were no differences in isometric contractile properties (twitch characteristics, force-frequency relationships, maximal force) among the three groups. Our fatigue protocol (30 Hz, 0.25 duty cycle, 37 degrees C) depressed force to 25% of the initial force; however, lack of RyR3 did not accelerate the decline in force production. The force-frequency relationship was shifted to higher frequencies and was depressed in fatigued diaphragm; lack of RyR3 did not exaggerate these changes. We therefore provide evidence that RyR3 deficiency does not alter contractile function of adult muscle before, during, or after fatigue.

  10. [Role of the midbrain reticular formation in hormonal supply to the body in conditions of chronic emotional stress].

    PubMed

    Amiragova, M G; Arakhangel'skaia, M I

    1983-08-01

    Chronic animal experiments were made to study the endocrine and electroencephalographic responses of the cortico-subcortical structures to stress before and after coagulation of the midbrain reticular formation. The operation entailed dramatic changes in both the bioelectrical responses and thyroid and adrenal responses, which were found to be differentiated.

  11. Hypersomnia due to injury of the ventral ascending reticular activating system following cerebellar herniation: A case report.

    PubMed

    Jang, Sung Ho; Chang, Chul Hoon; Jung, Young Jin; Kwon, Hyeok Gyu

    2017-01-01

    We report on a patient with hypersomnia who showed injury of the lower ascending reticular activating system (ARAS) following cerebellar herniation due to a cerebellar infarct, detected on diffusion tensor tractography (DTT). A 53-year-old male patient was diagnosed as a left cerebellar infarct, and underwent decompressive suboccipital craniectomy due to brain edema at 2 days after the onset of a cerebellar infarct. Three weeks after onset when the patient started rehabilitation, he showed hypersomnia without impairment of consciousness; he fell asleep most of daytime without external stimulation and showed an abnormal score on the Epworth Sleepiness Scale: 15 (full score: 24, cut off for hypersomnia: 10). On 3-week DTT, narrowing of the upper portion of the lower ventral ARAS between the pontine reticular formation and the hypothalamus was observed on both sides. In addition, partial tearing was observed in the middle portion of the right lower ventral ARAS. In conclusion, we found injury of the lower ventral ARAS in a patient with hypersomnia following cerebellar herniation due to a cerebellar infarct.

  12. Examination of Calcium Silicate Cements with Low-Viscosity Methyl Cellulose or Hydroxypropyl Cellulose Additive.

    PubMed

    Baba, Toshiaki; Tsujimoto, Yasuhisa

    2016-01-01

    The purpose of this study was to improve the operability of calcium silicate cements (CSCs) such as mineral trioxide aggregate (MTA) cement. The flow, working time, and setting time of CSCs with different compositions containing low-viscosity methyl cellulose (MC) or hydroxypropyl cellulose (HPC) additive were examined according to ISO 6876-2012; calcium ion release analysis was also conducted. MTA and low-heat Portland cement (LPC) including 20% fine particle zirconium oxide (ZO group), LPC including zirconium oxide and 2 wt% low-viscosity MC (MC group), and HPC (HPC group) were tested. MC and HPC groups exhibited significantly higher flow values and setting times than other groups ( p < 0.05). Additionally, flow values of these groups were higher than the ISO 6876-2012 reference values; furthermore, working times were over 10 min. Calcium ion release was retarded with ZO, MC, and HPC groups compared with MTA. The concentration of calcium ions was decreased by the addition of the MC or HPC group compared with the ZO group. When low-viscosity MC or HPC was added, the composition of CSCs changed, thus fulfilling the requirements for use as root canal sealer. Calcium ion release by CSCs was affected by changing the CSC composition via the addition of MC or HPC.

  13. Examination of Calcium Silicate Cements with Low-Viscosity Methyl Cellulose or Hydroxypropyl Cellulose Additive

    PubMed Central

    Tsujimoto, Yasuhisa

    2016-01-01

    The purpose of this study was to improve the operability of calcium silicate cements (CSCs) such as mineral trioxide aggregate (MTA) cement. The flow, working time, and setting time of CSCs with different compositions containing low-viscosity methyl cellulose (MC) or hydroxypropyl cellulose (HPC) additive were examined according to ISO 6876-2012; calcium ion release analysis was also conducted. MTA and low-heat Portland cement (LPC) including 20% fine particle zirconium oxide (ZO group), LPC including zirconium oxide and 2 wt% low-viscosity MC (MC group), and HPC (HPC group) were tested. MC and HPC groups exhibited significantly higher flow values and setting times than other groups (p < 0.05). Additionally, flow values of these groups were higher than the ISO 6876-2012 reference values; furthermore, working times were over 10 min. Calcium ion release was retarded with ZO, MC, and HPC groups compared with MTA. The concentration of calcium ions was decreased by the addition of the MC or HPC group compared with the ZO group. When low-viscosity MC or HPC was added, the composition of CSCs changed, thus fulfilling the requirements for use as root canal sealer. Calcium ion release by CSCs was affected by changing the CSC composition via the addition of MC or HPC. PMID:27981048

  14. A central mesencephalic reticular formation projection to medial rectus motoneurons supplying singly and multiply innervated extraocular muscle fibers.

    PubMed

    Bohlen, Martin O; Warren, Susan; May, Paul J

    2017-06-01

    We recently demonstrated a bilateral projection to the supraoculomotor area from the central mesencephalic reticular formation (cMRF), a region implicated in horizontal gaze changes. C-group motoneurons, which supply multiply innervated fibers in the medial rectus muscle, are located within the primate supraoculomotor area, but their inputs and function are poorly understood. Here, we tested whether C-group motoneurons in Macaca fascicularis monkeys receive a direct cMRF input by injecting this portion of the reticular formation with anterograde tracers in combination with injection of retrograde tracer into the medial rectus muscle. The results indicate that the cMRF provides a dense, bilateral projection to the region of the medial rectus C-group motoneurons. Numerous close associations between labeled terminals and each multiply innervated fiber motoneuron were present. Within the oculomotor nucleus, a much sparser ipsilateral projection onto some of the A- and B- group medial rectus motoneurons that supply singly innervated fibers was observed. Ultrastructural analysis demonstrated a direct synaptic linkage between anterogradely labeled reticular terminals and retrogradely labeled medial rectus motoneurons in all three groups. These findings reinforce the notion that the cMRF is a critical hub for oculomotility by proving that it contains premotor neurons supplying horizontal extraocular muscle motoneurons. The differences between the cMRF input patterns for C-group versus A- and B-group motoneurons suggest the C-group motoneurons serve a different oculomotor role than the others. The similar patterns of cMRF input to C-group motoneurons and preganglionic Edinger-Westphal motoneurons suggest that medial rectus C-group motoneurons may play a role in accommodation-related vergence. © 2017 Wiley Periodicals, Inc.

  15. Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation.

    PubMed

    Watson, Christopher J; Lydic, Ralph; Baghdoyan, Helen A

    2011-08-01

    The oral part of the pontine reticular formation (PnO) is a component of the ascending reticular activating system and plays a role in the regulation of sleep and wakefulness. The PnO receives glutamatergic and GABAergic projections from many brain regions that regulate behavioral state. Indirect, pharmacological evidence has suggested that glutamatergic and GABAergic signaling within the PnO alters traits that characterize wakefulness and sleep. No previous studies have simultaneously measured endogenous glutamate and GABA from rat PnO in relation to sleep and wakefulness. The present study utilized in vivo microdialysis coupled on-line to capillary electrophoresis with laser-induced fluorescence to test the hypothesis that concentrations of glutamate and GABA in the PnO vary across the sleep/wake cycle. Concentrations of glutamate and GABA were significantly higher during wakefulness than during non-rapid eye movement sleep and rapid eye movement sleep. Regression analysis revealed that decreases in glutamate and GABA accounted for a significant portion of the variance in the duration of non-rapid eye movement sleep and rapid eye movement sleep episodes. These data provide novel support for the hypothesis that endogenous glutamate and GABA in the PnO contribute to the regulation of sleep duration. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  16. Injections of Algesic Solutions into Muscle Activate the Lateral Reticular Formation: A Nociceptive Relay of the Spinoreticulothalamic Tract

    PubMed Central

    Panneton, W. Michael; Gan, Qi; Ariel, Michael

    2015-01-01

    Although musculoskeletal pain disorders are common clinically, the central processing of muscle pain is little understood. The present study reports on central neurons activated by injections of algesic solutions into the gastrocnemius muscle of the rat, and their subsequent localization by c-Fos immunohistochemistry in the spinal cord and brainstem. An injection (300μl) of an algesic solution (6% hypertonic saline, pH 4.0 acetate buffer, or 0.05% capsaicin) was made into the gastrocnemius muscle and the distribution of immunolabeled neurons compared to that obtained after control injections of phosphate buffered saline [pH 7.0]. Most labeled neurons in the spinal cord were found in laminae IV-V, VI, VII and X, comparing favorably with other studies, with fewer labeled neurons in laminae I and II. This finding is consistent with the diffuse pain perception due to noxious stimuli to muscles mediated by sensory fibers to deep spinal neurons as compared to more restricted pain localization during noxious stimuli to skin mediated by sensory fibers to superficial laminae. Numerous neurons were immunolabeled in the brainstem, predominantly in the lateral reticular formation (LRF). Labeled neurons were found bilaterally in the caudalmost ventrolateral medulla, where neurons responsive to noxious stimulation of cutaneous and visceral structures lie. Immunolabeled neurons in the LRF continued rostrally and dorsally along the intermediate reticular nucleus in the medulla, including the subnucleus reticularis dorsalis caudally and the parvicellular reticular nucleus more rostrally, and through the pons medial and lateral to the motor trigeminal nucleus, including the subcoerulear network. Immunolabeled neurons, many of them catecholaminergic, were found bilaterally in the nucleus tractus solitarii, the gracile nucleus, the A1 area, the CVLM and RVLM, the superior salivatory nucleus, the nucleus locus coeruleus, the A5 area, and the nucleus raphe magnus in the pons. The

  17. Injections of Algesic Solutions into Muscle Activate the Lateral Reticular Formation: A Nociceptive Relay of the Spinoreticulothalamic Tract.

    PubMed

    Panneton, W Michael; Gan, Qi; Ariel, Michael

    2015-01-01

    Although musculoskeletal pain disorders are common clinically, the central processing of muscle pain is little understood. The present study reports on central neurons activated by injections of algesic solutions into the gastrocnemius muscle of the rat, and their subsequent localization by c-Fos immunohistochemistry in the spinal cord and brainstem. An injection (300 μl) of an algesic solution (6% hypertonic saline, pH 4.0 acetate buffer, or 0.05% capsaicin) was made into the gastrocnemius muscle and the distribution of immunolabeled neurons compared to that obtained after control injections of phosphate buffered saline [pH 7.0]. Most labeled neurons in the spinal cord were found in laminae IV-V, VI, VII and X, comparing favorably with other studies, with fewer labeled neurons in laminae I and II. This finding is consistent with the diffuse pain perception due to noxious stimuli to muscles mediated by sensory fibers to deep spinal neurons as compared to more restricted pain localization during noxious stimuli to skin mediated by sensory fibers to superficial laminae. Numerous neurons were immunolabeled in the brainstem, predominantly in the lateral reticular formation (LRF). Labeled neurons were found bilaterally in the caudalmost ventrolateral medulla, where neurons responsive to noxious stimulation of cutaneous and visceral structures lie. Immunolabeled neurons in the LRF continued rostrally and dorsally along the intermediate reticular nucleus in the medulla, including the subnucleus reticularis dorsalis caudally and the parvicellular reticular nucleus more rostrally, and through the pons medial and lateral to the motor trigeminal nucleus, including the subcoerulear network. Immunolabeled neurons, many of them catecholaminergic, were found bilaterally in the nucleus tractus solitarii, the gracile nucleus, the A1 area, the CVLM and RVLM, the superior salivatory nucleus, the nucleus locus coeruleus, the A5 area, and the nucleus raphe magnus in the pons. The

  18. C-Terminal Clipping of Chemokine CCL1/I-309 Enhances CCR8-Mediated Intracellular Calcium Release and Anti-Apoptotic Activity

    PubMed Central

    Denis, Catherine; Deiteren, Kathleen; Mortier, Anneleen; Tounsi, Amel; Fransen, Erik; Proost, Paul; Renauld, Jean-Christophe; Lambeir, Anne-Marie

    2012-01-01

    Carboxypeptidase M (CPM) targets the basic amino acids arginine and lysine present at the C-terminus of peptides or proteins. CPM is thought to be involved in inflammatory processes. This is corroborated by CPM-mediated trimming and modulation of inflammatory factors, and expression of the protease in inflammatory environments. Since the function of CPM in and beyond inflammation remains mainly undefined, the identification of natural substrates can aid in discovering the (patho)physiological role of CPM. CCL1/I-309, with its three C-terminal basic amino acids, forms a potential natural substrate for CPM. CCL1 plays a role not only in inflammation but also in apoptosis, angiogenesis and tumor biology. Enzymatic processing differently impacts the biological activity of chemokines thereby contributing to the complex regulation of the chemokine system. The aim of the present study was to investigate whether (i) CCL1/I-309 is prone to trimming by CPM, and (ii) the biological activity of CCL1 is altered after C-terminal proteolytic processing. CCL1 was identified as a novel substrate for CPM in vitro using mass spectrometry. C-terminal clipping of CCL1 augmented intracellular calcium release mediated by CCR8 but reduced the binding of CCL1 to CCR8. In line with the higher intracellular calcium release, a pronounced increase of the anti-apoptotic activity of CCL1 was observed in the BW5147 cellular model. CCR8 signaling, CCR8 binding and anti-apoptotic activity were unaffected when CPM was exposed to the carboxypeptidase inhibitor DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid. The results of this study suggest that CPM is a likely candidate for the regulation of biological processes relying on the CCL1-CCR8 system. PMID:22479563

  19. Stabilization of diastolic calcium signal via calcium pump regulation of complex local calcium releases and transient decay in a computational model of cardiac pacemaker cell with individual release channels

    PubMed Central

    Maltsev, Alexander V.; Maltsev, Victor A.; Stern, Michael D.

    2017-01-01

    Intracellular Local Ca releases (LCRs) from sarcoplasmic reticulum (SR) regulate cardiac pacemaker cell function by activation of electrogenic Na/Ca exchanger (NCX) during diastole. Prior studies demonstrated the existence of powerful compensatory mechanisms of LCR regulation via a complex local cross-talk of Ca pump, release and NCX. One major obstacle to study these mechanisms is that LCR exhibit complex Ca release propagation patterns (including merges and separations) that have not been characterized. Here we developed new terminology, classification, and computer algorithms for automatic detection of numerically simulated LCRs and examined LCR regulation by SR Ca pumping rate (Pup) that provides a major contribution to fight-or-flight response. In our simulations the faster SR Ca pumping accelerates action potential-induced Ca transient decay and quickly clears Ca under the cell membrane in diastole, preventing premature releases. Then the SR generates an earlier, more synchronized, and stronger diastolic LCR signal activating an earlier and larger inward NCX current. LCRs at higher Pup exhibit larger amplitudes and faster propagation with more collisions to each other. The LCRs overlap with Ca transient decay, causing an elevation of the average diastolic [Ca] nadir to ~200 nM (at Pup = 24 mM/s). Background Ca (in locations lacking LCRs) quickly decays to resting Ca levels (<100 nM) at high Pup, but remained elevated during slower decay at low Pup. Release propagation is facilitated at higher Pup by a larger LCR amplitude, whereas at low Pup by higher background Ca. While at low Pup LCRs show smaller amplitudes, their larger durations and sizes combined with longer transient decay stabilize integrals of diastolic Ca and NCX current signals. Thus, the local interplay of SR Ca pump and release channels regulates LCRs and Ca transient decay to insure fail-safe pacemaker cell operation within a wide range of rates. PMID:28792496

  20. Glucose release in mantle tissue of Mytilus: regulation by calcium ions.

    PubMed

    Crespo, C A; Espinosa, J

    1990-09-01

    Glucose release activity in mantle tissue of Mytilus galloprovincialis was studied. Mantle tissue shows a basal glucose releasing activity. The external Ca2+ absence increases 2 to 3-fold the basal glucose release, and when A23187 (10 microM) was simultaneously present the release doubled that obtained in Ca2(+)-absence. EGTA (2 mM), chlorpromazine (200 microM) and lanthanum (3 mM) decreased the glucose release promoted by external Ca2+ absence. This and other data suggest that glucose release activity in mantle tissue might be controlled by Ca2+ ions.

  1. Hybrid stochastic and deterministic simulations of calcium blips.

    PubMed

    Rüdiger, S; Shuai, J W; Huisinga, W; Nagaiah, C; Warnecke, G; Parker, I; Falcke, M

    2007-09-15

    Intracellular calcium release is a prime example for the role of stochastic effects in cellular systems. Recent models consist of deterministic reaction-diffusion equations coupled to stochastic transitions of calcium channels. The resulting dynamics is of multiple time and spatial scales, which complicates far-reaching computer simulations. In this article, we introduce a novel hybrid scheme that is especially tailored to accurately trace events with essential stochastic variations, while deterministic concentration variables are efficiently and accurately traced at the same time. We use finite elements to efficiently resolve the extreme spatial gradients of concentration variables close to a channel. We describe the algorithmic approach and we demonstrate its efficiency compared to conventional methods. Our single-channel model matches experimental data and results in intriguing dynamics if calcium is used as charge carrier. Random openings of the channel accumulate in bursts of calcium blips that may be central for the understanding of cellular calcium dynamics.

  2. Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass.

    PubMed

    Davis, Harry B; Gwinner, Fernanda; Mitchell, John C; Ferracane, Jack L

    2014-10-01

    Materials that are capable of releasing ions such as calcium and fluoride, that are necessary for remineralization of dentin and enamel, have been the topic of intensive research for many years. The source of calcium has most often been some form of calcium phosphate, and that for fluoride has been one of several metal fluoride or hexafluorophosphate salts. Fluoride-containing bioactive glass (BAG) prepared by the sol-gel method acts as a single source of both calcium and fluoride ions in aqueous solutions. The objective of this investigation was to determine if BAG, when added to a composite formulation, can be used as a single source for calcium and fluoride ion release over an extended time period, and to determine if the BAG-containing composite can be recharged upon exposure to a solution of 5000ppm fluoride. BAG 61 (61% Si; 31% Ca; 4% P; 3% F; 1% B) and BAG 81 (81% Si; 11% Ca; 4% P; 3% F; 1% B) were synthesized by the sol-gel method. The composite used was composed of 50/50 Bis-GMA/TEGDMA, 0.8% EDMAB, 0.4% CQ, and 0.05% BHT, combined with a mixture of BAG (15%) and strontium glass (85%) to a total filler load of 72% by weight. Disks were prepared, allowed to age for 24h, abraded, then placed into DI water. Calcium and fluoride release was measured by atomic absorption spectroscopy and fluoride ion selective electrode methods, respectively, after 2, 22, and 222h. The composite samples were then soaked for 5min in an aqueous 5000ppm fluoride solution, after which calcium and fluoride release was again measured at 2, 22, and 222h time points. Prior to fluoride recharge, release of fluoride ions was similar for the BAG 61 and BAG 81 composites after 2h, and also similar after 22h. At the four subsequent time points, one prior to, and three following fluoride recharge, the BAG 81 composite released significantly more fluoride ions (p<0.05). Both composites were recharged by exposure to 5000ppm fluoride, although the BAG 81 composite was recharged more than the BAG

  3. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: early fluorapatite formation in a phosphate-containing solution.

    PubMed

    Gandolfi, M G; Taddei, P; Siboni, F; Modena, E; Ginebra, M P; Prati, C

    2011-10-01

    To test the chemical-physical properties and apatite-forming ability of experimental fluoride-doped calcium silicate cements designed to create novel bioactive materials for use in endodontics and oral surgery. A thermally treated calcium silicate cement (wTC) containing CaCl(2) 5%wt was modified by adding NaF 1%wt (FTC) or 10%wt (F10TC). Cements were analysed by environmental scanning electron microscopy with energy-dispersive X-ray analysis, IR and micro-Raman spectroscopy in wet conditions immediately after preparation or after ageing in a phosphate-containing solution (Dulbecco's phosphate-buffered saline). Calcium and fluoride release and pH of the storage solution were measured. The results obtained were analysed statistically (Tukey's HSD test and two-way anova). The formation of calcium phosphate precipitates (spherulites) was observed on the surface of 24 h-aged cements and the formation of a thick bone-like B-type carbonated apatite layer (biocoating) on 28 day-aged cements. The rate of apatite formation was FTC>F10TC>wTC. Fluorapatite was detected on FTC and F10TC after 1 day of ageing, with a higher fluoride content on F10TC. All the cements released calcium ions. At 5 and 24 h, the wTC had the significantly highest calcium release (P<0.001) that decreased significantly over the storage time. At 3-28 days, FTC and F10TC had significantly higher calcium release than wTC (P<0.05). The F10TC had the significantly highest fluoride release at all times (P<0.01) that decreased significantly over storage time. No significant differences were observed between FTC and wTC. All the cements had a strong alkalinizing activity (OH(-) release) that remained after 28 days of storage. The addition of sodium fluoride accelerated apatite formation on calcium silicate cements. Fluoride-doped calcium silicate cements had higher bioactivity and earlier formation of fluorapatite. Sodium fluoride may be introduced in the formulation of mineral trioxide aggregate cements to

  4. Carbonic Anhydrase-8 Regulates Inflammatory Pain by Inhibiting the ITPR1-Cytosolic Free Calcium Pathway

    PubMed Central

    Zhuang, Gerald Z.; Keeler, Benjamin; Grant, Jeff; Bianchi, Laura; Fu, Eugene S.; Zhang, Yan Ping; Erasso, Diana M.; Cui, Jian-Guo; Wiltshire, Tim; Li, Qiongzhen; Hao, Shuanglin; Sarantopoulos, Konstantinos D.; Candiotti, Keith; Wishnek, Sarah M.; Smith, Shad B.; Maixner, William; Diatchenko, Luda; Martin, Eden R.; Levitt, Roy C.

    2015-01-01

    Calcium dysregulation is causally linked with various forms of neuropathology including seizure disorders, multiple sclerosis, Huntington’s disease, Alzheimer’s, spinal cerebellar ataxia (SCA) and chronic pain. Carbonic anhydrase-8 (Car8) is an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1), which regulates intracellular calcium release fundamental to critical cellular functions including neuronal excitability, neurite outgrowth, neurotransmitter release, mitochondrial energy production and cell fate. In this report we test the hypothesis that Car8 regulation of ITPR1 and cytoplasmic free calcium release is critical to nociception and pain behaviors. We show Car8 null mutant mice (MT) exhibit mechanical allodynia and thermal hyperalgesia. Dorsal root ganglia (DRG) from MT also demonstrate increased steady-state ITPR1 phosphorylation (pITPR1) and cytoplasmic free calcium release. Overexpression of Car8 wildtype protein in MT nociceptors complements Car8 deficiency, down regulates pITPR1 and abolishes thermal and mechanical hypersensitivity. We also show that Car8 nociceptor overexpression alleviates chronic inflammatory pain. Finally, inflammation results in downregulation of DRG Car8 that is associated with increased pITPR1 expression relative to ITPR1, suggesting a possible mechanism of acute hypersensitivity. Our findings indicate Car8 regulates the ITPR1-cytosolic free calcium pathway that is critical to nociception, inflammatory pain and possibly other neuropathological states. Car8 and ITPR1 represent new therapeutic targets for chronic pain. PMID:25734498

  5. Effect of ticlopidine ex vivo on platelet intracellular calcium mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derian, C.K.; Friedman, P.A.

    1988-04-01

    The antiplatelet compound ticlopidine exerts its potent inhibitory activity through an as yet undetermined mechanism(s). The goal of this study was to determine the effect, if any, of ticlopidine ex vivo on platelet calcium mobilization. Ticlopidine inhibited ADP-induced platelet aggregation by 50-80%. In the presence of 1 mM EGTA, ticlopidine inhibited ADP- and thrombin-stimulated increases in (Ca2+)i in fura-2 loaded platelets. We evaluated further the effect of ticlopidine on calcium mobilization by examining both agonist-stimulated formation of inositol trisphosphate in intact platelets and the ability of inositol trisphosphate to release /sup 45/Ca from intracellular sites in permeabilized cells. We showmore » here that while ticlopidine significantly affected agonist-induced intracellular calcium mobilization in intact platelets, the drug was without effect on agonist-stimulated formation of inositol trisphosphate in intact platelets and on inositol trisphosphate-induced /sup 45/Ca release in saponin-permeabilized platelets. Our study demonstrates that ticlopidine exerts at least part of its effect via inhibition of intracellular calcium mobilization but that its site of action remains to be determined.« less

  6. Quantitative properties and receptor reserve of the IP(3) and calcium branch of G(q)-coupled receptor signaling.

    PubMed

    Dickson, Eamonn J; Falkenburger, Björn H; Hille, Bertil

    2013-05-01

    Gq-coupled plasma membrane receptors activate phospholipase C (PLC), which hydrolyzes membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to calcium release, protein kinase C (PKC) activation, and sometimes PIP2 depletion. To understand mechanisms governing these diverging signals and to determine which of these signals is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels, we monitored levels of PIP2, IP3, and calcium in single living cells. DAG and PKC are monitored in our companion paper (Falkenburger et al. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210887). The results extend our previous kinetic model of Gq-coupled receptor signaling to IP3 and calcium. We find that activation of low-abundance endogenous P2Y2 receptors by a saturating concentration of uridine 5'-triphosphate (UTP; 100 µM) leads to calcium release but not to PIP2 depletion. Activation of overexpressed M1 muscarinic receptors by 10 µM Oxo-M leads to a similar calcium release but also depletes PIP2. KCNQ2/3 channels are inhibited by Oxo-M (by 85%), but not by UTP (<1%). These differences can be attributed purely to differences in receptor abundance. Full amplitude calcium responses can be elicited even after PIP2 was partially depleted by overexpressed inducible phosphatidylinositol 5-phosphatases, suggesting that very low amounts of IP3 suffice to elicit a full calcium release. Hence, weak PLC activation can elicit robust calcium signals without net PIP2 depletion or KCNQ2/3 channel inhibition.

  7. Novel rechargeable calcium phosphate nanoparticle-containing orthodontic cement

    PubMed Central

    Xie, Xian-Ju; Xing, Dan; Wang, Lin; Zhou, Han; Weir, Michael D; Bai, Yu-Xing; Xu, Hockin HK

    2017-01-01

    White spot lesions (WSLs), due to enamel demineralization, occur frequently in orthodontic treatment. We recently developed a novel rechargeable dental composite containing nanoparticles of amorphous calcium phosphate (NACP) with long-term calcium (Ca) and phosphate (P) ion release and caries-inhibiting capability. The objectives of this study were to develop the first NACP-rechargeable orthodontic cement and investigate the effects of recharge duration and frequency on the efficacy of ion re-release. The rechargeable cement consisted of pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA). NACP was mixed into the resin at 40% by mass. Specimens were tested for orthodontic bracket shear bond strength (SBS) to enamel, Ca and P ion initial release, recharge and re-release. The new orthodontic cement exhibited an SBS similar to commercial orthodontic cement without CaP release (P>0.1). Specimens after one recharge treatment (e.g., 1 min immersion in recharge solution repeating three times in one day, referred to as “1 min 3 times”) exhibited a substantial and continuous re-release of Ca and P ions for 14 days without further recharge. The ion re-release did not decrease with increasing the number of recharge/re-release cycles (P>0.1). The ion re-release concentrations at 14 days versus various recharge treatments were as follows: 1 min 3 times>3 min 2 times>1 min 2 times>6 min 1 time>3 min 1 time>1 min 1 time. In conclusion, although previous studies have shown that NACP nanocomposite remineralized tooth lesions and inhibited caries, the present study developed the first orthodontic cement with Ca and P ion recharge and long-term release capability. This NACP-rechargeable orthodontic cement is a promising therapy to inhibit enamel demineralization and WSLs around orthodontic brackets. PMID:27811847

  8. Novel rechargeable calcium phosphate nanoparticle-containing orthodontic cement.

    PubMed

    Xie, Xian-Ju; Xing, Dan; Wang, Lin; Zhou, Han; Weir, Michael D; Bai, Yu-Xing; Xu, Hockin Hk

    2017-03-01

    White spot lesions (WSLs), due to enamel demineralization, occur frequently in orthodontic treatment. We recently developed a novel rechargeable dental composite containing nanoparticles of amorphous calcium phosphate (NACP) with long-term calcium (Ca) and phosphate (P) ion release and caries-inhibiting capability. The objectives of this study were to develop the first NACP-rechargeable orthodontic cement and investigate the effects of recharge duration and frequency on the efficacy of ion re-release. The rechargeable cement consisted of pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA). NACP was mixed into the resin at 40% by mass. Specimens were tested for orthodontic bracket shear bond strength (SBS) to enamel, Ca and P ion initial release, recharge and re-release. The new orthodontic cement exhibited an SBS similar to commercial orthodontic cement without CaP release (P>0.1). Specimens after one recharge treatment (e.g., 1 min immersion in recharge solution repeating three times in one day, referred to as "1 min 3 times") exhibited a substantial and continuous re-release of Ca and P ions for 14 days without further recharge. The ion re-release did not decrease with increasing the number of recharge/re-release cycles (P>0.1). The ion re-release concentrations at 14 days versus various recharge treatments were as follows: 1 min 3 times>3 min 2 times>1 min 2 times>6 min 1 time>3 min 1 time>1 min 1 time. In conclusion, although previous studies have shown that NACP nanocomposite remineralized tooth lesions and inhibited caries, the present study developed the first orthodontic cement with Ca and P ion recharge and long-term release capability. This NACP-rechargeable orthodontic cement is a promising therapy to inhibit enamel demineralization and WSLs around orthodontic brackets.

  9. Vibration Measurement on Reticular Lamina and Basilar Membrane at Multiple Longitudinal Locations

    NASA Astrophysics Data System (ADS)

    Chen, Fangyi; Zha, Dingjun; Choudhury, Niloy; Fridberger, Anders; Nuttall, Alfred L.

    2011-11-01

    The longitudinal distribution of the organ of Corti vibration is important for both understanding the energy delivery and the timing of the cochlear amplification. Recent development on low coherence interferomtry technique allows measuring vibration inside the cochlea. The reticular lamina (RL) vibration spectrum demonstrates that RL vibration leads the basilar membrane (BM). This phase lead is consistent with the idea that the active process may lead the BM vibration. In this study, measurements on multiple longitudinal locations demonstrated similar phase lead. Results on this study suggests that there may be another longitudinal coupling mechanism inside the cochlea other than the traveling wave on BM.

  10. Distinct Fibroblasts in the Papillary and Reticular Dermis: Implications for Wound Healing.

    PubMed

    Woodley, David T

    2017-01-01

    Human skin wounds heal largely by reparative wound healing rather than regenerative wound healing. Human skin wounds heal with scarring and without pilosebaceous units or other appendages. Dermal fibroblasts come from 2 distinct lineages of cells that have distinct cell markers and, more importantly, distinct functional abilities. Human skin wound healing largely involves the dermal fibroblast lineage from the reticular dermis and not the papillary dermis. If scientists could find a way to stimulate the dermal fibroblast lineages from the papillary dermis in early wound healing, perhaps human skin wounds could heal without scarring and with skin appendages. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Curcumin induces crosstalk between autophagy and apoptosis mediated by calcium release from the endoplasmic reticulum, lysosomal destabilization and mitochondrial events

    PubMed Central

    Moustapha, A; Pérétout, PA; Rainey, NE; Sureau, F; Geze, M; Petit, J-M; Dewailly, E; Slomianny, C; Petit, PX

    2015-01-01

    Curcumin, a major active component of turmeric (Curcuma longa, L.), has anticancer effects. In vitro studies suggest that curcumin inhibits cancer cell growth by activating apoptosis, but the mechanism underlying these effects is still unclear. Here, we investigated the mechanisms leading to apoptosis in curcumin-treated cells. Curcumin induced endoplasmic reticulum stress causing calcium release, with a destabilization of the mitochondrial compartment resulting in apoptosis. These events were also associated with lysosomal membrane permeabilization and of caspase-8 activation, mediated by cathepsins and calpains, leading to Bid cleavage. Truncated tBid disrupts mitochondrial homeostasis and enhance apoptosis. We followed the induction of autophagy, marked by the formation of autophagosomes, by staining with acridine orange in cells exposed curcumin. At this concentration, only the early events of apoptosis (initial mitochondrial destabilization with any other manifestations) were detectable. Western blotting demonstrated the conversion of LC3-I to LC3-II (light chain 3), a marker of active autophagosome formation. We also found that the production of reactive oxygen species and formation of autophagosomes following curcumin treatment was almost completely blocked by N-acetylcystein, the mitochondrial specific antioxidants MitoQ10 and SKQ1, the calcium chelators, EGTA-AM or BAPTA-AM, and the mitochondrial calcium uniporter inhibitor, ruthenium red. Curcumin-induced autophagy failed to rescue all cells and most cells underwent type II cell death following the initial autophagic processes. All together, these data imply a fail-secure mechanism regulated by autophagy in the action of curcumin, suggesting a therapeutic potential for curcumin. Offering a novel and effective strategy for the treatment of malignant cells. PMID:27551451

  12. Ultrastructure of cardiac muscle in reptiles and birds: optimizing and/or reducing the probability of transmission between calcium release units.

    PubMed

    Perni, Stefano; Iyer, V Ramesh; Franzini-Armstrong, Clara

    2012-06-01

    It is known that cardiac myocytes contain three categories of calcium release units (CRUs) all bearing arrays of RyR2: peripheral couplings, constituted of an association of the junctional SR (jSR) with the plasmalemma; dyads, associations between jSR and T tubules; internal extended junctional jSR (EjSR)/corbular jSR that is not associated with plasmalemma/T tubules. The bird hearts, even if fast beating (e.g., in finch and hummingbird) have no T tubules, despite fiber sizes comparable to those of mammalian ventricle, but are rich in EjSR/corbular SR. The heart of small lizard also lacks T tubule, but it has only peripheral couplings and compensates for lack of internal CRUs by the small diameter of its cells. We have extended previous information on chicken heart to finch and lizard by establishing a spatial relationship between RyR2 clusters in jSR of peripheral couplings and clusters of intra-membrane particles identifiable as voltage sensitive calcium channels (CaV1.2) in the adjacent plasmalemma. This provides the structural basis for initiation of the heart beat in all three species. Further we evaluated the distances separating peripheral couplings from each other and between EjSR/corbular SR sites within the bird muscles in all three hearts. The distances suggest that peripheral coupling sites are most likely to act independently of each other and that a calcium wave-front propagation from one internal CRU site to the other across the level of the Z line, may be marginally successful in the chicken, but certainly very effective in the finch.

  13. 40 CFR 721.10599 - Calcium cobalt lead titanium tungsten oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systems). (iii) Release to water. Requirements as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium...-271; CAS No. 1262279-31-1); Calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS...

  14. 40 CFR 721.10599 - Calcium cobalt lead titanium tungsten oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems). (iii) Release to water. Requirements as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (Where N=8, and 8 is an aggregate of releases for the following substances: Lead strontium titanium...-271; CAS No. 1262279-31-1); Calcium cobalt lead strontium titanium tungsten oxide (PMN P-11-272; CAS...

  15. Zinc release in the lateral nucleus of the amygdala by stimulation of the entorhinal cortex.

    PubMed

    Takeda, Atsushi; Imano, Sachie; Itoh, Hiromasa; Oku, Naoto

    2006-11-06

    Zinc release in the lateral nucleus of the amygdala was examined using rat brain slices. The lateral and basolateral nuclei in the amygdala were evidently stained by Timm's sulfide-silver staining method. When the amygdala including both the nuclei was stimulated with 100 mM KCl by means of in vivo microdialysis, extracellular zinc concentration was increased significantly. Zinc release in the lateral nucleus of the amygdala innervated by the entorhinal cortex was next examined in brain slices double-stained with zinc and calcium indicators. Extracellular zinc signal (ZnAF-2) in the lateral nucleus was increased with intracellular calcium signal (calcium orange) during delivery of tetanic stimuli to the entorhinal cortex. Both the increases were completely inhibited by addition of 1 micro M tetrodotoxin, a sodium channel blocker. Furthermore, calcium signal in the lateral nucleus during delivery of tetanic stimuli to the entorhinal cortex was increased in the presence of 10 micro M CNQX, an AMPA/KA receptor antagonist, and this increase was facilitated by addition of 1 mM CaEDTA, a membrane-impermeable zinc chelator. The present study suggested that zinc is released in the lateral nucleus of the amygdala by depolarization of the entorhinal neurons. In the lateral nucleus, zinc released may suppress the increase in presynaptic calcium signal.

  16. Use of calcium caseinate in association with lecithin for masking the bitterness of acetaminophen--comparative study with sodium caseinate.

    PubMed

    Hoang Thi, Thanh Huong; Lemdani, Mohamed; Flament, Marie-Pierre

    2013-11-18

    Owing to a variety of structural and functional properties, milk proteins are steadily studied for food and pharmaceutical applications. In the present study, calcium caseinate in association with lecithin was firstly investigated in order to encapsulate the acetaminophen through spray-drying for taste-masking purpose for pediatric medicines. A 2(4)-full factorial design revealed that the spray flow, the calcium caseinate amount and the lecithin amount had significant effects on the release of drug during the first 2 min. Indeed, increasing the spray flow and/or the calcium caseinate amount led to increase the released amount, whereas increasing the lecithin amount decreased the released amount. The "interaction" between the calcium caseinate amount and the lecithin amount was also shown to be statistically significant. The second objective was to compare the efficiency of two caseinate-based formulations, i.e. sodium caseinate and calcium caseinate, on the taste-masking effect. The characteristics of spray-dried powders determined by SEM and DSC were shown to depend on the caseinate/lecithin proportion rather than the type of caseinate. Interestingly, calcium caseinate-based formulations were found to lower the released amount of drug during the early time to a higher extent than sodium caseinate-based formulations, which indicates better taste-masking efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. ATP release from freshly isolated guinea-pig bladder urothelial cells: a quantification and study of the mechanisms involved.

    PubMed

    McLatchie, Linda M; Fry, Christopher H

    2015-06-01

    To quantify the amount of ATP released from freshly isolated bladder urothelial cells, study its control by intracellular and extracellular calcium and identify the pathways responsible for its release. Urothelial cells were isolated from male guinea-pig urinary bladders and stimulated to release ATP by imposition of drag forces by repeated pipetting. ATP was measured using a luciferin-luciferase assay and the effects of modifying internal and external calcium concentration and blockers of potential release pathways studied. Freshly isolated guinea-pig urothelial cells released ATP at a mean (sem) rate of 1.9 (0.1) pmoles/mm(2) cell membrane, corresponding to about 700 pmoles/g of tissue, and about half [49 (6)%, n = 9) of the available cell ATP. This release was reduced to a mean (sem) of 0.46 (0.08) pmoles/mm(2) (160 pmoles/g) with 1.8 mm external calcium, and was increased about two-fold by increasing intracellular calcium. The release from umbrella cells was not significantly different from a mixed intermediate and basal cell population, suggesting that all three groups of cells release a similar amount of ATP per unit area. ATP release was reduced by ≈ 50% by agents that block pannexin and connexin hemichannels. It is suggested that the remainder may involve vesicular release. A significant fraction of cellular ATP is released from isolated urothelial cells by imposing drag forces that cause minimal loss of cell viability. This release involves multiple release pathways, including hemichannels and vesicular release. © 2014 The Authors BJU International © 2014 BJU International.

  18. Role of external and internal calcium on heterocarrier-mediated transmitter release.

    PubMed

    Fassio, A; Bonanno, G; Fontana, G; Usai, C; Marchi, M; Raiteri, M

    1996-04-01

    Release-regulating heterocarriers exist on brain nerve endings. We have investigated in this study the mechanisms involved in the neurotransmitter release evoked by GABA heterocarrier activation. GABA increased the basal release of [3H]acetylcholine and [3H]noradrenaline from rat hippocampal synaptosomes and of [3H]dopamine from striatal synaptosomes. These GABA effects, insensitive to GABA receptor antagonists, were prevented by inhibiting GABA uptake but not by blocking noradrenaline, choline, or dopamine transport. Lack of extracellular Ca2+ or addition of tetrodotoxin selectively abolished the GABA-evoked release of [3H]noradrenaline, leaving unaffected that of [3H]acetylcholine or [3H]dopamine. 1,2-Bis(2-aminophenoxyl)-ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM) or vesamicol attenuated the release of [3H]acetylcholine elicited by GABA. Reserpine, but not BAPTA-AM, prevented the effect of GABA on [3H] dopamine release. Autoreceptor activation inhibited the GABA-evoked release of [3H]noradrenaline but not that of [3H]acetylcholine or [3H]dopamine. It is concluded that (a) the release of [3H]noradrenaline consequent to activation of GABA heterocarriers sited on noradrenergic terminals meets the criteria of a conventional exocytotic process, (b) the extracellular [Ca2+]-independent releases of [3H]acetylcholine and [3H]dopamine appear to occur from vesicles possibly through involvement of intraterminal Ca2+, and (c) autoreceptor activation only affects heterocarrier-mediated vesicular release linked to entry of extracellular Ca2+.

  19. TRPA1 and TRPV1 are required for lidocaine-evoked calcium influx and neuropeptide release but not cytotoxicity in mouse sensory neurons.

    PubMed

    Eberhardt, Mirjam; Stueber, Thomas; de la Roche, Jeanne; Herzog, Christine; Leffler, Andreas; Reeh, Peter W; Kistner, Katrin

    2017-01-01

    Local anaesthetics (LA) reduce neuronal excitability by inhibiting voltage-gated Na+ channels. When applied at high concentrations in the direct vicinity of nerves, LAs can also induce relevant irritation and neurotoxicity via mechanisms involving an increase of intracellular Ca2+. In the present study we explored the role of the Ca2+-permeable ion channels TRPA1 and TRPV1 for lidocaine-induced Ca2+-influx, neuropeptide release and neurotoxicity in mouse sensory neurons. Cultured dorsal root ganglion (DRG) neurons from wildtype and mutant mice lacking TRPV1, TRPA1 or both channels were explored by means of calcium imaging, whole-cell patch clamp recordings and trypan blue staining for cell death. Release of calcitonin gene-related peptide (CGRP) from isolated mouse peripheral nerves was determined with ELISA. Lidocaine up to 10 mM induced a concentration-dependent reversible increase in intracellular Ca2+ in DRG neurons from wildtype and mutant mice lacking one of the two receptors, but not in neurons lacking both TRPA1 and TRPV1. 30 mM lidocaine also released Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. While 10 mM lidocaine evoked an axonal CGRP release requiring expression of either TRPA1 or TRPV1, CGRP release induced by 30 mM lidocaine again mobilized internal Ca2+ stores. Lidocaine-evoked cell death required neither TRPV1 nor TRPA1. Depending on the concentration, lidocaine employs TRPV1, TRPA1 and intracellular Ca2+ stores to induce a Ca2+-dependent release of the neuropeptide CGRP. Lidocaine-evoked cell death does not seem to require Ca2+ influx through TRPV1 or TRPV1.

  20. TRPA1 and TRPV1 are required for lidocaine-evoked calcium influx and neuropeptide release but not cytotoxicity in mouse sensory neurons

    PubMed Central

    Eberhardt, Mirjam; Stueber, Thomas; de la Roche, Jeanne; Herzog, Christine; Leffler, Andreas; Reeh, Peter W.

    2017-01-01

    Background Local anaesthetics (LA) reduce neuronal excitability by inhibiting voltage-gated Na+ channels. When applied at high concentrations in the direct vicinity of nerves, LAs can also induce relevant irritation and neurotoxicity via mechanisms involving an increase of intracellular Ca2+. In the present study we explored the role of the Ca2+-permeable ion channels TRPA1 and TRPV1 for lidocaine-induced Ca2+-influx, neuropeptide release and neurotoxicity in mouse sensory neurons. Methods Cultured dorsal root ganglion (DRG) neurons from wildtype and mutant mice lacking TRPV1, TRPA1 or both channels were explored by means of calcium imaging, whole-cell patch clamp recordings and trypan blue staining for cell death. Release of calcitonin gene-related peptide (CGRP) from isolated mouse peripheral nerves was determined with ELISA. Results Lidocaine up to 10 mM induced a concentration-dependent reversible increase in intracellular Ca2+ in DRG neurons from wildtype and mutant mice lacking one of the two receptors, but not in neurons lacking both TRPA1 and TRPV1. 30 mM lidocaine also released Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. While 10 mM lidocaine evoked an axonal CGRP release requiring expression of either TRPA1 or TRPV1, CGRP release induced by 30 mM lidocaine again mobilized internal Ca2+ stores. Lidocaine-evoked cell death required neither TRPV1 nor TRPA1. Summary Depending on the concentration, lidocaine employs TRPV1, TRPA1 and intracellular Ca2+ stores to induce a Ca2+-dependent release of the neuropeptide CGRP. Lidocaine-evoked cell death does not seem to require Ca2+ influx through TRPV1 or TRPV1. PMID:29141003

  1. The SH3 and cysteine-rich domain 3 (Stac3) gene is important to growth, fiber composition, and calcium release from the sarcoplasmic reticulum in postnatal skeletal muscle.

    PubMed

    Cong, Xiaofei; Doering, Jonathan; Mazala, Davi A G; Chin, Eva R; Grange, Robert W; Jiang, Honglin

    2016-01-01

    The SH3 and cysteine-rich domain 3 (Stac3) gene is specifically expressed in the skeletal muscle. Stac3 knockout mice die perinatally. In this study, we determined the potential role of Stac3 in postnatal skeletal muscle growth, fiber composition, and contraction by generating conditional Stac3 knockout mice. We disrupted the Stac3 gene in 4-week-old male mice using the Flp-FRT and tamoxifen-inducible Cre-loxP systems. RT-qPCR and western blotting analyses of the limb muscles of target mice indicated that nearly all Stac3 mRNA and more than 70 % of STAC3 protein were deleted 4 weeks after tamoxifen injection. Postnatal Stac3 deletion inhibited body and limb muscle mass gains. Histological staining and gene expression analyses revealed that postnatal Stac3 deletion decreased the size of myofibers and increased the percentage of myofibers containing centralized nuclei, with no effect on the total myofiber number. Grip strength and grip time tests indicated that postnatal Stac3 deletion decreased limb muscle strength in mice. Muscle contractile tests revealed that postnatal Stac3 deletion reduced electrostimulation-induced but not the ryanodine receptor agonist caffeine-induced maximal force output in the limb muscles. Calcium imaging analysis of single flexor digitorum brevis myofibers indicated that postnatal Stac3 deletion reduced electrostimulation- but not caffeine-induced calcium release from the sarcoplasmic reticulum. This study demonstrates that STAC3 is important to myofiber hypertrophy, myofiber-type composition, contraction, and excitation-induced calcium release from the sarcoplasmic reticulum in the postnatal skeletal muscle.

  2. From Milk to Bones, Moving Calcium Through the Body: Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    Did you know that when astronauts are in space, their height increases about two inches? This happens because the weightlessness of space allows the spine, usually compressed in Earth's gravity, to expand. While this change is relatively harmless, other more serious things can happen with extended stays in weightlessness, notably bone loss. From previous experiments, scientists have observed that astronauts lose bone mass at a rate of about one percent per month during flight. Scientists know that bone is a dynamic tissue - continually being made and repaired by specialized bone cells throughout life. Certain cells produce new bone, while other cells are responsible for removing and replacing old bone. Research on the mechanisms of bone metabolism and the effects of space flight on its formation and repair are part of the exciting studies that will be performed during STS-107. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. Ninety-nine percent of calcium in the body is stored in the skeleton. However, calcium may be released, or resorbed, from bone to provide for other tissues when you are not eating. To better understand how and why weightlessness induces bone loss, astronauts will participate in a study of calcium kinetics - that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.

  3. Sound Waves Induce Neural Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells via Ryanodine Receptor-Induced Calcium Release and Pyk2 Activation.

    PubMed

    Choi, Yura; Park, Jeong-Eun; Jeong, Jong Seob; Park, Jung-Keug; Kim, Jongpil; Jeon, Songhee

    2016-10-01

    Mesenchymal stem cells (MSCs) have shown considerable promise as an adaptable cell source for use in tissue engineering and other therapeutic applications. The aims of this study were to develop methods to test the hypothesis that human MSCs could be differentiated using sound wave stimulation alone and to find the underlying mechanism. Human bone marrow (hBM)-MSCs were stimulated with sound waves (1 kHz, 81 dB) for 7 days and the expression of neural markers were analyzed. Sound waves induced neural differentiation of hBM-MSC at 1 kHz and 81 dB but not at 1 kHz and 100 dB. To determine the signaling pathways involved in the neural differentiation of hBM-MSCs by sound wave stimulation, we examined the Pyk2 and CREB phosphorylation. Sound wave induced an increase in the phosphorylation of Pyk2 and CREB at 45 min and 90 min, respectively, in hBM-MSCs. To find out the upstream activator of Pyk2, we examined the intracellular calcium source that was released by sound wave stimulation. When we used ryanodine as a ryanodine receptor antagonist, sound wave-induced calcium release was suppressed. Moreover, pre-treatment with a Pyk2 inhibitor, PF431396, prevented the phosphorylation of Pyk2 and suppressed sound wave-induced neural differentiation in hBM-MSCs. These results suggest that specific sound wave stimulation could be used as a neural differentiation inducer of hBM-MSCs.

  4. Evaluation of Gum of Moringa oleifera as a Binder and Release Retardant in Tablet Formulation

    PubMed Central

    Panda, D. S.; Choudhury, N. S. K.; Yedukondalu, M.; Si, S.; Gupta, R.

    2008-01-01

    The present study was undertaken to find out the potential of gum from Moringa oleifera to act as a binder and release retardant in tablet formulations. The effect of calcium sulphate dihydrate (water insoluble) and lactose (water soluble) diluent on the release of propranolol hydrochloride was studied. The DSC thermograms of drug, gum and mixture of gum/drug indicated no chemical interaction. Tablets (F1, F2, F3, and F4) were prepared containing calcium sulphate dihydrate as diluent, propranolol hydrochloride as model drug using 10%, 8%, 6% and 4% w/v of gum solution as binder. Magnesium stearate was used as lubricant. Physical and technological properties of granules and tablets like flow rate, Carr index, Hausner ratio, angle of repose, hardness, friability and disintegration time were determined and found to be satisfactory. Tablets were prepared by wet granulation method containing calcium sulphate dihydrate as excipient, propranolol hydrochloride as model drug using 10%, 20% and 30% of gum as release retardant, magnesium stearate was used as lubricant. Similarly tablets were prepared replacing lactose with calcium sulphate dihydrate. Despite of the widely varying physico-chemical characteristics of the excipients, the drug release profiles were found to be similar. The drug release increased with increasing proportions of the excipient and decreased proportion of the gum irrespective of the solubility characteristics of the excipient. The values of release exponent ‘n’ are between 0.37 and 0.54. This implies that the release mechanism is Fickian. There is no evidence that the dissolution or erosion of the excipient has got any effect on the release of the drug. The t50% values for tablets containing calcium sulphate dihydrate were on an average 10%-15% longer than the tablets containing lactose as excipient. These relatively small differences in t50% values suggest that the nature of excipient used appeared to play a minor role in regulating the release

  5. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells.

    PubMed

    Fletcher, Anne L; Malhotra, Deepali; Acton, Sophie E; Lukacs-Kornek, Veronika; Bellemare-Pelletier, Angelique; Curry, Mark; Armant, Myriam; Turley, Shannon J

    2011-01-01

    Within lymph nodes, non-hematopoietic stromal cells organize and interact with leukocytes in an immunologically important manner. In addition to organizing T and B cell segregation and expressing lymphocyte survival factors, several recent studies have shown that lymph node stromal cells shape the naïve T cell repertoire, expressing self-antigens which delete self-reactive T cells in a unique and non-redundant fashion. A fundamental role in peripheral tolerance, in addition to an otherwise extensive functional portfolio, necessitates closer study of lymph node stromal cell subsets using modern immunological techniques; however this has not routinely been possible in the field, due to difficulties reproducibly isolating these rare subsets. Techniques were therefore developed for successful ex vivo and in vitro manipulation and characterization of lymph node stroma. Here we discuss and validate these techniques in mice and humans, and apply them to address several unanswered questions regarding lymph node composition. We explored the steady-state stromal composition of lymph nodes isolated from mice and humans, and found that marginal reticular cells and lymphatic endothelial cells required lymphocytes for their normal maturation in mice. We also report alterations in the proportion and number of fibroblastic reticular cells (FRCs) between skin-draining and mesenteric lymph nodes. Similarly, transcriptional profiling of FRCs revealed changes in cytokine production from these sites. Together, these methods permit highly reproducible stromal cell isolation, sorting, and culture.

  6. Cellular Mechanisms of Calcium-Mediated Triggered Activity

    NASA Astrophysics Data System (ADS)

    Song, Zhen

    Life-threatening cardiac arrhythmias continue to pose a major health problem. Ventricular fibrillation, which is a complex form of electrical wave turbulence in the lower chambers of the heart, stops the heart from pumping and is the largest cause of natural death in the United States. Atrial fibrillation, a related form of wave turbulence in the upper heart chambers, is in turn the most common arrhythmia diagnosed in clinical practice. Despite extensive research to date, mechanisms of cardiac arrhythmias remain poorly understood. It is well established that both spatial disorder of the refractory period of heart cells and triggered activity (TA) jointly contribute to the initiation and maintenance of arrhythmias. TA broadly refers to the abnormal generation of a single or a sequence of abnormal excitation waves from a small submillimeter region of the heart in the interval of time between two normal waves generated by the heart's natural pacemaker (the sinoatrial node). TA has been widely investigated experimentally and occurs in several pathological conditions where the intracellular concentration of free Ca2+ ions in heart cells becomes elevated. Under such conditions, Ca2+ can be spontaneously released from intracellular stores, thereby driving an electrogenic current that exchanges 3Na+ ions for one Ca2+ ion across the cell membrane. This current in turn depolarizes the membrane of heart cells after a normal excitation. If this calcium-mediated "delayed after depolarization'' (DAD) is sufficiently large, it can generate an action potential. While the arrhythmogenic importance of spontaneous Ca2+ release and DADs is well appreciated, the conditions under which they occur in heart pathologies remain poorly understood. Calcium overload is only one factor among several other factors that can promote DADs, including sympathetic nerve stimulation, different expression levels of membrane ion channels and calcium handling proteins, and different mutations of those

  7. Elevated polyamines in urothelial cells from OAB subjects mediate oxotremorine-evoked rapid intracellular calcium rise and delayed acetylcholine release.

    PubMed

    Li, Mingkai; Sun, Yan; Tomiya, Noboru; Hsu, Yuchao; Chai, Toby C

    2013-08-15

    Increased polyamine signaling in bladder urothelial cells (BUC) may play a role in the pathophysiology of overactive bladder (OAB). We quantitated intracellular polyamine levels in cultured BUC from OAB and asymptomatic (NB) subjects. We assessed whether polyamines modulated rapid intracellular calcium ([Ca(2+)]i) changes and delayed acetylcholine (ACh) release evoked by oxotremorine (OXO, a muscarinic agonist). BUC were cultured from cystoscopic biopsies. High-performance liquid chromatography (HPLC) quantitated intracellular putrescine, spermidine, and spermine levels. Five-millimeter difluoromethylornithine (DFMO), and one-millimeter methylglyoxalbisguanylhydrazone (MGBG) treatments were used to deplete intracellular polyamines. Ten micrometers of OXO were used to increase [Ca(2+)]i levels (measured by fura 2 microfluorimetry) and trigger extracellular ACh release (measured by ELISA). Polyamine levels were elevated in OAB compared with NB BUC (0.5 ± 0.15 vs. 0.16 ± 0.03 nmol/mg for putrescine, 2.4 ± 0.21 vs. 1.01 ± 0.13 nmol/mg for spermidine, and 1.90 ± 0.27 vs. 0.86 ± 0.26 nmol/mg for spermine; P < 0.05 for all comparisons). OXO evoked greater [Ca(2+)]i rise in OAB (205.10 ± 18.82% increase over baseline) compared with in NB BUC (119.54 ± 13.01%; P < 0.05). After polyamine depletion, OXO evoked [Ca(2+)]i rise decreased in OAB and NB BUC to 43.40 ± 6.45 and 38.82 ± 3.5%, respectively. OXO tended to increase ACh release by OAB vs. NB BUC (9.02 ± 0.1 vs. 7.04 ± 0.09 μM, respectively; P < 0.05). Polyamine depletion reduced ACh release by both OAB and NB BUC. In conclusion, polyamine levels were elevated twofold in OAB BUC. OXO evoked greater increase in [Ca(2+)]i and ACh release in OAB BUC, although these two events may be unrelated. Depletion of polyamines caused OAB BUC to behave similarly to NB BUC.

  8. Elevated polyamines in urothelial cells from OAB subjects mediate oxotremorine-evoked rapid intracellular calcium rise and delayed acetylcholine release

    PubMed Central

    Li, Mingkai; Sun, Yan; Tomiya, Noboru; Hsu, Yuchao

    2013-01-01

    Increased polyamine signaling in bladder urothelial cells (BUC) may play a role in the pathophysiology of overactive bladder (OAB). We quantitated intracellular polyamine levels in cultured BUC from OAB and asymptomatic (NB) subjects. We assessed whether polyamines modulated rapid intracellular calcium ([Ca2+]i) changes and delayed acetylcholine (ACh) release evoked by oxotremorine (OXO, a muscarinic agonist). BUC were cultured from cystoscopic biopsies. High-performance liquid chromatography (HPLC) quantitated intracellular putrescine, spermidine, and spermine levels. Five-millimeter difluoromethylornithine (DFMO), and one-millimeter methylglyoxalbisguanylhydrazone (MGBG) treatments were used to deplete intracellular polyamines. Ten micrometers of OXO were used to increase [Ca2+]i levels (measured by fura 2 microfluorimetry) and trigger extracellular ACh release (measured by ELISA). Polyamine levels were elevated in OAB compared with NB BUC (0.5 ± 0.15 vs. 0.16 ± 0.03 nmol/mg for putrescine, 2.4 ± 0.21 vs. 1.01 ± 0.13 nmol/mg for spermidine, and 1.90 ± 0.27 vs. 0.86 ± 0.26 nmol/mg for spermine; P < 0.05 for all comparisons). OXO evoked greater [Ca2+]i rise in OAB (205.10 ± 18.82% increase over baseline) compared with in NB BUC (119.54 ± 13.01%; P < 0.05). After polyamine depletion, OXO evoked [Ca2+]i rise decreased in OAB and NB BUC to 43.40 ± 6.45 and 38.82 ± 3.5%, respectively. OXO tended to increase ACh release by OAB vs. NB BUC (9.02 ± 0.1 vs. 7.04 ± 0.09 μM, respectively; P < 0.05). Polyamine depletion reduced ACh release by both OAB and NB BUC. In conclusion, polyamine levels were elevated twofold in OAB BUC. OXO evoked greater increase in [Ca2+]i and ACh release in OAB BUC, although these two events may be unrelated. Depletion of polyamines caused OAB BUC to behave similarly to NB BUC. PMID:23698115

  9. Incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass-ionomer cement.

    PubMed

    Mazzaoui, S A; Burrow, M F; Tyas, M J; Dashper, S G; Eakins, D; Reynolds, E C

    2003-11-01

    Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) nanocomplexes have been shown to prevent demineralization and promote remineralization of enamel subsurface lesions in animal and in situ caries models. The aim of this study was to determine the effect of incorporating CPP-ACP into a self-cured glass-ionomer cement (GIC). Incorporation of 1.56% w/w CPP-ACP into the GIC significantly increased microtensile bond strength (33%) and compressive strength (23%) and significantly enhanced the release of calcium, phosphate, and fluoride ions at neutral and acidic pH. MALDI mass spectrometry also showed casein phosphopeptides from the CPP-ACP nanocomplexes to be released. The release of CPP-ACP and fluoride from the CPP-ACP-containing GIC was associated with enhanced protection of the adjacent dentin during acid challenge in vitro.

  10. Design and characterization of calcium alginate microparticles coated with polycations as protein delivery system.

    PubMed

    Zarate, J; Virdis, L; Orive, G; Igartua, M; Hernández, R M; Pedraz, J L

    2011-01-01

    Bovine serum albumin (BSA) loaded calcium alginate microparticles (MPs) produced in this study by a w/o emulsification and external gelation method exhibited spherical and fairly smooth and porous morphology with 1.052 ± 0.057 µm modal particle size. The high permeability of the calcium alginate hydrogel lead to a potent burst effect and too fast protein release. To overcome these problems, MPs were coated with polycations, such as chitosan, poly-L-lysine and DEAE-dextran. Our results demonstrated that coated MPs showed slower release and were able to significantly reduce the release of BSA in the first hour. Therefore, this method can be applied to prepare coated alginate MPs which could be an optimal system for the controlled release of biotherapeutic molecules. Nevertheless, further studies are needed to optimize delivery properties which could provide a sustained release of proteins.

  11. Neurones associated with saccade metrics in the monkey central mesencephalic reticular formation

    PubMed Central

    Cromer, Jason A; Waitzman, David M

    2006-01-01

    Neurones in the central mesencephalic reticular formation (cMRF) begin to discharge prior to saccades. These long lead burst neurones interact with major oculomotor centres including the superior colliculus (SC) and the paramedian pontine reticular formation (PPRF). Three different functions have been proposed for neurones in the cMRF: (1) to carry eye velocity signals that provide efference copy information to the SC (feedback), (2) to provide duration signals from the omnipause neurones to the SC (feedback), or (3) to participate in the transformation from the spatial encoding of a target selection signal in the SC into the temporal pattern of discharge used to drive the excitatory burst neurones in the pons (feed-forward). According to each respective proposal, specific predictions about cMRF neuronal discharge have been formulated. Individual neurones should: (1) encode instantaneous eye velocity, (2) burst specifically in relation to saccade duration but not to other saccade metrics, or (3) have a spectrum of weak to strong correlations to saccade dynamics. To determine if cMRF neurones could subserve these multiple oculomotor roles, we examined neuronal activity in relation to a variety of saccade metrics including amplitude, velocity and duration. We found separate groups of cMRF neurones that have the characteristics predicted by each of the proposed models. We also identified a number of subgroups for which no specific model prediction had previously been established. We found that we could accurately predict the neuronal firing pattern during one type of saccade behaviour (visually guided) using the activity during an alternative behaviour with different saccade metrics (memory guided saccades). We suggest that this evidence of a close relationship of cMRF neuronal discharge to individual saccade metrics supports the hypothesis that the cMRF participates in multiple saccade control pathways carrying saccade amplitude, velocity and duration information

  12. Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite.

    PubMed

    Ahmed, I; Parsons, A J; Palmer, G; Knowles, J C; Walker, G S; Rudd, C D

    2008-09-01

    Composites comprising a biodegradable polymeric matrix and a bioactive filler show considerable promise in the field of regenerative medicine, and could potentially serve as degradable bone fracture fixation devices, depending on the properties obtained. Therefore, glass fibres from a binary calcium phosphate (50P(2)O(5)+50CaO) glass were used to reinforce polycaprolactone, at two different volume fractions (V(f)). As-drawn, non-treated and heat-treated fibres were assessed. Weight loss, ion release and the initial mechanical properties of the fibres and composites produced have been investigated. Single fibre tensile testing revealed a fibre strength of 474MPa and a tensile modulus of 44GPa. Weibull analysis suggested a scale value of 524. The composites yielded flexural strength and modulus of up to 30MPa and 2.5GPa, respectively. These values are comparable with human trabecular bone. An 8% mass loss was seen for the lower V(f) composite, whereas for the two higher V(f) composites an approximate 20% mass loss was observed over the course of the 5week study. A plateau in the degradation profile at 350h indicated that fibre dissolution was complete at this interval. This assertion was further supported via ion release studies. The leaching of fibres from the composite created a porous structure, including continuous channels within the polymer matrix. This offers further scope for tailoring scaffold development, as cells from the surrounding tissue may be induced to migrate into the resulting porous matrix.

  13. Development of modified in situ gelling oral liquid sustained release formulation of dextromethorphan.

    PubMed

    El Maghraby, Gamal M; Elzayat, Ehab M; Alanazi, Fars K

    2012-08-01

    Alternative strategies are being employed to develop liquid oral sustained release formulation. These included ion exchange resin, sustained release suspensions and in situ gelling systems. The later mainly utilizes alginate solutions that form gels upon contact with calcium which may be administered separately or included in the alginate solution as citrate complex. This complex liberates calcium in the stomach with subsequent gellation. The formed gel can break after gastric emptying leading to dose dumping. Development of modified in situ gelling system which sustain dextromethorphan release in the stomach and intestine. Solutions containing alginate with calcium chloride and sodium citrate were initially prepared to select the formulation sustaining the release in the stomach. The best formulation was combined with chitosan. All formulations were characterized with respect to flow, gelling capacity, gelling strength and drug release. Increasing the concentration of alginate increased the gelling capacity and strength and reduced the rate of drug release in gastric conditions with 2% w/v alginate being the best formulation. However, these formulations failed to sustain the release in the intestinal conditions. Incorporation of chitosan with alginate increased the gelling capacity and strength and reduced the rate of drug release compared to alginate only system. The effect was optimum in formulation containing 1.5% w/v chitosan. The sustained release pattern was maintained both in the gastric and intestinal conditions and was comparable to that obtained from the marketed product. Alginate-chitosan based in situ gelling system is promising for developing liquid oral sustained release.

  14. "An estimate of the probability of vesicle exocytosis in a Monte Carlo model of buffered diffusion of calcium channel currents"

    NASA Astrophysics Data System (ADS)

    Dimcovic, Z. M.; Eagan, T. P.; Kidane, T. K.; Brown, R. W.; Petschek, R. G.; McEnery, M. W.

    2001-10-01

    The opening of voltage-dependent calcium channels results in an influx of calcium ions promoting the fusion of synaptic vesicles. The fusion leads to release of neurotransmitters, which in turn allow the propagation of nerve impulses. A Monte Carlo model of the diffusion of calcium following its surge into the cell is used to estimate the probability for exocytosis. Besides the calcium absorption by fixed and mobile buffers, key ingredients are the physical size and position of the tethered vesicle and a sensing model for the interaction of the vesicle and calcium. The release probability is compared to previously published studies where the finite vesicle size was not considered. (Supported by NIH MH55747, AHA 96001250, NSF0086643, and a CWRU Presidential Research Initiative grant.)

  15. Growth differentiation factor-15 promotes glutamate release in medial prefrontal cortex of mice through upregulation of T-type calcium channels.

    PubMed

    Liu, Dong-Dong; Lu, Jun-Mei; Zhao, Qian-Ru; Hu, Changlong; Mei, Yan-Ai

    2016-06-29

    Growth differentiation factor-15 (GDF-15) has been implicated in ischemic brain injury and synapse development, but its involvement in modulating neuronal excitability and synaptic transmission remain poorly understood. In this study, we investigated the effects of GDF-15 on non-evoked miniature excitatory post-synaptic currents (mEPSCs) and neurotransmitter release in the medial prefrontal cortex (mPFC) in mice. Incubation of mPFC slices with GDF-15 for 60 min significantly increased the frequency of mEPSCs without effect on their amplitude. GDF-15 also significantly elevated presynaptic glutamate release, as shown by HPLC. These effects were blocked by dual TGF-β type I receptor (TβRI) and TGF-β type II receptor (TβRII) antagonists, but not by a TβRI antagonist alone. Meanwhile, GDF-15 enhanced pERK level, and inhibition of MAPK/ERK activity attenuated the GDF-15-induced increases in mEPSC and glutamate release. Blocking T-type calcium channels reduced the GDF-15 induced up-regulation of synaptic transmission. Membrane-protein extraction and use of an intracellular protein-transport inhibitor showed that GDF-15 promoted CaV3.1 and CaV3.3 α-subunit expression by trafficking to the membrane. These results confirm previous findings in cerebellar granule neurons, in which GDF-15 induces its neurobiological effects via TβRII and activation of the ERK pathway, providing novel insights into the mechanism of GDF-15 function in cortical neurons.

  16. Endotrophic Calcium, Strontium, and Barium Spores of Bacillus megaterium and Bacillus cereus1

    PubMed Central

    Foerster, Harold F.; Foster, J. W.

    1966-01-01

    Foerster, Harold F. (The University of Texas, Austin), and J. W. Foster. Endotrophic calcium, strontium, and barium spores of Bacillus megaterium and Bacillus cereus. J. Bacteriol. 91:1333–1345. 1966.—Spores were produced by washed vegetative cells suspended in deionized water supplemented with CaCl2, SrCl2, or BaCl2. Normal, refractile spores were produced in each case; a portion of the barium spores lost refractility and darkened. Thin-section electron micrographs revealed no apparent anatomical differences among the three types of spores. Analyses revealed that the different spore types were enriched specifically in the metal to which they were exposed during sporogenesis. The calcium content of the strontium and the barium spores was very small. From binary equimolar mixtures of the metal salts, endotrophic spores accumulated both metals to nearly the same extent. Viability of the barium spores was considerably less than that of the other two types. Strontium and barium spores were heat-resistant; however, calcium was essential for maximal heat resistance. Significant differences existed in the rates of germination; calcium spores germinated fastest, strontium spores were slower, and barium spores were slowest. Calcium-barium and calcium-strontium spores germinated readily. Endotrophic calcium and strontium spores germinated without the prior heat activation essential for growth spores. Chemical germination of the different metal-type spores with n-dodecylamine took place at the same relative rates as physiological germination. Heat-induced release of dipicolinic acid occurred much faster with barium and strontium spores than with calcium spores. The washed “coat fraction” from disrupted spores contained little of the spore calcium but most of the spore barium. The metal in this fraction was released by dilute acid. The demineralized coats reabsorbed calcium and barium at neutral pH. Images PMID:4956334

  17. The pontomedullary reticular formation contributes to the compensatory postural responses observed following removal of the support surface in the standing cat.

    PubMed

    Stapley, Paul J; Drew, Trevor

    2009-03-01

    This study was designed to determine the contribution of reticular neurons in the pontomedullary reticular formation (PMRF) to the postural responses produced to compensate for an unexpected perturbation. We recorded the activity of 48 neurons in the PMRF, including 41 reticulospinal neurons, to removal of the support surface under each of the four limbs in four cats. The perturbations produced robust postural responses that were divided into three periods: an initial postural response (P1) that displaced the center of vertical pressure over the two diagonal supporting limbs; a secondary response (P2) during which the cat restored a tripedal support pattern; and a prolonged tertiary response (P3) that maintained a stable posture over all three supporting limbs. Most (44/48) reticular neurons showed modified activity to perturbation of at least one limb and a majority (39/48) showed changes in activity to perturbations of more than one limb. A few (7/48) discharged to perturbations of all four limbs. Discharge frequency in neurons showing increased activity during P1 was relatively high (>100 Hz in 57% of the neurons responding to perturbations of either the left or right forelimbs, lFl and rFL) and of short latency (17 ms for the lFL and 14 ms for the rFL). Discharge activity in most neurons was sustained throughout P2 and P3 but at a reduced level. These data show that neurons in the PMRF discharge strongly in response to unexpected perturbations and in a manner consistent with a contribution to the compensatory responses that restore equilibrium.

  18. [The alpha2delta subunit of the voltage-dependent calcium channel. A new pharmaceutical target for psychiatry and neurology].

    PubMed

    Wedekind, D; Bandelow, B

    2005-07-01

    Calcium channel blockers are substances used for treating high blood pressure and coronary heart disease. New medications have been developed that modulate calcium channels but also show promise in psychiatric and neurologic applications. Gabapentin and pregabalin bind to a subunit of calcium channels--the alpha2delta receptors--thereby reducing calcium influx to neurons. As a result, less glutamate is released from nerve endings that use excitatory amino acids as transmitters. This in turn reduces substance P-related activation of AMPA heteroreceptors on noradrenergic synapses, total transmitter release, and finally neuronal activity. That mechanism is the probable explanation for gabapentin's and pregabalin's usefulness in the treatment of neuropathic pain but also their possible anticonvulsive and anxiolytic effects.

  19. [In vitro drug release behavior of carrier made of porous glass ceramics].

    PubMed

    Wang, De-ping; Huang, Wen-hai; Zhou, Nai

    2002-09-01

    To conduct the in vitro test on drug release of rifampin encapsulated in a carrier made of porous phosphate glass ceramics and to analyze main factors which affect the drug release rate. A certain quantitative of rifampin was sealed in a hollow cylindrical capsule which consisted of chopped calcium phosphate crystal fiber obtained from glass crystallization. The rifampin concentration was measured in the simulated physiological solution in which the capsule soaked. Rifampin could be released in a constant rate from the porous glass ceramic carrier in a long time. The release rate was dependent on the size of crystal fiber and the wall thickness of the capsule. This kind of calcium phosphate glass ceramics can be a candidate of the carrier materials used as long term drug therapy after osteotomy surgery.

  20. Impact of calcium signaling during infection of Neisseria meningitidis to human brain microvascular endothelial cells.

    PubMed

    Asmat, Tauseef M; Tenenbaum, Tobias; Jonsson, Ann-Beth; Schwerk, Christian; Schroten, Horst

    2014-01-01

    The pili and outer membrane proteins of Neisseria meningitidis (meningococci) facilitate bacterial adhesion and invasion into host cells. In this context expression of meningococcal PilC1 protein has been reported to play a crucial role. Intracellular calcium mobilization has been implicated as an important signaling event during internalization of several bacterial pathogens. Here we employed time lapse calcium-imaging and demonstrated that PilC1 of meningococci triggered a significant increase in cytoplasmic calcium in human brain microvascular endothelial cells, whereas PilC1-deficient meningococci could not initiate this signaling process. The increase in cytosolic calcium in response to PilC1-expressing meningococci was due to efflux of calcium from host intracellular stores as demonstrated by using 2-APB, which inhibits the release of calcium from the endoplasmic reticulum. Moreover, pre-treatment of host cells with U73122 (phospholipase C inhibitor) abolished the cytosolic calcium increase caused by PilC1-expressing meningococci demonstrating that active phospholipase C (PLC) is required to induce calcium transients in host cells. Furthermore, the role of cytosolic calcium on meningococcal adherence and internalization was documented by gentamicin protection assay and double immunofluorescence (DIF) staining. Results indicated that chelation of intracellular calcium by using BAPTA-AM significantly impaired PilC1-mediated meningococcal adherence to and invasion into host endothelial cells. However, buffering of extracellular calcium by BAPTA or EGTA demonstrated no significant effect on meningococcal adherence to and invasion into host cells. Taken together, these results indicate that meningococci induce calcium release from intracellular stores of host endothelial cells via PilC1 and cytoplasmic calcium concentrations play a critical role during PilC1 mediated meningococcal adherence to and subsequent invasion into host endothelial cells.

  1. Physicochemical properties of calcium silicate cements associated with microparticulate and nanoparticulate radiopacifiers.

    PubMed

    Bosso-Martelo, Roberta; Guerreiro-Tanomaru, Juliane M; Viapiana, Raqueli; Berbert, Fabio Luiz C; Duarte, Marco Antonio Hungaro; Tanomaru-Filho, Mário

    2016-01-01

    The objective of this paper was to evaluate the physicochemical properties of calcium silicate cements with different chemical compositions, associated with radiopacifying agents. Mineral trioxide aggregate (MTA) Angelus, calcium silicate cement with additives (CSC), and resinous calcium silicate cement (CSCR) were evaluated, with the addition of the following radiopacifiers: microparticles (micro) or nanoparticles (nano) of zirconium oxide (ZrO(2)), niobium oxide (Nb(2)O(5)), bismuth oxide (Bi(2)O(3)), or calcium tungstate (CaWO(4)). Setting time was evaluated using Gilmore needles. Solubility was determined after immersion in water. The pH and calcium ion release were analyzed after 3, 12, and 24 h and 7, 14, and 21 days. The data obtained were submitted to analysis of variance and Tukey's test, at a level of significance of 5 %. CSC + CaWO(4) and CSCR + ZrO(2) micro, Nb(2)O(5) and CaWO(4) presented results similar to MTA, with a shorter final setting time than the other associations. CSC and CSCR+ ZrO(2) micro presented a higher degree of flow. All the cements evaluated presented low solubility. The materials presented alkaline pH and released calcium ions. ZrO(2) micro radiopacifier may be considered a potential substitute for Bi(2)O(3) when associated with CSC or CSCR. The proposed materials, especially when associated with ZrO(2), are potential materials for use as alternatives to MTA.

  2. Carbachol injection into the pontine reticular formation depresses laryngeal muscle activities and airway reflexes in decerebrate cats.

    PubMed

    Adachi, Masaaki; Nonaka, Satoshi; Katada, Akihiro; Arakawa, Takuya; Ota, Ryo; Harada, Hirofumi; Takakusaki, Kaoru; Harabuchi, Yasuaki

    2010-05-01

    To understand the role of cholinoceptive, medial pontine reticular formation (mPRF) neurons in the control of upper airway, pharyngolaryngeal reflexes, we measured activities of intrinsic laryngeal muscles (posterior cricoarytenoid, PCA; thyroarytenoid, TA), diaphragm (DIA), genioglossus (GG) and a neck muscle (trapezius) in unanesthetized, decerebrated, spontaneously breathing cats with and without mPRF carbachol injections. The ethimoidal nerve was electrically stimulated to evoke sneezing, and the superior laryngeal nerve to evoke the laryngeal reflex, swallowing, and coughing. Carbachol reduced the amplitudes of the spontaneous electromyographic activities in the neck, TA, PCA, GG, and DIA to 7%, 30%, 54%, 45% and 71% of control, respectively, reduced the respiratory rate to 53% without changes in expiratory CO(2) concentration; the magnitude of the laryngeal reflex in the TA muscle to 56%; increased its latency by 13%; and reduced the probability of stimulus-induced sneezing, swallowing, and coughing to less than 40%. These changes lasted more than 1h. These data demonstrate that important upper airway reflexes are suppressed by increasing cholinergic neurotransmission in the mPRF. Because acetylcholine release in the mPRF changes in accordance with sleep-wake cycles, the present findings are relevant to the control of upper airway reflexes during various vigilance states. 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  3. MR imaging findings in the reticular formation in siblings with MPV17-related mitochondrial depletion syndrome.

    PubMed

    Merkle, A N; Nascene, D R; McKinney, A M

    2012-03-01

    Hepatocerebral MPV17-MDS is quite rare (<30 confirmed cases), with limited findings described on MR imaging. We report 2 siblings having abnormalities within the reticular formation of the lower brain stem and within the reticulospinal tracts at the cervicocranial junction on T2WI. The presence of these MR imaging findings (relative to previous reports) raises the possibility that they represent subtle but characteristic findings corresponding to clinically observed abnormalities of tone encountered with this recently described disorder.

  4. Roles of calcium and pH in activation of eggs of the medaka fish, Oryzias latipes

    PubMed Central

    1983-01-01

    Unfertilized eggs of the medaka fish (Oryzias latipes) were injected with pH-buffered calcium buffers. Medaka egg activation is accompanied by a transient increase in cytoplasmic free calcium (Gilkey, J. C., L. F. Jaffe, E. B. Ridgway, and G. T. Reynolds, 1978, J. Cell Biol., 76:448-466). The calcium buffer injections demonstrated that (a) the threshold free calcium required to elicit the calcium transient and activate the egg is between 1.7 and 5.1 microM at pH 7.0, well below the 30 microM reached during the transient, and (b) buffers which hold free calcium below threshold prevent activation of the buffered region in subsequently fertilized eggs. Therefore an increase in free calcium is necessary and sufficient to elicit the calcium transient, and the calcium transient is necessary to activate the egg. Further, these results are additional proof that the calcium transient is initiated and propagated through the cytoplasm by a mechanism of calcium- stimulated calcium release. Finally, a normal calcium transient must propagate through the entire cytoplasm to ensure normal development. Unfertilized eggs were injected with pH buffers to produce short-term, localized changes in cytoplasmic pH. The eggs were then fertilized at various times after injection. In other experiments, unfertilized and fertilized eggs were exposed to media containing either NH4Cl or CO2 to produce longer term, global changes in cytoplasmic pH. These treatments neither activated the eggs nor interfered with the normal development of fertilized eggs, suggesting that even if a natural change in cytoplasmic pH is induced by activation, it has no role in medaka egg development. The injected pH buffers altered the rate of propagation of the calcium transient through the cytoplasm, suggesting that the threshold free calcium required to trigger calcium-stimulated calcium release might be pH dependent. The results of injection of pH-buffered calcium buffers support this conjecture: for a tenfold

  5. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways

    NASA Technical Reports Server (NTRS)

    McAllister, T. N.; Frangos, J. A.

    1999-01-01

    Fluid flow has been shown to be a potent stimulus in osteoblasts and osteocytes and may therefore play an important role in load-induced bone remodeling. The objective of this study was to investigate the characteristics of flow-activated pathways. Previously we reported that fluid flow stimulates rapid and continuous release of nitric oxide (NO) in primary rat calvarial osteoblasts. Here we demonstrate that flow-induced NO release is mediated by shear stress and that this response is distinctly biphasic. Transients in shear stress associated with the onset of flow stimulated a burst in NO production (8.2 nmol/mg of protein/h), while steady flow stimulated sustained NO production (2.2 nmol/mg of protein/h). Both G-protein inhibition and calcium chelation abolished the burst phase but had no effect on sustained production. Activation of G-proteins stimulated dose-dependent NO release in static cultures of both calvarial osteoblasts and UMR-106 osteoblast-like cells. Pertussis toxin had no effect on NO release. Calcium ionophore stimulated low levels of NO production within 15 minutes but had no effect on sustained production. Taken together, these data suggest that fluid shear stress stimulates NO release by two distinct pathways: a G-protein and calcium-dependent phase sensitive to flow transients, and a G-protein and calcium-independent pathway stimulated by sustained flow.

  6. Interactions of endoplasmic reticulum and mitochondria Ca2+ stores with capacitative calcium entry

    PubMed Central

    Huang, Hsueh-Meei; Chen, Huan-Lian; Gibson, Gary E.

    2014-01-01

    Thiamine dependent enzymes are diminished in Alzheimer’s disease (AD). Thiamine deficiency in vitro and in rodents is a useful model of this reduction. Thiamine interacts with cellular calcium stores. To directly test the relevance of the thiamine dependent changes to dynamic processes in AD, the interactions must be studied in cells from patients with AD. These studies employed fibroblasts. Mitochondrial dysfunction including reductions in thiamine dependent enzymes and abnormalities in calcium homeostasis and oxidative processes occur in fibroblasts from Alzheimer’s Disease (AD) patients. Bombesin-releasable calcium stores (BRCS) from the endoplasmic reticulum (ER) are exaggerated in fibroblasts from patients with AD bearing a presenilin-1 (PS-1) mutation and in control fibroblasts treated with oxidants. ER calcium regulates calcium entry into the cell through capacitative calcium entry (CCE), which is reduced in fibroblasts and neurons from mice bearing PS-1 mutations. Under physiological conditions, mitochondria and ER play important and interactive roles in the regulation of Ca2+ homeostasis. Thus, the interactions of mitochondria and oxidants with CCE were tested. Inhibition of ER Ca2+-ATPase by cyclopiazonic acid (CPA) stimulates CCE. CPA-induced CCE was diminished by inhibition of mitochondrial Ca2+ export (−60%) or import (−40%). Different aspects of mitochondrial Ca2+ coupled to CPA-induced-CCE were sensitive to select oxidants. The effects were very different when CCE was examined in the presence of InsP3, a physiological regulator of ER calcium release, and subsequent CCE. CCE under these conditions was only mildly reduced (20–25%) by inhibition of mitochondrial Ca2+ export, and inhibition of mitochondrial Ca2+ uptake exaggerated CCE (+53%). However, t-BHP reversed both abnormalities. The results suggest that in the presence of InsP3, mitochondria buffer the local Ca2+ released from ER following rapid activation of InsP3R and serve as a

  7. Slow-release fertilizer

    NASA Technical Reports Server (NTRS)

    Golden, Dadigamuwage C. (Inventor); Ming, Douglas W. (Inventor)

    1995-01-01

    A synthetic apatite containing agronutrients and a method for making the apatite are disclosed. The apatite comprises crystalline calcium phosphate having agronutrients dispersed in the crystalline structure. The agronutrients can comprise potassium, magnesium, sulfur, iron, manganese, molybdenum, chlorine, boron, copper and zinc in amounts suited for plant growth. The apatite can optionally comprise a carbonate and/or silicon solubility control agent. The agronutrients are released slowly as the apatite dissolves.

  8. Slow-release fertilizer

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Golden, D. C. (Inventor)

    1992-01-01

    A synthetic apatite containing agronutrients and a method for making the apatite are disclosed. The apatite comprises crystalline calcium phosphate having agronutrients dispersed in the crystalline structure. The agronutrients can comprise potassium, magnesium, sulfur, iron, manganese, molybdenum, chlorine, boron, copper and zinc in amounts suited for plant growth. The apatite can optionally comprise a carbonate and/or silicon solubility control agent. The agronutrients are released slowly as the apatite dissolves.

  9. Slow-release fertilizer

    NASA Astrophysics Data System (ADS)

    Ming, Douglas W.; Golden, D. C.

    1992-10-01

    A synthetic apatite containing agronutrients and a method for making the apatite are disclosed. The apatite comprises crystalline calcium phosphate having agronutrients dispersed in the crystalline structure. The agronutrients can comprise potassium, magnesium, sulfur, iron, manganese, molybdenum, chlorine, boron, copper and zinc in amounts suited for plant growth. The apatite can optionally comprise a carbonate and/or silicon solubility control agent. The agronutrients are released slowly as the apatite dissolves.

  10. Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP.

    PubMed

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Arvaniti, Eleni Charalampous; Hosseinkhani, Baharak; Ramos, Jose Angel; Rahier, Hubert; Boon, Nico

    2014-08-01

    Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such asammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2(-1) calcium carbonate precipitate yield was obtained when a culture of 10(9) cells ml(-1) and 5 g of calcium formate liter(-)1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry.

  11. Formate Oxidation-Driven Calcium Carbonate Precipitation by Methylocystis parvus OBBP

    PubMed Central

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Arvaniti, Eleni Charalampous; Hosseinkhani, Baharak; Ramos, Jose Angel; Rahier, Hubert

    2014-01-01

    Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such as ammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2−1 calcium carbonate precipitate yield was obtained when a culture of 109 cells ml−1 and 5 g of calcium formate liter−1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry. PMID:24837386

  12. Different contributions of primary motor cortex, reticular formation, and spinal cord to fractionated muscle activation.

    PubMed

    Zaaimi, Boubker; Dean, Lauren R; Baker, Stuart N

    2018-01-01

    Coordinated movement requires patterned activation of muscles. In this study, we examined differences in selective activation of primate upper limb muscles by cortical and subcortical regions. Five macaque monkeys were trained to perform a reach and grasp task, and electromyogram (EMG) was recorded from 10 to 24 muscles while weak single-pulse stimuli were delivered through microelectrodes inserted in the motor cortex (M1), reticular formation (RF), or cervical spinal cord (SC). Stimulus intensity was adjusted to a level just above threshold. Stimulus-evoked effects were assessed from averages of rectified EMG. M1, RF, and SC activated 1.5 ± 0.9, 1.9 ± 0.8, and 2.5 ± 1.6 muscles per site (means ± SD); only M1 and SC differed significantly. In between recording sessions, natural muscle activity in the home cage was recorded using a miniature data logger. A novel analysis assessed how well natural activity could be reconstructed by stimulus-evoked responses. This provided two measures: normalized vector length L, reflecting how closely aligned natural and stimulus-evoked activity were, and normalized residual R, measuring the fraction of natural activity not reachable using stimulus-evoked patterns. Average values for M1, RF, and SC were L = 119.1 ± 9.6, 105.9 ± 6.2, and 109.3 ± 8.4% and R = 50.3 ± 4.9, 56.4 ± 3.5, and 51.5 ± 4.8%, respectively. RF was significantly different from M1 and SC on both measurements. RF is thus able to generate an approximation to the motor output with less activation than required by M1 and SC, but M1 and SC are more precise in reaching the exact activation pattern required. Cortical, brainstem, and spinal centers likely play distinct roles, as they cooperate to generate voluntary movements. NEW & NOTEWORTHY Brainstem reticular formation, primary motor cortex, and cervical spinal cord intermediate zone can all activate primate upper limb muscles. However, brainstem output is more

  13. Different contributions of primary motor cortex, reticular formation, and spinal cord to fractionated muscle activation

    PubMed Central

    Dean, Lauren R.

    2018-01-01

    Coordinated movement requires patterned activation of muscles. In this study, we examined differences in selective activation of primate upper limb muscles by cortical and subcortical regions. Five macaque monkeys were trained to perform a reach and grasp task, and electromyogram (EMG) was recorded from 10 to 24 muscles while weak single-pulse stimuli were delivered through microelectrodes inserted in the motor cortex (M1), reticular formation (RF), or cervical spinal cord (SC). Stimulus intensity was adjusted to a level just above threshold. Stimulus-evoked effects were assessed from averages of rectified EMG. M1, RF, and SC activated 1.5 ± 0.9, 1.9 ± 0.8, and 2.5 ± 1.6 muscles per site (means ± SD); only M1 and SC differed significantly. In between recording sessions, natural muscle activity in the home cage was recorded using a miniature data logger. A novel analysis assessed how well natural activity could be reconstructed by stimulus-evoked responses. This provided two measures: normalized vector length L, reflecting how closely aligned natural and stimulus-evoked activity were, and normalized residual R, measuring the fraction of natural activity not reachable using stimulus-evoked patterns. Average values for M1, RF, and SC were L = 119.1 ± 9.6, 105.9 ± 6.2, and 109.3 ± 8.4% and R = 50.3 ± 4.9, 56.4 ± 3.5, and 51.5 ± 4.8%, respectively. RF was significantly different from M1 and SC on both measurements. RF is thus able to generate an approximation to the motor output with less activation than required by M1 and SC, but M1 and SC are more precise in reaching the exact activation pattern required. Cortical, brainstem, and spinal centers likely play distinct roles, as they cooperate to generate voluntary movements. NEW & NOTEWORTHY Brainstem reticular formation, primary motor cortex, and cervical spinal cord intermediate zone can all activate primate upper limb muscles. However, brainstem output is more

  14. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

    PubMed Central

    2010-01-01

    Background Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. Methods We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone) at 10 pM (representing pre-development levels), and 1 nM (representing higher cycle-dependent and pregnancy levels) in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2) phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER) were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively). Results All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation) of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Conclusions Responses mediated by endogenous estrogens representing different life stages are vulnerable to very

  15. Cells in the monkey ponto-medullary reticular formation modulate their activity with slow finger movements

    PubMed Central

    Soteropoulos, Demetris S; Williams, Elizabeth R; Baker, Stuart N

    2012-01-01

    Recent work has shown that the primate reticulospinal tract can influence spinal interneurons and motoneurons involved in control of the hand. However, demonstrating connectivity does not reveal whether reticular outputs are modulated during the control of different types of hand movement. Here, we investigated how single unit discharge in the pontomedullary reticular formation (PMRF) modulated during performance of a slow finger movement task in macaque monkeys. Two animals performed an index finger flexion–extension task to track a target presented on a computer screen; single units were recorded both from ipsilateral PMRF (115 cells) and contralateral primary motor cortex (M1, 210 cells). Cells in both areas modulated their activity with the task (M1: 87%, PMRF: 86%). Some cells (18/115 in PMRF; 96/210 in M1) received sensory input from the hand, showing a short-latency modulation in their discharge following a rapid passive extension movement of the index finger. Effects in ipsilateral electromyogram to trains of stimuli were recorded at 45 sites in the PMRF. These responses involved muscles controlling the digits in 13/45 sites (including intrinsic hand muscles, 5/45 sites). We conclude that PMRF may contribute to the control of fine finger movements, in addition to its established role in control of more proximal limb and trunk movements. This finding may be especially important in understanding functional recovery after brain lesions such as stroke. PMID:22641776

  16. Calcium-silicate mesoporous nanoparticles loaded with chlorhexidine for both anti- Enterococcus faecalis and mineralization properties.

    PubMed

    Fan, Wei; Li, Yanyun; Sun, Qing; Ma, Tengjiao; Fan, Bing

    2016-10-21

    In infected periapical tissues, Enterococcus faecalis is one of the most common dominant bacteria. Chlorhexidine has been proved to show strong antibacterial ability against E. faecalis but is ineffective in promoting mineralization for tissues around root apex. Mesoporous calcium-silicate nanoparticles are newly synthesized biomaterials with excellent ability to promote mineralization and carry-release bioactive molecules in a controlled manner. In this study, mesoporous calcium-silicate nanoparticles were functionalized with chlorhexidine and their releasing profile, antibacterial ability, effect on cell proliferation and in vitro mineralization property were evaluated. The chlorhexidine was successfully incorporated into mesoporous calcium-silicate nanoparticles by a mixing-coupling method. The new material could release chlorhexidine as well as Ca 2+ and SiO 3 2- in a sustained manner with an alkaline pH value under different conditions. The antimicrobial ability against planktonic E. faecalis was dramatically improved after chlorhexidine incorporation. The nanoparticles with chlorhexidine showed no negative effect on cell proliferation with low concentrations. On dentin slices, the new synthesized material demonstrated a similar inhibitory effect on E. faecalis as the chlorhexidine. After being immersed in SBF for 9 days, numerous apatite crystals could be observed on surfaces of the material tablets. Mesoporous calcium-silicate nanoparticles loaded with chlorhexidine exhibited release of ions and chlorhexidine, low cytotoxicity, excellent antibacterial ability and in vitro mineralization. This material could be developed into a new effective intra-canal medication in dentistry or a new bone defect filling material for infected bone defects.

  17. Coordination of eye and head components of movements evoked by stimulation of the paramedian pontine reticular formation.

    PubMed

    Gandhi, Neeraj J; Barton, Ellen J; Sparks, David L

    2008-07-01

    Constant frequency microstimulation of the paramedian pontine reticular formation (PPRF) in head-restrained monkeys evokes a constant velocity eye movement. Since the PPRF receives significant projections from structures that control coordinated eye-head movements, we asked whether stimulation of the pontine reticular formation in the head-unrestrained animal generates a combined eye-head movement or only an eye movement. Microstimulation of most sites yielded a constant-velocity gaze shift executed as a coordinated eye-head movement, although eye-only movements were evoked from some sites. The eye and head contributions to the stimulation-evoked movements varied across stimulation sites and were drastically different from the lawful relationship observed for visually-guided gaze shifts. These results indicate that the microstimulation activated elements that issued movement commands to the extraocular and, for most sites, neck motoneurons. In addition, the stimulation-evoked changes in gaze were similar in the head-restrained and head-unrestrained conditions despite the assortment of eye and head contributions, suggesting that the vestibulo-ocular reflex (VOR) gain must be near unity during the coordinated eye-head movements evoked by stimulation of the PPRF. These findings contrast the attenuation of VOR gain associated with visually-guided gaze shifts and suggest that the vestibulo-ocular pathway processes volitional and PPRF stimulation-evoked gaze shifts differently.

  18. Stimulation by atropine of acetylcholine release and synthesis in cortical slices from rat brain

    PubMed Central

    Molenaar, P. C.; Polak, R. L.

    1970-01-01

    1. Cortical slices from rat brain were incubated in media containing the irreversible cholinesterase inhibitor soman and a high KCl concentration, and the release and synthesis of acetylcholine (ACh) were determined. 2. Atropine enhanced the release and synthesis of ACh. 3. Tetrodotoxin, a substance which blocks nervous conduction, did not influence the release and synthesis of ACh, in the absence or in the presence of atropine. Therefore the nerve endings are probably the site at which atropine acts when stimulating the release and synthesis of ACh. 4. Pretreatment of the slices with botulinum type A toxin partially blocked the release and synthesis of ACh and reduced the extra amounts of ACh released and synthesized under the influence of atropine. 5. Lowering the calcium or raising the magnesium concentration in the incubation medium reduced the release and synthesis of ACh and their enhancement by atropine. 6. Physostigmine decreased the total extractable ACh content of the slices during incubation in a 25 mM KCl containing medium. This decrease was nearly prevented when the release and synthesis of ACh were inhibited by omission of the calcium ions from the medium, but was enhanced by atropine. 7. The observations made with pretreatment by botulinum type A toxin, with changes in the calcium and magnesium concentration as well as with physostigmine, all support the theory that it is primarily the release of ACh which is enhanced by atropine and that its stimulating action on the synthesis results from the increased release. PMID:5497792

  19. High-resolution optical coherence tomography, autofluorescence, and infrared reflectance imaging in Sjögren reticular dystrophy.

    PubMed

    Schauwvlieghe, Pieter-Paul; Torre, Kara Della; Coppieters, Frauke; Van Hoey, Anneleen; De Baere, Elfride; De Zaeytijd, Julie; Leroy, Bart P; Brodie, Scott E

    2013-01-01

    To describe the phenotype of three cases of Sjögren reticular dystrophy in detail, including high-resolution optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. Two unrelated teenagers were independently referred for ophthalmologic evaluation. Both underwent a full ophthalmologic workup, including electrophysiologic and extensive imaging with spectral-domain optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. In addition, mutation screening of ABCA4, PRPH2, and the mitochondrial tRNA gene was performed in Patient 1. Subsequently, the teenage sister of Patient 2 was examined. Strikingly similar phenotypes were present in these three patients. Fundoscopy showed bilateral foveal pigment alterations, and a lobular network of deep retinal, pigmented deposits throughout the posterior pole, tapering toward the midperiphery, with relative sparing of the immediate perifoveal macula and peripapillary area. This network is mildly to moderately hyperautofluorescent on autofluorescence and bright on near-infrared reflectance imaging. Optical coherence tomography showed abnormalities of the retinal pigment epithelium-Bruch membrane complex, photoreceptor outer segments, and photoreceptor inner/outer segment interface. The results of retinal function test were entirely normal. No molecular cause was detected in Patient 1. Imaging suggested that the lobular network of deep retinal deposits in Sjögren reticular dystrophy is the result of accumulation of both pigment and lipofuscin between photoreceptors and retinal pigment epithelium, as well as within the retinal pigment epithelium.

  20. l-phenylalanine modulates gut hormone release and glucose tolerance, and suppresses food intake through the calcium-sensing receptor in rodents.

    PubMed

    Alamshah, A; Spreckley, E; Norton, M; Kinsey-Jones, J S; Amin, A; Ramgulam, A; Cao, Y; Johnson, R; Saleh, K; Akalestou, E; Malik, Z; Gonzalez-Abuin, N; Jomard, A; Amarsi, R; Moolla, A; Sargent, P R; Gray, G W; Bloom, S R; Murphy, K G

    2017-11-01

    High-protein diets (HPDs) are associated with greater satiety and weight loss than diets rich in other macronutrients. The exact mechanisms by which HPDs exert their effects are unclear. However, evidence suggests that the sensing of amino acids produced as a result of protein digestion may have a role in appetite regulation and satiety. We investigated the effects of l-phenylalanine (L-Phe) on food intake and glucose homeostasis in rodents. We investigated the effects of the aromatic amino-acid and calcium-sensing receptor (CaSR) agonist l-phenylalanine (L-Phe) on food intake and the release of the gastrointestinal (GI) hormones peptide YY (PYY), glucagon-like peptide-1 (GLP-1) and ghrelin in rodents, and the role of the CaSR in mediating these effects in vitro and in vivo. We also examined the effect of oral l-Phe administration on glucose tolerance in rats. Oral administration of l-Phe acutely reduced food intake in rats and mice, and chronically reduced food intake and body weight in diet-induced obese mice. Ileal l-Phe also reduced food intake in rats. l-Phe stimulated GLP-1 and PYY release, and reduced plasma ghrelin, and also stimulated insulin release and improved glucose tolerance in rats. Pharmacological blockade of the CaSR attenuated the anorectic effect of intra-ileal l-Phe in rats, and l-Phe-induced GLP-1 release from STC-1 and primary L cells was attenuated by CaSR blockade. l-Phe reduced food intake, stimulated GLP-1 and PYY release, and reduced plasma ghrelin in rodents. Our data provide evidence that the anorectic effects of l-Phe are mediated via the CaSR, and suggest that l-Phe and the CaSR system in the GI tract may have therapeutic utility in the treatment of obesity and diabetes. Further work is required to determine the physiological role of the CaSR in protein sensing in the gut, and the role of this system in humans.

  1. Influence of the autonomic nervous system on calcium homeostasis in the rat.

    PubMed

    Stern, J E; Cardinali, D P

    1994-01-01

    The local surgical manipulation of sympathetic and parasympathetic nerves innervating the thyroid-parathyroid territory was employed to search for the existence of a peripheral neuroendocrine link controlling parathyroid hormone (PTH) and calcitonin (CT) release. From 8 to 24 h after superior cervical ganglionectomy (SCGx), at the time of wallerian degeneration of thyroid-parathyroid sympathetic nerve terminals, an alpha-adrenergic inhibition, together with a minor beta-adrenergic stimulation, of hypercalcemia-induced CT release, and an alpha-adrenoceptor inhibition of hypocalcemia-induced PTH release were found. In chronically SCGx rats PTH response to EDTA was slower, and after CaCl2 injection, serum calcium attained higher levels in face of normal CT levels. SCGx blocked the PTH increase found in sham-operated rats stressed by a subcutaneous injection of turpentine oil, but did not affect the greater response to EDTA. The higher hypocalcemia seen after turpentine oil was no longer observed in SCGx rats. The effects of turpentine oil stress on calcium and CT responses to a bolus injection of CaCl2 persisted in rats subjected to SCGx 14 days earlier. Interruption of thyroid-parathyroid parasympathetic input conveyed by the thyroid nerves (TN) and the inferior laryngeal nerves (ILN) caused a fall in total serum calcium, an increase of PTH levels and a decrease of CT levels, when measured 10 days after surgery. Greater responses of serum CT and PTH were detected in TN-sectioned, and in TN- or ILN-sectioned rats, respectively. Physiological concentrations of CT decreased, and those of PTH increased, in vitro cholinergic activity in rat SCG, measured as specific choline uptake, and acetylcholine synthesis and release. The results indicate that cervical autonomic nerves constitute a pathway through which the brain modulates calcium homeostasis.

  2. Wax-incorporated emulsion gel beads of calcium pectinate for intragastric floating drug delivery.

    PubMed

    Sriamornsak, Pornsak; Asavapichayont, Panida; Nunthanid, Jurairat; Luangtana-Anan, Manee; Limmatvapirat, Sontaya; Piriyaprasarth, Suchada

    2008-01-01

    The purpose of this study was to prepare wax-incorporated pectin-based emulsion gel beads using a modified emulsion-gelation method. The waxes in pectin-olive oil mixtures containing a model drug, metronidazole, were hot-melted, homogenized and then extruded into calcium chloride solution. The beads formed were separated, washed with distilled water and dried for 12 h. The influence of various types and amounts of wax on floating and drug release behavior of emulsion gel beads of calcium pectinate was investigated. The drug-loaded gel beads were found to float on simulated gastric fluid if the sufficient amount of oil was used. Incorporation of wax into the emulsion gel beads affected the drug release. Water-soluble wax (i.e. polyethylene glycol) increased the drug release while other water-insoluble waxes (i.e. glyceryl monostearate, stearyl alcohol, carnauba wax, spermaceti wax and white wax) significantly retarded the drug release. Different waxes had a slight effect on the drug release. However, the increased amount of incorporated wax in the formulations significantly sustained the drug release while the beads remained floating. The results suggest that wax-incorporated emulsion gel beads could be used as a carrier for intragastric floating drug delivery.

  3. Calcium transient in presynaptic terminal of squid giant synapse: detection with aequorin.

    PubMed

    Llinás, R; Blinks, J R; Nicholson, C

    1972-06-09

    Microinjection of aequorin, a bioluminescent protein sensitive tocalcium, into the presynaptic terminal of the squid giant synapse demnonstrated an increase in intracellular calcium ion concentration during repetitive synaptic transmission. Although no light flashes synchronous with individual presynaptic : tion potentials were detected, the results are considered consistent with the hypothesis that entry of calcium into the presynaptic terminal triggers release of e synaptic transmitter substance.

  4. Reflex reticular myoclonus: relationship to some brainstem pathophysiological mechanisms.

    PubMed

    Rektor, I; Kadanka, Z; Bednarik, J

    1991-04-01

    Two patients with reflex reticular myoclonus [RRM] were tested electrophysiologically and pharmacologically. In one of the cases the underlying disease was chronic Lyme borreliosis. In the other, the RRM attacks may have been associated with procarbazine therapy applied for Hodgkin's disease. No cortical lesion could be demonstrated either clinically or electrophysiologically [EEG, averaged EEg preceeding the jerks, SSEP]. An EMG analysis of the jerks revealed the shortest latency in the muscles innervated by the accessory nerve. The latencies became longer in a more rostral muscle [masseter], as well as in a more caudal one, the muscles innervated by the facial nerve were spared. it is presumed that the complete movement pattern of the myoclonus residues in the jerk generating structure. RRM in the described cases differs from the startle by sparing the facial nerve and from the Papio papio baboon non-epileptic myoclonus by the activating effect of physostigmine. A partial therapeutic effect was achieved with a serotonine precursor, but a GABAergic therapy proved to be the most effective.

  5. The common inhaled anesthetic isoflurane increases aggregation of huntingtin and alters calcium homeostasis in a cell model of Huntington's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qiujun; Department of Anesthesiology, The Third Clinical Hospital, Hebei Medical University, Shijiazhuang, Hebei 050051; Liang Ge

    2011-02-01

    Isoflurane is known to increase {beta}-amyloid aggregation and neuronal damage. We hypothesized that isoflurane will have similar effects on the polyglutamine huntingtin protein and will cause alterations in intracellular calcium homeostasis. We tested this hypothesis in striatal cells from the expanded glutamine huntingtin knock-in mouse (STHdh{sup Q111/Q111}) and wild type (STHdh{sup Q7/Q7}) striatal neurons. The primary cultured neurons were exposed for 24 h to equipotent concentrations of isoflurane, sevoflurane, and desflurane in the presence or absence of extracellular calcium and with or without xestospongin C, a potent endoplasmic reticulum inositol 1,4,5-trisphosphate (InsP{sub 3}) receptor antagonist. Aggregation of huntingtin protein, cellmore » viability, and calcium concentrations were measured. Isoflurane, sevoflurane, and desflurane all increased the aggregation of huntingtin in STHdh{sup Q111/Q111} cells, with isoflurane having the largest effect. Isoflurane induced greater calcium release from the ER and relatively more cell damage in the STHdh{sup Q111/Q111} huntingtin cells than in the wild type STHdh{sup Q7/Q7} striatal cells. However, sevoflurane and desflurane caused less calcium release from the ER and less cell damage. Xestospongin C inhibited the isoflurane-induced calcium release from the ER, aggregation of huntingtin, and cell damage in the STHdh{sup Q111/Q111} cells. In summary, the Q111 form of huntingtin increases the vulnerability of striatal neurons to isoflurane neurotoxicity through combined actions on the ER IP{sub 3} receptors. Calcium release from the ER contributes to the anesthetic induced huntingtin aggregation in STHdh{sup Q111/Q111} striatal cells.« less

  6. The effects of substance P on histamine and 5-hydroxytryptamine release in the rat

    PubMed Central

    Fewtrell, C. M. S.; Foreman, J. C.; Jordan, C. C.; Oehme, P.; Renner, H.; Stewart, J. M.

    1982-01-01

    1. Substance P (SP) induces histamine release from isolated rat peritoneal mast cells at concentrations of 0·1-10 μM. 2. Inhibitors of glycolysis and oxidative phosphorylation prevent the release of histamine induced by SP. 3. Cells heated to 47 °C for 20 min release histamine when treated with an agent causing cell lysis but fail to release in response to SP. 4. SP does not release histamine by interacting with cell-bound IgE. 5. Histamine release by SP is rapid, with more than 90% of the response occurring within 1 min of the addition of the peptide to mast cells at 37 °C. 6. Substance P, unlike antigen—antibody or compound 48/80, does not show enhanced release of histamine when calcium (0·1-1 mM) is present in the extracellular medium but calcium increases the response to SP when the ion is added after the peptide. Extracellular calcium (0·1-1 mM), magnesium (1-10 mM) and cobalt (0·01-0·1 mM) all inhibit SP-induced histamine release when added before the peptide. Pre-treatment of the cells with EDTA (10 mM) and washing in calcium-free medium inhibits the histamine release induced by SP. 7. Histamine release induced by SP was optimum at an extracellular pH of 7·2. 8. A number of peptides structurally related to SP were examined for histamine-releasing activity. At the concentrations tested, the N-terminal dipeptides Lys-Pro and Arg-Pro, tuftsin, physalaemin, eledoisin, SP3-11, SP4-11 and [p-Glu6, p-amino Phe7]-SP6-11 were all found to be inactive. The relative activities of the other peptides were: [Formula: see text] 9. Rat basophilic leukaemia cells (RBL-2H3) fail to respond to SP at concentrations which activate rat mast cells. Release of 5-hydroxytryptamine by immunological activation of RBL cells is not changed by the presence of SP. 10. The mechanism of action of SP on mast cells and the nature of the SP receptor on mast cells is discussed in relation to SP receptors in other cell types. PMID:6184468

  7. Antimicrobial Activity and Physicochemical Properties of Calcium Hydroxide Pastes Used as Intracanal Medication.

    PubMed

    Zancan, Rafaela Fernandes; Vivan, Rodrigo Ricci; Milanda Lopes, Marcelo Ribeiro; Weckwerth, Paulo Henrique; de Andrade, Flaviana Bombarda; Ponce, José Burgos; Duarte, Marco Antonio Hungaro

    2016-12-01

    The aim of the present study was to evaluate the pH, calcium release, solubility, and antimicrobial action against biofilms of calcium hydroxide + saline solution, Calen (SS White Artigos Dentários Ltd, Rio de Janeiro, Brazil) (CH/P), Calen camphorated paramonochlorophenol (CMCP) (CH/CMPC), and calcium hydroxide + chlorhexidine (CH/CHX) pastes. The pH of the pastes was determined with a calibrated pH meter placed in direct contact with each paste. The root canals of acrylic teeth (N = 10) were filled with the previously mentioned intracanal dressings and immersed in ultrapure water to measure hydroxyl (pH meter) and calcium ion release (atomic absorption spectrophotometer) at time intervals of 3, 7, 15, and 30 days. To assess solubility, the root canals of acrylic teeth (N = 10) were filled with the previously mentioned pastes and scanned by micro-computed tomographic imaging before (initial) and after 7, 15, and 30 days of immersion in ultrapure water. The solubility of each specimen was the difference between the initial and final volume scanning. For antimicrobial analysis, monospecies and dual-species biofilms were in vitro induced on dentin blocks (N = 20). Afterward, they were treated with the pastes for 7 days. Live/dead dye and a confocal microscope were used to measure the percentage of living cells. Data were statistically compared (P < .05). The highest OH - ion release values were found in 3 and 30 days. Ca 2+ releases were greater in CH/CMCP. CH/P and CH/CMCP showed a higher percentage of volume loss values. CH/CHX presented the greatest antimicrobial action. CH/P and CH/CMPC showed higher solubility values in the period analyzed. Seven days of contact may be insufficient for calcium hydroxide + saline solution, CH/P, and CH/CMCP pastes to kill bacterial cells in the biofilms studied. Chlorhexidine added to CH favored greater effectiveness against the previously mentioned bacterial biofilms. Copyright © 2016 American Association of

  8. The endocochlear potential as an indicator of reticular lamina integrity after noise exposure in mice.

    PubMed

    Ohlemiller, Kevin K; Kaur, Tejbeer; Warchol, Mark E; Withnell, Robert H

    2018-04-01

    The endocochlear potential (EP) provides part of the electrochemical drive for sound-driven currents through cochlear hair cells. Intense noise exposure (110 dB SPL, 2 h) differentially affects the EP in three inbred mouse strains (C57BL/6 [B6], CBA/J [CBA], BALB/cJ [BALB]) (Ohlemiller and Gagnon, 2007, Hearing Research 224:34-50; Ohlemiller et al., 2011, JARO 12:45-58). At least for mice older than 3 mos, B6 mice are unaffected, CBA mice show temporary EP reduction, and BALB mice may show temporary or permanent EP reduction. EP reduction was well correlated with histological metrics for injury to stria vascularis and spiral ligament, and little evidence was found for holes or tears in the reticular lamina that might 'short out' the EP. Thus we suggested that the genes and processes that underlie the strain EP differences primarily impact cochlear lateral wall, not the organ of Corti. Our previous work did not test the range of noise exposure conditions over which strain differences apply. It therefore remained possible that the relation between exposure severity and acute EP reduction simply has a higher exposure threshold in B6 mice compared to CBA and BALB. We also did not test for age dependence. It is well established that young adult animals are especially vulnerable to noise-induced permanent threshold shifts (NIPTS). It is unknown, however, whether heightened vulnerability of the lateral wall contributes to this condition. The present study extends our previous work to multiple noise exposure levels and durations, and explicitly compares young adult (6-7 wks) and older mice (>4 mos). We find that the exposure level-versus-acute EP relation is dramatically strain-dependent, such that B6 mice widely diverge from both CBA and BALB. For all three strains, however, acute EP reduction is greater in young mice. Above 110 dB SPL, all mice exhibited rapid and severe EP reduction that is likely related to tearing of the reticular lamina. By contrast, EP

  9. Calcium phosphate ceramics in drug delivery

    NASA Astrophysics Data System (ADS)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  10. Expression of voltage-activated calcium channels in the early zebrafish embryo.

    PubMed

    Sanhueza, Dayán; Montoya, Andro; Sierralta, Jimena; Kukuljan, Manuel

    2009-05-01

    Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.

  11. The Effect of Calcium Phosphate Particle Shape and Size on their Antibacterial and Osteogenic Activity in the Delivery of Antibiotics in vitro

    PubMed Central

    Uskoković, Vuk; Batarni, Samir Shariff; Schweicher, Julien; King, Andrew; Desai, Tejal A.

    2013-01-01

    Powders composed of four morphologically different calcium phosphate particles were prepared by precipitation from aqueous solutions: flaky, brick-like, elongated orthogonal, and spherical. The particles were then loaded with either clindamycin phosphate as the antibiotic of choice, or fluorescein, a model molecule used to assess the drug release properties. A comparison was carried out of the comparative effect of such antibiotic-releasing materials on: sustained drug release profiles; Staphylococcus aureus growth inhibition; and osteogenic propensities in vitro. Raman spectroscopic analysis indicated the presence of various calcium phosphate phases, including monetite (flaky and elongated orthogonal particles), octacalcium phosphate (brick-shaped particles) and hydroxyapatite (spherical particles). Testing the antibiotic-loaded calcium phosphate powders for bacterial growth inhibition demonstrated satisfying antibacterial properties both in broths and on agar plates. All four calcium-phosphate-fluorescein powders exhibited sustained drug release over 21 days. The calcium phosphate sample with the highest specific surface area and the smallest, spherical particle size was the most effective in both drug loading and release, consequently having the highest antibacterial efficiency. Moreover, the highest cell viability, the largest gene expression upregulation of three different osteogenic markers – osteocalcin, osteopontin and Runx2 - as well as the least disrupted cell cytoskeleton and cell morphologies were also noticed for the calcium phosphate powder composed of smallest, spherical nanosized particles. Still, all four powders exerted a viable effect on osteoblastic MC3T3-E1 cells in vitro, as evidenced by both morphological assessments on fluorescently stained cells and measurements of their mitochondrial activity. The obtained results suggest that the nanoscale particle size and the corresponding coarseness of the surface of particle conglomerates as the

  12. Aluminum and Phthalates in Calcium Gluconate: Contribution From Glass and Plastic Packaging.

    PubMed

    Yokel, Robert A; Unrine, Jason M

    2017-01-01

    Aluminum contamination of parenteral nutrition solutions has been documented for 3 decades. It can result in elevated blood, bone, and whole body aluminum levels associated with neurotoxicity, reduced bone mass and mineral content, and perhaps hepatotoxicity. The primary aluminum source among parenteral nutrition components is glass-packaged calcium gluconate, in which aluminum concentration in the past 3 decades has averaged approximately 4000 μg/L, compared with <200 μg/L in plastic container-packaged calcium gluconate. A concern about plastic packaging is leaching of plasticizers, including phthalates, which have the potential to cause endocrine (male reproductive system) disruption and neurotoxicity. Aluminum was quantified in samples collected periodically for more than 2 years from 3 calcium gluconate sources used to prepare parenteral nutrition solutions; 2 packaged in glass (from France and the United States) and 1 in plastic (from Germany); in a recently released plastic-packaged solution (from the United States); and in the 2 glass containers. Phthalate concentration was determined in selected samples of each product and leachate of the plastic containers. The initial aluminum concentration was approximately 5000 μg/L in the 2 glass-packaged products and approximately 20 μg/L in the plastic-packaged product, and increased approximately 30%, 50%, and 100% in 2 years, respectively. The aluminum concentration in a recently released Calcium Gluconate Injection USP was approximately 320 μg/L. Phthalates were not detected in any calcium gluconate solutions or leachates. Plastic packaging greatly reduces the contribution of aluminum to parenteral nutrition solutions from calcium gluconate compared with the glass-packaged product.

  13. Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors

    PubMed Central

    Szikra, Tamas; Cusato, Karen; Thoreson, Wallace B; Barabas, Peter; Bartoletti, Theodore M; Krizaj, David

    2008-01-01

    Tonic synapses are specialized for sustained calcium entry and transmitter release, allowing them to operate in a graded fashion over a wide dynamic range. We identified a novel plasma membrane calcium entry mechanism that extends the range of rod photoreceptor signalling into light-adapted conditions. The mechanism, which shares molecular and physiological characteristics with store-operated calcium entry (SOCE), is required to maintain baseline [Ca2+]i in rod inner segments and synaptic terminals. Sustained Ca2+ entry into rod cytosol is augmented by store depletion, blocked by La3+ and Gd3+ and suppressed by organic antagonists MRS-1845 and SKF-96365. Store depletion and the subsequent Ca2+ influx directly stimulated exocytosis in terminals of light-adapted rods loaded with the activity-dependent dye FM1–43. Moreover, SOCE blockers suppressed rod-mediated synaptic inputs to horizontal cells without affecting presynaptic voltage-operated Ca2+ entry. Silencing of TRPC1 expression with small interference RNA disrupted SOCE in rods, but had no effect on cone Ca2+ signalling. Rods were immunopositive for TRPC1 whereas cone inner segments immunostained with TRPC6 channel antibodies. Thus, SOCE modulates Ca2+ homeostasis and light-evoked neurotransmission at the rod photoreceptor synapse mediated by TRPC1. PMID:18755743

  14. Co-occurring increases of calcium and organellar reactive oxygen species determine differential activation of antioxidant and defense enzymes in Ulva compressa (Chlorophyta) exposed to copper excess.

    PubMed

    Gonzalez, Alberto; Vera, Jeannette; Castro, Jorge; Dennett, Geraldine; Mellado, Macarena; Morales, Bernardo; Correa, Juan A; Moenne, Alejandra

    2010-10-01

    In order to analyse copper-induced calcium release and (reactive oxygen species) ROS accumulation and their role in antioxidant and defense enzymes activation, the marine alga Ulva compressa was exposed to 10 µM copper for 7 d. The level of calcium, extracellular hydrogen peroxide (eHP), intracellular hydrogen peroxide (iHP) and superoxide anions (SA) as well as the activities of ascorbate peroxidase (AP), glutathione reductase (GR), glutathione-S-transferase (GST), phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) were determined. Calcium release showed a triphasic pattern with peaks at 2, 3 and 12 h. The second peak was coincident with increases in eHP and iHP and the third peak with the second increase of iHP. A delayed wave of SA occurred after day 3 and was not accompanied by calcium release. The accumulation of iHP and SA was mainly inhibited by organellar electron transport chains inhibitors (OETCI), whereas calcium release was inhibited by ryanodine. AP activation ceased almost completely after the use of OETCI. On the other hand, GR and GST activities were partially inhibited, whereas defense enzymes were not inhibited. In contrast, PAL and LOX were inhibited by ryanodine, whereas AP was not inhibited. Thus, copper stress induces calcium release and organellar ROS accumulation that determine the differential activation of antioxidant and defense enzymes. © 2010 Blackwell Publishing Ltd.

  15. Redox regulation of neuronal voltage-gated calcium channels.

    PubMed

    Todorovic, Slobodan M; Jevtovic-Todorovic, Vesna

    2014-08-20

    Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain.

  16. Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism.

    PubMed

    Barat, R; Montoya, T; Borrás, L; Ferrer, J; Seco, A

    2008-07-01

    A sequencing batch reactor that is operated for biological phosphorus removal has been operated under different influent calcium concentrations to study the precipitation process and the possible effects of phosphorus precipitation in the biological phosphorus removal process. Four experiments were carried out under different influent calcium concentrations ranging from 10 to 90 g Ca m(-3). The experimental results and the equilibrium study, which are based on the saturation index calculation, confirm that the process controlling the calcium behaviour is the calcium phosphate precipitation. This precipitation takes place at two stages: initially, precipitation of the amorphous calcium phosphate, and later crystallization of hydroxyapatite. Also the accumulation of phosphorus precipitated was observed when the influent calcium concentration was increased. In all the experiments, the influent wastewater ratio P/COD was kept constant. It has been observed that, at high calcium concentration, the ratio between phosphate release and acetate uptake (P(rel)/Ac(uptake)) decreases. Changes in the polyphosphate-accumulating organism (PAO) population and in the glycogen-accumulating organism (GAO) population during the experimental period were ruled out by means of fluorescence in situ hybridization. These results could suggest that PAO are able to change their metabolic pathways based on external conditions, such as influent calcium concentration. The accumulation of phosphorus precipitated as calcium phosphate at high influent calcium concentration throughout the experimental period confirmed that phosphate precipitation is a process that can affect the PAO metabolism.

  17. Positive and negative regulation of T cell responses by fibroblastic reticular cells within paracortical regions of lymph nodes

    PubMed Central

    Siegert, Stefanie; Luther, Sanjiv A.

    2012-01-01

    Fibroblastic reticular cells (FRC) form the structural backbone of the T cell rich zones in secondary lymphoid organs (SLO), but also actively influence the adaptive immune response. They provide a guidance path for immigrating T lymphocytes and dendritic cells (DC) and are the main local source of the cytokines CCL19, CCL21, and IL-7, all of which are thought to positively regulate T cell homeostasis and T cell interactions with DC. Recently, FRC in lymph nodes (LN) were also described to negatively regulate T cell responses in two distinct ways. During homeostasis they express and present a range of peripheral tissue antigens, thereby participating in peripheral tolerance induction of self-reactive CD8+ T cells. During acute inflammation T cells responding to foreign antigens presented on DC very quickly release pro-inflammatory cytokines such as interferon γ. These cytokines are sensed by FRC which transiently produce nitric oxide (NO) gas dampening the proliferation of neighboring T cells in a non-cognate fashion. In summary, we propose a model in which FRC engage in a bidirectional crosstalk with both DC and T cells to increase the efficiency of the T cell response. However, during an acute response, FRC limit excessive expansion and inflammatory activity of antigen-specific T cells. This negative feedback loop may help to maintain tissue integrity and function during rapid organ growth. PMID:22973278

  18. Dysbalance of Astrocyte Calcium under Hyperammonemic Conditions

    PubMed Central

    Haack, Nicole; Dublin, Pavel; Rose, Christine R.

    2014-01-01

    Increased brain ammonium (NH4 +/NH3) plays a central role in the manifestation of hepatic encephalopathy (HE), a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4 +/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4 +/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4 +/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼90%) experienced a persistent calcium increase by ∼50 nM. This persistent increase was already evoked at concentrations of 1–2 mM NH4 +/NH3, developed within 10–20 minutes and was maintained as long as the NH4 +/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4 +/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC), the reverse mode of sodium/calcium exchange (NCX), AMPA- or mGluR5-receptors did not dampen NH4 +/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4 +/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study furthermore suggests

  19. Differential distribution of the KCl cotransporter KCC2 in thalamic relay and reticular nuclei

    PubMed Central

    Barthó, P.; Payne, J. A.; Freund, T. F.; Acsády, L.

    2009-01-01

    In the thalamus of the rat the reversal potential of GABA-induced anion currents is more negative in relay cells than in neurones of the reticular nucleus (nRt) due to different chloride extrusion mechanisms operating in these cells. The distribution of KCl cotransporter type 2 (KCC2), the major neuronal chloride transporter that may underlie this effect, is unknown in the thalamus. In this study the precise regional and ultrastructural localization of KCC2 was examined in the thalamus using immunocytochemical methods. The neuropil of all relay nuclei was found to display intense KCC2 immunostaining to varying degrees. In sharp contrast, the majority of the nRt was negative for KCC2. In the anterior and dorsal part of the nRt, however, KCC2 immunostaining was similar to relay nuclei and parvalbumin and calretinin were found to colocalize with KCC2. At the ultrastructural level, KCC2 immunoreactivity was mainly located in the extrasynaptic membranes of thick and thin dendrites and the somata of relay cells but was also found in close association with asymmetrical synapses formed by cortical afferents. Quantitative evaluation of KCC2 distribution at the electron microscopic level demonstrated that the density of KCC2 did not correlate with dendritic diameter or synaptic coverage but is 1.7 times higher on perisynaptic membrane surfaces than on extrasynaptic membranes. Our data demonstrate that the regional distribution of KCC2 is compatible with the difference in GABA-A reversal potential between relay and reticular nuclei. At the ultrastructural level, abundant extrasynaptic KCC2 expression will probably play a role in the regulation of extrasynaptic GABA-A receptor-mediated inhibition. PMID:15305865

  20. Corticobulbar projections from distinct motor cortical areas to the reticular formation in macaque monkeys.

    PubMed

    Fregosi, Michela; Contestabile, Alessandro; Hamadjida, Adjia; Rouiller, Eric M

    2017-06-01

    Corticospinal and corticobulbar descending pathways act in parallel with brainstem systems, such as the reticulospinal tract, to ensure the control of voluntary movements via direct or indirect influences onto spinal motoneurons. The aim of this study was to investigate the corticobulbar projections from distinct motor cortical areas onto different nuclei of the reticular formation. Seven adult macaque monkeys were analysed for the location of corticobulbar axonal boutons, and one monkey for reticulospinal neurons' location. The anterograde tracer BDA was injected in the premotor cortex (PM), in the primary motor cortex (M1) or in the supplementary motor area (SMA), in 3, 3 and 1 monkeys respectively. BDA anterograde labelling of corticobulbar axons were analysed on brainstem histological sections and overlapped with adjacent Nissl-stained sections for cytoarchitecture. One adult monkey was analysed for retrograde CB tracer injected in C5-C8 hemispinal cord to visualise reticulospinal neurons. The corticobulbar axons formed bilateral terminal fields with boutons terminaux and en passant, which were quantified in various nuclei belonging to the Ponto-Medullary Reticular Formation (PMRF). The corticobulbar projections from both PM and SMA tended to end mainly ipsilaterally in PMRF, but contralaterally when originating from M1. Furthermore, the corticobulbar projection was less dense when originating from M1 than from non-primary motor areas (PM, SMA). The main nuclei of bouton terminals corresponded to the regions where reticulospinal neurons were located with CB retrograde tracing. In conclusion, the corticobulbar projection differs according to the motor cortical area of origin in density and laterality. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes

    PubMed Central

    No, Young Jung; Li, Jiao Jiao; Zreiqat, Hala

    2017-01-01

    Doped calcium silicate ceramics (DCSCs) have recently gained immense interest as a new class of candidates for the treatment of bone defects. Although calcium phosphates and bioactive glasses have remained the mainstream of ceramic bone substitutes, their clinical use is limited by suboptimal mechanical properties. DCSCs are a class of calcium silicate ceramics which are developed through the ionic substitution of calcium ions, the incorporation of metal oxides into the base binary xCaO–ySiO2 system, or a combination of both. Due to their unique compositions and ability to release bioactive ions, DCSCs exhibit enhanced mechanical and biological properties. Such characteristics offer significant advantages over existing ceramic bone substitutes, and underline the future potential of adopting DCSCs for clinical use in bone reconstruction to produce improved outcomes. This review will discuss the effects of different dopant elements and oxides on the characteristics of DCSCs for applications in bone repair, including mechanical properties, degradation and ion release characteristics, radiopacity, and biological activity (in vitro and in vivo). Recent advances in the development of DCSCs for broader clinical applications will also be discussed, including DCSC composites, coated DCSC scaffolds and DCSC-coated metal implants. PMID:28772513

  2. Slow-Release Fertilizers For Plants

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Golden, D. C.

    1995-01-01

    Synthetic mineral provides growing plants with nutrients, including micronutrients. Dissolves slowly in moist soil or in hydroponic solution, releasing constituents. Mineral synthetic apatite into which nutrients calcium, phosphorous, iron, manganese, copper, zinc, molybdenum, chlorine, boron, and sulfur incorporated in form of various salts. Each pellet has homogeneous inorganic composition. Composition readily adjusted to meet precise needs of plant.

  3. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells

    PubMed Central

    Freitas, Hercules R.; Ferraz, Gabriel; Ferreira, Gustavo C.; Ribeiro-Resende, Victor T.; Chiarini, Luciana B.; do Nascimento, José Luiz M.; Matos Oliveira, Karen Renata H.; Pereira, Tiago de Lima; Ferreira, Leonardo G. B.; Kubrusly, Regina C.; Faria, Robson X.

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1–10mM) showed that 5–10mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50mM KCl (labeled as βIII tubulin positive cells). BBG 100nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70μM and MK-801 20μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  4. Calcium sensitive ring-like oligomers formed by synaptotagmin

    PubMed Central

    Wang, Jing; Bello, Oscar; Auclair, Sarah M.; Wang, Jing; Coleman, Jeff; Pincet, Frederic; Krishnakumar, Shyam S.; Sindelar, Charles V.; Rothman, James E.

    2014-01-01

    The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT’s cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18–43 nm, corresponding to 11–26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide–sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded. PMID:25201968

  5. Eudragit® S100 coated calcium pectinate microspheres of curcumin for colon targeting.

    PubMed

    Zhang, Lin; Cao, Fengliang; Ding, Buyun; Li, Qilu; Xi, Yanwei; Zhai, Guangxi

    2011-01-01

    Currently, colon-specific drug delivery systems have been investigated for drugs that can exert their bioactivities in the colon. In this study, Eudragit® S100 coated calcium pectinate microsphere, a pH-dependent and enzyme-dependent system, as colon-specific delivery carrier for curcumin was investigated. Curcumin-loaded calcium pectinate microspheres were prepared by emulsification-linkage method, and the preparation technology was optimised by uniform experimental design. The morphology of microspheres was observed under scanning electron microscopy. Interactions between drug and polymers were investigated with differential scanning calorimetry (DSC) and X-ray diffraction. In vitro drug release studies were performed in simulated colonic fluid in the presence of Pectinex Ultra SP-L or 1% (w/v) rat caecal content, and the results indicated that the release of curcumin was significantly increased in the presence of 1% (w/v) rat caecal contents. It could be concluded that Eudragit® S100 coated calcium pectinate microsphere was a potential carrier for colon delivery of curcumin.

  6. Calcium bioavailability and kinetics of calcium ascorbate and calcium acetate in rats.

    PubMed

    Cai, Jianwei; Zhang, Qinmin; Wastney, Meryl E; Weaver, Connie M

    2004-01-01

    The objective was to investigate the bioavailability and mechanism of calcium absorption of calcium ascorbate (ASC) and calcium acetate (AC). A series of studies was performed in adult Sprague-Dawley male rats. In the first study, each group of rats (n = 10/group) was assigned to one of the five test meals labeled with (45)Ca: (i) 25 mg calcium as heated ASC or (ii) unheated ASC, (iii) 25 mg calcium as unheated AC, (iv) 3.6 mg Ca as unheated ASC, or (v) unheated AC. Femur uptake indicated better calcium bioavailability from ASC than AC at both calcium loads. A 5-min heat treatment partly reduced bioavailability of ASC. Kinetic studies were performed to further investigate the mechanism of superior calcium bioavailability from ASC. Two groups of rats (n = 10/group) received oral doses of 25 mg Ca as ASC or AC. Each dose contained 20 micro Ci (45)Ca. Two additional groups of rats (n = 10/group) received an intravenous injection (iv) of 10 micro Ci (45)Ca after receiving an unlabeled oral dose of 25 mg calcium as ASC or AC. Sequential blood samples were collected over 48 hrs. Urine and fecal samples were collected every 12 hrs for 48 hrs and were analyzed for total calcium and (45)Ca content. Total calcium and (45)Ca from serum, urine, and feces were fitted by a compartment kinetics model with saturable and nonsaturable absorption pathways by WinSAAM (Windows-based Simulation Analysis and Modeling). The difference in calcium bioavailability between the two salts was due to differences in saturable rather than passive intestinal absorption and not to endogenous secretion or calcium deposition rate. The higher bioavailability of calcium ascorbate was due to a longer transit time in the small intestine compared with ASC.

  7. Neurotoxicity Induced by Bupivacaine via T-Type Calcium Channels in SH-SY5Y Cells

    PubMed Central

    Wen, Xianjie; Xu, Shiyuan; Liu, Hongzhen; Zhang, Quinguo; Liang, Hua; Yang, Chenxiang; Wang, Hanbing

    2013-01-01

    There is concern regarding neurotoxicity induced by the use of local anesthetics. A previous study showed that an overload of intracellular calcium is involved in the neurotoxic effect of some anesthetics. T-type calcium channels, which lower the threshold of action potentials, can regulate the influx of calcium ions. We hypothesized that T-type calcium channels are involved in bupivacaine-induced neurotoxicity. In this study, we first investigated the effects of different concentrations of bupivacaine on SH-SY5Y cell viability, and established a cell injury model with 1 mM bupivacaine. The cell viability of SH-SY5Y cells was measured following treatment with 1 mM bupivacaine and/or different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride, an antagonist of T-type calcium channels for 24 h. In addition, we monitored the release of lactate dehydrogenase, cytosolic Ca2+ ([Ca2+]i), cell apoptosis and caspase-3 expression. SH-SY5Y cells pretreated with different dosages (10, 50, or 100 µM) of NNC 55-0396 dihydrochloride improved cell viability, reduced lactate dehydrogenase release, inhibited apoptosis, and reduced caspase-3 expression following bupivacaine exposure. However, the protective effect of NNC 55-0396 dihydrochloride plateaued. Overall, our results suggest that T-type calcium channels may be involved in bupivacaine neurotoxicity. However, identification of the specific subtype of T calcium channels involved requires further investigation. PMID:23658789

  8. Fife organizes synaptic vesicles and calcium channels for high-probability neurotransmitter release

    PubMed Central

    Rao, Monica; Ukken, Fiona

    2017-01-01

    The strength of synaptic connections varies significantly and is a key determinant of communication within neural circuits. Mechanistic insight into presynaptic factors that establish and modulate neurotransmitter release properties is crucial to understanding synapse strength, circuit function, and neural plasticity. We previously identified Drosophila Piccolo-RIM-related Fife, which regulates neurotransmission and motor behavior through an unknown mechanism. Here, we demonstrate that Fife localizes and interacts with RIM at the active zone cytomatrix to promote neurotransmitter release. Loss of Fife results in the severe disruption of active zone cytomatrix architecture and molecular organization. Through electron tomographic and electrophysiological studies, we find a decrease in the accumulation of release-ready synaptic vesicles and their release probability caused by impaired coupling to Ca2+ channels. Finally, we find that Fife is essential for the homeostatic modulation of neurotransmission. We propose that Fife organizes active zones to create synaptic vesicle release sites within nanometer distance of Ca2+ channel clusters for reliable and modifiable neurotransmitter release. PMID:27998991

  9. Signal mass and Ca²⁺ kinetics in local calcium events: a modeling study.

    PubMed

    Baran, Irina; Ganea, Constanta; Ungureanu, Raluca; Tofolean, Ioana Teodora

    2012-02-01

    We use a detailed modeling formalism based on numerical simulations of local calcium release events where the blurring of the image, the presence of diffusional barriers provided by large organelles situated close to the release site, as well as the variable position of the scan line with respect to the release site are taken into consideration. We have investigated the effect of the fluorescence noise fluctuations on the accuracy in computing the signal mass from linescan recordings and obtained a quantitative description of both the signal mass and the local increase in the free Ca(2+) level as a function of the release current, the release duration and the orientation of the scan line, for three different levels of noise magnitudes. The model could provide a very good fit to a wide set of available experimental data regarding the signal mass of puffs visualized by fluorescence microscopy in the Xenopus oocyte loaded with 40 μM Oregon Green-1 in the absence of the calcium chelator EGTA. Numerical simulations also predict the amplitude and the kinetics of calcium signals evolving in the absence of the indicator, and indicate that sub-maximal activation of IP(3) receptors could produce in average levels of about 2 μM and 0.4 μM free Ca(2+) close to a release site located in the animal or in the vegetal hemisphere, respectively, whereas the maximal levels reached in more rare events could be 11 μM and 4 μM, respectively.

  10. Intrinsic Membrane Properties of Pre-oromotor Neurons in the Intermediate Zone of the Medullary Reticular Formation

    PubMed Central

    Venugopal, Sharmila; Boulant, Jack A.; Chen, Zhixiong; Travers, Joseph B.

    2010-01-01

    Neurons in the lower brainstem that control consummatory behavior are widely distributed in the reticular formation (RF) of the pons and medulla. The intrinsic membrane properties of neurons within this distributed system shape complex excitatory and inhibitory inputs from both orosensory and central structures implicated in homeostatic control to produce coordinated oromotor patterns. The current study explored the intrinsic membrane properties of neurons in the intermediate subdivision of the medullary reticular formation (IRt). Neurons in the IRt receive input from the overlying (gustatory) nucleus of the solitary tract and project to the oromotor nuclei. Recent behavioral pharmacology studies as well as computational modeling suggest that inhibition in the IRt plays an important role in the transition from a taste-initiated oromotor pattern of ingestion to one of rejection. The present study explored the impact of hyperpolarization on membrane properties. In response to depolarization, neurons responded with either a tonic discharge, an irregular/burst pattern or were spike-adaptive. A hyperpolarizing pre-pulse modulated the excitability of most (82%) IRt neurons to subsequent depolarization. Instances of both increased (30%) and decreased (52%) excitability were observed. Currents induced by the hyperpolarization included an outward 4-AP sensitive K+ current that suppressed excitability and an inward cation current that increased excitability. These currents are also present in other subpopulations of RF neurons that influence the oromotor nuclei and we discuss how these currents could alter ring characteristics to impact pattern generation. PMID:20338224

  11. Role of the medial medullary reticular formation in relaying vestibular signals to the diaphragm and abdominal muscles

    NASA Technical Reports Server (NTRS)

    Mori, R. L.; Bergsman, A. E.; Holmes, M. J.; Yates, B. J.

    2001-01-01

    Changes in posture can affect the resting length of respiratory muscles, requiring alterations in the activity of these muscles if ventilation is to be unaffected. Recent studies have shown that the vestibular system contributes to altering respiratory muscle activity during movement and changes in posture. Furthermore, anatomical studies have demonstrated that many bulbospinal neurons in the medial medullary reticular formation (MRF) provide inputs to phrenic and abdominal motoneurons; because this region of the reticular formation receives substantial vestibular and other movement-related input, it seems likely that medial medullary reticulospinal neurons could adjust the activity of respiratory motoneurons during postural alterations. The objective of the present study was to determine whether functional lesions of the MRF affect inspiratory and expiratory muscle responses to activation of the vestibular system. Lidocaine or muscimol injections into the MRF produced a large increase in diaphragm and abdominal muscle responses to vestibular stimulation. These vestibulo-respiratory responses were eliminated following subsequent chemical blockade of descending pathways in the lateral medulla. However, inactivation of pathways coursing through the lateral medulla eliminated excitatory, but not inhibitory, components of vestibulo-respiratory responses. The simplest explanation for these data is that MRF neurons that receive input from the vestibular nuclei make inhibitory connections with diaphragm and abdominal motoneurons, whereas a pathway that courses laterally in the caudal medulla provides excitatory vestibular inputs to these motoneurons.

  12. Interactions of Mitochondria/Metabolism and Calcium Regulation in Alzheimer's Disease: A Calcinist Point of View.

    PubMed

    Gibson, Gary E; Thakkar, Ankita

    2017-06-01

    Decades of research suggest that alterations in calcium are central to the pathophysiology of Alzheimer's Disease (AD). Highly reproducible changes in calcium dynamics occur in cells from patients with both genetic and non-genetic forms of AD relative to controls. The most robust change is an exaggerated release of calcium from internal stores. Detailed analysis of these changes in animal and cell models of the AD-causing presenilin mutations reveal robust changes in ryanodine receptors, inositol tris-phosphate receptors, calcium leak channels and store activated calcium entry. Similar anomalies in calcium result when AD-like changes in mitochondrial enzymes or oxidative stress are induced experimentally. The calcium abnormalities can be directly linked to the altered tau phosphorylation, amyloid precursor protein processing and synaptic dysfunction that are defining features of AD. A better understanding of these changes is required before using calcium abnormalities as therapeutic targets.

  13. Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.

    PubMed

    Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko

    2017-07-17

    Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.

  14. Transmitter release and presynaptic Ca2+ currents blocked by the spider toxin omega-Aga-IVA.

    PubMed

    Protti, D A; Uchitel, O D

    1993-12-13

    Mammalian neuromuscular transmission is resistant to L and N type calcium channel blockers but very sensitive to a low molecular weight funnel web spider venom toxin, FTX, which selectively blocks P type calcium channels. To further characterize the calcium channels involved in neuromuscular transmission we studied the effect of omega Agatoxin (omega-Aga-IVA) a polypeptide P type channel blocker from the same spider venom. We show that omega-Aga-IVA is a potent and irreversible inhibitor of the presynaptic Ca2+ currents and of acetylcholine release induced by electrical stimulation or by K+ depolarization. This provides further evidences that transmitter release at the mammalian neuromuscular junction is mediated by P type Ca2+ channels.

  15. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes.

    PubMed

    Maxwell, Joshua T; Blatter, Lothar A

    2012-12-01

    The widely accepted paradigm for cytosolic Ca(2+) wave propagation postulates a 'fire-diffuse-fire' mechanism where local Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca(2+) release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca(2+) wave. A recent challenge to this paradigm proposed the requirement for an intra-SR 'sensitization' Ca(2+) wave that precedes the cytosolic Ca(2+) wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca(2+)](i); rhod-2) and intra-SR ([Ca(2+)](SR); fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca(2+)](i) at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca(2+)](SR) was observed. This transient elevation of [Ca(2+)](SR) could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μM isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca(2+)](SR), whereas inhibition of SERCA (3 μM cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca(2+) uptake by SERCA into the SR facilitates the propagation of cytosolic Ca(2+) waves via luminal sensitization of the RyR, and supports a novel paradigm of a 'fire-diffuse-uptake-fire' mechanism for Ca(2+) wave propagation in cardiac myocytes.

  16. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes

    PubMed Central

    Maxwell, Joshua T; Blatter, Lothar A

    2012-01-01

    The widely accepted paradigm for cytosolic Ca2+ wave propagation postulates a ‘fire-diffuse-fire’ mechanism where local Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) via ryanodine receptor (RyR) Ca2+ release channels diffuses towards and activates neighbouring release sites, resulting in a propagating Ca2+ wave. A recent challenge to this paradigm proposed the requirement for an intra-SR ‘sensitization’ Ca2+ wave that precedes the cytosolic Ca2+ wave and primes RyRs from the luminal side to CICR. Here, we tested this hypothesis experimentally with direct simultaneous measurements of cytosolic ([Ca2+]i; rhod-2) and intra-SR ([Ca2+]SR; fluo-5N) calcium signals during wave propagation in rabbit ventricular myocytes, using high resolution fluorescence confocal imaging. The increase in [Ca2+]i at the wave front preceded depletion of the SR at each point along the calcium wave front, while during this latency period a transient increase of [Ca2+]SR was observed. This transient elevation of [Ca2+]SR could be identified at individual release junctions and depended on the activity of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). Increased SERCA activity (β-adrenergic stimulation with 1 μm isoproterenol (isoprenaline)) decreased the latency period and increased the amplitude of the transient elevation of [Ca2+]SR, whereas inhibition of SERCA (3 μm cyclopiazonic acid) had the opposite effect. In conclusion, the data provide experimental evidence that local Ca2+ uptake by SERCA into the SR facilitates the propagation of cytosolic Ca2+ waves via luminal sensitization of the RyR, and supports a novel paradigm of a ‘fire-diffuse-uptake-fire’ mechanism for Ca2+ wave propagation in cardiac myocytes. PMID:22988145

  17. A ‘calcium capacitor’ shapes cholinergic inhibition of cochlear hair cells

    PubMed Central

    Fuchs, Paul Albert

    2014-01-01

    Efferent cholinergic neurons project from the brainstem to inhibit sensory hair cells of the vertebrate inner ear. This inhibitory synapse combines the activity of an unusual class of ionotropic cholinergic receptor with that of nearby calcium-dependent potassium channels to shunt and hyperpolarize the hair cell. Postsynaptic calcium signalling is constrained by a thin near-membrane cistern that is co-extensive with the efferent terminal contacts. The postsynaptic cistern may play an essential role in calcium homeostasis, serving as sink or source, depending on ongoing activity and the degree of buffer saturation. Release of calcium from postsynaptic stores leads to a process of retrograde facilitation via the synthesis of nitric oxide in the hair cell. Activity-dependent synaptic modification may contribute to changes in hair cell innervation that occur during development, and in the aged or damaged cochlea. PMID:24566542

  18. Calcium pathway machinery at fertilization in echinoderms

    PubMed Central

    Ramos, Isabela; Wessel, Gary M.

    2016-01-01

    Calcium signaling in cells directs diverse physiological processes. The calcium waves triggered by fertilization is a highly conserved calcium signaling event essential for egg activation, and has been documented in every egg tested. This activity is one of the few highly conserved events of egg activation through the course of evolution. Echinoderm eggs, as well as many other cell types, have three main intracellular Ca2+ mobilizing messengers – IP3, cADPR and NAADP. Both cADPR and NAADP were identified as Ca2+ mobilizing messengers using the sea urchin egg homogenate, and this experimental system, along with the intact urchin and starfish oocyte/egg, continues to be a vital tool for investigating the mechanism of action of calcium signals. While many of the major regulatory steps of the IP3 pathway are well resolved, both cADPR and NAADP remain understudied in terms of our understanding of the fundamental process of egg activation at fertilization. Recently, NAADP has been shown to trigger Ca2+ release from acidic vesicles, separately from the ER, and a new class of calcium channels, the two-pore channels (TPCs), was identified as the likely targets for this messenger. Moreover, it was found that both cADPR and NAADP can be synthesized by the same family of enzymes, the ADP-rybosyl cyclases (ARCs). In this context of increasing amount of information, the potential coupling and functional roles of different messengers, intracellular stores and channels in the formation of the fertilization calcium wave in echinoderms will be critically evaluated. PMID:23218671

  19. Redox Regulation of Neuronal Voltage-Gated Calcium Channels

    PubMed Central

    Jevtovic-Todorovic, Vesna

    2014-01-01

    Abstract Significance: Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Recent Advances: Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. Critical Issues: A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Future Directions: Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain. Antioxid. Redox Signal. 21, 880–891. PMID:24161125

  20. Calcium pump kinetics determined in single erythrocyte ghosts by microphotolysis and confocal imaging.

    PubMed

    Kubitscheck, U; Pratsch, L; Passow, H; Peters, R

    1995-07-01

    The activity of the plasma membrane calcium pump was measured in single cells. Human red blood cell ghosts were loaded with a fluorescent calcium indicator and either caged calcium and ATP (protocol A) or caged ATP and calcium (protocol B). In a suitably modified laser scanning microscope either calcium or ATP were released by a short UV light pulse. The time-dependent fluorescence intensity of the calcium indicator was then followed in single ghosts by repetitive confocal imaging. The fluorescence intensity was converted into calcium concentration, which in turn was used to derive the kinetic parameters of the calcium pump, the Michaelis-Menten constant Km, and the maximal transport rate vmax. Km and vmax values derived in this manner were 24 +/- 14 microM and 1.0 +/- 0.6 microM/(ghost s) for protocol A, and 4 +/- 3 microM and 1.0 +/- 0.6 microM/(ghost s) for protocol B, respectively. The difference between A and B is presumably caused by calmodulin, which is inactive in the experiments with protocol A. The possibilities to extend the new method to living nucleus-containing cells transiently transfected with mutants of the plasma membrane calcium pump are discussed.

  1. From contraction to gene expression: nanojunctions of the sarco/endoplasmic reticulum deliver site- and function-specific calcium signals.

    PubMed

    Evans, A Mark; Fameli, Nicola; Ogunbayo, Oluseye A; Duan, Jingxian; Navarro-Dorado, Jorge

    2016-08-01

    Calcium signals determine, for example, smooth muscle contraction and changes in gene expression. How calcium signals select for these processes is enigmatic. We build on the "panjunctional sarcoplasmic reticulum" hypothesis, describing our view that different calcium pumps and release channels, with different kinetics and affinities for calcium, are strategically positioned within nanojunctions of the SR and help demarcate their respective cytoplasmic nanodomains. SERCA2b and RyR1 are preferentially targeted to the sarcoplasmic reticulum (SR) proximal to the plasma membrane (PM), i.e., to the superficial buffer barrier formed by PM-SR nanojunctions, and support vasodilation. In marked contrast, SERCA2a may be entirely restricted to the deep, perinuclear SR and may supply calcium to this sub-compartment in support of vasoconstriction. RyR3 is also preferentially targeted to the perinuclear SR, where its clusters associate with lysosome-SR nanojunctions. The distribution of RyR2 is more widespread and extends from this region to the wider cell. Therefore, perinuclear RyR3s most likely support the initiation of global calcium waves at L-SR junctions, which subsequently propagate by calcium-induced calcium release via RyR2 in order to elicit contraction. Data also suggest that unique SERCA and RyR are preferentially targeted to invaginations of the nuclear membrane. Site- and function-specific calcium signals may thus arise to modulate stimulus-response coupling and transcriptional cascades.

  2. Effects of adrenalectomy on the control and adrenergic regulation of cytosolic free calcium in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freudenrich, C.C.

    1987-01-01

    The purpose of this study was to investigate the effects of adrenalectomy on the control and ..cap alpha..-adrenergic regulation of the concentration of cytosolic free calcium (Ca/sub i/) in hepatocytes. In hepatocytes isolated from adrenalectomized (adx) and sham-operated male rats 7-1 days after surgery, Ca/sub i/ at rest and in response to epinephrine (EPI) was measured with the calcium-sensitive photoprotein aequorin, /sup 45/Ca efflux was measured, and Ca/sup 2 +/ release from intracellular stores in response to inositol triphosphate (IP/sub 3/) was measured in saponin-permeabilized cells. Liver calmodulin content was also assayed by radioimmunoassay. It was found in adx ratsmore » that the resting Ca/sub i/ was elevated, the rise in Ca/sub i/ during EPI stimulation was reduced at physiological EPI concentrations, and the rise in calcium efflux evoked by EPI was reduced. Furthermore, the slope of the relationship between Ca/sub i/ and calcium efflux was reduced 60% in adx. Adx did not alter the characteristics of Ca/sup 2 +/ release from intracellular calcium pools in response to IP/sub 3/ in permeabilized cells. Finally, the liver calmodulin contents were not significantly different between the 2 groups.« less

  3. Elemental calcium intake associated with calcium acetate/calcium carbonate in the treatment of hyperphosphatemia

    PubMed Central

    Wilson, Rosamund J; Copley, J Brian

    2017-01-01

    Background Calcium-based and non-calcium-based phosphate binders have similar efficacy in the treatment of hyperphosphatemia; however, calcium-based binders may be associated with hypercalcemia, vascular calcification, and adynamic bone disease. Scope A post hoc analysis was carried out of data from a 16-week, Phase IV study of patients with end-stage renal disease (ESRD) who switched to lanthanum carbonate monotherapy from baseline calcium acetate/calcium carbonate monotherapy. Of the intent-to-treat population (N=2520), 752 patients with recorded dose data for calcium acetate (n=551)/calcium carbonate (n=201) at baseline and lanthanum carbonate at week 16 were studied. Elemental calcium intake, serum phosphate, corrected serum calcium, and serum intact parathyroid hormone levels were analyzed. Findings Of the 551 patients with calcium acetate dose data, 271 (49.2%) had an elemental calcium intake of at least 1.5 g/day at baseline, and 142 (25.8%) had an intake of at least 2.0 g/day. Mean (95% confidence interval [CI]) serum phosphate levels were 6.1 (5.89, 6.21) mg/dL at baseline and 6.2 (6.04, 6.38) mg/dL at 16 weeks; mean (95% CI) corrected serum calcium levels were 9.3 (9.16, 9.44) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Of the 201 patients with calcium carbonate dose data, 117 (58.2%) had an elemental calcium intake of at least 1.5 g/day, and 76 (37.8%) had an intake of at least 2.0 g/day. Mean (95% CI) serum phosphate levels were 5.8 (5.52, 6.06) mg/dL at baseline and 5.8 (5.53, 6.05) mg/dL at week 16; mean (95% CI) corrected serum calcium levels were 9.7 (9.15, 10.25) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Conclusion Calcium acetate/calcium carbonate phosphate binders, taken to control serum phosphate levels, may result in high levels of elemental calcium intake. This may lead to complications related to calcium balance. PMID:28182142

  4. Altering the level of calcium changes the physical properties and digestibility of casein-based emulsion gels.

    PubMed

    McIntyre, Irene; O Sullivan, Michael; O Riordan, Dolores

    2017-04-19

    Casein-based emulsion gels prepared with different types of lipid (i.e. milk fat or rapeseed oil) were formulated with high (774 mg Ca per 100 g) or low (357 mg Ca per 100 g) calcium levels by blending acid and rennet casein. Their physicochemical characteristics (i.e. composition, texture, microstructure & water mobility) and in vitro digestibility were compared to conventionally formulated high-calcium (723 mg Ca per 100 g) emulsion gels made from rennet casein with calcium chelating salts (CCS). CCS-free, high-calcium emulsion gels were significantly (p ≤ 0.05) softer than those with low calcium levels (possibly due to their shorter manufacture time and higher pH) and showed the highest rates of disintegration during simulated gastric digestion. Despite having a higher moisture to protein ratio, the high-calcium emulsion gels containing CCS had broadly similar hardness values to those of high-calcium concentration prepared without CCS, but had higher cohesiveness. The high-calcium matrices containing CCS had quite a different microstructure and increased water mobility compared to those made without CCS and showed the slowest rate (p ≤ 0.05) of disintegration in the gastric environment. Gastric resistance was not affected by the type of lipid phase. Conversely, fatty acid release was similar for all emulsion gels prepared from milk fat, however, high-calcium emulsion gels (CCS-free) prepared from rapeseed oil showed higher lipolysis. Results suggest that food matrix physical properties can be modified to alter resistance to gastric degradation which may have consequences for the kinetics of nutrient release and delivery of bioactives sensitive to the gastric environment.

  5. Infantile hypophosphatasia combined with vitamin B6-responsive seizures and reticular formation lesions on magnetic resonance imaging: A case report.

    PubMed

    Fukazawa, Mitsuharu; Tezuka, Junichiro; Sasazuki, Momoko; Masumoto, Natsuko; Baba, Haruhisa; Doi, Takehiko; Tsutsumi, Yasushi; Mizuno, Yuji; Mihara, Futoshi; Nakayama, Hideki

    2018-02-01

    Hypophosphatasia (HPP) is a rare genetic disorder characterized by rachitic bone manifestations and a low serum alkaline phosphatase (ALP) level. It is caused by mutations in the tissue non-specific alkaline phosphatase (TNSALP) gene, which encodes the tissue non-specific isozyme of ALP. HPP patients exhibit various presentations depending on their age at onset, such as infantile HPP combined with vitamin B6-responsive seizures. A newborn with infantile HPP presented with tonic convulsions from day 5 after birth and received intravenous vitamin B6 (10mg/kg/day pyridoxal phosphate). Eleven days later, frequent apneic episodes occurred, and head magnetic resonance imaging (MRI) showed bilateral reticular formation lesions in the brain stem, including the medulla oblongata. After the pyridoxal phosphate dose was increased (to 40mg/kg/day), the patient's seizures and apnea resolved, and her MRI findings also improved. Genetic testing revealed that she was homozygous for the 1559delT mutation of TNSALP. High-dose pyridoxal phosphate is a useful treatment for HPP-induced seizures and might improve reticular formation lesions. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  6. Analytical solution of reaction-diffusion equations for calcium wave propagation in a starburst amacrine cell.

    PubMed

    Poznanski, R R

    2010-09-01

    A reaction-diffusion model is presented to encapsulate calcium-induced calcium release (CICR) as a potential mechanism for somatofugal bias of dendritic calcium movement in starburst amacrine cells. Calcium dynamics involves a simple calcium extrusion (pump) and a buffering mechanism of calcium binding proteins homogeneously distributed over the plasma membrane of the endoplasmic reticulum within starburst amacrine cells. The system of reaction-diffusion equations in the excess buffer (or low calcium concentration) approximation are reformulated as a nonlinear Volterra integral equation which is solved analytically via a regular perturbation series expansion in response to calcium feedback from a continuously and uniformly distributed calcium sources. Calculation of luminal calcium diffusion in the absence of buffering enables a wave to travel at distances of 120 μm from the soma to distal tips of a starburst amacrine cell dendrite in 100 msec, yet in the presence of discretely distributed calcium-binding proteins it is unknown whether the propagating calcium wave-front in the somatofugal direction is further impeded by endogenous buffers. If so, this would indicate CICR to be an unlikely mechanism of retinal direction selectivity in starburst amacrine cells.

  7. Expression of the P/Q (Cav2.1) calcium channel in nodose sensory neurons and arterial baroreceptors.

    PubMed

    Tatalovic, Milos; Glazebrook, Patricia A; Kunze, Diana L

    2012-06-27

    The predominant calcium current in nodose sensory neurons, including the subpopulation of baroreceptor neurons, is the N-type channel, Cav2.2. It is also the primary calcium channel responsible for transmitter release at their presynaptic terminals in the nucleus of the solitary tract in the brainstem. The P/Q channel, Cav2.1, the other major calcium channel responsible for transmitter release at mammalian synapses, represents only 15-20% of total calcium current in the general population of sensory neurons and makes a minor contribution to transmitter release at the presynaptic terminal. In the present study we identified a subpopulation of the largest nodose neurons (capacitance>50pF) in which, surprisingly, Cav2.1 represents over 50% of the total calcium current, differing from the remainder of the population. Consistent with these electrophysiological data, anti-Cav2.1 antibody labeling was more membrane delimited in a subgroup of the large neurons in slices of nodose ganglia. Data reported in other synapses in the central nervous system assign different roles in synaptic information transfer to the P/Q-type versus N-type calcium channels. The study raises the possibility that the P/Q channel which has been associated with high fidelity transmission at other central synapses serves a similar function in this group of large myelinated sensory afferents, including arterial baroreceptors where a high frequency regular discharge pattern signals the pressure pulse. This contrasts to the irregular lower frequency discharge of the unmyelinated fibers that make up the majority of the sensory population and that utilize the N-type channel in synaptic transmission. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Imperatoxin a enhances Ca(2+) release in developing skeletal muscle containing ryanodine receptor type 3.

    PubMed Central

    Nabhani, Thomas; Zhu, Xinsheng; Simeoni, Ilenia; Sorrentino, Vincenzo; Valdivia, Héctor H; García, Jesús

    2002-01-01

    Most adult mammalian skeletal muscles contain only one isoform of ryanodine receptor (RyR1), whereas neonatal muscles contain two isoforms (RyR1 and RyR3). Membrane depolarization fails to evoke calcium release in muscle cells lacking RyR1, demonstrating an essential role for this isoform in excitation-contraction coupling. In contrast, the role of RyR3 is unknown. We studied the participation of RyR3 in calcium release in wild type (containing both RyR1 and RyR3 isoforms) and RyR3-/- (containing only RyR1) myotubes in the presence or absence of imperatoxin A (IpTxa), a high-affinity agonist of ryanodine receptors. IpTxa significantly increased the amplitude and the rate of release only in wild-type myotubes. Calcium currents, recorded simultaneously with the transients, were not altered with IpTxa treatment. [(3)H]ryanodine binding to RyR1 or RyR3 was significantly increased in the presence of IpTxa. Additionally, IpTxa modified the gating and conductance level of single RyR1 or RyR3 channels when studied in lipid bilayers. Our data show that IpTxa can interact with both RyRs and that RyR3 is functional in myotubes and it can amplify the calcium release signal initiated by RyR1, perhaps through a calcium-induced mechanism. In addition, our data indicate that when RyR3-/- myotubes are voltage-clamped, the effect of IpTxa is not detected because RyR1s are under the control of the dihydropyridine receptor. PMID:11867448

  9. Interactions of Mitochondria/Metabolism and Calcium Regulation in Alzheimer’s Disease - A Calcinist Point of View

    PubMed Central

    Gibson, Gary E.; Thakkar, Ankita

    2017-01-01

    Decades of research suggest that alterations in calcium are central to the pathophysiology of Alzheimer’s Disease (AD). Highly reproducible changes in calcium dynamics occur in cells from patients with both genetic and non-genetic forms of AD relative to controls. The most robust change is an exaggerated release of calcium from internal stores. Detailed analysis of these changes in animal and cell models of the AD-causing presenilin mutations reveal robust changes in ryanodine receptors, inositol tris-phosphate receptors, calcium leak channels and store activated calcium entry. Similar anomalies in calcium result when AD-like changes in mitochondrial enzymes or oxidative stress are induced experimentally. The calcium abnormalities can be directly linked to the altered tau phosphorylation, amyloid precursor protein processing and synaptic dysfunction that are defining features of AD. A better understanding of these changes is required before using calcium abnormalities as therapeutic targets. PMID:28181072

  10. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual

    PubMed Central

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward

    2013-01-01

    To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate PTHrP secretion and milk calcium transport with calcium availability. To test this idea genetically, we bred BLG-Cre mice with CaSR-floxed mice to ablate the CaSR specifically from mammary epithelial cells only at the onset of lactation (CaSR-cKO mice). Loss of the CaSR in the lactating mammary gland did not disrupt alveolar differentiation or milk production. However, it did increase the secretion of PTHrP into milk and decreased the transport of calcium from the circulation into milk. CaSR-cKO mice did not show accelerated bone resorption, but they did have a decrease in bone formation. Loss of the mammary gland CaSR resulted in hypercalcemia, decreased PTH secretion, and increased renal calcium excretion in lactating mothers. Finally, loss of the mammary gland CaSR resulted in decreased calcium accrual by suckling neonates, likely due to the combination of increased milk PTHrP and decreased milk calcium. These results demonstrate that the mammary gland CaSR coordinates maternal bone and calcium metabolism, calcium transport into milk, and neonatal calcium accrual during lactation. PMID:23782944

  11. Thalamic reticular nucleus induces fast and local modulation of arousal state

    PubMed Central

    Lewis, Laura D; Voigts, Jakob; Flores, Francisco J; Schmitt, L Ian; Wilson, Matthew A

    2015-01-01

    During low arousal states such as drowsiness and sleep, cortical neurons exhibit rhythmic slow wave activity associated with periods of neuronal silence. Slow waves are locally regulated, and local slow wave dynamics are important for memory, cognition, and behaviour. While several brainstem structures for controlling global sleep states have now been well characterized, a mechanism underlying fast and local modulation of cortical slow waves has not been identified. Here, using optogenetics and whole cortex electrophysiology, we show that local tonic activation of thalamic reticular nucleus (TRN) rapidly induces slow wave activity in a spatially restricted region of cortex. These slow waves resemble those seen in sleep, as cortical units undergo periods of silence phase-locked to the slow wave. Furthermore, animals exhibit behavioural changes consistent with a decrease in arousal state during TRN stimulation. We conclude that TRN can induce rapid modulation of local cortical state. DOI: http://dx.doi.org/10.7554/eLife.08760.001 PMID:26460547

  12. Understanding spatial and temporal patterning of astrocyte calcium transients via interactions between network transport and extracellular diffusion

    NASA Astrophysics Data System (ADS)

    Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.

    2017-02-01

    Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.

  13. Three types of neuronal calcium channel with different calcium agonist sensitivity.

    PubMed

    Nowycky, M C; Fox, A P; Tsien, R W

    How many types of calcium channels exist in neurones? This question is fundamental to understanding how calcium entry contributes to diverse neuronal functions such as transmitter release, neurite extension, spike initiation and rhythmic firing. There is considerable evidence for the presence of more than one type of Ca conductance in neurones and other cells. However, little is known about single-channel properties of diverse neuronal Ca channels, or their responsiveness to dihydropyridines, compounds widely used as labels in Ca channel purification. Here we report evidence for the coexistence of three types of Ca channel in sensory neurones of the chick dorsal root ganglion. In addition to a large conductance channel that contributes long-lasting current at strong depolarizations (L), and a relatively tiny conductance that underlies a transient current activated at weak depolarizations (T), we find a third type of unitary activity (N) that is neither T nor L. N-type Ca channels require strongly negative potentials for complete removal of inactivation (unlike L) and strong depolarizations for activation (unlike T). The dihydropyridine Ca agonist Bay K 8644 strongly increases the opening probability of L-, but not T- or N-type channels.

  14. Muscimol increases acetylcholine release by directly stimulating adult striatal cholinergic interneurons.

    PubMed

    Login, I S; Pal, S N; Adams, D T; Gold, P E

    1998-01-01

    Because GabaA ligands increase acetylcholine (ACh) release from adult striatal slices, we hypothesized that activation of GabaA receptors on striatal cholinergic interneurons directly stimulates ACh secretion. Fractional [3H]ACh release was recorded during perifusion of acutely dissociated, [3H]choline-labeled, adult male rat striata. The GabaA agonist, muscimol, immediately stimulated release maximally approximately 300% with EC50 = approximately 1 microM. This action was enhanced by the allosteric GabaA receptor modulators, diazepam and secobarbital, and inhibited by the GabaA antagonist, bicuculline, by ligands for D2 or muscarinic cholinergic receptors or by low calcium buffer, tetrodotoxin or vesamicol. Membrane depolarization inversely regulated muscimol-stimulated secretion. Release of endogenous and newly synthesized ACh was stimulated in parallel by muscimol without changing choline release. Muscimol pretreatment inhibited release evoked by K+ depolarization or by receptor-mediated stimulation with glutamate. Thus, GabaA receptors on adult striatal cholinergic interneurons directly stimulate voltage- and calcium-dependent exocytosis of ACh stored in vesamicol-sensitive synaptic vesicles. The action depends on the state of membrane polarization and apparently depolarizes the membrane in turn. This functional assay demonstrates that excitatory GabaA actions are not limited to neonatal tissues. GabaA-stimulated ACh release may be prevented in situ by normal tonic dopaminergic and muscarinic input to cholinergic neurons.

  15. Lipid body accumulation alters calcium signaling dynamics in immune cells

    PubMed Central

    Greineisen, William E.; Speck, Mark; Shimoda, Lori M.N.; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J.; Turner, Helen

    2014-01-01

    Summary There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcεRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signalling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcεRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signalling pathway and its downstream targets. PMID:25016314

  16. Calmodulin Activation by Calcium Transients in the Postsynaptic Density of Dendritic Spines

    PubMed Central

    Keller, Daniel X.; Franks, Kevin M.; Bartol, Thomas M.; Sejnowski, Terrence J.

    2008-01-01

    The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM) and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways. PMID:18446197

  17. Discovery of calcium in Mercury's atmosphere.

    PubMed

    Bida, T A; Killen, R M; Morgan, T H

    2000-03-09

    The composition and evolutionary history of Mercury's crust are not well determined. The planet as a whole has been predicted to have a refractory, anhydrous composition: rich in Ca, Al, Mg and Fe, but poor in Na, K, OH, and S. Its atmosphere is believed to be derived in large part from the surface materials. A combination of effects that include impact vaporization (from infalling material), volatile evaporation, photon-stimulated desorption and sputtering releases material from the surface to form the atmosphere. Sodium and potassium have already been observed in Mercury's atmosphere, with abundances that require a volatile-rich crust. The sodium probably results from photon-stimulated desorption, and has a temperature of 1,500 K (ref. 10). Here we report the discovery of calcium in the atmosphere near Mercury's poles. The column density is very low and the temperature is apparently very high (12,000 K). The localized distribution and high temperature, if confirmed, suggest that the atmospheric calcium may arise from surface sputtering by ions, which enter Mercury's auroral zone. The low abundance of atmospheric Ca may indicate that the regolith is rarefied in calcium.

  18. A novel hydrolytic product from flesh of Mactra veneriformis and its bioactivities in calcium supplement

    NASA Astrophysics Data System (ADS)

    Wang, Lingchong; Chen, Shiyong; Liu, Rui; Wu, Hao

    2012-09-01

    To prepare calcium-binding peptides, the flesh residue of Mactra Veneriformis was subjected to enzymatic hydrolysis. By comparing the capability of combining calcium of the hydrolyzates, pepsin was confirmed to be the most suitable enzyme for hydrolyzing the flesh residue to release calcium-binding peptides among the seven tested proteases. The pepsin hydrolyzate (PHM) was divided into three fractions according to the molecule weight of its composition, which ranged from 0.5 to 15 kDa. The low-molecule-weight fraction named PHM-3 had the highest capability in combining calcium. The peptides existing in the PHM-3 fraction consisted of higher contents of Glu, Ala and Leu, and could produce one type of calcium-peptide complex by powerfully chelating calcium ions. PHM-3 products could effectively increase calcium absorption and retention while they decreased the calcium excretion in animal tests. Additionally, symptoms caused by low calcium bioavailability in ovariectomized rats, such as bone mineral density reduction and mechanical strength loss could be significantly ameliorated by the hydrolytic products addition in diet.

  19. Intrinsic membrane properties of pre-oromotor neurons in the intermediate zone of the medullary reticular formation.

    PubMed

    Venugopal, S; Boulant, J A; Chen, Z; Travers, J B

    2010-06-16

    Neurons in the lower brainstem that control consummatory behavior are widely distributed in the reticular formation (RF) of the pons and medulla. The intrinsic membrane properties of neurons within this distributed system shape complex excitatory and inhibitory inputs from both orosensory and central structures implicated in homeostatic control to produce coordinated oromotor patterns. The current study explored the intrinsic membrane properties of neurons in the intermediate subdivision of the medullary reticular formation (IRt). Neurons in the IRt receive input from the overlying (gustatory) nucleus of the solitary tract and project to the oromotor nuclei. Recent behavioral pharmacology studies as well as computational modeling suggest that inhibition in the IRt plays an important role in the transition from a taste-initiated oromotor pattern of ingestion to one of rejection. The present study explored the impact of hyperpolarization on membrane properties. In response to depolarization, neurons responded with either a tonic discharge, an irregular/burst pattern or were spike-adaptive. A hyperpolarizing pre-pulse modulated the excitability of most (82%) IRt neurons to subsequent depolarization. Instances of both increased (30%) and decreased (52%) excitability were observed. Currents induced by the hyperpolarization included an outward 4-aminopyridine (4-AP) sensitive K+ current that suppressed excitability and an inward cation current that increased excitability. These currents are also present in other subpopulations of RF neurons that influence the oromotor nuclei and we discuss how these currents could alter firing characteristics to impact pattern generation. 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Alendronate-Eluting Biphasic Calcium Phosphate (BCP) Scaffolds Stimulate Osteogenic Differentiation

    PubMed Central

    Kim, Sung Eun; Lee, Deok-Won; Kang, Eun Young; Jeong, Won Jae; Lee, Boram; Jeong, Myeong Seon; Kim, Hak Jun; Park, Kyeongsoon; Song, Hae-Ryong

    2015-01-01

    Biphasic calcium phosphate (BCP) scaffolds have been widely used in orthopedic and dental fields as osteoconductive bone substitutes. However, BCP scaffolds are not satisfactory for the stimulation of osteogenic differentiation and maturation. To enhance osteogenic differentiation, we prepared alendronate- (ALN-) eluting BCP scaffolds. The coating of ALN on BCP scaffolds was confirmed by scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An in vitro release study showed that release of ALN from ALN-eluting BCP scaffolds was sustained for up to 28 days. In vitro results revealed that MG-63 cells grown on ALN-eluting BCP scaffolds exhibited increased ALP activity and calcium deposition and upregulated gene expression of Runx2, ALP, OCN, and OPN compared with the BCP scaffold alone. Therefore, this study suggests that ALN-eluting BCP scaffolds have the potential to effectively stimulate osteogenic differentiation. PMID:26221587