Lysosome and endoplasmic reticulum quality control pathways in Niemann-Pick type C disease
Schultz, Mark L.; Krus, Kelsey L.; Lieberman, Andrew P.
2017-01-01
Lysosomal storage diseases result from inherited deficiencies of lysosomal hydrolytic activities or lipid transport. Collectively, these disorders are a common cause of morbidity in the pediatric population and are often associated with severe neurodegeneration. Among this group of diseases is Niemann-Pick type C, an autosomal recessive disorder of lipid trafficking that causes cognitive impairment, ataxia and death, most often in childhood. Here, we review the current knowledge of disease pathogenesis, with particular focus on insights gleaned from genetics and the study of model systems. Critical advances in understanding mechanisms that regulate intracellular cholesterol trafficking have emerged from this work and are highlighted. We review effects of disease-causing mutations on quality control pathways involving the lysosome and endoplasmic reticulum, and discuss how they function to clear the most common mutant protein found in Niemann-Pick type C patients, NPC1-I1061T. Finally, we summarize insights into the mechanisms that degrade misfolded transmembrane proteins in the endoplasmic reticulum and how manipulating these quality control pathways may lead to the identification of novel targets for disease-modifying therapies. PMID:27026653
The Endoplasmic Reticulum-Associated Degradation Pathways of Budding Yeast
Thibault, Guillaume; Ng, Davis T.W.
2012-01-01
Protein misfolding is a common cellular event that can produce intrinsically harmful products. To reduce the risk, quality control mechanisms are deployed to detect and eliminate misfolded, aggregated, and unassembled proteins. In the secretory pathway, it is mainly the endoplasmic reticulum-associated degradation (ERAD) pathways that perform this role. Here, specialized factors are organized to monitor and process the folded states of nascent polypeptides. Despite the complex structures, topologies, and posttranslational modifications of client molecules, the ER mechanisms are the best understood among all protein quality-control systems. This is the result of convergent and sometimes serendipitous discoveries by researchers from diverse fields. Although major advances in ER quality control and ERAD came from all model organisms, this review will focus on the discoveries culminating from the simple budding yeast. PMID:23209158
Role of Protein Quality Control Failure in Alcoholic Hepatitis Pathogenesis.
French, Samuel W; Masouminia, Maryam; Samadzadeh, Sara; Tillman, Brittany C; Mendoza, Alejandro; French, Barbara A
2017-02-08
The mechanisms of protein quality control in hepatocytes in cases of alcoholic hepatitis (AH) including ufmylation, FAT10ylation, metacaspase 1 (Mca1), ERAD (endoplasmic reticulum-associated degradation), JUNQ (juxta nuclear quality control), IPOD (insoluble protein deposit) autophagocytosis, and ER stress are reviewed. The Mallory-Denk body (MDB) formation develops in the hepatocytes in alcoholic hepatitis as a consequence of the failure of these protein quality control mechanisms to remove misfolded and damaged proteins and to prevent MDB aggresome formation within the cytoplasm of hepatocytes. The proteins involved in the quality control pathways are identified, quantitated, and visualized by immunofluorescent antibody staining of liver biopsies from patients with AH. Quantification of the proteins are achieved by measuring the fluorescent intensity using a morphometric system. Ufmylation and FAT10ylation pathways were downregulated, Mca1 pathways were upregulated, autophagocytosis was upregulated, and ER stress PERK (protein kinase RNA-like endoplasmic reticulum kinase) and CHOP (CCAAT/enhancer-binding protein homologous protein) mechanisms were upregulated. Despite the upregulation of several pathways of protein quality control, aggresomes (MDBs) still formed in the hepatocytes in AH. The pathogenesis of AH is due to the failure of protein quality control, which causes balloon-cell change with MDB formation and ER stress.
Malchus, Nina; Weiss, Matthias
2010-01-01
A multitude of transmembrane proteins enters the endoplasmic reticulum (ER) as unfolded polypeptide chains. During their folding process, they interact repetitively with the ER's quality control machinery. Here, we have used fluorescence correlation spectroscopy to probe these interactions for a prototypical transmembrane protein, VSVG ts045, in vivo. While both folded and unfolded VSVG ts045 showed anomalous diffusion, the unfolded protein had a significantly stronger anomaly. This difference subsided when unfolded VSVG ts045 was in a complex with its chaperone calnexin, or when a mutant form of VSVG ts045 with only one glycan was used. Our experimental data and accompanying simulations suggest that the folding sensor of the quality control (UGT1) oligomerizes unfolded VSVG ts045, leading to a more anomalous/obstructed diffusion. In contrast, calnexin dissolves the oligomers, rendering unfolded VSVG ts045 more mobile, and hence prevents poisoning of the ER. PMID:20713018
Cyclosporine A-Sensitive, Cyclophilin B-Dependent Endoplasmic Reticulum-Associated Degradation
Luban, Jeremy; Molinari, Maurizio
2010-01-01
Peptidyl-prolyl cis/trans isomerases (PPIs) catalyze cis/trans isomerization of peptide bonds preceding proline residues. The involvement of PPI family members in protein refolding has been established in test tube experiments. Surprisingly, however, no data is available on the involvement of endoplasmic reticulum (ER)-resident members of the PPI family in protein folding, quality control or disposal in the living cell. Here we report that the immunosuppressive drug cyclosporine A (CsA) selectively inhibits the degradation of a subset of misfolded proteins generated in the ER. We identify cyclophilin B (CyPB) as the ER-resident target of CsA that catalytically enhances disposal from the ER of ERAD-LS substrates containing cis proline residues. Our manuscript presents the first evidence for enzymatic involvement of a PPI in protein quality control in the ER of living cells. PMID:20927389
Mitochondrial quality control: decommissioning power plants in neurodegenerative diseases.
Mukherjee, Rukmini; Chakrabarti, Oishee
2013-01-01
The cell has an intricate quality control system to protect its mitochondria from oxidative stress. This surveillance system is multi-tiered and comprises molecules that are present inside the mitochondria, in the cytosol, and in other organelles like the nucleus and endoplasmic reticulum. These molecules cross talk with each other and protect the mitochondria from oxidative stress. Oxidative stress is a fundamental part of early disease pathogenesis of neurodegenerative diseases. These disorders also damage the cellular quality control machinery that protects the cell against oxidative stress. This exacerbates the oxidative damage and causes extensive neuronal cell death that is characteristic of neurodegeneration.
Satoh, Tadashi; Yamaguchi, Takumi; Kato, Koichi
2015-01-30
In the endoplasmic reticulum (ER), the sugar chain is initially introduced onto newly synthesized proteins as a triantennary tetradecasaccharide (Glc3Man9GlcNAc2). The attached oligosaccharide chain is subjected to stepwise trimming by the actions of specific glucosidases and mannosidases. In these processes, the transiently expressed N-glycans, as processing intermediates, function as signals for the determination of glycoprotein fates, i.e., folding, transport, or degradation through interactions of a series of intracellular lectins. The monoglucosylated glycoforms are hallmarks of incompletely folded states of glycoproteins in this system, whereas the outer mannose trimming leads to ER-associated glycoprotein degradation. This review outlines the recently emerging evidence regarding the molecular and structural basis of this glycoprotein quality control system, which is regulated through dynamic interplay among intracellular lectins, glycosidases, and glycosyltransferase. Structural snapshots of carbohydrate-lectin interactions have been provided at the atomic level using X-ray crystallographic analyses. Conformational ensembles of uncomplexed triantennary high-mannose-type oligosaccharides have been characterized in a quantitative manner using molecular dynamics simulation in conjunction with nuclear magnetic resonance spectroscopy. These complementary views provide new insights into glycoprotein recognition in quality control coupled with N-glycan processing.
Kumar, Ravindra; Kumari, Bandana; Kumar, Manish
2017-01-01
The endoplasmic reticulum plays an important role in many cellular processes, which includes protein synthesis, folding and post-translational processing of newly synthesized proteins. It is also the site for quality control of misfolded proteins and entry point of extracellular proteins to the secretory pathway. Hence at any given point of time, endoplasmic reticulum contains two different cohorts of proteins, (i) proteins involved in endoplasmic reticulum-specific function, which reside in the lumen of the endoplasmic reticulum, called as endoplasmic reticulum resident proteins and (ii) proteins which are in process of moving to the extracellular space. Thus, endoplasmic reticulum resident proteins must somehow be distinguished from newly synthesized secretory proteins, which pass through the endoplasmic reticulum on their way out of the cell. Approximately only 50% of the proteins used in this study as training data had endoplasmic reticulum retention signal, which shows that these signals are not essentially present in all endoplasmic reticulum resident proteins. This also strongly indicates the role of additional factors in retention of endoplasmic reticulum-specific proteins inside the endoplasmic reticulum. This is a support vector machine based method, where we had used different forms of protein features as inputs for support vector machine to develop the prediction models. During training leave-one-out approach of cross-validation was used. Maximum performance was obtained with a combination of amino acid compositions of different part of proteins. In this study, we have reported a novel support vector machine based method for predicting endoplasmic reticulum resident proteins, named as ERPred. During training we achieved a maximum accuracy of 81.42% with leave-one-out approach of cross-validation. When evaluated on independent dataset, ERPred did prediction with sensitivity of 72.31% and specificity of 83.69%. We have also annotated six different proteomes to predict the candidate endoplasmic reticulum resident proteins in them. A webserver, ERPred, was developed to make the method available to the scientific community, which can be accessed at http://proteininformatics.org/mkumar/erpred/index.html. We found that out of 124 proteins of the training dataset, only 66 proteins had endoplasmic reticulum retention signals, which shows that these signals are not an absolute necessity for endoplasmic reticulum resident proteins to remain inside the endoplasmic reticulum. This observation also strongly indicates the role of additional factors in retention of proteins inside the endoplasmic reticulum. Our proposed predictor, ERPred, is a signal independent tool. It is tuned for the prediction of endoplasmic reticulum resident proteins, even if the query protein does not contain specific ER-retention signal.
Ihara, Shinji; Nakayama, Sohei; Murakami, Yoshiko; Suzuki, Emiko; Asakawa, Masayo; Kinoshita, Taroh; Sawa, Hitoshi
2017-02-01
Quality control of proteins in the endoplasmic reticulum (ER) is essential for ensuring the integrity of secretory proteins before their release into the extracellular space. Secretory proteins that fail to pass quality control form aggregates. Here we show the PIGN-1/PIGN is required for quality control in Caenorhabditis elegans and in mammalian cells. In C. elegans pign-1 mutants, several proteins fail to be secreted and instead form abnormal aggregation. PIGN-knockout HEK293 cells also showed similar protein aggregation. Although PIGN-1/PIGN is responsible for glycosylphosphatidylinositol (GPI)-anchor biosynthesis in the ER, certain mutations in C. elegans pign-1 caused protein aggregation in the ER without affecting GPI-anchor biosynthesis. These results show that PIGN-1/PIGN has a conserved and non-canonical function to prevent deleterious protein aggregation in the ER independently of the GPI-anchor biosynthesis. PIGN is a causative gene for some human diseases including multiple congenital seizure-related syndrome (MCAHS1). Two pign-1 mutations created by CRISPR/Cas9 that correspond to MCAHS1 also cause protein aggregation in the ER, implying that the dysfunction of the PIGN non-canonical function might affect symptoms of MCAHS1 and potentially those of other diseases. © 2017. Published by The Company of Biologists Ltd.
Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum
Shahheydari, Hamideh; Ragagnin, Audrey; Walker, Adam K.; Toth, Reka P.; Vidal, Marta; Jagaraj, Cyril J.; Perri, Emma R.; Konopka, Anna; Sultana, Jessica M.; Atkin, Julie D.
2017-01-01
Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials. PMID:28539871
Saher, Gesine; Quintes, Susanne; Möbius, Wiebke; Wehr, Michael C; Krämer-Albers, Eva-Maria; Brügger, Britta; Nave, Klaus-Armin
2009-05-13
Rapid impulse conduction requires electrical insulation of axons by myelin, a cholesterol-rich extension of the glial cell membrane with a characteristic composition of proteins and lipids. Mutations in several myelin protein genes cause endoplasmic reticulum (ER) retention and disease, presumably attributable to failure of misfolded proteins to pass the ER quality control. Because many myelin proteins partition into cholesterol-rich membrane rafts, their interaction with cholesterol could potentially be part of the ER quality control system. Here, we provide in vitro and in vivo evidence that the major peripheral myelin protein P0 requires cholesterol for exiting the ER and reaching the myelin compartment. Cholesterol dependency of P0 trafficking in heterologous cells is mediated by a cholesterol recognition/interaction amino acid consensus (CRAC) motif. Mutant mice lacking cholesterol biosynthesis in Schwann cells suffer from severe hypomyelination with numerous uncompacted myelin stretches. This demonstrates that high-level cholesterol coordinates P0 export with myelin membrane synthesis, which is required for the correct stoichiometry of myelin components and for myelin compaction.
Analysis of glycoprotein processing in the endoplasmic reticulum using synthetic oligosaccharides.
Ito, Yukishige; Takeda, Yoichi
2012-01-01
Protein quality control (QC) in the endoplasmic reticulum (ER) comprises many steps, including folding and transport of nascent proteins as well as degradation of misfolded proteins. Recent studies have revealed that high-mannose-type glycans play a pivotal role in the QC process. To gain knowledge about the molecular basis of this process with well-defined homogeneous compounds, we achieved a convergent synthesis of high-mannose-type glycans and their functionalized derivatives. We focused on analyses of UDP-Glc: glycoprotein glucosyltransferase (UGGT) and ER Glucosidase II, which play crucial roles in glycoprotein QC; however, their specificities remain unclear. In addition, we established an in vitro assay system mimicking the in vivo condition which is highly crowded because of the presence of various biomacromolecules.
Francisco, Adam B.; Singh, Rajni; Li, Shuai; Vani, Anish K.; Yang, Liu; Munroe, Robert J.; Diaferia, Giuseppe; Cardano, Marina; Biunno, Ida; Qi, Ling; Schimenti, John C.; Long, Qiaoming
2010-01-01
Stress in the endoplasmic reticulum (ER) plays an important causal role in the pathogenesis of several chronic diseases such as Alzheimer, Parkinson, and diabetes mellitus. Insight into the genetic determinants responsible for ER homeostasis will greatly facilitate the development of therapeutic strategies for the treatment of these debilitating diseases. Suppressor enhancer Lin12 1 like (SEL1L) is an ER membrane protein and was thought to be involved in the quality control of secreted proteins. Here we show that the mice homozygous mutant for SEL1L were embryonic lethal. Electron microscopy studies revealed a severely dilated ER in the fetal liver of mutant embryos, indicative of alteration in ER homeostasis. Consistent with this, several ER stress responsive genes were significantly up-regulated in the mutant embryos. Mouse embryonic fibroblast cells deficient in SEL1L exhibited activated unfolded protein response at the basal state, impaired ER-associated protein degradation, and reduced protein secretion. Furthermore, markedly increased apoptosis was observed in the forebrain and dorsal root ganglions of mutant embryos. Taken together, our results demonstrate an essential role for SEL1L in protein quality control during mouse embryonic development. PMID:20197277
Francisco, Adam B; Singh, Rajni; Li, Shuai; Vani, Anish K; Yang, Liu; Munroe, Robert J; Diaferia, Giuseppe; Cardano, Marina; Biunno, Ida; Qi, Ling; Schimenti, John C; Long, Qiaoming
2010-04-30
Stress in the endoplasmic reticulum (ER) plays an important causal role in the pathogenesis of several chronic diseases such as Alzheimer, Parkinson, and diabetes mellitus. Insight into the genetic determinants responsible for ER homeostasis will greatly facilitate the development of therapeutic strategies for the treatment of these debilitating diseases. Suppressor enhancer Lin12 1 like (SEL1L) is an ER membrane protein and was thought to be involved in the quality control of secreted proteins. Here we show that the mice homozygous mutant for SEL1L were embryonic lethal. Electron microscopy studies revealed a severely dilated ER in the fetal liver of mutant embryos, indicative of alteration in ER homeostasis. Consistent with this, several ER stress responsive genes were significantly up-regulated in the mutant embryos. Mouse embryonic fibroblast cells deficient in SEL1L exhibited activated unfolded protein response at the basal state, impaired ER-associated protein degradation, and reduced protein secretion. Furthermore, markedly increased apoptosis was observed in the forebrain and dorsal root ganglions of mutant embryos. Taken together, our results demonstrate an essential role for SEL1L in protein quality control during mouse embryonic development.
Proteostasis: bad news and good news from the endoplasmic reticulum.
Noack, Julia; Brambilla Pisoni, Giorgia; Molinari, Maurizio
2014-01-01
The endoplasmic reticulum (ER) is an intracellular compartment dedicated to the synthesis and maturation of secretory and membrane proteins, totalling about 30% of the total eukaryotic cells proteome. The capacity to produce correctly folded polypeptides and to transport them to their correct intra- or extracellular destinations relies on proteostasis networks that regulate and balance the activity of protein folding, quality control, transport and degradation machineries. Nutrient and environmental changes, pathogen infection aging and, more relevant for the topics discussed in this review, mutations that impair attainment of the correct 3D structure of nascent polypeptide chains may compromise the activity of the proteostasis networks with devastating consequences on cells, organs and organisms' homeostasis. Here we present a review of mechanisms regulating folding and quality control of proteins expressed in the ER, and we describe the protein degradation and the ER stress pathways activated by the expression of misfolded proteins in the ER lumen. Finally, we highlight select examples of proteopathies (also known as conformational disorders or protein misfolding diseases) caused by protein misfolding in the ER and/or affecting cellular proteostasis and therapeutic interventions that might alleviate or cure the disease symptoms.
Spiro, R G
2004-05-01
Misfolded or incompletely assembled multisubunit glycoproteins undergo endoplasmic reticulum-associated degradation (ERAD) regulated in large measure by their N-linked polymannose oligosaccharides. In this quality control system lectin interaction with Glc(3)Man(9)GlcNAc(2) glycans after trimming with endoplasmic reticulum (ER) alpha-glucosidases and alpha-mannosidases sorts out persistently unfolded glycoproteins for N-deglycosylation and proteolytic degradation. Monoglucosylated (Glc(1)Man(9)GlcNAc(2)) glycoproteins take part in the calnexin/calreticulin glucosylation-deglucosylation cycle, while the Man(8)GlcNAc(2) isomer B product of ER mannosidase I interacts with EDEM. Proteasomal degradation requires retrotranslocation into the cytosol through a Sec61 channel and deglycosylation by peptide: N-glycosidase (PNGase); in alternate models both PNGase and proteasomes may be either free in the cytosol or ER membrane-imbedded/attached. Numerous proteins appear to undergo nonproteasomal degradation in which deglycosylation and proteolysis take place in the ER lumen. The released free oligosaccharides (OS) are transported to the cytosol as OS-GlcNAc(2) along with similar components produced by the hydrolytic action of the oligosaccharyltransferase, where they together with OS from the proteasomal pathway are trimmed to Man(5)GlcNAc(1) by the action of cytosolic endo-beta- N-acetylglucosaminidase and alpha-mannosidase before entering the lysosomes. Some misfolded glycoproteins can recycle between the ER, intermediate and Golgi compartments, where they are further processed before ERAD. Moreover, properly folded glycoproteins with mannose-trimmed glycans can be deglucosylated in the Golgi by endomannosidase, thereby releasing calreticulin and permitting formation of complex OS. A number of regulatory controls have been described, including the glucosidase-glucosyltransferase shuttle, which controls the level of Glc(3)Man(9)GlcNAc(2)-P-P-Dol, and the unfolded protein response, which enhances synthesis of components of the quality control system.
2009-01-01
standard error of the mean (SEM). Analysis of variance procedures with Tukey post hoc correction examined the existence and nature of temporal trends ...apoptosis. Cell 2006;126:121–134. 20. Yorimitsu T, Klionsky DJ. Eating the enoplasmic reticulum: quality control by autophagy. Trends Cell Biol 2007;17...oxide signaling to iron- regulatory protein: direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected
A pH-Regulated Quality Control Cycle for Surveillance of Secretory Protein Assembly
Vavassori, Stefano; Cortini, Margherita; Masui, Shoji; Sannino, Sara; Anelli, Tiziana; Caserta, Imma R.; Fagioli, Claudio; Mossuto, Maria F.; Fornili, Arianna; van Anken, Eelco; Degano, Massimo; Inaba, Kenji; Sitia, Roberto
2013-01-01
Summary To warrant the quality of the secretory proteome, stringent control systems operate at the endoplasmic reticulum (ER)-Golgi interface, preventing the release of nonnative products. Incompletely assembled oligomeric proteins that are deemed correctly folded must rely on additional quality control mechanisms dedicated to proper assembly. Here we unveil how ERp44 cycles between cisGolgi and ER in a pH-regulated manner, patrolling assembly of disulfide-linked oligomers such as IgM and adiponectin. At neutral, ER-equivalent pH, the ERp44 carboxy-terminal tail occludes the substrate-binding site. At the lower pH of the cisGolgi, conformational rearrangements of this peptide, likely involving protonation of ERp44’s active cysteine, simultaneously unmask the substrate binding site and −RDEL motif, allowing capture of orphan secretory protein subunits and ER retrieval via KDEL receptors. The ERp44 assembly control cycle couples secretion fidelity and efficiency downstream of the calnexin/calreticulin and BiP-dependent quality control cycles. PMID:23685074
Lon in maintaining mitochondrial and endoplasmic reticulum homeostasis.
Yang, Jieyeqi; Chen, Wenying; Zhang, Boyang; Tian, Fengli; Zhou, Zheng; Liao, Xin; Li, Chen; Zhang, Yi; Han, Yanyan; Wang, Yan; Li, Yuzhe; Wang, Guo-Qing; Shen, Xiao Li
2018-06-01
As a vital member of AAA+ (ATPase associated with diverse cellular activities) protein superfamily, Lon, a homo-hexameric ring-shaped protein complex with a serine-lysine catalytic dyad, is highly conserved throughout almost all prokaryotic and eukaryotic organisms. Lon protease (LONP) plays an important role in maintaining mitoproteostasis through selectively recognizing and degrading oxidatively modified mitoproteins within mitochondrial matrix, such as oxidized aconitase, phosphorylated mitochondrial transcription factor A, etc. Furthermore, the up-regulated LONP increased mitochondrial ROS generation to promote cell survival, cell proliferation, epithelial-mesenchymal transition, and cell migration, which was attributed to the up-regulation of NADH:ubiquinone oxidoreductase core subunit S8 via interaction with chaperone Lon under hypoxic or oxidative stress in tumorigenesis. In addition, Lon also participated in protein kinase RNA (PKR)-like endoplasmic reticulum kinase signaling pathway under endoplasmic reticulum (ER) stress. In short, Lon, as a pivotal stress-responsive protein that involved in the crosstalks among mitochondria, ER and nucleus, participated in multifarious important cellular processes crucial for cell survival, such as the mitochondrial protein quality control system, the mitochondrial unfolded protein response, the mtDNA maintenance, and the ER unfolded protein response.
Protein Biosynthesis and Maturation in the ER.
Pedrazzini, Emanuela; Vitale, Alessandro
2018-01-01
The endoplasmic reticulum takes care of the folding, assembly, and quality control of thousands of proteins destined to the different compartments of the endomembrane system, or to be secreted in the apoplast. Here we describe how these early events in the life of all these proteins can be followed biochemically by using velocity or isopycnic ultracentrifugation, metabolic labeling with radioactive amino acids, and immunoprecipitation in various conditions.
Mechanisms of sterol uptake and transport in yeast.
Jacquier, Nicolas; Schneiter, Roger
2012-03-01
Sterols are essential lipid components of eukaryotic membranes. Here we summarize recent advances in understanding how sterols are transported between different membranes. Baker's yeast is a particularly attractive organism to dissect this lipid transport pathway, because cells can synthesize their own major sterol, ergosterol, in the membrane of the endoplasmic reticulum from where it is then transported to the plasma membrane. However, Saccharomyces cerevisiae is also a facultative anaerobic organism, which becomes sterol auxotroph in the absence of oxygen. Under these conditions, cells take up sterol from the environment and transport the lipid back into the membrane of the endoplasmic reticulum, where the free sterol becomes esterified and is then stored in lipid droplets. Steryl ester formation is thus a reliable readout to assess the back-transport of exogenously provided sterols from the plasma membrane to the endoplasmic reticulum. Structure/function analysis has revealed that the bulk membrane function of the fungal ergosterol can be provided by structurally related sterols, including the mammalian cholesterol. Foreign sterols, however, are subject to a lipid quality control cycle in which the sterol is reversibly acetylated. Because acetylated sterols are efficiently excreted from cells, the substrate specificity of the deacetylating enzymes determines which sterols are retained. Membrane-bound acetylated sterols are excreted by the secretory pathway, more soluble acetylated sterol derivatives such as the steroid precursor pregnenolone, on the other hand, are excreted by a pathway that is independent of vesicle formation and fusion. Further analysis of this lipid quality control cycle is likely to reveal novel insight into the mechanisms that ensure sterol homeostasis in eukaryotic cells. Article from a special issue on Steroids and Microorganisms. Copyright © 2010. Published by Elsevier Ltd.
Sasset, Linda; Petris, Gianluca; Cesaratto, Francesca; Burrone, Oscar R
2015-11-20
Endoplasmic reticulum-associated degradation (ERAD) is an essential quality control mechanism of the folding state of proteins in the secretory pathway that targets unfolded/misfolded polypeptides for proteasomal degradation. The cytosolic p97/valosin-containing protein is an essential ATPase for degradation of ERAD substrates. It has been considered necessary during retro-translocation to extract proteins from the endoplasmic reticulum that are otherwise supposed to accumulate in the endoplasmic reticulum lumen. The activity of the p97-associated deubiquitinylase YOD1 is also required for substrate disposal. We used the in vivo biotinylation retro-translocation assay in mammalian cells under conditions of impaired p97 or YOD1 activity to directly discriminate their requirements and diverse functions in ERAD. Using different ERAD substrates, we found that both proteins participate in two distinct retro-translocation steps. For CD4 and MHC-Iα, which are induced to degradation by the HIV-1 protein Vpu and by the CMV immunoevasins US2 and US11, respectively, p97 and YOD1 have a retro-translocation-triggering role. In contrast, for three other spontaneous ERAD model substrates (NS1, NHK-α1AT, and BST-2/Tetherin), p97 and YOD1 are required in the downstream events of substrate deglycosylation and proteasomal degradation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
TGFbeta regulation of membrane mucin Muc4 via proteosome degradation.
Lomako, Wieslawa M; Lomako, Joseph; Soto, Pedro; Carraway, Coralie A Carothers; Carraway, Kermit L
2009-07-01
Muc4 is a heterodimeric membrane mucin implicated in epithelial differentiation and tumor progression. It is expressed from a single gene as a 300 kDa precursor protein which is cleaved in the endoplasmic reticulum to its two subunits. Our previous work has shown that Muc4 is regulated by TGFbeta, which represses the precursor cleavage. Working with Muc4-transfected A375 tumor cells, we now show that Muc4 undergoes proteosomal degradation. Proteosome inhibitors prolong the life of the precursor, shunt the Muc4 into cytoplasmic aggresomes, increase the level of Muc4 associated with the endoplasmic reticulum chaperones calnexin and calreticulin and increase the levels of ubiquitinated Muc4. Most importantly, proteosome inhibitors repress the TGFbeta inhibition of Muc4 expression. These results suggest a model in which TGFbeta inhibits precursor cleavage, shunting the precursor into the proteosomal degradation pathway. Thus, the cells have evolved a mechanism to use the quality control pathway for glycoproteins to control the quantity of the protein produced. 2009 Wiley-Liss, Inc.
Unfolded Protein Response of the Endoplasmic Reticulum in Tumor Progression and Immunogenicity
Yoo, Yoon Seon; Han, Hye Gyeong
2017-01-01
The endoplasmic reticulum (ER) is a pivotal regulator of folding, quality control, trafficking, and targeting of secreted and transmembrane proteins, and accordingly, eukaryotic cells have evolved specialized machinery to ensure that the ER enables these proteins to acquire adequate folding and maturation in the presence of intrinsic and extrinsic insults. This adaptive capacity of the ER to intrinsic and extrinsic perturbations is important for maintaining protein homeostasis, which is termed proteostasis. Failure in adaptation to these perturbations leads to accumulation of misfolded or unassembled proteins in the ER, which is termed ER stress, resulting in the activation of unfolded protein response (UPR) of the ER and the execution of ER-associated degradation (ERAD) to restore homeostasis. Furthermore, both of the two axes play key roles in the control of tumor progression, inflammation, immunity, and aging. Therefore, understanding UPR of the ER and subsequent ERAD will provide new insights into the pathogenesis of many human diseases and contribute to therapeutic intervention in these diseases. PMID:29430279
Soheili, Tayebeh; Gicquel, Evelyne; Poupiot, Jérôme; N'Guyen, Luu; Le Roy, Florence; Bartoli, Marc; Richard, Isabelle
2012-02-01
Sarcoglycanopathies (SGP) are a group of autosomal recessive muscle disorders caused by primary mutations in one of the four sarcoglycan genes. The sarcoglycans (α-, β-, γ-, and δ-sarcoglycan) form a tetrameric complex at the muscle membrane that is part of the dystrophin-glycoprotein complex and plays an essential role for membrane integrity during muscle contractions. We previously showed that the most frequent missense mutation in α-sarcoglycan (p.R77C) leads to the absence of the protein at the cell membrane due to its blockade by the endoplasmic reticulum (ER) quality control. Moreover, we demonstrated that inhibition of the ER α-mannosidase I activity using kifunensine could rescue the mutant protein localization at the cell membrane. Here, we investigate 25 additional disease-causing missense mutations in the sarcoglycan genes with respect to intracellular fate and localization rescue of the mutated proteins by kifunensine. Our studies demonstrate that, similarly to p.R77C, 22 of 25 of the selected mutations lead to defective intracellular trafficking of the SGs proteins. Six of these were saved from ER retention upon kifunensine treatment. The trafficking of SGs mutants rescued by kifunensine was associated with mutations that have moderate structural impact on the protein. © 2011 Wiley Periodicals, Inc.
From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking.
Farinha, Carlos M; Canato, Sara
2017-01-01
CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.
Walczak, Christopher P; Bernardi, Kaleena M; Tsai, Billy
2012-04-15
Protein misfolding within the endoplasmic reticulum (ER) is managed by an ER quality control system that retro-translocates aberrant proteins into the cytosol for proteasomal destruction. This process, known as ER-associated degradation, utilizes the action of ER redox enzymes to accommodate the disulfide-bonded nature of misfolded proteins. Strikingly, various pathogenic viruses and toxins co-opt these redox components to reach the cytosol during entry. These redox factors thus regulate critical cellular homeostasis and host-pathogen interactions. Recent studies identify specific members of the protein disulfide isomerase (PDI) family, which use their chaperone and catalytic activities, in engaging both misfolded ER proteins and pathogens. The precise molecular mechanism by which a dedicated PDI family member disrupts the disulfide bonds in the misfolded ER proteins and pathogens, as well as how they act to unfold these substrates to promote their ER-to-cytosol membrane transport, remain poorly characterized. How PDI family members distinguish folded versus misfolded ER substrates remains enigmatic. What physical characteristics surrounding a substrate's disulfide bond instruct PDI that it is mispaired or native? For the pathogens, as their disulfide bonds normally serve a critical role in providing physical support, what conformational changes experienced in the host enable their disulfide bonds to be disrupted? A combination of more rigorous biochemical and high-resolution structural studies should begin to address these questions.
N-glycan based ER molecular chaperone and protein quality control system: the calnexin binding cycle
Lamriben, Lydia; Graham, Jill B.; Adams, Benjamin M.; Hebert, Daniel N.
2015-01-01
Helenius and colleagues proposed over twenty-years ago a paradigm-shifting model for how chaperone binding in the endoplasmic reticulum was mediated and controlled for a new type of molecular chaperone- the carbohydrate binding chaperones, calnexin and calreticulin. While the originally established basics for this lectin chaperone binding cycle holds true today, there has been a number of important advances that have expanded our understanding of its mechanisms of action, role in protein homeostasis, and its connection to disease states that are highlighted in this review. PMID:26676362
Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae
Higuchi-Sanabria, Ryo; Pernice, Wolfgang M A; Vevea, Jason D; Alessi Wolken, Dana M; Boldogh, Istvan R; Pon, Liza A
2014-01-01
Aging determinants are asymmetrically distributed during cell division in S. cerevisiae, which leads to production of an immaculate, age-free daughter cell. During this process, damaged components are sequestered and retained in the mother cell, and higher functioning organelles and rejuvenating factors are transported to and/or enriched in the bud. Here, we will describe the key quality control mechanisms in budding yeast that contribute to asymmetric cell division of aging determinants including mitochondria, endoplasmic reticulum (ER), vacuoles, extrachromosomal rDNA circles (ERCs), and protein aggregates. PMID:25263578
Discovery and Testing of Ricin Therapeutics
2011-06-01
reticulum (ER) lumen. While in the ER, the ricin A chain co-opts ER quality control to gain access to the cytosol by a process referred to as...containing N-linked oligosaccharides characteristic of ER-resident molecules (21). RTAE177D and RTA! polypeptides with the predicted molecular weight...U373RTA! cells by pulse - chase analysis (Figure 2B and C). The cells were metabolically labeled with 35S-methionine for 15 min and Lane 1
O'Brien, P J
1986-01-01
This study tested the hypothesis that calcium-release from sarcoplasmic reticulum isolated from malignant hyperthermia swine had abnormal concentration-dependency on release modulators. Halothane stimulated half-maximal calcium-release at similar concentrations for malignant hyperthermia and control sarcoplasmic reticulum (0.10 +/- 0.04 mM). However, concentrations causing half-maximal calcium-release were lower for malignant hyperthermia sarcoplasmic reticulum (P less than 0.001) by an order of magnitude for Ca2+ (28.1 +/- 8.3 versus 1.23 +/- 0.45 nM), adenosine triphosphate (0.33 +/- 0.09 versus 0.023 +/- 0.014 mM) and caffeine (7.79 +/- 1.56 versus 0.80 +/- 0.44 mM). Half-maximal inhibition by Mg2+ occurred at threefold higher concentrations for malignant hyperthermia sarcoplasmic reticulum (0.23 +/- 0.02 versus 0.78 +/- 0.17 mM). The Ca2+-sensitivity curves for calcium-release by sarcoplasmic reticulum isolated from heterozygotes for the malignant hyperthermia-defect were indistinguishable from the averages of the curves for controls and malignant hyperthermia-homozygotes. Results of this study suggest that malignant hyperthermia is initiated due to a hypersensitive calcium-release mechanism which is inherited in an autosomal, codominant pattern and may be diagnosed using calcium-release sensitivity-tests on isolated sarcoplasmic reticulum. Images Fig. 1. PMID:3742367
Bozi, Luiz H M; Jannig, Paulo R; Rolim, Natale; Voltarelli, Vanessa A; Dourado, Paulo M M; Wisløff, Ulrik; Brum, Patricia C
2016-11-01
Cardiac endoplasmic reticulum (ER) stress through accumulation of misfolded proteins plays a pivotal role in cardiovascular diseases. In an attempt to reestablish ER homoeostasis, the unfolded protein response (UPR) is activated. However, if ER stress persists, sustained UPR activation leads to apoptosis. There is no available therapy for ER stress relief. Considering that aerobic exercise training (AET) attenuates oxidative stress, mitochondrial dysfunction and calcium imbalance, it may be a potential strategy to reestablish cardiac ER homoeostasis. We test the hypothesis that AET would attenuate impaired cardiac ER stress after myocardial infarction (MI). Wistar rats underwent to either MI or sham surgeries. Four weeks later, rats underwent to 8 weeks of moderate-intensity AET. Myocardial infarction rats displayed cardiac dysfunction and lung oedema, suggesting heart failure. Cardiac dysfunction in MI rats was paralleled by increased protein levels of UPR markers (GRP78, DERLIN-1 and CHOP), accumulation of misfolded and polyubiquitinated proteins, and reduced chymotrypsin-like proteasome activity. These results suggest an impaired cardiac protein quality control. Aerobic exercise training improved exercise capacity and cardiac function of MI animals. Interestingly, AET blunted MI-induced ER stress by reducing protein levels of UPR markers, and accumulation of both misfolded and polyubiquinated proteins, which was associated with restored proteasome activity. Taken together, our study provide evidence for AET attenuation of ER stress through the reestablishment of cardiac protein quality control, which contributes to better cardiac function in post-MI heart failure rats. These results reinforce the importance of AET as primary non-pharmacological therapy to cardiovascular disease. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Regulation of endoplasmic reticulum turnover by selective autophagy.
Khaminets, Aliaksandr; Heinrich, Theresa; Mari, Muriel; Grumati, Paolo; Huebner, Antje K; Akutsu, Masato; Liebmann, Lutz; Stolz, Alexandra; Nietzsche, Sandor; Koch, Nicole; Mauthe, Mario; Katona, Istvan; Qualmann, Britta; Weis, Joachim; Reggiori, Fulvio; Kurth, Ingo; Hübner, Christian A; Dikic, Ivan
2015-06-18
The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.
The shape of things to come: regulation of shape changes in endoplasmic reticulum.
Paiement, J; Bergeron, J
2001-01-01
Shape changes in the endoplasmic reticulum control fundamental cell processes including nuclear envelope assembly in mitotic cells, calcium homeostasis in cytoplasmic domains of secreting and motile cells, and membrane traffic in the early secretion apparatus between the endoplasmic reticulum and Golgi. Opposing forces of assembly (membrane fusion) and disassembly (membrane fragmentation) ultimately determine the size and shape of this organelle. This review examines some of the regulatory mechanisms involved in these processes and how they occur at specific sites or subcompartments of the endoplasmic reticulum.
Gating behavior of endoplasmic reticulum potassium channels of rat hepatocytes in diabetes.
Ghasemi, Maedeh; Khodaei, Naser; Salari, Sajjad; Eliassi, Afsaneh; Saghiri, Reza
2014-07-01
Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic channel in endoplasmic reticulum. Therefore, in this study, we examined and compared the activities of this channel in control and diabetic rats using single-channel recording techniques. Male Wistar rats were made diabetic for 2 weeks with a single dose injection of streptozotocin (45 mg/kg). Ion channel incorporation of rough endoplasmic reticulum of diabetic hepatocytes into the bilayer lipid membrane allowed the characterization of K+ channel. Ion channel incorporation of rough endoplasmic reticulum vesicles into the bilayer lipid revealed that the channel current-voltage (I-V) relation with a mean slope conductance of 520 ± 19 pS was unaffected in diabetes. Interestingly, the channel Po-voltage relation was significantly lower in diabetic rats at voltages above +30 mV. We concluded that the endoplasmic reticulum cationic channel is involved in diabetes. Also, this finding could be considered as a goal for further therapeutic plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lin-Mao; University of Chinese Academy of Sciences, Beijing; Lü, Shi-You
Abstracts: The Cytosolic Protein Response (CPR) in the cytosol and the Unfolded Protein Response (UPR) and ER-associated degradation (ERAD) in the endoplasmic reticulum are major pathways of the cellular proteostasis network. However, despite years of effort, how these protein quality control systems coordinated in vivo remains largely unknown, particularly in plants. In this study, the roles of two evolutionarily conserved ERAD pathways (DOA10 and HRD1) in heat stress response were investigated through reverse genetic approaches in Arabidopsis. Phenotypic analysis of the mutants showed that the two ERAD pathways additively play negative roles in heat tolerance, which was demonstrated by higher survivalmore » rate and lower electrolyte leakage in the loss of function mutants compared to the wild type plants. Importantly, gene expression analysis revealed that the mutant plants showed elevated transcriptional regulation of several downstream genes, including those encoding CPR and UPR marker genes, under both basal and heat stress conditions. Finally, multiple components of ERAD genes exhibited rapid response to increasing temperature. Taken together, our data not only unravels key insights into the crosstalk between different protein quality control processes, but also provides candidate genes to genetically improve plant heat tolerance in the future. - Highlights: • ERAD pathways cooperatively regulate plant thermotolerance. • ERAD pathways cooperatively regulate UPR and CPR. • ERAD components gene expression are upregulated by heat stress.« less
Itoi, Fumiaki; Asano, Yukiko; Shimizu, Masashi; Honnma, Hiroyuki; Murata, Yasutaka
2016-01-01
There have been no studies analyzing the effect of large aggregates of tubular smooth endoplasmic reticulum (aSERT) after conventional in vitro fertilization (cIVF). The aim of this study was to investigate whether aSERT can be identified after cIVF and the association between the embryological outcomes of oocytes in cycles with aSERT. This is a retrospective study examining embryological data from cIVF cycles showing the presence of aSERT in oocytes 5-6 h after cIVF. To evaluate embryo quality, cIVF cycles with at least one aSERT-metaphase II (MII) oocyte observed (cycles with aSERT) were compared to cycles with normal-MII oocytes (control cycles). Among the 4098 MII oocytes observed in 579 cycles, aSERT was detected in 100 MII oocytes in 51 cycles (8.8%). The fertilization rate, the rate of embryo development on day 3 and day 5-6 did not significantly differ between cycles with aSERT and control group. However, aSERT-MII oocytes had lower rates for both blastocysts and good quality blastocysts (p < 0.05). aSERT can be detected in the cytoplasm by removing the cumulus cell 5 h after cIVF. However, aSERT-MII oocytes do not affect other normal-MII oocytes in cycles with aSERT.
Gating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Ghasemi, Maedeh; Khodaei, Naser; Salari, Sajjad; Eliassi, Afsaneh; Saghiri, Reza
2014-01-01
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic channel in endoplasmic reticulum. Therefore, in this study, we examined and compared the activities of this channel in control and diabetic rats using single-channel recording techniques. Method: Male Wistar rats were made diabetic for 2 weeks with a single dose injection of streptozotocin (45 mg/kg). Ion channel incorporation of rough endoplasmic reticulum of diabetic hepatocytes into the bilayer lipid membrane allowed the characterization of K+ channel. Results: Ion channel incorporation of rough endoplasmic reticulum vesicles into the bilayer lipid revealed that the channel current-voltage (I-V) relation with a mean slope conductance of 520 ± 19 pS was unaffected in diabetes. Interestingly, the channel Po-voltage relation was significantly lower in diabetic rats at voltages above +30 mV. Conclusion: We concluded that the endoplasmic reticulum cationic channel is involved in diabetes. Also, this finding could be considered as a goal for further therapeutic plans. PMID:24842143
Liu, Y T; Li, S R; Wang, Z; Xiao, J Z
2016-09-13
Objective: To profile the gene expression changes associated with endoplasmic reticulum stress in INS-1-3 cells induced by thapsigargin (TG) and tunicamycin (TM). Methods: Normal cultured INS-1-3 cells were used as a control. TG and TM were used to induce endoplasmic reticulum stress in INS-1-3 cells. Digital gene expression profiling technique was used to detect differentially expressed gene. The changes of gene expression were detected by expression pattern clustering analysis, gene ontology (GO) function and pathway enrichment analysis. Real time polymerase chain reaction (RT-PCR) was used to verify the key changes of gene expression. Results: Compared with the control group, there were 57 (45 up-regulated, 12 down-regulated) and 135 (99 up-regulated, 36 down-regulated) differentially expressed genes in TG and TM group, respectively. GO function enrichment analyses indicated that the main enrichment was in the endoplasmic reticulum. In signaling pathway analysis, the identified pathways were related with endoplasmic reticulum stress, antigen processing and presentation, protein export, and most of all, the maturity onset diabetes of the young (MODY) pathway. Conclusion: Under the condition of endoplasmic reticulum stress, the related expression changes of transcriptional factors in MODY signaling pathway may be related with the impaired function in islet beta cells.
Sarco/Endoplasmic Reticulum Ca2+-ATPases (SERCA) Contribute to GPCR-Mediated Taste Perception
Iguchi, Naoko; Ohkuri, Tadahiro; Slack, Jay P.; Zhong, Ping; Huang, Liquan
2011-01-01
The sense of taste is important for providing animals with valuable information about the qualities of food, such as nutritional or harmful nature. Mammals, including humans, can recognize at least five primary taste qualities: sweet, umami (savory), bitter, sour, and salty. Recent studies have identified molecules and mechanisms underlying the initial steps of tastant-triggered molecular events in taste bud cells, particularly the requirement of increased cytosolic free Ca2+ concentration ([Ca2+]c) for normal taste signal transduction and transmission. Little, however, is known about the mechanisms controlling the removal of elevated [Ca2+]c from the cytosol of taste receptor cells (TRCs) and how the disruption of these mechanisms affects taste perception. To investigate the molecular mechanism of Ca2+ clearance in TRCs, we sought the molecules involved in [Ca2+]c regulation using a single-taste-cell transcriptome approach. We found that Serca3, a member of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) family that sequesters cytosolic Ca2+ into endoplasmic reticulum, is exclusively expressed in sweet/umami/bitter TRCs, which rely on intracellular Ca2+ release for signaling. Serca3-knockout (KO) mice displayed significantly increased aversive behavioral responses and greater gustatory nerve responses to bitter taste substances but not to sweet or umami taste substances. Further studies showed that Serca2 was mainly expressed in the T1R3-expressing sweet and umami TRCs, suggesting that the loss of function of Serca3 was possibly compensated by Serca2 in these TRCs in the mutant mice. Our data demonstrate that the SERCA family members play an important role in the Ca2+ clearance in TRCs and that mutation of these proteins may alter bitter and perhaps sweet and umami taste perception. PMID:21829714
Acosta-Sampson, Ligia; Döring, Kristina; Lin, Yuping; Yu, Vivian Y; Bukau, Bernd; Kramer, Günter; Cate, Jamie H D
2017-12-01
Targeting of most integral membrane proteins to the endoplasmic reticulum is controlled by the signal recognition particle, which recognizes a hydrophobic signal sequence near the protein N terminus. Proper folding of these proteins is monitored by the unfolded protein response and involves protein degradation pathways to ensure quality control. Here, we identify a new pathway for quality control of major facilitator superfamily transporters that occurs before the first transmembrane helix, the signal sequence recognized by the signal recognition particle, is made by the ribosome. Increased rates of translation elongation of the N-terminal sequence of these integral membrane proteins can divert the nascent protein chains to the ribosome-associated complex and stress-seventy subfamily B chaperones. We also show that quality control of integral membrane proteins by ribosome-associated complex-stress-seventy subfamily B couples translation rate to the unfolded protein response, which has implications for understanding mechanisms underlying human disease and protein production in biotechnology. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Kukushkin, Nikolay V; Alonzi, Dominic S; Dwek, Raymond A; Butters, Terry D
2011-08-15
During quality control in the ER (endoplasmic reticulum), nascent glycoproteins are deglucosylated by ER glucosidases I and II. In the post-ER compartments, glycoprotein endo-α-mannosidase provides an alternative route for deglucosylation. Previous evidence suggests that endomannosidase non-selectively deglucosylates glycoproteins that escape quality control in the ER, facilitating secretion of aberrantly folded as well as normal glycoproteins. In the present study, we employed FOS (free oligosaccharides) released from degrading glycoproteins as biomarkers of ERAD (ER-associated degradation), allowing us to gain a global rather than single protein-centred view of ERAD. Glucosidase inhibition was used to discriminate between glucosidase- and endomannosidase-mediated ERAD pathways. Endomannosidase expression was manipulated in CHO (Chinese-hamster ovary)-K1 cells, naturally lacking a functional version of the enzyme, and HEK (human embryonic kidney)-293T cells. Endomannosidase was shown to decrease the levels of total FOS, suggesting decreased rates of ERAD. However, following pharmacological inhibition of ER glucosidases I and II, endomannosidase expression resulted in a partial switch between glucosylated FOS, released from ER-confined glycoproteins, to deglucosylated FOS, released from endomannosidase-processed glycoproteins transported from the Golgi/ERGIC (ER/Golgi intermediate compartment) to the ER. Using this approach, we have identified a previously unknown pathway of glycoprotein flow, undetectable by the commonly employed methods, in which secretory cargo is targeted back to the ER after being processed by endomannosidase. © The Authors Journal compilation © 2011 Biochemical Society
Yu, Y; Zhou, C L; Yu, T T; Han, X J; Shi, H Y; Wang, H Z; Shen, J J; He, J
2017-06-25
Objective: To evaluate the effect of endoplasmic reticulum stress in trophocytes, in patients with intrahepatic cholestasis of pregnancy (ICP). Methods: Sixty-one pregnant women who were hospitalized in Women's Hospital, School of Medicine, Zhejiang University from January to December 2015 were recruited. Thirty-one women who were diagnosed as ICP were defined as the ICP group and 30 healthy pregnant women were defined as the control group. The localization and expression intensity of glucose regulated protein 78 (GRP-78) in placental tissues were detected by immunohistochemistry technique. Electronic microscope was used to observe ultra-microstructure change of the endoplasmic reticulum in trophocytes and cell line Swan71. Reverse transcription (RT)-PCR and western blot were used to investigate the expression of GRP-78 mRNA and protein in Swan 71 cell. Results: (1) GRP-78 protein was mainly expressed in the cytoplasm of cytotrophoblasts and syncytiotrophoblasts. The protein expression of GRP-78 in placentas of the ICP group (13.2±2.4) was significantly higher than that in the control group (7.8±1.3, P< 0.01). (2) The volume of endoplasmie reticulum did not increase and the microvilli developed well, with no swelling and no expansion of endoplasmic reticulum in the control group.In the ICP group, microvilli injury, endoplasmic reticulum edema were found; the volume of endoplasmic reticulum increased, with dilation, vacuolation and significant degranulation. After treated with 100 μmol/L cholyglycine for 24 hours, universal dilatation of the endoplasmic reticulum were seen in the Swan71 cells. (3) In Swan71 cells, cholylglycine displayed a concentration-dependent up-regulation on the expression of GRP-78. The expressions of GRP-78 mRNA in 0, 25, 50, 100 μmol/L cholylglycine experimental group were 1.01±0.17, 2.17±0.16, 5.47±0.36, 5.65±0.82, respectively. The expression of GRP-78 protein in 0, 25, 50, 100 μmol/L cholylglycine experimental group were 1.01±0.04, 1.17±0.15, 1.33±0.13, 1.73±0.13, respectively. The expression of GRP-78 mRNA and protein in 100 and 50 μmol/L cholylglycine experimental group were significantly higher than 0 μmol/L (all P< 0.01). Conclusion: The obvious expansion of endoplasmic reticulum and the increased expression of GRP-78 in trophocytes indicated that endoplasmic reticulum stress of trophocytes may be involved in the pathogenesis of ICP.
Vecchi, Lara; Petris, Gianluca; Bestagno, Marco; Burrone, Oscar R.
2012-01-01
The endoplasmic reticulum-associated degradation (ERAD) is a cellular quality control mechanism to dispose of misfolded proteins of the secretory pathway via proteasomal degradation. SEL1L is an ER-resident protein that participates in identification of misfolded molecules as ERAD substrates, therefore inducing their ER-to-cytosol retrotranslocation and degradation. We have developed a novel class of fusion proteins, termed degradins, composed of a fragment of SEL1L fused to a target-specific binding moiety located on the luminal side of the ER. The target-binding moiety can be a ligand of the target or derived from specific mAbs. Here, we describe the ability of degradins with two different recognition moieties to promote degradation of a model target. Degradins recognize the target protein within the ER both in secretory and membrane-bound forms, inducing their degradation following retrotranslocation to the cytosol. Thus, degradins represent an effective technique to knock-out proteins within the secretory pathway with high specificity. PMID:22523070
Satoh, Tadashi; Toshimori, Takayasu; Noda, Masanori; Uchiyama, Susumu; Kato, Koichi
2016-11-01
The glycoside hydrolase family 31 (GH31) α-glucosidases play vital roles in catabolic and regulated degradation, including the α-subunit of glucosidase II (GIIα), which catalyzes trimming of the terminal glucose residues of N-glycan in glycoprotein processing coupled with quality control in the endoplasmic reticulum (ER). Among the known GH31 enzymes, only GIIα functions with its binding partner, regulatory β-subunit (GIIβ), which harbors a lectin domain for substrate recognition. Although the structural data have been reported for GIIα and the GIIβ lectin domain, the interaction mode between GIIα and GIIβ remains unknown. Here, we determined the structure of a complex formed between GIIα and the GIIα-binding domain of GIIβ, thereby providing a structural basis underlying the functional extension of this unique GH31 enzyme. © 2016 The Protein Society.
Endoplasmic Reticulum-Plasma Membrane Contacts Regulate Cellular Excitability.
Dickson, Eamonn J
2017-01-01
Cells that have intrinsic electrical excitability utilize changes in membrane potential to communicate with neighboring cells and initiate cellular cascades. Excitable cells like neurons and myocytes have evolved highly specialized subcellular architectures to translate these electrical signals into cellular events. One such structural specialization is sarco-/endoplasmic reticulum-plasma membrane contact sites. These membrane contact sites are positioned by specific membrane-membrane tethering proteins and contain an ever-expanding list of additional proteins that organize information transfer across the junctional space (~ 15-25 nm distance) to shape membrane identity and control cellular excitability. In this chapter we discuss how contacts between the sarco-/endoplasmic reticulum and plasma membrane are essential for regulated excitation-contraction coupling in striated muscle and control of lipid-dependent ion channels.
Wise, Randi; Duhachek-Muggy, Sara; Qi, Yue; Zolkiewski, Michal; Zolkiewska, Anna
2016-06-01
Metastatic breast cancer cells are exposed to stress of detachment from the extracellular matrix (ECM). Cultured breast cancer cells that survive this stress and are capable of anchorage-independent proliferation form mammospheres. The purpose of this study was to explore a link between mammosphere growth, ECM gene expression, and the protein quality control system in the endoplasmic reticulum (ER). We compared the mRNA and protein levels of ER folding factors in SUM159PT and MCF10DCIS.com breast cancer cells grown as mammospheres versus adherent conditions. Publicly available gene expression data for mammospheres formed by primary breast cancer cells and for circulating tumor cells (CTCs) were analyzed to assess the status of ECM/ER folding factor genes in clinically relevant samples. Knock-down of selected protein disulfide isomerase (PDI) family members was performed to examine their roles in SUM159PT mammosphere growth. We found that cells grown as mammospheres had elevated expression of ECM genes and ER folding quality control genes. CTC gene expression data for an index patient indicated that upregulation of ECM and ER folding factor genes occurred at the time of acquired therapy resistance and disease progression. Knock-down of PDI, ERp44, or ERp57, three members of the PDI family with elevated protein levels in mammospheres, in SUM159PT cells partially inhibited the mammosphere growth. Thus, breast cancer cell survival and growth under detachment conditions require enhanced assistance of the ER protein folding machinery. Targeting ER folding factors, in particular members of the PDI family, may improve the therapeutic outcomes in metastatic breast cancer.
The Role of p58IPK in Protecting the Stressed Endoplasmic Reticulum
Rutkowski, D. Thomas; Kang, Sang-Wook; Goodman, Alan G.; Garrison, Jennifer L.; Taunton, Jack; Katze, Michael G.
2007-01-01
The preemptive quality control (pQC) pathway protects cells from acute endoplasmic reticulum (ER) stress by attenuating translocation of nascent proteins despite their targeting to translocons at the ER membrane. Here, we investigate the hypothesis that the DnaJ protein p58IPK plays an essential role in this process via HSP70 recruitment to the cytosolic face of translocons for extraction of translocationally attenuated nascent chains. Our analyses revealed that the heightened stress sensitivity of p58−/− cells was not due to an impairment of the pQC pathway or elevated ER substrate burden during acute stress. Instead, the lesion was in the protein processing capacity of the ER lumen, where p58IPK was found to normally reside in association with BiP. ER lumenal p58IPK could be coimmunoprecipitated with a newly synthesized secretory protein in vitro and stimulated protein maturation upon overexpression in cells. These results identify a previously unanticipated location for p58IPK in the ER lumen where its putative function as a cochaperone explains the stress-sensitivity phenotype of knockout cells and mice. PMID:17567950
Guerriero, Christopher J.; Brodsky, Jeffrey L.
2014-01-01
Protein folding is a complex, error-prone process that often results in an irreparable protein by-product. These by-products can be recognized by cellular quality control machineries and targeted for proteasome-dependent degradation. The folding of proteins in the secretory pathway adds another layer to the protein folding “problem,” as the endoplasmic reticulum maintains a unique chemical environment within the cell. In fact, a growing number of diseases are attributed to defects in secretory protein folding, and many of these by-products are targeted for a process known as endoplasmic reticulum-associated degradation (ERAD). Since its discovery, research on the mechanisms underlying the ERAD pathway has provided new insights into how ERAD contributes to human health during both normal and diseases states. Links between ERAD and disease are evidenced from the loss of protein function as a result of degradation, chronic cellular stress when ERAD fails to keep up with misfolded protein production, and the ability of some pathogens to coopt the ERAD pathway. The growing number of ERAD substrates has also illuminated the differences in the machineries used to recognize and degrade a vast array of potential clients for this pathway. Despite all that is known about ERAD, many questions remain, and new paradigms will likely emerge. Clearly, the key to successful disease treatment lies within defining the molecular details of the ERAD pathway and in understanding how this conserved pathway selects and degrades an innumerable cast of substrates. PMID:22535891
Protein quality control in the early secretory pathway
Anelli, Tiziana; Sitia, Roberto
2008-01-01
Eukaryotic cells are able to discriminate between native and non-native polypeptides, selectively transporting the former to their final destinations. Secretory proteins are scrutinized at the endoplasmic reticulum (ER)–Golgi interface. Recent findings reveal novel features of the underlying molecular mechanisms, with several chaperone networks cooperating in assisting the maturation of complex proteins and being selectively induced to match changing synthetic demands. ‘Public' and ‘private' chaperones, some of which enriched in specializes subregions, operate for most or selected substrates, respectively. Moreover, sequential checkpoints are distributed along the early secretory pathway, allowing efficiency and fidelity in protein secretion. PMID:18216874
Theesfeld, Chandra L.; Hampton, Randolph Y.
2013-01-01
Insulin-induced gene proteins (INSIGs) function in control of cellular cholesterol. Mammalian INSIGs exert control by directly interacting with proteins containing sterol-sensing domains (SSDs) when sterol levels are elevated. Mammalian 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase (HMGR) undergoes sterol-dependent, endoplasmic-reticulum (ER)-associated degradation (ERAD) that is mediated by INSIG interaction with the HMGR SSD. The yeast HMGR isozyme Hmg2 also undergoes feedback-regulated ERAD in response to the early pathway-derived isoprene gernanylgeranyl pyrophosphate (GGPP). Hmg2 has an SSD, and its degradation is controlled by the INSIG homologue Nsg1. However, yeast Nsg1 promotes Hmg2 stabilization by inhibiting GGPP-stimulated ERAD. We have proposed that the seemingly disparate INSIG functions can be unified by viewing INSIGs as sterol-dependent chaperones of SSD clients. Accordingly, we tested the role of sterols in the Nsg1 regulation of Hmg2. We found that both Nsg1-mediated stabilization of Hmg2 and the Nsg1-Hmg2 interaction required the early sterol lanosterol. Lowering lanosterol in the cell allowed GGPP-stimulated Hmg2 ERAD. Thus, Hmg2-regulated degradation is controlled by a two-signal logic; GGPP promotes degradation, and lanosterol inhibits degradation. These data reveal that the sterol dependence of INSIG-client interaction has been preserved for over 1 billion years. We propose that the INSIGs are a class of sterol-dependent chaperones that bind to SSD clients, thus harnessing ER quality control in the homeostasis of sterols. PMID:23306196
Donnelly, Bridget F.; Needham, Patrick G.; Snyder, Avin C.; Roy, Ankita; Khadem, Shaheen; Brodsky, Jeffrey L.; Subramanya, Arohan R.
2013-01-01
The thiazide-sensitive NaCl cotransporter (NCC) is the primary mediator of salt reabsorption in the distal convoluted tubule and is a key determinant of the blood pressure set point. Given its complex topology, NCC is inefficiently processed and prone to endoplasmic reticulum (ER)-associated degradation (ERAD), although the mechanisms governing this process remain obscure. Here, we identify factors that impact the ER quality control of NCC. Analyses of NCC immunoprecipitates revealed that the cotransporter formed complexes with the core chaperones Hsp90, Hsp70, and Hsp40. Disruption of Hsp90 function accelerated NCC degradation, suggesting that Hsp90 promotes NCC folding. In addition, two cochaperones, the C terminus of Hsp70-interacting protein (CHIP) and the Hsp70/Hsp90 organizer protein, were associated with NCC. Although CHIP, an E3 ubiquitin ligase, promoted NCC ubiquitination and ERAD, the Hsp70/Hsp90 organizer protein stabilized NCC turnover, indicating that these two proteins differentially remodel the core chaperone systems to favor cotransporter degradation and biogenesis, respectively. Adjusting the folding environment in mammalian cells via reduced temperature enhanced NCC biosynthetic trafficking, increased Hsp90-NCC interaction, and diminished binding to Hsp70. In contrast, cotransporters harboring disease-causing mutations that impair NCC biogenesis failed to escape ERAD as efficiently as the wild type protein when cells were incubated at a lower temperature. Instead, these mutants interacted more strongly with Hsp70, Hsp40, and CHIP, consistent with a role for the Hsp70/Hsp40 system in selecting misfolded NCC for ERAD. Collectively, these observations indicate that Hsp70 and Hsp90 comprise two functionally distinct ER quality control checkpoints that sequentially monitor NCC biogenesis. PMID:23482560
Needham, Patrick G.; Mikoluk, Kasia; Dhakarwal, Pradeep; Khadem, Shaheen; Snyder, Avin C.; Subramanya, Arohan R.; Brodsky, Jeffrey L.
2011-01-01
The thiazide-sensitive NaCl cotransporter (NCC, SLC12A3) mediates salt reabsorption in the distal nephron of the kidney and is the target of thiazide diuretics, which are commonly prescribed to treat hypertension. Mutations in NCC also give rise to Gitelman syndrome, a hereditary salt-wasting disorder thought in most cases to arise from impaired NCC biogenesis through enhanced endoplasmic reticulum-associated degradation (ERAD). Because the machinery that mediates NCC quality control is completely undefined, we employed yeast as a model heterologous expression system to identify factors involved in NCC degradation. We confirmed that NCC was a bona fide ERAD substrate in yeast, as the majority of NCC polypeptide was integrated into ER membranes, and its turnover rate was sensitive to proteasome inhibition. NCC degradation was primarily dependent on the ER membrane-associated E3 ubiquitin ligase Hrd1. Whereas several ER luminal chaperones were dispensable for NCC ERAD, NCC ubiquitination and degradation required the activity of Ssa1, a cytoplasmic Hsp70 chaperone. Compatible findings were observed when NCC was expressed in mammalian kidney cells, as the cotransporter was polyubiquitinated and degraded by the proteasome, and mammalian cytoplasmic Hsp70 (Hsp72) coexpression stimulated the degradation of newly synthesized NCC. Hsp70 also preferentially associated with the ER-localized NCC glycosylated species, indicating that cytoplasmic Hsp70 plays a critical role in selecting immature forms of NCC for ERAD. Together, these results provide the first survey of components involved in the ERAD of a mammalian SLC12 cation chloride cotransporter and provide a framework for future studies on NCC ER quality control. PMID:22027832
Endoplasmic reticulum stress and proteasomal system in amyotrophic lateral sclerosis.
Karademir, Betul; Corek, Ceyda; Ozer, Nesrin Kartal
2015-11-01
Protein processing including folding, unfolding and degradation is involved in the mechanisms of many diseases. Unfolded protein response and/or endoplasmic reticulum stress are accepted to be the first steps which should be completed via protein degradation. In this direction, proteasomal system and autophagy play important role as the degradation pathways and controlled via complex mechanisms. Amyotrophic lateral sclerosis is a multifactorial neurodegenerative disease which is also known as the most catastrophic one. Mutation of many different genes are involved in the pathogenesis such as superoxide dismutase 1, chromosome 9 open reading frame 72 and ubiquilin 2. These genes are mainly related to the antioxidant defense systems, endoplasmic reticulum stress related proteins and also protein aggregation, degradation pathways and therefore mutation of these genes cause related disorders.This review focused on the role of protein processing via endoplasmic reticulum and proteasomal system in amyotrophic lateral sclerosis which are the main players in the pathology. In this direction, dysfunction of endoplasmic reticulum associated degradation and related cell death mechanisms that are autophagy/apoptosis have been detailed. Copyright © 2015 Elsevier Inc. All rights reserved.
Carlisle, Rachel E; Werner, Kaitlyn E; Yum, Victoria; Lu, Chao; Tat, Victor; Memon, Muzammil; No, Yejin; Ask, Kjetil; Dickhout, Jeffrey G
2016-08-01
Our purpose was to determine if endoplasmic reticulum stress inhibition lowers blood pressure (BP) in hypertension by correcting vascular dysfunction. The spontaneously hypertensive rat (SHR) was used as a model of human essential hypertension with its normotensive control, the Wistar Kyoto rat. Animals were subjected to endoplasmic reticulum stress inhibition with 4-phenylbutyric acid (4-PBA; 1 g/kg per day, orally) for 5 weeks from 12 weeks of age. BP was measured weekly noninvasively and at endpoint with carotid arterial cannulation. Small mesenteric arteries were removed for vascular studies. Function was assessed with a Mulvany-Halpern style myograph, and structure was assessed by measurement of medial-to-lumen ratio in perfusion fixed vessels as well as three-dimensional confocal reconstruction of vessel wall components. Endoplasmic reticulum stress was assessed by quantitative real time-PCR and western blotting; oxidative stress was assessed by 3-nitrotyrosine and dihydroethidium staining. 4-PBA significantly lowered BP in SHR (vehicle 206.1 ± 4.3 vs. 4-PBA 178.9 ± 3.1, systolic) but not Wistar Kyoto. 4-PBA diminished contractility and augmented endothelial-dependent vasodilation in SHR small mesenteric arteries, as well as reducing media-to-lumen ratio. 4-PBA significantly reduced endoplasmic reticulum stress in SHR resistance vessels. Normotensive resistance vessels, treated with the endoplasmic reticulum stress-inducing agent, tunicamycin, show decreased endothelial-dependent vasodilation; this was improved with 4-PBA treatment. 3-Nitrotyrosine and dihydroethidium staining indicated that endoplasmic reticulum stress leads to reactive oxygen species generation resolvable by 4-PBA treatment. Endoplasmic reticulum stress caused endothelial-mediated vascular dysfunction contributing to elevated BP in the SHR model of human essential hypertension.
Hüttner, Silvia; Veit, Christiane; Schoberer, Jennifer; Grass, Josephine; Strasser, Richard
2012-05-01
In the endoplasmic reticulum, immature polypeptides coincide with terminally misfolded proteins. Consequently, cells need a well-balanced quality control system, which decides about the fate of individual proteins and maintains protein homeostasis. Misfolded and unassembled proteins are sent for destruction via the endoplasmic reticulum-associated degradation (ERAD) machinery to prevent the accumulation of potentially toxic protein aggregates. Here, we report the identification of Arabidopsis thaliana OS9 as a component of the plant ERAD pathway. OS9 is an ER-resident glycoprotein containing a mannose-6-phosphate receptor homology domain, which is also found in yeast and mammalian lectins involved in ERAD. OS9 fused to the C-terminal domain of YOS9 can complement the ERAD defect of the corresponding yeast Δyos9 mutant. An A. thaliana OS9 loss-of-function line suppresses the severe growth phenotype of the bri1-5 and bri1-9 mutant plants, which harbour mutated forms of the brassinosteroid receptor BRI1. Co-immunoprecipitation studies demonstrated that OS9 associates with Arabidopsis SEL1L/HRD3, which is part of the plant ERAD complex and with the ERAD substrates BRI1-5 and BRI1-9, but only the binding to BRI1-5 occurs in a glycan-dependent way. OS9-deficiency results in activation of the unfolded protein response and reduces salt tolerance, highlighting the role of OS9 during ER stress. We propose that OS9 is a component of the plant ERAD machinery and may act specifically in the glycoprotein degradation pathway.
Tributyltin-induced endoplasmic reticulum stress and its Ca{sup 2+}-mediated mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isomura, Midori; Kotake, Yaichiro, E-mail: yaichiro@hiroshima-u.ac.jp; Masuda, Kyoichi
2013-10-01
Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca{sup 2+} signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca{sup 2+} homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers suchmore » as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca{sup 2+} depletion, and to test this idea, we examined the effect of TBT on intracellular Ca{sup 2+} concentration using fura-2 AM, a Ca{sup 2+} fluorescent probe. TBT increased intracellular Ca{sup 2+} concentration in a TBT-concentration-dependent manner, and Ca{sup 2+} increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca{sup 2+} concentration by releasing Ca{sup 2+} from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca{sup 2+} release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca{sup 2+}.« less
Penfluridol induces endoplasmic reticulum stress leading to autophagy in pancreatic cancer.
Ranjan, Alok; German, Nadezhda; Mikelis, Constantinos; Srivenugopal, Kalkunte; Srivastava, Sanjay K
2017-06-01
Pancreatic cancer is one of the most aggressive and difficult to treat cancers. Experimental and clinical evidence suggests that high basal state autophagy in pancreatic tumors could induce resistance to chemotherapy. Recently, we have demonstrated that penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis both in vitro and in vivo; however, the mechanism of autophagy induction by penfluridol was not clear. Several studies have established that endoplasmic reticulum stress could lead to autophagy and inhibit tumor progression. In this study, we demonstrated that penfluridol induced endoplasmic reticulum stress in BxPC-3, AsPC-1, and Panc-1 pancreatic cancer cell lines as indicated by upregulation of endoplasmic reticulum stress markers such as binding protein (BIP), C/EBP homologous protein (CHOP) and inositol requiring 1α (IRE1α) after treatment with penfluridol in a concentration-dependent manner. Inhibiting endoplasmic reticulum stress by pretreatment with pharmacological inhibitors such as sodium phenylbutyrate and mithramycin or by silencing CHOP using CHOP small interfering RNA, blocked penfluridol-induced autophagy. These results clearly indicate that penfluridol-induced endoplasmic reticulum stress lead to autophagy in our model. Western blot analysis of subcutaneously implanted AsPC-1 and BxPC-3 tumors as well as orthotopically implanted Panc-1 tumors demonstrated upregulation of BIP, CHOP, and IRE1α expression in the tumor lysates from penfluridol-treated mice as compared to tumors from control mice. Altogether, our study establishes that penfluridol-induced endoplasmic reticulum stress leads to autophagy resulting in reduced pancreatic tumor growth. Our study opens a new therapeutic target for advanced chemotherapies against pancreatic cancer.
Medraño-Fernandez, Iria; Fagioli, Claudio; Mezghrani, Alexandre; Otsu, Mieko; Sitia, Roberto
2014-04-01
To maintain proteostasis in the endoplasmic reticulum (ER), terminally misfolded secretory proteins must be recognized, partially unfolded, and dislocated to the cytosol for proteasomal destruction, in a complex process called ER-associated degradation (ERAD). Dislocation implies reduction of inter-chain disulphide bonds. When in its reduced form, protein disulphide isomerase (PDI) can act not only as a reductase but also as an unfoldase, preparing substrates for dislocation. PDI oxidation by Ero1 favours substrate release and transport across the ER membrane. Here we addressed the redox dependency of ERAD and found that DTT stimulates the dislocation of proteins with DTT-resistant disulphide bonds (i.e., orphan Ig-μ chains) but stabilizes a ribophorin mutant (Ri332) devoid of them. DTT promotes the association of Ri332, but not of Ig-µ, with PDI. This discrepancy may suggest that disulphide bonds in cargo proteins can be utilized to oxidize PDI, hence facilitating substrate detachment and degradation also in the absence of Ero1. Accordingly, Ero1 silencing retards Ri332 degradation, but has little if any effect on Ig-µ. Thus, some disulphides can increase the stability and simultaneously favour quality control of secretory proteins.
The endoplasmic reticulum in plant immunity and cell death
Eichmann, Ruth; Schäfer, Patrick
2012-01-01
The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells and a major production site of proteins destined for vacuoles, the plasma membrane, or apoplast in plants. At the ER, these secreted proteins undergo multiple processing steps, which are supervised and conducted by the ER quality control system. Notably, processing of secreted proteins can considerably elevate under stress conditions and exceed ER folding capacities. The resulting accumulation of unfolded proteins is defined as ER stress. The efficiency of cells to re-establish proper ER function is crucial for stress adaptation. Besides delivering proteins directly antagonizing and resolving stress conditions, the ER monitors synthesis of immune receptors. This indicates the significance of the ER for the establishment and function of the plant immune system. Recent studies point out the fragility of the entire system and highlight the ER as initiator of programed cell death (PCD) in plants as was reported for vertebrates. This review summarizes current knowledge on the impact of the ER on immune and PCD signaling. Understanding the integration of stress signals by the ER bears a considerable potential to optimize development and to enhance stress resistance of plants. PMID:22936941
The endoplasmic reticulum in plant immunity and cell death.
Eichmann, Ruth; Schäfer, Patrick
2012-01-01
The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells and a major production site of proteins destined for vacuoles, the plasma membrane, or apoplast in plants. At the ER, these secreted proteins undergo multiple processing steps, which are supervised and conducted by the ER quality control system. Notably, processing of secreted proteins can considerably elevate under stress conditions and exceed ER folding capacities. The resulting accumulation of unfolded proteins is defined as ER stress. The efficiency of cells to re-establish proper ER function is crucial for stress adaptation. Besides delivering proteins directly antagonizing and resolving stress conditions, the ER monitors synthesis of immune receptors. This indicates the significance of the ER for the establishment and function of the plant immune system. Recent studies point out the fragility of the entire system and highlight the ER as initiator of programed cell death (PCD) in plants as was reported for vertebrates. This review summarizes current knowledge on the impact of the ER on immune and PCD signaling. Understanding the integration of stress signals by the ER bears a considerable potential to optimize development and to enhance stress resistance of plants.
Membrane glycerolipid equilibrium under endoplasmic reticulum stress in Arabidopsis thaliana.
Yu, Chao-Yuan; Nguyen, Van Cam; Chuang, Ling; Kanehara, Kazue
2018-06-02
Endoplasmic reticulum (ER) is an indispensable organelle for secretory protein synthesis as well as metabolism of phospholipids and their derivatives in eukaryotic cells. Various external and internal factors may cause an accumulation of aberrant proteins in the ER, which causes ER stress and activates cellular ER stress responses to cope with the stress. In animal research, molecular mechanisms for protein quality control upon ER stress are well documented; however, how cells maintain lipid homeostasis under ER stress is an emerging issue. The ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE), two major phospholipid classes, is important under ER stress in animal cells. However, in seed plants, no study has reported on the changes in membrane lipid content under ER stress, although a number of physiologically important environmental stresses, such as heat and salinity, induce ER stress. Here, we investigated membrane glycerolipid metabolism under ER stress in Arabidopsis. ER stress transcriptionally affected PC and PE biosynthesis pathways differentially, with no significant changes in membrane glycerolipid content. Our results suggest that higher plants maintain membrane lipid equilibrium during active transcription of phospholipid biosynthetic genes under ER stress. Copyright © 2018 Elsevier Inc. All rights reserved.
Li, Qingliang; Wei, Hai; Liu, Lijing; Yang, Xiaoyuan; Zhang, Xiansheng; Xie, Qi
2017-07-01
Abiotic stresses often disrupt protein folding and induce endoplasmic reticulum (ER) stress. There is a sophisticated ER quality control (ERQC) system to mitigate the effects of malfunctioning proteins and maintain ER homeostasis. The accumulation of misfolded proteins in the ER activates the unfolded protein response (UPR) to enhance ER protein folding and the degradation of misfolded proteins mediate by ER-associated degradation (ERAD). That ERQC reduces abiotic stress damage has been well studied in mammals and yeast. However, in plants, both ERAD and UPR have been studied separately and found to be critical for plant abiotic stress tolerance. In this study, we discovered that UPR-associated transcription factors AtbZIP17, AtbZIP28 and AtbZIP60 responded to tunicamycin (TM) and NaCl induced ER stress and subsequently enhanced Arabidopsis thaliana abiotic stress tolerance. They regulated the expression level of ER chaperones and the HRD1-complex components. Moreover, overexpression of AtbZIP17, AtbZIP28 and AtbZIP60 could restore stress tolerance via ERAD in the HRD1-complex mutant hrd3a-2, which suggested that UPR and ERAD have an interactive mechanism in Arabidopsis. © 2017 Institute of Botany, Chinese Academy of Sciences.
Tönhardt, H; Wehrberger, K; Schülke, B
1976-01-01
The metabolic activity of testosterone biosynthesis in fractions of the unstriated endoplasmatic reticulum of testicular tissue in animals in puberty living on corn gluten was about 20 per cent below that in animals that were fed corn gluten plus supplemented amino acids. Such lowered metabolic activity was recordable even from adult animals for another 30 days despite change of feed to high-quality proteins. The conversion rate of progesterone in testostrone still was lowered by some ten per cent. If change of enzyme activity in testosterone biosynthesis was caused by feeding different protein qualities, such variation could not be normalised within short time. Testosterone biosynthesis during postnatal development of rat was of two-phase nature even in the presence of temporary deficit due to low-quality feed protein. A regulation mechanism is assumed to exist and to enable completion of sexual maturity even on the basis of low-quality feed proteins. The metabolic activity at the time of qualitative transformation of the A/T ratio was significantly reduced, and this resulted in delayed occurrence of spermatogenesis as well as in retardation of body and testicular weight development.
Hayashi, Shimpei; Wakasa, Yuhya; Takaiwa, Fumio
2013-01-01
The membrane transport system is built on the proper functioning of the endoplasmic reticulum (ER). The accumulation of unfolded proteins in the ER lumen (ER stress) disrupts ER homeostasis and disturbs the transport system. In response to ER stress, eukaryotic cells activate intracellular signaling (named the unfolded protein response, UPR), which contributes to the quality control of secretory proteins. On the other hand, the deleterious effects of UPR on plant health and growth characteristics have frequently been overlooked, due to limited information on this mechanism. However, recent studies have shed light on the molecular mechanism of plant UPR, and a number of its unique characteristics have been elucidated. This study briefly reviews the progress of understanding what is happening in plants under ER stress conditions. PMID:23629671
Heme oxygenase-1 regulates mitochondrial quality control in the heart
Hull, Travis D.; Boddu, Ravindra; Guo, Lingling; Tisher, Cornelia C.; Traylor, Amie M.; Patel, Bindiya; Joseph, Reny; Prabhu, Sumanth D.; Suliman, Hagir B.; Piantadosi, Claude A.; George, James F.
2016-01-01
The cardioprotective inducible enzyme heme oxygenase-1 (HO-1) degrades prooxidant heme into equimolar quantities of carbon monoxide, biliverdin, and iron. We hypothesized that HO-1 mediates cardiac protection, at least in part, by regulating mitochondrial quality control. We treated WT and HO-1 transgenic mice with the known mitochondrial toxin, doxorubicin (DOX). Relative to WT mice, mice globally overexpressing human HO-1 were protected from DOX-induced dilated cardiomyopathy, cardiac cytoarchitectural derangement, and infiltration of CD11b+ mononuclear phagocytes. Cardiac-specific overexpression of HO-1 ameliorated DOX-mediated dilation of the sarcoplasmic reticulum as well as mitochondrial disorganization in the form of mitochondrial fragmentation and increased numbers of damaged mitochondria in autophagic vacuoles. HO-1 overexpression promotes mitochondrial biogenesis by upregulating protein expression of NRF1, PGC1α, and TFAM, which was inhibited in WT animals treated with DOX. Concomitantly, HO-1 overexpression inhibited the upregulation of the mitochondrial fission mediator Fis1 and resulted in increased expression of the fusion mediators, Mfn1 and Mfn2. It also prevented dynamic changes in the levels of key mediators of the mitophagy pathway, PINK1 and parkin. Therefore, these findings suggest that HO-1 has a novel role in protecting the heart from oxidative injury by regulating mitochondrial quality control. PMID:27110594
Bap31 enhances the ER export and quality control of human class I MHC molecules
Ladasky, John J.; Boyle, Sarah; Seth, Malini; Li, Hewang; Pentcheva, Tsvetelina; Abe, Fumiyoshi; Steinberg, Steven J.; Edidin, Michael
2006-01-01
The assembly of class I MHC molecules and their export from the endoplasmic reticulum is governed by chaperones and accessory proteins. We present evidence that the putative cargo receptor protein Bap31 participates in the transport and the quality control of human class I molecules. Transfection of the human adenocarcinoma cell line HeLa with YFP-Bap31 chimeras increased surface levels of class I in a dose-dependent manner, by as much as 3.7-fold. The increase in surface class I resulted from an increase in the rate of export of newly-synthesized class I molecules to the cell surface and from an increase in the stability of the exported molecules. We propose that Bap31 performs quality control on class I molecules in two distinct phases: first, by exporting peptide-loaded class I molecules to the ERGIC and second, by retrieving class I molecules which have lost peptides in the acidic post-ER environment. This function of Bap31 is conditional or redundant, since we find that Bap31 deficiency does not reduce surface class I levels. Overexpression of the Bap31 homolog, Bap29, decreases surface class levels in HeLa, indicating that it does not substitute for Bap31. PMID:17056546
Ben-Mahmoud, A; Ben-Salem, S; Al-Sorkhy, M; John, A; Ali, B R; Al-Gazali, L
2018-06-01
Al-Gazali syndrome encompasses several clinical features including prenatal growth retardation, large joints contractures with camptodactyly, bilateral talipes equinovarus, small mouth, anterior segment anomalies of the eyes, and early lethality. Recently, a baby with features very similar to Al-Gazali syndrome was found to have compound heterozygous variants in B3GALT6. This gene encodes Beta-1,3-galactosyltransferase 6 (β3GalT6), an essential component of the glycosaminoglycan synthesis pathway. Pathogenic variants in B3GALT6 have also been shown to cause Ehlers-Danlos syndrome spondylodysplastic type (spEDS-B3GALT6) and spondyloepimetaphyseal dysplasia with joint laxity type I (SEMD-JL1). In 2017, a new international classification of EDS included these 2 conditions together with the child reported to have features similar to Al-Gazali syndrome under spondylodysplastic EDS (spEDS). We report a disease-causing variant c.618C > G, p.(Cys206Trp) in 1 patient originally described as Al-Gazali syndrome and reported in 1999. We evaluated the involvement of the endoplasmic reticulum-associated protein degradation, in the pathogenesis of 13 B3GALT6 variants. Retention in endoplasmic reticulum was evident in 6 of them while the c.618C > G, p.(Cys206Trp) and the other 6 variants trafficked normally. Our findings confirm the involvement of B3GALT6 in the pathogenesis of Al-Gazali syndrome and suggest that Al-Gazali syndrome represents the severe end of the spectrum of the phenotypes caused by pathogenic variants in this gene. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wu, Yanqing; Reece, E Albert; Zhong, Jianxiang; Dong, Daoyin; Shen, Wei-Bin; Harman, Christopher R; Yang, Peixin
2016-09-01
Maternal type 1 and 2 diabetes mellitus are strongly associated with high rates of severe structural birth defects, including congenital heart defects. Studies in type 1 diabetic embryopathy animal models have demonstrated that cellular stress-induced apoptosis mediates the teratogenicity of maternal diabetes leading to congenital heart defect formation. However, the mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects remain largely unknown. We aim to determine whether oxidative stress, endoplasmic reticulum stress, and excessive apoptosis are the intracellular molecular mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects. A mouse model of maternal type 2 diabetes mellitus was established by feeding female mice a high-fat diet (60% fat). After 15 weeks on the high-fat diet, the mice showed characteristics of maternal type 2 diabetes mellitus. Control dams were either fed a normal diet (10% fat) or the high-fat diet during pregnancy only. Female mice from the high-fat diet group and the 2 control groups were mated with male mice that were fed a normal diet. At E12.5, embryonic hearts were harvested to determine the levels of lipid peroxides and superoxide, endoplasmic reticulum stress markers, cleaved caspase 3 and 8, and apoptosis. E17.5 embryonic hearts were harvested for the detection of congenital heart defect formation using India ink vessel patterning and histological examination. Maternal type 2 diabetes mellitus significantly induced ventricular septal defects and persistent truncus arteriosus in the developing heart, along with increasing oxidative stress markers, including superoxide and lipid peroxidation; endoplasmic reticulum stress markers, including protein levels of phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase, phosphorylated-IRE1α, phosphorylated-eIF2α, C/EBP homologous protein, and binding immunoglobulin protein; endoplasmic reticulum chaperone gene expression; and XBP1 messenger RNA splicing, as well as increased cleaved caspase 3 and 8 in embryonic hearts. Furthermore, maternal type 2 diabetes mellitus triggered excessive apoptosis in ventricular myocardium, endocardial cushion, and outflow tract of the embryonic heart. Similar to those observations in type 1 diabetic embryopathy, maternal type 2 diabetes mellitus causes heart defects in the developing embryo manifested with oxidative stress, endoplasmic reticulum stress, and excessive apoptosis in heart cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Regulation of Protein Secretion Through Controlled Aggregation in the Endoplasmic Reticulum
NASA Astrophysics Data System (ADS)
Rivera, Victor M.; Wang, Xiurong; Wardwell, Scott; Courage, Nancy L.; Volchuk, Allen; Keenan, Terence; Holt, Dennis A.; Gilman, Michael; Orci, Lelio; Cerasoli, Frank; Rothman, James E.; Clackson, Tim
2000-02-01
A system for direct pharmacologic control of protein secretion was developed to allow rapid and pulsatile delivery of therapeutic proteins. A protein was engineered so that it accumulated as aggregates in the endoplasmic reticulum. Secretion was then stimulated by a synthetic small-molecule drug that induces protein disaggregation. Rapid and transient secretion of growth hormone and insulin was achieved in vitro and in vivo. A regulated pulse of insulin secretion resulted in a transient correction of serum glucose concentrations in a mouse model of hyperglycemia. This approach may make gene therapy a viable method for delivery of polypeptides that require rapid and regulated delivery.
Severe hypoplasia of the omasal laminae in a Japanese Black steer with chronic bloat--a case report.
Takagi, Mitsuhiro; Mukai, Shuhei; Fushimi, Yasuo; Matsushita, Kouhei; Miyoshi, Nobuaki; Yasuda, Nobuhiro; Kitajima, Hideo; Takamure, Senro; Matsushita, Toshihiko; Kitamura, Nobuo; Deguchi, Eisaburo
2007-12-01
An 11-month-old Japanese Black steer with chronic bloat underwent clinical and histological analyses. During the observation period, it showed normal appetite and fecal volume but persistent chronic bloat symptoms. Compared to controls, the steer's feces contained undigested large straws. Necropsy revealed normal rumen, reticulum, and abomasum but a small omasum. The rumen, reticulum, and abomasum mucosa was normal, with well-developed ruminal papillae. However, severe hypoplasia of the omasal laminae was observed along with hypoplasia reticular groove and ruminoreticular fold. The contents of the reticulum, omasum, and abomasums comprised undigested large sized hay particles. The omasum papillae showed no pathological abnormalities. This is a rare case of a steer with chronic bloat probably caused by severe hypoplasia of the omasal laminae.
Ferris, Sean P.; Jaber, Nikita S.; Molinari, Maurizio; Arvan, Peter; Kaufman, Randal J.
2013-01-01
Protein folding in the endoplasmic reticulum (ER) is error prone, and ER quality control (ERQC) processes ensure that only correctly folded proteins are exported from the ER. Glycoproteins can be retained in the ER by ERQC, and this retention contributes to multiple human diseases, termed ER storage diseases. UDP-glucose:glycoprotein glucosyltransferase (UGGT1) acts as a central component of glycoprotein ERQC, monoglucosylating deglucosylated N-glycans of incompletely folded glycoproteins and promoting subsequent reassociation with the lectin-like chaperones calreticulin and calnexin. The extent to which UGGT1 influences glycoprotein folding, however, has only been investigated for a few selected substrates. Using mouse embryonic fibroblasts lacking UGGT1 or those with UGGT1 complementation, we investigated the effect of monoglucosylation on the soluble/insoluble distribution of two misfolded α1-antitrypsin (AAT) variants responsible for AAT deficiency disease: null Hong Kong (NHK) and Z allele. Whereas substrate solubility increases directly with the number of N-linked glycosylation sites, our results indicate that additional solubility is conferred by UGGT1 enzymatic activity. Monoglucosylation-dependent solubility decreases both BiP association with NHK and unfolded protein response activation, and the solubility increase is blocked in cells deficient for calreticulin. These results suggest that UGGT1-dependent monoglucosylation of N-linked glycoproteins promotes substrate solubility in the ER. PMID:23864712
Hsu, Yu-Juei; Hsu, Shih-Che; Hsu, Chiao-Po; Chen, Yen-Hui; Chang, Yung-Lung; Sadoshima, Junichi; Huang, Shih-Ming; Tsai, Chien-Sung; Lin, Chih-Yuan
2017-02-01
The longevity regulator Sirtuin 1 is an NAD + -dependent histone deacetylase that regulates endoplasmic reticulum stress and influences cardiomyocyte apoptosis during cardiac contractile dysfunction induced by aging. The mechanism underlying Sirtuin 1 function in cardiac contractile dysfunction related to aging has not been completely elucidated. We evaluated cardiac contractile function, endoplasmic reticulum stress, apoptosis, and oxidative stress in 6- and 12month-old cardiac-specific Sirtuin 1 knockout (Sirt1 -/- ) and control (Sirt1 f/f ) mice using western blotting and immunohistochemistry. Mice were injected with a protein disulphide isomerase inhibitor. For in vitro analysis, cultured H9c2 cardiomyocytes were exposed to either a Sirtuin 1 inhibitor or activator, with or without a mitochondrial inhibitor, to evaluate the effects of Sirtuin 1 on endoplasmic reticulum stress, nitric oxide synthase expression, and apoptosis. The effects of protein disulphide isomerase inhibition on oxidative stress and ER stress-related apoptosis were also investigated. Compared with 6-month-old Sirt1 f/f mice, marked impaired contractility was observed in 12-month-old Sirt1 -/- mice. These findings were consistent with increased endoplasmic reticulum stress and apoptosis in the myocardium. Measures of oxidative stress and nitric oxide synthase expression were significantly higher in Sirt1 -/- mice compared with those in Sirt1 f/f mice at 6months. In vitro experiments revealed increased endoplasmic reticulum stress-mediated apoptosis in H9c2 cardiomyocytes treated with a Sirtuin 1 inhibitor; the effects were ameliorated by a Sirtuin 1 activator. Moreover, consistent with the in vitro findings, impaired cardiac contractility was demonstrated in Sirt1 -/- mice injected with a protein disulphide isomerase inhibitor. The present study demonstrates that the aging heart is characterized by contractile dysfunction associated with increased oxidative stress and endoplasmic reticulum stress and Sirtuin 1 might have the ability to protect the aging hearts from the inhibition of endoplasmic reticulum-mediated apoptosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cholesterol transfer at endosomal-organelle membrane contact sites.
Ridgway, Neale D; Zhao, Kexin
2018-06-01
Cholesterol is delivered to the limiting membrane of late endosomes by Niemann-Pick Type C1 and C2 proteins. This review summarizes recent evidence that cholesterol transfer from endosomes to the endoplasmic reticulum and other organelles is mediated by lipid-binding proteins that localize to membrane contact sites (MCS). LDL-cholesterol in the late endosomal/lysosomes is exported to the plasma membrane, where most cholesterol resides, and the endoplasmic reticulum, which harbors the regulatory complexes and enzymes that control the synthesis and esterification of cholesterol. A major advance in dissecting these cholesterol transport pathways was identification of frequent and dynamic MCS between endosomes and the endoplasmic reticulum, peroxisomes and plasma membrane. Positioned at these MCS are members of the oxysterol-binding protein (OSBP) and steroidogenic acute regulatory protein-related lipid-transfer family of lipid transfer proteins that bridge the opposing membranes and directly or indirectly mediate cholesterol transfer. OSBP-related protein 1L (ORP1L), ORP5 and ORP6 mediate cholesterol transfer to the endoplasmic reticulum that regulates cholesterol homeostasis. ORP1L and STARD3 also move cholesterol from the endoplasmic reticulum-to-late endosomal/lysosomes under low-cholesterol conditions to facilitate intraluminal vesicle formation. Cholesterol transport also occurs at MCS with peroxisomes and possibly the plasma membrane. Frequent contacts between organelles and the endo-lysosomal vesicles are sites for bidirectional transfer of cholesterol.
Oresic, Kristina; Mueller, Britta; Tortorella, Domenico
2009-06-01
NCLs (neuronal ceroid lipofuscinoses), a group of inherited neurodegenerative lysosomal storage diseases that predominantly affect children, are the result of autosomal recessive mutations within one of the nine cln genes. The wild-type cln gene products are composed of membrane and soluble proteins that localize to the lysosome or the ER (endoplasmic reticulum). However, the destiny of the Cln variants has not been fully characterized. To explore a possible link between ER quality control and processing of Cln mutants, we investigated the fate of two NCL-related Cln6 mutants found in patient samples (Cln6(G123D) and Cln6(M241T)) in neuronal-derived human cells. The point mutations are predicted to be in the putative transmembrane domains and most probably generate misfolded membrane proteins that are subjected to ER quality control. Consistent with this paradigm, both mutants underwent rapid proteasome-mediated degradation and complexed with components of the ER extraction apparatus, Derlin-1 and p97. In addition, knockdown of SEL1L [sel-1 suppressor of lin-12-like (Caenorhabditis elegans)], a member of an E3 ubiquitin ligase complex involved in ER protein extraction, rescued significant amounts of Cln6(G123D) and Cln6(M241T) polypeptides. The results implicate ER quality control in the instability of the Cln variants that probably contributes to the development of NCL.
Liu, Gang; Li, Si Qi; Hu, Ping Ping; Tong, Xiao Yong
2018-05-01
Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.
Role of different types of Ca2+ channels and a reticulum-like Ca2+ pump in neurotransmitter release.
Fossier, P; Baux, G; Tauc, L
1993-01-01
The factors controlling the Ca2+ concentration directly responsible for triggering acetylcholine (ACh) release were investigated at an identified neuro-neuronal synapse of the Aplysia buccal ganglion. The types of presynaptic voltage-gated Ca2+ channels associated with transmitter release were determined by using selective blockers such as nifedipine, omega-conotoxin and a partially purified extract from the venom of a funnel web spider (FTx). L-type, N-type and P-type Ca2+ channels are present in the presynaptic neuron. The influx of Ca2+ through both N- and P-types induces the release of ACh whereas Ca2+ flowing through L-type channels modulates the duration of the presynaptic action potential by controlling the Ca(2+)-dependent K+ current. tBuBHQ, a blocker of the reticulum Ca2+ pump, induces a potentiation of evoked release without modifying the presynaptic Ca2+ influx. This seems to indicate that a part of the Ca2+ entering the presynaptic terminal through N- and P-type Ca2+ channels is sequestered in a presynaptic reticulum-like Ca2+ buffer preventing these ions from contributing to ACh release. To exert its control, this Ca2+ buffer must be located close to both the presynaptic Ca2+ channels and the transmitter release mechanism.
Sutton-McDowall, Melanie L; Wu, Linda L Y; Purdey, Malcolm; Abell, Andrew D; Goldys, Ewa M; MacMillan, Keith L; Thompson, Jeremy G; Robker, Rebecca L
2016-01-01
Reduced oocyte quality has been associated with poor fertility of high-performance dairy cows during peak lactation, due to negative energy balance. We examined the role of nonesterified fatty acids (NEFAs), known to accumulate within follicular fluid during under- and overnutrition scenarios, in causing endoplasmic reticulum (ER) stress of in vitro maturated cattle cumulus-oocyte complexes (COCs). NEFA concentrations were: palmitic acid (150 μM), oleic acid (200 μM), and steric acid (75 μM). Abattoir-derived COCs were randomly matured for 24 h in the presence of NEFAs and/or an ER stress inhibitor, salubrinal. Total and hatched blastocyst yields were negatively impacted by NEFA treatment compared with controls, but this was reversed by salubrinal. ER stress markers, activating transcription factor 4 (Atf4) and heat shock protein 5 (Hspa5), but not Atf6, were significantly up-regulated by NEFA treatment within whole COCs but reversed by coincubation with salubrinal. Likewise, glucose uptake and lactate production, measured in spent medium samples, showed a similar pattern, suggesting that cumulus cell metabolism is sensitive to NEFAs via an ER stress-mediated process. In contrast, while mitochondrial DNA copy number was recovered in NEFA-treated oocytes, oocyte autofluorescence of the respiratory chain cofactor, FAD, was lower following NEFA treatment of COCs, and this was not reversed by salubrinal, suggesting the negative impact was via reduced mitochondrial function. These results reveal the significance of NEFA-induced ER stress on bovine COC developmental competence, revealing a potential therapeutic target for improving oocyte quality during peak lactation. © 2016 by the Society for the Study of Reproduction, Inc.
Kimura, Koji; Inoue, Kengo; Okubo, Jun; Ueda, Yumiko; Kawaguchi, Kosuke; Sakurai, Hiroaki; Wada, Ikuo; Morita, Masashi; Imanaka, Tsuneo
2015-01-01
Newly synthesized secretory proteins are folded and assembled in the endoplasmic reticulum (ER), where an efficient protein quality control system performs a critically important function. When unfolded or aggregated proteins accumulate in the ER, certain signaling pathways such as the unfolded protein response (UPR) and ER-overload response (EOR) are functionally active in maintaining cell homeostasis. Recently we prepared Chinese hamster ovary (CHO) cells expressing mutant antithrombin (AT)(C95R) under control of the Tet-On system and showed that AT(C95R) accumulated in Russell bodies (RB), large distinctive structures derived from the ER. To characterize whether ER stress takes place in CHO cells, we examined characteristic UPR and EOR in ER stress responses. We found that the induction of ER chaperones such as Grp97, Grp78 and protein disulfide isomerase (PDI) was limited to a maximum of approximately two-fold. The processing of X-box-binding protein-1 (XBP1) mRNA and the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) subunit were not induced. Furthermore, the activation of nuclear factor-kappa B (NF-κB) was not observed. In contrast, CHO cells displayed UPR and EOR when the cells were treated with thapsigargin and tumor necrosis factor (TNF)-α, respectively. In addition, a portion of the mutant AT(C95R) was degraded through proteasomes and autophagy. CHO cells do respond to ER stress but the folding state of mutant AT(C95R) does not appear to activate the ER stress signal pathway.
Tributyltin-induced endoplasmic reticulum stress and its Ca(2+)-mediated mechanism.
Isomura, Midori; Kotake, Yaichiro; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru
2013-10-01
Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca(2+) signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca(2+) homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca(2+) depletion, and to test this idea, we examined the effect of TBT on intracellular Ca(2+) concentration using fura-2 AM, a Ca(2+) fluorescent probe. TBT increased intracellular Ca(2+) concentration in a TBT-concentration-dependent manner, and Ca(2+) increase in 700nM TBT was mainly blocked by 50μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca(2+) concentration by releasing Ca(2+) from ER, thereby causing ER stress. Copyright © 2013 Elsevier Inc. All rights reserved.
The IRE1/bZIP60 pathway are activated by potexvirus and potyvirus small membrane binding proteins
USDA-ARS?s Scientific Manuscript database
The endoplasmic reticulum provides an environment for protein synthesis, folding and distribution to all corners of the cell. With respect to protein synthesis and folding, quality production is central to maintaining homeostasis. When conditions occur that disrupt the folding capacity of the ER cau...
Liu, Guang; Wang, JingJing; Hou, Yi; Huang, Yan-Bo; Wang, JiaJia; Li, Cunzhi; Guo, ShiJun; Li, Lin; Hu, Song-Qing
2018-08-01
This study investigated characteristics of recombinant wheat Endoplasmic Reticulum Oxidoreductin 1 (wEro1) and its influence on Chinese steamed bread (CSB) qualities. The purified wEro1 monomer, which contained two conserved redox active motif sites, bound to flavin adenine dinucleotide (FAD) cofactor with a molecular weight of ∼47 kDa. wEro1 catalyzed the reduction of both bound and free FAD, and its reduction activity of free FAD reached 7.8 U/mg. Moreover, wEro1 catalyzed the oxidation of dithiothreitol and wheat protein disulfide isomerase (wPDI). Both glutathione and the reduced ribonuclease could work as electron donors for wEro1 in catalyzing the oxidation of wPDI. Additionally, wEro1 supplementation improved the CSB qualities with an increased specific volume of CSB and decreased crumb hardness, which was attributed to water-insoluble wheat proteins increasing and gluten network strengthening. The results give an understanding of the properties and function of wEro1 to facilitate its application especially in the flour-processing industry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sphingosine inhibits the sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase (SERCA) activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benaim, Gustavo, E-mail: gbenaim@idea.gob.ve; Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela; Pimentel, Adriana A., E-mail: adriana.pimentel@ucv.ve
2016-04-29
The increase in the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) is the key variable for many different processes, ranging from regulation of cell proliferation to apoptosis. In this work we demonstrated that the sphingolipid sphingosine (Sph) increases the [Ca{sup 2+}]{sub i} by inhibiting the sarco(endo)plasmic reticulum Ca{sup 2+}-ATPase (SERCA), in a similar manner to thapsigargin (Tg), a specific inhibitor of this Ca{sup 2+} pump. The results showed that addition of sphingosine produced a release of Ca{sup 2+} from the endoplasmic reticulum followed by a Ca{sup 2+} entrance from the outside mileu. The results presented in this work support thatmore » this sphingolipid could control the activity of the SERCA, and hence sphingosine may participate in the regulation of [Ca{sup 2+}]{sub I} in mammalian cells.« less
de Virgilio, Maddalena; Bellucci, Michele; Mainieri, Davide; Rossi, Marika; Benvenuto, Eugenio; Arcioni, Sergio; Vitale, Alessandro
2008-01-01
Protein bodies (PB) are stable polymers naturally formed by certain seed storage proteins within the endoplasmic reticulum (ER). The human immunodeficiency virus negative factor (Nef) protein, a potential antigen for the development of an anti-viral vaccine, is highly unstable when introduced into the plant secretory pathway, probably because of folding defects in the ER environment. The aim of this study was to promote the formation of Nef-containing PB in tobacco (Nicotiana tabacum) leaves by fusing the Nef sequence to the N-terminal domains of the maize storage protein γ-zein or to the chimeric protein zeolin (which efficiently forms PB and is composed of the vacuolar storage protein phaseolin fused to the N-terminal domains of γ-zein). Protein blots and pulse–chase indicate that fusions between Nef and the same γ-zein domains present in zeolin are degraded by ER quality control. Consistently, a mutated zeolin, in which wild-type phaseolin was substituted with a defective version known to be degraded by ER quality control, is unstable in plant cells. Fusion of Nef to the entire zeolin sequence instead allows the formation of PB detectable by electron microscopy and subcellular fractionation, leading to zeolin–Nef accumulation higher than 1% of total soluble protein, consistently reproduced in independent transgenic plants. It is concluded that zeolin, but not its γ-zein portion, has a positive dominant effect over ER quality control degradation. These results provide insights into the requirements for PB formation and avoidance of quality-control degradation, and indicate a strategy for enhancing foreign protein accumulation in plants. PMID:18540021
Guan, Hua; Lin, Yan; Bai, Liang; An, Yingfeng; Shang, Jianan; Wang, Zhao; Zhao, Sihai; Fan, Jianglin; Liu, Enqi
2016-01-01
Cocoa powder is rich in flavonoids, which have many beneficial effects on human health, including antioxidative and anti-inflammatory effects. The aim of our study was to investigate whether the intake of cocoa powder has any influence on hyperlipidemia and atherosclerosis and examine the underlying molecular mechanisms. We fed apoE knockout mice a Western diet supplemented with either 0.2% (low group) or 2% (high group) cocoa powder for 12 weeks. The groups fed dietary cocoa powder showed a significant reduction in both plasma cholesterol levels and aortic atherosclerosis compared to the control group. Analysis of mRNA profiling of aortic atherosclerotic lesions revealed that the expression of several genes related to apoptosis, lipid metabolism, and inflammation was significantly reduced, while the antiapoptotic gene Bcl2 was significantly increased in the cocoa powder group compared to the control. RT-PCR analysis along with Western blotting revealed that a diet containing cocoa powder inhibited the expression of hepatic endoplasmic reticulum stress. These data suggest that cocoa powder intake improves hyperlipidemia and atherosclerosis, and such beneficial effects are possibly mediated through the suppression of hepatic endoplasmic reticulum stress.
Crowder, Justin J.; Geigges, Marco; Gibson, Ryan T.; Fults, Eric S.; Buchanan, Bryce W.; Sachs, Nadine; Schink, Andrea; Kreft, Stefan G.; Rubenstein, Eric M.
2015-01-01
Aberrant nonstop proteins arise from translation of mRNA molecules beyond the coding sequence into the 3′-untranslated region. If a stop codon is not encountered, translation continues into the poly(A) tail, resulting in C-terminal appendage of a polylysine tract and a terminally stalled ribosome. In Saccharomyces cerevisiae, the ubiquitin ligase Rkr1/Ltn1 has been implicated in the proteasomal degradation of soluble cytosolic nonstop and translationally stalled proteins. Rkr1 is essential for cellular fitness under conditions associated with increased prevalence of nonstop proteins. Mutation of the mammalian homolog causes significant neurological pathology, suggesting broad physiological significance of ribosome-associated quality control. It is not known whether and how soluble or transmembrane nonstop and translationally stalled proteins targeted to the endoplasmic reticulum (ER) are detected and degraded. We generated and characterized model soluble and transmembrane ER-targeted nonstop and translationally stalled proteins. We found that these proteins are indeed subject to proteasomal degradation. We tested three candidate ubiquitin ligases (Rkr1 and ER-associated Doa10 and Hrd1) for roles in regulating abundance of these proteins. Our results indicate that Rkr1 plays the primary role in targeting the tested model ER-targeted nonstop and translationally stalled proteins for degradation. These data expand the catalog of Rkr1 substrates and highlight a previously unappreciated role for this ubiquitin ligase at the ER membrane. PMID:26055716
Kasaikina, Marina V.; Fomenko, Dmitri E.; Labunskyy, Vyacheslav M.; Lachke, Salil A.; Qiu, Wenya; Moncaster, Juliet A.; Zhang, Jie; Wojnarowicz, Mark W.; Natarajan, Sathish Kumar; Malinouski, Mikalai; Schweizer, Ulrich; Tsuji, Petra A.; Carlson, Bradley A.; Maas, Richard L.; Lou, Marjorie F.; Goldstein, Lee E.; Hatfield, Dolph L.; Gladyshev, Vadim N.
2011-01-01
The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteine-rich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15 KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation. We suggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency. PMID:21768092
Emerging themes of ER organization in the development and maintenance of axons
Renvoisé, Benoît; Blackstone, Craig
2010-01-01
The endoplasmic reticulum (ER) is a continuous membrane system comprising the nuclear envelope, polyribosome-studded peripheral sheets, and a polygonal network of smooth tubules extending throughout the cell. Though protein biosynthesis, transport, and quality control in the ER have been extensively studied, mechanisms underlying the heterogeneous architecture of the ER have been clarified more recently. These insights have increased interest in ER morphology changes associated with the development of neuronal axons and dendrites as well as their integration with pre- and postsynaptic signaling pathways. A number of proteins involved in shaping and distributing the ER network are mutated in neurological disorders, particularly the hereditary spastic paraplegias, emphasizing the importance of proper ER morphology for the establishment and maintenance of highly-polarized neurons. PMID:20678923
Chao de la Barca, Juan Manuel; Simard, Gilles; Amati-Bonneau, Patrizia; Safiedeen, Zainab; Prunier-Mirebeau, Delphine; Chupin, Stéphanie; Gadras, Cédric; Tessier, Lydie; Gueguen, Naïg; Chevrollier, Arnaud; Desquiret-Dumas, Valérie; Ferré, Marc; Bris, Céline; Kouassi Nzoughet, Judith; Bocca, Cinzia; Leruez, Stéphanie; Verny, Christophe; Miléa, Dan; Bonneau, Dominique; Lenaers, Guy; Martinez, M Carmen; Procaccio, Vincent; Reynier, Pascal
2016-11-01
Leber's hereditary optic neuropathy (MIM#535000), the commonest mitochondrial DNA-related disease, is caused by mutations affecting mitochondrial complex I. The clinical expression of the disorder, usually occurring in young adults, is typically characterized by subacute, usually sequential, bilateral visual loss, resulting from the degeneration of retinal ganglion cells. As the precise action of mitochondrial DNA mutations on the overall cell metabolism in Leber's hereditary optic neuropathy is unknown, we investigated the metabolomic profile of the disease. High performance liquid chromatography coupled with tandem mass spectrometry was used to quantify 188 metabolites in fibroblasts from 16 patients with Leber's hereditary optic neuropathy and eight healthy control subjects. Latent variable-based statistical methods were used to identify discriminating metabolites. One hundred and twenty-four of the metabolites were considered to be accurately quantified. A supervised orthogonal partial least squares discriminant analysis model separating patients with Leber's hereditary optic neuropathy from control subjects showed good predictive capability (Q 2cumulated = 0.57). Thirty-eight metabolites appeared to be the most significant variables, defining a Leber's hereditary optic neuropathy metabolic signature that revealed decreased concentrations of all proteinogenic amino acids, spermidine, putrescine, isovaleryl-carnitine, propionyl-carnitine and five sphingomyelin species, together with increased concentrations of 10 phosphatidylcholine species. This signature was not reproduced by the inhibition of complex I with rotenone or piericidin A in control fibroblasts. The importance of sphingomyelins and phosphatidylcholines in the Leber's hereditary optic neuropathy signature, together with the decreased amino acid pool, suggested an involvement of the endoplasmic reticulum. This was confirmed by the significantly increased phosphorylation of PERK and eIF2α, as well as the greater expression of C/EBP homologous protein and the increased XBP1 splicing, in fibroblasts from affected patients, all these changes being reversed by the endoplasmic reticulum stress inhibitor, TUDCA (tauroursodeoxycholic acid). Thus, our metabolomic analysis reveals a pharmacologically-reversible endoplasmic reticulum stress in complex I-related Leber's hereditary optic neuropathy fibroblasts, a finding that may open up new therapeutic perspectives for the treatment of Leber's hereditary optic neuropathy with endoplasmic reticulum-targeting drugs. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy
Montague, Karli; Malik, Bilal; Gray, Anna L.; La Spada, Albert R.; Hanna, Michael G.; Szabadkai, Gyorgy
2014-01-01
Spinal and bulbar muscular atrophy is an X-linked degenerative motor neuron disease caused by an abnormal expansion in the polyglutamine encoding CAG repeat of the androgen receptor gene. There is evidence implicating endoplasmic reticulum stress in the development and progression of neurodegenerative disease, including polyglutamine disorders such as Huntington’s disease and in motor neuron disease, where cellular stress disrupts functioning of the endoplasmic reticulum, leading to induction of the unfolded protein response. We examined whether endoplasmic reticulum stress is also involved in the pathogenesis of spinal and bulbar muscular atrophy. Spinal and bulbar muscular atrophy mice that carry 100 pathogenic polyglutamine repeats in the androgen receptor, and develop a late-onset neuromuscular phenotype with motor neuron degeneration, were studied. We observed a disturbance in endoplasmic reticulum-associated calcium homeostasis in cultured embryonic motor neurons from spinal and bulbar muscular atrophy mice, which was accompanied by increased endoplasmic reticulum stress. Furthermore, pharmacological inhibition of endoplasmic reticulum stress reduced the endoplasmic reticulum-associated cell death pathway. Examination of spinal cord motor neurons of pathogenic mice at different disease stages revealed elevated expression of markers for endoplasmic reticulum stress, confirming an increase in this stress response in vivo. Importantly, the most significant increase was detected presymptomatically, suggesting that endoplasmic reticulum stress may play an early and possibly causal role in disease pathogenesis. Our results therefore indicate that the endoplasmic reticulum stress pathway could potentially be a therapeutic target for spinal and bulbar muscular atrophy and related polyglutamine diseases. PMID:24898351
The role of the endoplasmic reticulum stress response following cerebral ischemia.
Hadley, Gina; Neuhaus, Ain A; Couch, Yvonne; Beard, Daniel J; Adriaanse, Bryan A; Vekrellis, Kostas; DeLuca, Gabriele C; Papadakis, Michalis; Sutherland, Brad A; Buchan, Alastair M
2018-06-01
Background Cornu ammonis 3 (CA3) hippocampal neurons are resistant to global ischemia, whereas cornu ammonis (CA1) 1 neurons are vulnerable. Hamartin expression in CA3 neurons mediates this endogenous resistance via productive autophagy. Neurons lacking hamartin demonstrate exacerbated endoplasmic reticulum stress and increased cell death. We investigated endoplasmic reticulum stress responses in CA1 and CA3 regions following global cerebral ischemia, and whether pharmacological modulation of endoplasmic reticulum stress or autophagy altered neuronal viability . Methods In vivo: male Wistar rats underwent sham or 10 min of transient global cerebral ischemia. CA1 and CA3 areas were microdissected and endoplasmic reticulum stress protein expression quantified at 3 h and 12 h of reperfusion. In vitro: primary neuronal cultures (E18 Wistar rat embryos) were exposed to 2 h of oxygen and glucose deprivation or normoxia in the presence of an endoplasmic reticulum stress inducer (thapsigargin or tunicamycin), an endoplasmic reticulum stress inhibitor (salubrinal or 4-phenylbutyric acid), an autophagy inducer ([4'-(N-diethylamino) butyl]-2-chlorophenoxazine (10-NCP)) or autophagy inhibitor (3-methyladenine). Results In vivo, decreased endoplasmic reticulum stress protein expression (phospho-eIF2α and ATF4) was observed at 3 h of reperfusion in CA3 neurons following ischemia, and increased in CA1 neurons at 12 h of reperfusion. In vitro, endoplasmic reticulum stress inducers and high doses of the endoplasmic reticulum stress inhibitors also increased cell death. Both induction and inhibition of autophagy also increased cell death. Conclusion Endoplasmic reticulum stress is associated with neuronal cell death following ischemia. Neither reduction of endoplasmic reticulum stress nor induction of autophagy demonstrated neuroprotection in vitro, highlighting their complex role in neuronal biology following ischemia.
Higuchi-Sanabria, Ryo; Charalel, Joseph K.; Viana, Matheus P.; Garcia, Enrique J.; Sing, Cierra N.; Koenigsberg, Andrea; Swayne, Theresa C.; Vevea, Jason D.; Boldogh, Istvan R.; Rafelski, Susanne M.; Pon, Liza A.
2016-01-01
Higher-functioning mitochondria that are more reduced and have less ROS are anchored in the yeast bud tip by the Dsl1-family protein Mmr1p. Here we report a role for mitochondrial fusion in bud-tip anchorage of mitochondria. Fluorescence loss in photobleaching (FLIP) and network analysis experiments revealed that mitochondria in large buds are a continuous reticulum that is physically distinct from mitochondria in mother cells. FLIP studies also showed that mitochondria that enter the bud can fuse with mitochondria that are anchored in the bud tip. In addition, loss of fusion and mitochondrial DNA (mtDNA) by deletion of mitochondrial outer or inner membrane fusion proteins (Fzo1p or Mgm1p) leads to decreased accumulation of mitochondria at the bud tip and inheritance of fitter mitochondria by buds compared with cells with no mtDNA. Conversely, increasing the accumulation and anchorage of mitochondria in the bud tip by overexpression of MMR1 results in inheritance of less-fit mitochondria by buds and decreased replicative lifespan and healthspan. Thus quantity and quality of mitochondrial inheritance are ensured by two opposing processes: bud-tip anchorage by mitochondrial fusion and Mmr1p, which favors bulk inheritance; and quality control mechanisms that promote segregation of fitter mitochondria to the bud. PMID:26764088
Szymański, Jędrzej; Janikiewicz, Justyna; Michalska, Bernadeta; Patalas-Krawczyk, Paulina; Perrone, Mariasole; Ziółkowski, Wiesław; Duszyński, Jerzy; Pinton, Paolo; Dobrzyń, Agnieszka; Więckowski, Mariusz R
2017-07-20
Studying organelles in isolation has been proven to be indispensable for deciphering the underlying mechanisms of molecular cell biology. However, observing organelles in intact cells with the use of microscopic techniques reveals a new set of different junctions and contact sites between them that contribute to the control and regulation of various cellular processes, such as calcium and lipid exchange or structural reorganization of the mitochondrial network. In recent years, many studies focused their attention on the structure and function of contacts between mitochondria and other organelles. From these studies, findings emerged showing that these contacts are involved in various processes, such as lipid synthesis and trafficking, modulation of mitochondrial morphology, endoplasmic reticulum (ER) stress, apoptosis, autophagy, inflammation and Ca 2 + handling. In this review, we focused on the physical interactions of mitochondria with the endoplasmic reticulum and plasma membrane and summarized present knowledge regarding the role of mitochondria-associated membranes in calcium homeostasis and lipid metabolism.
Mitochondrial control of cell bioenergetics in Parkinson’s disease
Requejo-Aguilar, Raquel; Bolaños, Juan P.
2016-01-01
Parkinson disease (PD) is a neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra. The earliest biochemical signs of the disease involve failure in mitochondrial-endoplasmic reticulum cross talk and lysosomal function, mitochondrial electron chain impairment, mitochondrial dynamics alterations, and calcium and iron homeostasis abnormalities. These changes are associated with increased mitochondrial reactive oxygen species (mROS) and energy deficiency. Recently, it has been reported that, as an attempt to compensate for the mitochondrial dysfunction, neurons invoke glycolysis as a low-efficient mode of energy production in models of PD. Here, we review how mitochondria orchestrate the maintenance of cellular energetic status in PD, with special focus on the switch from oxidative phosphorylation to glycolysis, as well as the implication of endoplasmic reticulum and lysosomes in the control of bioenergetics. PMID:27091692
Kucharz, Krzysztof; Lauritzen, Martin
2018-04-01
Cortical spreading depolarization waves, the cause underlying migraine aura, are also the markers and mechanism of pathology in the acutely injured human brain. Propagation of spreading depolarization wave uniquely depends on the interaction between presynaptic and postsynaptic glutamate N-methyl-d-aspartate receptors (NMDARs). In the normally perfused brain, even a single wave causes a massive depolarization of neurons and glia, which results in transient loss of neuronal function and depression of the ongoing electrocorticographic activity. Endoplasmic reticulum is the cellular organelle of particular importance for modulation of neurotransmission. Neuronal endoplasmic reticulum structure is assumed to be persistently continuous in neurons, but is rapidly lost within 1 to 2 min of global cerebral ischaemia, i.e. the organelle disintegrates by fission. This phenomenon appears to be timed with the cardiac arrest-induced cortical spreading depolarizations, rather than ensuing cell death. To what extent NMDAR-dependent processes may trigger neuronal endoplasmic reticulum fission and whether fission is reversible in the normally perfused brain is unknown. We used two-photon microscopy to examine neuronal endoplasmic reticulum structural dynamics during whisker stimulation and cortical spreading depolarizations in vivo. Somatosensory stimulation triggered loss of endoplasmic reticulum continuity, a likely outcome of constriction and fission, in dendritic spines within less than 10 s of stimulation, which was spontaneously reversible and recovery to normal took 5 min. The endoplasmic reticulum fission was inhibited by blockade of NMDAR and Ca2+/calmodulin-dependent protein kinase II (CaMKII) activated downstream of the NMDARs, whereas inhibition of guanosine triphosphate hydrolases hindered regain of endoplasmic reticulum continuity, i.e. fusion. In contrast to somatosensory stimulation, endoplasmic reticulum fission during spreading depolarization was widespread and present in dendrites and spines, and was preceded by dramatic rise in intracellular Ca2+. The endoplasmic reticulum fission during spreading depolarization was more persistent, as 1 h after the depolarization cortical neurons still exhibited loss of endoplasmic reticulum continuity. Notably, endoplasmic reticulum fission was accompanied with loss of electrocorticographic activity, whereas subsequent regain of synaptic function paralleled the organelle fusion. Furthermore, blocking CaMKII activity partly rescued endoplasmic reticulum fission and markedly shortened the recovery time of brain spontaneous activity. Thus, prevention of endoplasmic reticulum fission with CaMKII inhibitors may be a novel strategy to rescue brain function in patients with migraine and a promising therapeutic avenue in the acutely injured brain.
Regulation of protein turnover by heat shock proteins.
Bozaykut, Perinur; Ozer, Nesrin Kartal; Karademir, Betul
2014-12-01
Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system. Copyright © 2014 Elsevier Inc. All rights reserved.
Graham, Daniel B; Lefkovith, Ariel; Deelen, Patrick; de Klein, Niek; Varma, Mukund; Boroughs, Angela; Desch, A Nicole; Ng, Aylwin C Y; Guzman, Gaelen; Schenone, Monica; Petersen, Christine P; Bhan, Atul K; Rivas, Manuel A; Daly, Mark J; Carr, Steven A; Wijmenga, Cisca; Xavier, Ramnik J
2016-12-13
Significant insights into disease pathogenesis have been gleaned from population-level genetic studies; however, many loci associated with complex genetic disease contain numerous genes, and phenotypic associations cannot be assigned unequivocally. In particular, a gene-dense locus on chromosome 11 (61.5-61.65 Mb) has been associated with inflammatory bowel disease, rheumatoid arthritis, and coronary artery disease. Here, we identify TMEM258 within this locus as a central regulator of intestinal inflammation. Strikingly, Tmem258 haploinsufficient mice exhibit severe intestinal inflammation in a model of colitis. At the mechanistic level, we demonstrate that TMEM258 is a required component of the oligosaccharyltransferase complex and is essential for N-linked protein glycosylation. Consequently, homozygous deficiency of Tmem258 in colonic organoids results in unresolved endoplasmic reticulum (ER) stress culminating in apoptosis. Collectively, our results demonstrate that TMEM258 is a central mediator of ER quality control and intestinal homeostasis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division
Cho, Bongki; Cho, Hyo Min; Jo, Youhwa; Kim, Hee Dae; Song, Myungjae; Moon, Cheil; Kim, Hyongbum; Kim, Kyungjin; Sesaki, Hiromi; Rhyu, Im Joo; Kim, Hyun; Sun, Woong
2017-01-01
Mitochondrial division is critical for the maintenance and regulation of mitochondrial function, quality and distribution. This process is controlled by cytosolic actin-based constriction machinery and dynamin-related protein 1 (Drp1) on mitochondrial outer membrane (OMM). Although mitochondrial physiology, including oxidative phosphorylation, is also important for efficient mitochondrial division, morphological alterations of the mitochondrial inner-membrane (IMM) have not been clearly elucidated. Here we report spontaneous and repetitive constriction of mitochondrial inner compartment (CoMIC) associated with subsequent division in neurons. Although CoMIC is potentiated by inhibition of Drp1 and occurs at the potential division spots contacting the endoplasmic reticulum, it appears on IMM independently of OMM. Intra-mitochondrial influx of Ca2+ induces and potentiates CoMIC, and leads to K+-mediated mitochondrial bulging and depolarization. Synergistically, optic atrophy 1 (Opa1) also regulates CoMIC via controlling Mic60-mediated OMM–IMM tethering. Therefore, we propose that CoMIC is a priming event for efficient mitochondrial division. PMID:28598422
ER stress response mechanisms in the pathogenic yeast Candida glabrata and their roles in virulence
Miyazaki, Taiga; Kohno, Shigeru
2014-01-01
The maintenance of endoplasmic reticulum (ER) homeostasis is critical for numerous aspects of cell physiology. Eukaryotic cells respond to the accumulation of misfolded proteins in the ER (ER stress) by activating the unfolded protein response (UPR), an intracellular signaling pathway that adjusts the folding capacity of the ER. Recent studies of several pathogenic fungi have revealed that the UPR is important for antifungal resistance and virulence; therefore, the pathway has attracted much attention as a potential therapeutic target. While the UPR is highly conserved among eukaryotes, our group recently discovered that the pathogenic yeast Candida glabrata lacks the typical fungal UPR, but possesses alternative mechanisms to cope with ER stress. This review summarizes how C. glabrata responds to ER stress and discusses the impacts of ER quality control systems on antifungal resistance and virulence. PMID:24335436
Penke, Botond; Bogár, Ferenc; Sántha, Miklós; Tóth, Melinda E.; Vígh, László
2018-01-01
Neurodegenerative diseases (NDDs) such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis) in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS), endoplasmic reticulum associated degradation (ERAD), and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy). The role of heat shock proteins (Hsps) in cellular quality control and degradation of pathogenic proteins is reviewed. Finally, putative therapeutic strategies for efficient removal of cytotoxic proteins from neurons and design of new therapeutic targets against the progression of NDDs are discussed. PMID:29361800
Fujimori, Tsutomu; Suno, Ryoji; Iemura, Shun-Ichiro; Natsume, Tohru; Wada, Ikuo; Hosokawa, Nobuko
2017-08-01
The folding of newly synthesized proteins in the endoplasmic reticulum (ER) is assisted by ER-resident chaperone proteins. BiP (immunoglobulin heavy-chain-binding protein), a member of the HSP70 family, plays a central role in protein quality control. The chaperone function of BiP is regulated by its intrinsic ATPase activity, which is stimulated by ER-resident proteins of the HSP40/DnaJ family, including ERdj3. Here, we report that two closely related proteins, SDF2 and SDF2L1, regulate the BiP chaperone cycle. Both are ER-resident, but SDF2 is constitutively expressed, whereas SDF2L1 expression is induced by ER stress. Both luminal proteins formed a stable complex with ERdj3 and potently inhibited the aggregation of different types of misfolded ER cargo. These proteins associated with non-native proteins, thus promoting the BiP-substrate interaction cycle. A dominant-negative ERdj3 mutant that inhibits the interaction between ERdj3 and BiP prevented the dissociation of misfolded cargo from the ERdj3-SDF2L1 complex. Our findings indicate that SDF2 and SDF2L1 associate with ERdj3 and act as components in the BiP chaperone cycle to prevent the aggregation of misfolded proteins, partly explaining the broad folding capabilities of the ER under various physiological conditions. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Hantouche, Christine; Williamson, Brittany; Valinsky, William C; Solomon, Joshua; Shrier, Alvin; Young, Jason C
2017-02-10
Cardiac long QT syndrome type 2 is caused by mutations in the human ether a go-go-related gene (hERG) potassium channel, many of which cause misfolding and degradation at the endoplasmic reticulum instead of normal trafficking to the cell surface. The Hsc70/Hsp70 chaperones assist the folding of the hERG cytosolic domains. Here, we demonstrate that the Hsp70 nucleotide exchange factor Bag1 promotes hERG degradation by the ubiquitin-proteasome system at the endoplasmic reticulum to regulate hERG levels and channel activity. Dissociation of hERG complexes containing Hsp70 and the E3 ubiquitin ligase CHIP requires the interaction of Bag1 with Hsp70, but this does not involve the Bag1 ubiquitin-like domain. The interaction with Bag1 then shifts hERG degradation to the membrane-anchored E3 ligase TRC8 and its E2-conjugating enzyme Ube2g2, as determined by siRNA screening. TRC8 interacts through the transmembrane region with hERG and decreases hERG functional expression. TRC8 also mediates degradation of the misfolded hERG-G601S disease mutant, but pharmacological stabilization of the mutant structure prevents degradation. Our results identify TRC8 as a previously unknown Hsp70-independent quality control E3 ligase for hERG. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Kriechbaumer, Verena; Botchway, Stanley W; Slade, Susan E; Knox, Kirsten; Frigerio, Lorenzo; Oparka, Karl; Hawes, Chris
2015-11-01
The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane. © 2015 American Society of Plant Biologists. All Rights Reserved.
Liu, Yidan; Zhang, Congcong; Wang, Dinghe; Su, Wei; Liu, Linchuan; Wang, Muyang; Li, Jianming
2015-01-01
Endoplasmic reticulum (ER)-associated degradation (ERAD) is an essential part of an ER-localized protein quality-control system for eliminating terminally misfolded proteins. Recent studies have demonstrated that the ERAD machinery is conserved among yeast, animals, and plants; however, it remains unknown if the plant ERAD system involves plant-specific components. Here we report that the Arabidopsis ethyl methanesulfonate-mutagenized brassinosteroid-insensitive 1 suppressor 7 (EBS7) gene encodes an ER membrane-localized ERAD component that is highly conserved in land plants. Loss-of-function ebs7 mutations prevent ERAD of brassinosteroid insensitive 1-9 (bri1-9) and bri1-5, two ER-retained mutant variants of the cell-surface receptor for brassinosteroids (BRs). As a result, the two mutant receptors accumulate in the ER and consequently leak to the plasma membrane, resulting in the restoration of BR sensitivity and phenotypic suppression of the bri1-9 and bri1-5 mutants. EBS7 accumulates under ER stress, and its mutations lead to hypersensitivity to ER and salt stresses. EBS7 interacts with the ER membrane-anchored ubiquitin ligase Arabidopsis thaliana HMG-CoA reductase degradation 1a (AtHrd1a), one of the central components of the Arabidopsis ERAD machinery, and an ebs7 mutation destabilizes AtHrd1a to reduce polyubiquitination of bri1-9. Taken together, our results uncover a plant-specific component of a plant ERAD pathway and also suggest its likely biochemical function. PMID:26371323
Hoffmann, Christiane; Plocharski, Bartolome; Haferkamp, Ilka; Leroch, Michaela; Ewald, Ralph; Bauwe, Hermann; Riemer, Jan; Herrmann, Johannes M.; Neuhaus, H. Ekkehard
2013-01-01
The carrier Endoplasmic Reticulum Adenylate Transporter1 (ER-ANT1) resides in the endoplasmic reticulum (ER) membrane and acts as an ATP/ADP antiporter. Mutant plants lacking ER-ANT1 exhibit a dwarf phenotype and their seeds contain reduced protein and lipid contents. In this study, we describe a further surprising metabolic peculiarity of the er-ant1 mutants. Interestingly, Gly levels in leaves are immensely enhanced (26×) when compared with that of wild-type plants. Gly accumulation is caused by significantly decreased mitochondrial glycine decarboxylase (GDC) activity. Reduced GDC activity in mutant plants was attributed to oxidative posttranslational protein modification induced by elevated levels of reactive oxygen species (ROS). GDC activity is crucial for photorespiration; accordingly, morphological and physiological defects in er-ant1 plants were nearly completely abolished by application of high environmental CO2 concentrations. The latter observation demonstrates that the absence of ER-ANT1 activity mainly affects photorespiration (maybe solely GDC), whereas basic cellular metabolism remains largely unchanged. Since ER-ANT1 homologs are restricted to higher plants, it is tempting to speculate that this carrier fulfils a plant-specific function directly or indirectly controlling cellular ROS production. The observation that ER-ANT1 activity is associated with cellular ROS levels reveals an unexpected and critical physiological connection between the ER and other organelles in plants. PMID:23860249
Liu, Liangming; Wu, Huiling; Zang, JiaTao; Yang, Guangming; Zhu, Yu; Wu, Yue; Chen, Xiangyun; Lan, Dan; Li, Tao
2016-08-01
Sepsis and septic shock are the common complications in ICUs. Vital organ function disorder contributes a critical role in high mortality after severe sepsis or septic shock, in which endoplasmic reticulum stress plays an important role. Whether anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to sepsis and the underlying mechanisms are not known. Laboratory investigation. State Key Laboratory of Trauma, Burns and Combined Injury. Sprague-Dawley rats. Using cecal ligation and puncture-induced septic shock rats, lipopolysaccharide-treated vascular smooth muscle cells, and cardiomyocytes, effects of 4-phenylbutyric acid on vital organ function and the relationship with endoplasmic reticulum stress and endoplasmic reticulum stress-mediated inflammation, apoptosis, and oxidative stress were observed. Conventional treatment, including fluid resuscitation, vasopressin, and antibiotic, only slightly improved the hemodynamic variable, such as mean arterial blood pressure and cardiac output, and slightly improved the vital organ function and the animal survival of septic shock rats. Supplementation of 4-phenylbutyric acid (5 mg/kg; anti-endoplasmic reticulum stress), especially administered at early stage, significantly improved the hemodynamic variables, vital organ function, such as liver, renal, and intestinal barrier function, and animal survival in septic shock rats. 4-Phenylbutyric acid application inhibited the endoplasmic reticulum stress and endoplasmic reticulum stress-related proteins, such as CCAAT/enhancer-binding protein homologous protein in vital organs, such as heart and superior mesenteric artery after severe sepsis. Further studies showed that 4-phenylbutyric acid inhibited endoplasmic reticulum stress-mediated cytokine release, apoptosis, and oxidative stress via inhibition of nuclear factor-κB, caspase-3 and caspase-9, and increasing glutathione peroxidase and superoxide dismutase expression, respectively. Anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to septic shock. This beneficial effect of 4-phenylbutyric acid is closely related to the inhibition of endoplasmic reticulum stress-mediated oxidative stress, apoptosis, and cytokine release. This finding provides a potential therapeutic measure for clinical critical conditions, such as severe sepsis.
Autophagy modulates endoplasmic reticulum stress-induced cell death in podocytes: A protective role
Cheng, Yu-Chi; Chang, Jer-Ming; Chen, Chien-An
2015-01-01
Endoplasmic reticulum stress occurs in a variety of patho-physiological mechanisms and there has been great interest in managing this pathway for the treatment of clinical diseases. Autophagy is closely interconnected with endoplasmic reticulum stress to counteract the possible injurious effects related with the impairment of protein folding. Studies have shown that glomerular podocytes exhibit high rate of autophagy to maintain as terminally differentiated cells. In this study, podocytes were exposed to tunicamycin and thapsigargin to induce endoplasmic reticulum stress. Thapsigargin/tunicamycin treatment induced a significant increase in endoplasmic reticulum stress and of cell death, represented by higher GADD153 and GRP78 expression and propidium iodide flow cytometry, respectively. However, thapsigargin/tunicamycin stimulation also enhanced autophagy development, demonstrated by monodansylcadaverine assay and LC3 conversion. To evaluate the regulatory effects of autophagy on endoplasmic reticulum stress-induced cell death, rapamycin (Rap) or 3-methyladenine (3-MA) was added to enhance or inhibit autophagosome formation. Endoplasmic reticulum stress-induced cell death was decreased at 6 h, but was not reduced at 24 h after Rap+TG or Rap+TM treatment. In contrast, endoplasmic reticulum stress-induced cell death increased at 6 and 24 h after 3-MA+TG or 3-MA+TM treatment. Our study demonstrated that thapsigargin/tunicamycin treatment induced endoplasmic reticulum stress which resulted in podocytes death. Autophagy, which counteracted the induced endoplasmic reticulum stress, was simultaneously enhanced. The salvational role of autophagy was supported by adding Rap/3-MA to mechanistically regulate the expression of autophagy and autophagosome formation. In summary, autophagy helps the podocytes from cell death and may contribute to sustain the longevity as a highly differentiated cell lineage. PMID:25322957
Bouhlel, Aicha; Joumaa, Wissam H; Léoty, Claude
2003-09-01
The effects of anabolic-androgenic steroid administration on the function of the sarcoplasmic reticulum (SR) pump were investigated in chemically skinned fibres from the extensor digitorum longus (EDL) and soleus muscles of sedentary rats. Twenty male rats were divided into two groups, one group received an intramuscular injection of nandrolone decanoate (15 mg x kg(-1)) weekly for 8 weeks, the second received similar weekly doses of vehicle (sterile peanut oil). Compared with control muscles, nandrolone decanoate treatment reduced SR Ca(2+) loading in EDL and soleus fibres by 49% and 29%, respectively. In control and treated muscles, the rate of Ca(2+) leakage depended on the quantity of Ca(2+) loaded. Furthermore, for similar SR Ca(2+) contents, the Ca(2+) leakage rate was not significantly modified by nandrolone decanoate treatment. Nandrolone decanoate treatment thus affects Ca (2+) uptake by the SR in a fibre-type dependent manner.
Chini, Corryn E; Fisher, Gregory L; Johnson, Ben; Tamkun, Michael M; Kraft, Mary L
2018-02-26
Advances in three-dimensional secondary ion mass spectrometry (SIMS) imaging have enabled visualizing the subcellular distributions of various lipid species within individual cells. However, the difficulty of locating organelles using SIMS limits efforts to study their lipid compositions. Here, the authors have assessed whether endoplasmic reticulum (ER)-Tracker Blue White DPX ® , which is a commercially available stain for visualizing the endoplasmic reticulum using fluorescence microscopy, produces distinctive ions that can be used to locate the endoplasmic reticulum using SIMS. Time-of-flight-SIMS tandem mass spectrometry (MS 2 ) imaging was used to identify positively and negatively charged ions produced by the ER-Tracker stain. Then, these ions were used to localize the stain and thus the endoplasmic reticulum, within individual human embryonic kidney cells that contained higher numbers of endoplasmic reticulum-plasma membrane junctions on their surfaces. By performing MS 2 imaging of selected ions in parallel with the precursor ion (MS 1 ) imaging, the authors detected a chemical interference native to the cell at the same nominal mass as the pentafluorophenyl fragment from the ER-Tracker stain. Nonetheless, the fluorine secondary ions produced by the ER-Tracker stain provided a distinctive signal that enabled locating the endoplasmic reticulum using SIMS. This simple strategy for visualizing the endoplasmic reticulum in individual cells using SIMS could be combined with existing SIMS methodologies for imaging intracellular lipid distribution and to study the lipid composition within the endoplasmic reticulum.
1986-01-01
Functionally skinned and electrochemically shunted myocytes were prepared by perfusing rat hearts with collagenase in order to obtain a technically improved measurement of sarcomere dynamics and to evaluate the role of sarcoplasmic reticulum in situ with respect to contractile activation. In the presence of micromolar calcium, the myocytes exhibited phasic and propagated contraction waves beginning at one end and proceeding along the myocyte. Beating rates, the propagation velocity of the activation wave, and single sarcomere shortening and relaxation velocities were obtained by manual or automated analysis of 16-mm film recorded at 170 frames/s from a camera attached to a microscope that was equipped with a temperature-controlled stage. In parallel experiments, calcium accumulation by the sarcoplasmic reticulum of the myocytes in situ was measured by direct isotopic tracer methods. The frequency (10-38 min-1) of spontaneous contractions, the velocity (1.9-7.4 microns . s-1) of sarcomere shortening, and the velocity (1.7-6.8 microns . s-1) of sarcomere relaxation displayed identical temperature dependences (Q10 = 2.2), which are similar to that of the calcium pump of sarcoplasmic reticulum and are consistent with a rate limit imposed by enzyme-catalyzed mechanisms on all these parameters. On the other hand, the velocity (77- 159 microns . s-1) of sequential sarcomere activation displayed a lower temperature dependence (Q10 = 1.5), which is consistent with a diffusion-limited and self-propagating release of calcium from one sarcomere to the other. The phasic contractile activity of the dissociated myocytes was inhibited by 10(-8)-10(6) M ryanodine (and not by myolemmal calcium blockers) under conditions in which calcium accumulation by sarcoplasmic reticulum in situ was demonstrated to proceed optimally. The effect of ryanodine is attributed to an interaction of this drug with sarcotubular structures, producing inhibition of calcium release from the sarcoplasmic reticulum. The consequent lack of sarcomere activation underlines the role of sarcoplasmic reticulum uptake and release in the phasic contractile activation of the electrochemically shunted myocytes. PMID:3522803
Endoplasmic reticulum stress in the pathogenesis of hypertension.
Young, Colin N
2017-08-01
What is the topic of this review? This review highlights the emerging role of disruptions in endoplasmic reticulum (ER) function, namely ER stress, as a contributor to hypertension. What advances does it highlight? This review presents an integrative view of ER stress in cardiovascular control systems, including systems within the brain, kidney and peripheral vasculature, as related to development of hypertension. The endoplasmic reticulum (ER) is a cellular organelle specialized in the synthesis, folding, assembly and modification of proteins. In situations of increased protein demand, complex signalling pathways, termed the unfolded protein response, influence a series of cellular feedback loops to control ER function strictly. Although this is initially a compensatory attempt to maintain cellular homeostasis, chronic activation of the unfolded protein response, known as ER stress, leads to sustained changes in cellular function. A growing body of literature points to ER stress in diverse cardioregulatory systems, including the brain, kidney and vasculature, as central to the development of hypertension. Here, these recent findings from essential and obesity-related forms of hypertension are highlighted in an integrative manner, with discussion of the potential upstream causes and downstream consequences of ER stress. Given that hypertension is a leading medical and socio-economic global challenge, emerging findings suggest that targeting ER stress might represent a viable strategy for the treatment of hypertensive disease. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Body weight and rumen-reticulum capacity in tule elk and mule deer
Weckerly, F.W.; Bleich, V.C.; Chetkiewicz, C.-L.B.; Ricca, M.A.
2003-01-01
The relationship between body size and rumen-reticulum capacity among conspecific individuals is predicted to be isometric. We examined whether the relationship between body weight and rumen-reticulum capacity was isometric in adult male and female rule elk (Cervus elaphus nannodes) and in adult female mule deer (Odocoileus hemionus). We detected no effect of sex on this relationship in elk, and the slope of the regression was 1.0 for one measure of rumen-reticulum capacity and <1.0 for another. Among deer, the slope of the relationship was <1.0 in one measure of rumen-reticulum capacity, and we detected no relationship with the other.
Carreras-Sureda, Amado; Pihán, Philippe; Hetz, Claudio
2017-01-01
Endoplasmic reticulum (ER) to mitochondria communication has emerged in recent years as a signaling hub regulating cellular physiology with a relevant contribution to diseases including cancer and neurodegeneration. This functional integration is exerted through discrete interorganelle structures known as mitochondria-associated membranes (MAMs). At these domains, ER/mitochondria physically associate to dynamically adjust metabolic demands and the response to stress stimuli. Here, we provide a focused overview of how the ER shapes the function of the mitochondria, giving a special emphasis to the significance of local signaling of the unfolded protein response at MAMs. The implications to cell fate control and the progression of cancer are also discussed.
Endoplasmic reticulum stress is induced in the human placenta during labour
Veerbeek, J.H.W.; Tissot Van Patot, M.C.; Burton, G.J.; Yung, H.W.
2015-01-01
Placental endoplasmic reticulum (ER) stress has been postulated in the pathophysiology of pre-eclampsia (PE) and intrauterine growth restriction (IUGR), but its activation remains elusive. Oxidative stress induced by ischaemia/hypoxia-reoxygenation activates ER stress in vitro. Here, we explored whether exposure to labour represents an in vivo model for the study of acute placental ER stress. ER stress markers, GRP78, P-eIF2α and XBP-1, were significantly higher in laboured placentas than in Caesarean-delivered controls localised mainly in the syncytiotrophoblast. The similarities to changes observed in PE/IUGR placentas suggest exposure to labour can be used to investigate induction of ER stress in pathological placentas. PMID:25434970
Moltedo, Ornella; Faraonio, Raffaella
2018-01-01
In endothelial cells, the tight control of the redox environment is essential for the maintenance of vascular homeostasis. The imbalance between ROS production and antioxidant response can induce endothelial dysfunction, the initial event of many cardiovascular diseases. Recent studies have revealed that the endoplasmic reticulum could be a new player in the promotion of the pro- or antioxidative pathways and that in such a modulation, the unfolded protein response (UPR) pathways play an essential role. The UPR consists of a set of conserved signalling pathways evolved to restore the proteostasis during protein misfolding within the endoplasmic reticulum. Although the first outcome of the UPR pathways is the promotion of an adaptive response, the persistent activation of UPR leads to increased oxidative stress and cell death. This molecular switch has been correlated to the onset or to the exacerbation of the endothelial dysfunction in cardiovascular diseases. In this review, we highlight the multiple chances of the UPR to induce or ameliorate oxidative disturbances and propose the UPR pathways as a new therapeutic target for the clinical management of endothelial dysfunction. PMID:29725497
Márton, Margita; Kurucz, Anita; Lizák, Beáta; Margittai, Éva; Bánhegyi, Gábor; Kapuy, Orsolya
2017-01-05
Accumulation of misfolded/unfolded proteins in the endoplasmic reticulum (ER) leads to the activation of three branches (Protein kinase (RNA)-like endoplasmic reticulum kinase [PERK], Inositol requiring protein 1 [IRE-1] and Activating trascription factor 6 [ATF6], respectively) of unfolded protein response (UPR). The primary role of UPR is to try to drive back the system to the former or a new homeostatic state by self-eating dependent autophagy, while excessive level of ER stress results in apoptotic cell death. Our study focuses on the role of PERK- and IRE-1-induced arms of UPR in life-or-death decision. Here we confirm that silencing of PERK extends autophagy-dependent survival, whereas the IRE-1-controlled apoptosis inducer is downregulated during ER stress. We also claim that the proper order of surviving and self-killing mechanisms is controlled by a positive feedback loop between PERK and IRE-1 branches. This regulatory network makes possible a smooth, continuous activation of autophagy with respect to ER stress, while the induction of apoptosis is irreversible and switch-like. Using our knowledge of molecular biological techniques and systems biological tools we give a qualitative description about the dynamical behavior of PERK- and IRE-1-controlled life-or-death decision. Our model claims that the two arms of UPR accomplish an altered upregulation of autophagy and apoptosis inducers during ER stress. Since ER stress is tightly connected to aging and age-related degenerative disorders, studying the signaling pathways of UPR and their role in maintaining ER proteostasis have medical importance.
Activation of autophagy by unfolded proteins during endoplasmic reticulum stress.
Yang, Xiaochen; Srivastava, Renu; Howell, Stephen H; Bassham, Diane C
2016-01-01
Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol-requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4-phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin- or dithiothreitol-induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over-expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4-phenylbutyrate, suggesting that heat-induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b-dependent manner. Moreover, zeolin and CPY* partially co-localized with the autophagic body marker GFP-ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Johnson, Justin S.; Kono, Tatsuyoshi; Tong, Xin; Yamamoto, Wataru R.; Zarain-Herzberg, Angel; Merrins, Matthew J.; Satin, Leslie S.; Gilon, Patrick; Evans-Molina, Carmella
2014-01-01
Although the pancreatic duodenal homeobox 1 (Pdx-1) transcription factor is known to play an indispensable role in β cell development and secretory function, recent data also implicate Pdx-1 in the maintenance of endoplasmic reticulum (ER) health. The sarco-endoplasmic reticulum Ca2+ ATPase 2b (SERCA2b) pump maintains a steep Ca2+ gradient between the cytosol and ER lumen. In models of diabetes, our data demonstrated loss of β cell Pdx-1 that occurs in parallel with altered SERCA2b expression, whereas in silico analysis of the SERCA2b promoter revealed multiple putative Pdx-1 binding sites. We hypothesized that Pdx-1 loss under inflammatory and diabetic conditions leads to decreased SERCA2b levels and activity with concomitant alterations in ER health. To test this, siRNA-mediated knockdown of Pdx-1 was performed in INS-1 cells. The results revealed reduced SERCA2b expression and decreased ER Ca2+, which was measured using fluorescence lifetime imaging microscopy. Cotransfection of human Pdx-1 with a reporter fused to the human SERCA2 promoter increased luciferase activity 3- to 4-fold relative to an empty vector control, and direct binding of Pdx-1 to the proximal SERCA2 promoter was confirmed by chromatin immunoprecipitation. To determine whether restoration of SERCA2b could rescue ER stress induced by Pdx-1 loss, Pdx1+/− mice were fed a high-fat diet. Isolated islets demonstrated an increased spliced-to-total Xbp1 ratio, whereas SERCA2b overexpression reduced the Xbp1 ratio to that of wild-type controls. Together, these results identify SERCA2b as a novel transcriptional target of Pdx-1 and define a role for altered ER Ca2+ regulation in Pdx-1-deficient states. PMID:25271154
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Yong; Karaveg, Khanita; Moremen, Kelley W.
2016-11-17
Asn-linked glycosylation of newly synthesized polypeptides occurs in the endoplasmic reticulum of eukaryotic cells. Glycan structures are trimmed and remodeled as they transit the secretory pathway, and processing intermediates play various roles as ligands for folding chaperones and signals for quality control and intracellular transport. Key steps for the generation of these trimmed intermediates are catalyzed by glycoside hydrolase family 47 (GH47) α-mannosidases that selectively cleave α1,2-linked mannose residues. Despite the sequence and structural similarities among the GH47 enzymes, the molecular basis for residue-specific cleavage remains obscure. The present studies reveal enzyme–substrate complex structures for two related GH47 α-mannosidases andmore » provide insights into how these enzymes recognize the same substrates differently and catalyze the complementary glycan trimming reactions necessary for glycan maturation.« less
Yu, Jianqiang; Li, Yuxiang; Zhao, Chengjun; Gong, Xin; Liu, Jianping; Wang, Feng; Jiang, Yuanxu
2010-05-01
To observe the effect of oxysophoridine (OSR) on the EEG and its power spectrum of reticulum formation in mesencephalon of anaesthetized rat. Utilizing the technique of brain stereotactic apparatus, electrodes were implanted into reticulum formation of mesencephalon. Monopolar lead and computerized FFT technique were employed to record and analyse the index of EEG, power spectrum and frequency distribution in order to study the effect of oxysophoridine on the bioelectricity change of mesencephalon reticulum formation in rats. After administrating(icy) with oxysophoridine at the dose of 2.5,5, 10 mg/rat, the EEG of mesencephalon reticulum formation mainly characterized with low amplitude and slow waves accompanied by spindle-formed sleeping waves with a significant decrease of total power of EEG (P < 0.05) while the ratio of theta, alpha waves increased in total frequency of rats (P < 0.05). Oxysophoridine possesses central inhibitory effects and its inhibitory mechanism may associate with the reduction of bioelectricity in mesencephalon reticulum formation. Mesencephalon reticulum formation may serve as one part of the structure serving as the circuit conducting the central inhibitory effect of oxysophoridine. [Key words] oxysophoridine; reticulum formation; electroencephalogram (EEG) ; rats
Ubiquitin-dependent Protein Degradation at the Yeast Endoplasmic Reticulum and Nuclear Envelope
Zattas, Dimitrios; Hochstrasser, Mark
2014-01-01
The endoplasmic reticulum (ER) is the primary organelle in eukaryotic cells where membrane and secreted proteins are inserted into or across cell membranes. Its membrane bilayer and luminal compartments provide a favorable environment for the folding and assembly of thousands of newly synthesized proteins. However, protein folding is intrinsically error-prone, and various stress conditions can further increase levels of protein misfolding and damage, particularly in the ER, which can lead to cellular dysfunction and disease. The ubiquitin-proteasome system (UPS) is responsible for the selective destruction of a vast array of protein substrates, either for protein quality control or to allow rapid changes in the levels of specific regulatory proteins. In this review, we will focus on the components and mechanisms of ER-associated protein degradation (ERAD), an important branch of the UPS. ER membranes extend from subcortical regions of the cell to the nuclear envelope, with its continuous outer and inner membranes; the nuclear envelope is a specialized subdomain of the ER. ERAD presents additional challenges to the UPS beyond those faced with soluble substrates of the cytoplasm and nucleus. These include recognition of sugar modifications that occur in the ER, retrotranslocation of proteins across the membrane bilayer, and transfer of substrates from the ER extraction machinery to the proteasome. Here we review characteristics of ERAD substrate degradation signals (degrons), mechanisms underlying substrate recognition and processing by the ERAD machinery, and ideas on the still unresolved problem of how substrate proteins are moved across and extracted from the ER membrane. PMID:25231236
GABAB receptor cell surface export is controlled by an endoplasmic reticulum gatekeeper
Doly, Stéphane; Shirvani, Hamasseh; Gäta, Gabriel; Meye, Frank; Emerit, Michel-Boris; Enslen, Hervé; Achour, Lamia; Pardo-Lopez, Liliana; Kwon, Yang Seung; Armand, Vincent; Gardette, Robert; Giros, Bruno; Gassmann, Martin; Bettler, Bernhard; Mameli, Manuel; Darmon, Michèle; Marullo, Stefano
2016-01-01
Summary Endoplasmic reticulum (ER) release and cell surface export of many G protein-coupled receptors (GPCRs), are tightly regulated. For GABAB receptors of GABA, the major mammalian inhibitory neurotransmitter, the ligand-binding GB1 subunit is maintained in the ER by unknown mechanisms in the absence of hetero-dimerization with the GB2 subunit. We report that GB1 retention is regulated by a specific gatekeeper, PRAF2. This ER resident transmembrane protein binds to GB1, preventing its progression in the biosynthetic pathway. GB1 release occurs upon competitive displacement from PRAF2 by GB2. PRAF2 concentration, relative to that of GB1 and GB2, tightly controls cell surface receptor density and controls GABAB function in neurons. Experimental perturbation of PRAF2 levels in vivo caused marked hyperactivity disorders in mice. These data reveal an unanticipated major impact of specific ER gate-keepers on GPCR function and identify PRAF2 as a new molecular target with therapeutic potential for psychiatric and neurological diseases involving GABAB function. PMID:26033241
Endoplasmic reticulum stress is induced in the human placenta during labour.
Veerbeek, J H W; Tissot Van Patot, M C; Burton, G J; Yung, H W
2015-01-01
Placental endoplasmic reticulum (ER) stress has been postulated in the pathophysiology of pre-eclampsia (PE) and intrauterine growth restriction (IUGR), but its activation remains elusive. Oxidative stress induced by ischaemia/hypoxia-reoxygenation activates ER stress in vitro. Here, we explored whether exposure to labour represents an in vivo model for the study of acute placental ER stress. ER stress markers, GRP78, P-eIF2α and XBP-1, were significantly higher in laboured placentas than in Caesarean-delivered controls localised mainly in the syncytiotrophoblast. The similarities to changes observed in PE/IUGR placentas suggest exposure to labour can be used to investigate induction of ER stress in pathological placentas. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Endoplasmic reticulum stress in chondrodysplasias caused by mutations in collagen types II and X.
Gawron, Katarzyna
2016-11-01
The endoplasmic reticulum is primarily recognized as the site of synthesis and folding of secreted, membrane-bound, and some organelle-targeted proteins. An imbalance between the load of unfolded proteins and the processing capacity in endoplasmic reticulum leads to the accumulation of unfolded or misfolded proteins and endoplasmic reticulum stress, which is a hallmark of a number of storage diseases, including neurodegenerative diseases, a number of metabolic diseases, and cancer. Moreover, its contribution as a novel mechanistic paradigm in genetic skeletal diseases associated with abnormalities of the growth plates and dwarfism is considered. In this review, I discuss the mechanistic significance of endoplasmic reticulum stress, abnormal folding, and intracellular retention of mutant collagen types II and X in certain variants of skeletal chondrodysplasia.
Chong, Wai Chin; Shastri, Madhur D.; Eri, Rajaraman
2017-01-01
The endoplasmic reticulum (ER) is a complex protein folding and trafficking organelle. Alteration and discrepancy in the endoplasmic reticulum environment can affect the protein folding process and hence, can result in the production of misfolded proteins. The accumulation of misfolded proteins causes cellular damage and elicits endoplasmic reticulum stress. Under such stress conditions, cells exhibit reduced functional synthesis, and will undergo apoptosis if the stress is prolonged. To resolve the ER stress, cells trigger an intrinsic mechanism called an unfolded protein response (UPR). UPR is an adaptive signaling process that triggers multiple pathways through the endoplasmic reticulum transmembrane transducers, to reduce and remove misfolded proteins and improve the protein folding mechanism, in order to improve and maintain endoplasmic reticulum homeostasis. An increasing number of studies support the view that oxidative stress has a strong connection with ER stress. During the protein folding process, reactive oxygen species are produced as by-products, leading to impaired reduction-oxidation (redox) balance conferring oxidative stress. As the protein folding process is dependent on redox homeostasis, the oxidative stress can disrupt the protein folding mechanism and enhance the production of misfolded proteins, causing further ER stress. It is proposed that endoplasmic reticulum stress and oxidative stress together play significant roles in the pathophysiology of bowel diseases. PMID:28379196
Altered sarcoplasmic reticulum calcium cycling—targets for heart failure therapy
Kho, Changwon; Lee, Ahyoung; Hajjar, Roger J.
2013-01-01
Cardiac myocyte function is dependent on the synchronized movements of Ca2+ into and out of the cell, as well as between the cytosol and sarcoplasmic reticulum. These movements determine cardiac rhythm and regulate excitation–contraction coupling. Ca2+ cycling is mediated by a number of critical Ca2+-handling proteins and transporters, such as L-type Ca2+ channels (LTCCs) and sodium/calcium exchangers in the sarcolemma, and sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), ryanodine receptors, and cardiac phospholamban in the sarcoplasmic reticulum. The entry of Ca2+ into the cytosol through LTCCs activates the release of Ca2+ from the sarcoplasmic reticulum through ryanodine receptor channels and initiates myocyte contraction, whereas SERCA2a and cardiac phospholamban have a key role in sarcoplasmic reticulum Ca2+ sequesteration and myocyte relaxation. Excitation–contraction coupling is regulated by phosphorylation of Ca2+-handling proteins. Abnormalities in sarcoplasmic reticulum Ca2+ cycling are hallmarks of heart failure and contribute to the pathophysiology and progression of this disease. Correcting impaired intracellular Ca2+ cycling is a promising new approach for the treatment of heart failure. Novel therapeutic strategies that enhance myocyte Ca2+ homeostasis could prevent and reverse adverse cardiac remodeling and improve clinical outcomes in patients with heart failure. PMID:23090087
Chong, Wai Chin; Shastri, Madhur D; Eri, Rajaraman
2017-04-05
The endoplasmic reticulum (ER) is a complex protein folding and trafficking organelle. Alteration and discrepancy in the endoplasmic reticulum environment can affect the protein folding process and hence, can result in the production of misfolded proteins. The accumulation of misfolded proteins causes cellular damage and elicits endoplasmic reticulum stress. Under such stress conditions, cells exhibit reduced functional synthesis, and will undergo apoptosis if the stress is prolonged. To resolve the ER stress, cells trigger an intrinsic mechanism called an unfolded protein response (UPR). UPR is an adaptive signaling process that triggers multiple pathways through the endoplasmic reticulum transmembrane transducers, to reduce and remove misfolded proteins and improve the protein folding mechanism, in order to improve and maintain endoplasmic reticulum homeostasis. An increasing number of studies support the view that oxidative stress has a strong connection with ER stress. During the protein folding process, reactive oxygen species are produced as by-products, leading to impaired reduction-oxidation (redox) balance conferring oxidative stress. As the protein folding process is dependent on redox homeostasis, the oxidative stress can disrupt the protein folding mechanism and enhance the production of misfolded proteins, causing further ER stress. It is proposed that endoplasmic reticulum stress and oxidative stress together play significant roles in the pathophysiology of bowel diseases.
Regulation of Mitochondrial Dynamics and Autophagy by the Mitochondria-Associated Membrane.
Tagaya, Mitsuo; Arasaki, Kohei
2017-01-01
Mitochondria are powerhouses and central to metabolism in cells. They are highly dynamic organelles that continuously fuse, divide, and move along the cytoskeleton to form the mitochondrial network. The fusion and fission are catalyzed by four dynamin-related GTPases in mammals that are controlled by a variety of protein-protein interactions and posttranslational modifications. Mitochondrial dynamics and metabolism are linked and regulate each other. Starvation induces mitochondrial elongation, which enables the mitochondria to produce energy more efficiently and to escape from autophagic degradation. Damaged portions of mitochondria are removed from the healthy parts by division, and subsequently degraded via a specific mode of autophagy termed mitophagy. Recent studies shed light on the contribution of the endoplasmic reticulum to mitochondrial dynamics and the cooperation of the two organelles for the progression of autophagy including mitophagy. A subdomain of the endoplasmic reticulum apposed to mitochondria is called the mitochondria-associated membrane (MAM), which comprises a unique set of proteins that interact with mitochondrial proteins. Here we review our current understanding of the molecular mechanisms of mitochondrial dynamics and mitochondria-related processes in the context of the interaction with the endoplasmic reticulum.
Pagliassotti, Michael J; Estrada, Andrea L; Hudson, William M; Wei, Yuren; Wang, Dong; Seals, Douglas R; Zigler, Melanie L; LaRocca, Thomas J
2017-07-01
The accumulation of damaged proteins can perturb cellular homeostasis and provoke aging and cellular damage. Quality control systems, such as the unfolded protein response (UPR), inflammatory signaling and protein degradation, mitigate the residence time of damaged proteins. In the present study, we have examined the UPR and inflammatory signaling in the liver of young (~6 months) and old (~28 months) mice (n=8/group), and the ability of trehalose, a compound linked to increased protein stability and autophagy, to counteract age-induced effects on these systems. When used, trehalose was provided for 4 weeks in the drinking water immediately prior to sacrifice (n=7/group). Livers from old mice were characterized by activation of the UPR, increased inflammatory signaling and indices of liver injury. Trehalose treatment reduced the activation of the UPR and inflammatory signaling, and reduced liver injury. Reductions in proteins involved in autophagy and proteasome activity observed in old mice were restored following trehalose treatment. The autophagy marker, LC3B-II, was increased in old mice treated with trehalose. Metabolomics analyses demonstrated that reductions in hexosamine biosynthetic pathway metabolites and nicotinamide in old mice were restored following trehalose treatment. Trehalose appears to be an effective intervention to reduce age-associated liver injury and mitigate the need for activation of quality control systems that respond to disruption of proteostasis. Copyright © 2017 Elsevier Inc. All rights reserved.
Kadowaki, Hisae; Satrimafitrah, Pasjan; Takami, Yasunari; Nishitoh, Hideki
2018-05-09
The maintenance of endoplasmic reticulum (ER) homeostasis is essential for cell function. ER stress-induced pre-emptive quality control (ERpQC) helps alleviate the burden to a stressed ER by limiting further protein loading. We have previously reported the mechanisms of ERpQC, which includes a rerouting step and a degradation step. Under ER stress conditions, Derlin family proteins (Derlins), which are components of ER-associated degradation, reroute specific ER-targeting proteins to the cytosol. Newly synthesized rerouted polypeptides are degraded via the cytosolic chaperone Bag6 and the AAA-ATPase p97 in the ubiquitin-proteasome system. However, the mechanisms by which ER-targeting proteins are rerouted from the ER translocation pathway to the cytosolic degradation pathway and how the E3 ligase ubiquitinates ERpQC substrates remain unclear. Here, we show that ERpQC substrates are captured by the carboxyl-terminus region of Derlin-1 and ubiquitinated by the HRD1 E3 ubiquitin ligase prior to degradation. Moreover, HRD1 forms a large ERpQC-related complex composed of Sec61α and Derlin-1 during ER stress. These findings indicate that the association of the degradation factor HRD1 with the translocon and the rerouting factor Derlin-1 may be necessary for the smooth and effective clearance of ERpQC substrates.
The quality control theory of aging.
Ladiges, Warren
2014-01-01
The quality control (QC) theory of aging is based on the concept that aging is the result of a reduction in QC of cellular systems designed to maintain lifelong homeostasis. Four QC systems associated with aging are 1) inadequate protein processing in a distressed endoplasmic reticulum (ER); 2) histone deacetylase (HDAC) processing of genomic histones and gene silencing; 3) suppressed AMPK nutrient sensing with inefficient energy utilization and excessive fat accumulation; and 4) beta-adrenergic receptor (BAR) signaling and environmental and emotional stress. Reprogramming these systems to maintain efficiency and prevent aging would be a rational strategy for increased lifespan and improved health. The QC theory can be tested with a pharmacological approach using three well-known and safe, FDA-approved drugs: 1) phenyl butyric acid, a chemical chaperone that enhances ER function and is also an HDAC inhibitor, 2) metformin, which activates AMPK and is used to treat type 2 diabetes, and 3) propranolol, a beta blocker which inhibits BAR signaling and is used to treat hypertension and anxiety. A critical aspect of the QC theory, then, is that aging is associated with multiple cellular systems that can be targeted with drug combinations more effectively than with single drugs. But more importantly, these drug combinations will effectively prevent, delay, or reverse chronic diseases of aging that impose such a tremendous health burden on our society.
1995-01-01
It has been proposed that the UDP-Glc:glycoprotein glucosyltransferase, an endoplasmic reticulum enzyme that only glucosylates improperly folded glycoproteins forming protein-linked Glc1Man7-9-GlcNAc2 from the corresponding unglucosylated species, participates together with lectin- like chaperones that recognize monoglucosylated oligosaccharides in the control mechanism by which cells only allow passage of properly folded glycoproteins to the Golgi apparatus. Trypanosoma cruzi cells were used to test this model as in trypanosomatids addition of glucosidase inhibitors leads to the accumulation of only monoglucosylated oligosaccharides, their formation being catalyzed by the UDP- Glc:glycoprotein glucosyltransferase. In all other eukaryotic cells the inhibitors produce underglycosylation of proteins and/or accumulation of oliogosaccharides containing two or three glucose units. Cruzipain, a lysosomal proteinase having three potential N-glycosylation sites, two at the catalytic domain and one at the COOH-terminal domain, was isolated in a glucosylated form from cells grown in the presence of the glucosidase II inhibitor 1-deoxynojirimycin. The oligosaccharides present at the single glycosylation site of the COOH-terminal domain were glucosylated in some cruzipain molecules but not in others, this result being consistent with an asynchronous folding of glycoproteins in the endoplasmic reticulum. In spite of not affecting cell growth rate or the cellular general metabolism in short and long term incubations, 1-deoxynojirimycin caused a marked delay in the arrival of cruzipain to lysosomes. These results are compatible with the model proposed by which monoglucosylated glycoproteins may be transiently retained in the endoplasmic reticulum by lectin-like anchors recognizing monoglucosylated oligosaccharides. PMID:7642696
Endoplasmic reticulum stress implicated in chronic traumatic encephalopathy.
Lucke-Wold, Brandon P; Turner, Ryan C; Logsdon, Aric F; Nguyen, Linda; Bailes, Julian E; Lee, John M; Robson, Matthew J; Omalu, Bennet I; Huber, Jason D; Rosen, Charles L
2016-03-01
Chronic traumatic encephalopathy is a progressive neurodegenerative disease characterized by neurofibrillary tau tangles following repetitive neurotrauma. The underlying mechanism linking traumatic brain injury to chronic traumatic encephalopathy has not been elucidated. The authors investigate the role of endoplasmic reticulum stress as a link between acute neurotrauma and chronic neurodegeneration. The authors used pharmacological, biochemical, and behavioral tools to assess the role of endoplasmic reticulum stress in linking acute repetitive traumatic brain injury to the development of chronic neurodegeneration. Data from the authors' clinically relevant and validated rodent blast model were compared with those obtained from postmortem human chronic traumatic encephalopathy specimens from a National Football League player and World Wrestling Entertainment wrestler. The results demonstrated strong correlation of endoplasmic reticulum stress activation with subsequent tau hyperphosphorylation. Various endoplasmic reticulum stress markers were increased in human chronic traumatic encephalopathy specimens, and the endoplasmic reticulum stress response was associated with an increase in the tau kinase, glycogen synthase kinase-3β. Docosahexaenoic acid, an endoplasmic reticulum stress inhibitor, improved cognitive performance in the rat model 3 weeks after repetitive blast exposure. The data showed that docosahexaenoic acid administration substantially reduced tau hyperphosphorylation (t = 4.111, p < 0.05), improved cognition (t = 6.532, p < 0.001), and inhibited C/EBP homology protein activation (t = 5.631, p < 0.01). Additionally the data showed, for the first time, that endoplasmic reticulum stress is involved in the pathophysiology of chronic traumatic encephalopathy. Docosahexaenoic acid therefore warrants further investigation as a potential therapeutic agent for the prevention of chronic traumatic encephalopathy.
Endoplasmic Reticulum Stress in Ischemic and Nephrotoxic Acute Kidney Injury.
Yan, Mingjuan; Shu, Shaoqun; Guo, Chunyuan; Tang, Chengyuan; Dong, Zheng
2018-06-12
Acute kidney injury is a medical condition characterized by kidney damage with a rapid decline of renal function, which is associated with high mortality and morbidity. Recent research has further established an intimate relationship between acute kidney injury and chronic kidney disease. Perturbations of kidney cells in acute kidney injury result in the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum, leading to unfolded protein response or endoplasmic reticulum stress. In this review, we analyze the role and regulation of endoplasmic reticulum stress in acute kidney injury triggered by renal ischemia-reperfusion and cisplatin nephrotoxicity. The balance between the two major components of unfolded protein response, the adaptive pathway and the apoptotic pathway, plays a critical role in determining the cell fate in endoplasmic reticulum stress. The adaptive pathway is evoked to attenuate translation, induce chaperones, maintain protein homeostasis, and promote cell survival. Prolonged endoplasmic reticulum stress activates the apoptotic pathway, resulting in the elimination of dysfunctional cells. Therefore, regulating ER stress in kidney cells may provide a therapeutic target in acute kidney injury.
Proteomic Responses in Arabidopsis thaliana Seedlings Treated with Ethylene
USDA-ARS?s Scientific Manuscript database
Ethylene (ET) is a volatile plant growth hormone that most famously modulates fruit ripening, but it also controls plant growth, development and stress responses. In Arabidopsis thaliana, ET is perceived by receptors in the endoplasmic reticulum, and a signal is transduced through a protein kinase,...
An immunosurveillance mechanism controls cancer cell ploidy.
Senovilla, Laura; Vitale, Ilio; Martins, Isabelle; Tailler, Maximilien; Pailleret, Claire; Michaud, Mickaël; Galluzzi, Lorenzo; Adjemian, Sandy; Kepp, Oliver; Niso-Santano, Mireia; Shen, Shensi; Mariño, Guillermo; Criollo, Alfredo; Boilève, Alice; Job, Bastien; Ladoire, Sylvain; Ghiringhelli, François; Sistigu, Antonella; Yamazaki, Takahiro; Rello-Varona, Santiago; Locher, Clara; Poirier-Colame, Vichnou; Talbot, Monique; Valent, Alexander; Berardinelli, Francesco; Antoccia, Antonio; Ciccosanti, Fabiola; Fimia, Gian Maria; Piacentini, Mauro; Fueyo, Antonio; Messina, Nicole L; Li, Ming; Chan, Christopher J; Sigl, Verena; Pourcher, Guillaume; Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Lazar, Vladimir; Penninger, Josef M; Madeo, Frank; López-Otín, Carlos; Smyth, Mark J; Zitvogel, Laurence; Castedo, Maria; Kroemer, Guido
2012-09-28
Cancer cells accommodate multiple genetic and epigenetic alterations that initially activate intrinsic (cell-autonomous) and extrinsic (immune-mediated) oncosuppressive mechanisms. Only once these barriers to oncogenesis have been overcome can malignant growth proceed unrestrained. Tetraploidization can contribute to oncogenesis because hyperploid cells are genomically unstable. We report that hyperploid cancer cells become immunogenic because of a constitutive endoplasmic reticulum stress response resulting in the aberrant cell surface exposure of calreticulin. Hyperploid, calreticulin-exposing cancer cells readily proliferated in immunodeficient mice and conserved their increased DNA content. In contrast, hyperploid cells injected into immunocompetent mice generated tumors only after a delay, and such tumors exhibited reduced DNA content, endoplasmic reticulum stress, and calreticulin exposure. Our results unveil an immunosurveillance system that imposes immunoselection against hyperploidy in carcinogen- and oncogene-induced cancers.
Endoplasmic Reticulum-Plasma Membrane Contact Sites.
Saheki, Yasunori; De Camilli, Pietro
2017-06-20
The endoplasmic reticulum (ER) has a broad localization throughout the cell and forms direct physical contacts with all other classes of membranous organelles, including the plasma membrane (PM). A number of protein tethers that mediate these contacts have been identified, and study of these protein tethers has revealed a multiplicity of roles in cell physiology, including regulation of intracellular Ca 2+ dynamics and signaling as well as control of lipid traffic and homeostasis. In this review, we discuss the cross talk between the ER and the PM mediated by direct contacts. We review factors that tether the two membranes, their properties, and their dynamics in response to the functional state of the cell. We focus in particular on the role of ER-PM contacts in nonvesicular lipid transport between the two bilayers mediated by lipid transfer proteins.
Liu, Xiaoyu; Kwak, Dongmin; Lu, Zhongbing; Xu, Xin; Fassett, John; Wang, Huan; Wei, Yidong; Cavener, Douglas R; Hu, Xinli; Hall, Jennifer; Bache, Robert J; Chen, Yingjie
2014-10-01
Studies have reported that development of congestive heart failure is associated with increased endoplasmic reticulum stress. Double stranded RNA-activated protein kinase R-like endoplasmic reticulum kinase (PERK) is a major transducer of the endoplasmic reticulum stress response and directly phosphorylates eukaryotic initiation factor 2α, resulting in translational attenuation. However, the physiological effect of PERK on congestive heart failure development is unknown. To study the effect of PERK on ventricular structure and function, we generated inducible cardiac-specific PERK knockout mice. Under unstressed conditions, cardiac PERK knockout had no effect on left ventricular mass, or its ratio to body weight, cardiomyocyte size, fibrosis, or left ventricular function. However, in response to chronic transverse aortic constriction, PERK knockout mice exhibited decreased ejection fraction, increased left ventricular fibrosis, enhanced cardiomyocyte apoptosis, and exacerbated lung remodeling in comparison with wild-type mice. PERK knockout also dramatically attenuated cardiac sarcoplasmic reticulum Ca(2+)-ATPase expression in response to aortic constriction. Our findings suggest that PERK is required to protect the heart from pressure overload-induced congestive heart failure. © 2014 American Heart Association, Inc.
Ultrasonographic and radiographic findings in 503 cattle with traumatic reticuloperitonitis.
Braun, Ueli; Gerspach, Christian; Warislohner, Sonja; Nuss, Karl; Ohlerth, Stefanie
2018-05-26
This study involved 503 cattle with traumatic reticuloperitonitis (TRP), 494 of which underwent ultrasonographic and 484 radiographic examination of the reticulum. Ultrasonography revealed changes in the reticulum and/or peritoneum suggestive of peritonitis in 403 (83%) cattle, a decrease in the amplitude of reticular contractions in 244 (54%) and reduced or absent reticular motility in 173 (37%). A total of 536 foreign bodies were seen on 465 (96%) radiographs and a magnet was seen on 311 (64%) radiographs. Of the 536 foreign bodies, 300 (56%) were not attached to a magnet and 236 (44%) were attached. Of 300 radiographs showing foreign bodies not attached to a magnet, the foreign body was lying flat on the floor of the reticulum on 98 (18%) radiographs, was at an angle of greater than 30 degrees to the ventral aspect of the reticulum on 54 (10%), had penetrated the dorsal reticular wall on 76 (14%), had perforated the reticulum on 64 (12%) and was completely outside of the reticulum on 8 (1%) radiographs. Ultrasonography provides information about the scale and localisation of inflammatory changes of the peritoneum, and radiography allows the visualisation of ferromagnetic foreign bodies and magnets. Copyright © 2018. Published by Elsevier Ltd.
Sukumaran, Pramod; Löf, Christoffer; Kemppainen, Kati; Kankaanpää, Pasi; Pulli, Ilari; Näsman, Johnny; Viitanen, Tero; Törnquist, Kid
2012-01-01
Mammalian non-selective transient receptor potential cation channels (TRPCs) are important in the regulation of cellular calcium homeostasis. In thyroid cells, including rat thyroid FRTL-5 cells, calcium regulates a multitude of processes. RT-PCR screening of FRTL-5 cells revealed the presence of TRPC2 channels only. Knockdown of TRPC2 using shRNA (shTRPC2) resulted in decreased ATP-evoked calcium peak amplitude and inward current. In calcium-free buffer, there was no difference in the ATP-evoked calcium peak amplitude between control cells and shTRPC2 cells. Store-operated calcium entry was indistinguishable between the two cell lines. Basal calcium entry was enhanced in shTRPC2 cells, whereas the level of PKCβ1 and PKCδ, the activity of sarco/endoplasmic reticulum Ca2+-ATPase, and the calcium content in the endoplasmic reticulum were decreased. Stromal interaction molecule (STIM) 2, but not STIM1, was arranged in puncta in resting shTRPC2 cells but not in control cells. Phosphorylation site Orai1 S27A/S30A mutant and non-functional Orai1 R91W attenuated basal calcium entry in shTRPC2 cells. Knockdown of PKCδ with siRNA increased STIM2 punctum formation and enhanced basal calcium entry but decreased sarco/endoplasmic reticulum Ca2+-ATPase activity in wild-type cells. Transfection of a truncated, non-conducting mutant of TRPC2 evoked similar results. Thus, TRPC2 functions as a major regulator of calcium homeostasis in rat thyroid cells. PMID:23144458
Lee, Sungwook; Park, Boyoun; Ahn, Kwangseog
2003-01-01
US3 of human cytomegalovirus is an endoplasmic reticulum resident transmembrane glycoprotein that binds to major histocompatibility complex class I molecules and prevents their departure. The endoplasmic reticulum retention signal of the US3 protein is contained in the luminal domain of the protein. To define the endoplasmic reticulum retention sequence in more detail, we have generated a series of deletion and point mutants of the US3 protein. By analyzing the rate of intracellular transport and immunolocalization of the mutants, we have identified Ser58, Glu63, and Lys64 as crucial for retention, suggesting that the retention signal of the US3 protein has a complex spatial arrangement and does not comprise a contiguous sequence of amino acids. We also show that a modified US3 protein with a mutation in any of these amino acids maintains its ability to bind class I molecules; however, such mutated proteins are no longer retained in the endoplasmic reticulum and are not able to block the cell surface expression of class I molecules. These findings indicate that the properties that allow the US3 glycoprotein to be localized in the endoplasmic reticulum and bind major histocompatibility complex class I molecules are located in different parts of the molecule and that the ability of US3 to block antigen presentation is due solely to its ability to retain class I molecules in the endoplasmic reticulum. PMID:12525649
Chen, Li; Wang, Ting; Chen, Guanjun; Wang, Nuojin; Gui, Li; Dai, Fang; Fang, Zhaohui; Zhang, Qiu; Lu, Yunxia
2017-03-01
This study aimed to determine whether resveratrol treatment alleviates endoplasmic reticulum stress and changes the expression of adipokines in adipose tissues and cells. 8-week-old male C57BL/6 mice were fed a high-calorie diet (HCD group) or high-calorie diet supplemented with resveratrol (high-calorie diet + resveratrol group) for 3 months. Insulin resistance, serum lipids and proinflammatory indices, the size and inflammatory cell infiltration in subcutaneous and visceral adipose tissues were analyzed. The gene expressions of endoplasmic reticulum stress, adipokines, and inflammatory cytokines were determined. The induced mature 3T3-L1 cells were pretreated with resveratrol and then palmitic acid, and the gene expressions of endoplasmic reticulum stress, adipokines, and inflammatory cytokines were determined. Subcutaneous and visceral adipose tissues in the high-calorie diet-fed mice exhibited adipocyte hypertrophy, inflammatory activation, and endoplasmic reticulum stress. Resveratrol alleviated high-calorie diet-induced insulin resistance and endoplasmic reticulum stress, increased expression of SIRT1, and reversed expression of adipokines in varying degrees in both subcutaneous and visceral adipose tissues. The effects of resveratrol on palmitic acid-treated adipocytes were similar to those shown in the tissues. Resveratrol treatment obviously reversed adipocyte hypertrophy and insulin resistance by attenuating endoplasmic reticulum stress and inflammation, thus increasing the expression of SIRT1 and inverting the expression of adipokines in vivo and in vitro.
Hosokawa, Nobuko; Tremblay, Linda O; You, Zhipeng; Herscovics, Annette; Wada, Ikuo; Nagata, Kazuhiro
2003-07-11
Misfolded glycoproteins synthesized in the endoplasmic reticulum (ER) are degraded by cytoplasmic proteasomes, a mechanism known as ERAD (ER-associated degradation). In the present study, we demonstrate that ERAD of the misfolded genetic variant-null Hong Kong alpha1-antitrypsin is enhanced by overexpression of the ER processing alpha1,2-mannosidase (ER ManI) in HEK 293 cells, indicating the importance of ER ManI in glycoprotein quality control. We showed previously that EDEM, an enzymatically inactive mannosidase homolog, interacts with misfolded alpha1-antitrypsin and accelerates its degradation (Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A., and Nagata, K. (2001) EMBO Rep. 2, 415-422). Herein we demonstrate a combined effect of ER ManI and EDEM on ERAD of misfolded alpha1-antitrypsin. We also show that misfolded alpha1-antitrypsin NHK contains labeled Glc1Man9GlcNAc and Man5-9GlcNAc released by endo-beta-N-acetylglucosaminidase H in pulse-chase experiments with [2-3H]mannose. Overexpression of ER ManI greatly increases the formation of Man8GlcNAc, induces the formation of Glc1Man8GlcNAc and increases trimming to Man5-7GlcNAc. We propose a model whereby the misfolded glycoprotein interacts with ER ManI and with EDEM, before being recognized by downstream ERAD components. This detailed characterization of oligosaccharides associated with a misfolded glycoprotein raises the possibility that the carbohydrate recognition determinant triggering ERAD may not be restricted to Man8GlcNAc2 isomer B as previous studies have suggested.
Hsu, Jack C-C; Reid, David W; Hoffman, Alyson M; Sarkar, Devanand; Nicchitta, Christopher V
2018-05-01
Astrocyte elevated gene-1 (AEG-1), an oncogene whose overexpression promotes tumor cell proliferation, angiogenesis, invasion, and enhanced chemoresistance, is thought to function primarily as a scaffolding protein, regulating PI3K/Akt and Wnt/β-catenin signaling pathways. Here we report that AEG-1 is an endoplasmic reticulum (ER) resident integral membrane RNA-binding protein (RBP). Examination of the AEG-1 RNA interactome by HITS-CLIP and PAR-CLIP methodologies revealed a high enrichment for endomembrane organelle-encoding transcripts, most prominently those encoding ER resident proteins, and within this cohort, for integral membrane protein-encoding RNAs. Cluster mapping of the AEG-1/RNA interaction sites demonstrated a normalized rank order interaction of coding sequence >5' untranslated region, with 3' untranslated region interactions only weakly represented. Intriguingly, AEG-1/membrane protein mRNA interaction sites clustered downstream from encoded transmembrane domains, suggestive of a role in membrane protein biogenesis. Secretory and cytosolic protein-encoding mRNAs were also represented in the AEG-1 RNA interactome, with the latter category notably enriched in genes functioning in mRNA localization, translational regulation, and RNA quality control. Bioinformatic analyses of RNA-binding motifs and predicted secondary structure characteristics indicate that AEG-1 lacks established RNA-binding sites though shares the property of high intrinsic disorder commonly seen in RBPs. These data implicate AEG-1 in the localization and regulation of secretory and membrane protein-encoding mRNAs and provide a framework for understanding AEG-1 function in health and disease. © 2018 Hsu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
The Positive Inotropic Effect of Pyruvate Involves an Increase in Myofilament Calcium Sensitivity
Torres, Carlos A. A.; Varian, Kenneth D.; Canan, Cynthia H.; Davis, Jonathan P.; Janssen, Paul M. L.
2013-01-01
Pyruvate is a metabolic fuel that is a potent inotropic agent. Despite its unique inotropic and antioxidant properties, the molecular mechanism of its inotropic mechanism is still largely unknown. To examine the inotropic effect of pyruvate in parallel with intracellular calcium handling under near physiological conditions, we measured pH, myofilament calcium sensitivity, developed force, and calcium transients in ultra thin rabbit heart trabeculae at 37 °C loaded iontophoretically with the calcium indicator bis-fura-2. By contrasting conditions of control versus sarcoplasmic reticulum block (with either cyclopiazonic acid and ryanodine or with thapsigargin) we were able to characterize and isolate the effects of pyruvate on sarcoplasmic reticulum calcium handling and developed force. A potassium contracture technique was subsequently utilized to assess the force-calcium relationship and thus the myofilament calcium sensitivity. Pyruvate consistently increased developed force whether or not the sarcoplasmic reticulum was blocked (16.8±3.5 to 24.5±5.1 vs. 6.9±2.6 to 12.5±4.4 mN/mm2, non-blocked vs. blocked sarcoplasmic reticulum respectively, p<0.001, n = 9). Furthermore, the sensitizing effect of pyruvate on the myofilaments was demonstrated by potassium contractures (EC50 at baseline versus 20 minutes of pyruvate infusion (peak force development) was 701±94 vs. 445±65 nM, p<0.01, n = 6). This study is the first to demonstrate that a leftward shift in myofilament calcium sensitivity is an important mediator of the inotropic effect of pyruvate. This finding can have important implications for future development of therapeutic strategies in the management of heart failure. PMID:23691074
Aït Ghezali, Lamia; Arbabian, Atousa; Roudot, Hervé; Brouland, Jean-Philippe; Baran-Marszak, Fanny; Salvaris, Evelyn; Boyd, Andrew; Drexler, Hans G; Enyedi, Agnes; Letestu, Remi; Varin-Blank, Nadine; Papp, Bela
2017-06-26
Endoplasmic reticulum (ER) calcium storage and release play important roles in B lymphocyte maturation, survival, antigen-dependent cell activation and immunoglobulin synthesis. Calcium is accumulated in the endoplasmic reticulum (ER) by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). Because lymphocyte function is critically dependent on SERCA activity, it is important to understand qualitative and quantitative changes of SERCA protein expression that occur during B lymphoid differentiation and leukemogenesis. In this work we investigated the modulation of SERCA expression during the pharmacologically induced differentiation of leukemic precursor B lymphoblast cell lines that carry the E2A-PBX1 fusion oncoprotein. Changes of SERCA levels during differentiation were determined and compared to those of established early B lymphoid differentiation markers. SERCA expression of the cells was compared to that of mature B cell lines as well, and the effect of the direct inhibition of SERCA-dependent calcium transport on the differentiation process was investigated. We show that E2A-PBX1 + leukemia cells simultaneously express SERCA2 and SERCA3-type calcium pumps; however, their SERCA3 expression is markedly inferior to that of mature B cells. Activation of protein kinase C enzymes by phorbol ester leads to phenotypic differentiation of the cells, and this is accompanied by the induction of SERCA3 expression. Direct pharmacological inhibition of SERCA-dependent calcium transport during phorbol ester treatment interferes with the differentiation process. These data show that the calcium pump composition of the ER is concurrent with increased SERCA3 expression during the differentiation of precursor B acute lymphoblastic leukemia cells, that a cross-talk exists between SERCA function and the control of differentiation, and that SERCA3 may constitute an interesting new marker for the study of early B cell phenotype.
Paix, Alexandre; Le Nguyen, Phuong Ngan; Sardet, Christian
2011-09-01
Polarized cortical mRNA determinants such as maternal macho-1 and pem-1 in ascidians, like budding yeast mating factor ASH1 reside on the cER-mRNA domain a subdomain of cortical Endoplasmic Reticulum(ER) and are translated in its vicinity. Using high resolution imaging and isolated cortical fragments prepared from eggs and embryos we now find that macho-1 and pem-1 RNAs co-localize with phospho-protein regulators of translation initiation (MnK/4EBP/S6K). Translation of cortical pem-1 RNA follows its bi-polarized relocalization. About 10 min after fertilization or artificial activation with a calcium ionophore, PEM1 protein is detected in the vegetal cortex in the vicinity of pem-1 RNA. About 40 min after fertilization-when pem-1 RNA and P-MnK move to the posterior pole-PEM1 protein remains in place forming a network of cortical patches anchored at the level of the zygote plasma membrane before disappearing. Cortical PEM1 protein is detected again at the 4 cell stage in the posterior centrosome attracting body (CAB) region where the cER-mRNA domain harboring pem-1/P-MnK/P-4EBP/P-S6K is concentrated. Bi-polarized PEM1 protein signals are not detected when pem-1 morpholinos are injected into eggs or zygotes or when MnK is inhibited. We propose that localized translation of the pem-1 RNA determinant is triggered by the fertilization/calcium wave and that the process is controlled by phospho-protein regulators of translation initiation co-localized with the RNA determinant on a sub-domain of the cortical Endoplasmic Reticulum. Copyright © 2011 Elsevier Inc. All rights reserved.
Secreted Proteins Defy the Expression Level–Evolutionary Rate Anticorrelation
Feyertag, Felix; Berninsone, Patricia M.; Alvarez-Ponce, David
2017-01-01
The rates of evolution of the proteins of any organism vary across orders of magnitude. A primary factor influencing rates of protein evolution is expression. A strong negative correlation between expression levels and evolutionary rates (the so-called E–R anticorrelation) has been observed in virtually all studied organisms. This effect is currently attributed to the abundance-dependent fitness costs of misfolding and unspecific protein–protein interactions, among other factors. Secreted proteins are folded in the endoplasmic reticulum, a compartment where chaperones, folding catalysts, and stringent quality control mechanisms promote their correct folding and may reduce the fitness costs of misfolding. In addition, confinement of secreted proteins to the extracellular space may reduce misinteractions and their deleterious effects. We hypothesize that each of these factors (the secretory pathway quality control and extracellular location) may reduce the strength of the E–R anticorrelation. Indeed, here we show that among human proteins that are secreted to the extracellular space, rates of evolution do not correlate with protein abundances. This trend is robust to controlling for several potentially confounding factors and is also observed when analyzing protein abundance data for 6 human tissues. In addition, analysis of mRNA abundance data for 32 human tissues shows that the E–R correlation is always less negative, and sometimes nonsignificant, in secreted proteins. Similar observations were made in Caenorhabditis elegans and in Escherichia coli, and to a lesser extent in Drosophila melanogaster, Saccharomyces cerevisiae and Arabidopsis thaliana. Our observations contribute to understand the causes of the E–R anticorrelation. PMID:28007979
Bischoff, Florian C; Werner, Astrid; John, David; Boeckel, Jes-Niels; Melissari, Maria-Theodora; Grote, Phillip; Glaser, Simone F; Demolli, Shemsi; Uchida, Shizuka; Michalik, Katharina M; Meder, Benjamin; Katus, Hugo A; Haas, Jan; Chen, Wei; Pullamsetti, Soni S; Seeger, Werner; Zeiher, Andreas M; Dimmeler, Stefanie; Zehendner, Christoph M
2017-08-04
Pericytes are essential for vessel maturation and endothelial barrier function. Long noncoding RNAs regulate many cellular functions, but their role in pericyte biology remains unexplored. Here, we investigate the effect of hypoxia-induced endoplasmic reticulum stress regulating long noncoding RNAs (HypERlnc, also known as ENSG00000262454) on pericyte function in vitro and its regulation in human heart failure and idiopathic pulmonary arterial hypertension. RNA sequencing in human primary pericytes identified hypoxia-regulated long noncoding RNAs, including HypERlnc. Silencing of HypERlnc decreased cell viability and proliferation and resulted in pericyte dedifferentiation, which went along with increased endothelial permeability in cocultures consisting of human primary pericyte and human coronary microvascular endothelial cells. Consistently, Cas9-based transcriptional activation of HypERlnc was associated with increased expression of pericyte marker genes. Moreover, HypERlnc knockdown reduced endothelial-pericyte recruitment in Matrigel assays ( P <0.05). Mechanistically, transcription factor reporter arrays demonstrated that endoplasmic reticulum stress-related transcription factors were prominently activated by HypERlnc knockdown, which was confirmed via immunoblotting for the endoplasmic reticulum stress markers IRE1α ( P <0.001), ATF6 ( P <0.01), and soluble BiP ( P <0.001). Kyoto encyclopedia of genes and gene ontology pathway analyses of RNA sequencing experiments after HypERlnc knockdown indicate a role in cardiovascular disease states. Indeed, HypERlnc expression was significantly reduced in human cardiac tissue from patients with heart failure ( P <0.05; n=19) compared with controls. In addition, HypERlnc expression significantly correlated with pericyte markers in human lungs derived from patients diagnosed with idiopathic pulmonary arterial hypertension and from donor lungs (n=14). Here, we show that HypERlnc regulates human pericyte function and the endoplasmic reticulum stress response. In addition, RNA sequencing analyses in conjunction with reduced expression of HypERlnc in heart failure and correlation with pericyte markers in idiopathic pulmonary arterial hypertension indicate a role of HypERlnc in human cardiopulmonary disease. © 2017 American Heart Association, Inc.
Endoplasmic Reticulum Stress and Obesity.
Yilmaz, Erkan
2017-01-01
In recent years, the world has seen an alarming increase in obesity and closely associated with insulin resistance which is a state of low-grade inflammation, the latter characterized by elevated levels of proinflammatory cytokines in blood and tissues. A shift in energy balance alters systemic metabolic regulation and the important role that chronic inflammation, endoplasmic reticulum (ER) dysfunction, and activation of the unfolded protein response (UPR) play in this process.Why obesity is so closely associated with insulin resistance and inflammation is not understood well. This suggests that there are probably other causes for obesity-related insulin resistance and inflammation. One of these appears to be endoplasmic reticulum (ER) stress.The ER is a vast membranous network responsible for the trafficking of a wide range of proteins and plays a central role in integrating multiple metabolic signals critical in cellular homeostasis. Conditions that may trigger unfolded protein response activation include increased protein synthesis, the presence of mutant or misfolded proteins, inhibition of protein glycosylation, imbalance of ER calcium levels, glucose and energy deprivation, hypoxia, pathogens or pathogen-associated components and toxins. Thus, characterizing the mechanisms contributing to obesity and identifying potential targets for its prevention and treatment will have a great impact on the control of associated conditions, particularly T2D.
p53 and Ca(2+) signaling from the endoplasmic reticulum: partners in anti-cancer therapies.
Bittremieux, Mart; Bultynck, Geert
2015-01-01
Ca(2+) transfer from the endoplasmic reticulum (ER) to the mitochondria critically controls cell survival and cell death decisions. Different oncogenes and deregulation of tumor suppressors exploit this mechanism to favor the survival of altered, malignant cells. Two recent studies of the Pinton team revealed a novel, non-transcriptional function of cytosolic p53 in cell death. During cell stress, p53 is recruited to the ER and the ER-mitochondrial contact sites. This results in augmented ER Ca(2+) levels by enhancing sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) activity, ultimately promoting mitochondrial Ca(2+) overload. The boosting of "toxic" Ca(2+) signaling by p53 appears to be a critical component of the cell death-inducing properties of chemotherapeutic agents and anti-cancer treatments, like photodynamic stress. Strikingly, the resistance of p53-deficient cancer cells to these treatments could be overcome by facilitating Ca(2+) transfer between the ER and the mitochondria via overexpression of SERCA or of the mitochondrial Ca(2+) uniporter (MCU). Importantly, these concepts have also been supported by in vivo Ca(2+) measurements in tumor masses in mice. Collectively, these studies link for the first time the major tumor suppressor, p53, to Ca(2+) signaling in dictating cell-death outcomes and by the success of anti-cancer treatments.
Ricin A chain reaches the endoplasmic reticulum after endocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Qiong; Department of Biochemistry and Molecular Biology, Ningbo University Medical School, Ningbo 315211; Zhan Jinbiao
Ricin is a potent ribosome inactivating protein and now has been widely used for synthesis of immunotoxins. To target ribosome in the mammalian cytosol, ricin must firstly retrograde transport from the endomembrane system to reach the endoplasmic reticulum (ER) where the ricin A chain (RTA) is recognized by ER components that facilitate its membrane translocation to the cytosol. In the study, the fusion gene of enhanced green fluorescent protein (EGFP)-RTA was expressed with the pET-28a (+) system in Escherichia coli under the control of a T7 promoter. The fusion protein showed a green fluorescence. The recombinant protein can be purifiedmore » by metal chelated affinity chromatography on a column of NTA. The rabbit anti-GFP antibody can recognize the fusion protein of EGFP-RTA just like the EGFP protein. The cytotoxicity of EGFP-RTA and RTA was evaluated by the MTT assay in HeLa and HEP-G2 cells following fluid-phase endocytosis. The fusion protein had a similar cytotoxicity of RTA. After endocytosis, the subcellular location of the fusion protein can be observed with the laser scanning confocal microscopy and the immuno-gold labeling Electro Microscopy. This study provided important evidence by a visualized way to prove that RTA does reach the endoplasmic reticulum.« less
Late-onset of spinal neurodegeneration in knock-in mice expressing a mutant BiP.
Jin, Hisayo; Mimura, Naoya; Kashio, Makiko; Koseki, Haruhiko; Aoe, Tomohiko
2014-01-01
Most human neurodegenerative diseases are sporadic, and appear later in life. While the underlying mechanisms of the progression of those diseases are still unclear, investigations into the familial forms of comparable diseases suggest that endoplasmic reticulum (ER) stress is involved in the pathogenesis. Binding immunoglobulin protein (BiP) is an ER chaperone that is central to ER function. We produced knock-in mice expressing a mutant BiP that lacked the retrieval sequence in order to evaluate the effect of a functional defect in an ER chaperone in multi-cellular organisms. Here we report that heterozygous mutant BiP mice revealed motor disabilities in aging. We found a degeneration of some motoneurons in the spinal cord accompanied by accumulations of ubiquitinated proteins. The defect in retrieval of BiP by the KDEL receptor leads to impaired activities in quality control and autophagy, suggesting that functional defects in the ER chaperones may contribute to the late onset of neurodegenerative diseases.
Azaglycomimetics: Natural Occurrence, Biological Activity, and Application
NASA Astrophysics Data System (ADS)
Asano, Naoki
A large number of alkaloids mimicking the structures of monosaccharides or oligosaccharides have been isolated from plants and microorganisms. The sugar mimicking alkaloids with a nitrogen in the ring are called azasugars or iminosugars. Naturally occurring azasugars are classified into five structural classes: polyhydroxylated piperidines, pyrrolidines, indolizidines, pyrrolizidines, and nortropanes. They are easily soluble in water because of their polyhydroxylated structures and inhibit glycosidases because of a structural resemblance to the sugar moiety of the natural substrate. Glycosidases are involved in a wide range of anabolic and catabolic processes, such as digestion, lysosomal catabolism of glycoconjugates, biosynthesis of glycoproteins, and the endoplasmic reticulum (ER) quality control and ER-associated degradation of glycoproteins. Hence, modifying or blocking these processes in vivo by inhibitors is of great interest from a therapeutic point of view. Azasugars are an important class of glycosidase inhibitors and are arousing great interest for instance as antidiabetics, antiobesity drugs, antivirals, and therapeutic agents for some genetic disorders. This review describes the recent studies on isolation, characterization, glycosidase inhibitory activity, and therapeutic application of azaglycomimetics.
NASA Astrophysics Data System (ADS)
Conway, Myra; Harris, Matthew
2015-04-01
Correct protein folding and inhibition of protein aggregation is facilitated by a cellular ‘quality control system’ that engages a network of protein interactions including molecular chaperones and the ubiquitin proteasome system. Key chaperones involved in these regulatory mechanisms are the protein disulphide isomerases (PDI) and their homologues, predominantly expressed in the endoplasmic reticulum of most tissues. Redox changes that disrupt ER homeostasis can lead to modification of these enzymes or chaperones with the loss of their proposed neuroprotective role resulting in an increase in protein misfolding. Misfolded protein aggregates have been observed in several disease states and are considered to play a pivotal role in the pathogenesis of neurodegenerative conditions such as Alzheimer’s disease, Parkinson’s disease, and Amyotrophic Lateral sclerosis. This review will focus on the importance of the thioredoxin-like -CGHC- active site of PDI and how our understanding of this structural motif will play a key role in unravelling the pathogenic mechanisms that underpin these neurodegenerative conditions.
The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease
2016-07-01
AWARD NUMBER: W81XWH-14-1-0203 TITLE: The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease PRINCIPAL...1 July 2015- 30 June 2016 4. TITLE AND SUBTITLE The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease 5a... kidney targeted microbubble/ultrasound-mediated plasmid delivery. We will also examine non-targeted CRT knockdown in these mice. Aim 2.b: We will
Organization of transport from endoplasmic reticulum to Golgi in higher plants.
Andreeva, A V; Zheng, H; Saint-Jore, C M; Kutuzov, M A; Evans, D E; Hawes, C R
2000-01-01
In plant cells, the organization of the Golgi apparatus and its interrelationships with the endoplasmic reticulum differ from those in mammalian and yeast cells. Endoplasmic reticulum and Golgi apparatus can now be visualized in plant cells in vivo with green fluorescent protein (GFP) specifically directed to these compartments. This makes it possible to study the dynamics of the membrane transport between these two organelles in the living cells. The GFP approach, in conjunction with a considerable volume of data about proteins participating in the transport between endoplasmic reticulum and Golgi in yeast and mammalian cells and the identification of their putative plant homologues, should allow the establishment of an experimental model in which to test the involvement of the candidate proteins in plants. As a first step towards the development of such a system, we are using Sar1, a small G-protein necessary for vesicle budding from the endoplasmic reticulum. This work has demonstrated that the introduction of Sar1 mutants blocks the transport from endoplasmic reticulum to Golgi in vivo in tobacco leaf epidermal cells and has therefore confirmed the feasibility of this approach to test the function of other proteins that are presumably involved in this step of endomembrane trafficking in plant cells.
Wang, Yu; Wang, Yi-Li; Huang, Xia; Yang, Yang; Zhao, Ya-Jun; Wei, Cheng-Xi; Zhao, Ming
2017-02-01
Atrial fibrillation (AF) is a complex disease with multiple inter-relating causes culminating in rapid atrial activation and atrial structural remodeling. The contribution of endoplasmic reticulum and mitochondria stress to AF has been highlighted. As the class III antiarrhythmic agent, ibutilide are widely used to AF. This study was designed to explore whether ibutilide could treat AF by inhibiting endoplasmic reticulum stress pathways and mitochondria stress. The neonatal rat cardiomyocytes were isolated and exposed to H 2 O 2 , ibutilide was add to the culture medium 12 h. Then the cell viability, oxidative stress levels and apoptotic rate were analyzed. In addition, endoplasmic reticulum stress related protein (GRP78, GRP94, CHOP), mitochondria-dependent protein (Bax, Bcl-2) and caspase-3/9/12 were identified by real-time PCR and western blot analysis. In our results, remarkable decreased cell viability and oxidative stress levels were detected in cardiomyocytes after treating with H 2 O 2 . The apoptotic rate and the expression of proteins involved in mitochondrial stress and endoplasmic reticulum stress pathways increased. While ibutilide significantly inhibited these changes. These data suggested that ibutilide serves a protective role against H 2 O 2 -induced apoptosis of neonatal rat cardiomyocytes, and the mechanism is related to suppression of mitochondrial stress and endoplasmic reticulum stress.
Endoplasmic reticulum proteostasis impairment in aging.
Martínez, Gabriela; Duran-Aniotz, Claudia; Cabral-Miranda, Felipe; Vivar, Juan P; Hetz, Claudio
2017-08-01
Perturbed neuronal proteostasis is a salient feature shared by both aging and protein misfolding disorders. The proteostasis network controls the health of the proteome by integrating pathways involved in protein synthesis, folding, trafficking, secretion, and their degradation. A reduction in the buffering capacity of the proteostasis network during aging may increase the risk to undergo neurodegeneration by enhancing the accumulation of misfolded proteins. As almost one-third of the proteome is synthetized at the endoplasmic reticulum (ER), maintenance of its proper function is fundamental to sustain neuronal function. In fact, ER stress is a common feature of most neurodegenerative diseases. The unfolded protein response (UPR) operates as central player to maintain ER homeostasis or the induction of cell death of chronically damaged cells. Here, we discuss recent evidence placing ER stress as a driver of brain aging, and the emerging impact of neuronal UPR in controlling global proteostasis at the whole organismal level. Finally, we discuss possible therapeutic interventions to improve proteostasis and prevent pathological brain aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Braun, U; Gansohr, B; Flückiger, M
2003-04-01
The goal of this study was to describe the findings in four cows with non-magnetic reticular foreign bodies composed of copper. The cows were referred to our clinic because of reduced appetite and a marked decrease in milk production. Based on the clinical findings, a tentative diagnosis of traumatic reticuloperitonitis was made in all cows. The reticulum of all cows was then examined ultrasonographically and radiographically. In all cows, radiographs of the reticulum showed wire-shaped foreign bodies, ranging from 3 to 7 cm in length, which appeared to have penetrated the reticular wall. Two cows (No. 3, 4) had a magnet in the reticulum close to the foreign body but there was no direct contact between the two. A magnet was administered to cows No. 1 and 2, and radiography of the reticulum was performed for a second time the following day. The magnets were observed in the reticulum; however, they did not contact the foreign bodies. Because all the magnets were correctly placed in the reticulum yet, despite close proximity, did not contact the foreign bodies, the latter were thought to be non-magnetic. Cow No. 1 was slaughtered. Left flank laparoruminotomy was performed in the remaining three cows. In all cows, copper foreign bodies ranging in length from 3.0 to 7.0 cm, were found in the reticulum. They had penetrated the reticular wall and were not attached to magnets. The radiographic findings described in the present study are strongly indicative of a non-magnetic foreign body. Ruminotomy is the treatment of choice but slaughter may also be considered.
Costacurta, L; de Carvalho, C A; König, B; Bilotta, J A
1976-01-01
An electronmicroscopical study of the enamel organ of the upper incisors germs of Wistar rats was performed to analyse the ultrastructural features of the cells of the inner epithelium, the intermediate layer and the stellate reticulum, during preimary, young, transitional and mineralized enamel phases of amelogenesis. So, it was observed that the mitochondria in the ameloblasts are ovoid before the beginning of the enamel matrix formation and in the primary and young enamel phases. However, in the transitional and mineralized phases, these organelles are long and tortuous and some are characterized by a compact structure. In the cells of intermediate layer and stellate reticulum, the mitochondria are ovoid until the beginning of the mineralized phase. At the ending of this phase, these organelles are very long and present irregular form; many of them show also a compact structure. The "zonula adhaerens" could be observed only in the ameloblasts of the primary and young enamel phase. The cytoplasm of ameloblasts, during primary and young enamel phases is characterized by an abundance of free ribosomes and a branular endoplasmic reticulum; but during transitional and mineralized enamel phases, the cytoplasm of these cells shows little granular endoplasmic reticulum and free ribosomes, but ehe agranular endoplasmic reticulum is present. The granular endoplasmic reticulum and free ribosomes are abundant in the cells of the intermediate layer and stellate reticulum at the ending of the young enamel phase, in the transitional enamel phase and in the beginning of the minieralized phase. During different phases of amelogenesis, in the three above referred layers of the enamel organ, were also studied the features of the Golgi apparatus the presence and topographic distribution of the pigment granules, as well as the lysosomes, desmosomes and the tonophibriles.
Protein quality control at the inner nuclear membrane
Khmelinskii, Anton; Blaszczak, Ewa; Pantazopoulou, Marina; Fischer, Bernd; Omnus, Deike J.; Le Dez, Gaëlle; Brossard, Audrey; Gunnarsson, Alexander; Barry, Joseph D.; Meurer, Matthias; Kirrmaier, Daniel; Boone, Charles; Huber, Wolfgang; Rabut, Gwenaël; Ljungdahl, Per O.; Knop, Michael
2015-01-01
The nuclear envelope is a double membrane that separates the nucleus from the cytoplasm. The inner nuclear membrane (INM) functions in essential nuclear processes including chromatin organization and regulation of gene expression1. The outer nuclear membrane is continuous with the endoplasmic reticulum (ER) and is the site of membrane protein synthesis. Protein homeostasis in this compartment is ensured by ER-associated protein degradation (ERAD) pathways that in yeast involve the integral membrane E3 ubiquitin ligases Hrd1 and Doa10 operating with the E2 ubiquitin-conjugating enzymes Ubc6 and Ubc72,3. However, little is known regarding protein quality control at the INM. Here we describe a protein degradation pathway at the INM mediated by the Asi complex consisting of the RING domain proteins Asi1 and Asi34. We report that the As complex functions together with the ubiquitin conjugating enzymes Ubc6andUbc7to degrade soluble and integral membrane proteins. Genetic evidence suggest that the Asi ubiquitin ligase defines a pathway distinct from but complementary to ERAD. Using unbiased screening with a novel genome-wide yeast library based on a tandem fluorescent protein timer (tFT)5, we identify more than 50 substrates of the Asi, Hrd1 and Doa10 E3 ubiquity ligases. We show that the Asi ubiquitin ligase is involved in degradation of mislocalised integral membrane proteins, thus acting to maintain and safeguard the identity of the INM. PMID:25519137
Higuchi-Sanabria, Ryo; Charalel, Joseph K; Viana, Matheus P; Garcia, Enrique J; Sing, Cierra N; Koenigsberg, Andrea; Swayne, Theresa C; Vevea, Jason D; Boldogh, Istvan R; Rafelski, Susanne M; Pon, Liza A
2016-03-01
Higher-functioning mitochondria that are more reduced and have less ROS are anchored in the yeast bud tip by the Dsl1-family protein Mmr1p. Here we report a role for mitochondrial fusion in bud-tip anchorage of mitochondria. Fluorescence loss in photobleaching (FLIP) and network analysis experiments revealed that mitochondria in large buds are a continuous reticulum that is physically distinct from mitochondria in mother cells. FLIP studies also showed that mitochondria that enter the bud can fuse with mitochondria that are anchored in the bud tip. In addition, loss of fusion and mitochondrial DNA (mtDNA) by deletion of mitochondrial outer or inner membrane fusion proteins (Fzo1p or Mgm1p) leads to decreased accumulation of mitochondria at the bud tip and inheritance of fitter mitochondria by buds compared with cells with no mtDNA. Conversely, increasing the accumulation and anchorage of mitochondria in the bud tip by overexpression of MMR1 results in inheritance of less-fit mitochondria by buds and decreased replicative lifespan and healthspan. Thus quantity and quality of mitochondrial inheritance are ensured by two opposing processes: bud-tip anchorage by mitochondrial fusion and Mmr1p, which favors bulk inheritance; and quality control mechanisms that promote segregation of fitter mitochondria to the bud. © 2016 Higuchi-Sanabria et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Technical Reports Server (NTRS)
Wyatt, Sarah E.; Tsou, Pei-Lan; Robertson, Dominique; Brown, C. S. (Principal Investigator)
2002-01-01
Modulation of cytosolic calcium levels in both plants and animals is achieved by a system of Ca2+-transport and storage pathways that include Ca2+ buffering proteins in the lumen of intracellular compartments. To date, most research has focused on the role of transporters in regulating cytosolic calcium. We used a reverse genetics approach to modulate calcium stores in the lumen of the endoplasmic reticulum. Our goals were two-fold: to use the low affinity, high capacity Ca2+ binding characteristics of the C-domain of calreticulin to selectively increase Ca2+ storage in the endoplasmic reticulum, and to determine if those alterations affected plant physiological responses to stress. The C-domain of calreticulin is a highly acidic region that binds 20-50 moles of Ca2+ per mole of protein and has been shown to be the major site of Ca2+ storage within the endoplasmic reticulum of plant cells. A 377-bp fragment encoding the C-domain and ER retention signal from the maize calreticulin gene was fused to a gene for the green fluorescent protein and expressed in Arabidopsis under the control of a heat shock promoter. Following induction on normal medium, the C-domain transformants showed delayed loss of chlorophyll after transfer to calcium depleted medium when compared to seedlings transformed with green fluorescent protein alone. Total calcium measurements showed a 9-35% increase for induced C-domain transformants compared to controls. The data suggest that ectopic expression of the calreticulin C-domain increases Ca2+ stores, and that this Ca2+ reserve can be used by the plant in times of stress.
Minchenko, O H; Riabovol, O O; Tsymbal, D O; Minchenko, D O; Ratushna, O O
2016-01-01
We have studied the effect of hypoxia on the expression of nuclear genes encoding mitochondrial proteins in U87 glioma cells under the inhibition of IRE1 (inositol requiring enzyme-1), which controls cell proliferation and tumor growth as a central mediator of endoplasmic reticulum stress. It was shown that hypoxia down-regulated gene expression of malate dehydrogenase 2 (MDH2), malic enzyme 2 (ME2), mitochondrial aspartate aminotransferase (GOT2), and subunit B of succinate dehydrogenase (SDHB) in control (transfected by empty vector) glioma cells in a gene specific manner. At the same time, the expression level of mitochondrial NADP+-dependent isocitrate dehydrogenase 2 (IDH2) and subunit D of succinate dehydrogenase (SDHD) genes in these cells does not significantly change in hypoxic conditions. It was also shown that the inhibition of ІRE1 signaling enzyme function in U87 glioma cells decreases the effect of hypoxia on the expression of ME2, GOT2, and SDHB genes and introduces the sensitivity of IDH2 gene to hypoxia. Furthermore, the expression of all studied genes depends on IRE1-mediated endoplasmic reticulum stress signaling in gene specific manner, because ІRE1 knockdown significantly decreases their expression in normoxic conditions, except for IDH2 gene, which expression level is strongly up-regulated. Therefore, changes in the expression level of nuclear genes encoding ME2, MDH2, IDH2, SDHB, SDHD, and GOT2 proteins possibly reflect metabolic reprogramming of mitochondria by hypoxia and IRE1-mediated endoplasmic reticulum stress signaling and correlate with suppression of glioma cell proliferation under inhibition of the IRE1 enzyme function.
Zapata-Martín Del Campo, Carlos Manuel; Martínez-Rosas, Martín; Guarner-Lans, Verónica
2018-05-14
Mechanisms controlling mitochondrial function, protein folding in the endoplasmic reticulum (ER) and nuclear processes such as telomere length and DNA repair may be subject to epigenetic cues that relate the genomic expression and environmental exposures in early stages of life. They may also be involved in the comorbid appearance of cardiometabolic (CMD) and neuropsychiatric disorders (NPD) during adulthood. Mitochondrial function and protein folding in the endoplasmic reticulum are associated with oxidative stress and elevated intracellular calcium levels and may also underlie the vulnerability for comorbid CMD and NPD. Mitochondria provide key metabolites such as nicotinamide adenine dinucleotide (NAD+), ATP, α-ketoglutarate and acetyl coenzyme A that are required for many transcriptional and epigenetic processes. They are also a source of free radicals. On the other hand, epigenetic markers in nuclear DNA determine mitochondrial biogenesis. The ER is the subcellular organelle in which secretory proteins are folded. Many environmental factors stop the ability of cells to properly fold proteins and modify post-translationally secretory and transmembrane proteins leading to endoplasmic reticulum stress and oxidative stress. ER functioning may be epigenetically determined. Chronic ER stress is emerging as a key contributor to a growing list of human diseases, including CMD and NPD. Telomere loss causes chromosomal fusion, activation of the control of DNA damage-responses, unstable genome and altered stem cell function, which may underlie the comorbidity of CMD and NPD. The length of telomeres is related to oxidative stress and may be epigenetically programmed. Pathways involved in DNA repair may be epigenetically programmed and may contribute to diseases. In this paper, we describe subcellular mechanisms that are determined by epigenetic markers and their possible relation to the development of increased susceptibility to develop CMD and NPD.
Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.
Divet, Alexandra; Huchet-Cadiou, Corinne
2002-08-01
The aim of the present study was to establish whether alterations in sarcoplasmic reticulum function are involved in the abnormal Ca(2+) homeostasis of skeletal muscle in mice with muscular dystrophy ( mdx). The properties of the sarcoplasmic reticulum and contractile proteins of fast- and slow-twitch muscles were therefore investigated in chemically skinned fibres isolated from the extensor digitorum longus (EDL) and soleus muscles of normal (C57BL/10) and mdx mice at 4 and 11 weeks of development. Sarcoplasmic reticulum Ca(2+) uptake, estimated by the Ca(2+) release following exposure to caffeine, was significantly slower in mdx mice, while the maximal Ca(2+) quantity did not differ in either type of skeletal muscle at either stage of development. In 4-week-old mice spontaneous sarcoplasmic reticulum Ca(2+) leakage was observed in EDL and soleus fibres and this was more pronounced in mdx mice. In addition, the maximal Ca(2+)-activated tension was smaller in mdx than in normal fibres, while the Ca(2+) sensitivity of the contractile apparatus was not significantly different. These results indicate that mdx hindlimb muscles are affected differently by the disease process and suggest that a reduced ability of the Ca(2+)-ATPase to load Ca(2+) and a leaky sarcoplasmic reticulum membrane may be involved in the altered intracellular Ca(2+) homeostasis.
Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells.
Cnop, Miriam; Toivonen, Sanna; Igoillo-Esteve, Mariana; Salpea, Paraskevi
2017-09-01
Pancreatic β cell dysfunction and death are central in the pathogenesis of most if not all forms of diabetes. Understanding the molecular mechanisms underlying β cell failure is important to develop β cell protective approaches. Here we review the role of endoplasmic reticulum stress and dysregulated endoplasmic reticulum stress signaling in β cell failure in monogenic and polygenic forms of diabetes. There is substantial evidence for the presence of endoplasmic reticulum stress in β cells in type 1 and type 2 diabetes. Direct evidence for the importance of this stress response is provided by an increasing number of monogenic forms of diabetes. In particular, mutations in the PERK branch of the unfolded protein response provide insight into its importance for human β cell function and survival. The knowledge gained from different rodent models is reviewed. More disease- and patient-relevant models, using human induced pluripotent stem cells differentiated into β cells, will further advance our understanding of pathogenic mechanisms. Finally, we review the therapeutic modulation of endoplasmic reticulum stress and signaling in β cells. Pancreatic β cells are sensitive to excessive endoplasmic reticulum stress and dysregulated eIF2α phosphorylation, as indicated by transcriptome data, monogenic forms of diabetes and pharmacological studies. This should be taken into consideration when devising new therapeutic approaches for diabetes.
Bin, Bum-Ho; Bhin, Jinhyuk; Seo, Juyeon; Kim, Se-Young; Lee, Eunyoung; Park, Kyuhee; Choi, Dong-Hwa; Takagishi, Teruhisa; Hara, Takafumi; Hwang, Daehee; Koseki, Haruhiko; Asada, Yoshinobu; Shimoda, Shinji; Mishima, Kenji; Fukada, Toshiyuki
2017-08-01
Skin is the first area that manifests zinc deficiency. However, the molecular mechanisms by which zinc homeostasis affects skin development remain largely unknown. Here, we show that zinc-regulation transporter-/iron-regulation transporter-like protein 7 (ZIP7) localized to the endoplasmic reticulum plays critical roles in connective tissue development. Mice lacking the Slc39a7/Zip7 gene in collagen 1-expressing tissue exhibited dermal dysplasia. Ablation of ZIP7 in mesenchymal stem cells inhibited cell proliferation thereby preventing proper dermis formation, indicating that ZIP7 is required for dermal development. We also found that mesenchymal stem cells lacking ZIP7 accumulated zinc in the endoplasmic reticulum, which triggered zinc-dependent aggregation and inhibition of protein disulfide isomerase, leading to endoplasmic reticulum dysfunction. These results suggest that ZIP7 is necessary for endoplasmic reticulum function in mesenchymal stem cells and, as such, is essential for dermal development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki
2016-01-01
The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283
The disruption of the epithelial mesenchymal trophic unit in COPD.
Behzad, Ali R; McDonough, John E; Seyednejad, Nazgol; Hogg, James C; Walker, David C
2009-12-01
Progression of COPD is associated with a measurable increase in small airway wall thickness resulting from a repair and remodeling process that involves fibroblasts of the epithelial mesenchymal trophic unit (EMTU). The present study was designed to examine the organization of fibroblasts within the lamina propria of small airways with respect to their contacts with the epithelium and with each other in persons with COPD. Transmission electron microcopy (TEM) and three-dimensional (3D) reconstructions of serial TEM sections were used to estimate the frequency and determine the nature of the contacts between the epithelium and fibroblasts within the EMTU in small airways from 5 controls (smokers with normal lung function), from 6 persons with mild (GOLD-1) and 5 with moderate (GOLD-2) COPD. In airways from control lungs fibroblasts make frequent contact with cytoplasmic extensions of epithelial cells through apertures in the epithelial basal lamina, but the frequency of these fibroblast-epithelial contacts is reduced in both mild and moderate COPD compared to controls (p < 0.01). The 3D reconstructions showed that the cytoplasmic extensions of lamina propria fibroblasts form a reticulum with fibroblast-fibroblast contacts in an airway from a control subject but this reticulum may be reorganized in airways of COPD patients. Development of COPD is associated with significant disruption of the EMTU due to a reduction of contacts between fibroblasts and the epithelium.
Vesicle coating and uncoating: controlling the formation of large COPII-coated carriers
Townley, Anna K
2009-01-01
The basic mechanisms underlying the formation of coated vesicles are now defined in considerable detail. This article highlights recent developments in our understanding of the problem of exporting large macromolecular cargo such as procollagen from the endoplasmic reticulum and discusses the implications that this has for cell and tissue organisation and human disease. PMID:20401317
Vesicle coating and uncoating: controlling the formation of large COPII-coated carriers.
Townley, Anna K; Stephens, David J
2009-08-26
The basic mechanisms underlying the formation of coated vesicles are now defined in considerable detail. This article highlights recent developments in our understanding of the problem of exporting large macromolecular cargo such as procollagen from the endoplasmic reticulum and discusses the implications that this has for cell and tissue organisation and human disease.
[Effect of early high fat diet on pancreatic β cellularity and insulin sensibility in young rats].
Xie, Kun-Xia; Xiao, Yan-Feng; Xu, Er-Di; Yin, Chun-Yan; Yi, Xiao-Qing; Chang, Ming
2010-09-01
To study the effects of early high fat diet on sugar metaboliam, insulin sensibility and pancreatic β cellularity in young rats. Sixty male weaned young rats were randomly fed with high fat diet (high fat group) and normal diet (control group). The body weight, viscus fattiness and fasting plasma glucose (FPG) were measured after 3, 6 and 9 weeks. Serum insulin level was measured with radioimmunoassay. The ultrastructure of pancreas was observed under an electricmicroscope. The high fat group had significantly higher body weight and visceral fat weight than the control group after 3 weeks. There were no significant differences in the FPG level between the two groups at all time points. The levels of fasting insulin and HOMAIR in the high fat group were significantly higher than those in the control group after 3, 6 and 9 weeks (P<0.01). Dilation of rough endoplasmic reticulum and mild swelling of mitochondria of islet β-cells were observed in the high fat group after 6 weeks. Early high fat diet may induce a reduction in insulin sensitivity and produce insulin resistance in young rats. Endoplasmic reticulum expansion in β-cells may be an early sign of β-cell damage due to obesity.
Golgi bypass for local delivery of axonal proteins, fact or fiction?
González, Carolina; Cornejo, Víctor Hugo; Couve, Andrés
2018-04-06
Although translation of cytosolic proteins is well described in axons, much less is known about the synthesis, processing and trafficking of transmembrane and secreted proteins. A canonical rough endoplasmic reticulum or a stacked Golgi apparatus has not been detected in axons, generating doubts about the functionality of a local route. However, axons contain mRNAs for membrane and secreted proteins, translation factors, ribosomal components, smooth endoplasmic reticulum and post-endoplasmic reticulum elements that may contribute to local biosynthesis and plasma membrane delivery. Here we consider the evidence supporting a local secretory system in axons. We discuss exocytic elements and examples of autonomous axonal trafficking that impact development and maintenance. We also examine whether unconventional post-endoplasmic reticulum pathways may replace the canonical Golgi apparatus. Copyright © 2018. Published by Elsevier Ltd.
Lamboley, C R; Wyckelsma, V L; Perry, B D; McKenna, M J; Lamb, G D
2016-08-01
Inactivity negatively impacts on skeletal muscle function mainly through muscle atrophy. However, recent evidence suggests that the quality of individual muscle fibers is also altered. This study examined the effects of 23 days of unilateral lower limb suspension (ULLS) on specific force and sarcoplasmic reticulum (SR) Ca(2+) content in individual skinned muscle fibers. Muscle biopsies of the vastus lateralis were taken from six young healthy adults prior to and following ULLS. After disuse, the endogenous SR Ca(2+) content was ∼8% lower in type I fibers and maximal SR Ca(2+) capacity was lower in both type I and type II fibers (-11 and -5%, respectively). The specific force, measured in single skinned fibers from three subjects, decreased significantly after ULLS in type II fibers (-23%) but not in type I fibers (-9%). Western blot analyses showed no significant change in the amounts of myosin heavy chain (MHC) I and MHC IIa following the disuse, whereas the amounts of sarco(endo)plasmic reticulum Ca(2+)-ATPase 1 (SERCA1) and calsequestrin increased by ∼120 and ∼20%, respectively, and the amount of troponin I decreased by ∼21%. These findings suggest that the decline in force and power occurring with muscle disuse is likely to be exacerbated in part by reductions in maximum specific force in type II fibers, and in the amount of releasable SR Ca(2+) in both fiber types, the latter not being attributable to a reduced calsequestrin level. Furthermore, the ∼3-wk disuse in human elicits change in SR properties, in particular a more than twofold upregulation in SERCA1 density, before any fiber-type shift. Copyright © 2016 the American Physiological Society.
Zhu, Panpan; Zuo, Zhicai; Zheng, Zhixiang; Wang, Fengyuan; Peng, Xi; Fang, Jing; Cui, Hengmin; Gao, Caixia; Song, Hetao; Zhou, Yi; Liu, Xici
2017-11-21
Aflatoxin B 1 (AFB 1 ) is a natural product of the Aspergillus genus of molds, which grow on several foodstuffs stored in hot moist conditions, and is among the most potent hepatocarcinogens and immunosuppression presently known. The latter was related to the up-regulated apoptosis of immune organs. However, the effect of expression of death receptor and endoplasmic reticulum molecules in AFB 1 -induced apoptosis of chicken splenocytes was largely unknown. The objective of this study was to investigate this unknown field. One hundred and forty four one-day-old chickens were randomly divided into control group (0 mg/kg AFB 1 ) and AFB 1 group (0.6 mg/kg AFB 1 ), respectively and fed with AFB 1 for 21 days. Histological observation demonstrated that AFB 1 caused slight congestion and lymphocytic depletion in the spleen. TUNEL and flow cytometry assays showed the excessive apoptosis of splenocytes provoked by AFB 1 . Moreover, quantitative real-time PCR analysis revealed that AFB 1 induced the elevated mRNA expression of Fas, FasL, TNF-α, TNF-R 1 , Caspase-3, Caspase-8, Caspase-10, Grp78 and Grp94 in the spleen. These findings suggested that AFB 1 could lead the excessive apoptosis and alter the expression of death receptor and endoplasmic reticulum molecules in chicken spleen.
Hernández Vera, Rodrigo; Vilahur, Gemma; Ferrer-Lorente, Raquel; Peña, Esther; Badimon, Lina
2012-09-01
Patients with diabetes mellitus have an increased risk of suffering atherothrombotic syndromes and are prone to clustering cardiovascular risk factors. However, despite their dysregulated glucose metabolism, intensive glycemic control has proven insufficient to reduce thrombotic complications. Therefore, we aimed to elucidate the determinants of thrombosis in a model of type 2 diabetes mellitus with cardiovascular risk factors clustering. Intravital microscopy was used to analyze thrombosis in vivo in Zucker diabetic fatty rats (ZD) and lean normoglycemic controls. Bone marrow (BM) transplants were performed to test the contribution of each compartment (blood or vessel wall) to thrombogenicity. ZD showed significantly increased thrombosis compared with lean normoglycemic controls. BM transplants demonstrated the key contribution of the hematopoietic compartment to increased thrombogenicity. Indeed, lean normoglycemic controls transplanted with ZD-BM showed increased thrombosis with normal glucose levels, whereas ZD transplanted with lean normoglycemic controls-BM showed reduced thrombosis despite presenting hyperglycemia. Significant alterations in megakaryopoiesis and platelet-endoplasmic reticulum stress proteins, protein disulfide isomerase and 78-kDa glucose-regulated protein, were detected in ZD, and increased tissue factor procoagulant activity was detected in plasma and whole blood of ZD. Our results indicate that diabetes mellitus with cardiovascular risk factor clustering favors BM production of hyperreactive platelets with altered protein disulfide isomerase and 78-kDa glucose-regulated protein expression that can contribute to increase thrombotic risk independently of blood glucose levels.
Secreted Proteins Defy the Expression Level-Evolutionary Rate Anticorrelation.
Feyertag, Felix; Berninsone, Patricia M; Alvarez-Ponce, David
2017-03-01
The rates of evolution of the proteins of any organism vary across orders of magnitude. A primary factor influencing rates of protein evolution is expression. A strong negative correlation between expression levels and evolutionary rates (the so-called E-R anticorrelation) has been observed in virtually all studied organisms. This effect is currently attributed to the abundance-dependent fitness costs of misfolding and unspecific protein-protein interactions, among other factors. Secreted proteins are folded in the endoplasmic reticulum, a compartment where chaperones, folding catalysts, and stringent quality control mechanisms promote their correct folding and may reduce the fitness costs of misfolding. In addition, confinement of secreted proteins to the extracellular space may reduce misinteractions and their deleterious effects. We hypothesize that each of these factors (the secretory pathway quality control and extracellular location) may reduce the strength of the E-R anticorrelation. Indeed, here we show that among human proteins that are secreted to the extracellular space, rates of evolution do not correlate with protein abundances. This trend is robust to controlling for several potentially confounding factors and is also observed when analyzing protein abundance data for 6 human tissues. In addition, analysis of mRNA abundance data for 32 human tissues shows that the E-R correlation is always less negative, and sometimes nonsignificant, in secreted proteins. Similar observations were made in Caenorhabditis elegans and in Escherichia coli, and to a lesser extent in Drosophila melanogaster, Saccharomyces cerevisiae and Arabidopsis thaliana. Our observations contribute to understand the causes of the E-R anticorrelation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sanghwan; Hur, Eu-gene; Ryoo, In-geun
2012-11-01
The ubiquitin-proteasome system plays a central role in protein quality control through endoplasmic reticulum (ER)-associated degradation (ERAD) of unfolded and misfolded proteins. NF-E2‐related factor 2 (Nrf2) is a transcription factor that controls the expression of an array of phase II detoxification and antioxidant genes. Nrf2 signaling has additionally been shown to upregulate the expression of the proteasome catalytic subunits in several cell types. Here, we investigated the role of Nrf2 in tunicamycin-induced ER stress using a murine insulinoma β-cell line, βTC-6. shRNA-mediated silencing of Nrf2 expression in βTC-6 cells significantly increased tunicamycin-induced cytotoxicity, elevated the expression of the pro-apoptotic ERmore » stress marker Chop10, and inhibited tunicamycin-inducible expression of the proteasomal catalytic subunits Psmb5 and Psmb6. The effects of 3H-1,2-dithiole-3-thione (D3T), a small molecule Nrf2 activator, on ER stress were also examined in βTC-6 cells. D3T pretreatment reduced tunicamycin cytotoxicity and attenuated the tunicamycin-inducible Chop10 and protein kinase RNA-activated‐like ER kinase (Perk). The protective effect of D3T was shown to be associated with increased ERAD. D3T increased the expression of Psmb5 and Psmb6 and elevated chymotrypsin-like peptidase activity; proteasome inhibitor treatment blocked D3T effects on tunicamycin cytotoxicity and ER stress marker changes. Similarly, silencing of Nrf2 abolished the protective effect of D3T against ER stress. These results indicate that the Nrf2 pathway contributes to the ER stress response in pancreatic β-cells by enhancing proteasome-mediated ERAD. -- Highlights: ► Nrf2 silencing in pancreatic β-cells enhanced tunicamycin-mediated ER stress. ► Expression of the proteasome was inducible by Nrf2 signaling. ► Nrf2 activator D3T protected β-cells from tunicamycin-mediated ER stress. ► Protective effect of D3T was associated with Nrf2-dependent proteasome induction.« less
Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming
2016-07-01
Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Prospective, randomized, controlled laboratory experiment. State key laboratory of trauma, burns, and combined injury. Five hundred and fifty-two Sprague-Dawley rats. Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4-phenylbutyrate increased the nuclear levels of nuclear factor-E2-related factor 2, and decreased the nuclear levels of nuclear factor κB in hypoxic vascular smooth muscle cells. 4-phenylbutyrate has beneficial effects for traumatic hemorrhagic shock including improving animal survival and protecting organ function. These beneficial effects of 4-phenylbutyrate in traumatic hemorrhagic shock result from its vascular function protection via attenuation of the oxidative stress and mitochondrial permeability transition pore opening. Nuclear factor-E2-related factor 2 and nuclear factor-κB may be involved in 4-phenylbutyrate-mediated inhibition of oxidative stress.
NASA Astrophysics Data System (ADS)
Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea M.
2014-06-01
Homogeneous B, V photometry is presented for 19,324 stars in and around 5 Magellanic Cloud globular clusters: NGC 1466, NGC 1841, NGC 2210, NGC 2257, and Reticulum. The photometry is derived from eight nights of CCD imaging with the Cerro Tololo Inter-American Observatory 0.9 m SMARTS telescope. Instrumental magnitudes were transformed to the Johnson B, V system using accurate calibration relations based on a large sample of Landolt-Stetson equatorial standard stars, which were observed on the same nights as the cluster stars. Residual analysis of the equatorial standards used for the calibration, and validation of the new photometry using Stetson's sample of secondary standards in the vicinities of the five Large Magellanic Cloud clusters, shows excellent agreement with our values in both magnitudes and colors. Color-magnitude diagrams reaching to the main-sequence turnoffs at V ~ 22 mag, sigma-magnitude diagrams, and various other summaries are presented for each cluster to illustrate the range and quality of the new photometry. The photometry should prove useful for future studies of the Magellanic Cloud globular clusters, particularly studies of their variable stars.
Parsons, J Travis; Sun, David A; DeLorenzo, Robert J; Churn, Severn B
2004-07-01
Endoplasmic reticulum Mg(2+)/Ca(2+) ATPase Ca(2+) sequestration is crucial for maintenance of neuronal Ca(2+) homeostasis. The use of cell culture in conjunction with modern Ca(2+) imaging techniques has been invaluable in elucidating these mechanisms. While imaging protocols evaluate endoplasmic reticulum Ca(2+) loads, measurement of Mg(2+)/Ca(2+) ATPase activity is indirect, comparing cytosolic Ca(2+) levels in the presence or absence of the Mg(2+)/Ca(2+) ATPase inhibitor thapsigargin. Direct measurement of Mg(2+)/Ca(2+) ATPase by isolation of microsomes is impossible due to the minuscule amounts of protein yielded from cultures used for imaging. In the current study, endoplasmic reticulum Mg(2+)/Ca(2+) ATPase Ca(2+) sequestration was measured in mixed homogenates of neurons and glia from primary hippocampal cultures. It was demonstrated that Ca(2+) uptake was mediated by the endoplasmic reticulum Mg(2+)/Ca(2+) ATPase due to its dependence on ATP and Mg(2+), enhancement by oxalate, and inhibition by thapsigargin. It was also shown that neuronal Ca(2+) uptake, mediated by the type 2 sarco(endo)plasmic reticulum Ca(2+) ATPase isoform, could be distinguished from glial Ca(2+) uptake in homogenates composed of neurons and glia. Finally, it was revealed that Ca(2+) uptake was sensitive to incubation on ice, extremely labile in the absence of protease inhibitors, and significantly more stable under storage conditions at -80 degrees C.
Cell death induced by endoplasmic reticulum stress.
Iurlaro, Raffaella; Muñoz-Pinedo, Cristina
2016-07-01
The endoplasmic reticulum is an organelle with multiple functions. The synthesis of transmembrane proteins and proteins that are to be secreted occurs in this organelle. Many conditions that impose stress on cells, including hypoxia, starvation, infections and changes in secretory needs, challenge the folding capacity of the cell and promote endoplasmic reticulum stress. The cellular response involves the activation of sensors that transduce signaling cascades with the aim of restoring homeostasis. This is known as the unfolded protein response, which also intersects with the integrated stress response that reduces protein synthesis through inactivation of the initiation factor eIF2α. Central to the unfolded protein response are the sensors PERK, IRE1 and ATF6, as well as other signaling nodes such as c-Jun N-terminal kinase 1 (JNK) and the downstream transcription factors XBP1, ATF4 and CHOP. These proteins aim to restore homeostasis, but they can also induce cell death, which has been shown to occur by necroptosis and, more commonly, through the regulation of Bcl-2 family proteins (Bim, Noxa and Puma) that leads to mitochondrial apoptosis. In addition, endoplasmic reticulum stress and proteotoxic stress have been shown to induce TRAIL receptors and activation of caspase-8. Endoplasmic reticulum stress is a common feature in the pathology of numerous diseases because it plays a role in neurodegeneration, stroke, cancer, metabolic diseases and inflammation. Understanding how cells react to endoplasmic reticulum stress can accelerate discovery of drugs against these diseases. © 2015 FEBS.
Hughes, Alexandria; Oxford, Alexandra E; Tawara, Ken; Jorcyk, Cheryl L; Oxford, Julia Thom
2017-03-20
Chondrocytes of the growth plate undergo apoptosis during the process of endochondral ossification, as well as during the progression of osteoarthritis. Although the regulation of this process is not completely understood, alterations in the precisely orchestrated programmed cell death during development can have catastrophic results, as exemplified by several chondrodystrophies which are frequently accompanied by early onset osteoarthritis. Understanding the mechanisms that underlie chondrocyte apoptosis during endochondral ossification in the growth plate has the potential to impact the development of therapeutic applications for chondrodystrophies and associated early onset osteoarthritis. In recent years, several chondrodysplasias and collagenopathies have been recognized as protein-folding diseases that lead to endoplasmic reticulum stress, endoplasmic reticulum associated degradation, and the unfolded protein response. Under conditions of prolonged endoplasmic reticulum stress in which the protein folding load outweighs the folding capacity of the endoplasmic reticulum, cellular dysfunction and death often occur. However, unfolded protein response (UPR) signaling is also required for the normal maturation of chondrocytes and osteoblasts. Understanding how UPR signaling may contribute to cartilage pathophysiology is an essential step toward therapeutic modulation of skeletal disorders that lead to osteoarthritis.
Isolation of Endoplasmic Reticulum Fractions from Mammary Epithelial Tissue.
Chanat, Eric; Le Parc, Annabelle; Lahouassa, Hichem; Badaoui, Bouabid
2016-06-01
In the mammary glands of lactating animals, the mammary epithelial cells that surround the lumen of the acini produce and secrete copious amounts of milk. Functional differentiation of these mammary epithelial cells depends on the development of high-efficiency secretory pathways, notably for protein and lipid secretion. Protein secretion is a fundamental process common to all animal cells that involves a subset of cellular organelles, including the endoplasmic reticulum and the Golgi apparatus. In contrast, en masse secretion of triglycerides and cholesterol esters in the form of milk fat globules is a unique feature of the mammary epithelial cell. Cytoplasmic lipid droplets, the intracellular precursors of milk fat globules, originate from the endoplasmic reticulum, as do most milk-specific proteins. This organelle is therefore pivotal in the biogenesis of milk components. Fractionation of the cell into its subcellular parts is an approach that has proven very powerful for understanding organelle function and for studying the specific role of an organelle in a given cell activity. Here we describe a method for the purification of both smooth and rough microsomes, the membrane-bound endoplasmic reticulum fragments that form from endoplasmic reticulum domains when cells are broken up, from mammary gland tissue at lactation.
Sierra, M; Holguín, J A
1979-01-01
In the sarcoplasmic reticulum of the myocardium, celular organell which function is to regulate the cytoplasmic concentration of calcium in contraction and relaxation, we have studied the effect of hypertonic solutions of sucrose between 1 and 6.96 times the normal tonicity in order to observe the behavior of the internal linked or free calcium of this structure, as well as to prove the hypothesis that hypertonic solutions encourage the calcium exit of the sarcoplasmatic reticulum with the resulting signs of contractures. The following results were obtained: 1. The ATP hydrolisis and calcium transport rate are 14% and 90% respectively of the maximum speeds of 10(-5) M in calcium, while for concentrations of 10(-7) M or ess of the said cation, the transport rates and the ATPase do not reach 5% of the maximum values. 2. Between 1 and 2.54 times of the normal tonicity the calcium uptake remains between 400 and 500 nmoles of calcium/mg protein/min, the transported amount of calcium varies between 14 and 16 nmoles/mg protein and the rate of the ATP hydrolysis increases a 37% to 0.4 M in sucrose. 3. Between 0.4 and 1.2 M in sucrose of 2.54 to 6.96 times the isotonicity, the calcium transport rate velocity as well as the ATP hydrolisis are strongly inhibited. The vesicles volume minimizes and the amount of linked calcium remains within the control values, proving that the capacity of linking this cathion is independent from sarcoplasmic reticulum volume. These results show that the sarcoplasmic reticulum is involved in the contractures induced by hypertonic solutions in intact cells, since the osmolarity increase produces changes of volume which results in a decrease of the calcium transportation velocity or in an increase of the exit of said cathion.
Jiang, Meng; Yu, Shu; Yu, Zhui; Sheng, Huaxin; Li, Ying; Liu, Shuai; Warner, David S; Paschen, Wulf; Yang, Wei
2017-06-01
Impaired protein homeostasis induced by endoplasmic reticulum dysfunction is a key feature of a variety of age-related brain diseases including stroke. To restore endoplasmic reticulum function impaired by stress, the unfolded protein response is activated. A key unfolded protein response prosurvival pathway is controlled by the endoplasmic reticulum stress sensor (inositol-requiring enzyme-1), XBP1 (downstream X-box-binding protein-1), and O-GlcNAc (O-linked β-N-acetylglucosamine) modification of proteins (O-GlcNAcylation). Stroke impairs endoplasmic reticulum function, which activates unfolded protein response. The rationale of this study was to explore the potentials of the IRE1/XBP1/O-GlcNAc axis as a target for neuroprotection in ischemic stroke. Mice with Xbp1 loss and gain of function in neurons were generated. Stroke was induced by transient or permanent occlusion of the middle cerebral artery in young and aged mice. Thiamet-G was used to increase O-GlcNAcylation. Deletion of Xbp1 worsened outcome after transient and permanent middle cerebral artery occlusion. After stroke, O-GlcNAcylation was activated in neurons of the stroke penumbra in young mice, which was largely Xbp1 dependent. This activation of O-GlcNAcylation was impaired in aged mice. Pharmacological increase of O-GlcNAcylation before or after stroke improved outcome in both young and aged mice. Our study indicates a critical role for the IRE1/XBP1 unfolded protein response branch in stroke outcome. O-GlcNAcylation is a prosurvival pathway that is activated in the stroke penumbra in young mice but impaired in aged mice. Boosting prosurvival pathways to counterbalance the age-related decline in the brain's self-healing capacity could be a promising strategy to improve ischemic stroke outcome in aged brains. © 2017 American Heart Association, Inc.
Lipid partitioning at the nuclear envelope controls membrane biogenesis
Barbosa, Antonio Daniel; Sembongi, Hiroshi; Su, Wen-Min; Abreu, Susana; Reggiori, Fulvio; Carman, George M.; Siniossoglou, Symeon
2015-01-01
Partitioning of lipid precursors between membranes and storage is crucial for cell growth, and its disruption underlies pathologies such as cancer, obesity, and type 2 diabetes. However, the mechanisms and signals that regulate this process are largely unknown. In yeast, lipid precursors are mainly used for phospholipid synthesis in nutrient-rich conditions in order to sustain rapid proliferation but are redirected to triacylglycerol (TAG) stored in lipid droplets during starvation. Here we investigate how cells reprogram lipid metabolism in the endoplasmic reticulum. We show that the conserved phosphatidate (PA) phosphatase Pah1, which generates diacylglycerol from PA, targets a nuclear membrane subdomain that is in contact with growing lipid droplets and mediates TAG synthesis. We find that cytosol acidification activates the master regulator of Pah1, the Nem1-Spo7 complex, thus linking Pah1 activity to cellular metabolic status. In the absence of TAG storage capacity, Pah1 still binds the nuclear membrane, but lipid precursors are redirected toward phospholipids, resulting in nuclear deformation and a proliferation of endoplasmic reticulum membrane. We propose that, in response to growth signals, activation of Pah1 at the nuclear envelope acts as a switch to control the balance between membrane biogenesis and lipid storage. PMID:26269581
Caballano-Infantes, Estefania; Terron-Bautista, José; Beltrán-Povea, Amparo; Cahuana, Gladys M; Soria, Bernat; Nabil, Hajji; Bedoya, Francisco J; Tejedo, Juan R
2017-01-01
Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known. Low levels of NO maintain pluripotency and induce mitochondrial biogenesis. It is well established that NO disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca2+ flux that induce ERS. Thus, at high concentrations, NO becomes a potential differentiation agent due to the relationship between ERS and the unfolded protein response in many differentiated cell lines. Nevertheless, many studies have demonstrated the need for physiological levels of NO for a proper ERS response. In this review, we stress the importance of the relationships between NO levels, ERS and mitochondrial dysfunction that control stem cell fate as a new approach to possible cell therapy strategies. PMID:28289506
Caballano-Infantes, Estefania; Terron-Bautista, José; Beltrán-Povea, Amparo; Cahuana, Gladys M; Soria, Bernat; Nabil, Hajji; Bedoya, Francisco J; Tejedo, Juan R
2017-02-26
Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known. Low levels of NO maintain pluripotency and induce mitochondrial biogenesis. It is well established that NO disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca 2+ flux that induce ERS. Thus, at high concentrations, NO becomes a potential differentiation agent due to the relationship between ERS and the unfolded protein response in many differentiated cell lines. Nevertheless, many studies have demonstrated the need for physiological levels of NO for a proper ERS response. In this review, we stress the importance of the relationships between NO levels, ERS and mitochondrial dysfunction that control stem cell fate as a new approach to possible cell therapy strategies.
Maheshwari, Richa; Pushpa, Kumari; Subramaniam, Kuppuswamy
2016-09-01
Membrane-bound receptors, which are crucial for mediating several key developmental signals, are synthesized on endoplasmic reticulum (ER). The functional integrity of ER must therefore be important for the regulation of at least some developmental programs. However, the developmental control of ER function is not well understood. Here, we identify the C. elegans protein FARL-11, an ortholog of the mammalian STRIPAK complex component STRIP1/2 (FAM40A/B), as an ER protein. In the C. elegans embryo, we find that FARL-11 is essential for the cell cycle-dependent morphological changes of ER and for embryonic viability. In the germline, FARL-11 is required for normal ER morphology and for membrane localization of the GLP-1/Notch receptor involved in germline stem cell (GSC) maintenance. Furthermore, we provide evidence that PUF-8, a key translational regulator in the germline, promotes the translation of farl-11 mRNA. These findings reveal that ER form and function in the C. elegans germline are post-transcriptionally regulated and essential for the niche-GSC signaling mediated by GLP-1. © 2016. Published by The Company of Biologists Ltd.
Mami, Iadh; Bouvier, Nicolas; El Karoui, Khalil; Gallazzini, Morgan; Rabant, Marion; Laurent-Puig, Pierre; Li, Shuping; Tharaux, Pierre-Louis; Beaune, Philippe; Thervet, Eric; Chevet, Eric; Hu, Guo-Fu
2016-01-01
Endoplasmic reticulum (ER) stress is involved in the pathophysiology of kidney disease and aging, but the molecular bases underlying the biologic outcomes on the evolution of renal disease remain mostly unknown. Angiogenin (ANG) is a ribonuclease that promotes cellular adaptation under stress but its contribution to ER stress signaling remains elusive. In this study, we investigated the ANG-mediated contribution to the signaling and biologic outcomes of ER stress in kidney injury. ANG expression was significantly higher in samples from injured human kidneys than in samples from normal human kidneys, and in mouse and rat kidneys, ANG expression was specifically induced under ER stress. In human renal epithelial cells, ER stress induced ANG expression in a manner dependent on the activity of transcription factor XBP1, and ANG promoted cellular adaptation to ER stress through induction of stress granules and inhibition of translation. Moreover, the severity of renal lesions induced by ER stress was dramatically greater in ANG knockout mice (Ang−/−) mice than in wild-type mice. These results indicate that ANG is a critical mediator of tissue adaptation to kidney injury and reveal a physiologically relevant ER stress-mediated adaptive translational control mechanism. PMID:26195817
Genetics Home Reference: hereditary sensory and autonomic neuropathy type II
... and autonomic neurons. It is involved in the recycling of worn-out cell parts (autophagy), specifically a ... endoplasmic reticulum . When the RETREG1 protein is nonfunctional, recycling of the endoplasmic reticulum is impaired. The buildup ...
Calcium signaling and cell proliferation.
Pinto, Mauro Cunha Xavier; Kihara, Alexandre Hiroaki; Goulart, Vânia A M; Tonelli, Fernanda M P; Gomes, Katia N; Ulrich, Henning; Resende, Rodrigo R
2015-11-01
Cell proliferation is orchestrated through diverse proteins related to calcium (Ca(2+)) signaling inside the cell. Cellular Ca(2+) influx that occurs first by various mechanisms at the plasma membrane, is then followed by absorption of Ca(2+) ions by mitochondria and endoplasmic reticulum, and, finally, there is a connection of calcium stores to the nucleus. Experimental evidence indicates that the fluctuation of Ca(2+) from the endoplasmic reticulum provides a pivotal and physiological role for cell proliferation. Ca(2+) depletion in the endoplasmatic reticulum triggers Ca(2+) influx across the plasma membrane in an phenomenon called store-operated calcium entries (SOCEs). SOCE is activated through a complex interplay between a Ca(2+) sensor, denominated STIM, localized in the endoplasmic reticulum and a Ca(2+) channel at the cell membrane, denominated Orai. The interplay between STIM and Orai proteins with cell membrane receptors and their role in cell proliferation is discussed in this review. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE R&D Accomplishments Database
Kanazawa, T.; Boyer, P. D.
1972-01-01
Sarcoplasmic reticulum vesicles isolated from skeletal muscle actively take up Ca{sup ++} from the medium in the presence of Mg{sup ++} and ATP. This transport is coupled to ATP hydrolysis catalyzed by membrane-bound Ca{sup++}, Mg{sup ++}-ATPase which is activated by concurrent presence of Ca{sup ++} and Mg{sup ++}. Considerable informations have accumulated that give insight into the ATPase and its coupling to the calcium transport. The hydrolysis of ATP by this enzyme occurs through a phosphorylated intermediate. Formation and decomposition of the intermediate show vectorial requirements for Ca{sup ++} and Mg{sup ++}, suggesting an intimate involvement of the intermediate in the transport process. ATP synthesis from P{sub i} and ADP coupled to outflow of Ca{sup ++} from sarcoplasmic reticulum vesicles has recently been demonstrated. This indicates the reversibility of the entire process of calcium transport in sarcoplasmic reticulum vesicles.
Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum.
Le, Phuong U; Guay, Ginette; Altschuler, Yoram; Nabi, Ivan R
2002-02-01
Caveolae are flask-shaped invaginations at the plasma membrane that constitute a subclass of detergent-resistant membrane domains enriched in cholesterol and sphingolipids and that express caveolin, a caveolar coat protein. Autocrine motility factor receptor (AMF-R) is stably localized to caveolae, and the cholesterol extracting reagent, methyl-beta-cyclodextrin, inhibits its internalization to the endoplasmic reticulum implicating caveolae in this distinct receptor-mediated endocytic pathway. Curiously, the rate of methyl-beta-cyclodextrin-sensitive endocytosis of AMF-R to the endoplasmic reticulum is increased in ras- and abl-transformed NIH-3T3 cells that express significantly reduced levels of caveolin and few caveolae. Overexpression of the dynamin K44A dominant negative mutant via an adenovirus expression system induces caveolar invaginations sensitive to methyl-beta-cyclodextrin extraction in the transformed cells without increasing caveolin expression. Dynamin K44A expression further inhibits AMF-R-mediated endocytosis to the endoplasmic reticulum in untransformed and transformed NIH-3T3 cells. Adenoviral expression of caveolin-1 also induces caveolae in the transformed NIH-3T3 cells and reduces AMF-R-mediated endocytosis to the endoplasmic reticulum to levels observed in untransformed NIH-3T3 cells. Cholesterol-rich detergent-resistant membrane domains or glycolipid rafts therefore invaginate independently of caveolin-1 expression to form endocytosis-competent caveolar vesicles via rapid dynamin-dependent detachment from the plasma membrane. Caveolin-1 stabilizes the plasma membrane association of caveolae and thereby acts as a negative regulator of the caveolae-mediated endocytosis of AMF-R to the endoplasmic reticulum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brüning, Ansgar, E-mail: ansgar.bruening@med.uni-muenchen.de; Matsingou, Christina; Brem, German Johannes
2012-10-15
Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir.more » Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress. -- Highlights: ► Endoplasmic reticulum stress induces inhibin beta E expression. ► Inhibin beta E is regulated by the transcription factor ATF4. ► Inhibin beta E expression can be used as a marker for drug-induced ER stress.« less
Genetics Home Reference: CLN8 disease
... The endoplasmic reticulum is involved in protein production, processing, and transport to different parts of the cell. The CLN8 protein may also play a role in helping the endoplasmic reticulum regulate levels of fats (lipids) in cells. In certain cells, ...
Wang, Xin; Komatsu, Setsuko
2016-07-01
Soybean is a widely cultivated crop; however, it is sensitive to flooding and drought stresses. The adverse environmental cues cause the endoplasmic reticulum (ER) stress due to accumulation of unfolded or misfolded proteins. To investigate the mechanisms in response to flooding and drought stresses, ER proteomics was performed in soybean root tips. The enzyme activity of NADH cytochrome c reductase was two-fold higher in the ER than other fractions, indicating that the ER was isolated with high purity. Protein abundance of ribosomal proteins was decreased under both stresses compared to control condition; however, the percentage of increased ribosomes was two-fold higher in flooding compared to drought. The ER proteins related to protein glycosylation and signaling were in response to both stresses. Compared to control condition, calnexin was decreased under both stresses; however, protein disulfide isomerase-like proteins and heat shock proteins were markedly decreased under flooding and drought conditions, respectively. Furthermore, fewer glycoproteins and higher levels of cytosolic calcium were identified under both stresses compared to control condition. These results suggest that reduced accumulation of glycoproteins in response to both stresses might be due to dysfunction of protein folding through calnexin/calreticulin cycle. Additionally, the increased cytosolic calcium levels induced by flooding and drought stresses might disturb the ER environment for proper protein folding in soybean root tips.
Chen, Yao-Chang; Kao, Yu-Hsun; Huang, Chun-Feng; Cheng, Chen-Chuan; Chen, Yi-Jen; Chen, Shih-Ann
2010-04-01
Heat stress-induced responses change the ionic currents and calcium homeostasis. However, the molecular insights into the heat stress responses on calcium homeostasis remain unclear. The purposes of this study were to examine the mechanisms of heat stress responses on calcium handling and electrophysiological characteristics in atrial myocytes. We used indo-1 fluorimetric ratio technique and whole-cell patch clamp to investigate the intracellular calcium, action potentials, and ionic currents in isolated rabbit single atrial cardiomyocytes with or without (control) exposure to heat stress (43 degrees C, 15 min) 5+/-1 h before experiments. The expressions of sarcoplasmic reticulum ATPase (SERCA2a), and Na(+)-Ca(2+) exchanger (NCX) in the control and heat stress-treated atrial myocytes were evaluated by Western blot and real-time PCR. As compared with control myocytes, the heat stress-treated myocytes had larger sarcoplasmic reticulum calcium content and larger intracellular calcium transient with a shorter decay portion. Heat stress-treated myocytes also had larger L-type calcium currents, transient outward potassium currents, but smaller NCX currents. Heat stress responses increased the protein expressions, SERCA2a, NCX, and heat shock protein. However, heat stress responses did not change the RNA expression of SERCA2a and NCX. In conclusion, heat stress responses change calcium handling through protein but not RNA regulation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Yao, Xing-Hai; Nguyen, Hoa K.; Nyomba, B. L. Grégoire
2013-01-01
Prenatal ethanol exposure results in increased glucose production in adult rat offspring and this may involve modulation of protein acetylation by cellular stress. We used adult male offspring of dams given ethanol during gestation days 1–7 (early), 8–14 (mid) and 15–21 (late) compared with those from control dams. A group of ethanol offspring was treated with tauroursodeoxycholic acid (TUDCA) for 3 weeks. We determined gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase, hepatic free radicals, histone deacetylases (HDAC), acetylated foxo1, acetylated PEPCK, and C/EBP homologous protein as a marker of endoplasmic reticulum stress. Prenatal ethanol during either of the 3 weeks of pregnancy increased gluconeogenesis, gluconeogenic genes, oxidative and endoplasmic reticulum stresses, sirtuin-2 and HDAC3, 4, 5, and 7 in adult offspring. Conversely, prenatal ethanol reduced acetylation of foxo1 and PEPCK. Treatment of adult ethanol offspring with TUDCA reversed all these abnormalities. Thus, prenatal exposure of rats to ethanol results in long lasting oxidative and endoplasmic reticulum stresses explaining increased expression of gluconeogenic genes and HDAC proteins which, by deacetylating foxo1 and PEPCK, contribute to increased gluconeogenesis. These anomalies occurred regardless of the time of ethanol exposure during pregnancy, including early embryogenesis. As these anomalies were reversed by treatment of the adult offspring with TUDCA, this compound has therapeutic potentials in the treatment of glucose intolerance associated with prenatal ethanol exposure. PMID:23544086
Guglielmi, V; Oosterhof, A; Voermans, N C; Cardani, R; Molenaar, J P; van Kuppevelt, T H; Meola, G; van Engelen, B G; Tomelleri, G; Vattemi, G
2016-06-01
Sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) pumps play the major role in lowering cytoplasmic calcium concentration in skeletal muscle by catalyzing the ATP-dependent transport of Ca(2+) from the cytosol to the lumen of the sarcoplasmic reticulum (SR). Although SERCA abnormalities have been hypothesized to contribute to the dysregulation of intracellular Ca(2+) homeostasis and signaling in muscle of patients with myotonic dystrophy (DM) and hypothyroid myopathy, the characterization of SERCA pumps remains elusive and their impairment is still unclear. We assessed the activity of SR Ca(2+)-ATPase, expression levels and fiber distribution of SERCA1 and SERCA2, and oligomerization of SERCA1 protein in muscle of patients with DM type 1 and 2, and with hypothyroid myopathy. Our data provide evidence that SR Ca(2+) ATPase activity, protein levels and muscle fiber distribution of total SERCA1 and SERCA2, and SERCA1 oligomerization pattern are similar in patients with both DM1 and DM2, hypothyroid myopathy and in control subjects. We prove that SERCA1b, the neonatal isoform of SERCA1, is expressed at protein level in muscle of patients with DM2 and, in lower amount, of patients with DM1. Our present study demonstrates that SERCA function is not altered in muscle of patients with DM and with hypothyroid myopathy. Copyright © 2016 Elsevier B.V. All rights reserved.
Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity.
Park, Chang-Jin; Seo, Young-Su
2015-12-01
As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.
Eukaryotic oligosaccharyltransferase generates free oligosaccharides during N-glycosylation.
Harada, Yoichiro; Buser, Reto; Ngwa, Elsy M; Hirayama, Hiroto; Aebi, Markus; Suzuki, Tadashi
2013-11-08
Asparagine (N)-linked glycosylation regulates numerous cellular activities, such as glycoprotein quality control, intracellular trafficking, and cell-cell communications. In eukaryotes, the glycosylation reaction is catalyzed by oligosaccharyltransferase (OST), a multimembrane protein complex that is localized in the endoplasmic reticulum (ER). During N-glycosylation in the ER, the protein-unbound form of oligosaccharides (free oligosaccharides; fOSs), which is structurally related to N-glycan, is released into the ER lumen. However, the enzyme responsible for this process remains unidentified. Here, we demonstrate that eukaryotic OST generates fOSs. Biochemical and genetic analyses using mutant strains of Saccharomyces cerevisiae revealed that the generation of fOSs is tightly correlated with the N-glycosylation activity of OST. Furthermore, we present evidence that the purified OST complex can generate fOSs by hydrolyzing dolichol-linked oligosaccharide, the glycan donor substrate for N-glycosylation. The heterologous expression of a single subunit of OST from the protozoan Leishmania major in S. cerevisiae demonstrated that this enzyme functions both in N-glycosylation and generation of fOSs. This study provides insight into the mechanism of PNGase-independent formation of fOSs.
Disulfide bonds in ER protein folding and homeostasis
Feige, Matthias J.; Hendershot, Linda M.
2010-01-01
Proteins that are expressed outside the cell must be synthesized, folded and assembled in a way that ensures they can function in their designate location. Accordingly these proteins are primarily synthesized in the endoplasmic reticulum (ER), which has developed a chemical environment more similar to that outside the cell. This organelle is equipped with a variety of molecular chaperones and folding enzymes that both assist the folding process, while at the same time exerting tight quality control measures that are largely absent outside the cell. A major post-translational modification of ER-synthesized proteins is disulfide bridge formation, which is catalyzed by the family of protein disulfide isomerases. As this covalent modification provides unique structural advantages to extracellular proteins, multiple pathways to their formation have evolved. However, the advantages that disulfide bonds impart to these proteins come at a high cost to the cell. Very recent reports have shed light on how the cell can deal with or even exploit the side reactions of disulfide bond formation to maintain homeostasis of the ER and its folding machinery. PMID:21144725
Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties
Fessart, Delphine; Domblides, Charlotte; Avril, Tony; Eriksson, Leif A; Begueret, Hugues; Pineau, Raphael; Malrieux, Camille; Dugot-Senant, Nathalie; Lucchesi, Carlo; Chevet, Eric; Delom, Frederic
2016-01-01
The extracellular matrix (ECM) plays an instrumental role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues during morphogenesis. Here, we show that the Endoplasmic Reticulum (ER)-resident protein anterior gradient-2 (AGR2), a soluble protein-disulfide isomerase involved in ER protein folding and quality control, is secreted and interacts with the ECM. Extracellular AGR2 (eAGR2) is a microenvironmental regulator of epithelial tissue architecture, which plays a role in the preneoplastic phenotype and contributes to epithelial tumorigenicity. Indeed, eAGR2, is secreted as a functionally active protein independently of its thioredoxin-like domain (CXXS) and of its ER-retention domain (KTEL), and is sufficient, by itself, to promote the acquisition of invasive and metastatic features. Therefore, we conclude that eAGR2 plays an extracellular role independent of its ER function and we elucidate this gain-of-function as a novel and unexpected critical ECM microenvironmental pro-oncogenic regulator of epithelial morphogenesis and tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.13887.001 PMID:27240165
Sigma-1 receptor chaperones in neurodegenerative and psychiatric disorders
Pokrass, Michael J; Klauer, Neal R; De Credico, Nicole E
2017-01-01
Introduction Sigma-1 receptors (Sig-1Rs) are molecular chaperones that reside mainly in the endoplasmic reticulum (ER) but exist also in the proximity of the plasma membrane. Sig-1Rs are highly expressed in the CNS and are involved in many cellular processes including cell differentiation, neuritogenesis, microglia activation, protein quality control, calcium-mediated ER stress and ion channel modulation. Disturbance in any of the above cellular processes can accelerate the progression of many neurological disorders; therefore, the Sig-1R has been implicated in several neurological diseases. Areas covered This review broadly covers the functions of Sig-1Rs including several neurodegenerative disorders in humans and drug addiction-associated neurological disturbance in the case of HIV infection. We discuss how several Sig-1R ligands could be utilized in therapeutic approaches to treat those disorders. Expert opinion Emerging understanding of the cellular functions of this unique transmembrane chaperone may lead to the use of new agents or broaden the use of certain available ligands as therapeutic targets in those neurological disorders. PMID:25331742
Diabetic neuropathy: mechanisms, emerging treatments, and subtypes.
Albers, James W; Pop-Busui, Rodica
2014-08-01
Diabetic neuropathies (DNs) differ in clinical course, distribution, fiber involvement (type and size), and pathophysiology, the most typical type being a length-dependent distal symmetric polyneuropathy (DSP) with differing degrees of autonomic involvement. The pathogenesis of diabetic DSP is multifactorial, including increased mitochondrial production of free radicals due to hyperglycemia-induced oxidative stress. Mechanisms that impact neuronal activity, mitochondrial function, membrane permeability, and endothelial function include formation of advanced glycosylation end products, activation of polyol aldose reductase signaling, activation of poly(ADP ribose) polymerase, and altered function of the Na(+)/K(+)-ATPase pump. Hyperglycemia-induced endoplasmic reticulum stress triggers several neuronal apoptotic processes. Additional mechanisms include impaired nerve perfusion, dyslipidemia, altered redox status, low-grade inflammation, and perturbation of calcium balance. Successful therapies require an integrated approach targeting these mechanisms. Intensive glycemic control is essential but is insufficient to prevent onset or progression of DSP, and disease-modifying treatments for DSP have been disappointing. Atypical forms of DN include subacute-onset sensory (symmetric) or motor (asymmetric) predominant conditions that are frequently painful but generally self-limited. DNs are a major cause of disability, associated with reduced quality of life and increased mortality.
Metabolism and Regulation of Glycerolipids in the Yeast Saccharomyces cerevisiae
Henry, Susan A.; Kohlwein, Sepp D.; Carman, George M.
2012-01-01
Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphorylation, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways. PMID:22345606
Toll-like receptor 4-induced endoplasmic reticulum stress contributes to endothelial dysfunction
USDA-ARS?s Scientific Manuscript database
Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Endoplasmic reticulum (ER) stress is implicated as one of the mechanisms for pathophysiology of various cardiometabolic syndromes, including insulin resistance and endothelial dysfunction. ...
ERIC Educational Resources Information Center
Trinh, Mimi A.; Ma, Tao; Kaphzan, Hanoch; Bhattacharya, Aditi; Antion, Marcia D.; Cavener, Douglas R.; Hoeffer, Charles A.; Klann, Eric
2014-01-01
The proper regulation of translation is required for the expression of long-lasting synaptic plasticity. A major site of translational control involves the phosphorylation of eukaryotic initiation factor 2 a (eIF2a) by PKR-like endoplasmic reticulum (ER) kinase (PERK). To determine the role of PERK in hippocampal synaptic plasticity, we used the…
Carvalho, Arselio P.
1968-01-01
Calcium retained at binding sites of the sarcoplasmic reticulum membranes isolated from rabbit skeletal muscle requires 10-5 – 10-4 M ATP to exchange with 45Ca added to the medium. The ATP requirement for Ca exchangeability was observed with respect to the "intrinsic" Ca of the reticulum membranes and the fraction of Ca that is "actively" bound in the presence of ATP. Furthermore, a concentration of free Ca in the medium higher than 10-8 M is required for ATP to promote Ca exchangeability. This exchangeability is not influenced by caffeine, quinine, procaine, and tetracaine, and Ca that is either nonexchangeable (in the absence of ATP) or exchangeable (in the presence of ATP) is released by 1–5 mM quinine or tetracaine, but neither caffeine (6 mM) nor procaine (2–5 mM) has this effect. Quinine or tetracaine also releases Ca and Mg bound passively to the reticulum membranes. A possible role of ATP in maintaining the integrity of cellular membranes is discussed, and the effects of caffeine, quinine, and of local anesthetics on the binding of Ca by the isolated reticulum are related to the effects of these agents on 45Ca fluxes and on the twitch output observed in whole muscles. PMID:19873636
Unraveling the contribution of pancreatic beta-cell suicide in autoimmune type 1 diabetes✩
Jaberi-Douraki, Majid; Schnell, Santiago; Pietropaolo, Massimo; Khadra, Anmar
2014-01-01
In type 1 diabetes, an autoimmune disease mediated by autoreactive T-cells that attack insulin-secreting pancreatic beta-cells, it has been suggested that disease progression may additionally require protective mechanisms in the target tissue to impede such auto-destructive mechanisms. We hypothesize that the autoimmune attack against beta-cells causes endoplasmic reticulum stress by forcing the remaining beta-cells to synthesize and secrete defective insulin. To rescue beta-cell from the endoplasmic reticulum stress, beta-cells activate the unfolded protein response to restore protein homeostasis and normal insulin synthesis. Here we investigate the compensatory role of unfolded protein response by developing a multi-state model of type 1 diabetes that takes into account beta-cell destruction caused by pathogenic autoreactive T-cells and apoptosis triggered by endoplasmic reticulum stress. We discuss the mechanism of unfolded protein response activation and how it counters beta-cell extinction caused by an autoimmune attack and/or irreversible damage by endoplasmic reticulum stress. Our results reveal important insights about the balance between beta-cell destruction by autoimmune attack (beta-cell homicide) and beta-cell apoptosis by endoplasmic reticulum stress (beta-cell suicide). It also provides an explanation as to why the unfolded protein response may not be a successful therapeutic target to treat type 1 diabetes. PMID:24831415
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jing; Department of Dental Implantology, School of Stomatology, Tongji University, Shanghai 200072; Ogata, Shigenori
2010-07-02
So far, the content and accumulation of ATP in isolated endoplasmic reticulum (ER) are little understood. First, we confirmed using electron microscopic and Western blotting techniques that the samples extracted from MDCK cells are endoplasmic reticulum (ER). The amounts of ATP in the extracted ER were measured from the filtrate after a spinning down of ultrafiltration spin column packed with ER. When the ER sample (5 {mu}g) after 3 days freezing was suspended in intracellular medium (ICM), 0.1% Triton X and ultrapure water (UPW), ATP amounts from the ER with UPW were the highest and over 10 times compared withmore » that from the control with ICM, indicating that UPW is the most effective tool in destroying the ER membrane. After a 10-min-incubation with ICM containing phosphocreatine (PCr)/creatine kinase (CK) of the fresh ER. ATP amounts in the filtrate obtained by spinning down were not changed from that in the control (no PCr/CK). However, ATP amounts in the filtrate from the second spinning down of the ER (treated with PCr/CK) suspended in UPW became over 10-fold compared with the control. When 1 {mu}M inositol(1,4,5)trisphosphate (Ins(1,4,5)P{sub 3}) was added in the incubation medium (ICM with PCr/CK), ATP amounts from the filtrate after the second spinning down were further enhanced around three times. This enhancement was almost canceled by Ca{sup 2+}-removal from ICM and by adding thapsigargin, a Ca{sup 2+}-ATPase inhibitor, but not by 2-APB and heparin, Ins(1,4,5)P{sub 3} receptor antagonists. Administration of 500 {mu}M adenosine to the incubation medium (with PCr/CK) failed to enhance the accumulation of ATP in the ER. These findings suggest that the ER originally contains ATP and ATP accumulation in the ER is promoted by PCr/CK and Ins(1,4,5)P{sub 3}.« less
Adebiyi, Adebowale; Thomas-Gatewood, Candice M; Leo, M Dennis; Kidd, Michael W; Neeb, Zachary P; Jaggar, Jonathan H
2012-11-01
Hypertension is associated with an elevation in agonist-induced vasoconstriction, but mechanisms involved require further investigation. Many vasoconstrictors bind to phospholipase C-coupled receptors, leading to an elevation in inositol 1,4,5-trisphosphate (IP(3)) that activates sarcoplasmic reticulum IP(3) receptors. In cerebral artery myocytes, IP(3) receptors release sarcoplasmic reticulum Ca(2+) and can physically couple to canonical transient receptor potential 3 (TRPC3) channels in a caveolin-1-containing macromolecular complex, leading to cation current activation that stimulates vasoconstriction. Here, we investigated mechanisms by which IP(3) receptors control vascular contractility in systemic arteries and IP(3)R involvement in elevated agonist-induced vasoconstriction during hypertension. Total and plasma membrane-localized TRPC3 protein was ≈2.7- and 2-fold higher in mesenteric arteries of spontaneously hypertensive rats (SHRs) than in Wistar-Kyoto (WKY) rat controls, respectively. In contrast, IP(3)R1, TRPC1, TRPC6, and caveolin-1 expression was similar. TRPC3 expression was also similar in arteries of pre-SHRs and WKY rats. Control, IP(3)-induced and endothelin-1 (ET-1)-induced fluorescence resonance energy transfer between IP3R1 and TRPC3 was higher in SHR than WKY myocytes. IP3-induced cation current was ≈3-fold larger in SHR myocytes. Pyr3, a selective TRPC3 channel blocker, and calmodulin and IP(3) receptor binding domain peptide, an IP(3)R-TRP physical coupling inhibitor, reduced IP(3)-induced cation current and ET-1-induced vasoconstriction more in SHR than WKY myocytes and arteries. Thapsigargin, a sarcoplasmic reticulum Ca(2+)-ATPase blocker, did not alter ET-1-stimulated vasoconstriction in SHR or WKY arteries. These data indicate that ET-1 stimulates physical coupling of IP(3)R1 to TRPC3 channels in mesenteric artery myocytes, leading to vasoconstriction. Furthermore, an elevation in IP(3)R1 to TRPC3 channel molecular coupling augments ET-1-induced vasoconstriction during hypertension.
Weis, MaryAnn; Rai, Jyoti; Hudson, David M.; Dimori, Milena; Zimmerman, Sarah M.; Hogue, William R.; Swain, Frances L.; Burdine, Marie S.; Mackintosh, Samuel G.; Tackett, Alan J.; Suva, Larry J.; Eyre, David R.
2016-01-01
Collagen is a major component of the extracellular matrix and its integrity is essential for connective tissue and organ function. The importance of proteins involved in intracellular collagen post-translational modification, folding and transport was recently highlighted from studies on recessive forms of osteogenesis imperfecta (OI). Here we describe the critical role of SC65 (Synaptonemal Complex 65, P3H4), a leprecan-family member, as part of an endoplasmic reticulum (ER) complex with prolyl 3-hydroxylase 3. This complex affects the activity of lysyl-hydroxylase 1 potentially through interactions with the enzyme and/or cyclophilin B. Loss of Sc65 in the mouse results in instability of this complex, altered collagen lysine hydroxylation and cross-linking leading to connective tissue defects that include low bone mass and skin fragility. This is the first indication of a prolyl-hydroxylase complex in the ER controlling lysyl-hydroxylase activity during collagen synthesis. PMID:27119146
A Large and Intact Viral Particle Penetrates the Endoplasmic Reticulum Membrane to Reach the Cytosol
Inoue, Takamasa; Tsai, Billy
2011-01-01
Non-enveloped viruses penetrate host membranes to infect cells. A cell-based assay was used to probe the endoplasmic reticulum (ER)-to-cytosol membrane transport of the non-enveloped SV40. We found that, upon ER arrival, SV40 is released into the lumen and undergoes sequential disulfide bond disruptions to reach the cytosol. However, despite these ER-dependent conformational changes, SV40 crosses the ER membrane as a large and intact particle consisting of the VP1 coat, the internal components VP2, VP3, and the genome. This large particle subsequently disassembles in the cytosol. Mutant virus and inhibitor studies demonstrate VP3 and likely the viral genome, as well as cellular proteasome, control ER-to-cytosol transport. Our results identify the sequence of events, as well as virus and host components, that regulate ER membrane penetration. They also suggest that the ER membrane supports passage of a large particle, potentially through either a sizeable protein-conducting channel or the lipid bilayer. PMID:21589906
STIM proteins and the endoplasmic reticulum-plasma membrane junctions.
Carrasco, Silvia; Meyer, Tobias
2011-01-01
Eukaryotic organelles can interact with each other through stable junctions where the two membranes are kept in close apposition. The junction that connects the endoplasmic reticulum to the plasma membrane (ER-PM junction) is unique in providing a direct communication link between the ER and the PM. In a recently discovered signaling process, STIM (stromal-interacting molecule) proteins sense a drop in ER Ca(2+) levels and directly activate Orai PM Ca(2+) channels across the junction space. In an inverse process, a voltage-gated PM Ca(2+) channel can directly open ER ryanodine-receptor Ca(2+) channels in striated-muscle cells. Although ER-PM junctions were first described 50 years ago, their broad importance in Ca(2+) signaling, as well as in the regulation of cholesterol and phosphatidylinositol lipid transfer, has only recently been realized. Here, we discuss research from different fields to provide a broad perspective on the structures and unique roles of ER-PM junctions in controlling signaling and metabolic processes.
VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation
Shih, Yu-Tzu; Hsueh, Yi-Ping
2016-01-01
Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders. PMID:26984393
VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.
Shih, Yu-Tzu; Hsueh, Yi-Ping
2016-03-17
Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.
Xu, Guoyong; Li, Sizhun; Xie, Ke; Zhang, Qiang; Wang, Yan; Tang, Yang; Liu, Dong; Hong, Yiguo; He, Chenyang; Liu, Yule
2012-10-01
The hypersensitive response (HR), a form of programmed cell death (PCD), is a tightly regulated innate immune response in plants that is hypothesized to restrict pathogen growth and disease development. Although considerable efforts have been made to understand HR PCD, it remains unknown whether the retrograde pathway from the Golgi to the endoplasmic reticulum (ER) is involved. Here we provide direct genetic evidence that two Nicotiana benthamiana homologs, ERD2a and ERD2b, function as ER luminal protein receptors and participate in HR PCD. Virus-induced gene silencing (VIGS) of ERD2a and/or ERD2b caused escape of ER-resident proteins from the ER, and resulted in plants that were more sensitive to ER stress. Silencing of ERD2b delayed HR PCD induced by the non-host pathogens Xanthomonas oryzae pv. oryzae and Pseudomonas syringae pv. tomato DC3000. However, both silencing of ERD2a and co-silencing of ERD2a and ERD2b exacerbated HR PCD. Individual and combined suppression of ERD2a and ERD2b exaggerated R gene-mediated cell death. Nevertheless, silencing of ERD2a and/or ERD2b had no detectable effects on bacterial growth. Furthermore, VIGS of several putative ligands of ERD2a/2b, including the ER quality control (ERQC) component genes BiP, CRT3 and UGGT, had different effects on HR PCD induced by different pathogens. This indicates that immunity-related cell death pathways are separate with respect to the genetic requirements for these ERQC components. These results suggest that ERD2a and ERD2b function as ER luminal protein receptors to ensure ERQC and alleviate ER stress, thus affecting HR PCD during the plant innate immune response. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grondin, Melanie; Marion, Michel; Denizeau, Francine
2007-07-01
Tri-n-butyltin is a widespread environmental toxicant, which accumulates in the liver. This study investigates whether tri-n-butyltin induces pro-apoptotic signaling in rat liver hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Tri-n-butyltin activated the endoplasmic reticulum pathway of apoptosis, which was demonstrated by the activation of the protease calpain, its translocation to the plasma membrane, followed by cleavage of the calpain substrates, cytoskeletal protein vinculin, and caspase-12. Caspase-12 is localized to the cytoplasmic side of the endoplasmic reticulum and is involved in apoptosis mediated by the endoplasmic reticulum. Tri-n-butyltin also caused translocation of the pro-apoptotic proteins Bax and Bad frommore » the cytosol to mitochondria, as well as changes in mitochondrial membrane permeability, events which can activate the mitochondrial death pathway. Tri-n-butyltin induced downstream apoptotic events in rat hepatocytes at the nuclear level, detected by chromatin condensation and by confocal microscopy using acridine orange. We investigated whether the tri-n-butyltin-induced pro-apoptotic events in hepatocytes could be linked to perturbation of intracellular calcium homeostasis, using confocal microscopy. Tri-n-butyltin caused changes in intracellular calcium distribution, which were similar to those induced by thapsigargin. Calcium was released from a subcellular compartment, which is likely to be the endoplasmic reticulum, into the cytosol. Cytosolic acidification, which is known to trigger apoptosis, also occurred and involved the Cl{sup -}/HCO{sub 3} {sup -} exchanger. Pro-apoptotic events in hepatocytes were inhibited by the calcium chelator, Bapta-AM, and by a calpain inhibitor, which suggests that changes in intracellular calcium homeostasis are involved in tri-n-butyltin-induced apoptotic signaling in rat hepatocytes.« less
Domeier, Timothy L; Maxwell, Joshua T; Blatter, Lothar A
2012-01-01
β-Adrenergic signalling induces positive inotropic effects on the heart that associate with pro-arrhythmic spontaneous Ca2+ waves. A threshold level of sarcoplasmic reticulum (SR) Ca2+ ([Ca2+]SR) is necessary to trigger Ca2+ waves, and whether the increased incidence of Ca2+ waves during β-adrenergic stimulation is due to an alteration in this threshold remains controversial. Using the low-affinity Ca2+ indicator fluo-5N entrapped within the SR of rabbit ventricular myocytes, we addressed this controversy by directly monitoring [Ca2+]SR and Ca2+ waves during β-adrenergic stimulation. Electrical pacing in elevated extracellular Ca2+ ([Ca2+]o= 7 mm) was used to increase [Ca2+]SR to the threshold where Ca2+ waves were consistently observed. The β-adrenergic agonist isoproterenol (ISO; 1 μm) increased [Ca2+]SR well above the control threshold and consistently triggered Ca2+ waves. However, when [Ca2+]SR was subsequently lowered in the presence of ISO (by lowering [Ca2+]o to 1 mm and partially inhibiting sarcoplasmic/endoplasmic reticulum calcium ATPase with cyclopiazonic acid or thapsigargin), Ca2+ waves ceased to occur at a [Ca2+]SR that was higher than the control threshold. Furthermore, for a set [Ca2+]SR level the refractoriness of wave occurrence (Ca2+ wave latency) was prolonged during β-adrenergic stimulation, and was highly dependent on the extent that [Ca]SR exceeded the wave threshold. These data show that acute β-adrenergic stimulation increases the [Ca2+]SR threshold for Ca2+ waves, and therefore the primary cause of Ca2+ waves is the robust increase in [Ca2+]SR above this higher threshold level. Elevation of the [Ca2+]SR wave threshold and prolongation of wave latency represent potentially protective mechanisms against pro-arrhythmogenic Ca2+ release during β-adrenergic stimulation. PMID:22988136
Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology.
Lopez-Crisosto, Camila; Pennanen, Christian; Vasquez-Trincado, Cesar; Morales, Pablo E; Bravo-Sagua, Roberto; Quest, Andrew F G; Chiong, Mario; Lavandero, Sergio
2017-06-01
Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum-mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum-mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.
Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases
Liu, Mei-qing; Chen, Zhe; Chen, Lin-xi
2016-01-01
Endoplasmic reticulum is a principal organelle responsible for folding, post-translational modifications and transport of secretory, luminal and membrane proteins, thus palys an important rale in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) is a condition that is accelerated by accumulation of unfolded/misfolded proteins after endoplasmic reticulum environment disturbance, triggered by a variety of physiological and pathological factors, such as nutrient deprivation, altered glycosylation, calcium depletion, oxidative stress, DNA damage and energy disturbance, etc. ERS may initiate the unfolded protein response (UPR) to restore cellular homeostasis or lead to apoptosis. Numerous studies have clarified the link between ERS and cardiovascular diseases. This review focuses on ERS-associated molecular mechanisms that participate in physiological and pathophysiological processes of heart and blood vessels. In addition, a number of drugs that regulate ERS was introduced, which may be used to treat cardiovascular diseases. This review may open new avenues for studying the pathogenesis of cardiovascular diseases and discovering novel drugs targeting ERS. PMID:26838072
Zhang, Jintao; Yi, Man; Zha, Longying; Chen, Siqiang; Li, Zhijia; Li, Cheng; Gong, Mingxing; Deng, Hong; Chu, Xinwei; Chen, Jiehua; Zhang, Zheqing; Mao, Limei; Sun, Suxia
2016-01-01
Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells. Human colorectal cancer cell lines (HCT-116 and HT-29) were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining), and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot. Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II), beclin-1, and autophagocytosis-associated protein (Atg)3. The autophagy inhibitors 3-methyladenine (3-MA) and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin) and genetic (siRNA targeting BIP and CHOP) methods, the induction of BIP, PDI, IRE1a, and LC3-II was blocked, but PARP cleavage was markedly enhanced. Taken together, these results suggested that sodium butyrate-induced autophagy was mediated by endoplasmic reticulum stress, and that preventing autophagy by blocking the endoplasmic reticulum stress response enhanced sodium butyrate-induced apoptosis. These results provide novel insights into the anti-tumor mechanisms of butyric acid.
Silvestre, David C; Maccioni, Hugo J F; Caputto, Beatriz L
2009-03-01
Although the molecular and cellular basis of particular events that lead to the biogenesis of membranes in eukaryotic cells has been described in detail, understanding of the intrinsic complexity of the pleiotropic response by which a cell adjusts the overall activity of its endomembrane system to accomplish these requirements is limited. Here we carried out an immunocytochemical and biochemical examination of the content and quality of the endoplasmic reticulum (ER) and Golgi apparatus membranes in two in vivo situations characterized by a phase of active cell proliferation followed by a phase of declination in proliferation (rat brain tissue at early and late developmental stages) or by permanent active proliferation (gliomas and their most malignant manifestation, glioblastomas multiforme). It was found that, in highly proliferative phases of brain development (early embryo brain cells), the content of ER and Golgi apparatus membranes, measured as total lipid phosphorous content, is higher than in adult brain cells. In addition, the concentration of protein markers of ER and Golgi is also higher in early embryo brain cells and in human glioblastoma multiforme cells than in adult rat brain or in nonpathological human brain cells. Results suggest that the amount of endomembranes and the concentration of constituent functional proteins diminish as cells decline in their proliferative activity.
ERIC Educational Resources Information Center
Chen, Alice Y.; McKee, Nancy
1999-01-01
Describes the developmental process used to visualize the calcium ATPase enzyme of the sarcoplasmic reticulum which involves evaluating scientific information, consulting scientists, model making, storyboarding, and creating and editing in a computer medium. (Author/CCM)
Oxidative Processing of Latent Fas in the Endoplasmic Reticulum Controls the Strength of Apoptosis
Anathy, Vikas; Roberson, Elle; Cunniff, Brian; Nolin, James D.; Hoffman, Sidra; Spiess, Page; Guala, Amy S.; Lahue, Karolyn G.; Goldman, Dylan; Flemer, Stevenson; van der Vliet, Albert; Heintz, Nicholas H.; Budd, Ralph C.; Tew, Kenneth D.
2012-01-01
We recently demonstrated that S-glutathionylation of the death receptor Fas (Fas-SSG) amplifies apoptosis (V. Anathy et al., J. Cell Biol. 184:241–252, 2009). In the present study, we demonstrate that distinct pools of Fas exist in cells. Upon ligation of surface Fas, a separate pool of latent Fas in the endoplasmic reticulum (ER) underwent rapid oxidative processing characterized by the loss of free sulfhydryl content (Fas-SH) and resultant increases in S-glutathionylation of Cys294, leading to increases of surface Fas. Stimulation with FasL rapidly induced associations of Fas with ERp57 and glutathione S-transferase π (GSTP), a protein disulfide isomerase and catalyst of S-glutathionylation, respectively, in the ER. Knockdown or inhibition of ERp57 and GSTP1 substantially decreased FasL-induced oxidative processing and S-glutathionylation of Fas, resulting in decreased death-inducing signaling complex formation and caspase activity and enhanced survival. Bleomycin-induced pulmonary fibrosis was accompanied by increased interactions between Fas-ERp57-GSTP1 and S-glutathionylation of Fas. Importantly, fibrosis was largely prevented following short interfering RNA-mediated ablation of ERp57 and GSTP. Collectively, these findings illuminate a regulatory switch, a ligand-initiated oxidative processing of latent Fas, that controls the strength of apoptosis. PMID:22751926
Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R
2009-12-01
A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.
Bellucci, Michele; De Marchis, Francesca; Pompa, Andrea
2017-12-18
The discovery that much of the extracellular proteome in eukaryotic cells consists of proteins lacking a signal peptide, which cannot therefore enter the secretory pathway, has led to the identification of alternative protein secretion routes bypassing the Golgi apparatus. However, proteins harboring a signal peptide for translocation into the endoplasmic reticulum can also be transported along these alternative routes, which are still far from being well elucidated in terms of the molecular machineries and subcellular/intermediate compartments involved. In this review, we first try to provide a definition of all the unconventional protein secretion pathways in eukaryotic cells, as those pathways followed by proteins directed to an 'external space' bypassing the Golgi, where 'external space' refers to the extracellular space plus the lumen of the secretory route compartments and the inner space of mitochondria and plastids. Then, we discuss the role of the endoplasmic reticulum in sorting proteins toward unconventional traffic pathways in plants. In this regard, various unconventional pathways exporting proteins from the endoplasmic reticulum to the vacuole, plasma membrane, apoplast, mitochondria, and plastids are described, including the short routes followed by the proteins resident in the endoplasmic reticulum. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faria, Gisele; Cardoso, Cristina R.B.; Department of Biological Sciences, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais
Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker ofmore » activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug.« less
Xiang, J Z; Kentish, J C
1995-03-01
The aim was to investigate whether, and how, increases in inorganic phosphate (Pi) and ADP, similar to those occurring intracellularly during early myocardial ischaemia, affect the calcium handling of the sarcoplasmic reticulum. Rat ventricular trabeculae were permeabilised with saponin. The physiological process of calcium induced calcium release (CICR) from the muscle sarcoplasmic reticulum was triggered via flash photolysis of the "caged Ca2+", nitr-5. Alternatively, calcium release was induced by rapid application of caffeine to give an estimate of sarcoplasmic reticular calcium loading. The initial rate of sarcoplasmic reticular calcium pumping was also assessed by photolysis of caged ATP at saturating [Ca2+]. Myoplasmic [Ca2+] (using fluo-3) and isometric force were measured. Pi (2-20 mM) significantly depressed the magnitude of CICR and the associated force transient. Sarcoplasmic reticular calcium loading was inhibited even more than CICR by Pi, suggesting that reduced calcium loading could account for all of the inhibitory effect of Pi on CICR and that Pi may slightly activate the calcium release mechanism. The reduced sarcoplasmic reticular calcium loading seemed to be due to a fall in the free energy of ATP hydrolysis (delta GATP) available for the calcium pump, since equal decreases in delta GATP produced by adding both Pi and ADP in various ratios caused similar falls in the calcium loading of the sarcoplasmic reticulum. The caged ATP experiments indicated that Pi (20 mM) did not affect the rate constant of sarcoplasmic reticular calcium uptake. ADP (10 mM) alone, or with 1 mM Pi, inhibited calcium loading. In spite of this, ADP (10 mM) did not alter CICR and, when 1 mM Pi was added, ADP increased CICR above control. An increase in intracellular Pi reduces sarcoplasmic reticular calcium loading and thus depresses the CICR. This could be an important contributing factor in the hypoxic or ischaemic contractile failure of the myocardium. However the detrimental effect of Pi may be offset to some extent by a stimulatory action of ADP on the calcium release mechanism of CICR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naranmandura, Hua, E-mail: narenman@zju.edu.cn; Xu, Shi; Koike, Shota
The purpose of present study was to characterize the endoplasmic reticulum stress and generation of ROS in rat liver RLC-16 cells by exposing to trivalent dimethylarsinous acid (DMA{sup III}) and compared with that of trivalent arsenite (iAs{sup III}) and monomethylarsonous acid (MMA{sup III}). Protein kinase-like endoplasmic reticulum kinase (PERK) phosphorylation was significantly induced in cells exposed to DMA{sup III}, while there was no change in phosphorylated PERK (P-PERK) detected in cells after exposure to iAs{sup III} or MMA{sup III}. The generation of reactive oxygen species (ROS) after DMA{sup III} exposure was found to take place specifically in the endoplasmic reticulummore » (ER), while previous reports showed that ROS was generated in mitochondria following exposure to MMA{sup III}. Meanwhile, cycloheximide (CHX) which is an inhibitor of protein biosynthesis strongly inhibited the DMA{sup III}-induced intracellular ROS generation in the ER and the phosphorylation of PERK, suggesting the induction of ER stress probably occurs through the inhibition of the protein folding process. Activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) mRNA were induced by all three arsenic species, however, evidence suggested that they might be induced by different pathways in the case of iAs{sup III} and MMA{sup III}. In addition, ER resident molecular chaperone glucose-regulated protein78 (GRP78) was not affected by trivalent arsenicals, while it was induced in positive control only at high concentration (Thapsigargin;Tg), suggesting the GRP78 is less sensitive to low levels of ER stress. In summary, our findings demonstrate that the endoplasmic reticulum is a target organelle for DMA{sup III}-induced cytotoxicity. Highlights: ►ER is a target organelle for trivalent DMA{sup III}-induced cytotoxicity. ►Generation of ROS in ER can be induced specially by trivalent DMA{sup III}. ►ER-stress and generation of ROS are caused by the increase in unfolded proteins.« less
Hakim, Fahed; Wang, Yang; Carreras, Alba; Hirotsu, Camila; Zhang, Jing; Peris, Eduard; Gozal, David
2015-01-01
Background: Sleep fragmentation (SF) is highly prevalent and may constitute an important contributing factor to excessive weight gain and the metabolic syndrome. Increased endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) leading to the attenuation of leptin receptor signaling in the hypothalamus leads to obesity and metabolic dysfunction. Methods: Mice were exposed to SF and sleep control (SC) for varying periods of time during which ingestive behaviors were monitored. UPR pathways and leptin receptor signaling were assessed in hypothalami. To further examine the mechanistic role of ER stress, changes in leptin receptor (ObR) signaling were also examined in wild-type mice treated with the ER chaperone tauroursodeoxycholic acid (TUDCA), as well as in CHOP −/+ transgenic mice. Results: Fragmented sleep in male mice induced increased food intake starting day 3 and thereafter, which was preceded by increases in ER stress and activation of all three UPR pathways in the hypothalamus. Although ObR expression was unchanged, signal transducer and activator of transcription 3 (STAT3) phosphorylation was decreased, suggesting reduced ObR signaling. Unchanged suppressor of cytokine signaling-3 (SOCS3) expression and increases in protein-tyrosine phosphatase 1B (PTP1B) expression and activity emerged with SF, along with reduced p-STAT3 responses to exogenous leptin. SF-induced effects were reversed following TUDCA treatment and were absent in CHOP −/+ mice. Conclusions: Sleep fragmentation (SF) induces hyperphagic behaviors and reduced leptin signaling in hypothalamus that are mediated by activation of endoplasmic reticulum (ER) stress, and ultimately lead to increased PTP1B activity. ER stress pathways are therefore potentially implicated in SF-induced weight gain and metabolic dysfunction, and may represent a viable therapeutic target. Citation: Hakim F, Wang Y, Carreras A, Hirotsu C, Zhang J, Peris E, Gozal D. Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and ptp1b-mediated leptin resistance in male Mice. SLEEP 2015;38(1):31–40. PMID:25325461
Cosgrove, Gregory P.; Janssen, William J.; Huie, Tristan J.; Burnham, Ellen L.; Heinz, David E.; Curran-Everett, Douglas; Sahin, Hakan; Schwarz, Marvin I.; Cool, Carlyne D.; Groshong, Steve D.; Geraci, Mark W.; Tuder, Rubin M.; Hyde, Dallas M.; Henson, Peter M.
2012-01-01
Background: Lymphangiogenesis responds to tissue injury as a key component of normal wound healing. The development of fibrosis in the idiopathic interstitial pneumonias may result from abnormal wound healing in response to injury. We hypothesize that increased lymphatic vessel (LV) length, a marker of lymphangiogenesis, is associated with parenchymal components of the fibroblast reticulum (organizing collagen, fibrotic collagen, and fibroblast foci), and its extent correlates with disease severity. Methods: We assessed stereologically the parenchymal structure of fibrotic lungs and its associated lymphatic network, which was highlighted immunohistochemically in age-matched samples of usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP) with FVC < 80%, COPD with a Global Initiative for Obstructive Lung Disease stage 0, and normal control lungs. Results: LV length density, as opposed to vessel volume density, was found to be associated with organizing and fibrotic collagen density (P < .0001). Length density of LVs and the volume density of organizing and fibrotic collagen were significantly associated with severity of both % FVC (P < .001) and diffusing capacity of the lung for carbon monoxide (P < .001). Conclusions: Severity of disease in UIP and NSIP is associated with increased LV length and is strongly associated with components of the fibroblast reticulum, namely organizing and fibrotic collagen, which supports a pathogenic role of LVs in these two diseases. Furthermore, the absence of definable differences between UIP and NSIP suggests that LVs are a unifying mechanism for the development of fibrosis in these fibrotic lung diseases. PMID:22797508
Lee, Sung Soo; Yoo, Jae Ho; So, Yong Seok
2015-10-01
[Purpose] The primary objective of this study was to investigate the effect of low-intensity exercise training compare with high-intensity exercise training on endoplasmic reticulum stress and glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. [Subjects and Methods] The low-intensity exercise training group performed aerobic exercise training at an intensity of ≤ 45% of the heart rate reserve. The high-intensity interval exercise training group performed interval exercise training at an intensity of ≥ 80% of the heart rate reserve. The exercise-related energy consumption was determined for both groups on a per-week basis (1,200 kcal/week). [Results] Both groups showed improvement in the glucose-regulated protein 78 and dipeptidyl peptidase-4, but the size of the between-group effect was not statistically significant. The high-intensity interval exercise training group showed a significant reduction in percentage body fat. The C-peptide level increased after the 12-weeks programs and was significantly different, between the groups. Fasting glucose, insulin resistance in the fasting state according to homeostasis model assessment, and leptin decreased after the 12-weeks exercise program and were significantly different between the groups, and glucagon-like peptide-1 increased after the 12-week exercise programs and was significantly different between the groups. [Conclusion] In conclusion high-intensity interval exercise training, as defined in this study, may lead to improvements in body composition, glycemic control, endoplasmic reticulum stress, and the glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus.
Prasad, Manoj; Kaur, Jasmeet; Pawlak, Kevin J.; Bose, Mahuya; Whittal, Randy M.; Bose, Himangshu S.
2015-01-01
Steroid hormones are essential for carbohydrate metabolism, stress management, and reproduction and are synthesized from cholesterol in mitochondria of adrenal glands and gonads/ovaries. In acute stress or hormonal stimulation, steroidogenic acute regulatory protein (StAR) transports substrate cholesterol into the mitochondria for steroidogenesis by an unknown mechanism. Here, we report for the first time that StAR interacts with voltage-dependent anion channel 2 (VDAC2) at the mitochondria-associated endoplasmic reticulum membrane (MAM) prior to its translocation to the mitochondrial matrix. In the MAM, StAR interacts with mitochondrial proteins Tom22 and VDAC2. However, Tom22 knockdown by siRNA had no effect on pregnenolone synthesis. In the absence of VDAC2, StAR was expressed but not processed into the mitochondria as a mature 30-kDa protein. VDAC2 interacted with StAR via its C-terminal 20 amino acids and N-terminal amino acids 221–229, regulating the mitochondrial processing of StAR into the mature protein. In the absence of VDAC2, StAR could not enter the mitochondria or interact with MAM-associated proteins, and therefore steroidogenesis was inhibited. Furthermore, the N terminus was not essential for StAR activity, and the N-terminal deletion mutant continued to interact with VDAC2. The endoplasmic reticulum-targeting prolactin signal sequence did not affect StAR association with the MAM and thus its mitochondrial targeting. Therefore, VDAC2 controls StAR processing and activity, and MAM is thus a central location for initiating mitochondrial steroidogenesis. PMID:25505173
A Homozygous Mutation in a Novel Zinc-Finger Protein, ERIS, Is Responsible for Wolfram Syndrome 2
Amr, Sami ; Heisey, Cindy ; Zhang, Min ; Xia, Xia-Juan ; Shows, Kathryn H. ; Ajlouni, Kamel ; Pandya, Arti ; Satin, Leslie S. ; El-Shanti, Hatem ; Shiang, Rita
2007-01-01
A single missense mutation was identified in a novel, highly conserved zinc-finger gene, ZCD2, in three consanguineous families of Jordanian descent with Wolfram syndrome (WFS). It had been shown that these families did not have mutations in the WFS1 gene (WFS1) but were mapped to the WFS2 locus at 4q22-25. A G→C transversion at nucleotide 109 predicts an amino acid change from glutamic acid to glutamine (E37Q). Although the amino acid is conserved and the mutation is nonsynonymous, the pathogenesis for the disorder is because the mutation also causes aberrant splicing. The mutation was found to disrupt messenger RNA splicing by eliminating exon 2, and it results in the introduction of a premature stop codon. Mutations in WFS1 have also been found to cause low-frequency nonsyndromic hearing loss, progressive hearing loss, and isolated optic atrophy associated with hearing loss. Screening of 377 probands with hearing loss did not identify mutations in the WFS2 gene. The WFS1-encoded protein, Wolframin, is known to localize to the endoplasmic reticulum and plays a role in calcium homeostasis. The ZCD2-encoded protein, ERIS (endoplasmic reticulum intermembrane small protein), is also shown to localize to the endoplasmic reticulum but does not interact directly with Wolframin. Lymphoblastoid cells from affected individuals show a significantly greater rise in intracellular calcium when stimulated with thapsigargin, compared with controls, although no difference was observed in resting concentrations of intracellular calcium. PMID:17846994
Lee, Sung Soo; Yoo, Jae Ho; So, Yong Seok
2015-01-01
[Purpose] The primary objective of this study was to investigate the effect of low-intensity exercise training compare with high-intensity exercise training on endoplasmic reticulum stress and glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. [Subjects and Methods] The low-intensity exercise training group performed aerobic exercise training at an intensity of ≤ 45% of the heart rate reserve. The high-intensity interval exercise training group performed interval exercise training at an intensity of ≥ 80% of the heart rate reserve. The exercise-related energy consumption was determined for both groups on a per-week basis (1,200 kcal/week). [Results] Both groups showed improvement in the glucose-regulated protein 78 and dipeptidyl peptidase-4, but the size of the between-group effect was not statistically significant. The high-intensity interval exercise training group showed a significant reduction in percentage body fat. The C-peptide level increased after the 12-weeks programs and was significantly different, between the groups. Fasting glucose, insulin resistance in the fasting state according to homeostasis model assessment, and leptin decreased after the 12-weeks exercise program and were significantly different between the groups, and glucagon-like peptide-1 increased after the 12-week exercise programs and was significantly different between the groups. [Conclusion] In conclusion high-intensity interval exercise training, as defined in this study, may lead to improvements in body composition, glycemic control, endoplasmic reticulum stress, and the glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. PMID:26644644
Labriola, Carlos; Cazzulo, Juan J.; Parodi, Armando J.
1999-01-01
Trypanosoma cruzi is a protozoan parasite that belongs to an early branch in evolution. Although it lacks several features of the pathway of protein N-glycosylation and oligosaccharide processing present in the endoplasmic reticulum of higher eukaryotes, it displays UDP-Glc:glycoprotein glucosyltransferase and glucosidase II activities. It is herewith reported that this protozoan also expresses a calreticulin-like molecule, the third component of the quality control of glycoprotein folding. No calnexin-encoding gene was detected. Recombinant T. cruzi calreticulin specifically recognized free monoglucosylated high-mannose-type oligosaccharides. Addition of anti-calreticulin serum to extracts obtained from cells pulse–chased with [35S]Met plus [35S]Cys immunoprecipitated two proteins that were identified as calreticulin and the lysosomal proteinase cruzipain (a major soluble glycoprotein). The latter but not the former protein disappeared from immunoprecipitates upon chasing cells. Contrary to what happens in mammalian cells, addition of the glucosidase II inhibitor 1-deoxynojirimycin promoted calreticulin–cruzipain interaction. This result is consistent with the known pathway of protein N-glycosylation and oligosaccharide processing occurring in T. cruzi. A treatment of the calreticulin-cruzipain complexes with endo-β-N-acetylglucosaminidase H either before or after addition of anti-calreticulin serum completely disrupted calreticulin–cruzipain interaction. In addition, mature monoglucosylated but not unglucosylated cruzipain isolated from lysosomes was found to interact with recombinant calreticulin. It was concluded that the quality control of glycoprotein folding appeared early in evolution, and that T. cruzi calreticulin binds monoglucosylated oligosaccharides but not the protein moiety of cruzipain. Furthermore, evidence is presented indicating that glucosyltransferase glucosylated cruzipain at its last folding stages. PMID:10233151
Labriola, C; Cazzulo, J J; Parodi, A J
1999-05-01
Trypanosoma cruzi is a protozoan parasite that belongs to an early branch in evolution. Although it lacks several features of the pathway of protein N-glycosylation and oligosaccharide processing present in the endoplasmic reticulum of higher eukaryotes, it displays UDP-Glc:glycoprotein glucosyltransferase and glucosidase II activities. It is herewith reported that this protozoan also expresses a calreticulin-like molecule, the third component of the quality control of glycoprotein folding. No calnexin-encoding gene was detected. Recombinant T. cruzi calreticulin specifically recognized free monoglucosylated high-mannose-type oligosaccharides. Addition of anti-calreticulin serum to extracts obtained from cells pulse-chased with [35S]Met plus [35S]Cys immunoprecipitated two proteins that were identified as calreticulin and the lysosomal proteinase cruzipain (a major soluble glycoprotein). The latter but not the former protein disappeared from immunoprecipitates upon chasing cells. Contrary to what happens in mammalian cells, addition of the glucosidase II inhibitor 1-deoxynojirimycin promoted calreticulin-cruzipain interaction. This result is consistent with the known pathway of protein N-glycosylation and oligosaccharide processing occurring in T. cruzi. A treatment of the calreticulin-cruzipain complexes with endo-beta-N-acetylglucosaminidase H either before or after addition of anti-calreticulin serum completely disrupted calreticulin-cruzipain interaction. In addition, mature monoglucosylated but not unglucosylated cruzipain isolated from lysosomes was found to interact with recombinant calreticulin. It was concluded that the quality control of glycoprotein folding appeared early in evolution, and that T. cruzi calreticulin binds monoglucosylated oligosaccharides but not the protein moiety of cruzipain. Furthermore, evidence is presented indicating that glucosyltransferase glucosylated cruzipain at its last folding stages.
Lee, Jisun; Choi, Tae Gyu; Ha, Joohun; Kim, Sung Soo
2012-01-01
Immunoglubulin G (IgG) is a major isotype of antibody, which is predominantly involved in immune response. The complete tetramer is needed to fold and assemble in endoplasmic reticulum (ER) prior to secretion from cells. Protein quality control guided by ER chaperons is most essential for full biological activity. Cyclophilin B (CypB) was initially identified as a high-affinity binding protein for the immunosuppressive drug Cyclosporine A (CsA). CsA suppresses organ rejection by halting productions of pro-inflammatory molecules in T cell and abolishes the enzymatic property of CypB that accelerates the folding of proteins by catalysing the isomerization of peptidyl-proline bonds in ER. Here, we reported that CsA significantly inhibited IgG biosynthesis at posttranslational level in antibody secreting cells. Moreover, CsA stimulated the extracellular secretion of CypB and induced ROS generation, leading to expressions of ER stress markers. In addition, the absence of intracellular CypB impaired the formation of ER multiprotein complex, which is most important for resisting ER stress. Interestingly, CsA interrupted IgG folding via occupying the PPIase domain of CypB in ER. Eventually, unfolded IgG is degraded via Herp-dependent ERAD pathway. Furthermore, IgG biosynthesis was really abrogated by inhibition of CypB in primary B cells. We established for the first time the immunosuppressive effect of CsA on B cells. Conclusively, the combined results of the current study suggest that CypB is a pivotal molecule for IgG biosynthesis in ER quality control. Copyright © 2011 Elsevier B.V. All rights reserved.
Sirvent, Pascal; Douillard, Aymerick; Galbes, Olivier; Ramonatxo, Christelle; Py, Guillaume; Candau, Robin; Lacampagne, Alain
2014-01-01
Clenbuterol, a β2-agonist, induces skeletal muscle hypertrophy and a shift from slow-oxidative to fast-glycolytic muscle fiber type profile. However, the cellular mechanisms of the effects of chronic clenbuterol administration on skeletal muscle are not completely understood. As the intracellular Ca2+ concentration must be finely regulated in many cellular processes, the aim of this study was to investigate the effects of chronic clenbuterol treatment on force, fatigue, intracellular calcium (Ca2+) homeostasis and Ca2+-dependent proteolysis in fast-twitch skeletal muscles (the extensor digitorum longus, EDL, muscle), as they are more sensitive to clenbuterol-induced hypertrophy. Male Wistar rats were chronically treated with 4 mg.kg-1 clenbuterol or saline vehicle (controls) for 21 days. Confocal microscopy was used to evaluate sarcoplasmic reticulum Ca2+ load, Ca2+-transient amplitude and Ca2+ spark properties. EDL muscles from clenbuterol-treated animals displayed hypertrophy, a shift from slow to fast fiber type profile and increased absolute force, while the relative force remained unchanged and resistance to fatigue decreased compared to control muscles from rats treated with saline vehicle. Compared to control animals, clenbuterol treatment decreased Ca2+-transient amplitude, Ca2+ spark amplitude and frequency and the sarcoplasmic reticulum Ca2+ load was markedly reduced. Conversely, calpain activity was increased by clenbuterol chronic treatment. These results indicate that chronic treatment with clenbuterol impairs Ca2+ homeostasis and this could contribute to the remodeling and functional impairment of fast-twitch skeletal muscle.
Zhang, Ying; Qu, Pengxiang; Ma, Xiaonan; Qiao, Fang; Ma, Yefei; Qing, Suzhu; Zhang, Yong; Wang, Yongsheng; Cui, Wei
2018-01-01
Serum starvation is a routine protocol for synchronizing nuclear donor cells to G0/G1 phase during somatic cell nuclear transfer (SCNT). However, abrupt serum deprivation can cause serious stress to the cells cultured in vitro, which might result in endoplasmic reticulum (ER) stress, chromosome damage, and finally reduce the success rate of SCNT. In the present study, the effects of tauroursodeoxycholic acid (TUDCA), an effective ER stress-relieving drug, on the nuclear donor cells under serum deprivation condition as well as following SCNT procedures were first assessed in the bovine. The results showed that TUDCA significantly reduced ER stress and cell apoptosis in those nuclear donor cells. Moreover, it significantly decreased the expression of Hdac1 and Dnmt1, and increased the level of H3K9 acetylation in nuclear donor cells compared with control group. SCNT reconstructed embryos cloned from TUDCA-treated donor cells showed significantly higher fusion, cleavage, blastocyst formation rate, total cell number in day 7 blastocysts, and lower apoptotic index than that from control group. In addition, the expression of Hdac1, Dnmt1 and Bax was significantly lower in blastocysts derived from TUDCA-treated donor cells than that from control group. In conclusion, TUDCA significantly reduced the ER stress of nuclear donor cells under serum starvation condition, and significantly improved the developmental competence of following SCNT reconstructed embryos when these TUDCA-treated cells were used as the nuclear donors.
Dinis, T C; Almeida, L M; Madeira, V M
1993-03-01
The fluorescent polyunsaturated parinaric acid (PnA) incorporated in sarcoplasmic reticulum membranes (SR) was used to probe the initial stages of membrane lipid peroxidation. The experimental set up of the PnA assay was investigated by means of several peroxidation initiators to ascertain peroxidation conditions. This assay in SR is particularly useful to evaluate the membrane susceptibility to peroxidation and to ascertain suitable conditions (concentration of initiators and cofactors) to challenge peroxidation in each preparation under study. On the basis of the PnA assay, Fe2+/ascorbate was selected among the different initiator systems to assess the effect of lipid peroxidation upon biochemical and biophysical parameters of SR membranes. Under mildly controlled conditions at 25 degrees C, the lipid degradative process, as detected by fatty acid analysis, decreases the Ca2+ uptake (up to about 50% of control) and reduces the Ca2+ pump efficiency (Ca2+/ATP ratio) up to about 58% of control, without inactivation the ATPase enzyme turnover. The effect of lipid peroxidation on the SR bilayer organization is dependent either on the extent of lipid peroxidation or on the depth of the bilayer as probed by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene and by intramolecular excimerization of 1,3-di(1-pyrenyl)propane. It is concluded that the effect of mild lipid peroxidation on Ca2+ pump activity is partially exerted through the alteration of physical properties in the lipid phase or lipid-protein interfaces.
Zhong, Jia-Teng; Yu, Jian; Wang, Hai-Jun; Shi, Yu; Zhao, Tie-Suo; He, Bao-Xia; Qiao, Bin; Feng, Zhi-Wei
2017-05-01
Nowadays, although chemotherapy is an established therapy for breast cancer, the molecular mechanisms of chemotherapy resistance in breast cancer remain poorly understood. This study aims to explore the effects of endoplasmic reticulum stress on autophagy, apoptosis, and chemotherapy resistance in human breast cancer cells by regulating PI3K/AKT/mTOR signaling pathway. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the cell viability of six human breast cancer cell lines (MCF-7, ZR-75-30, T47D, MDA-MB-435s, MDA-MB-453, and MDA-MB-231) treated with tunicamycin (5 µM), after which MCF-7 cells were selected for further experiment. Then, MCF-7 cells were divided into the control (without any treatment), tunicamycin (8 µ), BEZ235 (5 µ), and tunicamycin + BEZ235 groups. Cell viability of each group was testified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Western blotting was applied to determine the expressions of endoplasmic reticulum stress and PI3K/AKT/mTOR pathway-related proteins and autophagy- and apoptosis-related proteins. Monodansylcadaverine and Annexin V-fluorescein isothiocyanate/propidium iodide staining were used for determination of cell autophagy and apoptosis. Furthermore, MCF-7 cells were divided into the control (without any treatment), tunicamycin (5 µM), cisplatin (16 µM), cisplatin (16 µM) + BEZ235 (5 µM), tunicamycin (5 µM) + cisplatin (16 µM), and tunicamycin (5 µM) + cisplatin (16 µM) + BEZ235 groups. Cell viability and apoptosis were also evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Annexin V-fluorescein isothiocyanate/propidium iodide staining. In MCF-7 cells treated with tunicamycin, cell viability decreased significantly, but PEAK, eIF2, and CHOP were upregulated markedly and p-PI3K, p-AKT, and p-MTOR were downregulated in dose- and time-dependent manners. In the tunicamycin + BEZ235 group, the cell viability was lower and the apoptosis rate was higher than those of the control and monotherapy groups. Compared with the cisplatin group, the tunicamycin + cisplatin group showed a relatively higher growth inhibition rate; the growth inhibition rate substantially increased in the tunicamycin + cisplatin + BEZ235 group than the tunicamycin + cisplatin group. The apoptosis rate was highest in tunicamycin + cisplatin + BEZ235 group, followed by tunicamycin + cisplatin group and then cisplatin group. Our study provide evidence that endoplasmic reticulum stress activated by tunicamycin could promote breast cancer cell autophagy and apoptosis and enhance chemosensitivity of MCF-7 cells by inhibiting the PI3K/AKT/mTOR signaling pathway.
Protein Targeting: ER Leads the Way to the Inner Nuclear Envelope.
Blackstone, Craig
2017-12-04
Efficient targeting of newly synthesized membrane proteins from the endoplasmic reticulum to the inner nuclear membrane depends on nucleotide hydrolysis. A new study shows that this dependence reflects critical actions of the atlastin family of GTPases in maintaining the morphology of the endoplasmic reticulum network. Published by Elsevier Ltd.
USDA-ARS?s Scientific Manuscript database
Changes in ambient temperature represent a major physiological challenge to poikilothermic organisms that requires rapid adjustments in the composition of cellular membranes in order to preserve overall membrane dynamics and integrity. In plants, the endoplasmic reticulum-localized omega-3 fatty ac...
Endoplasmic reticulum stress in wake-active neurons progresses with aging.
Naidoo, Nirinjini; Zhu, Jingxu; Zhu, Yan; Fenik, Polina; Lian, Jie; Galante, Ray; Veasey, Sigrid
2011-08-01
Fragmentation of wakefulness and sleep are expected outcomes of advanced aging. We hypothesize that wake neurons develop endoplasmic reticulum dyshomeostasis with aging, in parallel with impaired wakefulness. In this series of experiments, we sought to more fully characterize age-related changes in wakefulness and then, in relevant wake neuronal populations, explore functionality and endoplasmic reticulum homeostasis. We report that old mice show greater sleep/wake transitions in the active period with markedly shortened wake periods, shortened latencies to sleep, and less wake time in the subjective day in response to a novel social encounter. Consistent with sleep/wake instability and reduced social encounter wakefulness, orexinergic and noradrenergic wake neurons in aged mice show reduced c-fos response to wakefulness and endoplasmic reticulum dyshomeostasis with increased nuclear translocation of CHOP and GADD34. We have identified an age-related unfolded protein response injury to and dysfunction of wake neurons. It is anticipated that these changes contribute to sleep/wake fragmentation and cognitive impairment in aging. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
Regulation of calcium release from the endoplasmic reticulum by the serine hydrolase ABHD2.
Yun, Bogeon; Lee, HeeJung; Powell, Roger; Reisdorph, Nichole; Ewing, Heather; Gelb, Michael H; Hsu, Ku-Lung; Cravatt, Benjamin F; Leslie, Christina C
2017-09-02
The serine hydrolase inhibitors pyrrophenone and KT195 inhibit cell death induced by A23187 and H 2 O 2 by blocking the release of calcium from the endoplasmic reticulum and mitochondrial calcium uptake. The effect of pyrrophenone and KT195 on these processes is not due to inhibition of their known targets, cytosolic phospholipase A 2 and α/β-hydrolase domain-containing (ABHD) 6, respectively, but represent off-target effects. To identify targets of KT195, fibroblasts were treated with KT195-alkyne to covalently label protein targets followed by click chemistry with biotin azide, enrichment on streptavidin beads and tryptic peptide analysis by mass spectrometry. Although several serine hydrolases were identified, α/β-hydrolase domain-containing 2 (ABHD2) was the only target in which both KT195 and pyrrophenone competed for binding to KT195-alkyne. ABHD2 is a serine hydrolase with a predicted transmembrane domain consistent with its pull-down from the membrane proteome. Subcellular fractionation showed localization of ABHD2 to the endoplasmic reticulum but not to mitochondria or mitochondrial-associated membranes. Knockdown of ABHD2 with shRNA attenuated calcium release from the endoplasmic reticulum, mitochondrial calcium uptake and cell death in fibroblasts stimulated with A23187. The results describe a novel mechanism for regulating calcium transfer from the endoplasmic reticulum to mitochondria that involves the serine hydrolase ABHD2. Copyright © 2017 Elsevier Inc. All rights reserved.
Cartwright, I J; Higgins, J A
1992-01-01
We have developed a method for measurement of apolipoprotein (apo) B-48 and apo B-100 in blood and subcellular fractions of rat liver based on SDS/PAGE followed by quantitative immunoblotting using 125I-Protein A. Standard curves were prepared in each assay using apo B prepared from total rat lipoproteins by extraction with tetramethylurea. Subcellular fractions (rough and smooth endoplasmic reticulum and Golgi fractions) were prepared from rat liver and separated into membrane and cisternal-content fractions. For quantification, membrane fractions were solubilized in Triton X-100, and the apo B was immunoprecipitated before separation by SDS/PAGE and immunoblotting. Content fractions were concentrated by ultrafiltration and separated by SDS/PAGE without immunoprecipitation. Quantification of apo B in subcellular fractions and detection of apo B by immunoblotting yielded consistent results. In all fractions apo B-48 was the major form, accounting for approximately three-quarters of the total apo B. By using marker enzymes as internal standards, it was calculated that all of the apo B was recovered in the endoplasmic reticulum and Golgi fractions, with approximately 80% of each form of apo B in the endoplasmic reticulum. More than 90% of the apo B of the rough- and smooth-endoplasmic-reticulum fractions was membrane-bound, whereas approx. 33 and 15% of the apo B of the cis-enriched Golgi fractions and trans-enriched Golgi fractions respectively were membrane-bound. Images Fig. 1. Fig. 3. Fig. 4. PMID:1637294
Wagner-Mann, C; Hu, Q; Sturek, M
1992-04-01
1. The effects of ryanodine and caffeine on intracellular free Ca2+ concentration ([Ca2+]i) were studied by use of fura-2 microfluorometry in single smooth muscle cells freshly dispersed from bovine and porcine coronary artery. 2. Bovine and porcine cells demonstrated similar sensitivities to 10 min of exposure to ryanodine in physiological salt solution (PSS), as determined by comparable dose-dependent decreases in the subsequent [Ca2+]i transient induced by 5 mM caffeine. 3. Ryanodine (10 microM) caused a significant increase in [Ca2+]i to a plateau level 27 +/- 3% and 38 +/- 4% above baseline [Ca2+]i (baseline [Ca2+]i = [Ca2+]i at 0 min) in porcine and bovine cells, respectively, when bathed in PSS. In bovine cells the time required to reach 1/2 the plateau level was only 3 min versus 6 min for porcine cells. 4. The ryanodine-induced plateau increase in [Ca2+]i was 35 +/- 5% above baseline for bovine cells bathed in 0 Ca PSS (PSS including 10 microM EGTA with no added Ca2+), but only 7 +/- 3% above baseline in porcine cells during 10 min exposure to 10 microM ryanodine. In bovine cells [Ca2+]i showed proportional increases when extracellular Ca2+ was increased from the normal 2 mM Ca2+ PSS to 5 and 10 mM. 5. Cells pretreated with caffeine in 0 Ca PSS, which depleted the caffeine-sensitive sarcoplasmic reticulum Ca2+ store, showed no increase in [Ca2+]i when challenged with 10 microM ryanodine. The ryanodine-associated increase in [Ca2+]i, which was sustained in 0 Ca PSS during the 10 min ryanodine exposure in cells not pretreated with caffeine, suggests that ryanodine releases Ca2+ from the sarcoplasmic reticulum, but also inhibits Ca2+ efflux.6. Intracellular free Ba2+ ([Ba24],) was measured with fura-2 microfluorometry to define further the Ca2" efflux pathway inhibited by ryanodine; specifically, Ba2+ is not transported by the Ca2" pump, but will substitute for Ca2" in Na+-Ca24 exchange. In porcine cells pretreated with caffeine in 0 Ca PSS to deplete the caffeine-sensitive sarcoplasmic reticulum Ca2+ store, depolarization with 80 mM K4 in 2 mM external Ba24 caused a 100 +/- 6% increase in fura-2 fluorescence ([Ba2+]j). During the 17.5 min 0 Ca PSS recovery from depolarization, exposure to 10 microM ryanodine inhibited the removal of [Ba24]i by 69 + 3% when compared with control (0 Ca PSS without ryanodine).7. It was concluded that in bovine and porcine smooth muscle cells: (a) ryanodine (> 10 microM) releases Ca24 from the sarcoplasmic reticulum; (b) ryanodine ( 10O microM) decreases Ca24 efflux, probably by inhibition of Na+-Ca2+ exchange; (c) the sarcoplasmic reticulum Ca24 store may be larger in bovine than in porcine smooth muscle cells; thus, porcine cells have a relatively greater reliance on Ca24 influx to increase [Ca2+]i.
Wu, Yan-ju; Guo, Xin; Li, Chun-jun; Li, Dai-qing; Zhang, Jie; Yang, Yiping; Kong, Yan; Guo, Hang; Liu, De-min; Chen, Li-ming
2015-02-01
Vildagliptin promotes beta cell survival by inhibiting cell apoptosis. It has been suggested that chronic ER (endoplasmic reticulum) stress triggers beta cell apoptosis. The objective of the study is to explore whether the pro-survival effect of vildagliptin is associated with attenuation of endoplasmic reticulum stress in islets of db/db mice. Vildagliptin was orally administered to db/db mice for 6 weeks, followed by evaluation of beta cell apoptosis by caspase3 activity and TUNEL staining method. Endoplasmic reticulum stress markers were determined with quantitative RT-PCR, immunohistochemistry and immunoblot analysis. After 6 weeks of treatment, vildagliptin treatment increased plasma active GLP-1 levels (22.63±1.19 vs. 11.69±0.44, P<0.001), inhibited beta cell apoptosis as demonstrated by lower amounts of TUNEL staining nuclei (0.37±0.03 vs. 0.55±0.03, P<0.01) as well as decreased caspase3 activity (1.48±0.11 vs. 2.67±0.13, P<0.01) in islets of diabetic mice compared with untreated diabetic group. Further, vildagliptin treatment down-regulated several genes related to endoplasmic reticulum stress including TRIB3 (tribbles homolog 3) (15.9±0.4 vs. 33.3±1.7, ×10⁻³, P<0.001), ATF-4(activating transcription factor 4) (0.83±0.06 vs. 1.42±0.02, P<0.001) and CHOP(C/EBP homologous protein) (0.07±0.01 vs. 0.16±0.01, P<0.001). Vildagliptin promoted beta cell survival in db/db mice in association with down-regulating markers of endoplasmic reticulum stress including TRIB3, ATF-4 as well as CHOP. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Hypothalamic mitochondrial abnormalities occur downstream of inflammation in diet-induced obesity.
Carraro, Rodrigo S; Souza, Gabriela F; Solon, Carina; Razolli, Daniela S; Chausse, Bruno; Barbizan, Roberta; Victorio, Sheila C; Velloso, Licio A
2018-01-15
Hypothalamic dysfunction is a common feature of experimental obesity. Studies have identified at least three mechanisms involved in the development of hypothalamic neuronal defects in diet-induced obesity: i, inflammation; ii, endoplasmic reticulum stress; and iii, mitochondrial abnormalities. However, which of these mechanisms is activated earliest in response to the consumption of large portions of dietary fats is currently unknown. Here, we used immunoblot, real-time PCR, mitochondrial respiration assays and transmission electron microscopy to evaluate markers of inflammation, endoplasmic reticulum stress and mitochondrial abnormalities in the hypothalamus of Swiss mice fed a high-fat diet for up to seven days. In the present study we show that the expression of the inflammatory chemokine fractalkine was the earliest event detected. Its hypothalamic expression increased as early as 3 h after the introduction of a high-fat diet and was followed by the increase of cytokines. GPR78, an endoplasmic reticulum chaperone, was increased 6 h after the introduction of a high-fat diet, however the actual triggering of endoplasmic reticulum stress was only detected three days later, when IRE-1α was increased. Mitofusin-2, a protein involved in mitochondrial fusion and tethering of mitochondria to the endoplasmic reticulum, underwent a transient reduction 24 h after the introduction of a high-fat diet and then increased after seven days. There were no changes in hypothalamic mitochondrial respiration during the experimental period, however there were reductions in mitochondria/endoplasmic reticulum contact sites, beginning three days after the introduction of a high-fat diet. The inhibition of TNF-α with infliximab resulted in the normalization of mitofusin-2 levels 24 h after the introduction of the diet. Thus, inflammation is the earliest mechanism activated in the hypothalamus after the introduction of a high-fat diet and may play a mechanistic role in the development of mitochondrial abnormalities in diet-induced obesity. Copyright © 2017 Elsevier B.V. All rights reserved.
Matsumura, Yoshihiro; Sakai, Juro; Skach, William R.
2013-01-01
The C terminus of Hsp70 interacting protein (CHIP) E3 ligase functions as a key regulator of protein quality control by binding the C-terminal (M/I)EEVD peptide motif of Hsp/c70(90) with its N-terminal tetratricopeptide repeat (TPR) domain and facilitating polyubiquitination of misfolded client proteins via its C-terminal catalytic U-box. Using CFTR as a model client, we recently showed that the duration of the Hsc70-client binding cycle is a primary determinant of stability. However, molecular features that control CHIP recruitment to Hsp/c70, and hence the fate of the Hsp/c70 client, remain unknown. To understand how CHIP recognizes Hsp/c70, we utilized a dominant negative mutant in which loss of a conserved proline in the U-box domain (P269A) eliminates E3 ligase activity. In a cell-free reconstituted ER-associated degradation system, P269A CHIP inhibited Hsc70-dependent CFTR ubiquitination and degradation in a dose-dependent manner. Optimal inhibition required both the TPR and the U-box, indicating cooperativity between the two domains. Neither the wild type nor the P269A mutant changed the extent of Hsc70 association with CFTR nor the dissociation rate of the Hsc70-CFTR complex. However, the U-box mutation stimulated CHIP binding to Hsc70 while promoting CHIP oligomerization. CHIP binding to Hsc70 binding was also stimulated by the presence of an Hsc70 client with a preference for the ADP-bound state. Thus, the Hsp/c70 (M/I)EEVD motif is not a simple anchor for the TPR domain. Rather CHIP recruitment involves reciprocal allosteric interactions between its TPR and U-box domains and the substrate-binding and C-terminal domains of Hsp/c70. PMID:23990462
Lipid droplet formation on opposing sides of the endoplasmic reticulum
Sturley, Stephen L.; Hussain, M. Mahmood
2012-01-01
In animal cells, the primary repositories of esterified fatty acids and alcohols (neutral lipids) are lipid droplets that form on the lumenal and/or cytoplasmic side of the endoplasmic reticulum (ER) membrane. A monolayer of amphipathic lipids, intermeshed with key proteins, serves to solubilize neutral lipids as they are synthesized and desorbed. In specialized cells, mobilization of the lipid cargo for delivery to other tissues occurs by secretion of lipoproteins into the plasma compartment. Serum lipoprotein assembly requires an obligate structural protein anchor (apolipoprotein B) and a dedicated chaperone, microsomal triglyceride transfer protein. By contrast, lipid droplets that form on the cytoplasmic face of the ER lack an obligate protein scaffold or any required chaperone/lipid transfer protein. Mobilization of neutral lipids from the cytosol requires regulated hydrolysis followed by transfer of the products to different organelles or export from cells. Several proteins play a key role in controlling droplet number, stability, and catabolism; however, it is our premise that their formation initiates spontaneously, solely as a consequence of neutral lipid synthesis. This default pathway directs droplets into the cytoplasm where they accumulate in many lipid disorders. PMID:22701043
Endoplasmic Reticulum Transport of Glutathione by Sec61 Is Regulated by Ero1 and Bip.
Ponsero, Alise J; Igbaria, Aeid; Darch, Maxwell A; Miled, Samia; Outten, Caryn E; Winther, Jakob R; Palais, Gael; D'Autréaux, Benoit; Delaunay-Moisan, Agnès; Toledano, Michel B
2017-09-21
In the endoplasmic reticulum (ER), Ero1 catalyzes disulfide bond formation and promotes glutathione (GSH) oxidation to GSSG. Since GSSG cannot be reduced in the ER, maintenance of the ER glutathione redox state and levels likely depends on ER glutathione import and GSSG export. We used quantitative GSH and GSSG biosensors to monitor glutathione import into the ER of yeast cells. We found that glutathione enters the ER by facilitated diffusion through the Sec61 protein-conducting channel, while oxidized Bip (Kar2) inhibits transport. Increased ER glutathione import triggers H 2 O 2 -dependent Bip oxidation through Ero1 reductive activation, which inhibits glutathione import in a negative regulatory loop. During ER stress, transport is activated by UPR-dependent Ero1 induction, and cytosolic glutathione levels increase. Thus, the ER redox poise is tuned by reciprocal control of glutathione import and Ero1 activation. The ER protein-conducting channel is permeable to small molecules, provided the driving force of a concentration gradient. Copyright © 2017 Elsevier Inc. All rights reserved.
Duvet, S; Chirat, F; Mir, A M; Verbert, A; Dubuisson, J; Cacan, R
2000-02-01
The study of the glycosylation pathway of a mannosylphosphoryldolichol-deficient CHO mutant cell line (B3F7) reveals that truncated Glc(0-3)Man5GlcNAc2 oligosaccharides are transferred onto nascent proteins. Pulse-chase experiments indicate that these newly synthesized glycoproteins are retained in intracellular compartments and converted to Man4GlcNAc2 species. In this paper, we demonstrate that the alpha1,2 mannosidase, which is involved in the processing of Man5GlcNAc2 into Man4GlcNAc2, is located in the rough endoplasmic reticulum. The enzyme was shown to be inhibited by kifunensine and deoxymannojirimycin, indicating that it is a class I mannosidase. In addition, Man4GlcNAc2 species were produced at the expense of Glc1Man5GlcNAc2 species. Thus, the trimming of Man5GlcNAc2 to Man4GlcNAc2, which is catalyzed by this mannosidase, could be involved in the control of the glucose-dependent folding pathway.
Proteomic analysis of endoplasmic reticulum stress responses in rice seeds.
Qian, Dandan; Tian, Lihong; Qu, Leqing
2015-09-23
The defects in storage proteins secretion in the endosperm of transgenic rice seeds often leads to endoplasmic reticulum (ER) stress, which produces floury and shrunken seeds, but the mechanism of this response remains unclear. We used an iTRAQ-based proteomics analysis of ER-stressed rice seeds due to the endosperm-specific suppression of OsSar1 to identify changes in the protein levels in response to ER stress. ER stress changed the expression of 405 proteins in rice seed by >2.0- fold compared with the wild-type control. Of these proteins, 140 were upregulated and 265 were downregulated. The upregulated proteins were mainly involved in protein modification, transport and degradation, and the downregulated proteins were mainly involved in metabolism and stress/defense responses. A KOBAS analysis revealed that protein-processing in the ER and degradation-related proteasome were the predominant upregulated pathways in the rice endosperm in response to ER stress. Trans-Golgi protein transport was also involved in the ER stress response. Combined with bioinformatic and molecular biology analyses, our proteomic data will facilitate our understanding of the systemic responses to ER stress in rice seeds.
Morris, Gerwyn; Puri, Basant K; Walder, Ken; Berk, Michael; Stubbs, Brendon; Maes, Michael; Carvalho, André F
2018-03-29
The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted.
van Lith, Marcel; Karala, Anna-Riikka; Bown, Dave; Gatehouse, John A.; Ruddock, Lloyd W.; Saunders, Philippa T.K.
2007-01-01
Glycoprotein folding is mediated by lectin-like chaperones and protein disulfide isomerases (PDIs) in the endoplasmic reticulum. Calnexin and the PDI homologue ERp57 work together to help fold nascent polypeptides with glycans located toward the N-terminus of a protein, whereas PDI and BiP may engage proteins that lack glycans or have sugars toward the C-terminus. In this study, we show that the PDI homologue PDILT is expressed exclusively in postmeiotic male germ cells, in contrast to the ubiquitous expression of many other PDI family members in the testis. PDILT is induced during puberty and represents the first example of a PDI family member under developmental control. We find that PDILT is not active as an oxido-reductase, but interacts with the model peptide Δ-somatostatin and nonnative bovine pancreatic trypsin inhibitor in vitro, indicative of chaperone activity. In vivo, PDILT forms a tissue-specific chaperone complex with the calnexin homologue calmegin. The identification of a redox-inactive chaperone partnership defines a new system of testis-specific protein folding with implications for male fertility. PMID:17507649
Overexpression of calreticulin sensitizes SERCA2a to oxidative stress.
Ihara, Yoshito; Kageyama, Kan; Kondo, Takahito
2005-04-22
Calreticulin (CRT), a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac disorder in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In this study, the effect of overexpression of CRT on sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. The in vitro activity of SERCA2a and uptake of (45)Ca(2+) into isolated microsomes were suppressed by H(2)O(2) in CRT-overexpressing cells compared with controls. Moreover, SERCA2a protein was degraded via a proteasome-dependent pathway following the formation of a complex with CRT under the stress with H(2)O(2). Thus, we conclude that overexpression of CRT enhances the inactivation and degradation of SERCA2a in the cells under oxidative stress, suggesting some pathophysiological functions of CRT in Ca(2+) homeostasis of myocardiac disease.
Yuan, Fang; Zhang, Li; Li, Yan-Qing; Teng, Xu; Tian, Si-Yu; Wang, Xiao-Ran; Zhang, Yi
2017-08-11
We investigated the role of endoplasmic reticulum stress (ERS) in chronic intermittent hypobaric hypoxia (CIHH)-induced cardiac protection. Adult male Sprague-Dawley rats were exposed to CIHH treatment simulating 5000 m altitude for 28 days, 6 hours per day. The heart was isolated and perfused with Langendorff apparatus and subjected to 30-min ischemia followed by 60-min reperfusion. Cardiac function, infarct size, and lactate dehydrogenase (LDH) activity were assessed. Expression of ERS molecular chaperones (GRP78, CHOP and caspase-12) was assayed by western blot analysis. CIHH treatment improved the recovery of left ventricular function and decreased cardiac infarct size and activity of LDH after I/R compared to control rats. Furthermore, CIHH treatment inhibited over-expression of ERS-related factors including GRP78, CHOP and caspase-12. CIHH-induced cardioprotection and inhibition of ERS were eliminated by application of dithiothreitol, an ERS inducer, and chelerythrine, a protein kinase C (PKC) inhibitor. In conclusion CIHH treatment exerts cardiac protection against I/R injury through inhibition of ERS via PKC signaling pathway.
Li, Zhi-Hua; Li, Ping
2015-02-05
Tributyltin (TBT) is a ubiquitous contaminant in aquatic environment, but the detailed mechanisms underlying the toxicity of TBT have not been fully understood. In this study, the effects of TBT on behavior, energy metabolism and endoplasmic reticulum (ER) stress were investigated by using Chinese rare minnow larvae. Fish larvae were exposed at sublethal concentrations of TBT (100, 400 and 800 ng/L) for 7 days. Compared with the control, energy metabolic parameters (RNA/DNA ratio, Na(+)-K(+)-ATPase) were significantly inhibited in fish exposed at highest concentration (800 ng/L), as well as abnormal behaviors observed. Moreover, we found that the PERK (PKR-like ER kinase)-eIF2α (eukaryotic translation initiation factor 2α) pathway, as the main branch was activated by TBT exposure in fish larvae. In short, TBT-induced physiological, biochemical and molecular responses in fish larvae were reflected in parameters measured in this study, which suggest that these biomarkers could be used as potential indicators for monitoring organotin compounds present in aquatic environment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Sarcoplasmic Reticulum Calcium Release Channels in Ventricles of Older Adult Hamsters
ERIC Educational Resources Information Center
Nicholl, Peter A.; Howlett, Susan E.
2006-01-01
Whether the density of sarcoplasmic reticulum (SR) calcium release channels/ryanodine receptors in the heart declines with age is not clear. We investigated age-related changes in the density of [3H]-ryanodine receptors in crude ventricular homogenates, which contained all ligand binding sites in heart and in isolated junctional SR membranes.…
Bañuls, Celia; Rovira-Llopis, Susana; Martinez de Marañon, Aranzazu; Veses, Silvia; Jover, Ana; Gomez, Marcelino; Rocha, Milagros; Hernandez-Mijares, Antonio; Victor, Victor M
2017-06-01
Polycystic ovary syndrome (PCOS) is associated with insulin resistance, which can lead to metabolic syndrome (MetS). Oxidative stress and leukocyte-endothelium interactions are related to PCOS. Our aim was to evaluate whether the presence of MetS in PCOS patients can influence endoplasmic reticulum (ER) and oxidative stress and leukocyte-endothelium interactions. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 148 PCOS women (116 without/32 with MetS) and 112 control subjects (87 without / 25 with MetS). Metabolic parameters, reactive oxygen species (ROS) production, ER stress markers (GRP78, sXBP1, ATF6), leukocyte-endothelium interactions, adhesion molecules (VCAM-1, ICAM-1, E-Selectin), TNF-α and IL-6 were determined. Total ROS, inflammatory parameters and adhesion molecules were enhanced in the presence of MetS (p<0.05), and the PCOS+MetS group showed higher levels of IL-6 and ICAM-1 than controls (p<0.05). Increased adhesion and leukocyte rolling flux were observed in PCOS and PCOS+MetS groups vs their respective controls (p<0.05). GRP78 protein expression was higher in the PCOS groups (p<0.05 vs controls) and sXBP1 was associated with the presence of MetS (p<0.05 vs controls without MetS). Furthermore, PCOS+MetS patients exhibited higher GRP78 and ATF6 levels than controls and PCOS patients without MetS (p<0.05). In PCOS women, HOMA-IR was positively correlated with ICAM-1 (r=0.501; p<0.01), ROS (r=0.604; p<0.01), rolling flux (r=0.455;p<0.05) and GRP78 (r=0.574; p<0.001). Our findings support the hypothesis of an association between altered metabolic status, increased ROS production, ER stress and leukocyte-endothelium interactions in PCOS, all of which are related to vascular complications. Copyright © 2017 Elsevier Inc. All rights reserved.
Castillo-Alcala, F; Wilson, P R; Molenaar, R; Lopez-Villalobos, N
2007-04-01
To determine the efficacy of a novel copper oxide wire particle (COWP) formulation in elevating concentrations of copper (Cu) in the liver and serum of red deer (Cervus elaphus), and to investigate the distribution of particles in the gastrointestinal tract and the rate of their excretion in faeces. Mixed-age red deer hinds were allocated to three groups (n=10 per group) on the basis of pre-treatment liver Cu concentrations. Groups 1 and 2 were treated orally with a 10-g COWP bolus on Days 0 and 30, respectively, while the remaining group served as an untreated control. Animals were slaughtered on Day 60, when blood and liver samples were collected for determination of Cu concentrations. An additional group of 18-month-old red deer hinds (n=20) were treated orally with a 10-g COWP bolus, and four were slaughtered on each of Days 1, 5, 15, 30 and 60 after treatment. The gastrointestinal tract was secured between compartments below the oesophagus and contents rinsed until sedimentation of particles was complete. The sediment was oven-dried and COWP were separated and weighed. Faeces were collected continuously from four additional animals held in metabolism cages for 4 days after treatment, sub-sampled daily, and COWP recovered. Mean liver Cu concentrations at slaughter were 80, 597 and 447 micromol/kg for controls and hinds treated 30, and 60 days previously, respectively. Corresponding mean serum Cu concentrations were 7.7, 12.9 and 11.9 micromol/L, respectively. Liver and serum Cu concentrations were higher in both treatment groups than in untreated control animals (p<0.001). COWP were found in all compartments of the gastrointestinal tract measured, for at least 15 days, and in the rumen/reticulum and abomasum for at least 60 days post-administration. The highest rate of recovery overall was from the rumen/reticulum. Mean weight of COWP recovered from faeces was 0.09 g during the first 24 h and 0.94 g over the first 4 days following administration. The COWP bolus tested resulted in elevated mean liver Cu concentrations for at least 60 days compared with control animals. The majority of COWP were found in the rumen/ reticulum, where recovery was possible for at least 60 days. About 10% of particle weight was excreted in the faeces within 4 days of administration. The test bolus was efficacious in deer, elevating mean liver and serum Cu concentrations 30 and 60 days after treatment. Variation in faecal excretion may explain between-animal differences in efficacy.
Influence of KDEL on the Fate of Trimeric or Assembly-Defective Phaseolin
Frigerio, Lorenzo; Pastres, Alessandra; Prada, Alessandra; Vitale, Alessandro
2001-01-01
The tetrapeptide KDEL is commonly found at the C terminus of soluble proteins of the endoplasmic reticulum (ER), and it contributes to their localization by interacting with a receptor that recycles between the Golgi complex and the ER. We investigated the effects of the addition of KDEL to phaseolin, a protein normally delivered from the ER to storage vacuoles via the Golgi complex. We show that KDEL prevents acquisition of trans-Golgi–specific glycan modifications and causes interactions with the chaperone BiP that are distinct from the ones between BiP and defective proteins. KDEL markedly increases the stability of phaseolin, but a small proportion of phaseolin-KDEL slowly reaches the vacuole without undergoing Golgi-mediated glycan modifications, in a process that can be inhibited by brefeldin A but not monensin. Our results indicate that KDEL can operate with high efficiency before proteins can reach the late Golgi cisternae but allows or promotes delivery to vacuoles via an alternative mechanism. However, addition of KDEL does not alter the destiny of an assembly-defective form of phaseolin, suggesting that the plant ER quality control mechanism is dominant over KDEL effects. PMID:11340185
Frigerio, L; Pastres, A; Prada, A; Vitale, A
2001-05-01
The tetrapeptide KDEL is commonly found at the C terminus of soluble proteins of the endoplasmic reticulum (ER), and it contributes to their localization by interacting with a receptor that recycles between the Golgi complex and the ER. We investigated the effects of the addition of KDEL to phaseolin, a protein normally delivered from the ER to storage vacuoles via the Golgi complex. We show that KDEL prevents acquisition of trans-Golgi-specific glycan modifications and causes interactions with the chaperone BiP that are distinct from the ones between BiP and defective proteins. KDEL markedly increases the stability of phaseolin, but a small proportion of phaseolin-KDEL slowly reaches the vacuole without undergoing Golgi-mediated glycan modifications, in a process that can be inhibited by brefeldin A but not monensin. Our results indicate that KDEL can operate with high efficiency before proteins can reach the late Golgi cisternae but allows or promotes delivery to vacuoles via an alternative mechanism. However, addition of KDEL does not alter the destiny of an assembly-defective form of phaseolin, suggesting that the plant ER quality control mechanism is dominant over KDEL effects.
The ER membrane insertase Get1/2 is required for efficient mitophagy in yeast.
Onishi, Mashun; Nagumo, Sachiyo; Iwashita, Shohei; Okamoto, Koji
2018-05-10
Mitophagy is an evolutionarily conserved autophagy pathway that selectively eliminates mitochondria to control mitochondrial quality and quantity. Although mitophagy is thought to be crucial for cellular homeostasis, how this catabolic process is regulated remains largely unknown. Here we demonstrate that mitophagy during prolonged respiratory growth is strongly impaired in yeast cells lacking Get1/2, a transmembrane complex mediating insertion of tail-anchored (TA) proteins into the endoplasmic reticulum (ER) membrane. Under the same conditions, loss of Get1/2 caused only slight defects in other types of selective and bulk autophagy. In addition, mitophagy and other autophagy-related processes are mostly normal in cells lacking Get3, a cytosolic ATP-driven chaperone that promotes delivery of TA proteins to the Get1/2 complex. We also found that Get1/2-deficient cells exhibited wildtype-like induction and mitochondrial localization of Atg32, a protein essential for mitophagy. Notably, Get1/2 is important for Atg32-independent, ectopically promoted mitophagy. Together, we propose that Get1/2-dependent TA protein(s) and/or the Get1/2 complex itself may act specifically in mitophagy. Copyright © 2018 Elsevier Inc. All rights reserved.
Diabetic Neuropathy: Mechanisms, Emerging Treatments, and Subtypes
Pop-Busui, Rodica
2016-01-01
Diabetic neuropathies (DNs) differ in clinical course, distribution, fiber involvement (type and size), and pathophysiology, the most typical type being a length-dependent distal symmetric polyneuropathy (DSP) with differing degrees of autonomic involvement. The pathogenesis of diabetic DSP is multifactorial, including increased mitochondrial production of free radicals due to hyperglycemia-induced oxidative stress. Mechanisms that impact neuronal activity, mitochondrial function, membrane permeability, and endothelial function include formation of advanced glycosylation end products, activation of polyol aldose reductase signaling, activation of poly(ADP ribose) polymerase, and altered function of the Na+/K+-ATPase pump. Hyperglycemia-induced endoplasmic reticulum stress triggers several neuronal apoptotic processes. Additional mechanisms include impaired nerve perfusion, dyslipidemia, altered redox status, low-grade inflammation, and perturbation of calcium balance. Successful therapies require an integrated approach targeting these mechanisms. Intensive glycemic control is essential but is insufficient to prevent onset or progression of DSP, and disease-modifying treatments for DSP have been disappointing. Atypical forms of DN include subacute-onset sensory (symmetric) or motor (asymmetric) predominant conditions that are frequently painful but generally self-limited. DNs are a major cause of disability, associated with reduced quality of life and increased mortality. PMID:24954624
Elgass, Kirstin D.; Smith, Elizabeth A.; LeGros, Mark A.; Larabell, Carolyn A.; Ryan, Michael T.
2015-01-01
ABSTRACT Mitochondrial fission is important for organelle transport, quality control and apoptosis. Changes to the fission process can result in a wide variety of neurological diseases. In mammals, mitochondrial fission is executed by the GTPase dynamin-related protein 1 (Drp1; encoded by DNM1L), which oligomerizes around mitochondria and constricts the organelle. The mitochondrial outer membrane proteins Mff, MiD49 (encoded by MIEF2) and MiD51 (encoded by MIEF1) are involved in mitochondrial fission by recruiting Drp1 from the cytosol to the organelle surface. In addition, endoplasmic reticulum (ER) tubules have been shown to wrap around and constrict mitochondria before a fission event. Up to now, the presence of MiD49 and MiD51 at ER–mitochondrial division foci has not been established. Here, we combine confocal live-cell imaging with correlative cryogenic fluorescence microscopy and soft x-ray tomography to link MiD49 and MiD51 to the involvement of the ER in mitochondrial fission. We gain further insight into this complex process and characterize the 3D structure of ER–mitochondria contact sites. PMID:26101352
Zhang, Cui; Lu, Ying; Tong, Qian-Qian; Zhang, Lan; Guan, Yu-Fei; Wang, Shu-Jing; Xing, Zhi-Hua
2013-01-01
Our study aimed at determining the effect of stachydrine on the PERK, CHOP, and caspase-3 in rat kidney with RIF. Rats were randomly divided into control group, model group, enalapril group, high stachydrine group, medium stachydrine group, and low stachydrine group. RIF models of five groups were developed by unilateral ureteral obstruction except the control group. The rats were sacrificed 12 days after surgery and blood samples were collected. Serum creatinine (Scr) and blood urea nitrogen (BUN) levels were detected. Renal tubular damage index was determined by HE staining. The area percentage of RIF was determined by the Masson method. Expressions of PERK, CHOP, and caspase-3 in kidney were determined by immunohistochemistry. Tubulointerstitial injury index, RIF, serum Scr, BUN level, and expressions of PERK, CHOP, and caspase-3 were different between the model and treatment groups (P < 0.05; P < 0.01). The expressions of PERK, CHOP, and caspase-3 in nephridial tissue were reduced (P < 0.05), tubulointerstitial injury and RIF were reduced (P < 0.05), and Scr and BUN were lower (P < 0.05) in the high stachydrine group than those in the enalapril group. The expressions of PERK, CHOP, and caspase-3 were reduced in the endoplasmic reticulum stress-related apoptosis pathway after stachydrine treatment. Consequently, apoptosis was prevented, and RIF was inhibited.
Endothelin receptor-specific control of endoplasmic reticulum stress and apoptosis in the kidney
De Miguel, Carmen; Hamrick, William C.; Hobbs, Janet L.; Pollock, David M.; Carmines, Pamela K.; Pollock, Jennifer S.
2017-01-01
Endothelin-1 (ET-1) promotes renal damage during cardiovascular disease; yet, the molecular mechanisms involved remain unknown. Endoplasmic reticulum (ER) stress, triggered by unfolded protein accumulation in the ER, contributes to apoptosis and organ injury. These studies aimed to determine whether the ET-1 system promotes renal ER stress development in response to tunicamycin. ETB deficient (ETB def) or transgenic control (TG-con) rats were used in the presence or absence of ETA receptor antagonism. Tunicamycin treatment similarly increased cortical ER stress markers in both rat genotypes; however, only ETB def rats showed a 14–24 fold increase from baseline for medullary GRP78, sXBP-1, and CHOP. Pre-treatment of TG-con rats with the ETA blocker ABT-627 for 1 week prior to tunicamycin injection significantly reduced the ER stress response in cortex and medulla, and also inhibited renal apoptosis. Pre-treatment with ABT-627 failed to decrease renal ER stress and apoptosis in ETB def rats. In conclusion, the ET-1 system is important for the development of tunicamycin-induced renal ER stress and apoptosis. ETA receptor activation induces renal ER stress genes and apoptosis, while functional activation of the ETB receptor has protective effects. These results highlight targeting the ETA receptor as a therapeutic approach against ER stress-induced kidney injury. PMID:28230089
Endothelin receptor-specific control of endoplasmic reticulum stress and apoptosis in the kidney.
De Miguel, Carmen; Hamrick, William C; Hobbs, Janet L; Pollock, David M; Carmines, Pamela K; Pollock, Jennifer S
2017-02-23
Endothelin-1 (ET-1) promotes renal damage during cardiovascular disease; yet, the molecular mechanisms involved remain unknown. Endoplasmic reticulum (ER) stress, triggered by unfolded protein accumulation in the ER, contributes to apoptosis and organ injury. These studies aimed to determine whether the ET-1 system promotes renal ER stress development in response to tunicamycin. ET B deficient (ET B def) or transgenic control (TG-con) rats were used in the presence or absence of ET A receptor antagonism. Tunicamycin treatment similarly increased cortical ER stress markers in both rat genotypes; however, only ET B def rats showed a 14-24 fold increase from baseline for medullary GRP78, sXBP-1, and CHOP. Pre-treatment of TG-con rats with the ET A blocker ABT-627 for 1 week prior to tunicamycin injection significantly reduced the ER stress response in cortex and medulla, and also inhibited renal apoptosis. Pre-treatment with ABT-627 failed to decrease renal ER stress and apoptosis in ET B def rats. In conclusion, the ET-1 system is important for the development of tunicamycin-induced renal ER stress and apoptosis. ET A receptor activation induces renal ER stress genes and apoptosis, while functional activation of the ET B receptor has protective effects. These results highlight targeting the ET A receptor as a therapeutic approach against ER stress-induced kidney injury.
NASA Technical Reports Server (NTRS)
Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)
1997-01-01
Covisualizations with wide-field computational optical-sectioning microscopy of living epidermal cells of the onion bulb scale have evidenced two major new cellular features. First, a sheath of cytoskeletal elements clads the endomembrane system. Similar elements clad the inner faces of punctate plasmalemmal sites interpreted as plasmalemmal control centers. One component of the endomembrane sheath and plasmalemmal control center cladding is anti-genicity-recognized by two injected antibodies against animal spectrin. Immunoblots of separated epidermal protein also showed bands recognized by these antibodies. Injected phalloidin identified F-actin with the same cellular distribution pattern, as did antibodies against intermediate-filament protein and other cytoskeletal elements known from animal cells. Injection of general protein stains demonstrated the abundance of endomembrane sheath protein. Second, the endomembrane system, like the plasmalemmal puncta, contains antigen recognized by an anti-beta 1 integrin injected into the cytoplasm. Previously, immunoblots of separated epidermal protein were shown to have a major band recognized both by this antibody prepared against a peptide representing the cytosolic region of beta 1 integrin and an antibody against the matrix region of beta 1 integrin. The latter antiboby also identified puncta at the external face of protoplasts. It is proposed that integrin and associated transmembrane proteins secure the endomembrane sheath and transmit signals between it and the lumen or matrix of the endoplasmic reticulum and organellar matrices. This function is comparable to that proposed for such transmembrane linkers in the plasmalemmal control centers, which also appear to bind cytoskeleton and a host of related molecules and transmit signals between them and the wall matrix. It is at the plasmalemmal control centers that the endoplasmic reticulum, a major component of the endomembrane system, attaches to the plasma membrane.
Robinson, Philip C; Lau, Eugene; Keith, Patricia; Lau, Max C; Thomas, Gethin P; Bradbury, Linda A; Brown, Matthew A; Kenna, Tony J
2015-11-01
Single nucleotide polymorphisms in ERAP2 are strongly associated with ankylosing spondylitis (AS). One AS-associated single nucleotide polymorphism, rs2248374, causes a truncated ERAP2 protein that is degraded by nonsense-mediated decay. Approximately 25% of the populations of European ancestry are therefore natural ERAP2 knockouts. We investigated the effect of this associated variant on HLA class I allele presentation, surface heavy chains, endoplasmic reticulum (ER) stress markers and cytokine gene transcription in AS. Patients with AS and healthy controls with either AA or GG homozygous status for rs2248374 were studied. Antibodies to CD14, CD19-ECD, HLA-A-B-C, Valpha7.2, CD161, anti-HC10 and anti-HLA-B27 were used to analyse peripheral blood mononuclear cells. Expression levels of ER stress markers (GRP78 and CHOP) and proinflammatory genes (tumour necrosis factor (TNF), IL6, IL17 and IL22) were assessed by qPCR. There was no significant difference in HLA-class I allele presentation or major histocompatibility class I heavy chains or ER stress markers GRP78 and CHOP or proinflammatory gene expression between genotypes for rs2248374 either between cases, between cases and controls, and between controls. Large differences were not seen in HLA-B27 expression or cytokine levels between subjects with and without ERAP2 in AS cases and controls. This suggests that ERAP2 is more likely to influence AS risk through other mechanisms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Qu, Mei; Shen, Wei
2015-03-01
To investigate the roles of PI3K/Akt signaling in the unfolded protein response (UPR) and non-UPR signaling pathways of endoplasmic reticulum stress and apoptosis in hepatocytes under conditions of saturated fatty acid-induced steatosis. A steatosis model of hepatocytes (L02 cell and HepG2 cell line) was induced by palmitate sodium saturated fatty acids.The hepatocytes were divided into normal control group,experimental group (treated with palmitate sodium) and intervention group (treated with palmitate sodium and LY294002, a PI3K/Akt inhibitor). Cell apoptosis was detected by flow cytometry with Annexin V/PI double-staining.Western blot analysis was used to examine the protein expression of GRP78, PI3K, P-PI3K,Akt, P-Akt, CHOP and Bax.The F test and t-test were used in statistical analyses. Flow cytometry showed that palmitate sodium induced cell apoptosis in steatotic hepatocytes;moreover, a significant increase in cell apoptosis was observed in the palmitate sodium-induced steatotic hepatocytes in the presence of LY294002.For the normal control group, the experimental group and the intervention group, the apoptosis ratios of L02 cells were 4.41 ± 0.78% vs. 6.01 ± 1.49% vs. 19.50 ± 2.53% after 24 hours of treatment,and 12.56 ± 2.78% vs. 29.72 ± 6.39% vs. 44.60 ± 4.17% after 48 hours of treatment in respectively (all P < 0.05),and of HepG2 cells were 11.16 ± 1.15% vs. 17.50 ± 6.83% vs. 30.41 ± 3.62% after 24 hours of treatment, and 22.37 ± 1.24% vs. 33.85 ± 5.79% vs. 48.56 ± 4.21% after 48 hours of treatment (all P < 0.05). Western blot analysis showed that expression of GRP78 was significantly upregulated in the palmitate sodium-induced steatosis hepatocytes, indicating activation of endoplasmic reticulum stress. In addition, the palmitate sodium treatment also activated the PI3K/Akt pathway,induced expression of CHOP and Bax of the UPR and non-UPR signaling pathways respectively. Moreover, Pretreatment with LY294002 inhibited the palmitate sodium induced-phosphorylation of PI3K and Akt, and promoted upregulation of CHOP and Bax induced by palmitate sodium. The PI3K/Akt pathway may be involved in regulation of the UPR and non-UPR signaling pathways of endoplasmic reticulum stress and may promote apoptosis of hepatocytes by enhancing the expression of CHOP and Bax protein in saturated fatty acid-induced steatotic hepatocytes.
Prasad, Manoj; Kaur, Jasmeet; Pawlak, Kevin J; Bose, Mahuya; Whittal, Randy M; Bose, Himangshu S
2015-01-30
Steroid hormones are essential for carbohydrate metabolism, stress management, and reproduction and are synthesized from cholesterol in mitochondria of adrenal glands and gonads/ovaries. In acute stress or hormonal stimulation, steroidogenic acute regulatory protein (StAR) transports substrate cholesterol into the mitochondria for steroidogenesis by an unknown mechanism. Here, we report for the first time that StAR interacts with voltage-dependent anion channel 2 (VDAC2) at the mitochondria-associated endoplasmic reticulum membrane (MAM) prior to its translocation to the mitochondrial matrix. In the MAM, StAR interacts with mitochondrial proteins Tom22 and VDAC2. However, Tom22 knockdown by siRNA had no effect on pregnenolone synthesis. In the absence of VDAC2, StAR was expressed but not processed into the mitochondria as a mature 30-kDa protein. VDAC2 interacted with StAR via its C-terminal 20 amino acids and N-terminal amino acids 221-229, regulating the mitochondrial processing of StAR into the mature protein. In the absence of VDAC2, StAR could not enter the mitochondria or interact with MAM-associated proteins, and therefore steroidogenesis was inhibited. Furthermore, the N terminus was not essential for StAR activity, and the N-terminal deletion mutant continued to interact with VDAC2. The endoplasmic reticulum-targeting prolactin signal sequence did not affect StAR association with the MAM and thus its mitochondrial targeting. Therefore, VDAC2 controls StAR processing and activity, and MAM is thus a central location for initiating mitochondrial steroidogenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Meuten, D. J.; Capen, C. C.; Kociba, G. J.; Chew, D. J.; Cooper, B. J.
1982-01-01
Adenocarcinomas derived from apocrine glands of the anal sac and associated with persistent hypercalcemia in dogs were composed of tumor cells with numerous profiles of rough endoplasmic reticulum, clusters of free ribosomes, and a prominent Golgi apparatus. Neoplastic cells contained microtubules, microfilaments, tonofibrils, and had two types of electron-dense granules. Large lysosomelike dense bodies ranged from 0.6 to 2.2 microns in diameter and had a poorly delineated limiting membrane. Small granules (150-400 nm in diameter) had a sharply delineated limiting membrane with a narrow submembranous space and a homogeneous dense core. These smaller granules usually were located near the apexes of neoplastic cells, whereas the larger granules were situated near the base of cells. Apocrine cells in glands of the anal sac from control dogs that were in the secretory phase were columnar and had large dilated profiles of rough endoplasmic reticulum. Membranes of the endoplasmic reticulum fused with the plasmalemma and appeared to secrete their product directly into the lumens of acini, characteristic of merocrine secretion. Apical blebs of electron-lucent cytoplasm pinched off from nonneoplastic aprocine cells and were released into glandular lumens. Similar electron-lucent cytoplasmic blebs were present at the apexes of tumor cells. Myoepithelial cells were present between the epithelial cells and basement membrane in normal apocrine glands and were absent in neoplasms derived from these glands. Identification of the contents of the secretory-like granules in tumor cells and characterization of the hypercalcemic factor in the plasma or tumor tissue from dogs with this syndrome will help explain the pathogenesis of hypercalcemia associated with malignancy in animals and man. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:7200729
Meuten, D J; Capen, C C; Kociba, G J; Chew, D J; Cooper, B J
1982-05-01
Adenocarcinomas derived from apocrine glands of the anal sac and associated with persistent hypercalcemia in dogs were composed of tumor cells with numerous profiles of rough endoplasmic reticulum, clusters of free ribosomes, and a prominent Golgi apparatus. Neoplastic cells contained microtubules, microfilaments, tonofibrils, and had two types of electron-dense granules. Large lysosomelike dense bodies ranged from 0.6 to 2.2 microns in diameter and had a poorly delineated limiting membrane. Small granules (150-400 nm in diameter) had a sharply delineated limiting membrane with a narrow submembranous space and a homogeneous dense core. These smaller granules usually were located near the apexes of neoplastic cells, whereas the larger granules were situated near the base of cells. Apocrine cells in glands of the anal sac from control dogs that were in the secretory phase were columnar and had large dilated profiles of rough endoplasmic reticulum. Membranes of the endoplasmic reticulum fused with the plasmalemma and appeared to secrete their product directly into the lumens of acini, characteristic of merocrine secretion. Apical blebs of electron-lucent cytoplasm pinched off from nonneoplastic aprocine cells and were released into glandular lumens. Similar electron-lucent cytoplasmic blebs were present at the apexes of tumor cells. Myoepithelial cells were present between the epithelial cells and basement membrane in normal apocrine glands and were absent in neoplasms derived from these glands. Identification of the contents of the secretory-like granules in tumor cells and characterization of the hypercalcemic factor in the plasma or tumor tissue from dogs with this syndrome will help explain the pathogenesis of hypercalcemia associated with malignancy in animals and man.
Lin, Yu Wen; Chen, Tsung Ying; Hung, Chia Yang; Tai, Shih Huang; Huang, Sheng Yang; Chang, Che Chao; Hung, Hsin Yi; Lee, E Jian
2018-07-01
Endoplasmic reticulum (ER) stress plays a vital role in mediating ischemic reperfusion damage in brain. In this study, we evaluated whether melatonin inhibits ER stress in cultured neurons exposed to oxygen and glucose deprivation (OGD) and in rats subjected to transient focal cerebral ischemia. Sprague-Dawley rats were treated with melatonin (5 mg/kg) or control at reperfusion onset after transient occlusion of the right middle cerebral artery (MCA) for 90 min. Brain infarction and hemorrhage within infarcts were measured. The expression of ER stress proteins of phosphorylation of PRKR‑like endoplasmic reticulum kinase (p-PERK), phosphorylation of eukaryotic translation initiation factor 2α (p-eIF2α), activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) were detected by western blotting and immunohistochemistry analysis. The terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) method, cleaved caspase-3 and cytochrome c were used to investigate cell apoptosis in OGD-induced cultured neurons. Our results demonstrated that animals treated with melatonin had significantly reduced infarction volumes and individual cortical lesion sizes as well as increased numbers of surviving neurons. Melatonin can significantly modulate protein levels by decreasing both p-PERK and p-eIF2α in the ischemic core and penumbra. Moreover, the expressions of ATF4 and CHOP were restrained in the ischemic core and penumbra, respectively. Furthermore, pretreatment with melatonin at 10-100 µM effectively reduced the levels of p-PERK and p-eIF2α in cultured neurons after OGD injury. Melatonin treatment also effectively decreased neuron apoptosis resulting from OGD-induced neuron injury. These results indicate that melatonin effectively attenuated post-ischemic ER stress after ischemic stroke.
Liu, Hong; Cao, Diyong; Liu, Hua; Liu, Xinghai; Mai, Wenli; Lan, Haitao; Huo, Wen; Zheng, Qian
2016-08-01
Our previous work found that Cordyceps sinensis (CS) improves the activity and secretory function of pancreatic islet beta cells. The objective was to observe a further possible role of CS in the protection of insulin-secreting cells. A rat model of type 2 diabetes mellitus was developed with streptozotocin (STZ) and a high-energy fat diet (HFD). CS was administered in the successful model of rats with type 2 diabetes. After 4 weeks, the biochemistry index of blood samples was measured, and pathologic observation was performed by immunohistochemistry. In the rats with type 2 diabetes induced by a HFD and STZ, the levels of fasting blood glucose and fasting insulin were elevated, and the insulin sensitivity index was decreased. Pathologic examination found an increased number of apoptotic cells, an elevated protein expression of pro-apoptotic C/EBP homologous protein (CHOP) and an increased c-Jun level by means of JNK phosphorylation, responsive to the endoplasmic reticulum stress of islet beta cells. With treatment by CS for 4 weeks, the elevated levels of both fasting blood glucose and fasting insulin in the rats with type 2 diabetes were significantly lower, and the decreased insulin sensitivity index was reversed. Compared to the control rats with type 2 diabetes, CS application significantly reduced the number of apoptotic cells and decreased protein expression of both CHOP and c-Jun. The herbal compound CS could protect pancreatic beta cells from the pro-apoptotic endoplasmic reticulum stress induced by HFD-STZ. This suggests an alternative approach to treating type 2 diabetes. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.
Khodaee, Naser; Ghasemi, Maedeh; Saghiri, Reza; Eliassi, Afsaneh
2014-01-01
In a previous study we reported the presence of a large conductance K+ channel in the membrane of endoplasmic reticulum (ER) from rat hepatocytes. The channel open probability (Po) appeared voltage dependent and reached to a minimum 0.2 at +50 mV. Channel activity in this case was found to be totally inhibited at ATP concentration 2.5 mM, glibenclamide 100 µM and tolbutamide 400 µM. Existing evidence indicates an impairment of endoplasmic reticulum functions in ER stress condition. Because ER potassium channels have been involved in several ER functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the ER potassium channel function is altered in a high fat diet model of ER stress. Male Wistar rats were made ER stress for 2 weeks with a high fat diet. Ion channel incorporation of ER stress model into the bilayer lipid membrane allowed the characterization of K+ channel. Our results indicate that the channel Po was significantly increased at voltages above +30 mV. Interestingly, addition of ATP 7.5 mM, glibenclamide 400 µM and tolbutamide 2400 µM totally inhibited the channel activities, 3-fold, 4-fold and 6-fold higher than that in the control groups, respectively. Our results thus demonstrate a modification in the ER K+ channel gating properties and decreased sensitivity to drugs in membrane preparations coming from ER high fat model of ER stress, an effect potentially linked to a change in ER K+ channel subunits in ER stress condition. Our results may provide new insights into the cellular mechanisms underlying ER dysfunctions in ER stress. PMID:26417322
Thompson, Melissa D; Mei, Yu; Weisbrod, Robert M; Silver, Marcy; Shukla, Praphulla C; Bolotina, Victoria M; Cohen, Richard A; Tong, Xiaoyong
2014-07-18
The sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) is key to Ca(2+) homeostasis and is redox-regulated by reversible glutathione (GSH) adducts on the cysteine (C) 674 thiol that stimulate Ca(2+) uptake activity and endothelial cell angiogenic responses in vitro. We found that mouse hind limb muscle ischemia induced S-glutathione adducts on SERCA in both whole muscle tissue and endothelial cells. To determine the role of S-glutathiolation, we used a SERCA 2 C674S heterozygote knock-in (SKI) mouse lacking half the key thiol. Following hind limb ischemia, SKI animals had decreased SERCA S-glutathione adducts and impaired blood flow recovery. We studied SKI microvascular endothelial cells in which total SERCA 2 expression was unchanged. Cultured SKI microvascular endothelial cells showed impaired migration and network formation compared with wild type (WT). Ca(2+) studies showed decreased nitric oxide (·NO)-induced (45)Ca(2+) uptake into the endoplasmic reticulum (ER) of SKI cells, while Fura-2 studies revealed lower Ca(2+) stores and decreased vascular endothelial growth factor (VEGF)- and ·NO-induced Ca(2+) influx. Adenoviral overexpression of calreticulin, an ER Ca(2+) binding protein, increased ionomycin-releasable stores, VEGF-induced Ca(2+) influx and endothelial cell migration. Taken together, these data indicate that the redox-sensitive Cys-674 thiol on SERCA 2 is required for normal endothelial cell Ca(2+) homeostasis and ischemia-induced angiogenic responses, revealing a novel redox control of angiogenesis via Ca(2+) stores. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Minchenko, O H; Tsymbal, D O; Minchenko, D O; Kovalevska, O V; Karbovskyi, L L; Bikfalvi, A
2015-01-01
Hypoxia as well as the endoplasmic reticulum stress are important factors of malignant tumor growth and control of the expression of genes, which regulate numerous metabolic processes and cell proliferation. Furthermore, blockade of ERN1 (endoplasmic reticulum to nucleus 1) suppresses cell proliferation and tumor growth. We studied the effect of hypoxia on the expression of genes encoding the transcription factors such as E2F8 (E2F transcription factor 8), EPAS1 (endothelial PAS domain protein 1), TBX3 (T-box 3), ATF3 (activating transcription factor 3), FOXF1 (forkhead box F), and HOXC6 (homeobox C6) in U87 glioma cells with and without ERN1 signaling enzyme function. We have established that hypoxia enhances the expression of HOXC6, E2F8, ATF3, and EPAS1 genes but does not change TBX3 and FOXF1 gene expression in glioma cells with ERNI function. At the same time, the expression level of all studied genes is strongly decreased, except for TBX3 gene, in glioma cells without ERN1 function. Moreover, the inhibition of ERN1 signaling enzyme function significantly modifies the effect of hypoxia on the expression of these transcription factor genes. removes or introduces this regulation as well as changes a direction or magnitude of hypoxic regulation. Present study demonstrates that fine-tuning of the expression of proliferation related genes depends upon hypoxia and ERN1-mediated endoplasmic reticulum stress signaling and correlates with slower proliferation rate of glioma cells without ERN1 function.
Behnke, O.; Moe, H.
1964-01-01
In an electron microsope study, the morphology of mature Paneth cells from the small intestine of adult rats is compared with that of differentiating Paneth cells from young rats 2 to 4 weeks old. All mature cells exhibit a marked polarity similar to that of other exocrine gland cells and contain a well developed endoplasmic reticulum, an elaborate Golgi complex, and numerous large secretory granules; they also possess an abundance of lysosomes. The most conspicuous occurrence in the process of differentiation is the development of the endoplasmic reticulum. The most immature Paneth cells possess an endoplasmic reticulum of the vesicular type, which, during maturation, is replaced by the characteristic lamellated ergastoplasm of the mature cell. At a certain stage of differentiation the cavities of the developing cisternae show numerous communications with the perinuclear space, suggesting an outgrowth of the ergastoplasm from the nuclear envelope. Furthermore, the cavities and the perinuclear space at this particular stage contain a material which shows a remarkable intrinsic periodicity. An identical periodicity was exhibited by material contained in Golgi cisternae and secretory granules. Lysosomes are also present in the differentiating cells. PMID:14206428
Tchobanu, L M; Syrbu, S I; Popovitch, I M; Ivanova, V M; Gudumak, V S; Popovitch, M I
2013-05-01
The immune-enzyme system of testing was developed to detect the level of Ca2+ ATPase of sarcoplasmic reticulum using monoclonal IgM and IgG antibodies to Ca2+ ATPase. The clinical approbation of the technique was carried out using the sample of 19 patients with acute cardiac infarction Q validated by the increase of content of such common markers of myocardium necrosis as troponin T and creatine phosphokinase MB. The increase of the level of Ca2+ ATPase of sarcoplasmic reticulum was detected in all patients. This occurrence is detected approximately in 4-6 hours after debut and it disappears in 144 hours (6 days). At the same time, Ca2+ ATPase was not detected in 10 Patients with acute traumatic damages of skeleton musculature, in 10 patients with chronic renal failure under hemodialysis and in 20 patients with acute coronary syndrome without rise of ST-segment of cardiogram. These facts testify rather high specificity and sensitivity of the developed technique of detection of the level of Ca2+ ATPase of sarcoplasmic reticulum in blood as biological marker of myocardium necrosis.
Kabbara, Akram A; Allen, David G
2001-01-01
Single fibres from the lumbrical muscles of the cane toad (Bufo marinus) were incubated in fluo-5N AM for 2 h at 35 °C in order to load the indicator into the sarcoplasmic reticulum. Fluo-5N is a low-affinity calcium indicator (KCa 90 μm). Successful sarcoplasmic reticulum (SR) loading was indicated by a fluorescence signal that declined during contraction. Confocal microscopy showed that the dye loaded principally in lines perpendicular to the long axis of the fibre that repeated each sarcomere. This is consistent with much of the dye residing in the SR. To establish the site of loading, fibres were exposed to 30 mm caffeine in the presence of 20 μm 2,5-di(tert-butyl)1,4-hydroquinone (TBQ, an SR pump inhibitor) which should release most Ca2+ from the SR; this procedure reduced the fluorescence to 46 ± 4 % of the control value. To determine how much indicator was in the myoplasm, fibres were exposed to 100 μg ml−1 saponin which permeabilizes the surface membrane; saponin treatment reduced the fluorescence to 51 ± 2 % of the control value. During maximally activated tetani (100 Hz stimulation rate, 22 °C) the component of signal from the SR declined by 33 ± 4 %. During relaxation the SR signal recovered in two phases with time constants of 0.38 ± 0.14 s and 10.1 ± 1.7 s. Partially activated tetani (30 Hz stimulation rate) showed a smaller SR signal. Application of the SR Ca2+ pump inhibitor TBQ slowed the rate of recovery of the SR signal. Muscle fatigue was produced by repeated short tetani until tension was reduced to 50 %. The SR signal during the periods between tetani declined steadily and the SR Ca2+ signal was eventually reduced to 71 ± 8 % of the control signal. This signal recovered in two phases when the muscle was rested. An initial phase had a time constant of 1.7 ± 0.2 s so that by 20 s of recovery the SR Ca2+ signal was 86 ± 7 % of control; the second phase was slower and by 5 min the SR Ca2+ signal was back to control values (98 ± 5 % control). In addition the magnitude of the SR signal decline associated with each tetanus (Δ[Ca2+]SR) declined monotonically throughout fatigue and returned to control after 5 min recovery. This approach can monitor the SR Ca2+ concentration in normally functioning muscle fibres with good time resolution. The method confirms other approaches that show that the free Ca2+ available for release in the SR declines during fatigue. This reduction in [Ca2+]SR will contribute to the failure of Ca2+ delivery to the myofilaments which is an important cause of muscle fatigue. PMID:11432994
Kabbara, A A; Allen, D G
2001-07-01
1. Single fibres from the lumbrical muscles of the cane toad (Bufo marinus) were incubated in fluo-5N AM for 2 h at 35 degrees C in order to load the indicator into the sarcoplasmic reticulum. Fluo-5N is a low-affinity calcium indicator (K(Ca) 90 microM). Successful sarcoplasmic reticulum (SR) loading was indicated by a fluorescence signal that declined during contraction. 2. Confocal microscopy showed that the dye loaded principally in lines perpendicular to the long axis of the fibre that repeated each sarcomere. This is consistent with much of the dye residing in the SR. 3. To establish the site of loading, fibres were exposed to 30 mM caffeine in the presence of 20 microM 2,5-di(tert-butyl)1,4-hydroquinone (TBQ, an SR pump inhibitor) which should release most Ca(2+) from the SR; this procedure reduced the fluorescence to 46 +/- 4 % of the control value. To determine how much indicator was in the myoplasm, fibres were exposed to 100 microg ml(-1) saponin which permeabilizes the surface membrane; saponin treatment reduced the fluorescence to 51 +/- 2 % of the control value. 4. During maximally activated tetani (100 Hz stimulation rate, 22 degrees C) the component of signal from the SR declined by 33 +/- 4 %. During relaxation the SR signal recovered in two phases with time constants of 0.38 +/- 0.14 s and 10.1 +/- 1.7 s. Partially activated tetani (30 Hz stimulation rate) showed a smaller SR signal. Application of the SR Ca(2+) pump inhibitor TBQ slowed the rate of recovery of the SR signal. 5. Muscle fatigue was produced by repeated short tetani until tension was reduced to 50 %. The SR signal during the periods between tetani declined steadily and the SR Ca(2+) signal was eventually reduced to 71 +/- 8 % of the control signal. This signal recovered in two phases when the muscle was rested. An initial phase had a time constant of 1.7 +/- 0.2 s so that by 20 s of recovery the SR Ca(2+) signal was 86 +/- 7 % of control; the second phase was slower and by 5 min the SR Ca(2+) signal was back to control values (98 +/- 5 % control). In addition the magnitude of the SR signal decline associated with each tetanus (Delta[Ca(2+)](SR)) declined monotonically throughout fatigue and returned to control after 5 min recovery. 6. This approach can monitor the SR Ca(2+) concentration in normally functioning muscle fibres with good time resolution. The method confirms other approaches that show that the free Ca(2+) available for release in the SR declines during fatigue. This reduction in [Ca(2+)](SR) will contribute to the failure of Ca(2+) delivery to the myofilaments which is an important cause of muscle fatigue.
Choi, Soo-Kyoung; Lim, Mihwa; Yeon, Soo-In; Lee, Young-Ho
2016-06-01
What is the central question of this study? Endoplasmic reticulum (ER) stress has been reported to be involved in type 2 diabetes; however, the role of exacerbated ER stress in vascular dysfunction in type 2 diabetes remains unknown. What is the main finding and its importance? The main findings of this study are that ER stress is increased in the coronary arteries in type 2 diabetes, and inhibition of ER stress using taurine-conjugated ursodeoxycholic acid improves vascular function, which is associated with normalization of the myogenic response and endothelium-dependent relaxation. Vascular dysfunction is a major complication in type 2 diabetes. Although endoplasmic reticulum (ER) stress has been suggested to be a contributory factor in cardiovascular diseases, the relationship between ER stress and vascular dysfunction in type 2 diabetes remains unclear. Thus, in the present study, we examined whether ER stress contributes to coronary artery dysfunction and whether inhibition of ER stress ameliorates vascular function in type 2 diabetes. Type 2 diabetic mice and their control counterparts were treated with an ER stress inhibitor (taurine-conjugated ursodeoxycholic acid, 150 mg kg(-1) day(-1) , by i.p. injection) for 2 weeks or not treated. The myogenic response and endothelium-dependent relaxation were measured in pressurized coronary arteries. In type 2 diabetic mice, blood glucose and body weight were elevated compared with control mice. The myogenic response was potentiated and endothelium-dependent relaxation impaired in coronary arteries from the type 2 diabetic mice. Interestingly, treatment with the ER stress inhibitor normalized the myogenic responses and endothelium-dependent relaxation. These data were associated with an increase in ER stress marker expression or phosphorylation (IRE1-XBP-1 and PERK-eIF2α) in type 2 diabetic mice, which were reduced by treatment with the ER stress inhibitor. Inhibition of ER stress normalizes the myogenic response and improves vascular function in type 2 diabetes. Therefore, ER stress could be a potential target for cardiovascular diseases in diabetes mellitus. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
The endoplasmic reticulum stress response: A link with tuberculosis?
Cui, Yongyong; Zhao, Deming; Barrow, Paul Andrew; Zhou, Xiangmei
2016-03-01
Tuberculosis (TB) remains a major cause of mortality and morbidity in the worldwide. The endoplasmic-reticulum stress (ERS) response constitutes a cellular process that is triggered by mycobacterial infection that disturbs the folding of proteins in the endoplasmic reticulum (ER). The unfolded protein response (UPR) is induced to suspend the synthesis of early proteins and reduce the accumulation of unfolded- or misfolded proteins in the ER restoring normal physiological cell function. Prolonged or uncontrolled ERS leads to the activation of three signaling pathways (IRE1, PERK and ATF6) which directs the cell towards apoptosis. The absence of this process facilitates spread of the mycobacteria within the body. We summarize here recent advances in understanding the signaling pathway diversity governing ERS in relation to TB. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, Philip; Levitt, Seymour H.
1963-06-15
Case histories of two patients treated with colloidal radiogold for diffuse reticulum cell sarcoma are presented. Further analysis of the method is suggested by the unusually long survival time of one of the patients. It was concluded that, although external radiotherapy remains the treatment of choice in localized reticulum cell sarcoma, intravenous colloidal radiogold may be a useful agent in lymphosarcomas with diffuse minute neoplastic liver and spleen involvements. Intravenous colloidal radiogold can produce bone marrow depression and thrombocytopenia which can lead to death. This factor tends to argue against therapeutic use of the agent. It is suggested that nomore » more than 50 mC Au/sup 198/ intravenously should be used for treatment of this disease. (R.M.G.)« less
Systolic [Ca2+]i regulates diastolic levels in rat ventricular myocytes
Sankaranarayanan, Rajiv; Kistamás, Kornél; Greensmith, David J.; Venetucci, Luigi A.
2017-01-01
Key points For the heart to function as a pump, intracellular calcium concentration ([Ca2+]i) must increase during systole to activate contraction and then fall, during diastole, to allow the myofilaments to relax and the heart to refill with blood.The present study investigates the control of diastolic [Ca2+]i in rat ventricular myocytes.We show that diastolic [Ca2+]i is increased by manoeuvres that decrease sarcoplasmic reticulum function. This is accompanied by a decrease of systolic [Ca2+]i such that the time‐averaged [Ca2+]i remains constant.We report that diastolic [Ca2+]i is controlled by the balance between Ca2+ entry and Ca2+ efflux during systole.The results of the present study identify a novel mechanism by which changes of the amplitude of the systolic Ca transient control diastolic [Ca2+]i. Abstract The intracellular Ca concentration ([Ca2+]i) must be sufficently low in diastole so that the ventricle is relaxed and can refill with blood. Interference with this will impair relaxation. The factors responsible for regulation of diastolic [Ca2+]i, in particular the relative roles of the sarcoplasmic reticulum (SR) and surface membrane, are unclear. We investigated the effects on diastolic [Ca2+]i that result from the changes of Ca cycling known to occur in heart failure. Experiments were performed using Fluo‐3 in voltage clamped rat ventricular myocytes. Increasing stimulation frequency increased diastolic [Ca2+]i. This increase of [Ca2+]i was larger when SR function was impaired either by making the ryanodine receptor leaky (with caffeine or ryanodine) or by decreasing sarco/endoplasmic reticulum Ca‐ATPase activity with thapsigargin. The increase of diastolic [Ca2+]i produced by interfering with the SR was accompanied by a decrease of the amplitude of the systolic Ca transient, such that there was no change of time‐averaged [Ca2+]i. Time‐averaged [Ca2+]i was increased by β‐adrenergic stimulation with isoprenaline and increased in a saturating manner with increased stimulation frequency; average [Ca2+]i was a linear function of Ca entry per unit time. Diastolic and time‐averaged [Ca2+]i were decreased by decreasing the L‐type Ca current (with 50 μm cadmium chloride). We conclude that diastolic [Ca2+]i is controlled by the balance between Ca entry and efflux during systole. Furthermore, manoeuvres that decrease the amplitude of the Ca transient (without decreasing Ca influx) will therefore increase diastolic [Ca2+]i. This identifies a novel mechanism by which changes of the amplitude of the systolic Ca transient control diastolic [Ca2+]i. PMID:28617952
Fatehi, F; Krizsan, S J; Gidlund, H; Huhtanen, P
2015-05-01
The objective of this study was to develop and compare techniques for determining nutrient flow based on digesta samples collected from the reticulum or rumen of lactating dairy cows with estimates generated by the omasal sampling technique. Pre-experimental method development suggested, after comparing with the particle size distribution of feces, application of primary sieving of ruminal and reticular digesta from lactating cows through an 11.6-mm sieve, implying that digesta particles smaller than this were eligible to flow out of the rumen. For flow measurements at the different sampling sites 4 multiparous, lactating Nordic Red cows fitted with ruminal cannulas were used in a Latin square design with 4 dietary treatments, in which crimped barley was replaced with 3 incremental levels of protein supplementation of canola meal. Digesta was collected from the rumen, reticulum, and omasum to represent a 24-h feeding cycle. Nutrient flow was calculated using the reconstitution system based on Cr, Yb, and indigestible neutral detergent fiber and using (15)N as microbial marker. Large and small particles and the fluid phase were recovered from digesta collected at all sampling sites. Bacterial samples were isolated from the digesta collected from the omasum. Several differences existed for digesta composition, nutrient flows, and estimates of ruminal digestibility among the 3 different sampling sites. Sampling site × diet interactions were not significant. The estimated flows of DM, potentially digestible neutral detergent fiber, nonammonia N, and microbial N were significantly different between all sampling sites. However, the difference between DM flow based on sampling from the reticulum and the omasum was small (0.13kg/d greater in the omasum). The equality between the reticulum and the omasum as sampling sites was supported by the following regression: omasal DM flow=0.37 (±0.649) + 0.94 (±0.054) reticular DM flow (R(2)=0.96 and root mean square error=0.438kg/d). More deviating nutrient-flow estimates when sampling digesta from the rumen than the reticulum compared with the omasum suggested that sampling from the reticulum is the most promising alternative to the omasal sampling technique. To definitively promote sampling from the reticulum as an alternative to the omasal sampling technique, more research is needed to determine selection criteria of reticular digesta for accurate and precise flow estimates across a range of diets. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
2012-01-01
components of the endomembrane system, including endoplasmic reticulum (ER) and Golgi apparatus were significantly down-regulated. As a result of...impairment in dopaminergic functions (Lucot JB, personal communication). Interestingly, data on sarin exposures have shown inhibition of new memory...quite unexpected that the endoplasmic reticulum (ER) and Golgi apparatus , the subcellular organelles essential for processing (e.g., folding, post
Role of ER Export Signals in Controlling Surface Potassium Channel Numbers
NASA Astrophysics Data System (ADS)
Ma, Dzwokai; Zerangue, Noa; Lin, Yu-Fung; Collins, Anthony; Yu, Mei; Jan, Yuh Nung; Yeh Jan, Lily
2001-01-01
Little is known about the identity of endoplasmic reticulum (ER) export signals and how they are used to regulate the number of proteins on the cell surface. Here, we describe two ER export signals that profoundly altered the steady-state distribution of potassium channels and were required for channel localization to the plasma membrane. When transferred to other potassium channels or a G protein-coupled receptor, these ER export signals increased the number of functional proteins on the cell surface. Thus, ER export of membrane proteins is not necessarily limited by folding or assembly, but may be under the control of specific export signals.
Reid, David W; Nicchitta, Christopher V
2015-06-12
Jan et al. (Research Articles, 7 November 2014, p. 716) propose that ribosomes translating secretome messenger RNAs (mRNAs) traffic from the cytosol to the endoplasmic reticulum (ER) upon emergence of the signal peptide and return to the cytosol after termination. An accounting of controls demonstrates that mRNAs initiate translation on ER-bound ribosomes and that ribosomes are retained on the ER through many cycles of translation. Copyright © 2015, American Association for the Advancement of Science.
[Effect and mechanism of endoplasmic reticulum stress on cisplatin resistance in ovarian carcinoma].
Tian, Jing; Hu, Xiaoming; Qu, Quanxin
2014-05-01
The study intended to investigate the effect and mechanism of endoplasmic reticulum stress on cisplatin resistance in ovarian carcinoma. RT-PCR and Western blot were used to test the expression of mTOR and Beclin1 mRNA and protein in ovarian cancer SKOV3 cells after saquinavir induction. MTT assay was used to analyze the influence of saquinavir on cisplatin sensitivity in SKOV3 cells. The IC50 of SKOV3 cells was (5.490 ± 1.148) µg/ml. After induced by Saquinavair 10 µmol/L and 20 µmol/L, the IC50 of SKOV3 cells was increased to (11.199 ± 0.984) µg/ml and (14.906 ± 2.015) µg/ml, respectively. It suggested that the sensitivity of ovarian cancer cells to cisplatin was decreased significantly (P = 0.001). The expression of mTOR and Beclin1 mRNA and protein was significantly different among the five groups: the (Saquinavair+DDP) group of, Saquinavair group, LY294002 group, DDP group and control group (P < 0.001) . The expressions of mTOR and Beclin1 mRNA were highest in the (Saquinavair+DDP) group, 0.684 ± 0.072 and 0.647 ± 0.047, respectively; Secondly, the Saquinavair group, 0.577 ± 0.016 and 0.565 ± 0.037, respectively. The expressions of mTOR and Beclin1 proteins were also highest in the (Saquinavair+DDP) group, 0.624 ± 0.058 and 0.924 ± 0.033, respectively, followed by the Saquinavair group, 0.544 ± 0.019 and 0.712 ± 0.024. 3-MA inhibited the autophagy and restored cisplatin sensitivity in the SKOV3 cells after Saquinavir induced ER stress (P < 0.001). Saquinavir can effectively induce endoplasmic reticulum stress in SKOV3 cells. Endoplasmic reticulum stress can decrease the sensitivity to cisplatin in SKOV3 cells. The mechanism of the decrease of sensitivity to cisplatin in SKOV3 cells may be that ERS regulates cell autophagy through the mTOR and Beclin1 pathways. ERS of tumor cells and autophagy may become a new target to improve the therapeutic effect of chemotherapy and to reverse the drug resistance in tumor treatment.
Endoplasmic Reticulum Stress and Homeostasis in Reproductive Physiology and Pathology.
Guzel, Elif; Arlier, Sefa; Guzeloglu-Kayisli, Ozlem; Tabak, Mehmet Selcuk; Ekiz, Tugba; Semerci, Nihan; Larsen, Kellie; Schatz, Frederick; Lockwood, Charles Joseph; Kayisli, Umit Ali
2017-04-08
The endoplasmic reticulum (ER), comprises 60% of the total cell membrane and interacts directly or indirectly with several cell organelles i.e., Golgi bodies, mitochondria and proteasomes. The ER is usually associated with large numbers of attached ribosomes. During evolution, ER developed as the specific cellular site of synthesis, folding, modification and trafficking of secretory and cell-surface proteins. The ER is also the major intracellular calcium storage compartment that maintains cellular calcium homeostasis. During the production of functionally effective proteins, several ER-specific molecular steps sense quantity and quality of synthesized proteins as well as proper folding into their native structures. During this process, excess accumulation of unfolded/misfolded proteins in the ER lumen results in ER stress, the homeostatic coping mechanism that activates an ER-specific adaptation program, (the unfolded protein response; UPR) to increase ER-associated degradation of structurally and/or functionally defective proteins, thus sustaining ER homeostasis. Impaired ER homeostasis results in aberrant cellular responses, contributing to the pathogenesis of various diseases. Both female and male reproductive tissues undergo highly dynamic cellular, molecular and genetic changes such as oogenesis and spermatogenesis starting in prenatal life, mainly controlled by sex-steroids but also cytokines and growth factors throughout reproductive life. These reproductive changes require ER to provide extensive protein synthesis, folding, maturation and then their trafficking to appropriate cellular location as well as destroying unfolded/misfolded proteins via activating ER-associated degradation mediated proteasomes. Many studies have now shown roles for ER stress/UPR signaling cascades in the endometrial menstrual cycle, ovarian folliculogenesis and oocyte maturation, spermatogenesis, fertilization, pre-implantation embryo development and pregnancy and parturition. Conversely, the contribution of impaired ER homeostasis by severe/prolong ER stress-mediated UPR signaling pathways to several reproductive tissue pathologies including endometriosis, cancers, recurrent pregnancy loss and pregnancy complications associated with pre-term birth have been reported. This review focuses on ER stress and UPR signaling mechanisms, and their potential roles in female and male reproductive physiopathology involving in menstrual cycle changes, gametogenesis, preimplantation embryo development, implantation and placentation, labor, endometriosis, pregnancy complications and preterm birth as well as reproductive system tumorigenesis.
Endoplasmic Reticulum Stress and Homeostasis in Reproductive Physiology and Pathology
Guzel, Elif; Arlier, Sefa; Guzeloglu-Kayisli, Ozlem; Tabak, Mehmet Selcuk; Ekiz, Tugba; Semerci, Nihan; Larsen, Kellie; Schatz, Frederick; Lockwood, Charles Joseph; Kayisli, Umit Ali
2017-01-01
The endoplasmic reticulum (ER), comprises 60% of the total cell membrane and interacts directly or indirectly with several cell organelles i.e., Golgi bodies, mitochondria and proteasomes. The ER is usually associated with large numbers of attached ribosomes. During evolution, ER developed as the specific cellular site of synthesis, folding, modification and trafficking of secretory and cell-surface proteins. The ER is also the major intracellular calcium storage compartment that maintains cellular calcium homeostasis. During the production of functionally effective proteins, several ER-specific molecular steps sense quantity and quality of synthesized proteins as well as proper folding into their native structures. During this process, excess accumulation of unfolded/misfolded proteins in the ER lumen results in ER stress, the homeostatic coping mechanism that activates an ER-specific adaptation program, (the unfolded protein response; UPR) to increase ER-associated degradation of structurally and/or functionally defective proteins, thus sustaining ER homeostasis. Impaired ER homeostasis results in aberrant cellular responses, contributing to the pathogenesis of various diseases. Both female and male reproductive tissues undergo highly dynamic cellular, molecular and genetic changes such as oogenesis and spermatogenesis starting in prenatal life, mainly controlled by sex-steroids but also cytokines and growth factors throughout reproductive life. These reproductive changes require ER to provide extensive protein synthesis, folding, maturation and then their trafficking to appropriate cellular location as well as destroying unfolded/misfolded proteins via activating ER-associated degradation mediated proteasomes. Many studies have now shown roles for ER stress/UPR signaling cascades in the endometrial menstrual cycle, ovarian folliculogenesis and oocyte maturation, spermatogenesis, fertilization, pre-implantation embryo development and pregnancy and parturition. Conversely, the contribution of impaired ER homeostasis by severe/prolong ER stress-mediated UPR signaling pathways to several reproductive tissue pathologies including endometriosis, cancers, recurrent pregnancy loss and pregnancy complications associated with pre-term birth have been reported. This review focuses on ER stress and UPR signaling mechanisms, and their potential roles in female and male reproductive physiopathology involving in menstrual cycle changes, gametogenesis, preimplantation embryo development, implantation and placentation, labor, endometriosis, pregnancy complications and preterm birth as well as reproductive system tumorigenesis. PMID:28397763
Cao, Zhouli; Xiao, Qingling; Dai, Xiaoniu; Zhou, Zewei; Jiang, Rong; Cheng, Yusi; Yang, Xiyue; Guo, Huifang; Wang, Jing; Xi, Zhaoqing; Yao, Honghong; Chao, Jie
2017-12-13
Silicosis is characterized by fibroblast accumulation and excessive deposition of extracellular matrix. Although the roles of SiO 2 -induced chemokines and cytokines released from alveolar macrophages have received significant attention, the direct effects of SiO 2 on protein production and functional changes in pulmonary fibroblasts have been less extensively studied. Sigma-1 receptor, which has been associated with cell proliferation and migration in the central nervous system, is expressed in the lung, but its role in silicosis remains unknown. To elucidate the role of sigma-1 receptor in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Both molecular biological assays and pharmacological techniques, combined with functional experiments, such as migration and proliferation, were applied in human pulmonary fibroblasts from adults to analyze the molecular and functional changes induced by SiO 2 . SiO 2 induced endoplasmic reticulum stress in association with enhanced expression of sigma-1 receptor. Endoplasmic reticulum stress promoted migration and proliferation of human pulmonary fibroblasts-adult exposed to SiO 2 , inducing the development of silicosis. Inhibition of sigma-1 receptor ameliorated endoplasmic reticulum stress and fibroblast functional changes induced by SiO 2 . circHIPK2 is involved in the regulation of sigma-1 receptor in human pulmonary fibroblasts-adult exposed to SiO 2 . Our study elucidated a link between SiO 2 -induced fibrosis and sigma-1 receptor signaling, thereby providing novel insight into the potential use of sigma-1 receptor/endoplasmic reticulum stress in the development of novel therapeutic strategies for silicosis treatment.
2010-01-01
Background Caseins, the main milk proteins, aggregate in the secretory pathway of mammary epithelial cells into large supramolecular structures, casein micelles. The role of individual caseins in this process and the mesostructure of the casein micelle are poorly known. Results In this study, we investigate primary steps of casein micelle formation in rough endoplasmic reticulum-derived vesicles prepared from rat or goat mammary tissues. The majority of both αS1- and β-casein which are cysteine-containing casein was dimeric in the endoplasmic reticulum. Saponin permeabilisation of microsomal membranes in physico-chemical conditions believed to conserve casein interactions demonstrated that rat immature β-casein is weakly aggregated in the endoplasmic reticulum. In striking contrast, a large proportion of immature αS1-casein was recovered in permeabilised microsomes when incubated in conservative conditions. Furthermore, a substantial amount of αS1-casein remained associated with microsomal or post-ER membranes after saponin permeabilisation in non-conservative conditions or carbonate extraction at pH11, all in the presence of DTT. Finally, we show that protein dimerisation via disulfide bond is involved in the interaction of αS1-casein with membranes. Conclusions These experiments reveal for the first time the existence of a membrane-associated form of αS1-casein in the endoplasmic reticulum and in more distal compartments of the secretory pathway of mammary epithelial cells. Our data suggest that αS1-casein, which is required for efficient export of the other caseins from the endoplasmic reticulum, plays a key role in early steps of casein micelle biogenesis and casein transport in the secretory pathway. PMID:20704729
Limbach, Christoph; Staehelin, L Andrew; Sievers, Andreas; Braun, Markus
2008-04-01
We provide a 3D ultrastructural analysis of the membrane systems involved in tip growth of rhizoids of the green alga Chara. Electron tomography of cells preserved by high-pressure freeze fixation has enabled us to distinguish six different types of vesicles in the apical cytoplasm where the tip growth machinery is accommodated. The vesicle types are: dark and light secretory vesicles, plasma membrane-associated clathrin-coated vesicles (PM-CCVs), Spitzenkoerper-associated clathrin-coated vesicles (Sp-CCVs) and coated vesicles (Sp-CVs), and microvesicles. Each of these vesicle types exhibits a distinct distribution pattern, which provides insights into their possible function for tip growth. The PM-CCVs are confined to the cytoplasm adjacent to the apical plasma membrane. Within this space they are arranged in clusters often surrounding tubular plasma membrane invaginations from which CCVs bud. This suggests that endocytosis and membrane recycling are locally confined to specialized apical endocytosis sites. In contrast, exocytosis of secretory vesicles occurs over the entire membrane area of the apical dome. The Sp-CCVs and the Sp-CVs are associated with the aggregate of endoplasmic reticulum membranes in the center of the growth-organizing Spitzenkoerper complex. Here, Sp-CCVs are seen to bud from undefined tubular membranes. The subapical region of rhizoids contains a vacuolar reticulum that extends along the longitudinal cell axis and consists of large, vesicle-like segments interconnected by thin tubular domains. The tubular domains are encompassed by thin filamentous structures resembling dynamin spirals which could drive peristaltic movements of the vacuolar reticulum similar to those observed in fungal hyphae. The vacuolar reticulum appears to serve as a lytic compartment into which multivesicular bodies deliver their internal vesicles for molecular recycling and degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Ying; Li, Shu-Jun; Yang, Jian
Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulummore » stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway.« less
Cao, Zhenbo; Subramaniam, Suraj; Bulleid, Neil J.
2014-01-01
Typical 2-Cys peroxiredoxins are required to remove hydrogen peroxide from several different cellular compartments. Their activity can be regulated by hyperoxidation and consequent inactivation of the active-site peroxidatic cysteine. Here we developed a simple assay to quantify the hyperoxidation of peroxiredoxins. Hyperoxidation of peroxiredoxins can only occur efficiently in the presence of a recycling system, usually involving thioredoxin and thioredoxin reductase. We demonstrate that there is a marked difference in the sensitivity of the endoplasmic reticulum-localized peroxiredoxin to hyperoxidation compared with either the cytosolic or mitochondrial enzymes. Each enzyme is equally sensitive to hyperoxidation in the presence of a robust recycling system. Our results demonstrate that peroxiredoxin IV recycling in the endoplasmic reticulum is much less efficient than in the cytosol or mitochondria, leading to the protection of peroxiredoxin IV from hyperoxidation. PMID:24403061
Endoplasmic Reticulum Stress and Associated ROS
Zeeshan, Hafiz Maher Ali; Lee, Geum Hwa; Kim, Hyung-Ryong; Chae, Han-Jung
2016-01-01
The endoplasmic reticulum (ER) is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS). Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI)-endoplasmic reticulum oxidoreductin (ERO)-1, glutathione (GSH)/glutathione disuphide (GSSG), NADPH oxidase 4 (Nox4), NADPH-P450 reductase (NPR), and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases. PMID:26950115
Perk, Kalman; Dahlberg, John E.
1974-01-01
Analysis of serial sections of murine cells containing intracisternal A particles revealed that over 99% of all A particles remain in a budding configuration. This indicates that these particles fail to detach from the membrane of the endoplasmic reticulum. This observation explains how, despite their intracellular abundance in certain murine tumors, no extracellular A-type particles can be found. Images PMID:4431082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramante, Joseph; Linden, Tim
Recent observations of Reticulum II have uncovered an overabundance of r -process elements compared to similar ultra-faint dwarf spheroidal galaxies (UFDs). Because the metallicity and star formation history of Reticulum II appear consistent with all known UFDs, the high r -process abundance of Reticulum II suggests enrichment through a single, rare event, such as a double neutron star (NS) merger. However, we note that this scenario is extremely unlikely, as binary stellar evolution models require significant supernova natal kicks to produce NS–NS or NS–black hole (BH) mergers, and these kicks would efficiently remove compact binary systems from the weak gravitationalmore » potentials of UFDs. We examine alternative mechanisms for the production of r -process elements in UFDs, including a novel mechanism wherein NSs in regions of high dark matter (DM) density implode after accumulating a BH-forming mass of DM. We find that r -process proto-material ejection by tidal forces, when a single NS implodes into a BH, can occur at a rate matching the r -process abundance of both Reticulum II and the Milky Way. Remarkably, DM models which collapse a single NS in observed UFDs also solve the missing pulsar problem in the Milky Way Galactic Center. We propose tests specific to DM r -process production which may uncover or rule out this model.« less
Agonist-activated Ca2+ influx occurs at stable plasma membrane and endoplasmic reticulum junctions
Treves, Susan; Vukcevic, Mirko; Griesser, Johanna; Armstrong, Clara-Franzini; Zhu, Michael X.; Zorzato, Fancesco
2010-01-01
Junctate is a 33 kDa integral protein of sarco(endo)plasmic reticulum membranes that forms a macromolecular complex with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] receptors and TRPC3 channels. TIRF microscopy shows that junctate enhances the number of fluorescent puncta on the plasma membrane. The size and distribution of these puncta are not affected by the addition of agonists that mobilize Ca2+ from Ins(1,4,5)P3-sensitive stores. Puncta are associated with a significantly larger number of peripheral junctions between endoplasmic reticulum and plasma membrane, which are further enhanced upon stable co-expression of junctate and TRPC3. The gap between the membranes of peripheral junctions is bridged by regularly spaced electron-dense structures of 10 nm. Ins(1,4,5)P3 inhibits the interaction of the cytoplasmic N-terminus of junctate with the ligand-binding domain of the Ins(1,4,5)P3 receptor. Furthermore, Ca2+ influx evoked by activation of Ins(1,4,5)P3 receptors is increased where puncta are located. We conclude that stable peripheral junctions between the plasma membrane and endoplasmic reticulum are the anatomical sites of agonist-activated Ca2+ entry. PMID:21062895
Microdomains of endoplasmic reticulum within the sarcoplasmic reticulum of skeletal myofibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaakinen, Mika; Papponen, Hinni; Metsikkoe, Kalervo
2008-01-15
The relationship between the endoplasmic reticulum (ER) and the sarcoplasmic reticulum (SR) of skeletal muscle cells has remained obscure. In this study, we found that ER- and SR-specific membrane proteins exhibited diverse solubility properties when extracted with mild detergents. Accordingly, the major SR-specific protein Ca{sup 2+}-ATPase (SERCA) remained insoluble in Brij 58 and floated in sucrose gradients while typical ER proteins were partially or fully soluble. Sphingomyelinase treatment rendered SERCA soluble in Brij 58. Immunofluorescence staining for resident ER proteins revealed dispersed dots over I bands contrasting the continuous staining pattern of SERCA. Infection of isolated myofibers with enveloped virusesmore » indicated that interfibrillar protein synthesis occurred. Furthermore, we found that GFP-tagged Dad1, able to incorporate into the oligosaccharyltransferase complex, showed the dot-like structures but the fusion protein was also present in membranes over the Z lines. This behaviour mimics that of cargo proteins that accumulated over the Z lines when blocked in the ER. Taken together, the results suggest that resident ER proteins comprised Brij 58-soluble microdomains within the insoluble SR membrane. After synthesis and folding in the ER-microdomains, cargo proteins and non-incorporated GFP-Dad1 diffused into the Z line-flanking compartment which likely represents the ER exit sites.« less
Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S; Calhoun, William J
2014-06-01
Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to <1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. Copyright © 2014 Elsevier Inc. All rights reserved.
Kaphalia, Lata; Boroumand, Nahal; Ju, Hyunsu; Kaphalia, Bhupendra S.; Calhoun, William J.
2014-01-01
Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to <0.2% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 were observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. PMID:24625836
Monitoring Endoplasmic Reticulum Calcium Homeostasis Using a Gaussia Luciferase SERCaMP.
Henderson, Mark J; Wires, Emily S; Trychta, Kathleen A; Yan, Xiaokang; Harvey, Brandon K
2015-09-06
The endoplasmic reticulum (ER) contains the highest level of intracellular calcium, with concentrations approximately 5,000-fold greater than cytoplasmic levels. Tight control over ER calcium is imperative for protein folding, modification and trafficking. Perturbations to ER calcium can result in the activation of the unfolded protein response, a three-prong ER stress response mechanism, and contribute to pathogenesis in a variety of diseases. The ability to monitor ER calcium alterations during disease onset and progression is important in principle, yet challenging in practice. Currently available methods for monitoring ER calcium, such as calcium-dependent fluorescent dyes and proteins, have provided insight into ER calcium dynamics in cells, however these tools are not well suited for in vivo studies. Our lab has demonstrated that a modification to the carboxy-terminus of Gaussia luciferase confers secretion of the reporter in response to ER calcium depletion. The methods for using a luciferase based, secreted ER calcium monitoring protein (SERCaMP) for in vitro and in vivo applications are described herein. This video highlights hepatic injections, pharmacological manipulation of GLuc-SERCaMP, blood collection and processing, and assay parameters for longitudinal monitoring of ER calcium.
Paraptosis in human glioblastoma cell line induced by curcumin.
Garrido-Armas, Monika; Corona, Juan Carlos; Escobar, Maria Luisa; Torres, Leda; Ordóñez-Romero, Francisco; Hernández-Hernández, Abrahan; Arenas-Huertero, Francisco
2018-09-01
Curcumin is a polyphenol compound extracted from Curcuma longa plant, is a molecule with pleiotropic effects that suppresses transformation, proliferation and metastasis of malignant tumors. Curcumin can cause different kinds of cell death depending of its concentration on the exposed cell type. Here we show that exposure of the glioblastoma cell line A172 to curcumin at 50 μM, the IC50, causes morphological change characteristic of paraptosis cell-death. Vesicles derived from the endoplasmic reticulum (ER) and low membrane potential of the mitochondria were constantly found in the exposed cells. Furthermore, changes in expression of the ER Stress Response (ERSR) genes IRE1 and ATF6, and the microRNAs (miRNAs) miR-27a, miR-222, miR-449 was observed after exposure to curcumin. AKT-Insulin and p53-BCL2 networks were predicted being modulated by the affected miRNAs. Furthermore, AKT protein levels reduction was confirmed. Our data, strongly suggest that curcumin exerts its cell-death properties by affecting the integrity of the reticulum, leading to paraptosis in the glioblastoma cells. These data unveils the versatility of curcumin to control cancer progression. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hirata, Yutaka; Brotto, Marco; Weisleder, Noah; Chu, Yi; Lin, Peihui; Zhao, Xiaoli; Thornton, Angela; Komazaki, Shinji; Takeshima, Hiroshi; Ma, Jianjie; Pan, Zui
2006-01-01
Junctophilin (JP) mediates the close contact between cell surface and intracellular membranes in muscle cells ensuring efficient excitation-contraction coupling. Here we demonstrate that disruption of triad junction structure formed by the transverse tubular (TT) invagination of plasma membrane and terminal cisternae of sarcoplasmic reticulum (SR) by reduction of JP expression leads to defective Ca2+ homeostasis in muscle cells. Using adenovirus with small hairpin interference RNA (shRNA) against both JP1 and JP2 genes, we could achieve acute suppression of JPs in skeletal muscle fibers. The shRNA-treated muscles exhibit deformed triad junctions and reduced store-operated Ca2+ entry (SOCE), which is likely due to uncoupled retrograde signaling from SR to TT. Knockdown of JP also causes a reduction in SR Ca2+ storage and altered caffeine-induced Ca2+ release, suggesting an orthograde regulation of the TT membrane on the SR Ca2+ release machinery. Our data demonstrate that JPs play an important role in controlling overall intracellular Ca2+ homeostasis in muscle cells. We speculate that altered expression of JPs may underlie some of the phenotypic changes associated with certain muscle diseases and aging. PMID:16565048
Lee, Sungwook; Park, Boyoun; Kang, Kwonyoon
2009-01-01
In contrast to the fairly well-characterized mechanism of assembly of MHC class I-peptide complexes, the disassembly mechanism by which peptide-loaded MHC class I molecules are released from the peptide-loading complex and exit the endoplasmic reticulum (ER) is poorly understood. Optimal peptide binding by MHC class I molecules is assumed to be sufficient for triggering exit of peptide-filled MHC class I molecules from the ER. We now show that protein disulfide isomerase (PDI) controls MHC class I disassembly by regulating dissociation of the tapasin-ERp57 disulfide conjugate. PDI acts as a peptide-dependent molecular switch; in the peptide-bound state, it binds to tapasin and ERp57 and induces dissociation of the tapasin-ERp57 conjugate. In the peptide-free state, PDI is incompetent to bind to tapasin or ERp57 and fails to dissociate the tapasin-ERp57 conjugates, resulting in ER retention of MHC class I molecules. Thus, our results indicate that even after optimal peptide loading, MHC class I disassembly does not occur by default but, rather, is a regulated process involving PDI-mediated interactions within the peptide-loading complex. PMID:19477919
The inositol trisphosphate receptor in the control of autophagy.
Criollo, Alfredo; Vicencio, José Miguel; Tasdemir, Ezgi; Maiuri, M Chiara; Lavandero, Sergio; Kroemer, Guido
2007-01-01
The second messenger myo-inositol-1,4,5-trisphosphate (IP(3)) acts on the IP(3) receptor (IP(3)R), an IP(3)-activated Ca(2+) channel of the endoplasmic reticulum (ER). The IP(3)R agonist IP(3) inhibits starvation-induced autophagy. The IP(3)R antagonist xestospongin B induces autophagy in human cells through a pathway that requires the obligate contribution of Beclin-1, Atg5, Atg10, Atg12 and hVps34, yet is inhibited by ER-targeted Bcl-2 or Bcl-XL, two proteins that physically interact with IP(3)R. Autophagy can also be induced by depletion of the IP(3)R by small interfering RNAs. Autophagy induction by IP(3)R blockade cannot be explained by changes in steady state levels of Ca(2+) in the endoplasmic reticulum (ER) and the cytosol. Autophagy induction by IP(3)R blockade is effective in cells lacking the obligate mediator of ER stress IRE1. In contrast, IRE1 is required for autophagy induced by ER stress-inducing agents such a tunicamycin or thapsigargin. These findings suggest that there are several distinct pathways through which autophagy can be initiated at the level of the ER.
Pick, Joseph E; Khatri, Latika; Sathler, Matheus F; Ziff, Edward B
2017-01-17
mGluR long-term depression (mGluR-LTD) is a form of synaptic plasticity induced at excitatory synapses by metabotropic glutamate receptors (mGluRs). mGluR-LTD reduces synaptic strength and is relevant to learning and memory, autism, and sensitization to cocaine; however, the mechanism is not known. Here we show that activation of Group I mGluRs in medium spiny neurons induces trafficking of GluA2 from the endoplasmic reticulum (ER) to the synapse by enhancing GluA2 binding to essential COPII vesicle proteins, Sec23 and Sec13. GluA2 exit from the ER further depends on IP3 and Ryanodine receptor-controlled Ca 2+ release as well as active translation. Synaptic insertion of GluA2 is coupled to removal of high-conducting Ca 2+ -permeable AMPA receptors from synapses, resulting in synaptic depression. This work demonstrates a novel mechanism in which mGluR signals release AMPA receptors rapidly from the ER and couple ER release to GluA2 synaptic insertion and GluA1 removal. © 2016 The Authors.
Geng, Tuoyu; Xia, Lili; Li, Fuyuan; Xia, Jing; Zhang, Yihui; Wang, Qianqian; Yang, Biao; Montgomery, Sean; Cui, Hengmi; Gong, Daoqing
2015-09-11
In mammals, insulin resistance (IR) is required for the occurrence of non-alcoholic fatty liver disease, and endoplasmic reticulum stress (ERS) contributes to IR. As geese have physiological and metabolic characteristics different from mammals, it is unclear whether these mechanisms also underlie the occurrence of goose fatty liver. To address this, 70-day-old geese were treated with an ERS inducer or overfed, and variables associated with ERS or IR were subsequently determined. The data indicated that the group of geese treated with the ERS inducer for 20d appeared to be more intolerant to blood glucose than the control group, and their livers showed features of hepatic steatosis, suggesting ERS can induce IR and hepatic steatosis in geese. In contrast, overfeeding did not induce ERS, probably due to the upregulated expression of fatty acid desaturases, but induced higher fasting/postprandial blood glucose as well as glucose intolerance in geese, which was accompanied by a dramatic increase of liver weight. Taken together, these findings delineated the role of ERS and IR in the occurrence of goose fatty liver. Copyright © 2015 Elsevier Inc. All rights reserved.
Endoplasmic Reticulum - Plasma Membrane Crosstalk Mediated by the Extended Synaptotagmins.
Saheki, Yasunori
2017-01-01
The endoplasmic reticulum (ER) possesses multiplicity of functions including protein synthesis, membrane lipid biogenesis, and Ca 2+ storage and has broad localization throughout the cell. While the ER and most other membranous organelles are highly interconnected via vesicular traffic that relies on membrane budding and fusion reactions, the ER forms direct contacts with virtually all other membranous organelles, including the plasma membrane (PM), without membrane fusion. Growing evidence suggests that these contacts play major roles in cellular physiology, including the regulation of Ca 2+ homeostasis and signaling and control of cellular lipid homeostasis. Extended synaptotagmins (E-Syts) are evolutionarily conserved family of ER-anchored proteins that tether the ER to the PM in PM PI(4,5)P 2 -dependent and cytosolic Ca 2+ -regulated manner. In addition, E-Syts possess a cytosolically exposed lipid-harboring module that confers the ability to transfer/exchange glycerolipids between the ER and the PM at E-Syts-mediated ER-PM contacts. In this chapter, the functions of ER-PM contacts and their role in non-vesicular lipid transport with special emphasis on the crosstalk between the two bilayers mediated by E-Syts will be discussed.
Chiramel, Abhilash I; Dougherty, Jonathan D; Nair, Vinod; Robertson, Shelly J; Best, Sonja M
2016-10-15
Selective autophagy of the endoplasmic reticulum (termed ER-phagy) is controlled by members of the FAM134 reticulon protein family. Here we used mouse embryonic fibroblasts from mice deficient in FAM134B to examine the role of the ER in replication of historic (Mayinga) or contemporary (Makona GCO7) strains of Ebola virus (EBOV). Loss of FAM134B resulted in 1-2 log 10 higher production of infectious EBOV, which was associated with increased production of viral proteins GP and VP40 and greater accumulation of nucleocaspid lattices. In addition, only 10% of wild-type cells contained detectable nucleoprotein, whereas knockout of FAM134B resulted in 80% of cells positive for nucleoprotein. Together, these data suggest that FAM134B-dependent ER-phagy is an important limiting event in EBOV replication in mouse cells and may have implications for further development of antiviral therapeutics and murine models of infection. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Beraldo, Flávio H; Garcia, Célia RS
2007-01-01
Background We have previously reported that a Teiid lizard red blood cells (RBCs) such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Results Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER) pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. Conclusion T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs), for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracelullar medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs. PMID:17716375
Beraldo, Flávio H; Garcia, Célia R S
2007-08-23
We have previously reported that a Teiid lizard red blood cells (RBCs) such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER) pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs), for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracellular medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs.
Buffers and Oscillations in Intracellular Ca2+ Dynamics
Falcke, Martin
2003-01-01
I model the behavior of intracellular Ca2+ release with high buffer concentrations. The model uses a spatially discrete array of channel clusters. The channel subunit dynamics is a stochastic representation of the DeYoung-Keizer model. The calculations show that the concentration profile of fast buffer around an open channel is more localized than that of slow buffers. Slow buffers allow for release of larger amounts of Ca2+ from the endoplasmic reticulum and hence bind more Ca2+ than fast buffers with the same dissociation constant and concentration. I find oscillation-like behavior for high slow buffer concentration and low Ca2+ content of the endoplasmic reticulum. High concentration of slow buffer leads to oscillation-like behavior by repetitive wave nucleation for high Ca2+ content of the endoplasmic reticulum. Localization of Ca2+ release by slow buffer, as used in experiments, can be reproduced by the modeling approach. PMID:12524263
Phosphatidylglycerol synthesis in castor bean endosperm. [Ricinus communis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, T.S. Jr.
1974-01-01
The synthesis of phosphatidylglycerol in castor bean (Ricinus communis var. Hale) endosperm tissue was found to be located in both the endoplasmic reticulum and mitochondrial fractions separated on sucrose density gradients. The enzyme of both fractions attained maximum activity at 5 mM Mn/sup 2 +/, 0.075 percent Triton X-100, and pH 7.3. The addition of dithiothreitol produced little effect, but sulfhydryl inhibitors reduced activity in both systems. Cytidine diphosphate-diglyceride exhibited an apparent Michaelis constant for the endoplasmic reticulum enzyme of 2.8 ..mu..M and for the mitochondrial enzyme of 2.0 ..mu..M; the maximum reaction rate was achieved at about 20 ..mu..M.more » For the second substrate, glycerol-phosphate, the apparent Michaelis constant for both fractions was about 50 ..mu..M and maximum velocity was reached at 400 ..mu..M. The specific activity of the mitochondrial enzyme was generally twice that of the endoplasmic reticulum.« less
A turn-on fluorescent probe for endogenous formaldehyde in the endoplasmic reticulum of living cells
NASA Astrophysics Data System (ADS)
Tang, Yonghe; Ma, Yanyan; Xu, An; Xu, Gaoping; Lin, Weiying
2017-06-01
As the simplest aldehyde compounds, formaldehyde (FA) is implicated in nervous system diseases and cancer. Endoplasmic reticulum is an organelle that plays important functions in living cells. Accordingly, the development of efficient methods for FA detection in the endoplasmic reticulum (ER) is of great biomedical importance. In this work, we developed the first ER-targeted fluorescent FA probe Na-FA-ER. The detection is based on the condensation reaction of the hydrazine group and FA to suppress the photo-induced electron transfer (PET) pathway, resulting in a fluorescence increase. The novel Na-FA-ER showed high sensitivity to FA. In addition, the Na-FA-ER enabled the bio-imaging of exogenous and endogenous FA in living HeLa cells. Most significantly, the new Na-FA-ER was employed to visualize the endogenous FA in the ER in living cells for the first time.
Searching for γ-ray emission from Reticulum II by Fermi-LAT
NASA Astrophysics Data System (ADS)
Zhao, Yi; Bi, Xiao-Jun; Yin, Peng-Fei; Zhang, Xinmin
2018-02-01
Recently, many new dwarf spheroidal satellites (dSphs) have been discovered by the Dark Energy Survey (DES). These dSphs are ideal candidates for probing for gamma-ray emissions from dark matter (DM) annihilation. However, no significant signature has been found by the Fermi-LAT dSph observations. In this work, we reanalyze the Fermi-LAT Pass 8 data from the direction of Reticulum II, where a slight excess has been reported by some previous studies. We treat Reticulum II (DES J0335.6-5403) as a spatially extended source, and find that no significant gamma-ray signature is observed. Based on this result, we set upper-limits on the DM annihilation cross section. Supported by National Natural Science Foundation of China (11121092, 11033005, 11375202, 11475191, 11475189), the CAS pilot B program (XDB23020000) and the National Key Program for Research and Development (2016YFA0400200)
Hu, Chao; Tian, Huaizhen; Li, Hongqing; Hu, Aiqun; Xing, Fuwu; Bhattacharjee, Avishek; Hsu, Tianchuan; Kumar, Pankaj; Chung, Shihwen
2016-01-01
A molecular phylogeny of Asiatic species of Goodyera (Orchidaceae, Cranichideae, Goodyerinae) based on the nuclear ribosomal internal transcribed spacer (ITS) region and two chloroplast loci (matK and trnL-F) was presented. Thirty-five species represented by 132 samples of Goodyera were analyzed, along with other 27 genera/48 species, using Pterostylis longifolia and Chloraea gaudichaudii as outgroups. Bayesian inference, maximum parsimony and maximum likelihood methods were used to reveal the intrageneric relationships of Goodyera and its intergeneric relationships to related genera. The results indicate that: 1) Goodyera is not monophyletic; 2) Goodyera could be divided into four sections, viz., Goodyera, Otosepalum, Reticulum and a new section; 3) sect. Reticulum can be further divided into two subsections, viz., Reticulum and Foliosum, whereas sect. Goodyera can in turn be divided into subsections Goodyera and a new subsection. PMID:26927946
Hu, Chao; Tian, Huaizhen; Li, Hongqing; Hu, Aiqun; Xing, Fuwu; Bhattacharjee, Avishek; Hsu, Tianchuan; Kumar, Pankaj; Chung, Shihwen
2016-01-01
A molecular phylogeny of Asiatic species of Goodyera (Orchidaceae, Cranichideae, Goodyerinae) based on the nuclear ribosomal internal transcribed spacer (ITS) region and two chloroplast loci (matK and trnL-F) was presented. Thirty-five species represented by 132 samples of Goodyera were analyzed, along with other 27 genera/48 species, using Pterostylis longifolia and Chloraea gaudichaudii as outgroups. Bayesian inference, maximum parsimony and maximum likelihood methods were used to reveal the intrageneric relationships of Goodyera and its intergeneric relationships to related genera. The results indicate that: 1) Goodyera is not monophyletic; 2) Goodyera could be divided into four sections, viz., Goodyera, Otosepalum, Reticulum and a new section; 3) sect. Reticulum can be further divided into two subsections, viz., Reticulum and Foliosum, whereas sect. Goodyera can in turn be divided into subsections Goodyera and a new subsection.
Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling.
Takekura, H; Takeshima, H; Nishimura, S; Takahashi, M; Tanabe, T; Flockerzi, V; Hofmann, F; Franzini-Armstrong, C
1995-10-01
Ryanodine receptors and dihydropyridine receptors are located opposite each other at the junctions between sarcoplasmic reticulum and either the surface membrane or the transverse tubules in skeletal muscle. Ryanodine receptors are the calcium release channels of the sarcoplasmic reticulum and their cytoplasmic domains form the feet, connecting sarcoplasmic reticulum to transverse tubules. Dihydropyridine receptors are L-type calcium channels that act as the voltage sensors of excitation-contraction coupling: they sense surface membrane and transverse tubule depolarization and induce opening of the sarcoplasmic reticulum release channels. In skeletal muscle, ryanodine receptors are arranged in extensive arrays and dihydropyridine receptors are grouped into tetrads, which in turn are associated with the four subunits of ryanodine receptors. The disposition allows for a direct interaction between the two sets of molecules. CHO cells were stably transformed with plasmids for skeletal muscle ryanodine receptors and either the skeletal dihydropyridine receptor, or a skeletal-cardiac dihydropyridine receptor chimera (CSk3) which can functionally substitute for the skeletal dihydropyridine receptor, in addition to plasmids for the alpha 2, beta and gamma subunits. RNA blot hybridization gave positive results for all components. Immunoblots, ryanodine binding, electron microscopy and exposure to caffeine show that the expressed ryanodine receptors forms functional tetrameric channels, which are correctly inserted into the endoplasmic reticulum membrane, and form extensive arrays with the same spacings as in skeletal muscle. Since formation of arrays does not require coexpression of dihydropyridine receptors, we conclude that self-aggregation is an independent property of ryanodine receptors. All dihydropyridine receptor-expressing clones show high affinity binding for dihydropyridine and immunolabelling with antibodies against dihydropyridine receptor. The presence of calcium currents with fast kinetics and immunolabelling for dihydropyridine receptors in the surface membrane of CSk3 clones indicate that CSk3-dihydropyridine receptors are appropriately targeted to the cell's plasmalemma. The expressed skeletal-type dihydropyridine receptors, however, remain mostly located within perinuclear membranes. In cells coexpressing functional dihydropyridine receptors and ryanodine receptors, no junctions between feet-bearing endoplasmic reticulum elements and surface membrane are formed, and dihydropyridine receptors do not assemble into tetrads. A separation between dihydropyridine receptors and ryanodine receptors is not unique to CHO cells, but is found also in cardiac muscle, in muscles of invertebrates and, under certain conditions, in skeletal muscle. We suggest that failure to form junctions in co-transfected CHO cell may be due to lack of an essential protein necessary either for the initial docking of the endoplasmic reticulum to the surface membrane or for maintaining the interaction between dihydropyridine receptors and ryanodine receptors. We also conclude that formation of tetrads requires a close interaction between dihydropyridine receptors and ryanodine receptors.
Moon, Sung Sil
2014-01-01
Though the edible bovine by-products are widely used for human consumption in most countries worldwide but the scientific information regarding the nutritional quality of these by-products is scarce. In the present study, the basic information regarding the yields, physicochemical and nutritional compositions of edible Hanwoo bovine by-products was studied. Our results showed that the yields, physicochemical and nutritional composition widely varied between the by-products examined. The highest pH values were found in rumen, reticulum, omasum and reproductive organ. Heart, liver, kidney and spleen had the lowest CIE L* values and highest CIE a* values. Liver had the highest vitamin A, B2 and niacin contents whereas the highest B1 and B5 contents were found in kidney. The highest Ca content was found in rumen, reticulum, omasum, head and leg while the highest Mn and Fe contents were found in rumen, omasum and spleen, respectively. Liver had the highest Cu content. Total essential amino acids (EAA)/amino acids (AA) ratios ranged between the by-products from 38.37% to 47.41%. Total polyunsaturated fatty acids (PUFA) levels ranged between the by-products from 2.26% to 26.47%, and most by-products showed favorable PUFA/SFA ratios. It is concluded that most of by-products examined are good sources of essential nutrients and these data will be of great importance for promotion of consumption and utilization of beef by-products in future. PMID:26761281
Matsumoto, Takayuki; Webb, R. Clinton
2013-01-01
A contributing factor to increased peripheral resistance seen during hypertension is an increased production of endothelium-derived contractile factors (EDCFs). The main EDCFs are vasoconstrictor prostanoids, metabolites of arachidonic acid (AA) produced by Ca2+-dependent cytosolic phospholipase A2 (cPLA2) following phosphorylation (at Ser505) mediated by extracellular signal-regulated kinase (ERK1/2) and cyclooxygenase (COX) activations. Although endoplasmic reticulum (ER) stress has been shown to contribute to pathophysiological alterations in cardiovascular diseases, the relationship between ER stress and EDCF-mediated responses remains unclear. We tested the hypothesis that ER stress plays a role in EDCF-mediated responses via activation of the cPLA2/COX pathway in the aorta of the spontaneously hypertensive rat (SHR). Male SHR and Wistar-Kyoto rats (WKY) were treated with ER stress inhibitor, tauroursodeoxycholic acid or 4-phenlybutyric acid (TUDCA or PBA, respectively, 100 mg·kg−1·day−1 ip) or PBS (control, 300 μl/day ip) for 1 wk. There was a decrease in systolic blood pressure in SHR treated with TUDCA or PBA compared with control SHR (176 ± 3 or 181 ± 5, respectively vs. 200 ± 2 mmHg). In the SHR, treatment with TUDCA or PBA normalized aortic (vs. control SHR) 1) contractions to acetylcholine (ACh), AA, and tert-butyl hydroperoxide, 2) ACh-stimulated releases of prostanoids (thromboxane A2, PGF2α, and prostacyclin), 3) expression of COX-1, 4) phosphorylation of cPLA2 and ERK1/2, and 5) production of H2O2. Our findings demonstrate a novel interplay between ER stress and EDCF-mediated responses in the aorta of the SHR. Moreover, ER stress inhibition normalizes such responses by suppressing the cPLA2/COX pathway. PMID:23709602
Jiang, Tianpeng; Wang, Lizhou; Li, Xing; Song, Jie; Wu, Xiaoping; Zhou, Shi
2015-04-01
Long‑term and advanced cirrhosis is usually irreversible and often coincides with variceal hemorrhage or development of hepatocellular carcinoma; therefore, liver cirrhosis is a major cause of morbidity and mortality globally. The aim of the present study was to investigate the specific mechanism behind the formation of fibrosis or cirrhosis using rat models of hepatic fibrosis. The cirrhosis model was established by intraperitoneally administering dimethylnitrosamine to the rats. Hematoxylin and eosin staining was performed on the hepatic tissues of the rats to observe the fibrosis or cirrhosis, and western blot analysis was employed to detect α‑smooth muscle actin and desmin protein expression. Flow cytometric analysis was used to examine early and late apoptosis, and the protein and mRNA expression of endoplasmic reticulum (ER) stress-associated unfolded protein response (UPR) pathway proteins and apoptotic proteins [C/EBP homologous protein (CHOP) and caspase‑12] was detected by western blotting and the reverse-transcription polymerase chain reaction, respectively. The results indicated that the cirrhosis model was established successfully and that fibrosis was significantly increased in the cirrhosis model group compared with that in the normal control group. Flow cytometric analysis showed that early and late apoptosis in the cirrhosis model was significantly higher compared with that in the control group. The expression of the UPR pathway protein inositol-requiring enzyme (IRE) 1, as well as the expression of CHOP, was increased significantly in the cirrhotic rat tissues compared with that in the control group tissues (P<0.05). In conclusion, apoptosis was clearly observed in the hepatic tissue of cirrhotic rats, and the apoptosis was caused by activation of the ER stress-mediated IRE1 and CHOP.
Development of porcine model of chronic tachycardia-induced cardiomyopathy.
Paslawska, Urszula; Gajek, Jacek; Kiczak, Liliana; Noszczyk-Nowak, Agnieszka; Skrzypczak, Piotr; Bania, Jacek; Tomaszek, Alicja; Zacharski, Maciej; Sambor, Izabela; Dziegiel, Piotr; Zysko, Dorota; Banasiak, Waldemar; Jankowska, Ewa A; Ponikowski, Piotr
2011-11-17
There are few experimental models of heart failure (HF) in large animals, despite structural and functional similarities to human myocardium. We have developed a porcine model of chronic tachycardia-induced cardiomyopathy. Homogenous siblings of White Large breed swine (n=6) underwent continuous right ventricular (RV) pacing at 170 bpm; 2 subjects served as controls. In the course of RV pacing, animals developed a clinical picture of HF and were presented for euthanasia at subsequent stages: mild, moderate and end-stage HF. Left ventricle (LV) sections were analyzed histologically and relative ANP, BNP, phospholamban and sarcoplasmic reticulum calcium ATPase 2a transcript levels in LV were quantified by real time RT-PCR. In the course of RV pacing, animals demonstrated reduced exercise capacity (time of running until being dyspnoeic: 6.6 ± 0.5 vs. 2.4 ± 1.4 min), LV dilatation (LVEDD: 4.9 ± 0.4 vs. 6.7 ± 0.4 cm), impaired LV systolic function (LVEF: 69 ± 8 vs. 32 ± 7 %), (all baseline vs. before euthanasia, all p<0.001). LV tissues from animals with moderate and end-stage HF demonstrated local foci of interstitial fibrosis, congestion, cardiomyocyte hypertrophy and atrophy, which was not detected in controls and mild HF animals. The up-regulation of ANP and BNP and a reduction in a ratio of sarcoplasmic reticulum calcium ATPase 2a and phospholamban in failing myocardium were observed as compared to controls. In pigs, chronic RV pacing at relatively low rate can be used as an experimental model of HF, as it results in a gradual deterioration of exercise tolerance accompanied by myocardial remodeling confirmed at subcellular level. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Modulation of Endoplasmic Reticulum Stress Controls CD4+ T-cell Activation and Antitumor Function.
Thaxton, Jessica E; Wallace, Caroline; Riesenberg, Brian; Zhang, Yongliang; Paulos, Chrystal M; Beeson, Craig C; Liu, Bei; Li, Zihai
2017-08-01
The endoplasmic reticulum (ER) is an energy-sensing organelle with intimate ties to programming cell activation and metabolic fate. T-cell receptor (TCR) activation represents a form of acute cell stress and induces mobilization of ER Ca 2+ stores. The role of the ER in programming T-cell activation and metabolic fate remains largely undefined. Gp96 is an ER protein with functions as a molecular chaperone and Ca 2+ buffering protein. We hypothesized that the ER stress response may be important for CD4 + T-cell activation and that gp96 may be integral to this process. To test our hypothesis, we utilized genetic deletion of the gp96 gene Hsp90b1 in a CD4 + T cell-specific manner. We show that gp96-deficient CD4 + T cells cannot undergo activation-induced glycolysis due to defective Ca 2+ mobilization upon TCR engagement. We found that activating naïve CD4 + T cells while inhibiting ER Ca 2+ exchange, through pharmacological blockade of the ER Ca 2+ channel inositol trisphosphate receptor (IP 3 R), led to a reduction in cytosolic Ca 2+ content and generated a pool of CD62L high /CD44 low CD4 + T cells compared with wild-type (WT) matched controls. In vivo IP 3 R-inhibited CD4 + T cells exhibited elevated tumor control above WT T cells. Together, these data show that ER-modulated cytosolic Ca 2+ plays a role in defining CD4 + T-cell phenotype and function. Factors associated with the ER stress response are suitable targets for T cell-based immunotherapies. Cancer Immunol Res; 5(8); 666-75. ©2017 AACR . ©2017 American Association for Cancer Research.
Middlekauff, Holly R.; Vigna, Chris; Verity, M. Anthony; Fonarow, Gregg C.; Horwich, Tamara B.; Hamilton, Michele A.; Shieh, Perry; Tupling, A. Russell
2012-01-01
Background In the failing human heart, abnormalities of Ca2+ cycling have been described, but there is scant knowledge about Ca2+ handling in the skeletal muscle of humans with HF. We tested the hypothesis that in humans with HF, Ca2+ cycling proteins in skeletal muscle are abnormal. Methods and Results Ten advanced HF patients (50.4±3.7 years), and 9 age matched controls underwent vastus lateralis biopsy. Western blot analysis showed that sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a, which is responsible for Ca2+ sequestration into the sarcoplasmic reticulum(SR), was lower in HF vs controls (4.8±0.5vs7.5±0.8AU, p=0.01). Although phospholamban (PLN), which inhibits SERCA2a, was not different in HF vs controls, phosphorylation (SER16 site) of PLN, which relieves this inhibition, was reduced (0.8±0.1vs3.9±0.9AU, p=0.004). Dihydropyridine receptors were reduced in HF, (2.1±0.4vs3.6±0.5AU, p=0.04). We tested the hypothesis that these abnormalities of Ca2+ handling protein content and regulation were due to increased oxidative stress, but oxygen radical scavenger proteins were not elevated in the skeletal muscle of HF patients. Conclusion In chronic HF, marked abnormalities of Ca2+ handling proteins are present in skeletal muscle, which mirror those in failing heart tissue. This suggests a common mechanism, such as chronic augmentation of sympathetic activity and autophosphorylation of Ca2+-calmodulin-dependent-protein kinase II. PMID:22939042
Park, Ui Jun; Kim, Hyoung Tae; Cho, Won Hyun; Park, Jae Hyoung; Jung, Hye Ra; Kim, Min Young
2016-12-01
Ischemic preconditioning (IPC), including remote IPC (rIPC) and direct IPC (dIPC), is a promising method to decrease ischemia-reperfusion (IR) injury. This study tested the effect of both rIPC and dIPC on the genes for antioxidant enzymes and endoplasmic reticulum (ER) stress-related proteins. Twenty rats were randomly divided into the control and study groups. In the control group (n=10), the right hind limb was sham-operated. The left hind limb (IscR) of the control group underwent IR injury without IPC. In the study group (n=10), the right hind limb received IR injury after 3 cycles of rIPC. The IscR received IR injury after 3 cycles of dIPC. Gene expression was analyzed by Quantitative real-time polymerase chain reaction from the anterior tibialis muscle. The expression of the antioxidant enzyme genes including glutathione peroxidase (GPx), superoxide dismutase (SOD) 1 and catalase (CAT) were significantly reduced in IscR compared with sham treatment. In comparison with IscR, rIPC enhanced the expression of GPx, SOD2, and CAT genes. dIPC enhanced the expression of SOD2 and CAT genes. The expression of SOD2 genes was consistently higher in rIPC than in dIPC, but the difference was only significant for SOD2. The expression of genes for ER stress-related proteins tended to be reduced in IscR in comparison with sham treatment. However, the difference was only significant for C/EBP homologous protein (CHOP). In comparison with IscR, rIPC significantly up-regulated activating transcription factor 4 and CHOP, whereas dIPC up-regulated CHOP. Both rIPC and dIPC enhanced expression of genes for antioxidant enzymes and ER stress-related proteins.
Long, Chao-liang; Zhang, Yan-fang; Yin, Zhao-yun; Wang, Hai
2005-08-01
To study the effect of acute hypoxia and hypoxic acclimatization on myocardial function of rats. Eighteen male Wistar rats were randomly divided into three groups: normoxic control, acute hypoxia and intermittent hypoxic acclimatization group (n=6). After being exposed to hypoxia (8000 m) for 4 h before and after intermittent hypoxic acclimatization (3000 m and 5000 m, 14 d respectively, 4 h/d), the rats were decapitated and then myocardial sarcoplasmic reticulum (SR) were derived from cardiac muscles. Activities of Na+, K(+)-ATPase, Ca2+, Mg2(+)-ATPase in SR, phosphorylation of phospholamban (PLB) and the ability of 45Ca2+ uptake in SR were observed in all these three groups. 1) Hypoxia had no effects on the activity of Na+, K(+)-ATPase in rats myocardial SR of rats. 2) Compared with normoxic control rats, the activity of Ca2+, Mg2(+)-ATPase in myocardial SR of rats after acute hypoxia was reduced significantly (P<0.01). After intermittent hypoxic acclimatization, its activity increased significantly as compared with that of acute hypoxic rats (P<0.01). 3) The phosphorylation of PLB in acute hypoxic rats was reduced significantly compared with normoxic control rats. After intermittent hypoxic acclimatization, its phosphorylation was increased significantly compared with that of acute hypoxic rats. It suggests that hypoxic acclimatization could alleviate the inhibition of calcium pump. 4) The ability of 45Ca2+ uptake of SR in acute hypoxic rats was decreased significantly. After hypoxic acclimatization, its ability was strengthened significantly. These results suggest that the increased function of myocardial SR calcium pump, the strengthened phosphorylation of PLB to alleviate the inhibition of calcium pump and the increased function of Ca2+ transport in SR are the mechanisms of hypoxic acclimatization protecting cardiac functions from injury induced by severe hypoxia.
Beauvais, Genevieve; Bode, Nicole M; Watson, Jaime L; Wen, Hsiang; Glenn, Kevin A; Kawano, Hiroyuki; Harata, N Charles; Ehrlich, Michelle E; Gonzalez-Alegre, Pedro
2016-10-05
Dystonia type 1 (DYT1) is a dominantly inherited neurological disease caused by mutations in TOR1A, the gene encoding the endoplasmic reticulum (ER)-resident protein torsinA. Previous work mostly completed in cell-based systems suggests that mutant torsinA alters protein processing in the secretory pathway. We hypothesized that inducing ER stress in the mammalian brain in vivo would trigger or exacerbate mutant torsinA-induced dysfunction. To test this hypothesis, we crossed DYT1 knock-in with p58(IPK)-null mice. The ER co-chaperone p58(IPK) interacts with BiP and assists in protein maturation by helping to fold ER cargo. Its deletion increases the cellular sensitivity to ER stress. We found a lower generation of DYT1 knock-in/p58 knock-out mice than expected from this cross, suggesting a developmental interaction that influences viability. However, surviving animals did not exhibit abnormal motor function. Analysis of brain tissue uncovered dysregulation of eiF2α and Akt/mTOR translational control pathways in the DYT1 brain, a finding confirmed in a second rodent model and in human brain. Finally, an unbiased proteomic analysis identified relevant changes in the neuronal protein landscape suggesting abnormal ER protein metabolism and calcium dysregulation. Functional studies confirmed the interaction between the DYT1 genotype and neuronal calcium dynamics. Overall, these findings advance our knowledge on dystonia, linking translational control pathways and calcium physiology to dystonia pathogenesis and identifying potential new pharmacological targets. Dystonia type 1 (DYT1) is one of the different forms of inherited dystonia, a neurological disorder characterized by involuntary, disabling movements. DYT1 is caused by mutations in the gene that encodes the endoplasmic reticulum (ER)-resident protein torsinA. How mutant torsinA causes neuronal dysfunction remains unknown. Here, we show the behavioral and molecular consequences of stressing the ER in DYT1 mice by increasing the amount of misfolded proteins. This resulted in the generation of a reduced number of animals, evidence of abnormal ER protein processing and dysregulation of translational control pathways. The work described here proposes a shared mechanism for different forms of dystonia, links for the first time known biological pathways to dystonia pathogenesis, and uncovers potential pharmacological targets for its treatment. Copyright © 2016 the authors 0270-6474/16/3610245-12$15.00/0.
Characterization of Beta-leptinotarsin-h and the Effects of Calcium Flux Antagonists on its Activity
2005-04-07
A alone. a IP3R, IP3 receptor ; LO, ligand -operated; RyR, ryanodine receptor ; SERCA, sarcoplasmic reticulum endoplasmic reticulum Ca 2C ATPase; SO...observation eliminated non-selective cation channels such as nicotinic, glutamatergic, purinergic P2X , and serotoni- nergic 5-HT3 ligand -operated Ca 2C...nicardipine, nifedipine, SNX-482) was inhibitory. Selective inhibitors of ligand -operated, store-operated, and transduction-operated channels were also not
Altered stored calcium release in skeletal myotubes deficient of triadin and junctin
Wang, Ying; Li, Xinghai; Duan, Hongzhe; Fulton, Timothy R.; Eu, Jerry P.; Meissner, Gerhard
2008-01-01
Summary Triadin and junctin are integral sarcoplasmic reticulum membrane proteins that form a macromolecular complex with the skeletal muscle ryanodine receptor (RyR1) but their roles in skeletal muscle calcium homeostasis remain incompletely understood. Here we report that delivery of siRNAs specific for triadin or junctin into C2C12 skeletal myoblasts reduced the expression of triadin and junctin in 8-day-old myotubes by 80 and 100%, respectively. Knocking down either triadin or junctin in these cells reduced Ca2+ release induced by depolarization (10 mM KCl) by 20–25%. Unlike triadin knockdown myotubes, junctin knockdown and junctin/triadin double knockdown myotubes also had reduced Ca2+ release induced by 400 μM 4-chloro-m-cresol, 10 mM caffeine, 400 μM UTP, or 1 μM thapsigargin. Thus, knocking down junctin compromised the Ca2+ stores in the sarcoplasmic reticulum of these cells. Our subsequent studies showed that in junctin knockdown myotubes at least two sarcoplasmic reticulum proteins (RyR1 and skeletal muscle calsequestrin) were down-regulated while these proteins’ mRNA expression was not affected. The results suggest that triadin has a role in facilitating KCl depolarization-induced Ca2+ release in contrast to junctin which has a role in maintaining sarcoplasmic reticulum Ca2+ store size in C2C12 myotubes. PMID:18620751
Tocchetti, Carlo G.; Wang, Wang; Froehlich, Jeffrey P.; Huke, Sabine; Aon, Miguel A.; Wilson, Gerald M.; Benedetto, Giulietta Di; O’Rourke, Brian; Gao, Wei Dong; Wink, David A.; Toscano, John P.; Zaccolo, Manuela; Bers, Donald M.; Valdivia, Hector H.; Cheng, Heping; Kass, David A.; Paolocci, Nazareno
2009-01-01
Heart failure remains a leading cause of morbidity and mortality worldwide. Although depressed pump function is common, development of effective therapies to stimulate contraction has proven difficult. This is thought to be attributable to their frequent reliance on cAMP stimulation to increase activator Ca2+. A potential alternative is nitroxyl (HNO), the 1-electron reduction product of nitric oxide (NO) that improves contraction and relaxation in normal and failing hearts in vivo. The mechanism for myocyte effects remains unknown. Here, we show that this activity results from a direct interaction of HNO with the sarcoplasmic reticulum Ca2+ pump and the ryanodine receptor 2, leading to increased Ca2+ uptake and release from the sarcoplasmic reticulum. HNO increases the open probability of isolated ryanodine-sensitive Ca2+-release channels and accelerates Ca2+ reuptake into isolated sarcoplasmic reticulum by stimulating ATP-dependent Ca2+ transport. Contraction improves with no net rise in diastolic calcium. These changes are not induced by NO, are fully reversible by addition of reducing agents (redox sensitive), and independent of both cAMP/protein kinase A and cGMP/protein kinase G signaling. Rather, the data support HNO/thiolate interactions that enhance the activity of intracellular Ca2+ cycling proteins. These findings suggest HNO donors are attractive candidates for the pharmacological treatment of heart failure. PMID:17138943
Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.
Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao
2016-04-01
It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.
Li, Gongbo; Petiwala, Sakina M; Pierce, Dana R; Nonn, Larisa; Johnson, Jeremy J
2013-01-01
The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.
Li, Gongbo; Petiwala, Sakina M.; Pierce, Dana R.; Nonn, Larisa; Johnson, Jeremy J.
2013-01-01
The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation. PMID:24367485
Samuelson, John; Robbins, Phillips W.
2014-01-01
Asparagine-linked glycans (N-glycans) of medically important protists have much to tell us about the evolution of N-glycosylation and of N-glycan-dependent quality control (N-glycan QC) of protein folding in the endoplasmic reticulum. While host N-glycans are built upon a dolichol-pyrophosphate-linked precursor with 14 sugars (Glc3Man9GlcNAc2), protist N-glycan precursors vary from Glc3Man9GlcNAc2 (Acanthamoeba) to Man9GlcNAc2 (Trypanosoma) to Glc3Man5GlcNAc2 (Toxoplasma) to Man5GlcNAc2 (Entamoeba, Trichomonas, and Eimeria) to GlcNAc2 (Plasmodium and Giardia) to zero (Theileria). As related organisms have differing N-glycan lengths (e.g. Toxoplasma, Eimeria, Plasmodium, and Theileria), the present N-glycan variation is based upon secondary loss of Alg genes, which encode enzymes that add sugars to the N-glycan precursor. An N-glycan precursor with Man5GlcNAc2 is necessary but not sufficient for N-glycan QC, which is predicted by the presence of the UDP-glucose:glucosyltransferase (UGGT) plus calreticulin and/or calnexin. As many parasites lack glucose in their N-glycan precursor, UGGT product may be identified by inhibition of glucosidase II. The presence of an armless calnexin in Toxoplasma suggests secondary loss of N-glycan QC from coccidia. Positive selection for N-glycan sites occurs in secreted proteins of organisms with NG-QC and is based upon an increased likelihood of threonine but not serine in the second position versus asparagine. In contrast, there appears to be selection against N-glycan length in Plasmodium and N-glycan site density in Toxoplasma. Finally, there is suggestive evidence for N-glycan-dependent ERAD in Trichomonas, which glycosylates and degrades the exogenous reporter mutant carboxypeptidase Y (CPY*). PMID:25475176
INTRACELLULAR CHOLESTEROL HOMEOSTASIS AND AMYLOID PRECURSOR PROTEIN PROCESSING
Burns, Mark; Rebeck, G. William
2010-01-01
Many preclinical and clinical studies have implied a role for cholesterol in the pathogenesis of Alzheimer's disease (AD). In this review we will discuss the movement of intracellular cholesterol and how normal distribution, transport, and export of cholesterol is vital for regulation of the AD related protein, Aβ. We focus on cholesterol distribution in the plasma membrane, transport through the endosomal/lysosomal system, control of cholesterol intracellular signaling at the endoplasmic reticulum and Golgi, the HMG-CoA reductase pathway and finally export of cholesterol from the cell. PMID:20304094
Cellular pathways of hereditary spastic paraplegia.
Blackstone, Craig
2012-01-01
Human voluntary movement is controlled by the pyramidal motor system, a long CNS pathway comprising corticospinal and lower motor neurons. Hereditary spastic paraplegias (HSPs) are a large, genetically diverse group of inherited neurologic disorders characterized by a length-dependent distal axonopathy of the corticospinal tracts, resulting in lower limb spasticity and weakness. A range of studies are converging on alterations in the shaping of organelles, particularly the endoplasmic reticulum, as well as intracellular membrane trafficking and distribution as primary defects underlying the HSPs, with clear relevance for other long axonopathies affecting peripheral nerves and lower motor neurons.
Perception of Plant Steroid Hormones at the Cell Surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jianming
The proposed research had two main objectives: 1) investigating the molecular mechanism by which BRs activate the BRI1-containing steroid receptor; and 2) to investigate the molecular mechanism of BRI1 function. During the course of this project, several research papers were published from other laboratories, which reported studies similar to our proposed experiments. We therefore changed our research direction and focused our research efforts on 1) molecular genetic studies of several extragenic suppressors of a weak bri1-9 mutant (which were named as EMS-mutagenized bri1 suppressor or ebs) and 2) biochemical characterization of the protein products of the cloned EBS genes. Thismore » switch turned out to be extremely successful and led to a surprising discovery that the dwarf phenotype of the well-studied bri1-9 mutant is not due to the failure of the bri1 receptor to bind the plant steroid hormone but rather caused by the retention of a structurally-imperfect but biochemically-competent bri1-9 and its subsequent degradation in the endoplasmic reticulum. This initial discovery coupled with subsequent cloning and further studies of additional EBS genes significantly increased our understanding of the protein quality control mechanisms in plants, a severely under-studied research topic in plant biology.« less
Eat it right: ER-phagy and recovER-phagy.
Loi, Marisa; Fregno, Ilaria; Guerra, Concetta; Molinari, Maurizio
2018-05-25
The endoplasmic reticulum (ER) is the site of protein, lipid, phospholipid, steroid and oligosaccharide synthesis and modification, calcium ion storage, and detoxification of endogenous and exogenous products. Its volume (and activity) must be maintained under normal growth conditions, must be expanded in a controlled manner on activation of ER stress programs and must be reduced to pre-stress size during the recovery phase that follows ER stress termination. ER-phagy is the constitutive or regulated fragmentation and delivery of ER fragments to lysosomal compartments for clearance. It gives essential contribution to the maintenance of cellular homeostasis, proteostasis, lipidostasis and oligosaccharidostasis (i.e. the capacity to produce the proteome, lipidome and oligosaccharidome in appropriate quality and quantity). ER turnover is activated on ER stress, nutrient deprivation, accumulation of misfolded polypeptides, pathogen attack and by activators of macroautophagy. The selectivity of these poorly characterized catabolic pathways is ensured by proteins displayed at the limiting membrane of the ER subdomain to be removed from cells. These proteins are defined as ER-phagy receptors and engage the cytosolic macroautophagy machinery via specific modules that associate with ubiquitin-like, cytosolic proteins of the Atg8/LC3/GABARAP family. In this review, we give an overview on selective ER turnover and on the yeast and mammalian ER-phagy receptors identified so far. © 2018 The Author(s).
Hsp40 Chaperones Promote Degradation of the hERG Potassium Channel*
Walker, Valerie E.; Wong, Michael J. H.; Atanasiu, Roxana; Hantouche, Christine; Young, Jason C.; Shrier, Alvin
2010-01-01
Loss of function mutations in the hERG (human ether-a-go-go related gene or KCNH2) potassium channel underlie the proarrhythmic cardiac long QT syndrome type 2. Most often this is a consequence of defective trafficking of hERG mutants to the cell surface, with channel retention and degradation at the endoplasmic reticulum. Here, we identify the Hsp40 type 1 chaperones DJA1 (DNAJA1/Hdj2) and DJA2 (DNAJA2) as key modulators of hERG degradation. Overexpression of the DJAs reduces hERG trafficking efficiency, an effect eliminated by the proteasomal inhibitor lactacystin or with DJA mutants lacking their J domains essential for Hsc70/Hsp70 activation. Both DJA1 and DJA2 cause a decrease in the amount of hERG complexed with Hsc70, indicating a preferential degradation of the complex. Similar effects were observed with the E3 ubiquitin ligase CHIP. Both the DJAs and CHIP reduce hERG stability and act differentially on folding intermediates of hERG and the disease-related trafficking mutant G601S. We propose a novel role for the DJA proteins in regulating degradation and suggest that they act at a critical point in secretory pathway quality control. PMID:19940115
Rosser, Meredith F N; Grove, Diane E; Chen, Liling; Cyr, Douglas M
2008-11-01
Cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic membrane protein that functions as a Cl(-) channel and consists of two membrane spanning domains (MSDs), two cytosolic nucleotide binding domains (NBDs), and a cytosolic regulatory domain. Cytosolic 70-kDa heat shock protein (Hsp70), and endoplasmic reticulum-localized calnexin are chaperones that facilitate CFTR biogenesis. Hsp70 functions in both the cotranslational folding and posttranslational degradation of CFTR. Yet, the mechanism for calnexin action in folding and quality control of CFTR is not clear. Investigation of this question revealed that calnexin is not essential for CFTR or CFTRDeltaF508 degradation. We identified a dependence on calnexin for proper assembly of CFTR's membrane spanning domains. Interestingly, efficient folding of NBD2 was also found to be dependent upon calnexin binding to CFTR. Furthermore, we identified folding defects caused by deletion of F508 that occurred before and after the calnexin-dependent association of MSD1 and MSD2. Early folding defects are evident upon translation of the NBD1 and R-domain and are sensed by the RMA-1 ubiquitin ligase complex.
van de Weijer, Michael L; Schuren, Anouk B C; van den Boomen, Dick J H; Mulder, Arend; Claas, Frans H J; Lehner, Paul J; Lebbink, Robert Jan; Wiertz, Emmanuel J H J
2017-09-01
Misfolded endoplasmic reticulum (ER) proteins are dislocated towards the cytosol and degraded by the ubiquitin-proteasome system in a process called ER-associated protein degradation (ERAD). During infection with human cytomegalovirus (HCMV), the viral US2 protein targets HLA class I molecules (HLA-I) for degradation via ERAD to avoid elimination by the immune system. US2-mediated degradation of HLA-I serves as a paradigm of ERAD and has facilitated the identification of TRC8 (also known as RNF139) as an E3 ubiquitin ligase. No specific E2 enzymes had previously been described for cooperation with TRC8. In this study, we used a lentiviral CRISPR/Cas9 library targeting all known human E2 enzymes to assess their involvement in US2-mediated HLA-I downregulation. We identified multiple E2 enzymes involved in this process, of which UBE2G2 was crucial for the degradation of various immunoreceptors. UBE2J2, on the other hand, counteracted US2-induced ERAD by downregulating TRC8 expression. These findings indicate the complexity of cellular quality control mechanisms, which are elegantly exploited by HCMV to elude the immune system. © 2017. Published by The Company of Biologists Ltd.
Characterization of the Grp94/OS-9 chaperone-lectin complex
Seidler, Paul M.; Shinsky, Stephen A.; Hong, Feng; Li, Zihai; Cosgrove, Michael S.; Gewirth, Daniel T.
2014-01-01
Grp94 is a macromolecular chaperone belonging to the hsp90 family and is the most abundant glycoprotein in the endoplasmic reticulum of mammals. In addition to its essential role in protein folding, Grp94 was proposed to participate in the ER associated degradation (ERAD) quality control pathway by interacting with the lectin OS-9, a sensor for terminally misfolded proteins (TMPs). To understand how OS-9 interacts with ER chaperone proteins, we mapped its interaction with Grp94. Glycosylation of the full length Grp94 protein was essential for OS-9 binding, although deletion of the Grp94 N-terminal domain relieved this requirement suggesting that the effect was allosteric rather than direct. Although yeast OS-9 is composed of a well-established N-terminal MRH lectin domain and a C-terminal dimerization domain, we find that the C-terminal domain of OS-9 in higher eukaryotes contains ‘mammalian-specific insets’ that are specifically recognized by the middle and C-terminal domains of Grp94. Additionally, the Grp94 binding domain in OS-9 was found to be intrinsically disordered. The biochemical analysis of the interacting regions provides insight into the manner by which the two associate, and additionally hints at a plausible biological role for the Grp94/OS-9 complex. PMID:25193139
The secretory pathway: exploring yeast diversity.
Delic, Marizela; Valli, Minoska; Graf, Alexandra B; Pfeffer, Martin; Mattanovich, Diethard; Gasser, Brigitte
2013-11-01
Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Lopaticki, Sash; Yang, Annie S P; John, Alan; Scott, Nichollas E; Lingford, James P; O'Neill, Matthew T; Erickson, Sara M; McKenzie, Nicole C; Jennison, Charlie; Whitehead, Lachlan W; Douglas, Donna N; Kneteman, Norman M; Goddard-Borger, Ethan D; Boddey, Justin A
2017-09-15
O-glycosylation of the Plasmodium sporozoite surface proteins CSP and TRAP was recently identified, but the role of this modification in the parasite life cycle and its relevance to vaccine design remain unclear. Here, we identify the Plasmodium protein O-fucosyltransferase (POFUT2) responsible for O-glycosylating CSP and TRAP. Genetic disruption of POFUT2 in Plasmodium falciparum results in ookinetes that are attenuated for colonizing the mosquito midgut, an essential step in malaria transmission. Some POFUT2-deficient parasites mature into salivary gland sporozoites although they are impaired for gliding motility, cell traversal, hepatocyte invasion, and production of exoerythrocytic forms in humanized chimeric liver mice. These defects can be attributed to destabilization and incorrect trafficking of proteins bearing thrombospondin repeats (TSRs). Therefore, POFUT2 plays a similar role in malaria parasites to that in metazoans: it ensures the trafficking of Plasmodium TSR proteins as part of a non-canonical glycosylation-dependent endoplasmic reticulum protein quality control mechanism.The role of O-glycosylation in the malaria life cycle is largely unknown. Here, the authors identify a Plasmodium protein O-fucosyltransferase and show that it is important for normal trafficking of a subset of surface proteins, particularly CSP and TRAP, and efficient infection of mosquito and vertebrate hosts.
Gao, Yunan; Yang, Hongxiao; Chi, Jing; Xu, Qiannan; Zhao, Luqi; Yang, Weijia; Liu, Weifan; Yang, Wei
2017-01-01
To study the effect of inhaling hydrogen gas on myocardial ischemic/reperfusion(I/R) injury in rats. Seventy male Wistar albino rats were divided into five groups at random as the sham group (Sham). The I/R group (I/R), The ischemic postconditioning group (IPo), The I/R plus hydrogen group (IH2) and the ischemic postconditioning plus hydrogen group (IPoH2). The Sham group was without coronary occlusion. In I/R group, Ischemic/reperfusion injury was induced by coronary occlusion for 1 hour. Followed by 2 hours of reperfusion. In the IPo and IPoH2 group, four cycles of 1 min reperfusion/1 min ischemia was given at the end of 1 hour coronary occlusion. While 2% hydrogen was administered by inhalation 5 min before reperfusion till 2 hours after reperfusion in both the IPoH2 and IH2 group. The heart and blood samples were harvested at the end of the surgical protocol. Then the myocardium cell endoplasmic reticulum(ER) stress and autophagy was observed by electron microscope. In addition, the cardiac ER stress and autophagy related proteins expression were detected by Western blotting analysis. Both inhaling 2% hydrogen and ischemic postconditioning treatment reduced the ischemic size and serum troponin I level in rats with I/R injury, and inhaling hydrogen showed a more curative effect compared with ischemic postconditioning treatment. Meanwhile inhaling hydrogen showed a better protective effect in attenuating tissue reactive oxygen species. Malondialdehyde levels and immunoreactivities against 8-hydroxy-2'-deoxyguanosine and inhibiting cardiac endoplasmic reticulum stress and down-regulating autophagy as compared with ischemic postconditioning treatment. These results revealed a better protective effect of hydrogen on myocardial ischemic/reperfusion injury in rats by attenuating endoplasmic reticulum stress and down-regulating autophagy compared with ischemic postconditioning treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.
SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition
Stary, Victoria; Puppala, Dheeraj; Scherrer-Crosbie, Marielle; Dillmann, Wolfgang H.
2016-01-01
Cardiac alternans has been associated with the incidence of ventricular tachyarrhythmias and sudden cardiac death. The aim of this study was to investigate the effect of impaired mitochondrial function in the genesis of cellular alternans and to examine whether modulating the sarcoplasmic reticulum (SR) Ca2+ ameliorates the level of alternans. Cardiomyocytes isolated from control and doxycyline-induced sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a)-upregulated mice were loaded with two different Ca2+ indicators to selectively measure mitochondrial and cytosolic Ca2+ using a custom-made fluorescence photometry system. The degree of alternans was defined as the alternans ratio (AR) [1 − (small Ca2+ intensity)/(large Ca2+ intensity)]. Blocking of complex I and II, cytochrome-c oxidase, F0F1 synthase, α-ketoglutarate dehydrogenase of the electron transport chain, increased alternans in both control and SERCA2a mice (P < 0.01). Changes in AR in SERCA2a-upregulated mice were significantly less pronounced than those observed in control in seven of nine tested conditions (P < 0.04). N-acetyl-l-cysteine (NAC), rescued alternans in myocytes that were previously exposed to an oxidizing agent (P < 0.001). CGP, an antagonist of the mitochondrial Na+-Ca2+ exchanger, had the most severe effect on AR. Exposure to cyclosporin A, a blocker of the mitochondrial permeability transition pore reduced CGP-induced alternans (P < 0.0001). The major findings of this study are that impairment of mitochondrial Ca2+ cycling and energy production leads to a higher amplitude of alternans in both control and SERCA2a-upregulated mice, but changes in SERCA2a-upregulated mice are less severe, indicating that SERCA2a mice are more capable of sustaining electrical stability during stress. This suggests a relationship between sarcoplasmic Ca2+ content and mitochondrial dysfunction during alternans, which may potentially help to understand changes in Ca2+ signaling in myocytes from diseased hearts, leading to new therapeutic targets. PMID:26846549
Role of Endoplasmic Reticulum Stress in Metabolic Disease and Other Disorders
Ozcan, Lale; Tabas, Ira
2012-01-01
Perturbations in the normal functions of the endoplasmic reticulum (ER) trigger a signaling network that coordinates adaptive and apoptotic responses. There is accumulating evidence implicating prolonged ER stress in the development and progression of many diseases, including neurodegeneration, atherosclerosis, type 2 diabetes, liver disease, and cancer. With the improved understanding of the underlying molecular mechanisms, therapeutic interventions that target the ER stress response would be potential strategies to treat various diseases driven by prolonged ER stress. PMID:22248326
Guiliano, David B; Fussell, Helen; Lenart, Izabela; Tsao, Edward; Nesbeth, Darren; Fletcher, Adam J; Campbell, Elaine C; Yousaf, Nasim; Williams, Sarah; Santos, Susana; Cameron, Amy; Towers, Greg J; Kellam, Paul; Hebert, Daniel N; Gould, Keith G; Powis, Simon J; Antoniou, Antony N
2014-11-01
HLA-B27 forms misfolded heavy chain dimers, which may predispose individuals to inflammatory arthritis by inducing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). This study was undertaken to define the role of the UPR-induced ER-associated degradation (ERAD) pathway in the disposal of HLA-B27 dimeric conformers. HeLa cell lines expressing only 2 copies of a carboxy-terminally Sv5-tagged HLA-B27 were generated. The ER stress-induced protein ER degradation-enhancing α-mannosidase-like protein 1 (EDEM1) was overexpressed by transfection, and dimer levels were monitored by immunoblotting. EDEM1, the UPR-associated transcription factor X-box binding protein 1 (XBP-1), the E3 ubiquitin ligase hydroxymethylglutaryl-coenzyme A reductase degradation 1 (HRD1), and the degradation-associated proteins derlin 1 and derlin 2 were inhibited using either short hairpin RNA or dominant-negative mutants. The UPR-associated ERAD of HLA-B27 was confirmed using ER stress-inducing pharamacologic agents in kinetic and pulse chase assays. We demonstrated that UPR-induced machinery can target HLA-B27 dimers and that dimer formation can be controlled by alterations to expression levels of components of the UPR-induced ERAD pathway. HLA-B27 dimers and misfolded major histocompatibility complex class I monomeric molecules bound to EDEM1 were detected, and overexpression of EDEM1 led to inhibition of HLA-B27 dimer formation. EDEM1 inhibition resulted in up-regulation of HLA-B27 dimers, while UPR-induced ERAD of dimers was prevented in the absence of EDEM1. HLA-B27 dimer formation was also enhanced in the absence of XBP-1, HRD1, and derlins 1 and 2. The present findings indicate that the UPR ERAD pathway can dispose of HLA-B27 dimers, thus presenting a potential novel therapeutic target for modulation of HLA-B27-associated inflammatory disease. Copyright © 2014 by the American College of Rheumatology.
Liu, Wei-Ting; Huang, Chih-Yuan; Lu, I-Chen; Gean, Po-Wu
2013-01-01
Background We have reported that minocycline (Mino) induced autophagic death in glioma cells. In the present study, we characterize the upstream regulators that control autophagy and switch cell death from autophagic to apoptotic. Methods Western blotting and immunofluorescence were used to detect the expressions of eukaryotic translation initiation factor 2α (eIF2α), transcription factor GADD153 (CHOP), and glucose-regulated protein 78 (GRP78). Short hairpin (sh)RNA was used to knock down eIF2α or CHOP expression. Autophagy was assessed by the conversion of light chain (LC)3-I to LC3-II and green fluorescent protein puncta formation. An intracranial mouse model and bioluminescent imaging were used to assess the effect of Mino on tumor growth and survival time of mice. Results The expression of GRP78 in glioma was high, whereas in normal glia it was low. Mino treatment increased GRP78 expression and reduced binding of GRP78 with protein kinase-like endoplasmic reticulum kinase. Subsequently, Mino increased eIF2α phosphorylation and CHOP expression. Knockdown of eIF2α or CHOP reduced Mino-induced LC3-II conversion and glioma cell death. When autophagy was inhibited, Mino induced cell death in a caspase-dependent manner. Rapamycin in combination with Mino produced synergistic effects on LC3 conversion, reduction of the Akt/mTOR/p70S6K pathway, and glioma cell death. Bioluminescent imaging showed that Mino inhibited the growth of glioma and prolonged survival time and that these effects were blocked by shCHOP. Conclusions Mino induced autophagy by eliciting endoplasmic reticulum stress response and switched cell death from autophagy to apoptosis when autophagy was blocked. These results coupled with clinical availability and a safe track record make Mino a promising agent for the treatment of malignant gliomas. PMID:23787763
THE LOCALIZATION OF CHOLINESTERASE ACTIVITY IN RAT CARDIAC MUSCLE BY ELECTRON MICROSCOPY
Karnovsky, Morris J.
1964-01-01
A method has been developed for localizing sites of cholinesterase activity in rat cardiac muscle by electron microscopy. The method utilizes thiocholine esters as substrates, and is believed to be dependent on the reduction of ferricyanide to ferrocyanide by thiocholine released by enzymatic activity. The ferrocyanide thus formed is captured by copper to form fine, electron-opaque deposits of copper ferrocyanide, which sharply delineate sites of enzymatic activity at the ultrastructural level. Cholinesterase activity in formalin-fixed heart muscle was localized: (a) in longitudinal elements of the sarcoplasmic reticulum, but not in the T, or transverse, elements; and (b) in the A band, with virtually no activity noted in the M band, or in the H zone. The I band was also negative. No activity was detected in the sarcolemma, or in invaginations of the sarcolemma at the level of the Z band. The perinuclear element of the sarcoplasmic (endoplasmic) reticulum was frequently strongly positive. Activity at all sites was completely abolished by omitting the substrates, or by inhibition with eserine 10-4 M and diisopropylfluorophosphate 10-5 M. Eserine 10-5 M completely inhibited reaction in the sarcoplasmic reticulum, and virtually abolished that in the A band. These observations, together with the use of the relatively specific substrates and suitable controls to eliminate non-enzymatic staining, indicate that cholinesterase activity was being demonstrated. The activity in rat heart against different substrates was that of non-specific cholinesterases, in accordance with biochemical data. The activity in the A band was considered to be probably due to myosincholinesterase. It is proposed that the localization of cholinesterases in myocardium at the ultrastructural level should be taken into account in considering the possible functions of these myocardial enzymes, and it is hoped that knowledge of their localization will open up new avenues of approach in considering their physiological role in myocardium, which at present is not definitely known. PMID:14222810
Kumar, S; Reusch, H P; Ladilov, Y
2008-01-01
Ischaemic pre-conditioning has a powerful protective potential against ischaemia-induced cell death, and acidosis is an important feature of ischaemia and can lead to apoptosis. Here we tested whether pre-conditioning with acidosis, that is, acidic pre-conditioning (APC), may protect coronary endothelial cells (EC) against apoptosis induced by simulated ischaemia. For pre-conditioning, EC were exposed fo 40 min. to acidosis (pH 6.4) followed by a 14-hrs recovery period (pH 7.4) and finally treated for 2 hrs with simulated ischaemia (glucose-free anoxia at pH 6.4). Cells undergoing apoptosis were visualized by chromatin staining or by determination of caspase-3 activity Simulated ischaemia in untreated EC increased caspase-3 activity and the number of apoptotic cell (31.3 +/- 1.3%versus 3.9 +/- 0.6% in control). APC significantly reduced the rate of apoptosis (14.2 +/- 1.3%) and caspase-3 activity. Western blot analysis exploring the under lying mechanism leading to this protection revealed suppression of the endoplasmic reticulum- (reduced cleavage of caspase-12) and mitochondria-mediated (reduced cytochrome C release) pathways of apoptosis. These effects were associated with an over-expression of the anti-apoptotic protein Bcl-xL 14 hrs after APC, whereas no effect on the expression of Bcl-2, Bax, Bak, procaspase-12, reticulum-localized chaperones (GRP78, calreticulin), HSP70, HSP32 and HSP27 could be detected. Knock-down of Bcl-xL by siRNA-treatment prevented the protective effect of APC. In conclusion, short acidic pre-treatment can protect EC against ischaemic apoptosis. The mechanism of this protection consists of suppression of the endoplasmic reticulum- and mitochondria-mediated pathways. Over-expression of the anti apoptotic protein Bcl-xL is responsible for the increased resistance to apoptosis during ischaemic insult.
Compagnon, Philippe; Levesque, Eric; Hentati, Hassen; Disabato, Mara; Calderaro, Julien; Feray, Cyrille; Corlu, Anne; Cohen, José Laurent; Ben Mosbah, Ismail; Azoulay, Daniel
2017-07-01
Control of warm ischemia (WI) lesions that occur with donation after circulatory death (DCD) would significantly increase the donor pool for liver transplantation. We aimed to determine whether a novel, oxygenated and hypothermic machine perfusion device (HMP Airdrive system) improves the quality of livers derived from DCDs using a large animal model. Cardiac arrest was induced in female large white pigs by intravenous injection of potassium chloride. After 60 minutes of WI, livers were flushed in situ with histidine-tryptophan-ketoglutarate and subsequently preserved either by simple cold storage (WI-SCS group) or HMP (WI-HMP group) using Belzer-MPS solution. Liver grafts procured from heart-beating donors and preserved by SCS served as controls. After 4 hours of preservation, all livers were transplanted. All recipients in WI-SCS group died within 6 hours after transplantation. In contrast, the HMP device fully protected the liver against lethal ischemia/reperfusion injury, allowing 100% survival rate. A postreperfusion syndrome was observed in all animals of the WI-SCS group but none of the control or WI-HMP groups. After reperfusion, HMP-preserved livers functioned better and showed less hepatocellular and endothelial cell injury, in agreement with better-preserved liver histology relative to WI-SCS group. In addition to improved energy metabolism, this protective effect was associated with an attenuation of inflammatory response, oxidative load, endoplasmic reticulum stress, mitochondrial damage, and apoptosis. This study demonstrates for the first time the efficacy of the HMP Airdrive system to protect liver grafts from lethal ischemic damage before transplantation in a clinically relevant DCD model.
Jørgensen, L B; Behnke, H D; Mabry, T J
1977-01-01
Three glucosinolate-containing species, Armoracia rusticana Gaertner, Meyer et Scherbius (Brassicaceae), Capparis cynophallophora L. (Capparaceae) and Drypetes roxburghii (Wall.) Hurusawa (Euphorbiaceae), are shown by both light and electron microscopy to contain protein-accumulating cells (PAC). The PAC of Armoracia and Copparis (former "myrosin cells") occur as idioblasts. The PAC of Drypetes are usual members among axial phloem parenchyma cells rather than idioblasts. In Drypetes the vacuoles of the PAC are shown ultrastructurally to contain finely fibrillar material and to originate from local dilatations of the endoplasmic reticulum. The vacuoles in PAC of Armoracia and Capparis seem to originate in the same way; but ultrastructurally, their content is finely granular. In addition, Armoracia and Capparis are shown by both light and electron microscopy to contain dilated cisternae (DC) of the endoplasmic reticulum in normal parenchyma cells, in accord with previous findings for several species within Brassicaceae. The relationship of PAC and DC to glucosinolates and the enzyme myrosinase is discussed.
Marini, Cecilia; Ravera, Silvia; Buschiazzo, Ambra; Bianchi, Giovanna; Orengo, Anna Maria; Bruno, Silvia; Bottoni, Gianluca; Emionite, Laura; Pastorino, Fabio; Monteverde, Elena; Garaboldi, Lucia; Martella, Roberto; Salani, Barbara; Maggi, Davide; Ponzoni, Mirco; Fais, Franco; Raffaghello, Lizzia; Sambuceti, Gianmario
2016-01-01
Cancer metabolism is characterized by an accelerated glycolytic rate facing reduced activity of oxidative phosphorylation. This “Warburg effect” represents a standard to diagnose and monitor tumor aggressiveness with 18F-fluorodeoxyglucose whose uptake is currently regarded as an accurate index of total glucose consumption. Studying cancer metabolic response to respiratory chain inhibition by metformin, we repeatedly observed a reduction of tracer uptake facing a marked increase in glucose consumption. This puzzling discordance brought us to discover that 18F-fluorodeoxyglucose preferentially accumulates within endoplasmic reticulum by exploiting the catalytic function of hexose-6-phosphate-dehydrogenase. Silencing enzyme expression and activity decreased both tracer uptake and glucose consumption, caused severe energy depletion and decreased NADPH content without altering mitochondrial function. These data document the existence of an unknown glucose metabolism triggered by hexose-6-phosphate-dehydrogenase within endoplasmic reticulum of cancer cells. Besides its basic relevance, this finding can improve clinical cancer diagnosis and might represent potential target for therapy. PMID:27121192
Kropp, Laura E.; Garg, Manish; Binder, Robert J.
2010-01-01
Cellular peptides generated by proteasomal degradation of proteins in the cytosol and destined for presentation by MHC I are associated with several chaperones. Hsp70, hsp90 and the TCP1-ring complex have been implicated as important cytosolic players for chaperoning these peptides. In this study we report that gp96 and calreticulin are essential for chaperoning peptides in the endoplasmic reticulum. Importantly we demonstrate that cellular peptides are transferred sequentially from gp96 to calreticulin and then to MHC I forming a relay line. Disruption of this relay line by removal of gp96 or calreticulin prevents the binding of peptides by MHC I and hence presentation of the MHC I-peptide complex on the cell surface. Our results are important for understanding how peptides are processed and trafficked within the endoplasmic reticulum before exiting in association with MHC I heavy chains and β2-microglobulin as a trimolecular complex. PMID:20410492
Endoplasmatic reticulum shaping by generic mechanisms and protein-induced spontaneous curvature.
Sackmann, Erich
2014-06-01
The endoplasmatic reticulum (ER) comprises flattened vesicles (cisternae) with worm holes dubbed with ribosomes coexisting with a network of interconnected tubes which can extend to the cell periphery or even penetrate nerve axons. The coexisting topologies enclose a continuous luminal space. The complex ER topology is specifically controlled by a group of ER-shaping proteins often called reticulons (discovered by the group of Tom Rapoport). They include atlastin, reticulon, REEP and the MT severing protein spastin. A generic ER shape controlling factor is the necessity to maximize the area-to-volume ratio of ER membranes in the highly crowded cytoplasmic space. I present a model of the ER-shaping function of the reticulons based on the Helfrich bending elasticity concept of soft shell shape changes. Common structural motifs of the reticulons are hydrophobic sequences forming wedge shaped hairpins which penetrate the lipid bilayer of the cell membranes. The wedge-like hydrophobic anchors can both induce the high curvature of the tubular ER fraction and ensure the preferred distribution of the reticulons along the tubules. Tubular junctions may be stabilized by the reticulons forming two forceps twisted by 90°. The ER extensions to the cell periphery and the axons are mediated by coupling of the tubes to the microtubules which is mediated by REEP and spastin. At the end I present a model of the tension driven homotype fusion of ER-membranes by atlastin, based on analogies to the SNARE-complexin-SNARE driven heterotype fusion process. Copyright © 2014 Elsevier B.V. All rights reserved.
Epp, Riley A; Susser, Shanel E; Morissette, Marc P; Kehler, D Scott; Jassal, Davinder S; Duhamel, Todd A
2013-01-01
This study tested the hypothesis that exercise training would prevent the development of diabetes-induced cardiac dysfunction and altered expression of sarcoplasmic reticulum Ca(2 +)-transport proteins in the low-dose streptozotocin-induced diabetic rats fed a high-fat diet (HFD+STZ). Male Sprague-Dawley rats (4 weeks old; 125-150 g) were made diabetic using a high-fat diet (40% fat, w/w) and a low-dose of streptozotocin (35 mg·(kg body mass)(-1)) by intravenous injection. Diabetic animals were divided among a sedentary group (Sed+HFD+STZ) or an exercise-trained group (Ex+HFD+STZ) that accumulated 3554 ± 338 m·day(-1) of voluntary wheel running (mean ± SE). Sedentary animals fed a low-fat diet served as the control (Sed+LFD). Oral glucose tolerance was impaired in the sedentary diabetic group (1179 ± 29; area under the curve (a.u.c.)) compared with that in the sedentary control animals (1447 ± 42 a.u.c.). Although left ventricular systolic function was unchanged by diabetes, impaired E/A ratios (i.e., diastolic function) and rates of pressure decay (-dP/dt) indicated the presence of diastolic dysfunction. Diabetes also reduced SERCA2a protein content and maximal SERCA2a activity (V(max)) by 21% and 32%, respectively. In contrast, the change in each parameter was attenuated by exercise training. Based on these data, it appears that exercise training prevented the development of diabetic cardiomyopathy and the dysregulation of sarcoplasmic reticulum protein content in an inducible animal model of type 2 diabetes.
Collardeau-Frachon, Sophie; Vasiljevic, Alexandre; Jouvet, Anne; Bouvier, Raymonde; Senée, Valérie; Nicolino, Marc
2015-11-01
Wolcott-Rallison syndrome (WRS) is a rare autosomal recessive disorder characterized by the association of permanent neonatal or early-infancy insulin-dependent diabetes, multiple bone dysplasia, hepatic dysfunction, and growth retardation. All clinical manifestations result from gene mutations encoding pancreatic endoplasmic reticulum eIF2 α kinase (PERK), an endoplasmic reticulum transmembrane protein that plays a role in the unfolded protein response. Histological and ultrastructural lesions of bone and pancreas have been described in animal models and WRS patients. However, histological and ultrastructural findings of other organs, especially of the liver, are lacking. Autopsy specimens from two pediatric patients with WRS were analyzed. An immunohistochemical study was performed on the pancreas. An ultrastructural study was realized from samples of liver, pancreas, kidney, and myocardium. Our findings were compared with those of the literature and correlated with the molecular data. Hepatocytes and pancreatic exocrine cells exhibited very peculiar features of necrosis suggestive of secondary changes because of endoplasmic reticulum overload. Steatosis occurred in renal tubular cells, hepatocytes, and myocardial fibers. Abnormal mitochondria were noted in renal and myocardial fibers. Pancreas islets were characterized by a marked reduction in the number of insulin-secreting β cells. The histological and ultrastructural features that occur in WRS are directly or indirectly linked to endoplasmic reticulum (ER) dysfunction and can explain the peculiar phenotype of this syndrome. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Two-pore channels: Regulation by NAADP and customized roles in triggering calcium signals
Patel, Sandip; Marchant, Jonathan; Brailoiu, Eugen
2010-01-01
NAADP is a potent regulator of cytosolic calcium levels. Much evidence suggests that NAADP activates a novel channel located on an acidic (lysosomal-like) calcium store, the mobilisation of which results in further calcium release from the endoplasmic reticulum. Here, we discuss the recent identification of a family of poorly characterized ion channels (the two-pore channels) as endo-lysosomal NAADP receptors. The generation of calcium signals by these channels is likened to those evoked by depolarisation during excitation-contraction coupling in muscle. We discuss the idea that two pore-channels can mediate a trigger release of calcium which is then amplified by calcium-induced calcium release from the endoplasmic reticulum. This is similar to the activation of voltage-sensitive calcium channels and subsequent mobilisation of sarcoplasmic reticulum calcium stores in cardiac tissue. We suggest that two-pore channels may physically interact with ryanodine receptors to account for more direct release of calcium from the endoplasmic reticulum in analogy with the conformational coupling of voltage-sensitive calcium channels and ryanodine receptors in skeletal muscle. Interaction of two-pore channels with other calcium release channels likely occurs between stores “trans-chatter” and possibly within the same store “cis-chatter”. We also speculate that trafficking of two-pore channels through the endolysosomal system facilitates interactions with calcium entry channels. Strategic placing of two-pore channels thus provides a versatile means of generating spatiotemporally complex cellular calcium signals. PMID:20621760
Endoplasmic Reticulum Stress Mediates Methamphetamine-Induced Blood–Brain Barrier Damage
Qie, Xiaojuan; Wen, Di; Guo, Hongyan; Xu, Guanjie; Liu, Shuai; Shen, Qianchao; Liu, Yi; Zhang, Wenfang; Cong, Bin; Ma, Chunling
2017-01-01
Methamphetamine (METH) abuse causes serious health problems worldwide, and long-term use of METH disrupts the blood–brain barrier (BBB). Herein, we explored the potential mechanism of endoplasmic reticulum (ER) stress in METH-induced BBB endothelial cell damage in vitro and the therapeutic potential of endoplasmic reticulum stress inhibitors for METH-induced BBB disruption in C57BL/6J mice. Exposure of immortalized BMVEC (bEnd.3) cells to METH significantly decreased cell viability, induced apoptosis, and diminished the tightness of cell monolayers. METH activated ER stress sensor proteins, including PERK, ATF6, and IRE1, and upregulated the pro-apoptotic protein CHOP. The ER stress inhibitors significantly blocked the upregulation of CHOP. Knockdown of CHOP protected bEnd.3 cells from METH-induced cytotoxicity. Furthermore, METH elevated the production of reactive oxygen species (ROS) and induced the dysfunction of mitochondrial characterized by a Bcl2/Bax ratio decrease, mitochondrial membrane potential collapse, and cytochrome c. ER stress release was partially reversed by ROS inhibition, and cytochrome c release was partially blocked by knockdown of CHOP. Finally, PBA significantly attenuated METH-induced sodium fluorescein (NaFluo) and Evans Blue leakage, as well as tight junction protein loss, in C57BL/6J mice. These data suggest that BBB endothelial cell damage was caused by METH-induced endoplasmic reticulum stress, which further induced mitochondrial dysfunction, and that PBA was an effective treatment for METH-induced BBB disruption. PMID:28959203
Li, Lin; Cui, Jiahui; Liu, Zi; Zhou, Xuejiao; Li, Zengqiang; Yu, Yang; Jia, Yuanyuan; Zuo, Daiying; Wu, Yingliang
2018-03-15
Silver nanoparticles (AgNPs) have many medical and commercial applications, but their effects on human health are poorly understood. The aim of this study was to assess the effect of AgNPs on the human neuroblastoma cell line SH-SY5Y and to explore their potential mechanisms of action. We found that AgNPs decreased SH-SY5Y cell viability in a dose- and time-dependent manner. Exposure to AgNPs activated endoplasmic reticulum (ER) stress, as reflected by upregulated expression of glucose-regulated protein 78 (GRP78), phosphorylated PKR-like endoplasmic reticulum kinase (p-PERK), phosphorylated eukaryotic translation initiation factor 2α (p-eIF2α), C/EBP homology protein (CHOP), spliced X-box binding protein-1 (XBP1), and phosphorylated inositol-requiring enzyme (p-IRE), all of which are involved in the cellular unfolded protein response. Prolonged exposure of cells to AgNPs damaged calcium (Ca 2+ ) homeostasis, increased the length of contact sites between the ER and mitochondria, altered IP 3 R function by the increased levels of phosphatase and tensin homolog deleted on chromosome ten (PTEN) in the ER and enhanced mitochondrial Ca 2+ uptake. Finally, Ca 2+ overload and disrupted homeostasis in the mitochondria triggered apoptotic cell death. Our results suggest that caution should be exercised in the use of AgNPs in humans. Copyright © 2018 Elsevier B.V. All rights reserved.
Attenuation of endoplasmic reticulum stress by caffeine ameliorates hyperoxia-induced lung injury
Jing, Xigang; Michalkiewicz, Teresa; Afolayan, Adeleye J.; Wu, Tzong-Jin; Konduri, Girija G.
2017-01-01
Rodent pups exposed to hyperoxia develop lung changes similar to bronchopulmonary dysplasia (BPD) in extremely premature infants. Oxidative stress from hyperoxia can injure developing lungs through endoplasmic reticulum (ER) stress. Early caffeine treatment decreases the rate of BPD, but the mechanisms remain unclear. We hypothesized that caffeine attenuates hyperoxia-induced lung injury through its chemical chaperone property. Sprague-Dawley rat pups were raised either in 90 (hyperoxia) or 21% (normoxia) oxygen from postnatal day 1 (P1) to postnatal day 10 (P10) and then recovered in 21% oxygen until P21. Caffeine (20 mg/kg) or normal saline (control) was administered intraperitoneally daily starting from P2. Lungs were inflation-fixed for histology or snap-frozen for immunoblots. Blood caffeine levels were measured in treated pups at euthanasia and were found to be 18.4 ± 4.9 μg/ml. Hyperoxia impaired alveolar formation and increased ER stress markers and downstream effectors; caffeine treatment attenuated these changes at P10. Caffeine also attenuated the hyperoxia-induced activation of cyclooxygenase-2 and markers of apoptosis. In conclusion, hyperoxia-induced alveolar growth impairment is mediated, in part, by ER stress. Early caffeine treatment protects developing lungs from hyperoxia-induced injury by attenuating ER stress. PMID:28213471
Coordination of Endoplasmic Reticulum (ER) Signaling During Maize Seed Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boston, Rebecca S.
2010-11-20
Seed storage reserves represent one of the most important sources of renewable fixed carbon and nitrogen found in nature. Seeds are well-adapted for diverting metabolic resources to synthesize storage proteins as well as enzymes and structural proteins needed for their transport and packaging into membrane bound storage protein bodies. Our underlying hypothesis is that the endoplasmic reticulum (ER) stress response provides the critical cellular control of metabolic flux required for optimal accumulation of storage reserves in seeds. This highly conserved response is a cellular mechanism to monitor the protein folding environment of the ER and restore homeostasis in the presencemore » of unfolded or misfolded proteins. In seeds, deposition of storage proteins in protein bodies is a highly specialized process that takes place even in the presence of mutant proteins that no longer fold and package properly. The capacity of the ER to deposit these aberrant proteins in protein bodies during a period that extends several weeks provides an excellent model for deconvoluting the ER stress response of plants. We have focused in this project on the means by which the ER senses and responds to functional perturbations and the underlying intracellular communication that occurs among biosynthetic, trafficking and degradative pathways for proteins during seed development.« less
Pan, Zhi; Avila, Andrew; Gollahon, Lauren
2014-01-01
Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis. PMID:24549172
Ghanim, Murad; Achor, Diann; Ghosh, Saptarshi; Kontsedalov, Svetlana; Lebedev, Galina; Levy, Amit
2017-12-05
Citrus greening disease known also as Huanglongbing (HLB) caused by the phloem-limited bacterium 'Candidatus Liberibacter asiaticus' (CLas) has resulted in tremendous losses and the death of millions of trees worldwide. CLas is transmitted by the Asian citrus psyllid Diaphorina citri. The closely-related bacteria 'Candidatus Liberibacter solanacearum' (CLso), associated with vegetative disorders in carrots, is transmitted by the carrot psyllid Bactericera trigonica. A promising approach to prevent the transmission of these pathogens is to interfere with the vector-pathogen interactions, but our understanding of these processes is limited. It was recently reported that CLas induced changes in the nuclear architecture, and activated programmed cell death, in D. citri midgut cells. Here, we used electron and fluorescent microscopy and show that CLas induces the formation of endoplasmic reticulum (ER)-associated bodies. The bacterium recruits those ER structures into Liberibacter containing vacuoles (LCVs), in which bacterial cells seem to propagate. ER- associated LCV formation was unique to CLas, as we could not detect these bodies in B. trigonica infected with CLso. ER recruitment is hypothesized to generate a safe replicative body to escape cellular immune responses in the insect gut. Understanding the molecular interactions that undelay these responses will open new opportunities for controlling CLas.
Peng, Pingan; Ma, Qian; Wang, Le; Zhang, Ou; Han, Hongya; Liu, Xiaoli; Zhou, Yujie; Zhao, Yingxin
2015-11-01
To investigate whether tauroursodeoxycholic acid (TUDCA) could attenuate contrast media (CM)-induced renal tubular cell apoptosis by inhibiting endoplasmic reticulum stress (ERS), we exposed HK-2 cells to increasing doses of meglumine diatrizoate (20, 40, and 80 mg I/mL) for 2 to 16 hours, with/without TUDCA preconditioning for 24 hours. Cell viability test, Hoechst 33258 staining, and flow cytometry were used to detect meglumine diatrizoate-induced cell apoptosis, while real-time polymerase chain reaction and Western blot analysis were used to measure the expressions of ERS markers of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), and the apoptosis-related marker of caspase 12. Cell apoptosis and messenger RNA (mRNA) expression of GRP78 (P = .005), ATF4 (P = .01), and caspase 12 (P = .001) were significantly higher in the CM 4 hours group than the control as well as the protein expressions. The TUDCA preconditioning reduced the mRNA expression of GRP78, ATF4, and caspase 12 in the CM 4 hours groups (P = .009, .019, and .003, respectively) as well as the protein expression. In conclusion, TUDCA could protect renal tubular cells from meglumine diatrizoate-induced apoptosis by inhibiting ERS. © The Author(s) 2015.
Lu, Wei; Khatri, Latika; Ziff, Edward B.
2014-01-01
The GluA2 subunit of the AMPA receptor (AMPAR) dominantly blocks AMPAR Ca2+ permeability, and its trafficking to the synapse regulates AMPAR-dependent synapse Ca2+ permeability. Here we show that GluA2 trafficking from the endoplasmic reticulum (ER) to the plasma membrane of cultured hippocampal neurons requires Ca2+ release from internal stores, the activity of Ca2+/calmodulin activated kinase II (CaMKII), and GluA2 interaction with the PDZ protein, PICK1. We show that upon Ca2+ release from the ER via the IP3 and ryanodine receptors, CaMKII that is activated enters a complex that contains PICK1, dependent upon the PICK1 BAR (Bin-amphiphysin-Rvs) domain, and that interacts with the GluA2 C-terminal domain and stimulates GluA2 ER exit and surface trafficking. This study reveals a novel mechanism of regulation of trafficking of GluA2-containing receptors to the surface under the control of intracellular Ca2+ dynamics and CaMKII activity. PMID:24831007
Parkin regulation of CHOP modulates susceptibility to cardiac endoplasmic reticulum stress.
Han, Kim; Hassanzadeh, Shahin; Singh, Komudi; Menazza, Sara; Nguyen, Tiffany T; Stevens, Mark V; Nguyen, An; San, Hong; Anderson, Stasia A; Lin, Yongshun; Zou, Jizhong; Murphy, Elizabeth; Sack, Michael N
2017-05-18
The regulatory control of cardiac endoplasmic reticulum (ER) stress is incompletely characterized. As ER stress signaling upregulates the E3-ubiquitin ligase Parkin, we investigated the role of Parkin in cardiac ER stress. Parkin knockout mice exposed to aortic constriction-induced cardiac pressure-overload or in response to systemic tunicamycin (TM) developed adverse ventricular remodeling with excessive levels of the ER regulatory C/EBP homologous protein CHOP. CHOP was identified as a Parkin substrate and its turnover was Parkin-dose and proteasome-dependent. Parkin depletion in cardiac HL-1 cells increased CHOP levels and enhanced susceptibility to TM-induced cell death. Parkin reconstitution rescued this phenotype and the contribution of excess CHOP to this ER stress injury was confirmed by reduction in TM-induced cell death when CHOP was depleted in Parkin knockdown cardiomyocytes. Isogenic Parkin mutant iPSC-derived cardiomyocytes showed exaggerated ER stress induced CHOP and apoptotic signatures and myocardium from subjects with dilated cardiomyopathy showed excessive Parkin and CHOP induction. This study identifies that Parkin functions to blunt excessive CHOP to prevent maladaptive ER stress-induced cell death and adverse cardiac ventricular remodeling. Additionally, Parkin is identified as a novel post-translational regulatory moderator of CHOP stability and uncovers an additional stress-modifying function of this E3-ubiquitin ligase.
Arduíno, Daniela Moniz; Esteves, A Raquel; Cardoso, Sandra M; Oliveira, Catarina R
2009-09-01
Sporadic Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta. Many cellular mechanisms are thought to be involved in the death of these specific neurons in PD, including oxidative stress, changes of intracellular calcium homeostasis, and mitochondrial dysfunction. Since recent studies have revealed that also endoplasmic reticulum (ER) stress in conjunction with abnormal protein degradation can contribute to the PD pathophysiology, we investigated here the molecular mechanisms underlying the interplay between ER and mitochondria and its relevance in the control of neuronal cell death in PD. We observed that MPP+ induced changes in the mitochondrial function, affecting mitochondrial membrane potential and electron transport chain function. Likewise, it was also evident the unfolded protein response activation by an overexpression of GRP78 protein. Moreover, stress stimuli caused the release of Ca2+ from the ER that consistently induced mitochondrial Ca2+ uptake, with a rise of mitochondrial matrix free Ca2+. Besides, Ca2+ release inhibition prevented MPP+ mediated mitochondria-dependent caspases activation. Our findings show that ER and mitochondria are in a close communication, establishing a dynamic ER-Ca2+-mitochondria interconnection that can play a prominent role in the neuronal cell death induction under particular stressful circumstances of PD pathology.
Sela, Dotan; Chen, Lu; Martin-Brown, Skylar; Washburn, Michael P; Florens, Laurence; Conaway, Joan Weliky; Conaway, Ronald C
2012-06-29
The basic leucine zipper transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. Previous studies have established that, in response to ER stress, ATF6α translocates to the nucleus and activates transcription of ER stress response genes upon binding sequence specifically to ER stress response enhancer elements in their promoters. In this study, we investigate the biochemical mechanism by which ATF6α activates transcription. By exploiting a combination of biochemical and multidimensional protein identification technology-based mass spectrometry approaches, we have obtained evidence that ATF6α functions at least in part by recruiting to the ER stress response enhancer elements of ER stress response genes a collection of RNA polymerase II coregulatory complexes, including the Mediator and multiple histone acetyltransferase complexes, among which are the Spt-Ada-Gcn5 acetyltransferase (SAGA) and Ada-Two-A-containing (ATAC) complexes. Our findings shed new light on the mechanism of action of ATF6α, and they outline a straightforward strategy for applying multidimensional protein identification technology mass spectrometry to determine which RNA polymerase II transcription factors and coregulators are recruited to promoters and other regulatory elements to control transcription.
Zhang, Xiao-min; Yan, Xun-yi; Zhang, Bin; Yang, Qian; Ye, Mao; Cao, Wei; Qiang, Wen-bin; Zhu, Li-jun; Du, Yong-lan; Xu, Xing-xing; Wang, Jia-sheng; Xu, Fei; Lu, Wei; Qiu, Shuang; Yang, Wei; Luo, Jian-hong
2015-01-01
The N-methyl-D-aspartate receptor (NMDAR) in adult forebrain is a heterotetramer mainly composed of two GluN1 subunits and two GluN2A and/or GluN2B subunits. The synaptic expression and relative numbers of GluN2A- and GluN2B-containing NMDARs play critical roles in controlling Ca2+-dependent signaling and synaptic plasticity. Previous studies have suggested that the synaptic trafficking of NMDAR subtypes is differentially regulated, but the precise molecular mechanism is not yet clear. In this study, we demonstrated that Bip, an endoplasmic reticulum (ER) chaperone, selectively interacted with GluN2A and mediated the neuronal activity-induced assembly and synaptic incorporation of the GluN2A-containing NMDAR from dendritic ER. Furthermore, the GluN2A-specific synaptic trafficking was effectively disrupted by peptides interrupting the interaction between Bip and GluN2A. Interestingly, fear conditioning in mice was disrupted by intraperitoneal injection of the interfering peptide before training. In summary, we have uncovered a novel mechanism for the activity-dependent supply of synaptic GluN2A-containing NMDARs, and demonstrated its relevance to memory formation. PMID:26088419
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation
Preston, G. Michael; Brodsky, Jeffrey L.
2017-01-01
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research. PMID:28159894
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation.
Preston, G Michael; Brodsky, Jeffrey L
2017-02-15
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Mei, Meng; Zhai, Chao; Li, Xinzhi; Zhou, Yu; Peng, Wenfang; Ma, Lixin; Wang, Qinhong; Iverson, Brent L; Zhang, Guimin; Yi, Li
2017-12-15
An endoplasmic reticulum (ER) retention sequence (ERS) is a characteristic short sequence that mediates protein retention in the ER of eukaryotic cells. However, little is known about the detailed molecular mechanism involved in ERS-mediated protein ER retention. Using a new surface display-based fluorescence technique that effectively quantifies ERS-promoted protein ER retention within Saccharomyces cerevisiae cells, we performed comprehensive ERS analyses. We found that the length, type of amino acid residue, and additional residues at positions -5 and -6 of the C-terminal HDEL motif all determined the retention of ERS in the yeast ER. Moreover, the biochemical results guided by structure simulation revealed that aromatic residues (Phe-54, Trp-56, and other aromatic residues facing the ER lumen) in both the ERS (at positions -6 and -4) and its receptor, Erd2, jointly determined their interaction with each other. Our studies also revealed that this aromatic residue interaction might lead to the discriminative recognition of HDEL or KDEL as ERS in yeast or human cells, respectively. Our findings expand the understanding of ERS-mediated residence of proteins in the ER and may guide future research into protein folding, modification, and translocation affected by ER retention. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Nagasawa, Ikuko; Kunimasa, Kazuhiro; Tsukahara, Satomi; Tomida, Akihiro
2017-01-22
In BRAF-mutated melanoma cells, the BRAF inhibitor, vemurafenib, induces phosphorylation of eukaryotic initiation factor 2α (eIF2α) and subsequent induction of activating transcription factor 4 (ATF4), the central regulation node of the integrated stress response (ISR). While the ISR supports cellular adaptation to various stresses, the role of vemurafenib-triggered ISR has not been fully characterized. Here, we showed that in response to vemurafenib, BRAF-mutated melanoma and colorectal cancer cells rapidly induced the ISR as a cytoprotective mechanism through activation of general control nonderepressible 2 (GCN2), an eIF2α kinase sensing amino acid levels. The vemurafenib-triggered ISR, an event independent of downstream MEK inhibition, was specifically prevented by silencing GCN2, but not other eIF2α kinases, including protein kinase-like endoplasmic reticulum kinase, which transmits endoplasmic reticulum (ER) stress. Consistently, the ER stress gatekeeper, GRP78, was not induced by vemurafenib. Interestingly, ATF4 silencing by siRNA rendered BRAF-mutated melanoma cells sensitive to vemurafenib. Thus, the GCN2-mediated ISR can promote cellular adaptation to vemurafenib-induced stress, providing an insight into the development of drug resistance. Copyright © 2016 Elsevier Inc. All rights reserved.
[Effective reconstitution of sarcoplasmic reticulum Ca2+-ATPase using lubrol PX].
Vinokurov, M G; Pechatnikov, V A
1991-01-01
Ca2(+)-ATPase of sarcoplasmic reticulum was reconstituted in the proteoliposomes by the salting out procedure. Triton X-100, C12E8 and Lubrol PX were used for the solubilization of the Ca2(+)-ATPase. Using fluorescent probes (diS-C3-(5), chlortetracycline) as well pH-measuring method, the functional of the reconstituted Ca2(+)-ATPase was comparatively studied in three types of proteoliposomes. The efficiency of Ca2(+)-ATPase grew in the following detergent order: Triton X-100, C12E8, Lubrol PX.
Boenisch, Marike Johanne; Broz, Karen Lisa; Purvine, Samuel Owen; ...
2017-03-13
Eukaryotic cells routinely compartmentalize metabolic pathways to particular organelles for biosynthetic purposes. Relatively few studies have addressed the cellular localization of pathways for secondary metabolites synthesis. In this study, the phytopathogenic fungus Fusarium graminearum reorganized its endoplasmic reticulum (ER) when triggered to produce mycotoxins, both in vitro and in planta. Fluorescence tagged biosynthetic proteins were found to co-localize with the modified ER as confirmed by co-fluorescence and co-purification with known ER proteins. Microscopy, cell sorting, and proteomics were applied in this FICUS collaborative effort.
Wang, Guifeng; Wang, Gang; Wang, Jiajia; Du, Yulong; Yao, Dongsheng; Shuai, Bilian; Han, Liang; Tang, Yuanping; Song, Rentao
2016-12-01
Prolamins, the major cereal seed storage proteins, are sequestered and accumulated in the lumen of the endoplasmic reticulum (ER), and are directly assembled into protein bodies (PBs). The content and composition of prolamins are the key determinants for protein quality and texture-related traits of the grain. Concomitantly, the PB-inducing fusion system provides an efficient target to produce therapeutic and industrial products in plants. However, the proteome of the native PB and the detailed mechanisms underlying its formation still need to be determined. We developed a method to isolate highly purified and intact PBs from developing maize endosperm and conducted proteomic analysis of intact PBs of zein, a class of prolamine protein found in maize. We thus identified 1756 proteins, which fall into five major categories: metabolic pathways, response to stimulus, transport, development, and growth, as well as regulation. By comparing the proteomes of crude and enriched extractions of PBs, we found substantial evidence for the following conclusions: (i) ribosomes, ER membranes, and the cytoskeleton are tightly associated with zein PBs, which form the peripheral border; (ii) zein RNAs are probably transported and localized to the PB-ER subdomain; and (iii) ER chaperones are essential for zein folding, quality control, and assembly into PBs. We futher confirmed that OPAQUE1 (O1) cannot directly interact with FLOURY1 (FL1) in yeast, suggesting that the interaction between myosins XI and DUF593-containing proteins is isoform-specific. This study provides a proteomic roadmap for dissecting zein PB biogenesis and reveals an unexpected diversity and complexity of proteins in PBs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Bauereis, Brian; Haskins, William E; Lebaron, Richard G; Renthal, Robert
2011-01-13
Previous studies in Parkinson's disease (PD) models suggest that early events along the path to neurodegeneration involve activation of the ubiquitin-proteasome system (UPS), endoplasmic reticulum-associated degradation (ERAD), and the unfolded protein response (UPR) pathways, in both the sporadic and familial forms of the disease, and thus ER stress may be a common feature. Furthermore, impairments in protein degradation have been linked to oxidative stress as well as pathways associated with ER stress. We hypothesize that oxidative stress is a primary initiator in a multi-factorial cascade driving dopaminergic (DA) neurons towards death in the early stages of the disease. We now report results from proteomic analysis of a rotenone-induced oxidative stress model of PD in the human neuroblastoma cell line, SH-SY5Y. Cells were exposed to sub-micromolar concentrations of rotenone for 48h prior to whole cell protein extraction and shotgun proteomic analysis. Evidence for activation of the UPR comes from our observation of up-regulated binding immunoglobulin protein (BiP), heat shock proteins, and foldases. We also observed up-regulation of proteins that contribute to the degradation of misfolded or unfolded proteins controlled by the UPS and ERAD pathways. Activation of the UPR may allow neurons to maintain protein homeostasis in the cytosol and ER despite an increase in reactive oxygen species due to oxidative stress, and activation of the UPS and ERAD may further augment clean-up and quality control in the cell. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Yu, Zeyun; Holst, Michael J.; Hayashi, Takeharu; Bajaj, Chandrajit L.; Ellisman, Mark H.; McCammon, J. Andrew; Hoshijima, Masahiko
2009-01-01
A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca2+-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca2+ mobilization in cardiomyocytes. PMID:18835449
Yu, Zeyun; Holst, Michael J; Hayashi, Takeharu; Bajaj, Chandrajit L; Ellisman, Mark H; McCammon, J Andrew; Hoshijima, Masahiko
2008-12-01
A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca(2+)-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca(2+) mobilization in cardiomyocytes.
Robin, Gaëlle; Berthier, Christine
2012-01-01
Under resting conditions, external Ca2+ is known to enter skeletal muscle cells, whereas Ca2+ stored in the sarcoplasmic reticulum (SR) leaks into the cytosol. The nature of the pathways involved in the sarcolemmal Ca2+ entry and in the SR Ca2+ leak is still a matter of debate, but several lines of evidence suggest that these Ca2+ fluxes are up-regulated in Duchenne muscular dystrophy. We investigated here SR calcium permeation at resting potential and in response to depolarization in voltage-controlled skeletal muscle fibers from control and mdx mice, the mouse model of Duchenne muscular dystrophy. Using the cytosolic Ca2+ dye Fura2, we first demonstrated that the rate of Ca2+ increase in response to cyclopiazonic acid (CPA)–induced inhibition of SR Ca2+-ATPases at resting potential was significantly higher in mdx fibers, which suggests an elevated SR Ca2+ leak. However, removal of external Ca2+ reduced the rate of CPA-induced Ca2+ increase in mdx and increased it in control fibers, which indicates an up-regulation of sarcolemmal Ca2+ influx in mdx fibers. Fibers were then loaded with the low-affinity Ca2+ dye Fluo5N-AM to measure intraluminal SR Ca2+ changes. Trains of action potentials, chloro-m-cresol, and depolarization pulses evoked transient Fluo5N fluorescence decreases, and recovery of voltage-induced Fluo5N fluorescence changes were inhibited by CPA, demonstrating that Fluo5N actually reports intraluminal SR Ca2+ changes. Voltage dependence and magnitude of depolarization-induced SR Ca2+ depletion were found to be unchanged in mdx fibers, but the rate of the recovery phase that followed depletion was found to be faster, indicating a higher SR Ca2+ reuptake activity in mdx fibers. Overall, CPA-induced SR Ca2+ leak at −80 mV was found to be significantly higher in mdx fibers and was potentiated by removal of external Ca2+ in control fibers. The elevated passive SR Ca2+ leak may contribute to alteration of Ca2+ homeostasis in mdx muscle. PMID:22371362
Daniel, Jens; Liebau, Eva
2014-01-01
The ubiquitin-fold modifier 1 (Ufm1) is a posttranslational modifier that belongs to the ubiquitin-like protein (UBL) family. Ufm1 is present in nearly all eukaryotic organisms, with the exception of fungi. It resembles ubiquitin in its ability to be ligated to other proteins, as well as in the mechanism of ligation. While the Ufm1 cascade has been implicated in endoplasmic reticulum functions and cell cycle control, its biological role still remains poorly understood. In this short review, we summarize the current state of Ufm1 research and its potential role in human diseases, like diabetes, ischemic heart disease and cancer. PMID:24921187
Castro, N; Martín, D; Castro-Alonso, A; Argüello, A; Capote, J; Caja, G
2010-10-01
A total of 60 twin-goat kids (30 male and 30 female) of the Canary Island Majorera dairy breed were used in 2 experiments to evaluate 2 types of electronic identification mini-boluses and their effects on rearing performances and reticulorumen development. Electronic identification mini-boluses were cylindrical and made of ceramic materials (B1, 9.0 g and 38.5 × 9.5 mm; B2, 16.3 g and 42.2 × 12.2 mm), contained a 32-mm half-duplex passive transponder, and were administered to kids at different BW. In Exp. 1, treatments were 1) control, without bolus (n = 15) and 2) identified with B1 at 4.8 kg of BW (n = 15). In Exp. 2, treatments were 1) control, without bolus (n = 15) and 2) identified with B2 at 5.6 kg of BW (n = 15). Kids were penned separately, according to mini-bolus treatments, fed a milk replacer daily, and slaughtered at 10 kg of BW. Milk replacer intake was recorded individually twice weekly and boluses read weekly until slaughter. The full and empty stomach complex was measured immediately after slaughter, and mini-bolus location was recorded. Samples of the reticulum and rumen wall were taken to measure the number and length of the papillae and crest. Despite the light BW of kids at time of mini-bolus treatment, no negative effects (P > 0.05) of B1 and B2 mini-boluses were observed on milk intake, growth rate, or G:F in either experiment. No kid mortality or mini-bolus losses were observed during either experiment. All mini-boluses were retained until slaughter, and all were found in the rumen upon dissection, except one B2, which was found in the reticulum. Mini-bolus treatment did not affect (P > 0.05) the weight of full and empty reticulorumen or the number of papillae and crest size of the reticulum epithelium. Moreover, the B1-treated kids showed a greater number of papillae in the rumen wall than the control kids (22.4 +/- 1.0 vs. 18.9 +/- 0.9 papillae/cm, respectively; P < 0.05) in Exp. 1. In conclusion, the use of mini-boluses was suitable for the electronic identification of growing kids from early ages (wk 2 to 5 of age and 5 to 6 kg of BW) and did not produce negative effects on their growth performances or on reticulorumen development. These results support the use of properly designed boluses as a unique identification device for the entire lifespan of goats.
Xiao, Ning; Zhang, Fu; Zhu, Bofeng; Liu, Chao; Lin, Zhoumeng; Wang, Huijun; Xie, Wei-Bing
2018-08-01
Overexposure to methamphetamine (METH) causes apoptosis in a number of cell types, particularly neuronal cells. However, the underlying mechanisms of METH-induced neuronal apoptosis remain to be elucidated. Accumulation of microtubule-associated protein Tau can lead to activation of multiple neurotoxic pathways, which is closely correlated with neuronal apoptosis. The aim of this study was to determine the role of Tau in METH-induced neuronal apoptosis. We determined the expression of two phosphorylated Tau proteins (serine 396 and threonine 231) in the human neuroblastoma SH-SY5Y cells and in the hippocampus of Sprague-Dawley rats treated with vehicle or METH using western blotting, immunohistochemical staining and immunofluorescence staining. We also measured the expression levels of the phosphorylated Tau protein, ubiquitination proteins, the intermediate products of proteasome degradation pathway, CD3-δ (a substrate of proteasome degradation pathway), endoplasmic reticulum stress signal molecule phosphorylated PERK (pPERK), and endoplasmic reticulum stress-specific apoptotic signal molecule caspase-12 in SH-SY5Y cells and in rats after inhibiting the expression of an upstream regulatory factor of phosphorylated Tau protein (CDK5) using siRNA or virus transfection. The results showed that exposure to METH significantly up-regulated the expression of phosphorylated Tau protein in vivo and in vitro and silencing the expression of CDK5 inhibited the up-regulation of phosphorylated Tau induced by METH exposure. METH exposure also significantly increased the expression of ubiquitination protein and CD3-δ and these effects were blocked by CDK5 silencing. In addition, METH exposure significantly elevated the levels of phosphorylated PERK and caspase-12 and these effects were suppressed after CDK5 silencing, which indicates that blockade of CDK5 expression can mitigate METH-induced neuronal apoptosis. These results suggest that METH can impair the endoplasmic reticulum-associated degradation (ERAD) pathway and induce neuronal apoptosis through endoplasmic reticulum stress, which is mainly mediated by abnormal CDK5-regulated Tau phosphorylation. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, F.H.; Ratterman, D.M.; Sze, H.
1993-06-01
Cytosolic Ca[sup 2+] levels are regulated in part by Ca[sup 2+]-pumping ATPases that export Ca[sup 2+] from the cytoplasm; The types and properties of Ca[sup 2+] pumps in plants are not well understood. The kinetic properties of a 120-kD phosphoenzyme (PE) intermediate formed during the reaction cycle of a Ca[sup 2+]-ATPase from suspension-cultured carrot (Daucus carota) cells are characterized. Only one Ca[sup 2+]-dependent phosphoprotein was formed when carrot membrane vesicles were incubated with [[gamma]-[sup 32]P]ATP. Formation of this 120-kD phosphoprotein was inhibited by vanadate, enhanced by La[sup 3+], and decreased by hydroxylamine, confirming its identification as an intermediate of amore » phosphorylated-type Ca[sup 2+]-translocating ATPase. The 120-kD Ca[sup 2+]-ATPase was most abundant in endoplasmic reticulum-enriched fractions, in which the Ca[sup 2+]-ATPase was estimated to be 0.1% of membrane protein. Direct quantitation of Ca[sup 2+]-dependent phosphoprotein was used to examine the kinetics of PE formation. PE formation exhibited a K[sub m] for Ca[sup 2+] of 1 to 2 [mu]m and a K[sub m] for ATP of 67 nm. Relative affinities of substrates, determined by competition experiments, were 0.075 [mu]m for ATP, 1 [mu]m for ADP, 100 [mu]m for ITP, and 250 [mu]m for GTP. Thapsigargin and cyclopiazonic acid, specific inhibitors of animal sarcoplasmic/endoplasmic reticulum Ca[sup 2+]-ATPase, had no effect on PE formation; erythrosin B inhibited with 50% inhibition at <0.1 [mu]m. Calmodulin (1 [mu]m) stimulated PE formation by 25%. The results indicate that the carrot 120-kD Ca[sup 2+]-ATPase is similar but not identical to animal plasma membrane-type Ca[sup 2+]-ATPase and yet is located on endomembranes, such as the endoplasmic reticulum. This type of Ca[sup 2+] pump may reside on the cortical endoplasmic reticulum, thought to play a major role in anchoring the cytoskeleton and in facilitating secretion. 34 refs., 9 figs., 3 tabs.« less
D’Angeli, Simone; Altamura, Maria Maddalena
2016-01-01
The olive tree is a plant of economic value for the oil of its drupe. It is a cultigen complex composed of genotypes with differences in cold-hardiness. About 90% of the oil is stored in oil bodies (OBs) in the drupe during the oleogenic phase. Phenols and lipids contribute to oil quality, but the unsaturated fatty acid (FA) fraction is emerging as the most important for quality, because of the very high content in oleic acid, the presence of ω6-linoleic acid and ω3-linolenic acid, and the very low saturated FA content. Another 10% of oil is produced by the seed. Differences in unsaturated FA-enriched lipids exist among seed coat, endosperm, and embryo. Olive oil quality is also affected by the environmental conditions during fruit growth and genotype peculiarities. Production of linoleic and α-linolenic acids, fruit growth, fruit and leaf responses to low temperatures, including cuticle formation, and cold-acclimation are related processes. The levels of unsaturated FAs are changed by FA-desaturase (FAD) activities, involving the functioning of chloroplasts and endoplasmic reticulum. Cold induces lipid changes during drupe and seed development, affecting FADs, but its effect is related to the genotype capability to acclimate to the cold. PMID:27845749
Mastrangelo, F; Sberna, M T; Tettamanti, L; Cantatore, G; Tagliabue, A; Gherlone, E
2016-01-01
Vascular Endothelia Growth Factor (VEGF) and Nitric Oxide Synthase (NOS) expression, were evaluated in human tooth germs at two different stages of embryogenesis, to clarify the role of angiogenesis during tooth tissue differentiation and growth. Seventy-two third molar germ specimens were selected during oral surgery. Thirty-six were in the early stage and 36 in the later stage of tooth development. The samples were evaluated with Semi-quantitative Reverse Transcription-Polymerase chain Reaction analyses (RT-PcR), Western blot analysis (WB) and immunohistochemical analysis. Western blot and immunohistochemical analysis showed a VEGF and NOS 1-2-3 positive reaction in all samples analysed. VEGF high positive decrease reaction was observed in stellate reticulum cells, ameloblast and odontoblast clusters in early stage compared to later stage of tooth germ development. Comparable VEGF expression was observed in endothelial cells of early and advanced stage growth. NOS1 and NOS3 expressions showed a high increased value in stellate reticulum cells, and ameloblast and odontoblast clusters in advanced stage compared to early stage of development. The absence or only moderate positive reaction of NOS2 was detected in all the different tissues. Positive NOS2 expression showed in advanced stage of tissue development compared to early stage. The action of VEGF and NOS molecules are important mediators of angiogenesis during dental tissue development. VEGF high positive expression in stellate reticulum cells in the early stage of tooth development compared to the later stage and the other cell types, suggests a critical role of the stellate reticulum during dental embryo-morphogenesis.
Lee, Jae-Jin; Park, Joon Kyu; Jeong, Jaeho; Jeon, Hyesung; Yoon, Jong-Bok; Kim, Eunice EunKyeong; Lee, Kong-Joo
2013-01-01
Fas-associated factor 1 (FAF1) is a ubiquitin receptor containing multiple ubiquitin-related domains including ubiquitin-associated (UBA), ubiquitin-like (UBL) 1, UBL2, and ubiquitin regulatory X (UBX). We previously showed that N-terminal UBA domain recognizes Lys48-ubiquitin linkage to recruit polyubiquitinated proteins and that a C-terminal UBX domain interacts with valosin-containing protein (VCP). This study shows that FAF1 interacts only with VCP complexed with Npl4-Ufd1 heterodimer, a requirement for the recruitment of polyubiquitinated proteins to UBA domain. Intriguingly, VCP association to C-terminal UBX domain regulates ubiquitin binding to N-terminal UBA domain without direct interaction between UBA and UBX domains. These interactions are well characterized by structural and biochemical analysis. VCP-Npl4-Ufd1 complex is known as the machinery required for endoplasmic reticulum-associated degradation. We demonstrate here that FAF1 binds to VCP-Npl4-Ufd1 complex via UBX domain and polyubiquitinated proteins via UBA domain to promote endoplasmic reticulum-associated degradation. PMID:23293021
Relevance of Endoplasmic Reticulum Stress Cell Signaling in Liver Cold Ischemia Reperfusion Injury
Folch-Puy, Emma; Panisello, Arnau; Oliva, Joan; Lopez, Alexandre; Castro Benítez, Carlos; Adam, René; Roselló-Catafau, Joan
2016-01-01
The endoplasmic reticulum (ER) is involved in calcium homeostasis, protein folding and lipid biosynthesis. Perturbations in its normal functions lead to a condition called endoplasmic reticulum stress (ERS). This can be triggered by many physiopathological conditions such as alcoholic steatohepatitis, insulin resistance or ischemia-reperfusion injury. The cell reacts to ERS by initiating a defensive process known as the unfolded protein response (UPR), which comprises cellular mechanisms for adaptation and the safeguarding of cell survival or, in cases of excessively severe stress, for the initiation of the cell death program. Recent experimental data suggest the involvement of ERS in ischemia/reperfusion injury (IRI) of the liver graft, which has been considered as one of major problems influencing outcome after liver transplantation. The purpose of this review is to summarize updated data on the molecular mechanisms of ERS/UPR and the consequences of this pathology, focusing specifically on solid organ preservation and liver transplantation models. We will also discuss the potential role of ERS, beyond the simple adaptive response and the regulation of cell death, in the modification of cell functional properties and phenotypic changes. PMID:27231901
Mechanisms of lipase maturation
Péterfy, Miklós
2010-01-01
Lipases are acyl hydrolases that represent a diverse group of enzymes present in organisms ranging from prokaryotes to humans. This article focuses on an evolutionarily related family of extracellular lipases that include lipoprotein lipase, hepatic lipase and endothelial lipase. As newly synthesized proteins, these lipases undergo a series of co- and post-translational maturation steps occurring in the endoplasmic reticulum, including glycosylation and glycan processing, and protein folding and subunit assembly. This article identifies and discusses mechanisms that direct early and late events in lipase folding and assembly. Lipase maturation employs the two general chaperone systems operating in the endoplasmic reticulum, as well as a recently identified lipase-specific chaperone termed lipase maturation factor 1. We propose that the two general chaperone systems act in a coordinated manner early in lipase maturation in order to help create partially folded monomers; lipase maturation factor 1 then facilitates final monomer folding and subunit assembly into fully functional homodimers. Once maturation is complete, the lipases exit the endoplasmic reticulum and are secreted to extracellular sites, where they carry out a number of functions related to lipoprotein and lipid metabolism. PMID:20543905
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roomans, G.M.; Wei, X.; Ceder, O.
The chronically reserpinized rat has been suggested as an animal model for cystic fibrosis. X-ray microanalysis of thick and thin cryosections was carried out to assess elemental redistribution in the submandibular glands and the pancreas of reserpinized rats at the cellular and subcellular level. In the submandibular gland of reserpinized rats, calcium and magnesium concentrations were significantly elevated. Mucus globules, secretory granules, and endoplasmic reticulum were the primary sites of the localization of excess calcium and magnesium. A significant potassium loss from the gland had occurred, particularly from the serous cells. Electron microscopy of conventionally prepared tissue showed marked swellingmore » of the endoplasmic reticulum, especially in mucous cells. The elemental changes in the pancreatic acinar cells of reserpinized rats were reminiscent of elemental redistribution connected with cell death: increased levels of sodium, chlorine, and calcium and decreased levels of magnesium and potassium. Ultrastructural changes included swelling of the endoplasmic reticulum and obstruction of the acinar lumen. It is concluded tha elemental redistribution in chronically reserpinized rats presents interesting parallels with cystic fibrosis.« less
Hong, Seong-Ho; Chang, Seung-Hee; Cho, Kyung-Cho; Kim, Sanghwa; Park, Sungjin; Lee, Ah Young; Jiang, Hu-Lin; Kim, Hyeon-Jeong; Lee, Somin; Yu, Kyeong-Nam; Seo, Hwi Won; Chae, Chanhee; Kim, Kwang Pyo; Park, Jongsun; Cho, Myung-Haing
2016-10-04
Trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus is elevated in cancer cells. Therefore, proteins of the ER-Golgi intermediate compartment (ERGIC) attract significant attention as targets for cancer treatment. Enhanced cancer cell growth and epithelial-mesenchymal transition by ERGICs correlates with poor-prognosis of lung cancer. This prompted us to assess whether knockdown of ERGIC3 may decrease lung cancer growth. To test the hypothesis, the effects of ERGIC3 short hairpin RNA (shERGIC3) on ER stress-induced cell death and lung tumorigenesis were investigated both in vitro and in vivo. Knockdown of ERGIC3 led to ER stress-induced autophagic cell death and suppression of proliferation in the A549 human lung cancer cell-line. Moreover, non-invasive aerosol-delivery of shERGIC3 using the biocompatible carrier glycerol propoxylate triacrylate and spermine (GPT-SPE) inhibited lung tumorigenesis in the K-rasLA1 murine model of lung cancer. Our data suggest that suppression of ERGIC3 could provide a framework for the development of effective lung cancer therapies.
The actin cytoskeleton in store-mediated calcium entry
Rosado, Juan A; Sage, Stewart O
2000-01-01
Store-mediated Ca2+ entry is the main pathway for Ca2+ influx in platelets and many other cells. Several hypotheses have considered both direct and indirect coupling mechanisms between the endoplasmic reticulum and the plasma membrane. Here we pay particular attention to new insights into the regulation of store-mediated Ca2+ entry: the role of the cytoskeleton in a secretion-like coupling model. In this model, Ca2+ entry may be mediated by a reversible trafficking and coupling of the endoplasmic reticulum with the plasma membrane, that shows close parallels to the events mediating secretion. As with secretion, the actin cytoskeleton plays an inhibitory role in the activation of Ca2+ entry by preventing the approach and coupling of the endoplasmic reticulum with the plasma membrane, making cytoskeletal remodelling a key event in the activation of Ca2+ entry. We also review recent advances investigating the regulation of store-mediated Ca2+ entry by small GTPases and phosphoinositides, which might be involved in the store-mediated Ca2+ entry pathway through roles in the remodelling of the cytoskeleton. PMID:10896713
Han, Xiaohua; Wang, Yihua; Liu, Xi; Jiang, Ling; Ren, Yulong; Liu, Feng; Peng, Cheng; Li, Jingjing; Jin, Ximing; Wu, Fuqing; Wang, Jiulin; Guo, Xiuping; Zhang, Xin; Cheng, Zhijun; Wan, Jianmin
2012-01-01
The rice somaclonal mutant T3612 produces small grains with a floury endosperm, caused by the loose packing of starch granules. The positional cloning of the mutation revealed a deletion in a gene encoding a protein disulphide isomerase-like enzyme (PDIL1-1). In the wild type, PDIL1-1 was expressed throughout the plant, but most intensely in the developing grain. In T3612, its expression was abolished, resulting in a decrease in the activity of plastidial phosphorylase and pullulanase, and an increase in that of soluble starch synthase I and ADP-glucose pyrophosphorylase. The amylopectin in the T3612 endosperm showed an increase in chains with a degree of polymerization 8-13 compared with the wild type. The expression in the mutant's endosperm of certain endoplasmic reticulum stress-responsive genes was noticeably elevated. PDIL1-1 appears to play an important role in starch synthesis. Its absence is associated with endoplasmic reticulum stress in the endosperm, which is likely to underlie the formation of the floury endosperm in the T3612 mutant.
Lotti, L V; Lanfrancone, L; Migliaccio, E; Zompetta, C; Pelicci, G; Salcini, A E; Falini, B; Pelicci, P G; Torrisi, M R
1996-01-01
The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane and endocytic structures, such as coated pits and endosomes, and with the peripheral cytosol. Receptor activation in cells expressing phosphorylation-defective mutants of Shc and erbB-2 kinase showed that receptor autophosphorylation, but not Shc phosphorylation, is required for redistribution of Shc proteins. The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein. PMID:8628261
Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanemoto, Soshi; Nitani, Ryota; Murakami, Tatsuhiko
The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular homeostasis. However, numerous environmental and genetic factors give rise to ER stress by inducing an accumulation of unfolded proteins. Under ER stress conditions, cells initiate the unfolded protein response (UPR). Here, we demonstrate a novel aspect of the UPR by electron microscopy and immunostaining analyses, whereby multivesicular body (MVB) formation was enhanced after ER stress. This MVB formation was influenced by inhibition of ER stress transducers inositol required enzyme 1 (IRE1) and PKR-like ER kinase (PERK). Furthermore, exosome release was also increased during ER stress. However, in IRE1 ormore » PERK deficient cells, exosome release was not upregulated, indicating that IRE1- and PERK-mediated pathways are involved in ER stress-dependent exosome release. - Highlights: • Endoplasmic reticulum (ER) stress induces multivesicular body (MVB) formation. • ER stress transducers IRE1 and PERK mediate MVB formation. • Exosome release is enhanced after ER stress. • IRE1 or PERK deficiency blocks upregulation of ER stress-dependent exosome release.« less
Mitofusin 2 as a driver that controls energy metabolism and insulin signaling.
Zorzano, Antonio; Hernández-Alvarez, María Isabel; Sebastián, David; Muñoz, Juan Pablo
2015-04-20
Mitochondrial dynamics is a complex process that impacts on mitochondrial biology. Recent evidence indicates that proteins participating in mitochondrial dynamics have additional cellular roles. Mitofusin 2 (Mfn2) is a potent modulator of mitochondrial metabolism with an impact on energy metabolism in muscle, liver, and hypothalamic neurons. In addition, Mfn2 is subjected to tight regulation. Hence, factors such as proinflammatory cytokines, lipid availability, or glucocorticoids block its expression, whereas exercise and increased energy expenditure promote its upregulation. Importantly, Mfn2 controls cell metabolism and insulin signaling by limiting reactive oxygen species production and by modulation of endoplasmic reticulum stress. In this connection, it is critical to understand precisely the molecular mechanisms involved in the global actions of Mfn2. Future directions should concentrate into the analysis of those mechanisms, and to fully demonstrate that Mfn2 represents a cellular hub that senses the metabolic and hormonal milieu and drives the control of metabolic homeostasis.
Mosinski, J D; Pagadala, M R; Mulya, A; Huang, H; Dan, O; Shimizu, H; Batayyah, E; Pai, R K; Schauer, P R; Brethauer, S A; Kirwan, J P
2016-06-01
High-fat diets are known to contribute to the development of obesity and related co-morbidities including non-alcoholic fatty liver disease (NAFLD). The accumulation of hepatic lipid may increase endoplasmic reticulum (ER) stress and contribute to non-alcoholic steatohepatitis and metabolic disease. We hypothesized that bariatric surgery would counter the effects of a high-fat diet (HFD) on obesity-associated NAFLD. Sixteen of 24 male Sprague Dawley rats were randomized to Sham (N = 8) or Roux-en-Y gastric bypass (RYGB) surgery (N = 8) and compared to Lean controls (N = 8). Obese rats were maintained on a HFD throughout the study. Insulin resistance (HOMA-IR), and hepatic steatosis, triglyceride accumulation, ER stress and apoptosis were assessed at 90 days post-surgery. Despite eating a HFD for 90 days post-surgery, the RYGB group lost weight (-20.7 ± 6%, P < 0.01) and improved insulin sensitivity (P < 0.05) compared to Sham. These results occurred with no change in food intake between groups. Hepatic steatosis and ER stress, specifically glucose-regulated protein-78 (Grp78, P < 0.001), X-box binding protein-1 (XBP-1) and spliced XBP-1 (P < 0.01), and fibroblast growth factor 21 (FGF21) gene expression, were normalized in the RYGB group compared to both Sham and Lean controls. Significant TUNEL staining in liver sections from the Obese Sham group, indicative of accelerated cell death, was absent in the RYGB and Lean control groups. Additionally, fasting plasma glucagon like peptide-1 was increased in RYGB compared to Sham (P < 0.02). These data suggest that in obese rats, RYGB surgery protects the liver against HFD-induced fatty liver disease by attenuating ER stress and excess apoptosis. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Nogueira, Leonardo; Trisko, Breanna M; Lima-Rosa, Frederico L; Jackson, Jason; Lund-Palau, Helena; Yamaguchi, Masahiro; Breen, Ellen C
2018-05-23
Cigarette smoke components directly alter muscle fatigue resistance and intracellular muscle fibre Ca 2+ handling independent of a change in lung structure. Changes in muscle vascular structure are associated with a depletion of satellite cells. Sarcoplasmic reticulum Ca 2+ uptake is substantially impaired in myofibres during fatiguing contractions in mice treated with cigarette smoke extract. Cigarette smokers exhibit exercise intolerance before a decline in respiratory function. In the present study, the direct effects of cigarette smoke on limb muscle function were tested by comparing cigarette smoke delivered to mice by weekly injections of cigarette smoke extract (CSE), or nose-only exposure (CS) 5 days each week, for 8 weeks. Cigarette smoke delivered by either route did not alter pulmonary airspace size. Muscle fatigue measured in situ was 50% lower in the CSE and CS groups than in control. This was accompanied by 34% and 22% decreases in soleus capillary-to-fibre ratio of the CSE and CS groups, respectively, and a trend for fewer skeletal muscle actin-positive arterioles (P = 0.07). In addition, fewer quiescent satellite cells (Nes+Pax7+) were associated with soleus fibres in mice with skeletal myofibre VEGF gene deletion (decreased 47%) and CS exposed (decreased 73%) than with control fibres. Contractile properties of isolated extensor digitorum longus and soleus muscles were impaired. In flexor digitorum brevis myofibres isolated from CSE mice, fatigue resistance was diminished by 43% compared to control and CS myofibres, and this was accompanied by a pronounced slowing in relaxation, an increase in intracellular Ca 2+ accumulation, and a slowing in sarcoplasmic reticulum Ca 2+ uptake. These data suggest that cigarette smoke components may impair hindlimb muscle vascular structure, fatigue resistance and myofibre calcium handling, and these changes ultimately affect contractile efficiency of locomotor muscles independent of a change in lung function. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Bitirim, Ceylan Verda; Tuncay, Erkan; Turan, Belma
2018-06-01
The cellular control of glucose uptake and glycogen metabolism in mammalian tissues is in part mediated through the regulation of protein-serine/threonine kinases including CK2. Although it participates to several cellular signaling processes, however, its subcellular localization is not well-defined while some documents mentioned its localization change under pathological conditions. The activation/phosphorylation of some proteins including Zn 2+ -transporter ZIP7 in cardiomyocytes is controlled with CK2α, thereby, inducing changes in the level of intracellular free Zn 2+ ([Zn 2+ ] i ). In this regard, we aimed to examine cellular localization of CK2α in cardiomyocytes and its possible subcellular migration under hyperglycemia. Our confocal imaging together with biochemical analysis in isolated sarco(endo)plasmic reticulum [S(E)R] and nuclear fractions from hearts have shown that CK2α localized highly to S(E)R and Golgi and weakly to nuclear fractions in physiological condition. However, it can migrate from nuclear fractions to S(E)R under hyperglycemia. This migration can further underlie phosphorylation of a target protein ZIP7 as well as some endogenous kinases and phosphatases including PKA, CaMKII, and PP2A. We also have shown that CK2α activation is responsible for hyperglycemia-associated [Zn 2+ ] i increase in diabetic heart. Therefore, our present data demonstrated, for the first time, the physiological relevance of CK2α in cellular control of Zn 2+ -distribution via inducing ZIP7 phosphorylation and activation of these above endogenous actors in hyperglycemia/diabetes-associated cardiac dysfunction. Moreover, our present data also emphasized the multi-subcellular compartmental localizations of CK2α and a tightly regulation of these localizations in cardiomyocytes. Therefore, taken into consideration of all data, one can emphasize the important role of the subcellular localization of CK2α as a novel target-pathway for understanding of diabetic cardiomyopathy.
Veasey, Sigrid C.; Lear, Jessica; Zhu, Yan; Grinspan, Judith B.; Hare, Dominic J.; Wang, SiHe; Bunch, Dustin; Doble, Philip A.; Robinson, Stephen R.
2013-01-01
Study Objectives: Exposure to the variable oxygenation patterns in obstructive sleep apnea (OSA) causes oxidative stress within the brain. We hypothesized that this stress is associated with increased levels of redox-active metals and white matter injury. Design: Participants were randomly allocated to a control or experimental group (single independent variable). Setting: University animal house. Participants: Adult male C57BL/6J mice. Interventions: To model OSA, mice were exposed to long-term intermittent hypoxia (LTIH) for 10 hours/day for 8 weeks or sham intermittent hypoxia (SIH). Measurements and Results: Laser ablation-inductively coupled plasma-mass spectrometry was used to quantitatively map the distribution of the trace elements cobalt, copper, iron, and zinc in forebrain sections. Control mice contained 62 ± 7 ng cobalt/g wet weight, whereas LTIH mice contained 5600 ± 600 ng cobalt/g wet weight (P < 0.0001). Other elements were unchanged between conditions. Cobalt was concentrated within white matter regions of the brain, including the corpus callosum. Compared to that of control mice, the corpus callosum of LTIH mice had significantly more endoplasmic reticulum stress, fewer myelin-associated proteins, disorganized myelin sheaths, and more degenerated axon profiles. Because cobalt is an essential component of vitamin B12, serum methylmalonic acid (MMA) levels were measured. LTIH mice had low MMA levels (P < 0.0001), indicative of increased B12 activity. Conclusions: Long-term intermittent hypoxia increases brain cobalt, predominantly in the white matter. The increased cobalt is associated with endoplasmic reticulum stress, myelin loss, and axonal injury. Low plasma methylmalonic acid levels are associated with white matter injury in long-term intermittent hypoxia and possibly in obstructive sleep apnea. Citation: Veasey SC; Lear J; Zhu Y; Grinspan JB; Hare DJ; Wang S; Bunch D; Doble PA; Robinson SR. Long-term intermittent hypoxia elevates cobalt levels in the brain and injures white matter in adult mice. SLEEP 2013;36(10):1471-1481. PMID:24082306
van Marle, Guido; Antony, Joseph; Ostermann, Heather; Dunham, Christopher; Hunt, Tracey; Halliday, William; Maingat, Ferdinand; Urbanowski, Matt D.; Hobman, Tom; Peeling, James; Power, Christopher
2007-01-01
West Nile virus (WNV) infection causes neurological disease at all levels of the neural axis, accompanied by neuroinflammation and neuronal loss, although the underlying mechanisms remain uncertain. Given the substantial activation of neuroinflammatory pathways observed in WNV infection, we hypothesized that WNV-mediated neuroinflammation and cell death occurred through WNV infection of both glia and neurons, which was driven in part by WNV capsid protein expression. Analysis of autopsied neural tissues from humans with WNV encephalomyelitis (WNVE) revealed WNV infection of both neurons and glia. Upregulation of proinflammatory genes, CXCL10, interleukin-1β, and indolamine-2′,3′-deoxygenase with concurrent suppression of the protective astrocyte-specific endoplasmic reticulum stress sensor gene, OASIS (for old astrocyte specifically induced substance), was evident in WNVE patients compared to non-WNVE controls. These findings were supported by increased ex vivo expression of these proinflammatory genes in glia infected by WNV-NY99. WNV infection caused endoplasmic reticulum stress gene induction and apoptosis in neurons but did not affect glial viability. WNV-infected astrocytic cells secreted cytotoxic factors, which caused neuronal apoptosis. The expression of the WNV-NY99 capsid protein in neurons and glia by a Sindbis virus-derived vector (SINrep5-WNVc) caused neuronal death and the release of neurotoxic factors by infected astrocytes, coupled with proinflammatory gene induction and suppression of OASIS. Striatal implantation of SINrep5-WNVC induced neuroinflammation in rats, together with the induction of CXCL10 and diminished OASIS expression, compared to controls. Moreover, magnetic resonance neuroimaging showed edema and tissue injury in the vicinity of the SINrep5-WNVc implantation site compared to controls, which was complemented by neurobehavioral abnormalities in the SINrep5-WNVc-implanted animals. These studies underscore the important interactions between the WNV capsid protein and neuroinflammation in the pathogenesis of WNV-induced neurological disorders. PMID:17670819
Minchenko, O H; Kharkova, A P; Minchenko, D O; Karbovskyi, L L
2015-01-01
We have studied hypoxic regulation of the expression of different insulin-like growth factor binding protein genes in U87 glioma cells in relation to inhibition of IRE1 (inositol requiring enzyme-1), a central mediator of endoplasmic reticulum stress, which controls cell proliferation and tumor growth. We have demonstrated that hypoxia leads to up-regulation of the expression of IGFBP6, IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulation--of IGFBP9/NOV gene at the mRNA level in control glioma cells, being more signifcant changes for IGFBP10/CYR61 and WISP2 genes. At the same time, inhibition of IRE1 modifies the effect of hypoxia on the expression of all studied genes: eliminates sensitivity to hypoxia the expression of IGFBP7 and IGFBP9/NOV genes, suppresses effect of hypoxia on IGFBP6, IGFBP10/CYR61, and WISP2 genes, and slightly enhances hypoxic regulation of WISP1 gene expression in glioma cells. We have also demonstrated that the expression of all studied genes in glioma cells is regulated by IRE1 signaling enzyme upon normoxic condition, because inhibition of IRE1 significantly up-regulates IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulates IGFBP6 and IGFBP9/NOV genes as compared to control glioma cells. The present study demonstrates that hypoxia, which contributes to tumor growth, affects all studied IGFBP and WISP gene expressions and that inhibition of IRE1 preferentially abolishes or suppresses the hypoxic regulation of these gene expressions and thus possibly contributes to slower glioma growth. Moreover, inhibition of IRE1, which correlates with suppression of cell proliferation and glioma growth, is down-regulated expression of pro-proliferative IGFBP genes, attesting to the fact that endoplasmic reticulum stress is a necessary component of malignant tumor growth.
Distribution profile of inositol 1,4,5-trisphosphate receptor isoforms in adrenal chromaffin cells.
Huh, Yang Hoon; Yoo, Jie Ae; Bahk, Sook Jin; Yoo, Seung Hyun
2005-05-09
Given the importance of inositol 1,4,5-trisphosphate receptor (IP(3)R)/Ca(2+) channels in the control of intracellular Ca(2+) concentrations, we determined the relative concentrations of the IP(3)R isoforms in subcellular organelles, based on serially sectioned electron micrographs. The endoplasmic reticulum (ER) was estimated to contain 15-20% of each of the three IP(3)R isoforms while secretory granules contained 58-69%. The nucleus contained approximately 15% each of IP(3)R-1 and -2, but 25% of IP(3)R-3, whereas the plasma membrane contained approximately 1% or less of each. These suggested that secretory granules, the nucleus and ER are at the center of IP(3)-dependent intracellular Ca(2+) control mechanisms in chromaffin cells.
do Carmo, Jussara M.; Hosler, Jonathan P.; Hall, John E.
2015-01-01
We investigated obesity-induced changes in kidney lipid accumulation, mitochondrial function, and endoplasmic reticulum (ER) stress in the absence of hypertension, and the potential role of leptin in modulating these changes. We compared two normotensive genetic mouse models of obesity, leptin-deficient ob/ob mice and hyperleptinemic melanocortin-4 receptor-deficient mice (LoxTB MC4R−/−), with their respective lean controls. Compared with controls, ob/ob and LoxTB MC4R−/− mice exhibit significant albuminuria, increased creatinine clearance, and high renal triglyceride content. Renal ATP levels were decreased in both obesity models, and mitochondria isolated from both models showed alterations that would lower mitochondrial ATP production. Mitochondria from hyperleptinemic LoxTB MC4R−/− mice kidneys respired NADH-generating substrates (including palmitate) at lower rates due to an apparent decrease in complex I activity, and these mitochondria showed oxidative damage. Kidney mitochondria of leptin-deficient ob/ob mice showed normal rates of respiration with no evidence of oxidative damage, but electron transfer was partially uncoupled from ATP synthesis. A fourfold induction of C/EBP homologous protein (CHOP) expression indicated induction of ER stress in kidneys of hyperleptinemic LoxTB MC4R−/− mice. In contrast, ER stress was not induced in kidneys of leptin-deficient ob/ob mice. Our findings show that obesity, in the absence of hypertension, is associated with renal dysfunction in mice but not with major renal injury. Alterations to mitochondria that lower cellular ATP levels may be involved in obesity-induced renal injury. The type and severity of mitochondrial and ER dysfunction differs depending upon the presence or absence of leptin. PMID:26290368
Oliván, Sara; Martínez-Beamonte, Roberto; Calvo, Ana C; Surra, Joaquín C; Manzano, Raquel; Arnal, Carmen; Osta, Rosario; Osada, Jesús
2014-08-01
Amyotrophic lateral sclerosis is a neurodegenerative disease associated with mutations in antioxidant enzyme Cu/Zn-superoxide dismutase 1. Albeit there is no treatment for this disease, new insights related to an exacerbated lipid metabolism have been reported. In connection with the hypermetabolic lipid status, the hypothesis whether nature of dietary fat might delay the progression of the disease was tested by using a transgenic mouse that overexpresses the human SOD1G93A variant. For this purpose, SOD1G93A mice were assigned randomly to one of the following three experimental groups: (1) a standard chow diet (control, n=21), (2) a chow diet enriched with 20% (w/w) extra virgin olive oil (EVOO, n=22) and (3) a chow diet containing 20% palm oil (palm, n=20). They received the diets for 8 weeks and the progression of the disease was assessed. On the standard chow diet, average plasma cholesterol levels were lower than those mice receiving the high-fat diets. Mice fed an EVOO diet showed a significant higher survival and better motor performance than control mice. EVOO group mice survived longer and showed better motor performance and larger muscle fiber area than animals receiving palm. Moreover, the EVOO-enriched diet improved the muscle status as shown by expression of myogenic factors (Myod1 and Myog) and autophagy markers (LC3 and Beclin1), as well as diminished endoplasmic reticulum (ER) stress through decreasing Atf6 and Grp78. Our results demonstrate that EVOO may be effective in increasing survival rate, improving motor coordination together with a potential amelioration of ER stress, autophagy and muscle damage. Copyright © 2014 Elsevier Inc. All rights reserved.
Peng, Chuangang; Yang, Qi; Wei, Bo; Liu, Yong; Li, Yuxiang; Gu, Dawei; Yin, Guochao; Wang, Bo; Xu, Dehui; Zhang, Xuebing; Kong, Daliang
2017-07-01
The aim was to research the molecular changes of bone cells induced by excessive dose of vitamin A, and analyze molecular mechanism underlying spontaneous fracture. The gene expression profile of GSE29859, including 4 cortical bone marrow samples with excessive doses of Vitamin A and 4 control cortical bone marrow samples, was obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DGEs) between cortical bone marrow samples and control samples were screened out and pathway enrichment analysis was undertaken. Based on the MSigDB database, the potential regulatory transcription factors (TFs) were identified. A total of 373 DEGs including 342 up- and 31 down-regulated genes were identified. These DEGs were significantly enriched in pathways of protein processing in endoplasmic reticulum, ubiquitin mediated proteolysis and glycerophospholipid metabolism. Finally, the most significant regulatory TFs were obtained, including E2F Transcription Factor 1 (E2F1), GA Binding Protein Transcription Factor (GABP), Nuclear Factor, Erythroid 2-Like 2 (NRF2) and ELK1, Member of ETS Oncogene Family (ELK1). Key TFs including E2F1, GABP, NRF2 and ELK1 and their targets genes such as Ube2d3, Uba1, Phb2 and Tomm22 may play potential key roles in spontaneous fracture induced by hypervitaminosis A. The pathways of protein processing in endoplasmic reticulum, ubiquitin mediated proteolysis and glycerophospholipid metabolism may be key mechanisms involved in spontaneous fracture induced by hypervitaminosis A. Our findings will provide new insights for the target selection in clinical application to prevent spontaneous fracture induced by hypervitaminosis A. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Persson, S.; Wyatt, S. E.; Love, J.; Thompson, W. F.; Robertson, D.; Boss, W. F.; Brown, C. S. (Principal Investigator)
2001-01-01
To investigate the endoplasmic reticulum (ER) Ca(2+) stores in plant cells, we generated tobacco (Nicotiana tabacum; NT1) suspension cells and Arabidopsis plants with altered levels of calreticulin (CRT), an ER-localized Ca(2+)-binding protein. NT1 cells and Arabidopsis plants were transformed with a maize (Zea mays) CRT gene in both sense and antisense orientations under the control of an Arabidopsis heat shock promoter. ER-enriched membrane fractions from NT1 cells were used to examine how altered expression of CRT affects Ca(2+) uptake and release. We found that a 2.5-fold increase in CRT led to a 2-fold increase in ATP-dependent (45)Ca(2+) accumulation in the ER-enriched fraction compared with heat-shocked wild-type controls. Furthermore, after treatment with the Ca(2+) ionophore ionomycin, ER microsomes from NT1 cells overproducing CRT showed a 2-fold increase in the amount of (45)Ca(2+) released, and a 2- to 3-fold increase in the amount of (45)Ca(2+) retained compared with wild type. These data indicate that altering the production of CRT affects the ER Ca(2+) pool. In addition, CRT transgenic Arabidopsis plants were used to determine if altered CRT levels had any physiological effects. We found that the level of CRT in heat shock-induced CRT transgenic plants correlated positively with the retention of chlorophyll when the plants were transferred from Ca(2+)-containing medium to Ca(2+)-depleted medium. Together these data are consistent with the hypothesis that increasing CRT in the ER increases the ER Ca(2+) stores and thereby enhances the survival of plants grown in low Ca(2+) medium.
Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian
2013-11-28
Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.
Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian
2013-01-01
Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role. PMID:24287918
Hayashi, Teruo; Hayashi, Eri; Fujimoto, Michiko; Sprong, Hein; Su, Tsung-Ping
2012-01-01
The glycosphingolipid biosynthesis is initiated by monoglycosylation of ceramides, the action of which is catalyzed either by UDP-glucose:ceramide glucosyltransferase or by UDP-galactose:ceramide galactosyltransferase (CGalT). CGalT is expressed predominantly at the endoplasmic reticulum (ER) of oligodendrocytes and is responsible for synthesizing galactosylceramides (GalCer) that play an important role in regulation of axon conductance. However, despite the importance of ceramide monoglycosylation enzymes in a spectrum of cellular functions, the mechanism that fine tunes activities of those enzymes is largely unknown. In the present study, we demonstrated that the sigma-1 receptor (Sig-1R) chaperone, the mammalian homologue of a yeast C8-C7 sterol isomerase, controls the protein level and activity of the CGalT enzyme via a distinct ER-associated degradation system involving Insig. The Sig-1R forms a complex with Insig via its transmembrane domain partly in a sterol-dependent manner and associates with CGalT at the ER. The knockdown of Sig-1Rs dramatically prolonged the lifetime of CGalT without affecting the trimming of N-linked oligosaccharides at CGalT. The increased lifetime leads to the up-regulation of CGalT protein as well as elevated enzymatic activity in CHO cells stably expressing CGalT. Knockdown of Sig-1Rs also decreased CGalT degradation endogenously expressed in D6P2T-schwannoma cells. Our data suggest that Sig-1Rs negatively regulate the activity of GalCer synthesis under physiological conditions by enhancing the degradation of CGalT through regulation of the dynamics of Insig in the lipid-activated ER-associated degradation system. The GalCer synthesis may thus be influenced by sterols at the ER. PMID:23105111
Persson, S; Wyatt, S E; Love, J; Thompson, W F; Robertson, D; Boss, W F
2001-07-01
To investigate the endoplasmic reticulum (ER) Ca(2+) stores in plant cells, we generated tobacco (Nicotiana tabacum; NT1) suspension cells and Arabidopsis plants with altered levels of calreticulin (CRT), an ER-localized Ca(2+)-binding protein. NT1 cells and Arabidopsis plants were transformed with a maize (Zea mays) CRT gene in both sense and antisense orientations under the control of an Arabidopsis heat shock promoter. ER-enriched membrane fractions from NT1 cells were used to examine how altered expression of CRT affects Ca(2+) uptake and release. We found that a 2.5-fold increase in CRT led to a 2-fold increase in ATP-dependent (45)Ca(2+) accumulation in the ER-enriched fraction compared with heat-shocked wild-type controls. Furthermore, after treatment with the Ca(2+) ionophore ionomycin, ER microsomes from NT1 cells overproducing CRT showed a 2-fold increase in the amount of (45)Ca(2+) released, and a 2- to 3-fold increase in the amount of (45)Ca(2+) retained compared with wild type. These data indicate that altering the production of CRT affects the ER Ca(2+) pool. In addition, CRT transgenic Arabidopsis plants were used to determine if altered CRT levels had any physiological effects. We found that the level of CRT in heat shock-induced CRT transgenic plants correlated positively with the retention of chlorophyll when the plants were transferred from Ca(2+)-containing medium to Ca(2+)-depleted medium. Together these data are consistent with the hypothesis that increasing CRT in the ER increases the ER Ca(2+) stores and thereby enhances the survival of plants grown in low Ca(2+) medium.
Persson, Staffan; Wyatt, Sarah E.; Love, John; Thompson, William F.; Robertson, Dominique; Boss, Wendy F.
2001-01-01
To investigate the endoplasmic reticulum (ER) Ca2+ stores in plant cells, we generated tobacco (Nicotiana tabacum; NT1) suspension cells and Arabidopsis plants with altered levels of calreticulin (CRT), an ER-localized Ca2+-binding protein. NT1 cells and Arabidopsis plants were transformed with a maize (Zea mays) CRT gene in both sense and antisense orientations under the control of an Arabidopsis heat shock promoter. ER-enriched membrane fractions from NT1 cells were used to examine how altered expression of CRT affects Ca2+ uptake and release. We found that a 2.5-fold increase in CRT led to a 2-fold increase in ATP-dependent 45Ca2+ accumulation in the ER-enriched fraction compared with heat-shocked wild-type controls. Furthermore, after treatment with the Ca2+ ionophore ionomycin, ER microsomes from NT1 cells overproducing CRT showed a 2-fold increase in the amount of 45Ca2+ released, and a 2- to 3-fold increase in the amount of 45Ca2+ retained compared with wild type. These data indicate that altering the production of CRT affects the ER Ca2+ pool. In addition, CRT transgenic Arabidopsis plants were used to determine if altered CRT levels had any physiological effects. We found that the level of CRT in heat shock-induced CRT transgenic plants correlated positively with the retention of chlorophyll when the plants were transferred from Ca2+-containing medium to Ca2+-depleted medium. Together these data are consistent with the hypothesis that increasing CRT in the ER increases the ER Ca2+ stores and thereby enhances the survival of plants grown in low Ca2+ medium. PMID:11457960
Reis, M; Farage, M; de Souza, A C; de Meis, L
2001-11-16
The sarcoplasmic reticulum Ca(2+)-ATPase transports Ca(2+) using the chemical energy derived from ATP hydrolysis. Part of the chemical energy is used to translocate Ca(2+) through the membrane (work) and part is dissipated as heat. The amount of heat produced during catalysis increases after formation of the Ca(2+) gradient across the vesicle membrane. In the absence of gradient (leaky vesicles) the amount of heat produced/mol of ATP cleaved is half of that measured in the presence of the gradient. After formation of the gradient, part of the ATPase activity is not coupled to Ca(2+) transport. We now show that NaF can impair the uncoupled ATPase activity with discrete effect on the ATPase activity coupled to Ca(2+) transport. For the control vesicles not treated with NaF, after formation of the gradient only 20% of the ATP cleaved is coupled to Ca(2+) transport, and the caloric yield of the total ATPase activity (coupled plus uncoupled) is 22.8 kcal released/mol of ATP cleaved. In contrast, the vesicles treated with NaF consume only the ATP needed to maintain the gradient, and the caloric yield of ATP hydrolysis is 3.1 kcal/mol of ATP. The slow ATPase activity measured in vesicles treated with NaF has the same Ca(2+) dependence as the control vesicles. This demonstrates unambiguously that the uncoupled activity is an actual pathway of the Ca(2+)-ATPase rather than a contaminating phosphatase. We conclude that when ATP hydrolysis occurs without coupled biological work most of the chemical energy is dissipated as heat. Thus, uncoupled ATPase activity appears to be the mechanistic feature underlying the ability of the Ca(2+)-ATPase to modulated heat production.
Pauquai, Thomas; Bouchoux, Julien; Chateau, Danielle; Vidal, Romain; Rousset, Monique; Chambaz, Jean; Demignot, Sylvie
2006-01-01
Enterocytes are responsible for the absorption of dietary lipids, which involves TRL [TG (triacylglycerol)-rich lipoprotein] assembly and secretion. In the present study, we analysed the effect on TRL secretion of Caco-2 enterocyte adaptation to a differential glucose supply. We showed that TG secretion in cells adapted to a low glucose supply for 2 weeks after confluence was double that of control cells maintained in high-glucose-containing medium, whereas the level of TG synthesis remained similar in both conditions. This increased secretion resulted mainly from an enlargement of the mean size of the secreted TRL. The increased TG availability for TRL assembly and secretion was not due to an increase in the MTP (microsomal TG transfer protein) activity that is required for lipid droplet biogenesis in the ER (endoplasmic reticulum) lumen, or to the channelling of absorbed fatty acids towards the monoacylglycerol pathway for TG synthesis. Interestingly, by electron microscopy and subcellular fractionation studies, we observed, in the low glucose condition, an increase in the TG content available for lipoprotein assembly in the ER lumen, with the cytosolic/microsomal TG levels being verapamil-sensitive. Overall, we demonstrate that Caco-2 enterocytes modulate TRL secretion through TG partitioning between the cytosol and the ER lumen according to the glucose supply. Our model will help in identifying the proteins involved in the control of the balance between TRL assembly and cytosolic lipid storage. This mechanism may be a way for enterocytes to regulate TRL secretion after a meal, and thus impact on our understanding of post-prandial hypertriglyceridaemia. PMID:16393142
Hubber, Andree; Arasaki, Kohei; Nakatsu, Fubito; Hardiman, Camille; Lambright, David; De Camilli, Pietro; Nagai, Hiroki; Roy, Craig R
2014-07-01
The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P)-binding domain first described in the effector DrrA (SidM). This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV), and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM) and the endoplasmic reticulum (ER) modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα) was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis.
Huang, Guang-Biao; Zhao, Tong; Muna, Sushma Shrestha; Bagalkot, Tarique Rajasaheb; Jin, Hong-Mei; Chae, Han-Jung; Chung, Young-Chul
2013-08-01
The present study investigated the effects of social defeat stress on the behaviours and expressions of 78-kDa glucose-regulated protein (Grp78), CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) and choline acetyltransferase (Chat) in the brains of adolescent mice. Adolescent male C57BL/6J mice were divided into two groups (susceptible and unsusceptible) after 10 d social defeat stress. In expt 1, behavioural tests were conducted and brains were processed for Western blotting on day 21 after stress. In expt 2, social avoidance tests were conducted and brains were subsequently processed for Western blotting on day 12 after stress. Chronic social defeat stress produced more pronounced depression-like behaviours such as decreased locomotion and social interaction, increased anxiety-like behaviours and immobility, and impaired memory performance in susceptible mice. Moreover, susceptible mice showed greater expression of Grp78 and CHOP in the amygdala (Amyg) on days 12 and 21 compared with the other groups. Susceptible and unsusceptible groups showed significant increases in Grp78 and CHOP expression in the prefrontal cortex (PFC) and hippocampus (Hipp) on day 12 compared with the control group; this persisted until day 21. The levels of Chat measured on days 12 and 21 were significantly lower in the PFC, Amyg and Hipp of all defeated mice compared with controls. The findings of the behavioural tests indicate that chronic social defeat in adolescents produces anxiety-like behaviours, social withdrawal, despair-like behaviours and cognitive impairment. The Grp78, CHOP and Chat results suggest that the selective response of endoplasmic reticulum stress proteins in the Amyg plays an important role in the vulnerability-stress model of depression.
2009-01-01
The endoplasmic reticulum (ER) is involved in several crucial cellular functions, e.g. protein folding and quality control, maintenance of Ca2+ balance, and cholesterol synthesis. Many genetic and environmental insults can disturb the function of ER and induce ER stress. ER contains three branches of stress sensors, i.e. IRE1, PERK and ATF6 transducers, which recognize the misfolding of proteins in ER and activate a complex signaling network to generate the unfolded protein response (UPR). Alzheimer's disease (AD) is a progressive neurodegenerative disorder involving misfolding and aggregation of proteins in conjunction with prolonged cellular stress, e.g. in redox regulation and Ca2+ homeostasis. Emerging evidence indicates that the UPR is activated in neurons but not in glial cells in AD brains. Neurons display pPERK, peIF2α and pIRE1α immunostaining along with abundant diffuse staining of phosphorylated tau protein. Recent studies have demonstrated that ER stress can also induce an inflammatory response via different UPR transducers. The most potent pathways are IRE1-TRAF2, PERK-eIF2α, PERK-GSK-3, ATF6-CREBH, as well as inflammatory caspase-induced signaling pathways. We will describe the mechanisms which could link the ER stress of neurons to the activation of the inflammatory response and the evolution of pathological changes in AD. PMID:20035627
Briquet-Laugier, V; Ben-Zeev, O; White, A; Doolittle, M H
1999-11-01
The mutations cld (combined lipase deficiency) and lec23 disrupt in a similar manner the expression of lipoprotein lipase (LPL). Whereas cld affects an unknown gene, lec23 abolishes the activity of alpha-glucosidase I, an enzyme essential for proper folding and assembly of nascent glycoproteins. The hypothesis that cld, like lec23, affects the folding/assembly of nascent LPL was confirmed by showing that in cell lines homozygous for these mutations (Cld and Lec23, respectively), the majority of LPL was inactive, displayed heterogeneous aggregation, and had a decreased affinity for heparin. While inactive LPL was retained in the ER, a small amount of LPL that had attained a native conformation was transported through the Golgi and secreted. Thus, Cld and Lec23 cells recognized and retained the majority of LPL as misfolded, maintaining the standard of quality control. Examination of candidate factors affecting protein maturation, such as glucose addition and trimming, proteins involved in lectin chaperone cycling, and other abundant ER chaperones, revealed that calnexin levels were dramatically reduced in livers from cld/cld mice; this finding was also confirmed in Cld cells. We conclude that cld may affect components in the ER, such as calnexin, that play a role in protein maturation. Whether the reduced calnexin levels per se contribute to the LPL deficiency awaits confirmation.
Camargo, Antonio; Meneses, Maria E; Rangel-Zuñiga, Oriol A; Perez-Martinez, Pablo; Marin, Carmen; Delgado-Lista, Javier; Paniagua, Juan A; Tinahones, Francisco J; Roche, Helen; Malagon, Maria M; Perez-Jimenez, Francisco; Lopez-Miranda, Jose
2013-12-01
Our aim was to ascertain whether the quality and quantity of fat in the diet may influence the ER stress at the postprandial state in adipose tissue by analyzing the gene expression of chaperones, folding enzymes, and activators of the UPR. A randomized, controlled trial conducted within the LIPGENE study assigned 39 MetS patients to one of four diets: high-SFA (HSFA; 38% energy (E) from fat, 16% E as SFA), high MUFA (HMUFA; 38% E from fat, 20% E as MUFA), and two low-fat, high-complex carbohydrate (LFHCC; 28% E from fat) diets supplemented with 1.24 g/day of long-chain n-3 PUFA or placebo for 12 wk each. A fat challenge reflecting the same fatty acid composition as the original diets was conducted post intervention. sXBP-1 is induced in the postprandial state irrespective of the diet consumed (p < 0.001). BiP increases postprandially after consumption of diets HMUFA (p = 0.006), LFHCC (p = 0.028), and LFHCC n-3 (p = 0.028). Postprandial mRNA expression levels of CRL, CNX, PDIA3, and GSTP1 in AT did not differ between the different types of diets. Our results suggest that upregulation of the unfolded protein response at the postprandial state may represent an adaptive mechanism to counteract diet-induced stress. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Jiang-Hua; Huang, Wan; Lin, Peng; Wu, Bo; Fu, Zhi-Guang; Shen, Hao-Miao; Jing, Lin; Liu, Zhen-Yu; Zhou, Yang; Meng, Yao; Xu, Bao-Qing; Chen, Zhi-Nan; Jiang, Jian-Li
2016-11-21
Cluster of differentiation 147 (CD147), also known as extracellular matrix metalloproteinase inducer, is a transmembrane glycoprotein that mediates oncogenic processes partly through N-glycosylation modifications. N-glycosylation has been demonstrated to be instrumental for the regulation of CD147 function during malignant transformation. However, the role that site-specific glycosylation of CD147 plays in its defective function in hepatocellular carcinomacells needs to be determined. Here, we demonstrate that the modification of N-glycosylation at Asn152 on CD147 strongly promotes hepatocellular carcinoma (HCC) invasion and migration. After the removal of N-glycans at Asn152, CD147 was more susceptible to degradation by ER-localized ubiquitin ligase-mediated endoplasmic reticulum-associated degradation (ERAD). Furthermore, N-linked glycans at Asn152 were required for CD147 to acquire and maintain proper folding in the ER. Moreover, N-linked glycans at Asn152 functioned as a recognition motif that was directly mediated by the CNX quality control system. Two phases in the retention-based ER chaperones system drove ER-localized CD147 trafficking to degradation. Deletion of N-linked glycosylation at Asn152 on CD147 significantly suppressed in situ tumour metastasis. These data could potentially shed light on the molecular regulation of CD147 through glycosylation and provide a valuable means of developing drugs that target N-glycans at Asn152 on CD147.
Met receptor inhibitor SU11274 localizes in the endoplasmic reticulum.
Wiest, Edwin J; Smith, Heather Jensen; Hollingsworth, Michael A
2018-07-02
We discovered that SU11274, a class I c-Met inhibitor, fluoresces when excited by 488 nm laser light and showed rapid specific accumulation in distinct subcellular compartments. Given that SU11274 reduces cancer cell viability, we exploited these newly identified spectral properties to determine SU11274 intracellular distribution and accumulation in human pancreatic cancer cells. The aim of the studies reported here was to identify organelle(s) to which SU11274 is trafficked. We conclude that SU11274 rapidly and predominantly accumulates in the endoplasmic reticulum. Copyright © 2018. Published by Elsevier Inc.
Central core disease. A correlated genetic, histochemical, ultramicroscopic, and biochemical study.
Isaacs, H; Heffron, J J; Badenhorst, M
1975-01-01
Two patients suffering from central core disease are presented. The condition is associated with musculoskeletal abnormalities which have been traced back over five generations. In addition to the typical histochemical findings, electronmicroscopic study has revealed the presence of both structured and non-structured cores in adjacent areas. The calcium uptake by the sarcoplasmic reticulum was reduced to one-third of normal. Phosphorylase activity was normal in the one case and reduced to 63% in the other. Actomyosin Mg2+-activated ATPase activity was decreased, as was the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Images PMID:130467
ULTRASTRUCTURAL OBSERVATIONS OF VITELLOGENESIS IN THE SPIDER CRAB, LIBINIA EMARGINATA L
Hinsch, Gertrude W.; Cone, M. Virginia
1969-01-01
Ovaries from the spider crab, Libinia emarginata L. were studied to learn more of vitellogenesis in crustaceans. Oogonia and previtellogenic oocytes were found in the core of the ovaries. Vitellogenic oocytes are located more peripherally. Profiles of the endoplasmic reticulum are abundant in the vitellogenic oocytes. The granular and agranular reticulum as well as the Golgi complex are active in yolk synthesis. As vitellogenesis proceeds, yolk precursors are incorporated into the egg by micropinocytosis at the egg surface. Thus, in Libinia, yolk materials appear to be derived from both intra- and extraoocytic sources. PMID:5812467
Localization of intracellular and plasma membrane Ca2+-ATPases in the cerebellum.
Sepúlveda, M Rosario; Mata, Ana M
2005-01-01
The sarco-endoplasmic reticulum Ca2+-ATPase and the plasma membrane Ca2+-ATPase contribute to the regulation of the intracellular Ca2+ concentration. These proteins transport Ca2+ ions into the endoplasmic reticulum and to the extracellular medium, respectively. A different localization of the two families of Ca2+-ATPases has been shown in concrete subcellular areas of Purkinje cells and in other neuronal elements from cerebellum. In the light of the actual knowledge of Ca2+-ATPases, this strict distribution suggests the existence of different demands on Ca2+ homeostasis in these cerebellar and cellular subregions.
de Toledo, F G; Albuquerque, M C; Goulart, B H; Chini, E N
1995-05-01
Trout and rabbit (Ca2+ + Mg2+)-ATPases from sarcoplasmic reticulum were compared for differences in thermal inactivation and susceptibility to trypsin digestion. The trout ATPase is more heat-sensitive than the rabbit ATPase and is stabilized by Ca2+, Na+, K+ and nucleotides. Solubilization of both ATPases shows that the two ATPases have different protein-intrinsic inactivation kinetics. When digested by trypsin, the two ATPases display different cleavage patterns. The present results indicate that the trout and rabbit ATPases have dissimilarities in protein structure that may explain the differences in thermal inactivation kinetics.
NASA Technical Reports Server (NTRS)
Ross, M. D.
2000-01-01
This study combined ultrastructural and statistical methods to learn the effects of weightlessness on rat utricular maculae. A principle aim was to determine whether weightlessness chiefly affects ribbon synapses of type II cells, since the cells communicate predominantly with branches of primary vestibular afferent endings. Maculae were microdissected from flight and ground control rat inner ears collected on day 13 of a 14-day spaceflight (F13), landing day (R0) and day 14 postflight (R14) and were prepared for ultrastructural study. Ribbon synapses were counted in hair cells examined in a Zeiss 902 transmission electron microscope. Significance of synaptic mean differences was determined for all hair cells contained within 100 section series, and for a subset of complete hair cells, using SuperANOVA software. The synaptic mean for all type II hair cells of F13 flight rats increased by 100%, and that for complete cells by 200%. Type I cells were less affected, with synaptic mean differences statistically insignificant in complete cells. Synapse deletion began within 8 h upon return to Earth. Additionally, hair cell laminated rough endoplasmic reticulum of flight rats was reversibly disorganized on R0. Results support the thesis that synapses in type II hair cells are uniquely affected by altered gravity. Type II hair cells may be chiefly sensors of gravitational and type I cells of translational linear accelerations.
ATAD3 proteins: brokers of a mitochondria-endoplasmic reticulum connection in mammalian cells.
Baudier, Jacques
2018-05-01
In yeast, a sequence of physical and genetic interactions termed the endoplasmic reticulum (ER)-mitochondria organizing network (ERMIONE) controls mitochondria-ER interactions and mitochondrial biogenesis. Several functions that characterize ERMIONE complexes are conserved in mammalian cells, suggesting that a similar tethering complex must exist in metazoans. Recent studies have identified a new family of nuclear-encoded ATPases associated with diverse cellular activities (AAA+-ATPase) mitochondrial membrane proteins specific to multicellular eukaryotes, called the ATPase family AAA domain-containing protein 3 (ATAD3) proteins (ATAD3A and ATAD3B). These proteins are crucial for normal mitochondrial-ER interactions and lie at the heart of processes underlying mitochondrial biogenesis. ATAD3A orthologues have been studied in flies, worms, and mammals, highlighting the widespread importance of this gene during embryonic development and in adulthood. ATAD3A is a downstream effector of target of rapamycin (TOR) signalling in Drosophila and exhibits typical features of proteins from the ERMIONE-like complex in metazoans. In humans, mutations in the ATAD3A gene represent a new link between altered mitochondrial-ER interaction and recognizable neurological syndromes. The primate-specific ATAD3B protein is a biomarker of pluripotent embryonic stem cells. Through negative regulation of ATAD3A function, ATAD3B supports mitochondrial stemness properties. © 2017 Cambridge Philosophical Society.
Zhu, Haiying; Fan, Yanxia; Sun, Hongyu; Chen, Liyan; Man, Xiao
2017-01-01
The aim of the present study was to observe the dynamic changes of the growth arrest and DNA damage-inducible 153 (GADD153) gene and caspase-12 in the brain tissue of rats with cerebral ischemia-reperfusion injury (CIRI) and the impact of curcumin pretreatment. A total of 60 rats were randomly divided into the normal group (N), the sham operation group (S), the dimethyl sulfoxide control group (D) and the curcumin treatment group (C). For group D and C, 12 (T1), 24 (T2) and 72 h (T3) of reperfusion were performed after 2 h ischemia. The expression levels of GADD153 and caspase-12 in the brain tissue were detected and compared among the groups by immunohistochemistry, immunofluorescence double staining and western blotting. The expression levels of GADD153 and caspase-12 were increased at T1compared with groups N and S, and the expression of caspase-12 peaked at T2 in group D, while GADD153 was increased until T3 in group D. Compared with group D, the expression levels of GADD153 and caspase-12 in group C at T2 and T3 were significantly decreased (P<0.05). Endoplasmic reticulum stress is involved in the pathological process of CIRI. Curcumin may decrease the expression levels of the above two factors, thus exhibiting protective effects against CIRI in rats. PMID:29067098
Fan, Lu; Li, Ang; Li, Wanshuai; Cai, Peifen; Yang, Baofang; Zhang, Minxia; Gu, Yanhong; Shu, Yongqian; Sun, Yang; Shen, Yan; Wu, Xuefeng; Hu, Gang; Wu, Xudong; Xu, Qiang
2014-10-01
Sarco/endoplasmic reticulum calcium ATPase (SERCA) enzymes play important roles in several signal transduction pathways that control proliferation, differentiation and apoptosis. Here, we reported that SERCA2 expression was positively correlated with tumor node metastasis (TNM) stages (n=75, P=0.0251) and grades (n=63, P=0.0146) of patients with colorectal cancer. The animal experiments demonstrated that SERCA2 expression was consistent with PCNA staining of intestinal tissues of male C57BL/6J-Apc(Min/)JNju mice. Besides, SERCA2 expression was also increased in undifferentiated HT-29 cells as compared with that in differentiated HT-29gal cells. Moreover, SERCA2 overexpression promoted proliferation and migration of SW480 cells via activating MAPK and AKT signaling pathways, while silence of SERCA2 inhibited the proliferation and migration of SW480 cells. In addition, we identified that a curcumin analog, F36, exhibited more potent inhibitory effect in colorectal cancer cells than curcumin through inhibiting SERCA2 expression. Taken together, our findings indicate that SERCA2 is involved in the malignant progress of colorectal cancer and maybe a therapeutic target for colorectal cancer treatment. Curcumin analog F36 shows enhanced anti-cancer activity in colorectal cancer cells by targeting SERCA2. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Szentesi, Péter; Szappanos, Henrietta; Szegedi, Csaba; Gönczi, Monika; Jona, István; Cseri, Julianna; Kovács, László; Csernoch, László
2004-03-01
The effects of thymol on steps of excitation-contraction coupling were studied on fast-twitch muscles of rodents. Thymol was found to increase the depolarization-induced release of calcium from the sarcoplasmic reticulum, which could not be attributed to a decreased calcium-dependent inactivation of calcium release channels/ryanodine receptors or altered intramembrane charge movement, but rather to a more efficient coupling of depolarization to channel opening. Thymol increased ryanodine binding to heavy sarcoplasmic reticulum vesicles, with a half-activating concentration of 144 micro M and a Hill coefficient of 1.89, and the open probability of the isolated and reconstituted ryanodine receptors, from 0.09 +/- 0.03 to 0.22 +/- 0.04 at 30 micro M. At higher concentrations the drug induced long-lasting open events on a full conducting state. Elementary calcium release events imaged using laser scanning confocal microscopy in the line-scan mode were reduced in size, 0.92 +/- 0.01 vs. 0.70 +/- 0.01, but increased in duration, 56 +/- 1 vs. 79 +/- 1 ms, by 30 micro M thymol, with an increase in the relative proportion of lone embers. Higher concentrations favored long events, resembling embers in control, with duration often exceeding 500 ms. These findings provide direct experimental evidence that the opening of a single release channel will generate an ember, rather than a spark, in mammalian skeletal muscle.
Ljungkvist, I
1971-01-01
Ovariosalpingectomized rat uterine glands and luminal epithelium were examined by electron microscopy and in serial cross sections under light microscopy after up to 8 days of treatment with 5 mg progesterone daily. Under light microscopy, the gland lumen was narrow or absent in many epon sections, but wide in many paraffin sections, filled with toluidine blue stained secretion, and serial sections showed that the openings were closed, allowing no connection between the gland lumen and the uterus. In electron micrographs, only those glands without an opening appeared altered by progesterone. The most notable differences in the glandular epithelium were microvilli, condensed ribosome-free cytoplasm next to the lumen, numerous vesicles, sacs and dilated Golgi cisternae in the apical cytoplasm, and more giant mitrochondria in the basal cytoplasm than usually seen in controls. In the luminal epithelium, there were 3 distinct regions: the apical region had condensed cytoplasm often extruded into the lumen, with close-packed, smooth, empty vesicles; the middle region had granular endoplasmic reticulum, mitrochondria, dense bodies, multivesicular bodies, and lipid granules; the basal region contained the nucleus, granular endoplasmic reticulum, mitrochondria and dense abodies. These observations were interpreted as indicative of a transitional state from secretion to absorption, especially since without an opening, secretion would be of little significance.
Alteration in mitochondrial Ca(2+) uptake disrupts insulin signaling in hypertrophic cardiomyocytes.
Gutiérrez, Tomás; Parra, Valentina; Troncoso, Rodrigo; Pennanen, Christian; Contreras-Ferrat, Ariel; Vasquez-Trincado, César; Morales, Pablo E; Lopez-Crisosto, Camila; Sotomayor-Flores, Cristian; Chiong, Mario; Rothermel, Beverly A; Lavandero, Sergio
2014-11-07
Cardiac hypertrophy is characterized by alterations in both cardiac bioenergetics and insulin sensitivity. Insulin promotes glucose uptake by cardiomyocytes and its use as a substrate for glycolysis and mitochondrial oxidation in order to maintain the high cardiac energy demands. Insulin stimulates Ca(2+) release from the endoplasmic reticulum, however, how this translates to changes in mitochondrial metabolism in either healthy or hypertrophic cardiomyocytes is not fully understood. In the present study we investigated insulin-dependent mitochondrial Ca(2+) signaling in normal and norepinephrine or insulin like growth factor-1-induced hypertrophic cardiomyocytes. Using mitochondrion-selective Ca(2+)-fluorescent probes we showed that insulin increases mitochondrial Ca(2+) levels. This signal was inhibited by the pharmacological blockade of either the inositol 1,4,5-triphosphate receptor or the mitochondrial Ca(2+) uniporter, as well as by siRNA-dependent mitochondrial Ca(2+) uniporter knockdown. Norepinephrine-stimulated cardiomyocytes showed a significant decrease in endoplasmic reticulum-mitochondrial contacts compared to either control or insulin like growth factor-1-stimulated cells. This resulted in a reduction in mitochondrial Ca(2+) uptake, Akt activation, glucose uptake and oxygen consumption in response to insulin. Blocking mitochondrial Ca(2+) uptake was sufficient to mimic the effect of norepinephrine-induced cardiomyocyte hypertrophy on insulin signaling. Mitochondrial Ca(2+) uptake is a key event in insulin signaling and metabolism in cardiomyocytes.
Hepatic subcellular distribution of squalene changes according to the experimental setting.
Martínez-Beamonte, Roberto; Alda, Olga; Sanclemente, Teresa; Felices, María J; Escusol, Sara; Arnal, Carmen; Herrera-Marcos, Luis V; Gascón, Sonia; Surra, Joaquín C; Osada, Jesús; Rodríguez-Yoldi, Mª Jesús
2018-02-22
Squalene is the main unsaponifiable component of virgin olive oil, the main source of dietary fat in Mediterranean diet, traditionally associated with a less frequency of cardiovascular diseases. In this study, two experimental approaches were used. In the first, New Zealand rabbits fed for 4 weeks with a chow diet enriched in 1% sunflower oil for the control group, and in 1% of sunflower oil and 0.5% squalene for the squalene group. In the second, APOE KO mice received either Western diet or Western diet enriched in 0.5% squalene for 11 weeks. In both studies, liver samples were obtained and analyzed for their squalene content by gas chromatography-mass spectrometry. Hepatic distribution of squalene was also characterized in isolated subcellular organelles. Our results show that dietary squalene accumulates in the liver and a differential distribution according to studied model. In this regard, rabbits accumulated in cytoplasm within small size vesicles, whose size was not big enough to be considered lipid droplets, rough endoplasmic reticulum, and nuclear and plasma membranes. On the contrary, mice accumulated in large lipid droplets, and smooth reticulum fractions in addition to nuclear and plasma membranes. These results show that the squalene cellular localization may change according to experimental setting and be a starting point to characterize the mechanisms involved in the protective action of dietary squalene in several pathologies.
Verchot, Jeanmarie
2016-11-19
The endoplasmic reticulum (ER) is central to plant virus replication, translation, maturation, and egress. Ubiquitin modification of ER associated cellular and viral proteins, alongside the actions of the 26S proteasome, are vital for the regulation of infection. Viruses can arrogate ER associated ubiquitination as well as cytosolic ubiquitin ligases with the purpose of directing the ubiquitin proteasome system (UPS) to new targets. Such targets include necessary modification of viral proteins which may stabilize certain complexes, or modification of Argonaute to suppress gene silencing. The UPS machinery also contributes to the regulation of effector triggered immunity pattern recognition receptor immunity. Combining the results of unrelated studies, many positive strand RNA plant viruses appear to interact with cytosolic Ub-ligases to provide novel avenues for controlling the deleterious consequences of disease. Viral interactions with the UPS serve to regulate virus infection in a manner that promotes replication and movement, but also modulates the levels of RNA accumulation to ensure successful biotrophic interactions. In other instances, the UPS plays a central role in cellular immunity. These opposing roles are made evident by contrasting studies where knockout mutations in the UPS can either hamper viruses or lead to more aggressive diseases. Understanding how viruses manipulate ER associated post-translational machineries to better manage virus-host interactions will provide new targets for crop improvement.
Liang, Zhongxiu; Liu, Rui; Zhao, Depeng; Wang, Lingling; Sun, Mingzhe; Wang, Mengqiang; Song, Linsheng
2016-07-01
Ammonia is one of major environmental pollutants in the aquatic system that poses a great threat to the survival of shrimp. In the present study, the mRNA expression of endoplasmic reticulum (ER) stress marker and unfolded protein response (UPR) related genes, as well as the change of redox enzyme and apoptosis were investigated in hepatopancreas of the pacific white shrimp, Litopenaeus vannamei after the exposure of 20 mg L(-1) total ammonia nitrogen (TAN). Compared with the control group, the superoxide dismutase (SOD) activity in hepatopancreas decreased significantly (p < 0.05) at 96 h, whereas the malonyldialdehyde (MDA) concentration increased significantly (p < 0.05). The mRNA expression levels of ER stress marker-immunoglobulin heavy chain binding protein (Bip) gene and key UPR related genes including activating transcription factor 4 (ATF4) and the spliced form of X box binding protein 1 (XBP1) increased significantly (p < 0.05) in hepatopancreas at 96 h after exposure to ammonia. In addition, apoptosis was observed obviously in the hepatopancreas of L. vannamei after exposure to ammonia by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. The results indicated that ammonia exposure could induce oxidative stress, which further caused ER stress and apoptosis in hepatopancreas of L. vannamei. Copyright © 2016 Elsevier Ltd. All rights reserved.
Erffelinck, Marie-Laure; Goossens, Alain
2018-06-15
Plants are sessile organisms. Therefore, they developed the capacity to quickly respond to biotic and abiotic environmental stresses, for instance by producing a broad spectrum of bioactive specialized metabolites. In this defense response, the jasmonate phytohormones can instigate a signaling cascade that leads to the specific elicitation and reprograming of numerous metabolic pathways. Recent research progress has provided several insights into the regulatory networks of many specialized metabolic pathways, mainly at the transcriptional level. Nonetheless, our view on the regulation of defense metabolism remains far from comprehensive. Here, we describe the recent advances obtained with regard to one aspect of the regulation of plant specialized metabolism, namely the posttranslational regulation of enzyme stability. We focus on terpenoid biosynthesis and in particular on the rate-limiting and well-investigated enzyme of the terpenoid precursor pathway, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). There are clear similarities, as well as important mechanistic differences, among the components involved in the posttranslational regulation of terpenoid biosynthesis via HMGR in plants, yeasts, and mammals. Furthermore, in plants, several of these components evolved to respond to specific signaling cues. Indeed, the elements of the plant endoplasmic reticulum-associated degradation (ERAD) and ER stress-associated processes can be induced upon environmental stresses and during specific developmental processes, thereby allowing a unique posttranslational regulation of terpenoid biosynthesis pathways. Georg Thieme Verlag KG Stuttgart · New York.
Yamauchi, Yoshio; Iwamoto, Noriyuki; Rogers, Maximillian A.; Abe-Dohmae, Sumiko; Fujimoto, Toyoshi; Chang, Catherine C. Y.; Ishigami, Masato; Kishimoto, Takuma; Kobayashi, Toshihide; Ueda, Kazumitsu; Furukawa, Koichi; Chang, Ta-Yuan; Yokoyama, Shinji
2015-01-01
Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process. PMID:26198636
Mitochondria: more than just a powerhouse.
McBride, Heidi M; Neuspiel, Margaret; Wasiak, Sylwia
2006-07-25
Pioneering biochemical studies have long forged the concept that the mitochondria are the 'energy powerhouse of the cell'. These studies, combined with the unique evolutionary origin of the mitochondria, led the way to decades of research focusing on the organelle as an essential, yet independent, functional component of the cell. Recently, however, our conceptual view of this isolated organelle has been profoundly altered with the discovery that mitochondria function within an integrated reticulum that is continually remodeled by both fusion and fission events. The identification of a number of proteins that regulate these activities is beginning to provide mechanistic details of mitochondrial membrane remodeling. However, the broader question remains regarding the underlying purpose of mitochondrial dynamics and the translation of these morphological transitions into altered functional output. One hypothesis has been that mitochondrial respiration and metabolism may be spatially and temporally regulated by the architecture and positioning of the organelle. Recent evidence supports and expands this idea by demonstrating that mitochondria are an integral part of multiple cell signaling cascades. Interestingly, proteins such as GTPases, kinases and phosphatases are involved in bi-directional communication between the mitochondrial reticulum and the rest of the cell. These proteins link mitochondrial function and dynamics to the regulation of metabolism, cell-cycle control, development, antiviral responses and cell death. In this review we will highlight the emerging evidence that provides molecular definition to mitochondria as a central platform in the execution of diverse cellular events.
Fouqué, A; Lepvrier, E; Debure, L; Gouriou, Y; Malleter, M; Delcroix, V; Ovize, M; Ducret, T; Li, C; Hammadi, M; Vacher, P; Legembre, P
2016-01-01
Metalloprotease-processed CD95L (cl-CD95L) is a soluble cytokine that implements a PI3K/Ca2+ signaling pathway in triple-negative breast cancer (TNBC) cells. Accordingly, high levels of cl-CD95L in TNBC women correlate with poor prognosis, and administration of this ligand in an orthotopic xenograft mouse model accelerates the metastatic dissemination of TNBC cells. The molecular mechanism underlying CD95-mediated cell migration remains unknown. Here, we present genetic and pharmacologic evidence that the anti-apoptotic molecules BclxL and Bcl-2 and the pro-apoptotic factors BAD and BID cooperate to promote migration of TNBC cells stimulated with cl-CD95L. BclxL was distributed in both endoplasmic reticulum (ER) and mitochondrion membranes. The mitochondrion-localized isoform promoted cell migration by interacting with voltage-dependent anion channel 1 to orchestrate Ca2+ transfer from the ER to mitochondria in a BH3-dependent manner. Mitochondrial Ca2+ uniporter contributed to this flux, which favored ATP production and cell migration. In conclusion, this study reveals a novel molecular mechanism controlled by BclxL to promote cancer cell migration and supports the use of BH3 mimetics as therapeutic options not only to kill tumor cells but also to prevent metastatic dissemination in TNBCs. PMID:27367565
Di, Xiao-Jing; Wang, Ya-Juan; Han, Dong-Yun; Fu, Yan-Lin; Duerfeldt, Adam S; Blagg, Brian S J; Mu, Ting-Wei
2016-04-29
Proteostasis maintenance of γ-aminobutyric acid type A (GABAA) receptors dictates their function in controlling neuronal inhibition in mammalian central nervous systems. However, as a multisubunit, multispan, integral membrane protein, even wild type subunits of GABAA receptors fold and assemble inefficiently in the endoplasmic reticulum (ER). Unassembled and misfolded subunits undergo ER-associated degradation (ERAD), but this degradation process remains poorly understood for GABAA receptors. Here, using the α1 subunits of GABAA receptors as a model substrate, we demonstrated that Grp94, a metazoan-specific Hsp90 in the ER lumen, uses its middle domain to interact with the α1 subunits and positively regulates their ERAD. OS-9, an ER-resident lectin, acts downstream of Grp94 to further recognize misfolded α1 subunits in a glycan-dependent manner. This delivers misfolded α1 subunits to the Hrd1-mediated ubiquitination and the valosin-containing protein-mediated extraction pathway. Repressing the initial ERAD recognition step by inhibiting Grp94 enhances the functional surface expression of misfolding-prone α1(A322D) subunits, which causes autosomal dominant juvenile myoclonic epilepsy. This study clarifies a Grp94-mediated ERAD pathway for GABAA receptors, which provides a novel way to finely tune their function in physiological and pathophysiological conditions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Lin, Wensheng; Lin, Yifeng; Li, Jin; Fenstermaker, Ali G; Way, Sharon W; Clayton, Benjamin; Jamison, Stephanie; Harding, Heather P; Ron, David; Popko, Brian
2013-04-03
There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.
Simon, Sibu; Skůpa, Petr; Viaene, Tom; Zwiewka, Marta; Tejos, Ricardo; Klíma, Petr; Čarná, Mária; Rolčík, Jakub; De Rycke, Riet; Moreno, Ignacio; Dobrev, Petre I; Orellana, Ariel; Zažímalová, Eva; Friml, Jiří
2016-07-01
Plant development mediated by the phytohormone auxin depends on tightly controlled cellular auxin levels at its target tissue that are largely established by intercellular and intracellular auxin transport mediated by PIN auxin transporters. Among the eight members of the Arabidopsis PIN family, PIN6 is the least characterized candidate. In this study we generated functional, fluorescent protein-tagged PIN6 proteins and performed comprehensive analysis of their subcellular localization and also performed a detailed functional characterization of PIN6 and its developmental roles. The localization study of PIN6 revealed a dual localization at the plasma membrane (PM) and endoplasmic reticulum (ER). Transport and metabolic profiling assays in cultured cells and Arabidopsis strongly suggest that PIN6 mediates both auxin transport across the PM and intracellular auxin homeostasis, including the regulation of free auxin and auxin conjugates levels. As evidenced by the loss- and gain-of-function analysis, the complex function of PIN6 in auxin transport and homeostasis is required for auxin distribution during lateral and adventitious root organogenesis and for progression of these developmental processes. These results illustrate a unique position of PIN6 within the family of PIN auxin transporters and further add complexity to the developmentally crucial process of auxin transport. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Holczer, Marianna; Besze, Boglárka; Zámbó, Veronika; Csala, Miklós; Bánhegyi, Gábor; Kapuy, Orsolya
2018-01-01
The maintenance of cellular homeostasis is largely dependent on the ability of cells to give an adequate response to various internal and external stimuli. We have recently proposed that the life-and-death decision in endoplasmic reticulum (ER) stress response is defined by a crosstalk between autophagy, apoptosis, and mTOR-AMPK pathways, where the transient switch from autophagy-dependent survival to apoptotic cell death is controlled by GADD34. The aim of the present study was to investigate the role of epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea, in promoting autophagy-dependent survival and to verify the key role in connecting GADD34 with mTOR-AMPK pathways upon prolonged ER stress. Our findings, obtained by using HEK293T cells, revealed that EGCG treatment is able to extend cell viability by inducing autophagy. We confirmed that EGCG-induced autophagy is mTOR-dependent and PKA-independent; furthermore, it also required ULK1. We show that pretreatment of cells with EGCG diminishes the negative effect of GADD34 inhibition (by guanabenz or siGADD34 treatment) on autophagy. EGCG was able to delay apoptotic cell death by upregulating autophagy-dependent survival even in the absence of GADD34. Our data suggest a novel role for EGCG in promoting cell survival via shifting the balance of mTOR-AMPK pathways in ER stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Li
Bisphenol A (2,2-bis(4-hydroxyphenyl)propane, BPA) is ubiquitous in the environment, wildlife, and humans. Evidence from past studies suggests that BPA is associated with decreased semen quality. However, the molecular basis for the adverse effect of BPA on male reproductive toxicity remains unclear. We evaluated the effect of BPA on mouse spermatocytes GC-2 cells and adult mice, and we explored the potential mechanism of its action. The results showed that BPA inhibited cell proliferation and increased the apoptosis rate. The testes from BPA-treated mice showed fewer spermatogenic cells and sperm in the seminiferous tubules. In addition, BPA caused reactive oxygen species (ROS)more » accumulation. Previous study has verified that mitochondrion was the organelle affected by the BPA-triggered ROS accumulation. We found that BPA induced damage to the endoplasmic reticulum (ER) in addition to mitochondria, and most ER stress-related proteins were activated in cellular and animal models. Knocking down of the PERK/EIF2α/chop pathway, one of the ER stress pathways, partially recovered the BPA-induced cell apoptosis. In addition, an ROS scavenger attenuated the expression of the PERK/EIF2α/chop pathway-related proteins. Taken together, these data suggested that the ROS regulated PERK/EIF2α/chop pathway played a vital role in BPA-induced male reproductive toxicity. - Highlights: • BPA exposure caused the damage of the endoplasmic reticulum. • BPA exposure activated ER stress related proteins in male reproductive system. • ROS regulated PERK/EIF2α/chop pathway played a vital role in BPA-induced toxicity.« less
Seregin, Sergey S; Rastall, David P W; Evnouchidou, Irini; Aylsworth, Charles F; Quiroga, Dionisia; Kamal, Ram P; Godbehere-Roosa, Sarah; Blum, Christopher F; York, Ian A; Stratikos, Efstratios; Amalfitano, Andrea
2013-12-01
Ankylosing spondylitis (AS) is a chronic systemic arthritic disease that leads to significant disability and loss of quality of life in the ∼0.5% of the worldwide human population it affects. There is currently no cure for AS and mechanisms underlying its pathogenesis remain unclear. AS is highly genetic, with over 70% of the genetic risk being associated with the presence of HLA-B27 and endoplasmic reticulum aminopeptidase-1 (ERAP1) alleles. Furthermore, gene-gene interactions between HLA-B27 and ERAP1 AS risk alleles have recently been confirmed. Here, we demonstrate that various ERAP1 alleles can differentially mediate surface expression of antigens presented by HLA-B27 on human cells. Specifically, for all peptides tested, we found that an ERAP1 variant containing high AS risk SNPs reduced the amount of the peptide presented by HLA-B27, relative to low AS risk ERAP1 variants. These results were further validated using peptide catalysis assays in vitro, suggesting that high AS risk alleles have an enhanced catalytic activity that more rapidly destroys many HLA-B27-destined peptides, a result that correlated with decreased HLA-B27 presentation of the same peptides. These findings suggest that one mechanism underlying AS pathogenesis may involve an altered ability for AS patients harboring both HLA-B27 and high AS risk ERAP1 alleles to correctly display a variety of peptides to the adaptive arm of the immune system, potentially exposing such individuals to higher AS risk due to abnormal display of pathogen or self-derived peptides by the adaptive immune system.
Seregin, Sergey S.; Rastall, David P.W.; Evnouchidou, Irini; Aylsworth, Charles F.; Quiroga, Dionisia; Kamal, Ram P.; Godbehere-Roosa, Sarah; Blum, Christopher F.; York, Ian A.; Stratikos, Efstratios; Amalfitano, Andrea
2014-01-01
Ankylosing spondylitis (AS) is a chronic systemic arthritic disease that leads to significant disability and loss of quality of life in the ~0.5% of the worldwide human population it affects. There is currently no cure for AS and mechanisms underlying its pathogenesis remain unclear. AS is highly genetic, with over 70% of the genetic risk being associated with the presence of HLA-B27 and endoplasmic reticulum aminopeptidase-1 (ERAP1) alleles. Furthermore, gene-gene interactions between HLA-B27 and ERAP1 AS risk alleles have recently been confirmed. Here, we demonstrate that various ERAP1 alleles can differentially mediate surface expression of antigens presented by HLA-B27 on human cells. Specifically, for all peptides tested, we found that an ERAP1 variant containing high AS risk SNPs reduced the amount of the peptide presented by HLA-B27, relative to low AS risk ERAP1 variants. These results were further validated using peptide catalysis assays in vitro, suggesting that high AS risk alleles have an enhanced catalytic activity that more rapidly destroys many HLA-B27-destined peptides, a result that correlated with decreased HLA-B27 presentation of the same peptides. These findings suggest that one mechanism underlying AS pathogenesis may involve an altered ability for AS patients harboring both HLA-B27 and high AS risk ERAP1 alleles to correctly display a variety of peptides to the adaptive arm of the immune system, potentially exposing such individuals to higher AS risk due to abnormal display of pathogen or self derived peptides by the adaptive immune system. PMID:24028501
Liu, Hui; Yan, Xiulin; Pandya, Mirali; Luan, Xianghong
2016-01-01
The tooth enamel organ (EO) is a complex epithelial cell assembly involved in multiple aspects of tooth development, including amelogenesis. The present study focuses on the role of the nonameloblast layers of the EO, the stratum intermedium, the stellate reticulum, and the outer enamel epithelium (OEE). The secretory stage stratum intermedium was distinguished by p63-positive epithelial stem cell marks, highly specific alkaline phosphatase labeling, as well as multiple desmosomes and gap junctions. At the location of the presecretory stage stellate reticulum, the pre-eruption EO prominently featured the papillary layer (PL) as a keratin immunopositive network of epithelial strands between tooth crowns and oral epithelium. PL cell strands contained numerous p63-positive epithelial stem cells, while BrdU proliferative cells were detected at the outer boundaries of the PL, suggesting that the stellate reticulum/PL epithelial cell sheath proliferated to facilitate an epithelial seal during tooth eruption. Comparative histology studies demonstrated continuity between the OEE and the general lamina of continuous tooth replacement in reptiles, and the outer layer of Hertwig's epithelial root sheath in humans, implicating the OEE as the formative layer for continuous tooth replacement and tooth root extension. Cell fate studies in organ culture verified that the cervical portion of the mouse molar EO gave rise to Malassez rest-like cell islands. Together, these studies indicate that the nonameloblast layers of the EO play multiple roles during odontogenesis, including the maintenance of several p63-positive stem cell reservoirs, a role during tooth root morphogenesis and tooth succession, a stabilizing function for the ameloblast layer, the facilitation of ion transport from the EO capillaries to the enamel layer, as well as safe and seamless tooth eruption. PMID:27611344
Kreiling, Jill A; Balantac, Zaneta L; Crawford, Andrew R; Ren, Yuexin; Toure, Jamal; Zchut, Sigalit; Kochilas, Lazaros; Creton, Robbert
2008-01-01
Vertebrate embryos generate striking Ca(2+) patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca(2+) during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca(2+) along the dorsal-ventral axis, with higher Ca(2+) concentrations in the ventral margin and lower Ca(2+) concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca(2+) pump with 0.5 microM thapsigargin elevates cytosolic Ca(2+) in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left-right asymmetry. Brain defects include a left-right reversal of pitx2 expression in the dorsal diencephalon and a left-right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca(2+) pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca(2+) pump during gastrulation inhibits expression of no tail (ntl) and left-right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer's vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca(2+) plays a role in Kupffer's vesicle function, influencing ciliary motility and translating the vesicle's counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca(2+) plays an additional role in the formation of Kupffer's vesicle.
Kornak, Uwe; Mademan, Inès; Schinke, Marte; Voigt, Martin; Krawitz, Peter; Hecht, Jochen; Barvencik, Florian; Schinke, Thorsten; Gießelmann, Sebastian; Beil, F Timo; Pou-Serradell, Adolf; Vílchez, Juan J; Beetz, Christian; Deconinck, Tine; Timmerman, Vincent; Kaether, Christoph; De Jonghe, Peter; Hübner, Christian A; Gal, Andreas; Amling, Michael; Mundlos, Stefan; Baets, Jonathan; Kurth, Ingo
2014-03-01
Many neurodegenerative disorders present with sensory loss. In the group of hereditary sensory and autonomic neuropathies loss of nociception is one of the disease hallmarks. To determine underlying factors of sensory neurodegeneration we performed whole-exome sequencing in affected individuals with the disorder. In a family with sensory neuropathy with loss of pain perception and destruction of the pedal skeleton we report a missense mutation in a highly conserved amino acid residue of atlastin GTPase 3 (ATL3), an endoplasmic reticulum-shaping GTPase. The same mutation (p.Tyr192Cys) was identified in a second family with similar clinical outcome by screening a large cohort of 115 patients with hereditary sensory and autonomic neuropathies. Both families show an autosomal dominant pattern of inheritance and the mutation segregates with complete penetrance. ATL3 is a paralogue of ATL1, a membrane curvature-generating molecule that is involved in spastic paraplegia and hereditary sensory neuropathy. ATL3 proteins are enriched in three-way junctions, branch points of the endoplasmic reticulum that connect membranous tubules to a continuous network. Mutant ATL3 p.Tyr192Cys fails to localize to branch points, but instead disrupts the structure of the tubular endoplasmic reticulum, suggesting that the mutation exerts a dominant-negative effect. Identification of ATL3 as novel disease-associated gene exemplifies that long-term sensory neuronal maintenance critically depends on the structural organisation of the endoplasmic reticulum. It emphasizes that alterations in membrane shaping-proteins are one of the major emerging pathways in axonal degeneration and suggests that this group of molecules should be considered in neuroprotective strategies.
Liu, Hui; Yan, Xiulin; Pandya, Mirali; Luan, Xianghong; Diekwisch, Thomas G H
2016-09-09
The tooth enamel organ (EO) is a complex epithelial cell assembly involved in multiple aspects of tooth development, including amelogenesis. The present study focuses on the role of the nonameloblast layers of the EO, the stratum intermedium, the stellate reticulum, and the outer enamel epithelium (OEE). The secretory stage stratum intermedium was distinguished by p63-positive epithelial stem cell marks, highly specific alkaline phosphatase labeling, as well as multiple desmosomes and gap junctions. At the location of the presecretory stage stellate reticulum, the pre-eruption EO prominently featured the papillary layer (PL) as a keratin immunopositive network of epithelial strands between tooth crowns and oral epithelium. PL cell strands contained numerous p63-positive epithelial stem cells, while BrdU proliferative cells were detected at the outer boundaries of the PL, suggesting that the stellate reticulum/PL epithelial cell sheath proliferated to facilitate an epithelial seal during tooth eruption. Comparative histology studies demonstrated continuity between the OEE and the general lamina of continuous tooth replacement in reptiles, and the outer layer of Hertwig's epithelial root sheath in humans, implicating the OEE as the formative layer for continuous tooth replacement and tooth root extension. Cell fate studies in organ culture verified that the cervical portion of the mouse molar EO gave rise to Malassez rest-like cell islands. Together, these studies indicate that the nonameloblast layers of the EO play multiple roles during odontogenesis, including the maintenance of several p63-positive stem cell reservoirs, a role during tooth root morphogenesis and tooth succession, a stabilizing function for the ameloblast layer, the facilitation of ion transport from the EO capillaries to the enamel layer, as well as safe and seamless tooth eruption.
Kim, Jaekwang; Yun, Miyong; Kim, Eun-Ok; Jung, Deok-Beom; Won, Gunho; Kim, Bonglee; Jung, Ji Hoon; Kim, Sung-Hoon
2016-03-01
The TNF-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent due to its remarkable ability to selectively kill tumour cells. However, because most tumours exhibit resistance to TRAIL-induced apoptosis, the development of combination therapies to overcome resistance to TRAIL is required for effective cancer therapy. Cell viability and possible synergy between the plant pyranocoumarin decursin and TRAIL was measured by MTT assay and calcusyn software. Reactive oxygen species (ROS) and apoptosis were measured using dichlorodihydrofluorescein and annexin/propidium iodide in cell flow cytometry. Changes in protein levels were assessed with Western blotting. Combining decursin and TRAIL markedly decreased cell viability and increased apoptosis in TRAIL-resistant non-small-cell lung cancer (NSCLC) cell lines. Decursin induced expression of the death receptor 5 (DR5). Inhibition of DR5 attenuated apoptotic cell death in decursin + TRAIL treated NSCLC cell lines. Interestingly, induction of DR5 and CCAAT/enhancer-binding protein homologues protein by decursin was mediated through selective induction of the pancreatic endoplasmic reticulum kinase (PERK)/activating transcription factor 4 (ATF4) branch of the endoplasmic reticulum stress response pathway. Furthermore, enhancement of PERK/ATF4 signalling by decursin was mediated by ROS generation in NSCLC cell lines, but not in normal human lung cells. Decursin also markedly down-regulated expression of survivin and Bcl-xL in TRAIL-resistant NSCLC cells. ROS generation by decursin selectively activated the PERK/ATF4 axis of the endoplasmic reticulum stress signalling pathway, leading to enhanced TRAIL sensitivity in TRAIL-resistant NSCLC cell lines, partly via up-regulation of DR5. © 2015 The British Pharmacological Society.
Kim, Jaekwang; Yun, Miyong; Kim, Eun‐Ok; Jung, Deok‐Beom; Won, Gunho; Kim, Bonglee; Jung, Ji Hoon
2016-01-01
Background and Purpose The TNF‐related apoptosis‐inducing ligand (TRAIL) is a promising anticancer agent due to its remarkable ability to selectively kill tumour cells. However, because most tumours exhibit resistance to TRAIL‐induced apoptosis, the development of combination therapies to overcome resistance to TRAIL is required for effective cancer therapy. Experimental Approach Cell viability and possible synergy between the plant pyranocoumarin decursin and TRAIL was measured by MTT assay and calcusyn software. Reactive oxygen species (ROS) and apoptosis were measured using dichlorodihydrofluorescein and annexin/propidium iodide in cell flow cytometry. Changes in protein levels were assessed with Western blotting. Key Results Combining decursin and TRAIL markedly decreased cell viability and increased apoptosis in TRAIL‐resistant non‐small‐cell lung cancer (NSCLC) cell lines. Decursin induced expression of the death receptor 5 (DR5). Inhibition of DR5 attenuated apoptotic cell death in decursin + TRAIL treated NSCLC cell lines. Interestingly, induction of DR5 and CCAAT/enhancer‐binding protein homologues protein by decursin was mediated through selective induction of the pancreatic endoplasmic reticulum kinase (PERK)/activating transcription factor 4 (ATF4) branch of the endoplasmic reticulum stress response pathway. Furthermore, enhancement of PERK/ATF4 signalling by decursin was mediated by ROS generation in NSCLC cell lines, but not in normal human lung cells. Decursin also markedly down‐regulated expression of survivin and Bcl‐xL in TRAIL‐resistant NSCLC cells. Conclusions and Implications ROS generation by decursin selectively activated the PERK/ATF4 axis of the endoplasmic reticulum stress signalling pathway, leading to enhanced TRAIL sensitivity in TRAIL‐resistant NSCLC cell lines, partly via up‐regulation of DR5. PMID:26661339
1988-01-01
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS- solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we show that the purified receptor forms cationic channels selective for divalent ions. Ryanodine receptor channels were identical to the Ca-release channels described in native sarcoplasmic reticulum using the same techniques. In the present work, four criteria were used to establish this identity: (a) activation of channels by micromolar Ca and millimolar ATP and inhibition by micromolar ruthenium red, (b) a main channel conductance of 110 +/- 10 pS in 54 mM trans Ca, (c) a long- term open state of lower unitary conductance induced by ryanodine concentrations as low as 20 nM, and (d) a permeability ratio PCa/PTris approximately equal to 14. In addition, we show that the purified ryanodine receptor channel displays a saturable conductance in both monovalent and divalent cation solutions (gamma max for K and Ca = 1 nS and 172 pS, respectively). In the absence of Ca, channels had a broad selectivity for monovalent cations, but in the presence of Ca, they were selectively permeable to Ca against K by a permeability ratio PCa/PK approximately equal to 6. Receptor channels displayed several equivalent conductance levels, which suggest an oligomeric pore structure. We conclude that the 450,000-dalton polypeptide ryanodine receptor is the Ca-release channel of the sarcoplasmic reticulum and is the target site of ruthenium red and ryanodine. PMID:2459298
Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman
2015-04-01
Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shi, M Q; Song, W; Han, T X; Chang, B; Zhang, Y M
2017-02-09
Objective: To explore the activation of endoplasmic reticulum stress (ERS) in bone marrow mesenchymal stem cell (BMMSC) and its effect on osteogenic differentiation induced by micropit/nanotube topography (MNT), so as to provide guidance for the topography design of biomaterials. Methods: Four sample groups were fabricated: polishing control group (polished titanium, PT, no treatment), thapsigargin treatment (TG, 0.1 μmol/L TG treated for 9 h), MNT5 and MNT20 (anodized at 5 V and 20 V after acid etching). Scanning electron microscope (SEM) was used to observe the topography of Ti samples. The alkaline phosphatase (ALP) production, collagen secretion and extracellular matrix (ECM) mineralization of BMMSC (osteogenic induced for 7, 14 and 21 d) on Ti samples were detected to evaluate the osteogenic differentiation. After 12 h incubation, the shape and size of ER was examined using a transmission electron microscope (TEM), and ERS-related genes including immunoglobulin heavy chain binding protein (BiP), protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activating transcription factor 4 (ATF4) were detected by quantitative real-time PCR (qRT-PCR). Results: After 7, 14 and 21 d of induction, the ALP production, collagen secretion and ECM mineralization in TG and MNT20 all significantly increased compared to PT ( P< 0.05). The cells grown on TG, MNT5 and MNT20 surfaces displayed gross distortions of the ER. Compared to PT, BiP, PERK, ATF4 mRNA expression in TG was respectively 1.87±0.10, 2.24±0.35, 1.85±0.14; BiP, ATF4 mRNA expression in MNT5 were respectively 1.27±0.09, 1.25±0.04; BiP, PERK, ATF4 mRNA expression in MNT20 were respectively 1.44±0.09, 2.40±0.60, 1.48±0.05 ( P< 0.05). Conclusions: MNT triggered different degree of ERS, and the activated ERS may promote MNT-induced osteogenic differentiation.
Hylin, Michael J; Holden, Ryan C; Smith, Aidan C; Logsdon, Aric F; Qaiser, Rabia; Lucke-Wold, Brandon P
2018-05-22
The leading cause of death in the juvenile population is trauma, and in particular neurotrauma. The juvenile brain response to neurotrauma is not completely understood. Endoplasmic reticulum (ER) stress has been shown to contribute to injury expansion and behavioral deficits in adult rodents and furthermore has been seen in adult postmortem human brains diagnosed with chronic traumatic encephalopathy. Whether endoplasmic reticulum stress is increased in juveniles with traumatic brain injury (TBI) is poorly delineated. We investigated this important topic using a juvenile rat controlled cortical impact (CCI) model. We proposed that ER stress would be significantly increased in juvenile rats following TBI and that this would correlate with behavioral deficits using a juvenile rat model. A juvenile rat (postnatal day 28) CCI model was used. Binding immunoglobulin protein (BiP) and C/EBP homologous protein (CHOP) were measured at 4 h in the ipsilateral pericontusion cortex. Hypoxia-inducible factor (HIF)-1α was measured at 48 h and tau kinase measured at 1 week and 30 days. At 4 h following injury, BiP and CHOP (markers of ER stress) were significantly elevated in rats exposed to TBI. We also found that HIF-1α was significantly upregulated 48 h following TBI showing delayed hypoxia. The early ER stress activation was additionally asso-ciated with the activation of a known tau kinase, glycogen synthase kinase-3β (GSK-3β), by 1 week. Tau oligomers measured by R23 were significantly increased by 30 days following TBI. The biochemical changes following TBI were associated with increased impulsive-like or anti-anxiety behavior measured with the elevated plus maze, deficits in short-term memory measured with novel object recognition, and deficits in spatial memory measured with the Morris water maze in juvenile rats exposed to TBI. These results show that ER stress was increased early in juvenile rats exposed to TBI, that these rats developed tau oligomers over the course of 30 days, and that they had significant short-term and spatial memory deficits following injury. © 2018 S. Karger AG, Basel.
Kubalova, Zuzana; Györke, Inna; Terentyeva, Radmila; Viatchenko-Karpinski, Serge; Terentyev, Dmitry; Williams, Simon C; Györke, Sandor
2004-01-01
Waves of Ca2+-induced Ca2+ release occur in various cell types and are involved in the pathology of certain forms of cardiac arrhythmia. These arrhythmias include catecholaminergic polymorphic ventricular tachycardia (CPVT), certain cases of which are associated with mutations in the cardiac calsequestrin gene (CASQ2). To explore the mechanisms of Ca2+ wave generation and unravel the underlying causes of CPVT, we investigated the effects of adenoviral-mediated changes in CASQ2 protein levels on the properties of cytosolic and sarcoplasmic reticulum (SR) Ca2+ waves in permeabilized rat ventricular myocytes. The free [Ca2+] inside the sarcoplasmic reticulum ([Ca2+]SR) was monitored by fluo-5N entrapped into the SR, and cytosolic Ca2+ was imaged using fluo-3. Overexpression of CASQ2 resulted in significant increases in the amplitude of Ca2+ waves and interwave intervals, whereas reduced CASQ2 levels caused drastic reductions in the amplitude and period of Ca2+ waves. CASQ2 abundance had no impact on resting diastolic [Ca2+]SR or on the amplitude of the [Ca2+]SR depletion signal during the Ca2+ wave. However, the recovery dynamics of [Ca2+]SR following Ca2+ release were dramatically altered as the rate of [Ca2+]SR recovery increased ∼3-fold in CASQ2-overexpressing myocytes and decreased to 30% of control in CASQ2-underexpressing myocytes. There was a direct linear relationship between Ca2+ wave period and the half-time of basal [Ca2+]SR recovery following Ca2+ release. Loading the SR with the low affinity exogenous Ca2+ buffer citrate exerted effects quantitatively similar to those observed on overexpressing CASQ2. We conclude that free intra-SR [Ca2+] is a critical determinant of cardiac Ca2+ wave generation. Our data indicate that reduced intra-SR Ca2+ binding activity promotes the generation of Ca2+ waves by accelerating the dynamics of attaining a threshold free [Ca2+]SR required for Ca2+ wave initiation, potentially accounting for arrythmogenesis in CPVT linked to mutations in CASQ2. PMID:15486014
Human Liver Cytochrome P450 3A4 Ubiquitination
Wang, YongQiang; Kim, Sung-Mi; Trnka, Michael J.; Liu, Yi; Burlingame, A. L.; Correia, Maria Almira
2015-01-01
CYP3A4 is an abundant and catalytically dominant human liver endoplasmic reticulum-anchored cytochrome P450 enzyme engaged in the biotransformation of endo- and xenobiotics, including >50% of clinically relevant drugs. Alterations of CYP3A4 protein turnover can influence clinically relevant drug metabolism and bioavailability and drug-drug interactions. This CYP3A4 turnover involves endoplasmic reticulum-associated degradation via the ubiquitin (Ub)-dependent 26 S proteasomal system that relies on two highly complementary E2 Ub-conjugating-E3 Ub-ligase (UBC7-gp78 and UbcH5a-C terminus of Hsc70-interacting protein (CHIP)-Hsc70-Hsp40) complexes, as well as protein kinases (PK) A and C. We have documented that CYP3A4 Ser/Thr phosphorylation (Ser(P)/Thr(P)) by PKA and/or PKC accelerates/enhances its Lys ubiquitination by either of these E2-E3 systems. Intriguingly, CYP3A4 Ser(P)/Thr(P) and ubiquitinated Lys residues reside within the cytosol-accessible surface loop and/or conformationally assembled acidic Asp/Glu clusters, leading us to propose that such post-translational Ser/Thr protein phosphorylation primes CYP3A4 for ubiquitination. Herein, this possibility was examined through various complementary approaches, including site-directed mutagenesis, chemical cross-linking, peptide mapping, and LC-MS/MS analyses. Our findings reveal that such CYP3A4 Asp/Glu/Ser(P)/Thr(P) surface clusters are indeed important for its intermolecular electrostatic interactions with each of these E2-E3 subcomponents. By imparting additional negative charge to these Asp/Glu clusters, such Ser/Thr phosphorylation would generate P450 phosphodegrons for molecular recognition by the E2-E3 complexes, thereby controlling the timing of CYP3A4 ubiquitination and endoplasmic reticulum-associated degradation. Although the importance of phosphodegrons in the CHIP targeting of its substrates is known, to our knowledge this is the first example of phosphodegron involvement in gp78-substrate recruitment, an important step in CYP3A4 proteasomal degradation. PMID:25451919
SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition.
Stary, Victoria; Puppala, Dheeraj; Scherrer-Crosbie, Marielle; Dillmann, Wolfgang H; Armoundas, Antonis A
2016-04-15
Cardiac alternans has been associated with the incidence of ventricular tachyarrhythmias and sudden cardiac death. The aim of this study was to investigate the effect of impaired mitochondrial function in the genesis of cellular alternans and to examine whether modulating the sarcoplasmic reticulum (SR) Ca(2+)ameliorates the level of alternans. Cardiomyocytes isolated from control and doxycyline-induced sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a)-upregulated mice were loaded with two different Ca(2+)indicators to selectively measure mitochondrial and cytosolic Ca(2+)using a custom-made fluorescence photometry system. The degree of alternans was defined as the alternans ratio (AR) [1 - (small Ca(2+)intensity)/(large Ca(2+)intensity)]. Blocking of complex I and II, cytochrome-coxidase, F0F1synthase, α-ketoglutarate dehydrogenase of the electron transport chain, increased alternans in both control and SERCA2a mice (P< 0.01). Changes in AR in SERCA2a-upregulated mice were significantly less pronounced than those observed in control in seven of nine tested conditions (P< 0.04).N-acetyl-l-cysteine (NAC), rescued alternans in myocytes that were previously exposed to an oxidizing agent (P< 0.001). CGP, an antagonist of the mitochondrial Na(+)-Ca(2+)exchanger, had the most severe effect on AR. Exposure to cyclosporin A, a blocker of the mitochondrial permeability transition pore reduced CGP-induced alternans (P< 0.0001). The major findings of this study are that impairment of mitochondrial Ca(2+)cycling and energy production leads to a higher amplitude of alternans in both control and SERCA2a-upregulated mice, but changes in SERCA2a-upregulated mice are less severe, indicating that SERCA2a mice are more capable of sustaining electrical stability during stress. This suggests a relationship between sarcoplasmic Ca(2+)content and mitochondrial dysfunction during alternans, which may potentially help to understand changes in Ca(2+)signaling in myocytes from diseased hearts, leading to new therapeutic targets. Copyright © 2016 the American Physiological Society.
Computational properties of mitochondria in T cell activation and fate
Dupont, Geneviève
2016-01-01
In this article, we review how mitochondrial Ca2+ transport (mitochondrial Ca2+ uptake and Na+/Ca2+ exchange) is involved in T cell biology, including activation and differentiation through shaping cellular Ca2+ signals. Based on recent observations, we propose that the Ca2+ crosstalk between mitochondria, endoplasmic reticulum and cytoplasm may form a proportional–integral–derivative (PID) controller. This PID mechanism (which is well known in engineering) could be responsible for computing cellular decisions. In addition, we point out the importance of analogue and digital signal processing in T cell life and implication of mitochondrial Ca2+ transport in this process. PMID:27852805
Computational properties of mitochondria in T cell activation and fate.
Uzhachenko, Roman; Shanker, Anil; Dupont, Geneviève
2016-11-01
In this article, we review how mitochondrial Ca 2+ transport (mitochondrial Ca 2+ uptake and Na + /Ca 2+ exchange) is involved in T cell biology, including activation and differentiation through shaping cellular Ca 2+ signals. Based on recent observations, we propose that the Ca 2+ crosstalk between mitochondria, endoplasmic reticulum and cytoplasm may form a proportional-integral-derivative (PID) controller. This PID mechanism (which is well known in engineering) could be responsible for computing cellular decisions. In addition, we point out the importance of analogue and digital signal processing in T cell life and implication of mitochondrial Ca 2+ transport in this process. © 2016 The Authors.
Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes?
Celli, Jean; Tsolis, Renée M
2015-02-01
The unfolded protein response (UPR) is a cytoprotective response that is aimed at restoring cellular homeostasis following physiological stress exerted on the endoplasmic reticulum (ER), which also invokes innate immune signalling in response to invading microorganisms. Although it has been known for some time that the UPR is modulated by various viruses, recent evidence indicates that it also has multiple roles during bacterial infections. In this Review, we describe how bacteria interact with the ER, including how bacteria induce the UPR, how subversion of the UPR promotes bacterial proliferation and how the UPR contributes to innate immune responses against invading bacteria.
Sun, Shengyi; Shi, Guojun; Han, Xuemei; Francisco, Adam B.; Ji, Yewei; Mendonça, Nuno; Liu, Xiaojing; Locasale, Jason W.; Simpson, Kenneth W.; Duhamel, Gerald E.; Kersten, Sander; Yates, John R.; Long, Qiaoming; Qi, Ling
2014-01-01
Suppressor/Enhancer of Lin-12-like (Sel1L) is an adaptor protein for the E3 ligase hydroxymethylglutaryl reductase degradation protein 1 (Hrd1) involved in endoplasmic reticulum-associated degradation (ERAD). Sel1L’s physiological importance in mammalian ERAD, however, remains to be established. Here, using the inducible Sel1L knockout mouse and cell models, we show that Sel1L is indispensable for Hrd1 stability, ER homeostasis, and survival. Acute loss of Sel1L leads to premature death in adult mice within 3 wk with profound pancreatic atrophy. Contrary to current belief, our data show that mammalian Sel1L is required for Hrd1 stability and ERAD function both in vitro and in vivo. Sel1L deficiency disturbs ER homeostasis, activates ER stress, attenuates translation, and promotes cell death. Serendipitously, using a biochemical approach coupled with mass spectrometry, we found that Sel1L deficiency causes the aggregation of both small and large ribosomal subunits. Thus, Sel1L is an indispensable component of the mammalian Hrd1 ERAD complex and ER homeostasis, which is essential for protein translation, pancreatic function, and cellular and organismal survival. PMID:24453213
Development and Structure of Internal Glands and External Glandular Trichomes in Pogostemon cablin
Guo, Jiansheng; Yuan, Yongming; Liu, Zhixue; Zhu, Jian
2013-01-01
Pogostemon cablin possesses two morphologically and ontogenetically different types of glandular trichomes, one type of bristle hair on the surfaces of leaves and stems and one type of internal gland inside the leaves and stems. The internal gland originates from elementary meristem and is associated with the biosynthesis of oils present inside the leaves and stems. However, there is little information on mechanism for the oil biosynthesis and secretion inside the leaves and stems. In this study, we identified three kinds of glandular trichome types and two kinds of internal gland in the Pogostemon cablin. The oil secretions from internal glands of stems and leaves contained lipids, flavones and terpenes. Our results indicated that endoplasmic reticulum and plastids and vacuoles are likely involved in the biosynthesis of oils in the internal glands and the synthesized oils are transported from endoplasmic reticulum to the cell wall via connecting endoplasmic reticulum membranes to the plasma membrane. And the comparative analysis of the development, distribution, histochemistry and ultrastructures of the internal and external glands in Pogostemon cablin leads us to propose that the internal gland may be a novel secretory structure which is different from external glands. PMID:24205002
Calreticulin Induces Dilated Cardiomyopathy
Lee, Dukgyu; Oka, Tatsujiro; Hunter, Beth; Robinson, Alison; Papp, Sylvia; Nakamura, Kimitoshi; Srisakuldee, Wattamon; Nickel, Barbara E.; Light, Peter E.; Dyck, Jason R. B.; Lopaschuk, Gary D.; Kardami, Elissavet; Opas, Michal; Michalak, Marek
2013-01-01
Background Calreticulin, a Ca2+-buffering chaperone of the endoplasmic reticulum, is highly expressed in the embryonic heart and is essential for cardiac development. After birth, the calreticulin gene is sharply down regulated in the heart, and thus, adult hearts have negligible levels of calreticulin. In this study we tested the role of calreticulin in the adult heart. Methodology/Principal Findings We generated an inducible transgenic mouse in which calreticulin is targeted to the cardiac tissue using a Cre/loxP system and can be up-regulated in adult hearts. Echocardiography analysis of hearts from transgenic mice expressing calreticulin revealed impaired left ventricular systolic and diastolic function and impaired mitral valve function. There was altered expression of Ca2+ signaling molecules and the gap junction proteins, Connexin 43 and 45. Sarcoplasmic reticulum associated Ca2+-handling proteins (including the cardiac ryanodine receptor, sarco/endoplasmic reticulum Ca2+-ATPase, and cardiac calsequestrin) were down-regulated in the transgenic hearts with increased expression of calreticulin. Conclusions/Significance We show that in adult heart, up-regulated expression of calreticulin induces cardiomyopathy in vivo leading to heart failure. This is due to an alternation in changes in a subset of Ca2+ handling genes, gap junction components and left ventricle remodeling. PMID:23437120
Comparing Galactic Center MSSM dark matter solutions to the Reticulum II gamma-ray data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achterberg, Abraham; Beekveld, Melissa van; Beenakker, Wim
2015-12-01
Observations with the Fermi Large Area Telescope (LAT) indicate a possible small photon signal originating from the dwarf galaxy Reticulum II that exceeds the expected background between 2 GeV and 10 GeV . We have investigated two specific scenarios for annihilating WIMP dark matter within the phenomenological Minimal Supersymmetric Standard Model (pMSSM) framework as a possible source for these photons. We find that the same parameter ranges in pMSSM as reported by an earlier paper to be consistent with the Galactic Center excess, are also consistent with the excess observed in Reticulum II, resulting in a J-factor of log{sub 10}(J(α{submore » int}=0.5{sup o})) ≅ (20.3−20.5){sup +0.2}{sub −0.3} GeV{sup 2}cm{sup −5}. This J-factor is consistent with log{sub 10}(J(α{sub int}=0.5{sup o})) = 19.6{sup +1.0}{sub −0.7} GeV{sup 2}cm{sup −5}, which was derived using an optimized spherical Jeans analysis of kinematic data obtained from the Michigan/Magellan Fiber System (M2FS)« less
Comparing Galactic Center MSSM dark matter solutions to the Reticulum II gamma-ray data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achterberg, Abraham; Beekveld, Melissa van; Beenakker, Wim
2015-12-04
Observations with the Fermi Large Area Telescope (LAT) indicate a possible small photon signal originating from the dwarf galaxy Reticulum II that exceeds the expected background between 2 GeV and 10 GeV. We have investigated two specific scenarios for annihilating WIMP dark matter within the phenomenological Minimal Supersymmetric Standard Model (pMSSM) framework as a possible source for these photons. We find that the same parameter ranges in pMSSM as reported by an earlier paper to be consistent with the Galactic Center excess, are also consistent with the excess observed in Reticulum II, resulting in a J-factor of log{sub 10} (J(α{sub int}=0.5{supmore » ∘}))≃(20.3−20.5){sub −0.3}{sup +0.2} GeV{sup 2}cm{sup −5}. This J-factor is consistent with log{sub 10} (J(α{sub int}=0.5{sup ∘}))=19.6{sub −0.7}{sup +1.0} GeV{sup 2}cm{sup −5}, which was derived using an optimized spherical Jeans analysis of kinematic data obtained from the Michigan/Magellan Fiber System (M2FS)« less
Ho, Hsiang-Ting; Belevych, Andriy E; Liu, Bin; Bonilla, Ingrid M; Radwański, Przemysław B; Kubasov, Igor V; Valdivia, Héctor H; Schober, Karsten; Carnes, Cynthia A; Györke, Sándor
2016-11-01
Although the effects and the underlying mechanism of sympathetic stimulation on cardiac Ca handling are relatively well established both in health and disease, the modes of action and mechanisms of parasympathetic modulation are poorly defined. Here, we demonstrate that parasympathetic stimulation initiates a novel mode of excitation-contraction coupling that enhances the efficiency of cardiac sarcoplasmic reticulum Ca store utilization. This efficient mode of excitation-contraction coupling involves reciprocal changes in the phosphorylation of ryanodine receptor 2 at Ser-2808 and Ser-2814. Specifically, Ser-2808 phosphorylation was mediated by muscarinic receptor subtype 2 and activation of PKG (protein kinase G), whereas dephosphorylation of Ser-2814 involved activation of muscarinic receptor subtype 3 and decreased reactive oxygen species-dependent activation of CaMKII (Ca/calmodulin-dependent protein kinase II). The overall effect of these changes in phosphorylation of ryanodine receptor 2 is an increase in systolic Ca release at the low sarcoplasmic reticulum Ca content and a paradoxical reduction in aberrant Ca leak. Accordingly, cholinergic stimulation of cardiomyocytes isolated from failing hearts improved Ca cycling efficiency by restoring altered ryanodine receptor 2 phosphorylation balance. © 2016 American Heart Association, Inc.
Xiao, Xiao; Qi, Weipeng; Clark, John M; Park, Yeonhwa
2017-11-01
Permethrin, a pyrethroid insecticide, was previously reported to promote adipogenesis in vitro and weight gain in vivo. The mechanism by which permethrin promotes adipogenesis/obesity, however, has not been fully explored. Intracellular calcium and endoplasmic reticulum (ER) stress have been reported to be linked with adipogenesis and obesity. Because pyrethroid insecticides have been determined to influence intracellular calcium and ER stress in vitro, the purpose of this current study was to investigate whether permethrin potentiates adipogenesis via a change in intracellular calcium, leading to endoplasmic reticulum (ER) stress in 3T3-L1 adipocytes. 3T3-L1 cells were exposed to four different concentrations of permethrin (0.01, 0.1, 1 & 10 μM) for 6 days during differentiation. Treatment of permethrin increased intracellular calcium level in a concentration-dependent manner. Similarly, permethrin treatment increased protein levels of ER stress markers in a concentration-dependent manner. These data suggest that intracellular calcium and ER stress may be involved in permethrin-induced adipogenesis of 3T3-L1 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum
Echevarría, Wihelma; Leite, M. Fatima; Guerra, Mateus T.; Zipfel, Warren R.; Nathanson, Michael H.
2013-01-01
Calcium is a second messenger in virtually all cells and tissues1. Calcium signals in the nucleus have effects on gene transcription and cell growth that are distinct from those of cytosolic calcium signals; however, it is unknown how nuclear calcium signals are regulated. Here we identify a reticular network of nuclear calcium stores that is continuous with the endoplasmic reticulum and the nuclear envelope. This network expresses inositol 1,4,5-trisphosphate (InsP3) receptors, and the nuclear component of InsP3-mediated calcium signals begins in its locality. Stimulation of these receptors with a little InsP3 results in small calcium signals that are initiated in this region of the nucleus. Localized release of calcium in the nucleus causes nuclear protein kinase C (PKC) to translocate to the region of the nuclear envelope, whereas release of calcium in the cytosol induces translocation of cytosolic PKC to the plasma membrane. Our findings show that the nucleus contains a nucleoplasmic reticulum with the capacity to regulate calcium signals in localized subnuclear regions. The presence of such machinery provides a potential mechanism by which calcium can simultaneously regulate many independent processes in the nucleus. PMID:12717445
Vanstapel, F; Blanckaert, N
1988-01-01
Radiolabeled UDPGlc incubated with rough endoplasmic reticulum (RER)-derived microsomes from rat liver became associated with the vesicles. This microsomal uptake of nucleotide sugar was time and temperature dependent. Analysis of the molecular species containing radiolabel revealed that initial uptake represented entry of predominantly intact UDPGlc in the microsomes. Conclusive evidence for proper translocation of UDPGlc across the microsomal membrane into the intravesicular space was obtained by demonstrating that UDPGlc was transported into an osmotically sensitive compartment. Microsomal uptake of UDPGlc exhibited features characteristic of carrier-mediated transport including saturation, specificity, and countertransport. Inhibition and trans-stimulation studies showed that other uridine-containing nucleotide sugars and 5'-UMP were substrates of the postulated microsomal carrier system for UDPGlc, while cytosine- or guanosine-containing nucleotides and non-5'-uridine monophosphates were, at best, very poor substrates. UDPGlc translocation activities were lower in smooth microsomal fractions than in the RER-derived vesicles, indicating that contamination with Golgi membranes could not be responsible for microsomal transport of UDPGlc. Our findings suggest that rat liver endoplasmic reticulum possesses a carrier system mediating proper translocation of UDPGlc and 5'-uridine-substituted structural analogues across the membrane. PMID:3417868
Sachdev, Rishibha; Kappes-Horn, Karin; Paulsen, Lydia; Duernberger, Yvonne; Pleschka, Catharina; Denner, Philip; Kundu, Bishwajit; Reimann, Jens; Vorberg, Ina
2018-03-15
Sporadic inclusion body myositis (sIBM) is the most prevalent acquired muscle disorder in the elderly with no defined etiology or effective therapy. Endoplasmic reticulum stress and deposition of myostatin, a secreted negative regulator of muscle growth, have been implicated in disease pathology. The myostatin signaling pathway has emerged as a major target for symptomatic treatment of muscle atrophy. Here, we systematically analyzed the maturation and secretion of myostatin precursor MstnPP and its metabolites in a human muscle cell line. We find that increased MsntPP protein levels induce ER stress. MstnPP metabolites were predominantly retained within the endoplasmic reticulum (ER), also evident in sIBM histology. MstnPP cleavage products formed insoluble high molecular weight aggregates, a process that was aggravated by experimental ER stress. Importantly, ER stress also impaired secretion of mature myostatin. Reduced secretion and aggregation of MstnPP metabolites were not simply caused by overexpression, as both events were also observed in wildtype cells under ER stress. It is tempting to speculate that reduced circulating myostatin growth factor could be one explanation for the poor clinical efficacy of drugs targeting the myostatin pathway in sIBM.
Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R
2016-05-20
C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Yamagishi, Marifu; Onishi, Yukiko; Yoshimura, Shotaro; Fujita, Hidenobu; Imai, Kenta; Kida, Yuichiro; Sakaguchi, Masao
2014-08-26
Many polypeptide chains are translocated across and integrated into the endoplasmic reticulum membrane through protein-conducting channels. During the process, amino acid sequences of translocating polypeptide chains are scanned by the channels and classified to be retained in the membrane or translocated into the lumen. We established an experimental system with which the kinetic effect of each amino acid residue on the polypeptide chain movement can be analyzed with a time resolution of tens of seconds. Positive charges greatly slow movement; only two lysine residues caused a remarkable slow down, and their effects were additive. The lysine residue was more effective than arginine. In contrast, clusters comprising three residues of each of the other 18 amino acids had little effect on chain movement. We also demonstrated that a four lysine cluster can exert the effect after being fully exposed from the ribosome. We concluded that as few as two to three residues of positively charged amino acids can slow the movement of the nascent polypeptide chain across the endoplasmic reticulum membrane. This effect provides a fundamental basis of the topogenic function of positively charged amino acids.
Ghrelin Ameliorates Asthma by Inhibiting Endoplasmic Reticulum Stress.
Fu, Tian; Wang, Lei; Zeng, Qingdi; Zhang, Yan; Sheng, Baowei; Han, Liping
2017-12-01
This study aimed to confirm the ameliorative effect of ghrelin on asthma and investigate its mechanism. The murine model of asthma was induced by ovalbumin (OVA) treatment and assessed by histological pathology and airway responsiveness to methacholine. The total and differential leukocytes were counted. Tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 levels in bronchoalveolar lavage fluid were quantified by commercial kits. The protein levels in pulmonary tissues were measured by Western blot analysis. Ghrelin ameliorated the histological pathology and airway hyperresponsiveness in the OVA-induced asthmatic mouse model. Consistently, OVA-increased total and differential leukocytes and levels of tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 in bronchoalveolar lavage fluid were significantly attenuated by ghrelin. Ghrelin prevented the increased protein levels of the endoplasmic reticulum stress markers glucose regulated protein 78 and CCAAT/enhancer binding protein homologous protein and reversed the reduced levels of p-Akt in asthmatic mice. Ghrelin might prevent endoplasmic reticulum stress activation by stimulating the Akt signaling pathway, which attenuated inflammation and ameliorated asthma in mice. Ghrelin might be a new target for asthma therapy. Copyright © 2017. Published by Elsevier Inc.
The morphological change of supporting cells in the olfactory epithelium after bulbectomy.
Makino, Nobuko; Ookawara, Shigeo; Katoh, Kazuo; Ohta, Yasushi; Ichikawa, Masumi; Ichimura, Keiichi
2009-02-01
Transmission electron microscopy was used to study the responses of the supporting cells of the olfactory epithelium at 1-5 days after surgical ablation of the olfactory bulb (bulbectomy). In intact olfactory epithelium, lamellar smooth endoplasmic reticulum and rod-shaped mitochondria were distinctly observed in the supporting cells. On the first day after bulbectomy, bending of the microvilli and an increase in the smooth endoplasmic reticulum were observed. Cristae of the mitochondria became obscure, and the density of the mitochondrial matrix decreased. On the second day after bulbectomy, the number of microvilli decreased, broad cytoplasmic projections that contained cytoplasmic organelles protruded into the luminal side, and the mitochondria were swollen. On the fifth day after bulbectomy, microvilli seemed to be normal and some cells had large cytoplasmic projections that protruded toward the lumen of the nasal cavity. Within the cytoplasmic projections of the supporting cells, a large lamellar and reticular-shaped smooth endoplasmic reticulum was evident. Mitochondria exhibited almost normal morphology. The current findings demonstrate that morphological changes occur in the supporting cells after bulbectomy. This new evidence hypothesizes that these changes represent events that contribute to the regeneration of the olfactory epithelium after bulbectomy.
Arruda, Ana Paula; Da-Silva, Wagner S; Carvalho, Denise P; De Meis, Leopoldo
2003-11-01
The sarcoplasmic reticulum Ca2+-ATPase is able to modulate the distribution of energy released during ATP hydrolysis, so that a portion of energy is used for Ca2+ transport (coupled ATPase activity) and a portion is converted into heat (uncoupled ATPase activity). In this report it is shown that T4 administration to rabbits promotes an increase in the rates of both the uncoupled ATPase activity and heat production in sarcoplasmic reticulum vesicles, and that the degree of activation varies depending on the muscle type used. In white muscles hyperthyroidism promotes a 0.8-fold increase of the uncoupled ATPase activity and in red muscle a 4-fold increase. The yield of vesicles from hyperthyroid muscles is 3-4-fold larger than that obtained from normal muscles; thus the rate of heat production by the Ca2+-ATPase expressed in terms of g of muscle in hyperthyroidism is increased by a factor of 3.6 in white muscles and 12.0 in red muscles. The data presented suggest that the Ca2+-ATPase uncoupled activity may represent one of the heat sources that contributes to the enhanced thermogenesis noted in hyperthyroidism.
Nozdrenko, D M; Miroshnychenko, M S; Soroca, V M; Korchins ka, L V; Zavodovskiy, D O
2016-01-01
We investigated the effect of chlorpyrifos, an organophosphate insecticide, on Ca2+,Mg2+-ATPase activity of sarcoplasmic reticulum and on contraction dynamics (force and length changes) of Rana temporaria m. tibialis anterior muscle fiber bundles. All of the used concentrations of chlorpyrifos (10-6 to 10-5 M) caused decrease of Ca2+,Mg2+-ATPase activity. The inhibition of Ca2+,Mg2+-ATPase activity by chlorpyriphos in concentrations of 10-6 M to 7.5·10-6 M is due to permeation of sarcoplasmic reticulum rather than due to direct enzyme inhibition by organophosphate insecticides. The inhibitory properties of the compound were higher at increased concentration and exposure timeframes. Chlorpyrifos in concentration range of 10-6 to 7.5·10-6 M causes changes in muscle fiber response force that were more pronounced than changes in contractile length. We demonstrated inhibition of Ca2+,Mg2+-ATPase activity caused by noncholinergic effects of chlorpyriphos. It is possible to conclude that influence of organophosphate insecticides happens not only in the neuromuscular transmission but also on the level of subcellular structures.
Interrelations between the Parasitophorous Vacuole of Toxoplasma gondii and Host Cell Organelles
NASA Astrophysics Data System (ADS)
Cardoso Magno, Rodrigo; Cobra Straker, Lorian; de Souza, Wanderley; Attias, Marcia
2005-04-01
Toxoplasma gondii, the causative agent of toxoplasmosis, is capable of actively penetrating and multiplying in any nucleated cell of warm-blooded animals. Its survival strategies include escape from fusion of the parasitophorous vacuole with host cell lysosomes and rearrangement of host cell organelles in relation to the parasitophorous vacuole. In this article we report the rearrangement of host cell organelles and elements of the cytoskeleton of LLCMK2 cells, a lineage derived from green monkey kidney epithelial cells, in response to infection by T. gondii tachyzoites. Transmission electron microscopy made on flat embedded monolayers cut horizontally to the apical side of the cells or field emission scanning electron microscopy of monolayers scraped with scotch tape before sputtering showed that association of mitochondria to the vacuole is much less frequent than previously described. On the other hand, all parasitophorous vacuoles were surrounded by elements of the endoplasmic reticulum. These data were complemented by observations by laser scanning microscopy using fluorescent probes from mitochondria and endoplasmic reticulum and reinforced by three-dimensional reconstruction from serial sections observed by transmission electron microscopy and labeling of mitochondria and endoplasmic reticulum by fluorescent probes.
FINE STRUCTURAL LOCALIZATION OF ACYLTRANSFERASES
Higgins, Joan A.; Barrnett, Russell J.
1971-01-01
A study of the fine structural localization of the acyltransferases of the monoglyceride and α-glycerophosphate pathways for triglyceride synthesis in the intestinal absorptive cell is reported. Glutaraldehyde-fixed tissue was found to synthesize diglyceride and triglyceride from monopalmitin and palmityl CoA, and parallel morphological studies showed the appearance of lipid droplets in the smooth endoplasmic reticulum of the absorptive cell. Glutaraldehyde-fixed tissue also synthesized triglyceride from α-glycerophosphate, although this enzyme system was more susceptible to fixation than the monoglyceride pathway acyltransferases. Cytochemical methods for the localization of free CoA were based (a) on the formation of the insoluble lanthanium mercaptide of CoA and (b) on the reduction of ferricyanide by CoA to yield ferrocyanide which forms an insoluble precipitate with manganous ions. By these methods the monoglyceride pathway acyltransferases were found to be located mainly on the inner surface of the smooth endoplasmic reticulum. The α-glycerophosphate pathway acyltransferases were localized mainly on the rough endoplasmic reticulum. Activity limited to the outer cisternae of the Golgi membranes occurred with both pathways. The possible organization of triglyceride absorption and chylomicron synthesis is discussed in view of these results. PMID:5563442
Organization of the ER–Golgi interface for membrane traffic control
Brandizzi, Federica; Barlowe, Charles
2014-01-01
Coat protein complex I (COPI) and COPII are required for bidirectional membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. While these core coat machineries and other transport factors are highly conserved across species, high-resolution imaging studies indicate that the organization of the ER–Golgi interface is varied in eukaryotic cells. Regulation of COPII assembly, in some cases to manage distinct cellular cargo, is emerging as one important component in determining this structure. Comparison of the ER–Golgi interface across different systems, particularly mammalian and plant cells, reveals fundamental elements and distinct organization of this interface. A better understanding of how these interfaces are regulated to meet varying cellular secretory demands should provide key insights into the mechanisms that control efficient trafficking of proteins and lipids through the secretory pathway. PMID:23698585
Inflammation as a Therapeutic Target for Diabetic Neuropathies
Ang, Lynn; Holmes, Crystal; Gallagher, Katherine; Feldman, Eva L.
2016-01-01
Diabetic neuropathies (DNs) are one of the most prevalent chronic complications of diabetes and a major cause of disability, high mortality, and poor quality of life. Given the complex anatomy of the peripheral nervous system and types of fiber dysfunction, DNs have a wide spectrum of clinical manifestations. The treatment of DNs continues to be challenging, likely due to the complex pathogenesis that involves an array of systemic and cellular imbalances in glucose and lipids metabolism. These lead to the activation of various biochemical pathways, including increased oxidative/nitrosative stress, activation of the polyol and protein kinase C pathways, activation of polyADP ribosylation, and activation of genes involved in neuronal damage, cyclooxygenase-2 activation, endothelial dysfunction, altered Na+/K+-ATPase pump function, impaired C-peptide-related signaling pathways, endoplasmic reticulum stress, and low-grade inflammation. This review summarizes current evidence regarding the role of low-grade inflammation as a potential therapeutic target for DNs. PMID:26897744
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju
Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, comparedmore » to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic ethanol feeding causes oxidative stress, ER stress and inflammation in lungs of ADH– deer mice. • Chronic ethanol feeding generates FAEEs (nonoxidative metabolites of ethanol) in lungs of ADH– deer mice. • Chronic ethanol feeding induces CYP2E1 in the lungs of ADH– deer mice. • Lack of ER homeostasis due to a prolonged ethanol feeding could trigger inflammation.« less