Science.gov

Sample records for reticulum stress regulators

  1. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics.

    PubMed

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F G; Rothermel, Beverly A; Lavandero, Sergio

    2012-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER-mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  2. Endoplasmic reticulum stress regulation in hematopoietic stem cells.

    PubMed

    Miharada, Kenichi

    2016-08-01

    Adult hematopoietic stem cells (HSCs) reside in bone marrow and are maintained in a dormant state within a special microenvironment, their so-called "niche". Detaching from the niche induces cell cycle progression, resulting in a reduction of the reconstitution capacity of HSCs. In contrast, fetal liver HSCs actively divide without losing their stem cell potentials. Thus, it has been unclear what types of cellular responses and metabolic changes occur in growing HSCs. We previously discovered that HSCs express relatively low levels of endoplasmic reticulum (ER) chaperone proteins governing protein folding, making HSCs vulnerable to an elevation of stress signals caused by accumulation of un-/misfolded proteins (ER stress) upon in vitro culture. Interestingly, fetal liver HSCs do not show ER stress elevation despite unchanged levels of chaperone proteins. Our latest studies utilizing multiple mouse models revealed that in the fetal liver bile acids as chemical chaperones play a key role supporting the protein folding which results in the suppression of ER stress induction. These findings highlight the importance of ER stress regulations in hematopoiesis. PMID:27599423

  3. Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress.

    PubMed

    Deegan, Shane; Saveljeva, Svetlana; Gorman, Adrienne M; Samali, Afshin

    2013-07-01

    Macroautophagy (autophagy) is a cellular catabolic process which can be described as a self-cannibalism. It serves as an essential protective response during conditions of endoplasmic reticulum (ER) stress through the bulk removal and degradation of unfolded proteins and damaged organelles; in particular, mitochondria (mitophagy) and ER (reticulophagy). Autophagy is genetically regulated and the autophagic machinery facilitates removal of damaged cell components and proteins; however, if the cell stress is acute or irreversible, cell death ensues. Despite these advances in the field, very little is known about how autophagy is initiated and how the autophagy machinery is transcriptionally regulated in response to ER stress. Some three dozen autophagy genes have been shown to be required for the correct assembly and function of the autophagic machinery; however; very little is known about how these genes are regulated by cellular stress. Here, we will review current knowledge regarding how ER stress and the unfolded protein response (UPR) induce autophagy, including description of the different autophagy-related genes which are regulated by the UPR. PMID:23052213

  4. Ca2+-Dependent Endoplasmic Reticulum Stress Regulates Mechanical Stress-Mediated Cartilage Thinning.

    PubMed

    Zhu, M; Zhou, S; Huang, Z; Wen, J; Li, H

    2016-07-01

    Our previous study identified that endoplasmic reticulum stress (ERS) plays a critical role in chondrocyte apoptosis and mandibular cartilage thinning in response to compressive mechanical force, although the underlying mechanisms remain elusive. Because the endoplasmic reticulum (ER) is a primary site of intracellular Ca(2+) storage, we hypothesized that Ca(2+)-dependent ERS might be involved in mechanical stress-mediated mandibular cartilage thinning. In this study, we used in vitro and in vivo models to determine Ca(2+) concentrations, histological changes, subcellular changes, apoptosis, and the expression of ERS markers in mandibular cartilage and chondrocytes. The results showed that in chondrocytes, cytosolic Ca(2+) ([Ca(2+)]i) was dramatically increased by compressive mechanical force. Interestingly, the inhibition of Ca(2+) channels by ryanodine and 2-aminoethoxydiphenyl borate, inhibitors of ryanodine receptors and inositol trisphosphate receptors, respectively, partially rescued mechanical force-mediated mandibular cartilage thinning. Furthermore, chondrocyte apoptosis was also compromised by inhibiting the increase in [Ca(2+)]i that occurred in response to compressive mechanical force. Mechanistically, the ERS induced by compressive mechanical force was also repressed by [Ca(2+)]i inhibition, as demonstrated by a decrease in the expression of the ER stress markers 78 kDa glucose-regulated protein (GRP78) and 94 kDa glucose-regulated protein (GRP94) at both the mRNA and protein levels. Collectively, these data identified [Ca(2+)]i as a critical mediator of the pathological changes that occur in mandibular cartilage under compressive mechanical force and shed light on the treatment of mechanical stress-mediated cartilage degradation.

  5. Late Phase of the Endoplasmic Reticulum Stress Response Pathway Is Regulated by Hog1 MAP Kinase*

    PubMed Central

    Bicknell, Alicia A.; Tourtellotte, Joel; Niwa, Maho

    2010-01-01

    When unfolded proteins accumulate in the endoplasmic reticulum (ER) causing ER stress, the unfolded protein response (UPR) responds rapidly to induce a transcriptional program that functions to alleviate the stress. However, under extreme conditions, when UPR activation is not sufficient to alleviate ER stress, the stress may persist long term. Very little is known about how the cell responds to persistent ER stress that is not resolved by the immediate activation of the UPR. We show that Hog1 MAP kinase becomes phosphorylated during the late stage of ER stress and helps the ER regain homeostasis. Although Hog1 is well known to function in osmotic stress and cell wall integrity pathways, we show that the activation mechanism for Hog1 during ER stress is distinct from both of these pathways. During late stage ER stress, upon phosphorylation, Hog1 translocates into the nucleus and regulates gene expression. Subsequently, Hog1 returns to the cytoplasm, where its phosphorylation levels remain high. From its cytoplasmic location, Hog1 contributes to the activation of autophagy by enhancing the stability of Atg8, a critical autophagy protein. Thus, Hog1 coordinates a multifaceted response to persistent ER stress. PMID:20382742

  6. Oxidative Homeostasis Regulates the Response to Reductive Endoplasmic Reticulum Stress through Translation Control.

    PubMed

    Maity, Shuvadeep; Rajkumar, Asher; Matai, Latika; Bhat, Ajay; Ghosh, Asmita; Agam, Ganesh; Kaur, Simarjot; Bhatt, Niraj R; Mukhopadhyay, Arnab; Sengupta, Shantanu; Chakraborty, Kausik

    2016-07-19

    Reductive stress leads to the loss of disulfide bond formation and induces the unfolded protein response of the endoplasmic reticulum (UPR(ER)), necessary to regain proteostasis in the compartment. Here we show that peroxide accumulation during reductive stress attenuates UPR(ER) amplitude by altering translation without any discernible effect on transcription. Through a comprehensive genetic screen in Saccharomyces cerevisiae, we identify modulators of reductive stress-induced UPR(ER) and demonstrate that oxidative quality control (OQC) genes modulate this cellular response in the presence of chronic but not acute reductive stress. Using a combination of microarray and relative quantitative proteomics, we uncover a non-canonical translation attenuation mechanism that acts in a bipartite manner to selectively downregulate highly expressed proteins, decoupling the cell's transcriptional and translational response during reductive ER stress. Finally, we demonstrate that PERK, a canonical translation attenuator in higher eukaryotes, helps in bypassing a ROS-dependent, non-canonical mode of translation attenuation. PMID:27373166

  7. Endoplasmic reticulum stress-regulated CXCR3 pathway mediates inflammation and neuronal injury in acute glaucoma

    PubMed Central

    Ha, Y; Liu, H; Xu, Z; Yokota, H; Narayanan, S P; Lemtalsi, T; Smith, S B; Caldwell, R W; Caldwell, R B; Zhang, W

    2015-01-01

    Acute glaucoma is a leading cause of irreversible blindness in East Asia. The mechanisms underlying retinal neuronal injury induced by a sudden rise in intraocular pressure (IOP) remain obscure. Here we demonstrate that the activation of CXCL10/CXCR3 axis, which mediates the recruitment and activation of inflammatory cells, has a critical role in a mouse model of acute glaucoma. The mRNA and protein expression levels of CXCL10 and CXCR3 were significantly increased after IOP-induced retinal ischemia. Blockade of the CXCR3 pathway by deleting CXCR3 gene significantly attenuated ischemic injury-induced upregulation of inflammatory molecules (interleukin-1β and E-selectin), inhibited the recruitment of microglia/monocyte to the superficial retina, reduced peroxynitrite formation, and prevented the loss of neurons within the ganglion cell layer. In contrast, intravitreal delivery of CXCL10 increased leukocyte recruitment and retinal cell apoptosis. Inhibition of endoplasmic reticulum (ER) stress with chemical chaperones partially blocked ischemic injury-induced CXCL10 upregulation, whereas induction of ER stress with tunicamycin enhanced CXCL10 expression in retina and primary retinal ganglion cells. Interestingly, deleting CXCR3 attenuated ER stress-induced retinal cell death. In conclusion, these results indicate that ER stress-medicated activation of CXCL10/CXCR3 pathway has an important role in retinal inflammation and neuronal injury after high IOP-induced ischemia. PMID:26448323

  8. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy.

    PubMed

    Luan, Qi; Jin, Lei; Jiang, Chen Chen; Tay, Kwang Hong; Lai, Fritz; Liu, Xiao Ying; Liu, Yi Lun; Guo, Su Tang; Li, Chun Ying; Yan, Xu Guang; Tseng, Hsin-Yi; Zhang, Xu Dong

    2015-01-01

    Although RIPK1 (receptor [TNFRSF]-interacting protein kinase 1) is emerging as a critical determinant of cell fate in response to cellular stress resulting from activation of death receptors and DNA damage, its potential role in cell response to endoplasmic reticulum (ER) stress remains undefined. Here we report that RIPK1 functions as an important prosurvival mechanism in melanoma cells undergoing pharmacological ER stress induced by tunicamycin (TM) or thapsigargin (TG) through activation of autophagy. While treatment with TM or TG upregulated RIPK1 and triggered autophagy in melanoma cells, knockdown of RIPK1 inhibited autophagy and rendered the cells sensitive to killing by TM or TG, recapitulating the effect of inhibition of autophagy. Consistently, overexpression of RIPK1 enhanced induction of autophagy and conferred resistance of melanoma cells to TM- or TG-induced cell death. Activation of MAPK8/JNK1 or MAPK9/JNK2, which phosphorylated BCL2L11/BIM leading to its dissociation from BECN1/Beclin 1, was involved in TM- or TG-induced, RIPK1-mediated activation of autophagy; whereas, activation of the transcription factor HSF1 (heat shock factor protein 1) downstream of the ERN1/IRE1-XBP1 axis of the unfolded protein response was responsible for the increase in RIPK1 in melanoma cells undergoing pharmacological ER stress. Collectively, these results identify upregulation of RIPK1 as an important resistance mechanism of melanoma cells to TM- or TG-induced ER stress by protecting against cell death through activation of autophagy, and suggest that targeting the autophagy-activating mechanism of RIPK1 may be a useful strategy to enhance sensitivity of melanoma cells to therapeutic agents that induce ER stress.

  9. Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress

    PubMed Central

    Nakato, Ryosuke; Ohkubo, Yu; Konishi, Akari; Shibata, Mari; Kaneko, Yuki; Iwawaki, Takao; Nakamura, Tomohiro; Lipton, Stuart A.; Uehara, Takashi

    2015-01-01

    Protein S-nitrosylation modulates important cellular processes, including neurotransmission, vasodilation, proliferation, and apoptosis in various cell types. We have previously reported that protein disulfide isomerase (PDI) is S-nitrosylated in brains of patients with sporadic neurodegenerative diseases. This modification inhibits PDI enzymatic activity and consequently leads to the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) lumen. Here, we describe S-nitrosylation of additional ER pathways that affect the unfolded protein response (UPR) in cell-based models of Parkinson’s disease (PD). We demonstrate that nitric oxide (NO) can S-nitrosylate the ER stress sensors IRE1α and PERK. While S-nitrosylation of IRE1α inhibited its ribonuclease activity, S-nitrosylation of PERK activated its kinase activity and downstream phosphorylation/inactivation or eIF2α. Site-directed mutagenesis of IRE1α(Cys931) prevented S-nitrosylation and inhibition of its ribonuclease activity, indicating that Cys931 is the predominant site of S-nitrosylation. Importantly, cells overexpressing mutant IRE1α(C931S) were resistant to NO-induced damage. Our findings show that nitrosative stress leads to dysfunctional ER stress signaling, thus contributing to neuronal cell death. PMID:26446798

  10. Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress.

    PubMed

    Nakato, Ryosuke; Ohkubo, Yu; Konishi, Akari; Shibata, Mari; Kaneko, Yuki; Iwawaki, Takao; Nakamura, Tomohiro; Lipton, Stuart A; Uehara, Takashi

    2015-10-08

    Protein S-nitrosylation modulates important cellular processes, including neurotransmission, vasodilation, proliferation, and apoptosis in various cell types. We have previously reported that protein disulfide isomerase (PDI) is S-nitrosylated in brains of patients with sporadic neurodegenerative diseases. This modification inhibits PDI enzymatic activity and consequently leads to the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) lumen. Here, we describe S-nitrosylation of additional ER pathways that affect the unfolded protein response (UPR) in cell-based models of Parkinson's disease (PD). We demonstrate that nitric oxide (NO) can S-nitrosylate the ER stress sensors IRE1α and PERK. While S-nitrosylation of IRE1α inhibited its ribonuclease activity, S-nitrosylation of PERK activated its kinase activity and downstream phosphorylation/inactivation or eIF2α. Site-directed mutagenesis of IRE1α(Cys931) prevented S-nitrosylation and inhibition of its ribonuclease activity, indicating that Cys931 is the predominant site of S-nitrosylation. Importantly, cells overexpressing mutant IRE1α(C931S) were resistant to NO-induced damage. Our findings show that nitrosative stress leads to dysfunctional ER stress signaling, thus contributing to neuronal cell death.

  11. [Endoplasmic reticulum stress response in osteogenesis].

    PubMed

    Saito, Atsushi; Imaizumi, Kazunori

    2013-11-01

    Various cellular conditions such as synthesis of abundant proteins, expressions of mutant proteins and oxidative stress lead to accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen. This type of stress is called ER stress. The excessive ER stress causes cellular damages followed by apoptosis. When ER stress occurs, cells are activated ER stress response (unfolded protein response) to avoid cellular damages. Recently, it has been clear that ER stress response plays crucial roles not only in cell survival after ER stress but also in regulating various cellular functions and tissue formations. In particular, ER stress and ER stress response regulate protein quality control, secretory protein production, and smooth secretion of proteins in the cells such as osteoblasts which synthesize and secrete enormous matrix proteins.

  12. Role of miR-181a-5p and endoplasmic reticulum stress in the regulation of myogenic differentiation.

    PubMed

    Wei, Yingying; Tao, Xuelian; Xu, Huaming; Chen, Yan; Zhu, Li; Tang, Guoqing; Li, Mingzhou; Jiang, Anan; Shuai, Surong; Ma, Jideng; Jin, Long; Wen, Anxiang; Wang, Qin; Zhu, Guangxiang; Xie, Meng; Wu, Jiayun; He, Tao; Jiang, Yanzhi; Li, Xuewei

    2016-10-30

    Accumulating evidence has indicated that microRNAs (miRNAs) and endoplasmic reticulum (ER) stress play critical roles in myoblast differentiation. However, the regulation roles of miRNAs and ER stress in myogenic differentiation have not been fully revealed and need to be further studied. Here, we discovered that the expression levels of miR-181a-5p were strongly upregulated during C2C12 cell differentiation. miR-181a-5p overexpression promoted ER stress and differentiation of C2C12 cells, which was accompanied by increasing expression levels of marker genes related to ER stress-mediated apoptosis and myogenic differentiation. Opposite results were observed after inhibition of the miR-181a-5p expression. The gain- and loss-of-function experiments on C2C12 cells showed that miR-181a-5p affected the development of muscle fiber type, but had no significant influence on C2C12 cell proliferation. In the ER-stressed C2C12 cells induced by thapsigargin (Tg), the expression levels of both miR-181a-5p and marker genes related to ER stress and myogenesis were upregulated. In the ER-stressed C2C12 cells and porcine muscle fibroblast (PMF) cells pretreated with Tg, we found that miR-181a-5p targeted glucose-regulated protein, 78kDa/binding immunoglobulin protein (GRP78/BIP), and influenced cell apoptosis. In conclusion, these results indicate that miR-181a-5p and ER stress have positive synergistic effects on myogenic differentiation by increasing the expression levels of myogenic differentiation key genes and activating the ER stress-mediated apoptosis signaling pathway.

  13. Role of miR-181a-5p and endoplasmic reticulum stress in the regulation of myogenic differentiation.

    PubMed

    Wei, Yingying; Tao, Xuelian; Xu, Huaming; Chen, Yan; Zhu, Li; Tang, Guoqing; Li, Mingzhou; Jiang, Anan; Shuai, Surong; Ma, Jideng; Jin, Long; Wen, Anxiang; Wang, Qin; Zhu, Guangxiang; Xie, Meng; Wu, Jiayun; He, Tao; Jiang, Yanzhi; Li, Xuewei

    2016-10-30

    Accumulating evidence has indicated that microRNAs (miRNAs) and endoplasmic reticulum (ER) stress play critical roles in myoblast differentiation. However, the regulation roles of miRNAs and ER stress in myogenic differentiation have not been fully revealed and need to be further studied. Here, we discovered that the expression levels of miR-181a-5p were strongly upregulated during C2C12 cell differentiation. miR-181a-5p overexpression promoted ER stress and differentiation of C2C12 cells, which was accompanied by increasing expression levels of marker genes related to ER stress-mediated apoptosis and myogenic differentiation. Opposite results were observed after inhibition of the miR-181a-5p expression. The gain- and loss-of-function experiments on C2C12 cells showed that miR-181a-5p affected the development of muscle fiber type, but had no significant influence on C2C12 cell proliferation. In the ER-stressed C2C12 cells induced by thapsigargin (Tg), the expression levels of both miR-181a-5p and marker genes related to ER stress and myogenesis were upregulated. In the ER-stressed C2C12 cells and porcine muscle fibroblast (PMF) cells pretreated with Tg, we found that miR-181a-5p targeted glucose-regulated protein, 78kDa/binding immunoglobulin protein (GRP78/BIP), and influenced cell apoptosis. In conclusion, these results indicate that miR-181a-5p and ER stress have positive synergistic effects on myogenic differentiation by increasing the expression levels of myogenic differentiation key genes and activating the ER stress-mediated apoptosis signaling pathway. PMID:27461948

  14. Endoplasmic reticulum stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of Arabidopsis thaliana

    PubMed Central

    Turkan, Ismail

    2014-01-01

    Inefficient chaperone activity in endoplasmic reticulum (ER) causes accumulation of unfolded proteins and is called ER stress, which triggers the unfolded protein response. For proper oxidative protein folding, reactive oxygen species (ROS) such as H2O2 are produced in the ER. Although the role of ROS during abiotic stresses such as salinity is well documented, the role of ER-related ROS production and its signalling is not yet known. Moreover, how H2O2 production, redox regulation, and antioxidant defence are affected in salt-treated plants when ER protein-folding machinery is impaired needs to be elucidated. For this aim, changes in NADPH-oxidase-dependent ROS signalling and H2O2 content at sequential time intervals and after 48h of ER stress, induced by tunicamycin (Tm), salinity, and their combination were determined in Arabidopsis thaliana. The main root growth was inhibited by ER stress, while low levels of Tm caused an increase in lateral root density. Salt stress and Tm induced the expression of ER-stress-related genes (bZIP17, bZIP28, bZIP60, TIN1, BiP1, BiP3) and ERO1. Tm induced expression of RBOHD and RBOHF, which led to an early increase in H2O2 and triggered ROS signalling. This study is the first report that ER stress induces the antioxidant system and the Asada–Halliwell pathway of A. thaliana in a similar way to salinity. ER stress caused oxidative damage, as evident by increased H2O2 accumulation, lipid peroxidation, and protein oxidation. As a result, this study shows that ER stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of A. thaliana. PMID:24558072

  15. Calcium regulation in aortic smooth muscle cells during the initial phase of tunicamycin-induced endo/sarcoplasmic reticulum stress.

    PubMed

    Ziomek, Gabriela; Cheraghi Zanjani, Parisa; Arman, Darian; van Breemen, Cornelis; Esfandiarei, Mitra

    2014-07-15

    Endo/sarcoplasmic reticulum stress and the unfolded protein response have been implicated as underlying mechanisms of cell death in many pathological conditions. We have confirmed that long-term exposure to 10µM tunicamycin induced the endo/sarcoplasmic reticulum stress in cultured vascular smooth muscle cells. Since tunicamycin is reported to induce the stress response by inhibiting protein glycosylation, we attempted to investigate a causal link between accumulation of unfolded proteins and dysregulation of cellular calcium transport. However, we found that tunicamycin caused an immediate release of calcium from the endo/sarcoplasmic reticulum, which was sensitive to thapsigargin, and an influx of calcium through the plasma membrane, resulting in a significant increase in cytoplasmic calcium and depletion of endo/sarcoplasmic reticulum calcium. Furthermore, we observed that tunicamycin also induced contraction in intact vascular smooth muscle. By applying established procedures and antagonists, we established that tunicamycin did not directly activate physiological calcium channels, such as store-operated channels, voltage gated calcium channels, ryanodine receptors or inositol trisphosphate receptors. Instead, we found that its effects on cellular calcium fluxes closely resembled those of the known calcium ionophore, ionomycin. We have concluded that tunicamycin directly permeabilizes the plasma membrane and endo/sarcoplasmic reticulum to calcium, and is, therefore, inappropriate for studying the relationship between accumulation of unfolded proteins and endo/sarcoplasmic reticulum calcium dysregulation during the endo/sarcoplasmic reticulum stress response. In contrast, we also report that two other well-known endo/sarcoplasmic reticulum stress inducers, brefeldin A and dithiothreitol, did not exhibit similar increases in calcium permeability.

  16. The obesity-induced transcriptional regulator TRIP-Br2 mediates visceral fat endoplasmic reticulum stress-induced inflammation

    PubMed Central

    Qiang, Guifen; Kong, Hyerim Whang; Fang, Difeng; McCann, Maximilian; Yang, Xiuying; Du, Guanhua; Blüher, Matthias; Zhu, Jinfang; Liew, Chong Wee

    2016-01-01

    The intimate link between location of fat accumulation and metabolic disease risk and depot-specific differences is well established, but how these differences between depots are regulated at the molecular level remains largely unclear. Here we show that TRIP-Br2 mediates endoplasmic reticulum (ER) stress-induced inflammatory responses in visceral fat. Using in vitro, ex vivo and in vivo approaches, we demonstrate that obesity-induced circulating factors upregulate TRIP-Br2 specifically in visceral fat via the ER stress pathway. We find that ablation of TRIP-Br2 ameliorates both chemical and physiological ER stress-induced inflammatory and acute phase response in adipocytes, leading to lower circulating levels of inflammatory cytokines. Using promoter assays, as well as molecular and pharmacological experiments, we show that the transcription factor GATA3 is responsible for the ER stress-induced TRIP-Br2 expression in visceral fat. Taken together, our study identifies molecular regulators of inflammatory response in visceral fat that—given that these pathways are conserved in humans—might serve as potential therapeutic targets in obesity. PMID:27109496

  17. Heme-dependent Metabolite Switching Regulates H2S Synthesis in Response to Endoplasmic Reticulum (ER) Stress.

    PubMed

    Kabil, Omer; Yadav, Vinita; Banerjee, Ruma

    2016-08-01

    Substrate ambiguity and relaxed reaction specificity underlie the diversity of reactions catalyzed by the transsulfuration pathway enzymes, cystathionine β-synthase (CBS) and γ-cystathionase (CSE). These enzymes either commit sulfur metabolism to cysteine synthesis from homocysteine or utilize cysteine and/or homocysteine for synthesis of H2S, a signaling molecule. We demonstrate that a kinetically controlled heme-dependent metabolite switch in CBS regulates these competing reactions where by cystathionine, the product of CBS, inhibits H2S synthesis by the second enzyme, CSE. Under endoplasmic reticulum stress conditions, induction of CSE and up-regulation of the CBS inhibitor, CO, a product of heme oxygenase-1, flip the operating preference of CSE from cystathionine to cysteine, transiently stimulating H2S production. In contrast, genetic deficiency of CBS leads to chronic stimulation of H2S production. This metabolite switch from cystathionine to cysteine and/or homocysteine renders H2S synthesis by CSE responsive to the known modulators of CBS: S-adenosylmethionine, NO, and CO. Used acutely, it regulates H2S synthesis; used chronically, it might contribute to disease pathology. PMID:27365395

  18. Selenoprotein S is a marker but not a regulator of endoplasmic reticulum stress in intestinal epithelial cells.

    PubMed

    Speckmann, Bodo; Gerloff, Kirsten; Simms, Lisa; Oancea, Iulia; Shi, Wei; McGuckin, Michael A; Radford-Smith, Graham; Khanna, Kum Kum

    2014-02-01

    Selenoproteins are candidate mediators of selenium-dependent protection against tumorigenesis and inflammation in the gut. Expression and roles of only a limited number of intestinal selenoproteins have been described so far. Selenoprotein S (SelS) has been linked to various inflammatory diseases and is suggested to be involved in endoplasmic reticulum (ER) homeostasis regulation and antioxidative protection in a cell-type-dependent manner, but its protein expression, regulation, and function in the gut are not known. We here analyzed the expression and localization of SelS in the healthy and inflamed gut and studied its regulation and function in intestinal epithelial cell lines. SelS was expressed in the intestinal epithelium of the small and large intestine and colocalized with markers of Paneth cells and macrophages. It was upregulated in inflamed ileal tissue from Crohn's disease patients and in two models of experimental colitis in mice. We detected SelS in colorectal cell lines, where it colocalized with the ER marker calnexin. SelS protein expression was unaffected by enterocytic differentiation but increased in response to selenium supplementation and after treatment with the ER stress inducer tunicamycin. On the other hand, depletion of SelS in LS174T, HT29, and Caco-2 cells by RNA interference did not cause or modulate ER stress and had no effect on hydrogen peroxide-induced cell death. In summary, we introduce SelS as a novel marker of Paneth cells and intestinal ER stress. Although it is upregulated in Crohn's disease, its role in disease etiology remains to be established.

  19. Inhibition of Calcium Influx Reduces Dysfunction and Apoptosis in Lipotoxic Pancreatic β-Cells via Regulation of Endoplasmic Reticulum Stress

    PubMed Central

    Wang, Ting; Chen, Kaixian; Zhu, Weiliang; Wang, Heyao

    2015-01-01

    Lipotoxicity plays an important role in pancreatic β-cell failure during the development of type 2 diabetes. Prolonged exposure of β-cells to elevated free fatty acids level could cause deterioration of β-cell function and induce cell apoptosis. Therefore, inhibition of fatty acids-induced β-cell dysfunction and apoptosis might provide benefit for the therapy of type 2 diabetes. The present study examined whether regulation of fatty acids-triggered calcium influx could protect pancreatic β-cells from lipotoxicity. Two small molecule compounds, L-type calcium channel blocker nifedipine and potassium channel activator diazoxide were used to inhibit palmitic acid-induced calcium influx. And whether the compounds could reduce palmitic acid-induced β-cell failure and the underlying mechanism were also investigated. It was found that both nifedipine and diazoxide protected MIN6 pancreatic β-cells and primary cultured murine islets from palmitic acid-induced apoptosis. Meanwhile, the impaired insulin secretion was also recovered to varying degrees by these two compounds. Our results verified that nifedipine and diazoxide could reduce palmitic acid-induced endoplasmic reticulum stress to generate protective effects on pancreatic β-cells. More importantly, it suggested that regulation of calcium influx by small molecule compounds might provide benefits for the prevention and therapy of type 2 diabetes. PMID:26147439

  20. Epigenetic Regulation of Hepatic Endoplasmic Reticulum Stress Pathways in the Ethanol-fed Cystathionine βeta Synthase Deficient Mouse

    PubMed Central

    Esfandiari, Farah; Medici, Valentina; Wong, Donna H.; Jose, Soumia; Dolatshahi, Maryam; Quinlivan, Eoin; Dayal, Sanjana; Lentz, Steven R.; Tsukamoto, Hidekazu; Zhang, Yue Hua; French, Samuel W.; Halsted, Charles H.

    2010-01-01

    We tested the hypothesis that the pathogenesis of alcoholic liver injury is mediated by epigenetic changes in regulatory genes that result from the induction of aberrant methionine metabolism by ethanol feeding. Five month old cystathionine beta synthase (CβS) heterozygous and wildtype C57BL/6J littermate mice were fed liquid control or ethanol diets by intragastric infusion for four weeks. Both ethanol fed groups showed typical histopathology of alcoholic steatohepatitis (ASH), with reduction in liver S-adenosylmethionine (SAM), elevation in liver S-adenosylhomocysteine (SAH), and reduction in the SAM/SAH ratio with interactions of ethanol and genotype effects. Hepatic endoplasmic reticulum (ER) stress signals including glucose regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), growth arrest and DNA damage inducible gene 153 (GADD153), caspase 12, and transcription factor sterol response element binding protein-1c (SREBP-1c) were up-regulated in ethanol fed mice with genotype interactions and negative correlations with the SAM/SAH ratio. Immunohistochemical staining showed reduction in trimethylated histone H3 lysine-9 (3meH3K9) protein levels in centrilobular regions in both ethanol groups, with no changes in trimethylated histone H3 Lysine-4 (3meH3K4) levels. The chromatin immunoprecipitation (ChIP) assay found decrease in levels of suppressor chromatin marker 3meH3K9 in the promoter regions of GRP78, SREBP-1c and GADD153 in the ethanol-treated heterozygous CβS mice. The mRNA expression of the histone H3K9 methyltransferase EHMT2 (G9a), was selectively decreased in ethanol-fed mice. Conclusion: The pathogenesis of ASH is mediated in part through the effects of altered methionine metabolism on epigenetic regulation of pathways of ER stress relating to apoptosis and lipogenesis. PMID:19957376

  1. Master regulator for chondrogenesis, Sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer BBF2H7/CREB3L2 in chondrocytes.

    PubMed

    Hino, Kenta; Saito, Atsushi; Kido, Miori; Kanemoto, Soshi; Asada, Rie; Takai, Tomoko; Cui, Min; Cui, Xiang; Imaizumi, Kazunori

    2014-05-16

    The endoplasmic reticulum (ER) stress transducer, box B-binding factor 2 human homolog on chromosome 7 (BBF2H7), is a basic leucine zipper (bZIP) transmembrane transcription factor. This molecule is activated in response to ER stress during chondrogenesis. The activated BBF2H7 accelerates cartilage matrix protein secretion through the up-regulation of Sec23a, which is responsible for protein transport from the ER to the Golgi apparatus and is a target of BBF2H7. In the present study, we elucidated the mechanisms of the transcriptional activation of Bbf2h7 in chondrocytes. The transcription of Bbf2h7 is regulated by Sex determining region Y-related high-mobility group box 9 (Sox9), a critical factor for chondrocyte differentiation that facilitates the expression of one of the major cartilage matrix proteins Type II collagen (Col2), through binding to the Sox DNA-binding motif in the Bbf2h7 promoter. BBF2H7 is activated as a transcription factor in response to physiological ER stress caused by abundant synthesis of cartilage matrix proteins, and consequently regulates the secretion of cartilage matrix proteins. Taken together, our findings demonstrate novel regulatory mechanisms of Sox9 for controlling the secretion of cartilage matrix proteins through the activation of BBF2H7-Sec23a signaling during chondrogenesis.

  2. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity.

    PubMed

    Yang, Fanmuyi; Luo, Jia

    2015-10-14

    Ethanol abuse affects virtually all organ systems and the central nervous system (CNS) is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD) which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER) regulates posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress and induces unfolded protein response (UPR) which are mediated by three transmembrane ER signaling proteins: pancreatic endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). UPR is initiated to protect cells from overwhelming ER protein loading. However, sustained ER stress may result in cell death. ER stress has been implied in various CNS injuries, including brain ischemia, traumatic brain injury, and aging-associated neurodegeneration, such as Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). However, effects of ethanol on ER stress in the CNS receive less attention. In this review, we discuss recent progress in the study of ER stress in ethanol-induced neurotoxicity. We also examine the potential mechanisms underlying ethanol-mediated ER stress and the interaction among ER stress, oxidative stress and autophagy in the context of ethanol neurotoxicity.

  3. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity

    PubMed Central

    Yang, Fanmuyi; Luo, Jia

    2015-01-01

    Ethanol abuse affects virtually all organ systems and the central nervous system (CNS) is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD) which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER) regulates posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress and induces unfolded protein response (UPR) which are mediated by three transmembrane ER signaling proteins: pancreatic endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). UPR is initiated to protect cells from overwhelming ER protein loading. However, sustained ER stress may result in cell death. ER stress has been implied in various CNS injuries, including brain ischemia, traumatic brain injury, and aging-associated neurodegeneration, such as Alzheimer’s disease (AD), Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS), and Parkinson’s disease (PD). However, effects of ethanol on ER stress in the CNS receive less attention. In this review, we discuss recent progress in the study of ER stress in ethanol-induced neurotoxicity. We also examine the potential mechanisms underlying ethanol-mediated ER stress and the interaction among ER stress, oxidative stress and autophagy in the context of ethanol neurotoxicity. PMID:26473940

  4. Selenoprotein R Protects Human Lens Epithelial Cells against D-Galactose-Induced Apoptosis by Regulating Oxidative Stress and Endoplasmic Reticulum Stress.

    PubMed

    Dai, Jie; Liu, Hongmei; Zhou, Jun; Huang, Kaixun

    2016-01-01

    Selenium is an essential micronutrient for humans. Much of selenium's beneficial influence on health is attributed to its presence within 25 selenoproteins. Selenoprotein R (SelR), known as methionine sulfoxide reductase B1 (MsrB1), is a selenium-dependent enzyme that, like other Msrs, is required for lens cell viability. In order to investigate the roles of SelR in protecting human lens epithelial (hLE) cells against damage, the influences of SelR gene knockdown on d-galactose-induced apoptosis in hLE cells were studied. The results showed that both d-galactose and SelR gene knockdown by siRNA independently induced oxidative stress. When SelR-gene-silenced hLE cells were exposed to d-galactose, glucose-regulated protein 78 (GRP78) protein level was further increased, mitochondrial membrane potential was significantly decreased and accompanied by a release of mitochondrial cytochrome c. At the same time, the apoptosis cells percentage and the caspase-3 activity were visibly elevated in hLE cells. These results suggested that SelR might protect hLE cell mitochondria and mitigating apoptosis in hLE cells against oxidative stress and endoplasmic reticulum (ER) stress induced by d-galactose, implying that selenium as a micronutrient may play important roles in hLE cells.

  5. Insulin modulates induction of glucose-regulated protein 78 during endoplasmic reticulum stress via augmentation of ATF4 expression in human neuroblastoma cells.

    PubMed

    Inageda, Kiyoshi

    2010-08-20

    The effect of insulin on endoplasmic reticulum (ER) stress was investigated. Insulin protected cell death induced by ER stress and increased glucose-regulated protein 78 (GRP78) mRNA and protein levels. Insulin also significantly increased activating transcription factor-4 (ATF4) protein in the nucleus, which was inhibited by LY294002, a phosphatidylinositol 3-kinase (PI-3 kinase) inhibitor. The increase of ATF4 protein by insulin was not due to transcriptional or translational up-regulation but to a post-translational mechanism. Knockdown of ATF4 by siRNA significantly inhibited GRP78 induction by insulin. These results indicate that insulin modulated ER stress-induced GRP78 expression occurs via ATF4 up-regulation. PMID:20667453

  6. Albumin overload down-regulates integrin-β1 through reactive oxygen species-endoplasmic reticulum stress pathway in podocytes.

    PubMed

    Cheng, Yu-Chi; Chen, Chien-An; Chang, Jer-Ming; Chen, Hung-Chun

    2015-08-01

    Proteinuria is a major hallmark of glomerular nephropathy and endoplasmic reticulum (ER) stress plays an important role in glomerular nephropathy. The protein levels of integrin-β1 in podocytes are found to be negative correlation with amount of proteinuria. This study investigated whether urinary protein, particularly albumin, induced ER stress that consequently reduced integrin-β1 expression. All experiments were performed using primary cultured rat podocyte. Protein and mRNA expression were measured by western blotting and semiquantified reverse transcriptase polymerase chain reaction. Albumin uptake was found at 1 h after albumin addition. Albumin reduced precursor and mature forms of integrin-β1, but did not change mRNA levels of integrin-β1. Albumin induced reactive oxygen species (ROS) generation and ER stress. Antioxidant (N-acetylcysteine) suppressed albumin-induced ER stress and decrements in precursor and mature forms of integrin-β1. Then, ER stress inhibitors (4-phenylbutyrate and salubrinal) also inhibited albumin-induced decrements in precursor and mature forms of integrin-β1. The potent ER stress inducers (thapsigargin and tunicamycin) directly decreased precursor and mature forms of integrin-β1 and led appearance of unglycosylated core protein of integrin-β1. Our results show that in proteinuric disease, albumin decreases precursor and mature forms of integrin-β1 through ROS-ER stress pathway in podocytes.

  7. Albumin overload down-regulates integrin-β1 through reactive oxygen species-endoplasmic reticulum stress pathway in podocytes.

    PubMed

    Cheng, Yu-Chi; Chen, Chien-An; Chang, Jer-Ming; Chen, Hung-Chun

    2015-08-01

    Proteinuria is a major hallmark of glomerular nephropathy and endoplasmic reticulum (ER) stress plays an important role in glomerular nephropathy. The protein levels of integrin-β1 in podocytes are found to be negative correlation with amount of proteinuria. This study investigated whether urinary protein, particularly albumin, induced ER stress that consequently reduced integrin-β1 expression. All experiments were performed using primary cultured rat podocyte. Protein and mRNA expression were measured by western blotting and semiquantified reverse transcriptase polymerase chain reaction. Albumin uptake was found at 1 h after albumin addition. Albumin reduced precursor and mature forms of integrin-β1, but did not change mRNA levels of integrin-β1. Albumin induced reactive oxygen species (ROS) generation and ER stress. Antioxidant (N-acetylcysteine) suppressed albumin-induced ER stress and decrements in precursor and mature forms of integrin-β1. Then, ER stress inhibitors (4-phenylbutyrate and salubrinal) also inhibited albumin-induced decrements in precursor and mature forms of integrin-β1. The potent ER stress inducers (thapsigargin and tunicamycin) directly decreased precursor and mature forms of integrin-β1 and led appearance of unglycosylated core protein of integrin-β1. Our results show that in proteinuric disease, albumin decreases precursor and mature forms of integrin-β1 through ROS-ER stress pathway in podocytes. PMID:25713411

  8. PACE4 regulates apoptosis in human prostate cancer cells via endoplasmic reticulum stress and mitochondrial signaling pathways

    PubMed Central

    Yao, Zhiyong; Sun, Bin; Hong, Quan; Yan, Jingmin; Mu, Dawei; Li, Jianye; Sheng, Haibo; Guo, Heqing

    2015-01-01

    Background PACE4 is a proprotein convertase capable of processing numerous substrates involved in tumor growth, invasion, and metastasis. However, the precise role of PACE4 during prostate cancer cell apoptosis has not been reported. Methods In the present study, human prostate cancer cell lines DU145, LNCaP, and PC3 were transfected with PACE4 small interfering (si)RNA to investigate the underlying mechanisms of apoptosis. Results We revealed that PACE4 siRNA exhibited antitumor activity by inducing apoptosis, as determined by Cell Counting Kit-8 (CCK-8), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltet-razolium bromide (MTT) assay, cell cycle analysis, Hoechst staining, caspase-3/7 activity, and western blot analysis. In addition, PACE4 siRNA significantly increased the ratio of Bax/Bcl-2, which led to the release of cytochrome c. Moreover, PACE4 siRNA also induced endoplasmic reticulum stress by increasing the expression of GRP78, GRP94, p-PERK, and p-eIF2α. The ratio of Bax/Bcl-2 and GRP78 were also increased in PACE4 gene knockdown prostate cancer cells compared with the control cells. Conclusion These data demonstrate that PACE4 siRNA may exert its antitumor activity through mitochondrial and endoplasmic reticulum stress signaling pathways, indicating it may be a novel therapeutic target for prostate cancer. PMID:26604689

  9. Endoplasmic reticulum stress in periimplantation embryos.

    PubMed

    Michalak, Marek; Gye, Myung Chan

    2015-03-01

    Stress coping mechanisms are critical to minimize or overcome damage caused by ever changing environmental conditions. They are designed to promote cell survival. The unfolded protein response (UPR) pathway is mobilized in response to the accumulation of unfolded proteins, ultimately in order to regain endoplasmic reticulum (ER) homeostasis. Various elements of coping responses to ER stress including Perk, Ask1, Bip, Chop, Gadd34, Ire1, Atf4, Atf6, and Xbp1 have been identified and were found to be inducible in oocytes and preimplantation embryos, suggesting that, as a normal part of the cellular adaptive mechanism, these coping responses, including the UPR, play a pivotal role in the development of preimplantation embryos. As such, the UPR-associated molecules and pathways may become useful markers for the potential diagnosis of stress conditions for preimplantation embryos. After implantation, ER stress-induced coping responses become physiologically important for a normal decidual response, placentation, and early organogenesis. Attenuation of ER stress coping responses by tauroursodeoxycholate and salubrinal was effective for prevention of cell death of cultured embryos. Further elucidation of new and relevant ER stress coping responses in periimplantation embryos might contribute to a comprehensive understanding of the regulation of normal development of embryonic development and potentiation of embryonic development in vitro. PMID:25874167

  10. SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150

    USGS Publications Warehouse

    Jung, T.W.; Lee, K.T.; Lee, M.W.; Ka, K.H.

    2012-01-01

    Endoplasmic reticulum (ER) stress has been implicated in the pathology of type 2 diabetes mellitus (T2DM). Although SIRT1 has a therapeutic effect on T2DM, the mechanisms by which SIRT1 ameliorates insulin resistance (IR) remain unclear. In this study, we investigated the impact of SIRT1 on palmitate-induced ER stress in HepG2 cells and its underlying signal pathway. Treatment with resveratrol, a SIRT1 activator significantly inhibited palmitate-induced ER stress, leading to the protection against palmitate-induced ER stress and insulin resistance. Resveratrol and SIRT1 overexpression induced the expression of oxygen-regulated protein (ORP) 150 in HepG2 cells. Forkhead box O1 (FOXO1) was involved in the regulation of ORP150 expression because suppression of FOXO1 inhibited the induction of ORP150 by SIRT1. Our results indicate a novel mechanism by which SIRT1 regulates ER stress by overexpression of ORP150, and suggest that SIRT1 ameliorates palmitate-induced insulin resistance in HepG2 cells via regulation of ER stress.

  11. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress

    PubMed Central

    Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d’Hellencourt, Christian; Ravanan, Palaniyandi

    2014-01-01

    Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress. PMID:25120434

  12. Obesity and endoplasmic reticulum (ER) stresses

    PubMed Central

    Tripathi, Yamini B.; Pandey, Vivek

    2012-01-01

    In obesity, the adipose cells behave as inflammatory source and result to low grade inflammation. This systemic inflammation along with oxidative stress is a silent killer and damages other vital organs also. High metabolic process, induced due to high nutritional intake, results to endoplasmic reticulum (ER) stress and mitochondrial stress. This review describes the triggering factor and basic mechanism behind the obesity mediated these stresses in relation to inflammation. Efforts have been made to describe the effect-response cycle between adipocytes and non-adipocyte cells with reference to metabolic syndrome (MS). PMID:22891067

  13. Endoplasmic reticulum stress responses in plants.

    PubMed

    Howell, Stephen H

    2013-01-01

    Endoplasmic reticulum (ER) stress is of considerable interest to plant biologists because it occurs in plants subjected to adverse environmental conditions. ER stress responses mitigate the damage caused by stress and confer levels of stress tolerance to plants. ER stress is activated by misfolded proteins that accumulate in the ER under adverse environmental conditions. Under these conditions, the demand for protein folding exceeds the capacity of the system, which sets off the unfolded protein response (UPR). Two arms of the UPR signaling pathway have been described in plants: one that involves two ER membrane-associated transcription factors (bZIP17 and bZIP28) and another that involves a dual protein kinase (RNA-splicing factor IRE1) and its target RNA (bZIP60). Under mild or short-term stress conditions, signaling from IRE1 activates autophagy, a cell survival response. But under severe or chronic stress conditions, ER stress can lead to cell death.

  14. Endoplasmic Reticulum Stress in Endometrial Cancer

    PubMed Central

    Ulianich, Luca; Insabato, Luigi

    2014-01-01

    Endometrial cancer (EC) is a common gynecologic malignancy often diagnosed at early stage. In spite of a huge advance in our understanding of EC biology, therapeutic modalities do not have significantly changed over the past 40 years. A restricted number of genes have been reported to be mutated in EC, mediating cell proliferation and invasiveness. However, besides these alterations, few other groups and ourselves recently identified the activation of the unfolded protein response (UPR) and GRP78 increase following endoplasmic reticulum (ER) stress as mechanisms favoring growth and invasion of EC cells. Here, a concise update on currently available data in the field is presented, analyzing the crosstalk between the UPR and the main signaling pathways regulating EC cell proliferation and survival. It is evident that this is a rapidly expanding and promising issue. However, more data are very likely to yield a better understanding on the mechanisms through which EC cells can survive the low oxygen and glucose tumor microenvironment. In this perspective, the UPR and, particularly, GRP78 might constitute a novel target for the treatment of EC in combination with traditional adjuvant therapy. PMID:25593927

  15. Endoplasmic Reticulum Stress and Associated ROS

    PubMed Central

    Zeeshan, Hafiz Maher Ali; Lee, Geum Hwa; Kim, Hyung-Ryong; Chae, Han-Jung

    2016-01-01

    The endoplasmic reticulum (ER) is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS). Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI)-endoplasmic reticulum oxidoreductin (ERO)-1, glutathione (GSH)/glutathione disuphide (GSSG), NADPH oxidase 4 (Nox4), NADPH-P450 reductase (NPR), and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases. PMID:26950115

  16. Endoplasmic reticulum stress in liver disease.

    PubMed

    Malhi, Harmeet; Kaufman, Randal J

    2011-04-01

    The unfolded protein response (UPR) is activated upon the accumulation of misfolded proteins in the endoplasmic reticulum (ER) that are sensed by the binding immunoglobulin protein (BiP)/glucose-regulated protein 78 (GRP78). The accumulation of unfolded proteins sequesters BiP so it dissociates from three ER-transmembrane transducers leading to their activation. These transducers are inositol requiring (IRE) 1α, PKR-like ER kinase (PERK), and activating transcription factor (ATF) 6α. PERK phosphorylates eukaryotic initiation factor 2 alpha (eIF2α) resulting in global mRNA translation attenuation, and concurrently selectively increases the translation of several mRNAs, including the transcription factor ATF4, and its downstream target CHOP. IRE1α has kinase and endoribonuclease (RNase) activities. IRE1α autophosphorylation activates the RNase activity to splice XBP1 mRNA, to produce the active transcription factor sXBP1. IRE1α activation also recruits and activates the stress kinase JNK. ATF6α transits to the Golgi compartment where it is cleaved by intramembrane proteolysis to generate a soluble active transcription factor. These UPR pathways act in concert to increase ER content, expand the ER protein folding capacity, degrade misfolded proteins, and reduce the load of new proteins entering the ER. All of these are geared toward adaptation to resolve the protein folding defect. Faced with persistent ER stress, adaptation starts to fail and apoptosis occurs, possibly mediated through calcium perturbations, reactive oxygen species, and the proapoptotic transcription factor CHOP. The UPR is activated in several liver diseases; including obesity associated fatty liver disease, viral hepatitis, and alcohol-induced liver injury, all of which are associated with steatosis, raising the possibility that ER stress-dependent alteration in lipid homeostasis is the mechanism that underlies the steatosis. Hepatocyte apoptosis is a pathogenic event in several liver

  17. A LAPF/phafin1-like protein regulates TORC1 and lysosomal membrane permeabilization in response to endoplasmic reticulum membrane stress

    PubMed Central

    Kim, Adam; Cunningham, Kyle W.

    2015-01-01

    Lysosomal membrane permeabilization (LMP) is a poorly understood regulator of programmed cell death that involves leakage of luminal lysosomal or vacuolar hydrolases into the cytoplasm. In Saccharomyces cerevisiae, LMP can be induced by antifungals and endoplasmic reticulum stressors when calcineurin also has been inactivated. A genome-wide screen revealed Pib2, a relative of LAPF/phafin1 that regulates LMP in mammals, as a pro-LMP protein in yeast. Pib2 associated with vacuolar and endosomal limiting membranes in unstressed cells in a manner that depended on its FYVE domain and on phosphatidylinositol 3-phosphate (PI(3)P) biosynthesis. Genetic experiments suggest that Pib2 stimulates the activity of TORC1, a vacuole-associated protein kinase that is sensitive to rapamycin, in a pathway parallel to the Ragulator/EGO complex containing the GTPases Gtr1 and Gtr2. A hyperactivating mutation in the catalytic subunit of TORC1 restored LMP to the gtr1∆ and pib2∆ mutants and also prevented the synthetic lethality of the double mutants. These findings show novel roles of PI(3)P and Pib2 in the regulation of TORC1, which in turn promoted LMP and nonapoptotic death of stressed cells. Rapamycin prevented the death of the pathogenic yeast Candida albicans during exposure to fluconazole plus a calcineurin inhibitor, suggesting that TORC1 broadly promotes sensitivity to fungistats in yeasts. PMID:26510498

  18. Resveratrol prevents hepatic steatosis and endoplasmic reticulum stress and regulates the expression of genes involved in lipid metabolism, insulin resistance, and inflammation in rats.

    PubMed

    Pan, Qing-Rong; Ren, Yan-Long; Liu, Wen-Xian; Hu, Yan-Jin; Zheng, Jin-Su; Xu, Yuan; Wang, Guang

    2015-07-01

    Previous research demonstrated that resveratrol possesses promising properties for preventing obesity. Endoplasmic reticulum (ER) stress was proposed to be involved in the pathophysiology of both obesity and hepatic steatosis. In the current study, we hypothesized that resveratrol could protect against high-fat diet (HFD)-induced hepatic steatosis and ER stress and regulate the expression of genes related to hepatic steatosis. Rats were fed either a control diet or a HFD for 12 weeks. After 4 weeks, HFD-fed rats were treated with either resveratrol or vehicle for 8 weeks. Body weight, serum metabolic parameters, hepatic histopathology, and hepatic ER stress markers were evaluated. Moreover, an RT2 Profiler Fatty Liver PCR Array was performed to investigate the mRNA expressions of 84 genes related to hepatic steatosis. Our work showed that resveratrol prevented dyslipidemia and hepatic steatosis induced by HFD. Resveratrol significantly decreased activating transcription factor 4, C/EBP-homologous protein and immunoglobulin binding protein levels, which were elevated by the HFD. Resveratrol also decreased PKR-like ER kinase phosphorylation, although it was not affected by the HFD. Furthermore, resveratrol increased the expression of peroxisome proliferator-activated receptor δ, while decreasing the expression of ATP citrate lyase, suppressor of cytokine signaling-3, and interleukin-1β. Our data suggest that resveratrol can prevent hepatic ER stress and regulate the expression of peroxisome proliferator-activated receptor δ, ATP citrate lyase, suppressor of cytokine signaling-3, tumor necrosis factor α, and interleukin-1β in diet-induced obese rats, and these effects likely contribute to resveratrol's protective function against excessive accumulation of fat in the liver.

  19. Midazolam regulated caspase pathway, endoplasmic reticulum stress, autophagy, and cell cycle to induce apoptosis in MA-10 mouse Leydig tumor cells

    PubMed Central

    So, Edmund Cheung; Chen, Yung-Chia; Wang, Shu-Chun; Wu, Chia-Ching; Huang, Man-Chi; Lai, Meng-Shao; Pan, Bo-Syong; Kang, Fu-Chi; Huang, Bu-Miin

    2016-01-01

    Purpose Midazolam is widely used as a sedative and anesthetic induction agent by modulating the different GABA receptors in the central nervous system. Studies have also shown that midazolam has an anticancer effect on various tumors. In a previous study, we found that midazolam could induce MA-10 mouse Leydig tumor cell apoptosis by activating caspase cascade. However, the detailed mechanism related to the upstream and downstream pathways of the caspase cascade, such as endoplasmic reticulum (ER) stress, autophagy, and p53 pathways plus cell cycle regulation in MA-10 mouse Leydig tumor cells, remains elusive. Methods Flow cytometry assay and Western blot analyses were exploited. Results Midazolam significantly decreased cell viability but increased sub-G1 phase cell numbers in MA-10 cells (P<0.05). Annexin V/propidium iodide double staining further confirmed that midazolam induced apoptosis. In addition, expressions of Fas and Fas ligand could be detected in MA-10 cells with midazolam treatments, and Bax translocation and cytochrome c release were also involved in midazolam-induced MA-10 cell apoptosis. Moreover, the staining and expression of LC3-II proteins could be observed with midazolam treatment, implying midazolam could induce autophagy to control MA-10 cell apoptosis. Furthermore, the expressions of p-EIF2α, ATF4, ATF3, and CHOP could be induced by midazolam, indicating that midazolam could stimulate apoptosis through ER stress in MA-10 cells. Additionally, the expressions of cyclin A, cyclin B, and CDK1 could be inhibited by midazolam, and the phosphorylation of p53, P27, and P21 could be adjusted by midazolam, suggesting that midazolam could manage cell cycle through the regulation of p53 pathway to induce apoptosis in MA-10 cells. Conclusion Midazolam could induce cell apoptosis through the activation of ER stress and the regulation of cell cycle through p53 pathway with the involvement of autophagy in MA-10 mouse Leydig tumor cells. PMID:27175086

  20. Placental endoplasmic reticulum stress negatively regulates transcription of placental growth factor via ATF4 and ATF6β: implications for the pathophysiology of human pregnancy complications.

    PubMed

    Mizuuchi, Masahito; Cindrova-Davies, Tereza; Olovsson, Matts; Charnock-Jones, D Stephen; Burton, Graham J; Yung, Hong Wa

    2016-03-01

    Low maternal circulating concentrations of placental growth factor (PlGF) are one of the hallmarks of human pregnancy complications, including fetal growth restriction (FGR) and early-onset pre-eclampsia (PE). Currently, PlGF is used clinically with other biomarkers to screen for high-risk cases, although the mechanisms underlying its regulation are largely unknown. Placental endoplasmic reticulum (ER) stress has recently been found to be elevated in cases of FGR, and to an even greater extent in early-onset PE complicated with FGR. ER stress activates the unfolded protein response (UPR); attenuation of protein translation and a reduction in cell growth and proliferation play crucial roles in the pathophysiology of these complications of pregnancy. In this study, we further identified that ER stress regulates release of PlGF. We first observed that down-regulation of PlGF protein was associated with nuclear localization of ATF4, ATF6α and ATF6β in the syncytiotrophoblast of placentae from PE patients. Transcript analysis showed a decrease of PlGF mRNA, and an increase from genes encoding those UPR transcription factors in placentae from cases of early-onset PE, but not of late-onset (>34 weeks) PE, compared to term controls. Further investigations indicated a strong correlation between ATF4 and PlGF mRNA levels only (r = - 0.73, p < 0.05). These results could be recapitulated in trophoblast-like cells exposed to chemical inducers of ER stress or hypoxia-reoxygenation. The stability of PlGF transcripts was unchanged. The use of small interfering RNA specific for transcription factors in the UPR pathways revealed that ATF4 and ATF6β, but not ATF6α, modulate PlGF transcription. To conclude, ATF4 and ATF6β act synergistically in the negative regulation of PlGF mRNA expression, resulting in reduced PlGF secretion by the trophoblast in response to stress. Therefore, these results further support the targeting of placental ER stress as a potential new therapeutic

  1. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    PubMed

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.

  2. Cardioprotective effects of Notoginsenoside R1 against ischemia/reperfusion injuries by regulating oxidative stress- and endoplasmic reticulum stress- related signaling pathways

    PubMed Central

    Yu, Yingli; Sun, Guibo; Luo, Yun; Wang, Min; Chen, Rongchang; Zhang, Jingyi; Ai, Qidi; Xing, Na; Sun, Xiaobo

    2016-01-01

    Background: Recent reports suggested the involvement of oxidative stress- and endoplasmic reticulum stress (ERS)-associated pathways in the progression of ischemia/reperfusion (I/R) injury. Notoginsenoside R1 (NGR1) is a novel saponin isolated from P. notoginseng, which has a history of prevention and treatment of cardiovascular diseases. Objective: We aimed to examine the cardioprotective effects of NGR1 on I/R-induced heart dysfunction ex vivo and in vitro. Methods: H9c2 cadiomyocytes were incubated with NGR1 for 24 h and exposed to hypoxia/reoxygenation. Isolated rat hearts were perfused by NGR1 for 15 min and then subjected to global ischemia/reperfusion. Hemodynamic parameters were monitored as left ventricular systolic pressure (LVSP), heart rate, and maximal rate of increase and decrease of left ventricular pressure (±dP/dt max/min). Results: NGR1 pretreatment prevents cell apoptosis and delays the onset of ERS by decreasing the protein expression levels of ERS-responsive proteins GRP78, P-PERK, ATF6, IRE, and inhibiting the expression of pro-apoptosis proteins CHOP, Caspase-12, and P-JNK. Besides, NGR1 scavenges free radical, and increases the activity of antioxidase. NGR1 inhibits Tunicamycin-induced cell death and cardic dysfunction. Conclusion: We elucidated the significant cardioprotective effects of NGR1 against I/R injuries, and demonstrated the involvement of oxidative stress and ERS in the protective effects of NGR1. PMID:26888485

  3. Effects of 4-phenylbutyric acid on the process and development of diabetic nephropathy induced in rats by streptozotocin: Regulation of endoplasmic reticulum stress-oxidative activation

    SciTech Connect

    Luo Zhifeng; Feng Bing; Mu Jiao; Qi Wei; Zeng Wei; Guo Yanhong; Pang Qi; Ye Zilin; Liu Li; Yuan Fahuan

    2010-07-15

    Oxidative stress may contribute to the pathogenesis of diabetic nephropathy (DN), although the precise regulatory mechanism is still unclear. Recent reports have shown that chemical molecular chaperone 4-phenylbutyric acid (4-PBA) can suppress oxidative stress by attenuating endoplasmic reticulum (ER) stress. We therefore hypothesized that 4-PBA could provide renoprotection through the suppression of oxidative stress in DN rats. Male Sprague-Dawley (SD) rats were randomly divided into three groups: a normal control (NC) group, a streptozotocin (STZ)-induced DN model group, and a DN plus 4-PBA (1 g/kg) treatment group. At the end of 4, 8, and 12 weeks, hydroxyproline content, NADPH oxidase activity and the expression of phosphorylation of inositol-requiring enzyme-1{alpha} (p-IRE1{alpha}), p47phox, nitrotyrosine (NT) and NF-E2-related factor 2 (Nrf2) in the kidneys of all rats were determined; malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity in serum and urine were also detected; renal nuclear factor {kappa}B (NF-{kappa}B) activity in all of the rats was examined at the end of 12 weeks. Compared with the NC group, the DN rats showed a significant increase in hydroxyproline content, NADPH oxidase activity, NF-{kappa}B activity, the expression of p-IRE1{alpha}, p47phox, NT and Nrf2 in renal tissue; markedly, MDA levels were higher and SOD activity was lower in serum and urine of DN rats than in NC rats for the indicated time. These alterations were inhibited by the administration of 4-PBA. These findings first demonstrated that treatment with 4-PBA significantly inhibits the process and development of diabetic nephropathy in rats through the regulation of ER stress-oxidative activation.

  4. Endoplasmic reticulum stress eIF2α-ATF4 pathway-mediated cyclooxygenase-2 induction regulates cadmium-induced autophagy in kidney.

    PubMed

    Luo, B; Lin, Y; Jiang, S; Huang, L; Yao, H; Zhuang, Q; Zhao, R; Liu, H; He, C; Lin, Z

    2016-01-01

    The heavy metal cadmium (Cd) is nephrotoxic. Recent studies show that autophagy plays an essential role in Cd-induced kidney injury. However, the mechanisms of Cd-induced kidney injury accompanied by autophagy are still obscure. In the present study, we first confirmed that Cd induced kidney damage and dysfunction, along with autophagy, both in vivo and in vitro. Then, we observed that cyclooxygenase-2 (COX-2) and the eIF2α-ATF4 pathway of endoplasmic reticulum (ER) stress were induced by Cd in both kidney tissues and cultured cells. Further studies showed that inhibition of COX-2 with celecoxib or RNA interference (RNAi) inhibited the Cd-induced autophagy in kidney cells. In addition, blocking ER stress with 4-phenylbutyrate or RNAi partially counteracted COX-2 overexpression and autophagy induced by Cd, which suggested that ER stress was required for Cd-induced kidney autophagy. Significantly, our results showed that Cd activated ATF4 and induced its translocation to the nucleus. Knockdown of ATF4 inhibited Cd-induced COX-2 overexpression. While COX-2 overexpression is involved in renal dysfunction, there is no prior report on the role of COX-2 in autophagy regulation. The results of the current study suggest a novel molecular mechanism that the ER stress eIF2α-ATF4 pathway-mediated COX-2 overexpression contributes to Cd-induced kidney autophagy and injury. The present study implies that COX-2 may be a potential target for therapy against Cd-induced nephrotoxicity. PMID:27253415

  5. Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and miR-34a/silent information regulator 1 pathway.

    PubMed

    Carloni, Silvia; Favrais, Géraldine; Saliba, Elie; Albertini, Maria Cristina; Chalon, Sylvie; Longini, Mariangela; Gressens, Pierre; Buonocore, Giuseppe; Balduini, Walter

    2016-10-01

    Maternal infection/inflammation represents one of the most important factors involved in the etiology of brain injury in newborns. We investigated the modulating effect of prenatal melatonin on the neonatal brain inflammation process resulting from maternal intraperitoneal (i.p.) lipopolysaccharide (LPS) injections. LPS (300 μg/kg) was administered to pregnant rats at gestational days 19 and 20. Melatonin (5 mg/kg) was administered i.p. at the same time as LPS. Melatonin counteracted the LPS sensitization to a second ibotenate-induced excitotoxic insult performed on postnatal day (PND) 4. As melatonin succeeded in reducing microglial activation in neonatal brain at PND1, pathways previously implicated in brain inflammation regulation, such as endoplasmic reticulum (ER) stress, autophagy and silent information regulator 1 (SIRT1), a melatonin target, were assessed at the same time-point in our experimental groups. Results showed that maternal LPS administrations resulted in an increase in CHOP and Hsp70 protein expression and eIF2α phosphorylation, indicative of activation of the unfolded protein response consequent to ER stress, and a slighter decrease in the autophagy process, determined by reduced lipidated LC3 and increased p62 expression. LPS-induced inflammation also reduced brain SIRT1 expression and affected the expression of miR-34a, miR146a, and miR-126. All these effects were blocked by melatonin. Cleaved-caspase-3 apoptosis pathway did not seem to be implicated in the noxious effect of LPS on the PND1 brain. We conclude that melatonin is effective in reducing maternal LPS-induced neonatal inflammation and related brain injury. Its role as a prophylactic/therapeutic drug deserves to be investigated by clinical studies.

  6. A Novel Small-Molecule Inhibitor Targeting CREB-CBP Complex Possesses Anti-Cancer Effects along with Cell Cycle Regulation, Autophagy Suppression and Endoplasmic Reticulum Stress

    PubMed Central

    Lee, Jong Woo; Park, Hee Sun; Park, Sin-Aye; Ryu, Seung-Hee; Meng, Wuyi; Jürgensmeier, Juliane M.; Kurie, Jonathan M.; Hong, Waun Ki; Boyer, Julie L.; Herbst, Roy S.; Koo, Ja Seok

    2015-01-01

    Lung adenocarcinoma, the most common subtype of lung cancer, is the leading cause of cancer death worldwide. Despite attempts for the treatment of lung cancer which have been accumulating, promising new therapies are still needed. Here, we found that cyclic-AMP response element-binding protein (CREB)-CREB binding protein (CBP) transcription factors complex inhibitor, Naphthol AS-TR phosphate (NASTRp), is a potential therapeutic agent for lung cancer. We show that NASTRp inhibited oncogenic cell properties through cell cycle arrest with concomitant suppression of tumor-promoting autophagy with down-regulations of Atg5-12 and Atg7, and accumulation of p62 in human lung cancer cell lines. In addition, NASTRp induced expression of endoplasmic reticulum stress markers such as DDIT3/CHOP, and led to apoptosis along with Bim induction. These findings suggest that transcription factor/co-activator complex, CREB-CBP, can be a potential therapeutic target and its inhibition could be a novel therapeutic strategy for lung cancer. PMID:25897662

  7. Endoplasmic Reticulum Stress, Genome Damage, and Cancer

    PubMed Central

    Dicks, Naomi; Gutierrez, Karina; Michalak, Marek; Bordignon, Vilceu; Agellon, Luis B.

    2015-01-01

    Endoplasmic reticulum (ER) stress has been linked to many diseases, including cancer. A large body of work has focused on the activation of the ER stress response in cancer cells to facilitate their survival and tumor growth; however, there are some studies suggesting that the ER stress response can also mitigate cancer progression. Despite these contradictions, it is clear that the ER stress response is closely associated with cancer biology. The ER stress response classically encompasses activation of three separate pathways, which are collectively categorized the unfolded protein response (UPR). The UPR has been extensively studied in various cancers and appears to confer a selective advantage to tumor cells to facilitate their enhanced growth and resistance to anti-cancer agents. It has also been shown that ER stress induces chromatin changes, which can also facilitate cell survival. Chromatin remodeling has been linked with many cancers through repression of tumor suppressor and apoptosis genes. Interplay between the classic UPR and genome damage repair mechanisms may have important implications in the transformation process of normal cells into cancer cells. PMID:25692096

  8. Global quantitative proteomics reveal up-regulation of endoplasmic reticulum stress response proteins upon depletion of eIF5A in HeLa cells

    PubMed Central

    Mandal, Ajeet; Mandal, Swati; Park, Myung Hee

    2016-01-01

    The eukaryotic translation factor, eIF5A, is a translation factor essential for protein synthesis, cell growth and animal development. By use of a adenoviral eIF5A shRNA, we have achieved an effective depletion of eIF5A in HeLa cells and undertook in vivo comprehensive proteomic analyses to examine the effects of eIF5A depletion on the total proteome and to identify cellular pathways influenced by eIF5A. The proteome of HeLa cells transduced with eIF5A shRNA was compared with that of scramble shRNA-transduced counterpart by the iTRAQ method. We identified 972 proteins consistently detected in three iTRAQ experiments and 104 proteins with significantly altered levels (protein ratio ≥1.5 or ≤0.66, p-value ≤0.05) at 72 h and/or 96 h of Ad-eIF5A-shRNA transduction. The altered expression levels of key pathway proteins were validated by western blotting. Integration of functional ontology with expression data of the 104 proteins revealed specific biological processes that are prominently up- or down-regulated. Heatmap analysis and Cytoscape visualization of biological networks identified protein folding as the major cellular process affected by depletion of eIF5A. Our unbiased, quantitative, proteomic data demonstrate that the depletion of eIF5A leads to endoplasmic reticulum stress, an unfolded protein response and up-regulation of chaperone expression in HeLa cells. PMID:27180817

  9. Autophagy modulates endoplasmic reticulum stress-induced cell death in podocytes: a protective role.

    PubMed

    Cheng, Yu-Chi; Chang, Jer-Ming; Chen, Chien-An; Chen, Hung-Chun

    2015-04-01

    Endoplasmic reticulum stress occurs in a variety of patho-physiological mechanisms and there has been great interest in managing this pathway for the treatment of clinical diseases. Autophagy is closely interconnected with endoplasmic reticulum stress to counteract the possible injurious effects related with the impairment of protein folding. Studies have shown that glomerular podocytes exhibit high rate of autophagy to maintain as terminally differentiated cells. In this study, podocytes were exposed to tunicamycin and thapsigargin to induce endoplasmic reticulum stress. Thapsigargin/tunicamycin treatment induced a significant increase in endoplasmic reticulum stress and of cell death, represented by higher GADD153 and GRP78 expression and propidium iodide flow cytometry, respectively. However, thapsigargin/tunicamycin stimulation also enhanced autophagy development, demonstrated by monodansylcadaverine assay and LC3 conversion. To evaluate the regulatory effects of autophagy on endoplasmic reticulum stress-induced cell death, rapamycin (Rap) or 3-methyladenine (3-MA) was added to enhance or inhibit autophagosome formation. Endoplasmic reticulum stress-induced cell death was decreased at 6 h, but was not reduced at 24 h after Rap+TG or Rap+TM treatment. In contrast, endoplasmic reticulum stress-induced cell death increased at 6 and 24 h after 3-MA+TG or 3-MA+TM treatment. Our study demonstrated that thapsigargin/tunicamycin treatment induced endoplasmic reticulum stress which resulted in podocytes death. Autophagy, which counteracted the induced endoplasmic reticulum stress, was simultaneously enhanced. The salvational role of autophagy was supported by adding Rap/3-MA to mechanistically regulate the expression of autophagy and autophagosome formation. In summary, autophagy helps the podocytes from cell death and may contribute to sustain the longevity as a highly differentiated cell lineage.

  10. Autophagy modulates endoplasmic reticulum stress-induced cell death in podocytes: A protective role

    PubMed Central

    Cheng, Yu-Chi; Chang, Jer-Ming; Chen, Chien-An

    2015-01-01

    Endoplasmic reticulum stress occurs in a variety of patho-physiological mechanisms and there has been great interest in managing this pathway for the treatment of clinical diseases. Autophagy is closely interconnected with endoplasmic reticulum stress to counteract the possible injurious effects related with the impairment of protein folding. Studies have shown that glomerular podocytes exhibit high rate of autophagy to maintain as terminally differentiated cells. In this study, podocytes were exposed to tunicamycin and thapsigargin to induce endoplasmic reticulum stress. Thapsigargin/tunicamycin treatment induced a significant increase in endoplasmic reticulum stress and of cell death, represented by higher GADD153 and GRP78 expression and propidium iodide flow cytometry, respectively. However, thapsigargin/tunicamycin stimulation also enhanced autophagy development, demonstrated by monodansylcadaverine assay and LC3 conversion. To evaluate the regulatory effects of autophagy on endoplasmic reticulum stress-induced cell death, rapamycin (Rap) or 3-methyladenine (3-MA) was added to enhance or inhibit autophagosome formation. Endoplasmic reticulum stress-induced cell death was decreased at 6 h, but was not reduced at 24 h after Rap+TG or Rap+TM treatment. In contrast, endoplasmic reticulum stress-induced cell death increased at 6 and 24 h after 3-MA+TG or 3-MA+TM treatment. Our study demonstrated that thapsigargin/tunicamycin treatment induced endoplasmic reticulum stress which resulted in podocytes death. Autophagy, which counteracted the induced endoplasmic reticulum stress, was simultaneously enhanced. The salvational role of autophagy was supported by adding Rap/3-MA to mechanistically regulate the expression of autophagy and autophagosome formation. In summary, autophagy helps the podocytes from cell death and may contribute to sustain the longevity as a highly differentiated cell lineage. PMID:25322957

  11. Expression of the 78 kD glucose-regulated protein is induced by endoplasmic reticulum stress in development of hepatopulmonary syndrome

    PubMed Central

    Zhang, Huiying; Lv, Minli; Jia, Jiantao; Zhao, Zhongfu; Zhang, Lili; Lai, Lina; Wu, Yanjun; Li, Baohong; Li, Chen; Liu, Yan; Li, Xujiong; Tian, Xiaoxia; Pang, Hui; Guo, Jianhong; Wang, Limin; Fan, Yimin; Zhang, Cuiying; Ji, Jingquan; Han, Dewu; Ji, Cheng

    2014-01-01

    Objective This study is to explore the role of 78 kD glucose-regulated protein (GRP78) in development of hepatopulmonary syndrome (HPS) in rats. Methods The rat model of liver cirrhosis and HPS were induced with multiple pathogenic factors. Hematoxylin and eosin (H & E) staining was performed to detect the pathological changes of the lung and liver tissues. The levels of alanine transferase (ALT), endotoxin, and tumor necrosis factor-α (TNF-α) in plasma and TNF-α and malondialdehyde (MDA) in lung tissues were detected. RT-PCR and Western blotting were conducted to detect the mRNA and protein expression levels of GRP78 in lungs. Results The plasma endotoxin level was gradually increased as HPS developed, and the mRNA and protein expression levels of GRP78 in lungs were also increased as the disease progressed. The levels of ALT and TNF-α in plasma and the contents of TNF-α and MDA in lung tissues were gradually increased along with the disease progression, with a strong positive correlation. Compared with controls, the plasma TNF-α level and the mRNA and protein expression levels of GRP78 in lung tissues were significantly higher in rats with HPS. The levels of endotoxin and ALT in plasma and the level of MDA in lungs were significantly higher in rats with HPS than controls. Conclusions The increased GRP78 expression is indicative of endoplasmic reticulum stress response during HPS, which may play an important role in the disease pathogenesis. PMID:24334118

  12. Paclitaxel inhibits selenoprotein S expression and attenuates endoplasmic reticulum stress.

    PubMed

    Qin, Hong-Shuang; Yu, Pei-Pei; Sun, Ying; Wang, Dan-Feng; Deng, Xiao-Fen; Bao, Yong-Li; Song, Jun; Sun, Lu-Guo; Song, Zhen-Bo; Li, Yu-Xin

    2016-06-01

    The primary effect of the endoplasmic reticulum (ER) stress response or unfolded protein response (UPR) is to reduce the load of unfolded protein and promote survival. However, prolonged and severe ER stress leads to tissue injury and serious diseases. Thus, it is important to identify drugs that can attenuate ER stress for the treatment of diseases. Natural products continue to provide lead compounds for drug discovery and front‑line pharmacotherapy for people worldwide. Previous studies have indicated that selenoprotein S (SelS) is a sensitive and ideal maker of ER stress. In the present study, a firefly luciferase reporter driven by the SelS gene promoter was used to screen for natural compounds capable of attenuating ER stress. From this, paclitaxel (PTX) was identified to efficiently inhibit the promoter activity of the SelS gene, and further results revealed that PTX significantly inhibited the tunicamycin‑induced upregulation of SelS at the mRNA and protein levels in HepG2 and HEK293T cells. In addition, PTX was able to efficiently inhibit the expression of the ER stress marker, glucose‑regulated protein 78, in ER stress, indicating that PTX may reverse ER stress. Taken together, these results suggest that PTX is able to inhibit SelS expression during ER stress and attenuate ER stress. PMID:27109260

  13. Protein Disulfide Isomerase Regulates Endoplasmic Reticulum Stress and the Apoptotic Process during Prion Infection and PrP Mutant-Induced Cytotoxicity

    PubMed Central

    Wang, Shao-Bin; Shi, Qi; Xu, Yin; Xie, Wu-Ling; Zhang, Jin; Tian, Chan; Guo, Yan; Wang, Ke; Zhang, Bao-Yun; Chen, Cao; Gao, Chen; Dong, Xiao-Ping

    2012-01-01

    Background Protein disulfide isomerase (PDI), is sorted to be enzymatic chaperone for reconstructing misfolded protein in endoplasmic reticulum lumen. Recently, PDI has been identified as a link between misfolded protein and neuron apoptosis. However, the potential for PDI to be involved in the pathogenesis of prion disease remains unknown. In this study, we propose that PDI may function as a pleiotropic regulator in the cytotoxicity induced by mutated prion proteins and in the pathogenesis of prion diseases. Methodology/Principal Findings To elucidate potential alterations of PDI in prion diseases, the levels of PDI and relevant apoptotic executors in 263K infected hamsters brain tissues were evaluated with the use of Western blots. Abnormal upregulation of PDI, Grp78 and Grp58 was detected. Dynamic assays of PDI alteration identified that the upregulation of PDI started at the early stage and persistently increased till later stage. Obvious increases of PDI and Grp78 levels were also observed in cultured cells transiently expressing PrP mutants, PrP-KDEL or PrP-PG15, accompanied by significant cytotoxicities. Excessive expression of PDI partially eased ER stress and cell apoptosis caused by accumulation of PrP-KDEL, but had less effect on cytotoxicity induced by PrP-PG15. Knockdown of endogenous PDI significantly amended cytotoxicity of PrP-PG15, but had little influence on that of PrP-KDEL. A series of membrane potential assays found that apoptosis induced by misfolded PrP proteins could be regulated by PDI via mitochondrial dysfunction. Moreover, biotin-switch assays demonstrated active S-nitrosylted modifications of PDI (SNO-PDI) both in the brains of scrapie-infected rodents and in the cells with misfolded PrP proteins. Conclusion/Significance Current data in this study highlight that PDI and its relevant executors may function as a pleiotropic regulator in the processes of different misfolded PrP proteins and at different stages during prion infection. SNO

  14. Autocrine Tumor Necrosis Factor Alpha Links Endoplasmic Reticulum Stress to the Membrane Death Receptor Pathway through IRE1α-Mediated NF-κB Activation and Down-Regulation of TRAF2 Expression

    PubMed Central

    Hu, Ping; Han, Zhang; Couvillon, Anthony D.; Kaufman, Randal J.; Exton, John H.

    2006-01-01

    NF-κB is critical for determining cellular sensitivity to apoptotic stimuli by regulating both mitochondrial and death receptor apoptotic pathways. The endoplasmic reticulum (ER) emerges as a new apoptotic signaling initiator. However, the mechanism by which ER stress activates NF-κB and its role in regulation of ER stress-induced cell death are largely unclear. Here, we report that, in response to ER stress, IKK forms a complex with IRE1α through the adapter protein TRAF2. ER stress-induced NF-κB activation is impaired in IRE1α knockdown cells and IRE1α−/− MEFs. We found, however, that inhibiting NF-κB significantly decreased ER stress-induced cell death in a caspase-8-dependent manner. Gene expression analysis revealed that ER stress-induced expression of tumor necrosis factor alpha (TNF-α) was IRE1α and NF-κB dependent. Blocking TNF receptor 1 signaling significantly inhibited ER stress-induced cell death. Further studies suggest that ER stress induces down-regulation of TRAF2 expression, which impairs TNF-α-induced activation of NF-κB and c-Jun N-terminal kinase and turns TNF-α from a weak to a powerful apoptosis inducer. Thus, ER stress induces two signals, namely TNF-α induction and TRAF2 down-regulation. They work in concert to amplify ER-initiated apoptotic signaling through the membrane death receptor. PMID:16581782

  15. Activation of autophagy by unfolded proteins during endoplasmic reticulum stress.

    PubMed

    Yang, Xiaochen; Srivastava, Renu; Howell, Stephen H; Bassham, Diane C

    2016-01-01

    Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol-requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4-phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin- or dithiothreitol-induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over-expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4-phenylbutyrate, suggesting that heat-induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b-dependent manner. Moreover, zeolin and CPY* partially co-localized with the autophagic body marker GFP-ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress. PMID:26616142

  16. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes.

  17. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes. PMID:25143584

  18. Up-Regulation of mRNA Ventricular PRNP Prion Protein Gene Expression in Air Pollution Highly Exposed Young Urbanites: Endoplasmic Reticulum Stress, Glucose Regulated Protein 78, and Nanosized Particles

    PubMed Central

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-01-01

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role. PMID:24287918

  19. Up-regulation of mRNA ventricular PRNP prion protein gene expression in air pollution highly exposed young urbanites: endoplasmic reticulum stress, glucose regulated protein 78, and nanosized particles.

    PubMed

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-01-01

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role. PMID:24287918

  20. Up-regulation of mRNA ventricular PRNP prion protein gene expression in air pollution highly exposed young urbanites: endoplasmic reticulum stress, glucose regulated protein 78, and nanosized particles.

    PubMed

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-11-28

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  1. The Role of Endoplasmic Reticulum Stress and Unfolded Protein Response in Atherosclerosis.

    PubMed

    Ivanova, Ekaterina A; Orekhov, Alexander N

    2016-02-01

    Pathogenesis of atherosclerosis is a complex process involving several metabolic and signalling pathways. Accumulating evidence demonstrates that endoplasmic reticulum stress and associated apoptosis can be induced in the pathological conditions of atherosclerotic lesions and contribute to the disease progression. Notably, they may play a role in the development of vulnerable plaques that induce thrombosis and are therefore especially dangerous. Endoplasmic reticulum stress response is regulated by several signaling mechanisms that involve protein kinases and transcription factors. Some of these molecules can be regarded as potential therapeutic targets to improve treatment of atherosclerosis. In this review we will discuss the role of endoplasmic reticulum stress and apoptosis in atherosclerosis development in different cell types and summarize the current knowledge on potential therapeutic agents targeting molecules regulating these pathways and their possible use for anti-atherosclerotic therapy.

  2. The Role of Endoplasmic Reticulum Stress and Unfolded Protein Response in Atherosclerosis

    PubMed Central

    Ivanova, Ekaterina A.; Orekhov, Alexander N.

    2016-01-01

    Pathogenesis of atherosclerosis is a complex process involving several metabolic and signalling pathways. Accumulating evidence demonstrates that endoplasmic reticulum stress and associated apoptosis can be induced in the pathological conditions of atherosclerotic lesions and contribute to the disease progression. Notably, they may play a role in the development of vulnerable plaques that induce thrombosis and are therefore especially dangerous. Endoplasmic reticulum stress response is regulated by several signaling mechanisms that involve protein kinases and transcription factors. Some of these molecules can be regarded as potential therapeutic targets to improve treatment of atherosclerosis. In this review we will discuss the role of endoplasmic reticulum stress and apoptosis in atherosclerosis development in different cell types and summarize the current knowledge on potential therapeutic agents targeting molecules regulating these pathways and their possible use for anti-atherosclerotic therapy. PMID:26840309

  3. Endoplasmic Reticulum Stress Interacts With Inflammation in Human Diseases

    PubMed Central

    Cao, Stewart Siyan; Luo, Katherine L.; Shi, Lynn

    2015-01-01

    The endoplasmic reticulum is a critical organelle for normal cell function and homeostasis. Disturbed protein folding process in the ER, termed ER stress, leads to the activation of unfolded protein response (UPR) that encompasses a complex network of intracellular signaling pathways. The UPR can either restore ER homeostasis or activate pro-apoptotic pathways depending on specific insults, intensity and duration of the stress, and cell types. ER stress and the UPR have recently been linked to inflammation in a variety of human pathologies including autoimmune diseases, infection, neurodegenerative disease, and metabolic disorders. In the cell, ER stress and inflammatory signaling share extensive regulators and effectors in a broad spectrum of biological processes. In spite of different etiologies, the two signaling pathways were shown to form a vicious cycle in exacerbating cellular dysfunction and causing apoptosis in many cells and tissues. However, the interaction between ER stress and inflammation in many of these diseases remains elusive. Further understanding of those issues may enable the development of novel therapies that spontaneously target these pathogenic pathways. PMID:26201832

  4. Improvement of chemotherapeutic drug efficacy by endoplasmic reticulum stress.

    PubMed

    Mihailidou, Chrysovalantou; Chatzistamou, Ioulia; Papavassiliou, Athanasios G; Kiaris, Hippokratis

    2015-04-01

    Tunicamycin (TUN), an inhibitor of protein glycosylation and therefore a potent stimulator of endoplasmic reticulum (ER) stress, has been used to improve anticancer drug efficacy, but the underlying mechanism remains obscure. In this study, we show that acute administration of TUN in mice induces the unfolded protein response and suppresses the levels of P21, a cell cycle regulator with anti-apoptotic activity. The inhibition of P21 after ER stress appears to be C/EBP homologous protein (CHOP)-dependent because in CHOP-deficient mice, TUN not only failed to suppress, but rather induced the expression of P21. Results of promoter-activity reporter assays using human cancer cells and mouse fibroblasts indicated that the regulation of P21 by CHOP operates at the level of transcription and involves direct binding of CHOP transcription factor to the P21 promoter. The results of cell viability and clonogenic assays indicate that ER-stress-related suppression of P21 expression potentiates caspase activation and sensitizes cells to doxorubicin treatment, while administration of TUN to mice increases the therapeutic efficacy of anticancer therapy for HepG2 liver and A549 lung cancers.

  5. Inhibition of Endoplasmic Reticulum Stress Improves Mouse Embryo Development

    PubMed Central

    Zhang, Jin Yu; Diao, Yun Fei; Kim, Hong Rye; Jin, Dong Il

    2012-01-01

    X-box binding protein-1 (XBP-1) is an important regulator of a subset of genes during endoplasmic reticulum (ER) stress. In the current study, we analyzed endogenous XBP-1 expression and localization, with a view to determining the effects of ER stress on the developmental competency of preimplantation embryos in mice. Fluorescence staining revealed that functional XBP-1 is localized on mature oocyte spindles and abundant in the nucleus at the germinal vesicle (GV) stage. However, in preimplantation embryos, XBP-1 was solely detected in the cytoplasm at the one-cell stage. The density of XBP-1 was higher in the nucleus than the cytoplasm at the two-cell, four-cell, eight-cell, morula, and blastocyst stages. Furthermore, RT-PCR analysis confirmed active XBP-1 mRNA splicing at all preimplantation embryo stages, except the one-cell stage. Tunicamycin (TM), an ER stress inducer used as a positive control, promoted an increase in the density of nuclear XBP-1 at the one-cell and two-cell stages. Similarly, culture medium supplemented with 25 mM sorbitol displayed a remarkable increase active XBP-1 expression in the nuclei of 1-cell and 2-cell embryos. Conversely, high concentrations of TM or sorbitol led to reduced nuclear XBP-1 density and significant ER stress-induced apoptosis. Tauroursodeoxycholic acid (TUDCA), a known inhibitor of ER stress, improved the rate of two-cell embryo development to blastocysts by attenuating the expression of active XBP-1 protein in the nucleus at the two-cell stage. Our data collectively suggest that endogenous XBP-1 plays a role in normal preimplantation embryonic development. Moreover, XBP-1 splicing is activated to generate a functional form in mouse preimplantation embryos during culture stress. TUDCA inhibits hyperosmolar-induced ER stress as well as ER stress-induced apoptosis during mouse preimplantation embryo development. PMID:22808162

  6. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis.

    PubMed

    Fernández, Anna; Ordóñez, Raquel; Reiter, Russel J; González-Gallego, Javier; Mauriz, José L

    2015-10-01

    Endoplasmic reticulum (ER) is a dynamic organelle that participates in a number of cellular functions by controlling lipid metabolism, calcium stores, and proteostasis. Under stressful situations, the ER environment is compromised, and protein maturation is impaired; this causes misfolded proteins to accumulate and a characteristic stress response named unfolded protein response (UPR). UPR protects cells from stress and contributes to cellular homeostasis re-establishment; however, during prolonged ER stress, UPR activation promotes cell death. ER stressors can modulate autophagy which in turn, depending of the situation, induces cell survival or death. Interactions of different autophagy- and apoptosis-related proteins and also common signaling pathways have been found, suggesting an interplay between these cellular processes, although their dynamic features are still unknown. A number of pathologies including metabolic, neurodegenerative and cardiovascular diseases, cancer, inflammation, and viral infections are associated with ER stress, leading to a growing interest in targeting components of the UPR as a therapeutic strategy. Melatonin has a variety of antioxidant, anti-inflammatory, and antitumor effects. As such, it modulates apoptosis and autophagy in cancer cells, neurodegeneration and the development of liver diseases as well as other pathologies. Here, we review the effects of melatonin on the main ER stress mechanisms, focusing on its ability to regulate the autophagic and apoptotic processes. As the number of studies that have analyzed ER stress modulation by this indole remains limited, further research is necessary for a better understanding of the crosstalk between ER stress, autophagy, and apoptosis and to clearly delineate the mechanisms by which melatonin modulates these responses.

  7. Endoplasmic reticulum stress in mouse decidua during early pregnancy.

    PubMed

    Gu, Xiao-Wei; Yan, Jia-Qi; Dou, Hai-Ting; Liu, Jie; Liu, Li; Zhao, Meng-Long; Liang, Xiao-Huan; Yang, Zeng-Ming

    2016-10-15

    Unfolded or misfolded protein accumulation in the endoplasmic reticulum lumen leads to endoplasmic reticulum stress (ER stress). Although it is known that ER stress is crucial for mammalian reproduction, little is known about its physiological significance and underlying mechanism during decidualization. Here we show that Ire-Xbp1 signal transduction pathway of unfolded protein response (UPR) is activated in decidual cells. The process of decidualization is compromised by ER stress inhibitor tauroursodeoxycholic acid sodium (TUDCA) and Ire specific inhibitor STF-083010 both in vivo and in vitro. A high concentration of ER stress inducer tunicamycin (TM) suppresses stromal cells proliferation and decidualization, while a lower concentration is beneficial. We further show that ER stress induces DNA damage and polyploidization in stromal cells. In conclusion, our data suggest that the GRP78/Ire1/Xbp1 signaling pathway of ER stress-UPR is activated and involved in mouse decidualization.

  8. C/EBP β Mediates Endoplasmic Reticulum Stress Regulated Inflammatory Response and Extracellular Matrix Degradation in LPS-Stimulated Human Periodontal Ligament Cells

    PubMed Central

    Bai, Yudi; Wei, Yi; Wu, Lian; Wei, Jianhua; Wang, Xiaojing; Bai, Yuxiang

    2016-01-01

    Periodontitis is an oral inflammatory disease that not only affects the integrity of local tooth-supporting tissues but also impacts systemic health. A compositional shift in oral microbiota has been considered as the main cause of periodontitis; however, the potential mechanism has not been fully defined. Herein, we investigated the role of CCAAT/enhancer-binding protein β (C/EBP β), a member of the C/EBP family of transcription factors, in human periodontal ligament cells (hPDLCs) exposed to Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). RT-PCR and Western blotting analysis showed that the expression of C/EBP β was significantly increased in hPDLCs stimulated with LPS stimuli. Overexpression of C/EBP β by the recombinant adenoviral vector pAd/C/EBP β markedly increased the expression of the pro-inflammatory cytokines IL-6 and IL-8, and matrix metalloproteinases (MMP)-8 and -9 in hPDLCs in response to LPS. Furthermore, the activation of endoplasmic reticulum (ER) stress was confirmed in LPS-stimulated hPDLCs by measuring the expression of the ER stress marker molecules protein kinase-like ER kinase (PERK), eIF2α, GRP78/Bip, and C/EBP homologous protein (CHOP). The ER stress inhibitor salubrinal repressed, but inducer tunicamycin enhanced, the production of IL-6, IL-8, MMP-8, and MMP-9 in hPDLCs. Additionally, ER stress inducer tunicamycin significantly increased the expression level of C/EBP β in hPDLCs. Blocking of C/EBP β by siRNA resulted in a significant decrease in the secretion of IL-6 and IL-8 and expression of MMP-8 and MMP-9 induced by tunicamycin treatment in hPDLCs. Taken together, ER stress appears to play a regulatory role in the inflammatory response and extracellular matrix (ECM) degradation in hPDLCs in response to LPS stimuli by activating C/EBP β expression. This enhances our understanding of human periodontitis pathology. PMID:27011164

  9. C/EBP β Mediates Endoplasmic Reticulum Stress Regulated Inflammatory Response and Extracellular Matrix Degradation in LPS-Stimulated Human Periodontal Ligament Cells.

    PubMed

    Bai, Yudi; Wei, Yi; Wu, Lian; Wei, Jianhua; Wang, Xiaojing; Bai, Yuxiang

    2016-01-01

    Periodontitis is an oral inflammatory disease that not only affects the integrity of local tooth-supporting tissues but also impacts systemic health. A compositional shift in oral microbiota has been considered as the main cause of periodontitis; however, the potential mechanism has not been fully defined. Herein, we investigated the role of CCAAT/enhancer-binding protein β (C/EBP β), a member of the C/EBP family of transcription factors, in human periodontal ligament cells (hPDLCs) exposed to Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). RT-PCR and Western blotting analysis showed that the expression of C/EBP β was significantly increased in hPDLCs stimulated with LPS stimuli. Overexpression of C/EBP β by the recombinant adenoviral vector pAd/C/EBP β markedly increased the expression of the pro-inflammatory cytokines IL-6 and IL-8, and matrix metalloproteinases (MMP)-8 and -9 in hPDLCs in response to LPS. Furthermore, the activation of endoplasmic reticulum (ER) stress was confirmed in LPS-stimulated hPDLCs by measuring the expression of the ER stress marker molecules protein kinase-like ER kinase (PERK), eIF2α, GRP78/Bip, and C/EBP homologous protein (CHOP). The ER stress inhibitor salubrinal repressed, but inducer tunicamycin enhanced, the production of IL-6, IL-8, MMP-8, and MMP-9 in hPDLCs. Additionally, ER stress inducer tunicamycin significantly increased the expression level of C/EBP β in hPDLCs. Blocking of C/EBP β by siRNA resulted in a significant decrease in the secretion of IL-6 and IL-8 and expression of MMP-8 and MMP-9 induced by tunicamycin treatment in hPDLCs. Taken together, ER stress appears to play a regulatory role in the inflammatory response and extracellular matrix (ECM) degradation in hPDLCs in response to LPS stimuli by activating C/EBP β expression. This enhances our understanding of human periodontitis pathology. PMID:27011164

  10. Endoplasmic Reticulum Stress in Skeletal Muscle Homeostasis and Disease

    PubMed Central

    Rayavarapu, Sree; Coley, William

    2013-01-01

    Our appreciation of the role of endoplasmic reticulum(ER) stress pathways in both skeletal muscle homeostasis and the progression of muscle diseases is gaining momentum. This review provides insight into ER stress mechanisms during physiologic and pathological disturbances in skeletal muscle. The role of ER stress in the response to dietary alterations and acute stressors, including its role in autoimmune and genetic muscle disorders, has been described. Recent studies identifying ER stress markers in diseased skeletal muscle are noted. The emerging evidence for ER–mitochondrial interplay in skeletal muscle and its importance during chronic ER stress in activation of both inflammatory and cell death pathways (autophagy, necrosis, and apoptosis) have been discussed. Thus, understanding the ER stress–related molecular pathways underlying physiologic and pathological phenotypes in healthy and diseased skeletal muscle should lead to novel therapeutic targets for muscle disease. PMID:22410828

  11. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    SciTech Connect

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  12. Endoplasmic Reticulum Stress and Type 2 Diabetes

    PubMed Central

    Back, Sung Hoon; Kaufman, Randal J.

    2013-01-01

    Given the functional importance of the endoplasmic reticulum (ER), an organelle that performs folding, modification, and trafficking of secretory and membrane proteins to the Golgi compartment, the maintenance of ER homeostasis in insulin-secreting β-cells is very important. When ER homeostasis is disrupted, the ER generates adaptive signaling pathways, called the unfolded protein response (UPR), to maintain homeostasis of this organelle. However, if homeostasis fails to be restored, the ER initiates death signaling pathways. New observations suggest that both chronic hyperglycemia and hyperlipidemia, known as important causative factors of type 2 diabetes (T2D), disrupt ER homeostasis to induce unresolvable UPR activation and β-cell death. This review examines how the UPR pathways, induced by high glucose and free fatty acids (FFAs), interact to disrupt ER function and cause β-cell dysfunction and death. PMID:22443930

  13. Flavokawain C Inhibits Cell Cycle and Promotes Apoptosis, Associated with Endoplasmic Reticulum Stress and Regulation of MAPKs and Akt Signaling Pathways in HCT 116 Human Colon Carcinoma Cells

    PubMed Central

    Phang, Chung-Weng; Karsani, Saiful Anuar; Sethi, Gautam; Abd Malek, Sri Nurestri

    2016-01-01

    Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb. PMID:26859847

  14. Flavokawain C Inhibits Cell Cycle and Promotes Apoptosis, Associated with Endoplasmic Reticulum Stress and Regulation of MAPKs and Akt Signaling Pathways in HCT 116 Human Colon Carcinoma Cells.

    PubMed

    Phang, Chung-Weng; Karsani, Saiful Anuar; Sethi, Gautam; Abd Malek, Sri Nurestri

    2016-01-01

    Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb. PMID:26859847

  15. Endoplasmic reticulum stress and proteasomal system in amyotrophic lateral sclerosis.

    PubMed

    Karademir, Betul; Corek, Ceyda; Ozer, Nesrin Kartal

    2015-11-01

    Protein processing including folding, unfolding and degradation is involved in the mechanisms of many diseases. Unfolded protein response and/or endoplasmic reticulum stress are accepted to be the first steps which should be completed via protein degradation. In this direction, proteasomal system and autophagy play important role as the degradation pathways and controlled via complex mechanisms. Amyotrophic lateral sclerosis is a multifactorial neurodegenerative disease which is also known as the most catastrophic one. Mutation of many different genes are involved in the pathogenesis such as superoxide dismutase 1, chromosome 9 open reading frame 72 and ubiquilin 2. These genes are mainly related to the antioxidant defense systems, endoplasmic reticulum stress related proteins and also protein aggregation, degradation pathways and therefore mutation of these genes cause related disorders.This review focused on the role of protein processing via endoplasmic reticulum and proteasomal system in amyotrophic lateral sclerosis which are the main players in the pathology. In this direction, dysfunction of endoplasmic reticulum associated degradation and related cell death mechanisms that are autophagy/apoptosis have been detailed.

  16. Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: A role for endoplasmic reticulum stress

    SciTech Connect

    Faria, Gisele; Cardoso, Cristina R.B.; Larson, Roy E.; Silva, Joao S.; Rossi, Marcos A.

    2009-01-15

    Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker of activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug.

  17. From endoplasmic-reticulum stress to the inflammatory response

    PubMed Central

    Zhang, Kezhong; Kaufman, Randal J.

    2009-01-01

    The endoplasmic reticulum is responsible for much of a cell’s protein synthesis and folding, but it also has an important role in sensing cellular stress. Recently, it has been shown that the endoplasmic reticulum mediates a specific set of intracellular signalling pathways in response to the accumulation of unfolded or misfolded proteins, and these pathways are collectively known as the unfolded-protein response. New observations suggest that the unfolded-protein response can initiate inflammation, and the coupling of these responses in specialized cells and tissues is now thought to be fundamental in the pathogenesis of inflammatory diseases. The knowledge gained from this emerging field will aid in the development of therapies for modulating cellular stress and inflammation. PMID:18650916

  18. Endothelin-1-induced endoplasmic reticulum stress in disease.

    PubMed

    Jain, Arjun

    2013-08-01

    The accumulation of unfolded proteins in the endoplasmic reticulum (ER) represents a cellular stress induced by multiple stimuli and pathologic conditions. Recent evidence implicates endothelin-1 (ET-1) in the induction of placental ER stress in pregnancy disorders. ER stress has previously also been implicated in various other disease states, including neurodegenerative disorders, diabetes, and cardiovascular diseases, as has ET-1 in the pathophysiology of these conditions. However, to date, there has been no investigation of the link between ET-1 and the induction of ER stress in these disease states. Based on recent evidence and mechanistic insight into the role of ET-1 in the induction of placental ER stress, the following review attempts to outline the broader implications of ET-1-induced ER stress, as well as strategies for therapeutic intervention based around ET-1. PMID:23740603

  19. Endoplasmic Reticulum Membrane Reorganization Is Regulated by Ionic Homeostasis

    PubMed Central

    Varadarajan, Shankar; Bampton, Edward T. W.; Pellecchia, Maurizio; Dinsdale, David; Willars, Gary B.; Cohen, Gerald M.

    2013-01-01

    Recently we described a new, evolutionarily conserved cellular stress response characterized by a reversible reorganization of endoplasmic reticulum (ER) membranes that is distinct from canonical ER stress and the unfolded protein response (UPR). Apogossypol, a putative broad spectrum BCL-2 family antagonist, was the prototype compound used to induce this ER membrane reorganization. Following microarray analysis of cells treated with apogossypol, we used connectivity mapping to identify a wide range of structurally diverse chemicals from different pharmacological classes and established their ability to induce ER membrane reorganization. Such structural diversity suggests that the mechanisms initiating ER membrane reorganization are also diverse and a major objective of the present study was to identify potentially common features of these mechanisms. In order to explore this, we used hierarchical clustering of transcription profiles for a number of chemicals that induce membrane reorganization and discovered two distinct clusters. One cluster contained chemicals with known effects on Ca2+ homeostasis. Support for this was provided by the findings that ER membrane reorganization was induced by agents that either deplete ER Ca2+ (thapsigargin) or cause an alteration in cellular Ca2+ handling (calmodulin antagonists). Furthermore, overexpression of the ER luminal Ca2+ sensor, STIM1, also evoked ER membrane reorganization. Although perturbation of Ca2+ homeostasis was clearly one mechanism by which some agents induced ER membrane reorganization, influx of extracellular Na+ but not Ca2+ was required for ER membrane reorganization induced by apogossypol and the related BCL-2 family antagonist, TW37, in both human and yeast cells. Not only is this novel, non-canonical ER stress response evolutionary conserved but so also are aspects of the mechanism of formation of ER membrane aggregates. Thus perturbation of ionic homeostasis is important in the regulation of ER

  20. Cancer Microenvironment and Endoplasmic Reticulum Stress Response

    PubMed Central

    Giampietri, Claudia; Petrungaro, Simonetta; Conti, Silvia; Facchiano, Antonio; Filippini, Antonio; Ziparo, Elio

    2015-01-01

    Different stressful conditions such as hypoxia, nutrient deprivation, pH changes, or reduced vascularization, potentially able to act as growth-limiting factors for tumor cells, activate the unfolded protein response (UPR). UPR is therefore involved in tumor growth and adaptation to severe environments and is generally cytoprotective in cancer. The present review describes the molecular mechanisms underlying UPR and able to promote survival and proliferation in cancer. The critical role of UPR activation in tumor growth promotion is discussed in detail for a few paradigmatic tumors such as prostate cancer and melanoma. PMID:26491226

  1. Endoplasmic reticulum stress, diabetes mellitus, and tissue injury.

    PubMed

    Huang, Liu; Xie, Hong; Liu, Hao

    2014-01-01

    Endoplasmic reticulum (ER) stress is characterized by the accumulation of unfolded and misfolded proteins in the ER lumen. Unfolded and misfolded protein accumulation interferes with the ER function and triggers ER stress response. Thus, ER stress response, also called unfolded protein response (UPR), is an adaptive process that controls the protein amount in the ER lumen and the downstream protein demand. In normal conditions, the role of ER stress is to maintain ER homeostasis, restore ER function, and protect stressed cells from apoptosis, by coordinating gene expression, protein synthesis, and accelerating protein degradation through several molecular pathways. However, prolonged ER stress response plays a paradoxical role, which leads to cell damage, apoptosis, and concomitant tissue injuries. A number of tissue alterations are involved with diabetes mellitus progress and its comorbidities via ER stress. However, certain pharmacological agents affecting ER stress have been identified. In this review, we summarized the relationship between ER stress and insulin resistance development. Moreover, we aim to explain how ER stress influences type 2 diabetes mellitus (T2DM) development. In addition, we reviewed the literature on ER stress and UPR in three kinds of tissue injuries induced by T2DM. Finally, a retrospective analysis of the effects of anti-diabetes medications on ER stress is presented.

  2. [Involvement of endoplasmic reticulum stress in solid organ transplantation].

    PubMed

    Pallet, Nicolas; Bouvier, Nicolas; Beaune, Philippe; Legendre, Christophe; Anglicheau, Dany; Thervet, Eric

    2010-04-01

    Endoplasmic reticulum (ER) stress is a situation caused by the accumulation of unfolded proteins in the endoplasmic reticulum, triggering an evolutionary conserved adaptive response termed the unfolded protein response. When adaptation fails, excessive and prolonged ER stress triggers cell suicide. Important roles for ER-initiated cell death pathways have been recognized for several diseases, including diabetes, hypoxia, ischemia/reperfusion injury, neurodegenerative and heart diseases. The implication of the ER stress is not well recognized in solid organ transplantation, but increasing evidence suggests its implication in mediating allograft injury. The purpose of this review is to summarize the mechanisms of ER stress and to discuss its implication during tissue injury in solid organ transplantation. The possible implications of the ER stress in the modifications of cell functional properties and phenotypic changes are also discussed beyond the scope of adaptation and cell death. Increasing the understanding of the cellular and molecular mechanisms of acute and chronic allograft damages could lead to the development of new biomarkers and to the discovery of new therapeutic strategies to prevent the initiation of graft dysfunction or to promote the tissue regeneration after injury. PMID:20412745

  3. Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival

    PubMed Central

    Ayo, Abiodun; Pakos-Zebrucka, Karolina; Patterson, John B

    2016-01-01

    Upregulation of SESTRIN 2 (SESN2) has been reported in response to diverse cellular stresses. In this study we demonstrate SESTRIN 2 induction following endoplasmic reticulum (ER) stress. ER stress-induced increases in SESTRIN 2 expression were dependent on both PERK and IRE1/XBP1 arms of the unfolded protein response (UPR). SESTRIN 2 induction, post ER stress, was responsible for mTORC1 inactivation and contributed to autophagy induction. Conversely, knockdown of SESTRIN 2 prolonged mTORC1 signaling, repressed autophagy and increased ER stress-induced cell death. Unexpectedly, the increase in ER stress-induced cell death was not linked to autophagy inhibition. Analysis of UPR pathways identified prolonged eIF2α, ATF4 and CHOP signaling in SESTRIN 2 knockdown cells following ER stress. SESTRIN 2 regulation enables UPR derived signals to indirectly control mTORC1 activity shutting down protein translation thus preventing further exacerbation of ER stress. PMID:26930721

  4. Oxidative Stress Contributes to Autophagy Induction in Response to Endoplasmic Reticulum Stress in Chlamydomonas reinhardtii1[W

    PubMed Central

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D.; Crespo, José L.

    2014-01-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes. PMID:25143584

  5. Pharmacological Modulators of Endoplasmic Reticulum Stress in Metabolic Diseases

    PubMed Central

    Jung, Tae Woo; Choi, Kyung Mook

    2016-01-01

    The endoplasmic reticulum (ER) is the principal organelle responsible for correct protein folding, a step in protein synthesis that is critical for the functional conformation of proteins. ER stress is a primary feature of secretory cells and is involved in the pathogenesis of numerous human diseases, such as certain neurodegenerative and cardiometabolic disorders. The unfolded protein response (UPR) is a defense mechanism to attenuate ER stress and maintain the homeostasis of the organism. Two major degradation systems, including the proteasome and autophagy, are involved in this defense system. If ER stress overwhelms the capacity of the cell’s defense mechanisms, apoptotic death may result. This review is focused on the various pharmacological modulators that can protect cells from damage induced by ER stress. The possible mechanisms for cytoprotection are also discussed. PMID:26840310

  6. Endoplasmic Reticulum Stress and the Inflammatory Basis of Metabolic Disease

    PubMed Central

    Hotamisligil, Gökhan S.

    2010-01-01

    The endoplasmic reticulum (ER) is the major site in the cell for protein folding and trafficking and is central to many cellular functions. Failure of the ER's adaptive capacity results in activation of the unfolded protein response (UPR), which intersects with many different inflammatory and stress signaling pathways. These pathways are also critical in chronic metabolic diseases such as obesity, insulin resistance, and type 2 diabetes. The ER and related signaling networks are emerging as a potential site for the intersection of inflammation and metabolic disease. PMID:20303879

  7. Endoplasmic reticulum stress in adipose tissue augments lipolysis.

    PubMed

    Bogdanovic, Elena; Kraus, Nicole; Patsouris, David; Diao, Li; Wang, Vivian; Abdullahi, Abdikarim; Jeschke, Marc G

    2015-01-01

    The endoplasmic reticulum (ER) is an organelle important for protein synthesis and folding, lipid synthesis and Ca(2+) homoeostasis. Consequently, ER stress or dysfunction affects numerous cellular processes and has been implicated as a contributing factor in several pathophysiological conditions. Tunicamycin induces ER stress in various cell types in vitro as well as in vivo. In mice, a hallmark of tunicamycin administration is the development of fatty livers within 24-48 hrs accompanied by hepatic ER stress. We hypothesized that tunicamycin would induce ER stress in adipose tissue that would lead to increased lipolysis and subsequently to fatty infiltration of the liver and hepatomegaly. Our results show that intraperitoneal administration of tunicamycin rapidly induced an ER stress response in adipose tissue that correlated with increased circulating free fatty acids (FFAs) and glycerol along with decreased adipose tissue mass and lipid droplet size. Furthermore, we found that in addition to fatty infiltration of the liver as well as hepatomegaly, lipid accumulation was also present in the heart, skeletal muscle and kidney. To corroborate our findings to a clinical setting, we examined adipose tissue from burned patients where increases in lipolysis and the development of fatty livers have been well documented. We found that burned patients displayed significant ER stress within adipose tissue and that ER stress augments lipolysis in cultured human adipocytes. Our results indicate a possible role for ER stress induced lipolysis in adipose tissue as an underlying mechanism contributing to increases in circulating FFAs and fatty infiltration into other organs.

  8. Endoplasmic reticulum stress and the on site function of resident PTP1B.

    PubMed

    Popov, Doina

    2012-06-15

    Growing evidence links the stress at the endoplasmic reticulum (ER) to pathologies such as diabetes mellitus, obesity, liver, heart, renal and neurodegenerative diseases, endothelial dysfunction, atherosclerosis, and cancer. Therefore, identification of molecular pathways beyond ER stress and their appropriate modulation might alleviate the stress, and direct toward novel tools to fight this disturbance. An interesting resident of the ER membrane is protein tyrosine phosphatase 1B (PTP1B), an enzyme that negatively regulates insulin and leptin signaling, contributing to insulin and leptin resistance. Recently, new functions of PTP1B have been established linked to ER stress response. This review evaluates the novel data on ER stressors, discusses the mechanisms beyond PTP1B function in the ER stress response, and emphasizes the potential therapeutic exploitation of PTP1B to relieve ER stress. PMID:22609202

  9. Radiosensitization of tumor cells through endoplasmic reticulum stress induced by PEGylated nanogel containing gold nanoparticles.

    PubMed

    Yasui, Hironobu; Takeuchi, Ryo; Nagane, Masaki; Meike, Shunsuke; Nakamura, Yoshinari; Yamamori, Tohru; Ikenaka, Yoshinori; Kon, Yasuhiro; Murotani, Hiroki; Oishi, Motoi; Nagasaki, Yukio; Inanami, Osamu

    2014-05-28

    High atomic number molecules, such as gold and platinum, are known to enhance the biological effect of X-irradiation. This study was aimed to determine the radiosensitizing potential of PEGylated nanogel containing gold nanoparticles (GNG) and the cellular mechanism involved. GNG pretreatment increased the levels of reproductive cell death and apoptosis induced by X-irradiation. GNG accumulated in cytoplasm and increased the expression of endoplasmic reticulum (ER) stress-related protein. GNG suppressed the repair capacity of DNA after X-irradiation by down-regulating DNA repair-related proteins. Our results suggest that GNG radiosensitized cells by enhancing apoptosis and impairing DNA repair capacity via ER stress induction.

  10. The Yin-Yang Principle of Endoplasmic Reticulum Stress and oral cancer.

    PubMed

    Sarode, Gargi S; Sarode, Sachin C; Patil, Shankargouda

    2016-01-01

    The endoplasmic reticulum (ER) is an organelle, which performs several cellular functions and is thus an important site for maintaining cellular homeostasis. Sometimes pathways within the ER are disturbed, especially those regulating the protein folding, gene expression, cellular metabolism, and calcium signaling, and is called an "ER stress."(1) The accumulation of unfolded, misfolded, or damaged proteins can irreparably damage cellular functions and can pose a severe threat to the existence of the cell. Under such circumstances, ER functions become overwhelmed triggering the homeostatic "ER stress response" or "unfolded protein response" (UPR).(2). PMID:27595714

  11. Disruption of calpain reduces lipotoxicity-induced cardiac injury by preventing endoplasmic reticulum stress

    PubMed Central

    Li, Shengcun; Zhang, Lulu; Ni, Rui; Cao, Ting; Zheng, Dong; Xiong, Sidong; Greer, Peter A.; Fan, Guo-Chang; Peng, Tianqing

    2016-01-01

    Diabetes and obesity are prevalent in westernized countries. In both conditions, excessive fatty acid uptake by cardiomyocytes induces cardiac lipotoxicity, an important mechanism contributing to diabetic cardiomyopathy. This study investigated the effect of calpain disruption on cardiac lipotoxicity. Cardiac-specific capns1 knockout mice and their wild-type littermates (male, age of 4 weeks) were fed a high fat diet (HFD) or normal diet for 20 weeks. HFD increased body weight, altered blood lipid profiles and impaired glucose tolerance comparably in both capns1 knockout mice and their wild-type littermates. Calpain activity, cardiomyocyte cross-sectional areas, collagen deposition and triglyceride were significantly increased in HFD-fed mouse hearts, and these were accompanied by myocardial dysfunction and up-regulation of hypertrophic and fibrotic collagen genes as well as pro-inflammatory cytokines. These effects of HFD were attenuated by disruption of calpain in capns1 knockout mice. Mechanistically, deletion of capns1 in HFD-fed mouse hearts and disruption of calpain with calpain inhibitor-III, silencing of capn1, or deletion of capns1 in palmitate-stimulated cardiomyocytes prevented endoplasmic reticulum stress, apoptosis, cleavage of caspase-12 and junctophilin-2, and pro-inflammatory cytokine expression. Pharmacological inhibition of endoplasmic reticulum stress diminished palmitate-induced apoptosis and pro-inflammatory cytokine expression in cardiomyocytes. In summary, disruption of calpain prevents lipotoxicity-induced apoptosis in cardiomyocytes and cardiac injury in mice fed a HFD. The role of calpain is mediated, at least partially, through endoplasmic reticulum stress. Thus, calpain/endoplasmic reticulum stress may represent a new mechanism and potential therapeutic targets for cardiac lipotoxicity. PMID:27523632

  12. Role of endoplasmic reticulum stress in drug-induced toxicity.

    PubMed

    Foufelle, Fabienne; Fromenty, Bernard

    2016-02-01

    Drug-induced toxicity is a key issue for public health because some side effects can be severe and life-threatening. These adverse effects can also be a major concern for the pharmaceutical companies since significant toxicity can lead to the interruption of clinical trials, or the withdrawal of the incriminated drugs from the market. Recent studies suggested that endoplasmic reticulum (ER) stress could be an important event involved in drug liability, in addition to other key mechanisms such as mitochondrial dysfunction and oxidative stress. Indeed, drug-induced ER stress could lead to several deleterious effects within cells and tissues including accumulation of lipids, cell death, cytolysis, and inflammation. After recalling important information regarding drug-induced adverse reactions and ER stress in diverse pathophysiological situations, this review summarizes the main data pertaining to drug-induced ER stress and its potential involvement in different adverse effects. Drugs presented in this review are for instance acetaminophen (APAP), arsenic trioxide and other anticancer drugs, diclofenac, and different antiretroviral compounds. We also included data on tunicamycin (an antibiotic not used in human medicine because of its toxicity) and thapsigargin (a toxic compound of the Mediterranean plant Thapsia garganica) since both molecules are commonly used as prototypical toxins to induce ER stress in cellular and animal models. PMID:26977301

  13. Involvement of endoplasmic reticulum stress response in orofacial inflammatory pain.

    PubMed

    Yang, Eun Sun; Bae, Jin Young; Kim, Tae Heon; Kim, Yun Sook; Suk, Kyoungho; Bae, Yong Chul

    2014-12-01

    Endoplasmic reticulum (ER) stress is involved in many neurological diseases and inflammatory responses. Inflammatory mediators induce neuronal damage and trigger the neuropathic or inflammatory pain. But there is very little data on the role of the ER stress response in pain mechanisms. In this study, we explored whether the ER stress response is involved in orofacial inflammatory pain by using a complete Freund's adjuvant (CFA)-injected rat model. The thermal pain hypersensitivity increased significantly after CFA injection. We found that the protein and mRNA levels of ER stress response genes, GRP78/Bip and p-eIF2α, increased significantly in trigeminal ganglion (TG) of CFA-injected rats compared to control animals. In immunofluorescence analysis, a significant increase of GRP78 and p-eIF2α immunopositive neurons was observed in CFA-injected TG compared to control TG. When we administered an ER stress modulator, salubrinal, CFA-induced thermal pain hypersensitivity was temporally reduced. Thus, our study suggests that ER stress responses in TG neurons contribute to CFA-induced inflammatory pain, and may comprise an important molecular mechanism underlying the orofacial inflammatory pain pathway. PMID:25548537

  14. Endoplasmic Reticulum Stress in Beta Cells and Development of Diabetes

    PubMed Central

    Fonseca, Sonya G.; Burcin, Mark; Gromada, Jesper; Urano, Fumihiko

    2009-01-01

    The endoplasmic reticulum (ER) is a cellular compartment responsible for multiple important cellular functions including the biosynthesis and folding of newly synthesized proteins destined for secretion, such as insulin. A myriad of pathological and physiological factors perturb ER function and cause dysregulation of ER homeostasis, leading to ER stress. ER stress elicits a signaling cascade to mitigate stress, the Unfolded Protein Response (UPR). As long as the UPR can relieve stress, cells can produce the proper amount of proteins and maintain ER homeostasis. If the UPR, however, fails to maintain ER homeostasis, cells will undergo apoptosis. Activation of the UPR is critical to the survival of insulin-producing pancreatic β-cells with high secretory protein production. Any disruption of ER homeostasis in β-cells can lead to cell death and contribute to the pathogenesis of diabetes. There are several models of ER stress-mediated diabetes. In this review, we outline the underlying molecular mechanisms of ER stress-mediated β-cell dysfunction and death during the progression of diabetes. PMID:19665428

  15. Endoplasmic reticulum stress response in yeast and humans

    PubMed Central

    Wu, Haoxi; Ng, Benjamin S. H.; Thibault, Guillaume

    2014-01-01

    Stress pathways monitor intracellular systems and deploy a range of regulatory mechanisms in response to stress. One of the best-characterized pathways, the UPR (unfolded protein response), is an intracellular signal transduction pathway that monitors ER (endoplasmic reticulum) homoeostasis. Its activation is required to alleviate the effects of ER stress and is highly conserved from yeast to human. Although metazoans have three UPR outputs, yeast cells rely exclusively on the Ire1 (inositol-requiring enzyme-1) pathway, which is conserved in all Eukaryotes. In general, the UPR program activates hundreds of genes to alleviate ER stress but it can lead to apoptosis if the system fails to restore homoeostasis. In this review, we summarize the major advances in understanding the response to ER stress in Sc (Saccharomyces cerevisiae), Sp (Schizosaccharomyces pombe) and humans. The contribution of solved protein structures to a better understanding of the UPR pathway is discussed. Finally, we cover the interplay of ER stress in the development of diseases. PMID:24909749

  16. Involvement of Endoplasmic Reticulum Stress Response in Orofacial Inflammatory Pain

    PubMed Central

    Yang, Eun Sun; Bae, Jin Young; Kim, Tae Heon; Kim, Yun Sook; Suk, Kyoungho

    2014-01-01

    Endoplasmic reticulum (ER) stress is involved in many neurological diseases and inflammatory responses. Inflammatory mediators induce neuronal damage and trigger the neuropathic or inflammatory pain. But there is very little data on the role of the ER stress response in pain mechanisms. In this study, we explored whether the ER stress response is involved in orofacial inflammatory pain by using a complete Freund's adjuvant (CFA)-injected rat model. The thermal pain hypersensitivity increased significantly after CFA injection. We found that the protein and mRNA levels of ER stress response genes, GRP78/Bip and p-eIF2α, increased significantly in trigeminal ganglion (TG) of CFA-injected rats compared to control animals. In immunofluorescence analysis, a significant increase of GRP78 and p-eIF2α immunopositive neurons was observed in CFA-injected TG compared to control TG. When we administered an ER stress modulator, salubrinal, CFA-induced thermal pain hypersensitivity was temporally reduced. Thus, our study suggests that ER stress responses in TG neurons contribute to CFA-induced inflammatory pain, and may comprise an important molecular mechanism underlying the orofacial inflammatory pain pathway. PMID:25548537

  17. Lipid homeostasis is involved in plasma membrane and endoplasmic reticulum stress in Pichia pastoris.

    PubMed

    Zhang, Meng; Yu, Qilin; Liang, Chen; Zhang, Biao; Li, Mingchun

    2016-09-16

    Maintaining cellular lipid composition is essential for many cell processes. Our previous study has demonstrated that Spt23 is an important transcription factor within the cell and responsible for the regulation of fatty acid desaturase genes. Disruption of SPT23 results in increased lipid saturation. In the present study, we found that lipid saturation caused by SPT23 deletion exhibited a growth defect under ethanol stress and increased chitin contents. Ergosterol synthesis-related genes were up-regulated to protect cells from plasma membrane damage in the presence of ethanol. The cell wall stress caused by increased chitin contents could not be attenuated by up-regulation of phospholipids synthesis-related genes in spt23Δ. Besides, lipid saturation induced expression of unfolded protein response (UPR) genes and reactive oxygen species (ROS) accumulation followed by activation of the cellular antioxidant system, which is associated with endoplasmic reticulum functions. Taken together, our data suggested that lipid homeostasis has a close connection with cell responses to both plasma membrane stress and endoplasmic reticulum stress. PMID:27524240

  18. Diverse roles of endoplasmic reticulum stress sensors in bacterial infection.

    PubMed

    Pillich, Helena; Loose, Maria; Zimmer, Klaus-Peter; Chakraborty, Trinad

    2016-12-01

    Bacterial infection often leads to cellular damage, primarily marked by loss of cellular integrity and cell death. However, in recent years, it is being increasingly recognized that, in individual cells, there are graded responses collectively termed cell-autonomous defense mechanisms that induce cellular processes designed to limit cell damage, enable repair, and eliminate bacteria. Many of these responses are triggered not by detection of a particular bacterial effector or ligand but rather by their effects on key cellular processes and changes in homeostasis induced by microbial effectors when recognized. These in turn lead to a decrease in essential cellular functions such as protein translation or mitochondrial respiration and the induction of innate immune responses that may be specific to the cellular deficit induced. These processes are often associated with specific cell compartments, e.g., the endoplasmic reticulum (ER). Under non-infection conditions, these systems are generally involved in sensing cellular stress and in inducing and orchestrating the subsequent cellular response. Thus, perturbations of ER homeostasis result in accumulation of unfolded proteins which are detected by ER stress sensors in order to restore the normal condition. The ER is also important during bacterial infection, and bacterial effectors that activate the ER stress sensors have been discovered. Increasing evidence now indicate that bacteria have evolved strategies to differentially activate different arms of ER stress sensors resulting in specific host cell response. In this review, we will describe the mechanisms used by bacteria to activate the ER stress sensors and discuss their role during infection.

  19. The signaling mechanisms of hippocampal endoplasmic reticulum stress affecting neuronal plasticity-related protein levels in high fat diet-induced obese rats and the regulation of aerobic exercise.

    PubMed

    Cai, Ming; Wang, Hong; Li, Jing-Jing; Zhang, Yun-Li; Xin, Lei; Li, Feng; Lou, Shu-Jie

    2016-10-01

    High fat diet (HFD)-induced obesity has been shown to reduce the levels of neuronal plasticity-related proteins, specifically brain-derived neurotrophic factor (BDNF) and synaptophysin (SYN), in the hippocampus. However, the underlying mechanisms are not fully clear. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating gene expression and protein production by affecting stress signaling pathways and ER functions of protein folding and post-translational modification in peripheral tissues of obese rodent models. Additionally, HFD that is associated with hyperglycemia could induce hippocampal ERS, thus impairing insulin signaling and cognitive health in HFD mice. One goal of this study was to determine whether hyperglycemia and hyperlipidemia could cause hippocampal ERS in HFD-induced obese SD rats, and explore the potential mechanisms of ERS regulating hippocampal BDNF and SYN proteins production. Additionally, although regular aerobic exercise could reduce central inflammation and elevate hippocampal BDNF and SYN levels in obese rats, the regulated mechanisms are poorly understood. Nrf2-HO-1 pathways play roles in anti-ERS, anti-inflammation and anti-apoptosis in peripheral tissues. Therefore, the other goal of this study was to determine whether aerobic exercise could activate Nrf2-HO-1 in hippocampus to alleviate obesity-induced hippocampal ERS, which would lead to increased BDNF and SYN levels. Male SD rats were fed on HFD for 8weeks to establish the obese model. Then, 8weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that HFD-induced obesity caused hyperglycemia and hyperlipidemia, and significantly promoted hippocampal glucose transporter 3 (GLUT3) and fatty acid transport protein 1 (FATP1) protein expression. These results were associated with the activation of hippocampal ERS and ERS-mediated apoptosis. At the same time, we found that excessive hippocampal ERS not only

  20. The signaling mechanisms of hippocampal endoplasmic reticulum stress affecting neuronal plasticity-related protein levels in high fat diet-induced obese rats and the regulation of aerobic exercise.

    PubMed

    Cai, Ming; Wang, Hong; Li, Jing-Jing; Zhang, Yun-Li; Xin, Lei; Li, Feng; Lou, Shu-Jie

    2016-10-01

    High fat diet (HFD)-induced obesity has been shown to reduce the levels of neuronal plasticity-related proteins, specifically brain-derived neurotrophic factor (BDNF) and synaptophysin (SYN), in the hippocampus. However, the underlying mechanisms are not fully clear. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating gene expression and protein production by affecting stress signaling pathways and ER functions of protein folding and post-translational modification in peripheral tissues of obese rodent models. Additionally, HFD that is associated with hyperglycemia could induce hippocampal ERS, thus impairing insulin signaling and cognitive health in HFD mice. One goal of this study was to determine whether hyperglycemia and hyperlipidemia could cause hippocampal ERS in HFD-induced obese SD rats, and explore the potential mechanisms of ERS regulating hippocampal BDNF and SYN proteins production. Additionally, although regular aerobic exercise could reduce central inflammation and elevate hippocampal BDNF and SYN levels in obese rats, the regulated mechanisms are poorly understood. Nrf2-HO-1 pathways play roles in anti-ERS, anti-inflammation and anti-apoptosis in peripheral tissues. Therefore, the other goal of this study was to determine whether aerobic exercise could activate Nrf2-HO-1 in hippocampus to alleviate obesity-induced hippocampal ERS, which would lead to increased BDNF and SYN levels. Male SD rats were fed on HFD for 8weeks to establish the obese model. Then, 8weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that HFD-induced obesity caused hyperglycemia and hyperlipidemia, and significantly promoted hippocampal glucose transporter 3 (GLUT3) and fatty acid transport protein 1 (FATP1) protein expression. These results were associated with the activation of hippocampal ERS and ERS-mediated apoptosis. At the same time, we found that excessive hippocampal ERS not only

  1. Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases

    PubMed Central

    Liu, Mei-qing; Chen, Zhe; Chen, Lin-xi

    2016-01-01

    Endoplasmic reticulum is a principal organelle responsible for folding, post-translational modifications and transport of secretory, luminal and membrane proteins, thus palys an important rale in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) is a condition that is accelerated by accumulation of unfolded/misfolded proteins after endoplasmic reticulum environment disturbance, triggered by a variety of physiological and pathological factors, such as nutrient deprivation, altered glycosylation, calcium depletion, oxidative stress, DNA damage and energy disturbance, etc. ERS may initiate the unfolded protein response (UPR) to restore cellular homeostasis or lead to apoptosis. Numerous studies have clarified the link between ERS and cardiovascular diseases. This review focuses on ERS-associated molecular mechanisms that participate in physiological and pathophysiological processes of heart and blood vessels. In addition, a number of drugs that regulate ERS was introduced, which may be used to treat cardiovascular diseases. This review may open new avenues for studying the pathogenesis of cardiovascular diseases and discovering novel drugs targeting ERS. PMID:26838072

  2. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress

    PubMed Central

    Mohammad, Mohammad K; Avila, Diana; Zhang, Jingwen; Barve, Shirish; Arteel, Gavin; McClain, Craig; Joshi-Barve, Swati

    2012-01-01

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein. PMID:23026831

  3. A physical/psychological and biological stress combine to enhance endoplasmic reticulum stress.

    PubMed

    Mondal, Tapan Kumar; Emeny, Rebecca T; Gao, Donghong; Ault, Jeffrey G; Kasten-Jolly, Jane; Lawrence, David A

    2015-12-01

    The generation of an immune response against infectious and other foreign agents is substantially modified by allostatic load, which is increased with chemical, physical and/or psychological stressors. The physical/psychological stress from cold-restraint (CR) inhibits host defense against Listeria monocytogenes (LM), due to early effects of the catecholamine norepinephrine (NE) from sympathetic nerves on β1-adrenoceptors (β1AR) of immune cells. Although CR activates innate immunity within 2h, host defenses against bacterial growth are suppressed 2-3 days after infection (Cao and Lawrence 2002). CR enhances inducible nitric oxide synthase (iNOS) expression and NO production. The early innate activation leads to cellular reduction-oxidation (redox) changes of immune cells. Lymphocytes from CR-treated mice express fewer surface thiols. Splenic and hepatic immune cells also have fewer proteins with free thiols after CR and/or LM, and macrophages have less glutathione after the in vivo CR exposure or exposure to NE in vitro. The early induction of CR-induced oxidative stress elevates endoplasmic reticulum (ER) stress, which could interfere with keeping phagocytized LM within the phagosome or re-encapsuling LM by autophagy once they escape from the phagosome. ER stress-related proteins, such as glucose-regulated protein 78 (GRP78), have elevated expression with CR and LM. The results indicate that CR enhances the unfolded protein response (UPR), which interferes with host defenses against LM. Thus, it is postulated that increased stress, as exists with living conditions at low socioeconomic conditions, can lower host defenses against pathogens because of oxidative and ER stress processes.

  4. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress.

    PubMed

    Mohammad, Mohammad K; Avila, Diana; Zhang, Jingwen; Barve, Shirish; Arteel, Gavin; McClain, Craig; Joshi-Barve, Swati

    2012-11-15

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein.

  5. Naltrexone attenuates endoplasmic reticulum stress induced hepatic injury in mice.

    PubMed

    Moslehi, A; Nabavizadeh, F; Nabavizadeh, Fatemeh; Dehpour, A R; Dehpou, A R; Tavanga, S M; Hassanzadeh, G; Zekri, A; Nahrevanian, H; Sohanaki, H

    2014-09-01

    Endoplasmic reticulum (ER) stress provides abnormalities in insulin action, inflammatory responses, lipoprotein B100 degradation and hepatic lipogenesis. Excess accumulation of triglyceride in hepatocytes may also lead to disorders such as non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Opioid peptides are involved in triglyceride and cholesterol dysregulation, inflammation and cell death. In this study, we evaluated Naltrexone effects on ER stress induced liver injury. To do so, C57/BL6 mice received saline, DMSO and Naltrexone, as control groups. ER stress was induced by tunicamycin (TM) injection. Naltrexone was given before TM administration. Liver blood flow and biochemical serum analysis were measured. Histopathological evaluations, TNF-α measurement and Real-time RT-PCR were also performed. TM challenge provokes steatosis, cellular ballooning and lobular inflammation which significantly reduced in Naltrexone treated animals. ALT, AST and TNF-α increased in the TM group and improved in the Naltrexone plus TM group. Triglyceride and cholesterol levels decreased in TM treated mice with no increase in Naltrexone treated animals. In the Naltrexone plus TM group, gene expression of Bax/Bcl-2 ratio and caspase3 significantly lowered compared with the TM group. In this study, we found that Naltrexone had a notable alleviating role in ER stress induced steatosis and liver injury.

  6. Mollugin induces apoptosis in human Jurkat T cells through endoplasmic reticulum stress-mediated activation of JNK and caspase-12 and subsequent activation of mitochondria-dependent caspase cascade regulated by Bcl-xL

    SciTech Connect

    Kim, Sun Mi; Park, Hae Sun; Jun, Do Youn; Woo, Hyun Ju; Woo, Mi Hee; Yang, Chae Ha; Kim, Young Ho

    2009-12-01

    Exposure of Jurkat T cells to mollugin (15-30 muM), purified from the roots of Rubia cordifolia L., caused cytotoxicity and apoptotic DNA fragmentation along with mitochondrial membrane potential disruption, mitochondrial cytochrome c release, phosphorylation of c-Jun N-terminal kinase (JNK), activation of caspase-12, -9, -7, -3, and -8, cleavage of FLIP and Bid, and PARP degradation, without accompanying necrosis. While these mollugin-induced cytotoxicity and apoptotic events including activation of caspase-8 and mitochondria-dependent activation of caspase cascade were completely prevented by overexpression of Bcl-xL, the activation of JNK and caspase-12 was prevented to much lesser extent. Pretreatment of the cells with the pan-caspase inhibitor (z-VAD-fmk), the caspase-9 inhibitor (z-LEHD-fmk), the caspase-3 inhibitor (z-DEVD-fmk) or the caspase-12 inhibitor (z-ATAD-fmk) at the minimal concentration to prevent mollugin-induced apoptosis appeared to completely block the activation of caspase-7 and -8, and PARP degradation, but failed to block the activation of caspase-9 and -3 with allowing a slight enhancement in the level of JNK phosphorylation. Both FADD-positive wild-type Jurkat clone A3 and FADD-deficient Jurkat clone I2.1 exhibited a similar susceptibility to the cytotoxicity of mollugin, excluding involvement of Fas/FasL system in triggering mollugin-induced apoptosis. Normal peripheral T cells were more refractory to the cytotoxicity of mollugin than were Jurkat T cells. These results demonstrated that mollugin-induced cytotoxicity in Jurkat T cells was mainly attributable to apoptosis provoked via endoplasmic reticulum (ER) stress-mediated activation of JNK and caspase-12, and subsequent mitochondria-dependent activation of caspase-9 and -3, leading to activation of caspase-7 and -8, which could be regulated by Bcl-xL.

  7. Effects of a Sublethal and Transient Stress of the Endoplasmic Reticulum on the Mitochondrial Population.

    PubMed

    Vannuvel, Kayleen; Van Steenbrugge, Martine; Demazy, Catherine; Ninane, Noëlle; Fattaccioli, Antoine; Fransolet, Maude; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2016-09-01

    Endoplasmic reticulum (ER) and mitochondria are not discrete intracellular organelles but establish close physical and functional interactions involved in several biological processes including mitochondrial bioenergetics, calcium homeostasis, lipid synthesis, and the regulation of apoptotic cell death pathways. As many cell types might face a transient and sublethal ER stress during their lifetime, it is thus likely that the adaptive UPR response might affect the mitochondrial population. The aim of this work was to study the putative effects of a non-lethal and transient endoplasmic reticulum stress on the mitochondrial population in HepG2 cells. The results show that thapsigargin and brefeldin A, used to induce a transient and sublethal ER stress, rapidly lead to the fragmentation of the mitochondrial network associated with a decrease in mitochondrial membrane potential, O2 (•-) production and less efficient respiration. These changes in mitochondrial function are transient and preceded by the phosphorylation of JNK. Inhibition of JNK activation by SP600125 prevents the decrease in O2 (•-) production and the mitochondrial network fragmentation observed in cells exposed to the ER stress but has no impact on the reduction of the mitochondrial membrane potential. In conclusion, our data show that a non-lethal and transient ER stress triggers a rapid activation of JNK without inducing apoptosis, leading to the fragmentation of the mitochondrial network and a reduction of O2 (•-) production. J. Cell. Physiol. 231: 1913-1931, 2016. © 2015 Wiley Periodicals, Inc.

  8. Lidocaine Induces Endoplasmic Reticulum Stress-Associated Apoptosis in Vitro and in Vivo

    PubMed Central

    Hong, Dae Young; Kwon, Kisang; Lee, Kyeong Ryong; Choi, Young Jin; Goo, Tae-Won; Yu, Kweon; Kim, Seung-Whan; Kwon, O-Yu

    2011-01-01

    We demonstrated that upregulation of both gene expression of endoplasmic reticulum (ER) stress chaperones (BiP, calnexin, calreticulin, and PDI) and ER stress sensors (ATF6, IRE1 and PERK) was induced by lidocaine, a local anesthetic, in PC12 cells. In addition to gene regulation, lidocaine also induced typical ER stress phenomena such as ART6 proteolytic cleavage, eIF2 alpha phosphorylation, and XBP1 mRNA splicing. In in vivo experiments, while lidocaine downregulated gene expression of antiapoptotic factors (Bcl-2 and Bcl-xl), pro-apoptotic factor (Bak and Bax) gene expression was upregulated. Furthermore, lidocaine induced apoptosis, as measured histochemically, and upregulated PARP1, a DNA damage repair enzyme. These results are the first to show that lidocaine induces apoptosis through ER stress in vitro and in vivo. PMID:22174623

  9. Endoplasmic reticulum stress-induced apoptosis in the penumbra aggravates secondary damage in rats with traumatic brain injury

    PubMed Central

    Sun, Guo-zhu; Gao, Fen-fei; Zhao, Zong-mao; Sun, Hai; Xu, Wei; Wu, Li-wei; He, Yong-chang

    2016-01-01

    Neuronal apoptosis is mediated by intrinsic and extrinsic signaling pathways such as the membrane-mediated, mitochondrial, and endoplasmic reticulum stress pathways. Few studies have examined the endoplasmic reticulum-mediated apoptosis pathway in the penumbra after traumatic brain injury, and it remains unclear whether endoplasmic reticulum stress can activate the caspase-12-dependent apoptotic pathway in the traumatic penumbra. Here, we established rat models of fluid percussion-induced traumatic brain injury and found that protein expression of caspase-12, caspase-3 and the endoplasmic reticulum stress marker 78 kDa glucose-regulated protein increased in the traumatic penumbra 6 hours after injury and peaked at 24 hours. Furthermore, numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells in the traumatic penumbra also reached peak levels 24 hours after injury. These findings suggest that caspase-12-mediated endoplasmic reticulum-related apoptosis is activated in the traumatic penumbra, and may play an important role in the pathophysiology of secondary brain injury.

  10. Endoplasmic reticulum stress-induced apoptosis in the penumbra aggravates secondary damage in rats with traumatic brain injury.

    PubMed

    Sun, Guo-Zhu; Gao, Fen-Fei; Zhao, Zong-Mao; Sun, Hai; Xu, Wei; Wu, Li-Wei; He, Yong-Chang

    2016-08-01

    Neuronal apoptosis is mediated by intrinsic and extrinsic signaling pathways such as the membrane-mediated, mitochondrial, and endoplasmic reticulum stress pathways. Few studies have examined the endoplasmic reticulum-mediated apoptosis pathway in the penumbra after traumatic brain injury, and it remains unclear whether endoplasmic reticulum stress can activate the caspase-12-dependent apoptotic pathway in the traumatic penumbra. Here, we established rat models of fluid percussion-induced traumatic brain injury and found that protein expression of caspase-12, caspase-3 and the endoplasmic reticulum stress marker 78 kDa glucose-regulated protein increased in the traumatic penumbra 6 hours after injury and peaked at 24 hours. Furthermore, numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells in the traumatic penumbra also reached peak levels 24 hours after injury. These findings suggest that caspase-12-mediated endoplasmic reticulum-related apoptosis is activated in the traumatic penumbra, and may play an important role in the pathophysiology of secondary brain injury. PMID:27651773

  11. Endoplasmic reticulum stress-induced apoptosis in the penumbra aggravates secondary damage in rats with traumatic brain injury

    PubMed Central

    Sun, Guo-zhu; Gao, Fen-fei; Zhao, Zong-mao; Sun, Hai; Xu, Wei; Wu, Li-wei; He, Yong-chang

    2016-01-01

    Neuronal apoptosis is mediated by intrinsic and extrinsic signaling pathways such as the membrane-mediated, mitochondrial, and endoplasmic reticulum stress pathways. Few studies have examined the endoplasmic reticulum-mediated apoptosis pathway in the penumbra after traumatic brain injury, and it remains unclear whether endoplasmic reticulum stress can activate the caspase-12-dependent apoptotic pathway in the traumatic penumbra. Here, we established rat models of fluid percussion-induced traumatic brain injury and found that protein expression of caspase-12, caspase-3 and the endoplasmic reticulum stress marker 78 kDa glucose-regulated protein increased in the traumatic penumbra 6 hours after injury and peaked at 24 hours. Furthermore, numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells in the traumatic penumbra also reached peak levels 24 hours after injury. These findings suggest that caspase-12-mediated endoplasmic reticulum-related apoptosis is activated in the traumatic penumbra, and may play an important role in the pathophysiology of secondary brain injury. PMID:27651773

  12. Endoplasmic reticulum stress: key promoter of rosacea pathogenesis.

    PubMed

    Melnik, Bodo C

    2014-12-01

    Recent scientific interest in the pathogenesis of rosacea focuses on abnormally high facial skin levels of cathelicidin and the trypsin-like serine protease kallikrein 5 (KLK5) that cleaves the cathelicidin precursor protein into the bioactive fragment LL-37, which exerts crucial proinflammatory, angiogenic and antimicrobial activities. Furthermore, increased expression of toll-like receptor 2 (TLR2) has been identified in rosacea skin supporting the participation of the innate immune system. Notably, TLRs are expressed on sensory neurons and increase neuronal excitability linking TLR signalling to the transmission of neuroinflammatory responses. It is the intention of this viewpoint to present a unifying concept that links all known clinical trigger factors of rosacea such as UV irradiation, heat, skin irritants and special foods to one converging point: enhanced endoplasmic reticulum (ER) stress that activates the unfolded protein response (UPR). ER stress via upregulation of transcription factor ATF4 increases TLR2 expression, resulting in enhanced production of cathelicidin and KLK5 mediating downstream proinflammatory, angiogenic and antimicrobial signalling. The presented concept identifies rosacea trigger factors as environmental stressors that enhance the skin's ER stress response. Exaggerated cutaneous ER stress that stimulates the TLR2-driven inflammatory response may involve sebocytes, keratinocytes, monocyte-macrophages and sensory cutaneous neurons. Finally, all antirosacea drugs are proposed to attenuate the ER stress signalling cascade at some point. Overstimulated ER stress signalling may have evolutionarily evolved as a compensatory mechanism to balance impaired vitamin D-driven LL-37-mediated antimicrobial defenses due to lower exposure of UV-B irradiation of the northern Celtic population. PMID:25047092

  13. Endoplasmic reticulum stress: key promoter of rosacea pathogenesis.

    PubMed

    Melnik, Bodo C

    2014-12-01

    Recent scientific interest in the pathogenesis of rosacea focuses on abnormally high facial skin levels of cathelicidin and the trypsin-like serine protease kallikrein 5 (KLK5) that cleaves the cathelicidin precursor protein into the bioactive fragment LL-37, which exerts crucial proinflammatory, angiogenic and antimicrobial activities. Furthermore, increased expression of toll-like receptor 2 (TLR2) has been identified in rosacea skin supporting the participation of the innate immune system. Notably, TLRs are expressed on sensory neurons and increase neuronal excitability linking TLR signalling to the transmission of neuroinflammatory responses. It is the intention of this viewpoint to present a unifying concept that links all known clinical trigger factors of rosacea such as UV irradiation, heat, skin irritants and special foods to one converging point: enhanced endoplasmic reticulum (ER) stress that activates the unfolded protein response (UPR). ER stress via upregulation of transcription factor ATF4 increases TLR2 expression, resulting in enhanced production of cathelicidin and KLK5 mediating downstream proinflammatory, angiogenic and antimicrobial signalling. The presented concept identifies rosacea trigger factors as environmental stressors that enhance the skin's ER stress response. Exaggerated cutaneous ER stress that stimulates the TLR2-driven inflammatory response may involve sebocytes, keratinocytes, monocyte-macrophages and sensory cutaneous neurons. Finally, all antirosacea drugs are proposed to attenuate the ER stress signalling cascade at some point. Overstimulated ER stress signalling may have evolutionarily evolved as a compensatory mechanism to balance impaired vitamin D-driven LL-37-mediated antimicrobial defenses due to lower exposure of UV-B irradiation of the northern Celtic population.

  14. Chemical chaperones mitigate experimental asthma by attenuating endoplasmic reticulum stress.

    PubMed

    Makhija, Lokesh; Krishnan, Veda; Rehman, Rakhshinda; Chakraborty, Samarpana; Maity, Shuvadeep; Mabalirajan, Ulaganathan; Chakraborty, Kausik; Ghosh, Balaram; Agrawal, Anurag

    2014-05-01

    Endoplasmic reticulum (ER) stress and consequent unfolded protein response (UPR) are important in inflammation but have been poorly explored in asthma. We used a mouse model of allergic airway inflammation (AAI) with features of asthma to understand the role of ER stress and to explore potential therapeutic effects of inhaled chemical chaperones, which are small molecules that can promote protein folding and diminish UPR. UPR markers were initially measured on alternate days during a 7-day daily allergen challenge model. UPR markers increased within 24 hours after the first allergen challenge and peaked by the third challenge, before AAI was fully established (from the fifth challenge onward). Three chemical chaperones-glycerol, trehalose, and trimethylamine-N-oxide (TMAO)-were initially administered during allergen challenge (preventive regimen). TMAO, the most effective of these chemical chaperones and 4-phenylbutyric acid, a chemical chaperone currently in clinical trials, were further tested for potential therapeutic activities after AAI was established (therapeutic regimen). Chemical chaperones showed a dose-dependent reduction in UPR markers, airway inflammation, and remodeling in both regimens. Our results indicate an early and important role of the ER stress pathway in asthma pathogenesis and show therapeutic potential for chemical chaperones.

  15. The Involvement of SMILE/TMTC3 in Endoplasmic Reticulum Stress Response

    PubMed Central

    Racapé, Maud; Duong Van Huyen, Jean-Paul; Danger, Richard; Giral, Magali; Bleicher, Françoise; Foucher, Yohann; Pallier, Annaïck; Pilet, Paul; Tafelmeyer, Petra; Ashton-Chess, Joanna; Dugast, Emilie; Pettré, Ségolène; Charreau, Béatrice; Soulillou, Jean-Paul; Brouard, Sophie

    2011-01-01

    Background Thestate of operational tolerance has been detected sporadically in some renal transplanted patients that stopped immunosuppressive drugs, demonstrating that allograft tolerance might exist in humans. Several years ago, a study by Brouard et al. identified a molecular signature of several genes that were significantly differentially expressed in the blood of such patients compared with patients with other clinical situations. The aim of the present study is to analyze the role of one of these molecules over-expressed in the blood of operationally tolerant patients, SMILE or TMTC3, a protein whose function is still unknown. Methodology/Principal Findings We first confirmed that SMILE mRNA is differentially expressed in the blood of operationally tolerant patients with drug-free long term graft function compared to stable and rejecting patients. Using a yeast two-hybrid approach and a colocalization study by confocal microscopy we furthermore report an interaction of SMILE with PDIA3, a molecule resident in the endoplasmic reticulum (ER). In accordance with this observation, SMILE silencing in HeLa cells correlated with the modulation of several transcripts involved in proteolysis and a decrease in proteasome activity. Finally, SMILE silencing increased HeLa cell sensitivity to the proteasome inhibitor Bortezomib, a drug that induces ER stress via protein overload, and increased transcript expression of a stress response protein, XBP-1, in HeLa cells and keratinocytes. Conclusion/Significance In this study we showed that SMILE is involved in the endoplasmic reticulum stress response, by modulating proteasome activity and XBP-1 transcript expression. This function of SMILE may influence immune cell behavior in the context of transplantation, and the analysis of endoplasmic reticulum stress in transplantation may reveal new pathways of regulation in long-term graft acceptance thereby increasing our understanding of tolerance. PMID:21603654

  16. Endoplasmic reticulum stress in the peripheral nervous system is a significant driver of neuropathic pain.

    PubMed

    Inceoglu, Bora; Bettaieb, Ahmed; Trindade da Silva, Carlos A; Lee, Kin Sing Stephen; Haj, Fawaz G; Hammock, Bruce D

    2015-07-21

    Despite intensive effort and resulting gains in understanding the mechanisms underlying neuropathic pain, limited success in therapeutic approaches have been attained. A recently identified, nonchannel, nonneurotransmitter therapeutic target for pain is the enzyme soluble epoxide hydrolase (sEH). The sEH degrades natural analgesic lipid mediators, epoxy fatty acids (EpFAs), therefore its inhibition stabilizes these bioactive mediators. Here we demonstrate the effects of EpFAs on diabetes induced neuropathic pain and define a previously unknown mechanism of pain, regulated by endoplasmic reticulum (ER) stress. The activation of ER stress is first quantified in the peripheral nervous system of type I diabetic rats. We demonstrate that both pain and markers of ER stress are reversed by a chemical chaperone. Next, we identify the EpFAs as upstream modulators of ER stress pathways. Chemical inducers of ER stress invariably lead to pain behavior that is reversed by a chemical chaperone and an inhibitor of sEH. The rapid occurrence of pain behavior with inducers, equally rapid reversal by blockers and natural incidence of ER stress in diabetic peripheral nervous system (PNS) argue for a major role of the ER stress pathways in regulating the excitability of the nociceptive system. Understanding the role of ER stress in generation and maintenance of pain opens routes to exploit this system for therapeutic purposes. PMID:26150506

  17. Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines

    SciTech Connect

    Pan, Mu-Yun; Shen, Yuh-Chiang; Lu, Chien-Hsing; Yang, Shu-Yi; Ho, Tsing-Fen; Peng, Yu-Ta; Chang, Chia-Che

    2012-12-15

    Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ER stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin's capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin's tumoricidal effect. Mechanistically, prodigiosin engages the IRE1–JNK and PERK–eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death. Highlights: ► Prodigiosin is a bacterial tripyrrole pigment with potent anticancer effect. ► Prodigiosin is herein identified as an

  18. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress

    SciTech Connect

    Mohammad, Mohammad K.; Avila, Diana; Zhang, Jingwen; Barve, Shirish; Arteel, Gavin; McClain, Craig; Joshi-Barve, Swati

    2012-11-15

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein. -- Highlights: ► Human primary hepatocytes and cultured cell lines are used. ► Multiple cell death signaling pathways are activated by acrolein. ► Novel finding of

  19. Elimination of endoplasmic reticulum stress and cardiovascular, type 2 diabetic, and other metabolic diseases.

    PubMed

    Luoma, Pauli V

    2013-03-01

    Multiple factors including unhealthy living habits influence the life-maintaining functions of the endoplasmic reticulum (ER) and induce ER stress and metabolic abnormalities. The ER responds to the disturbances by activating mechanisms that increase the capacity to eliminate ER stress. This article elucidates the effects of ER activation that eliminates both ER stress and associated cardiovascular, type 2 diabetic (DM2), and other metabolic diseases. ER-activating compounds eliminate ER stress by lowering elevated cholesterol, regress atherosclerosis, decrease cardiovascular mortality, reduce blood glucose and insulin, and, together with the normalization of glucose-insulin homeostasis, remove insulin resistance, pancreatic β-cell failure, and DM2. A deficient cytochrome P450 activity in hepatic ER leads to cholesterol accumulation that induces stress and xanthoma formation, whereas P450-activating therapy up-regulates apolipoprotein AI and LDLR genes, down-regulates apolipoprotein B gene, and produces an antiatherogenic plasma lipoprotein profile. The ER activation reduces the stress also by eliminating hepatic fat and converting saturated fatty acids (FAs) to unsaturated FAs. Cognitive processes require gene expression modification, and preclinical studies indicate that ER-activating therapy improves cognition. Promotion of healthy lifestyle choices and indicated therapies are key factors in the prevention and elimination of ER stress and associated global health problems.

  20. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast.

    PubMed

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-06-16

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and metabolism. Accumulation of unfolded proteins within the calcium-depleted lumen of the endoplasmic reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections linking disturbance of ER calcium equilibrium to ER stress and UPR signaling are evolutionary conserved and highlight the crucial role of metabolism in modulating the effects induced by calcium shortage.

  1. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast

    PubMed Central

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-01-01

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and metabolism. Accumulation of unfolded proteins within the calcium-depleted lumen of the endoplasmic reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections linking disturbance of ER calcium equilibrium to ER stress and UPR signaling are evolutionary conserved and highlight the crucial role of metabolism in modulating the effects induced by calcium shortage. PMID:27305947

  2. Stressed to Death: Targeting Endoplasmic Reticulum Stress Response Induced Apoptosis in Gliomas

    PubMed Central

    Johnson, Guyla G.; White, Misti C.; Grimaldi, Maurizio

    2012-01-01

    Glial tumors are the main primary adult brain tumor. Even with the most advanced treatments, which include stereotactic microscope aided surgical resection, internal and external radiation therapy and local and systemic chemotherapy, median survival time for patients diagnosed with these malignancies is about 12 months. We explore here the possibility that the endoplasmic reticulum stress response (ERSR) could be a possible target to develop chemotherapeutic agents to induce toxicity in glioma cells. ERSR has the dual capacity of activating repair and/or cytotoxic mechanisms. ERSR is triggered by the accumulation of unfolded proteins in the ER. The presence of unfolded proteins in the ER regulates, via a complex biochemical cascade, the upregulation of molecular chaperones, inhibition of protein synthesis, and an increase of proteasome mediated unfolded protein degradation. ERSR in particular conditions can also contribute to cell death via activation of programmed cell death. Apoptosis activation during ERSR is usually caused by the activation of one or a combination of three biochemical cascades. Induction of these pathways ultimately leads to caspase 3 activation culminating in apoptosis. Glioma cells are in a condition of constant low grade ERSR, which possibly contributes to their resistance to treatment protocols. It is conceivable that small molecules that interact with this phenomenon ultimately could be used to modulate the system to activate apoptosis and cause gliotoxicity. We will discuss here ERSR biochemically relevant features to death mechanisms and already identified small molecules that by modulating ERSR are able to activate glioma cell death. PMID:21348829

  3. Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4

    SciTech Connect

    Brüning, Ansgar Matsingou, Christina; Brem, German Johannes; Rahmeh, Martina; Mylonas, Ioannis

    2012-10-15

    Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir. Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress. -- Highlights: ► Endoplasmic reticulum stress induces inhibin beta E expression. ► Inhibin beta E is regulated by the transcription factor ATF4. ► Inhibin beta E expression can be used as a marker for drug-induced ER stress.

  4. NELL2 Function in the Protection of Cells against Endoplasmic Reticulum Stress

    PubMed Central

    Kim, Dong Yeol; Kim, Han Rae; Kim, Kwang Kon; Park, Jeong Woo; Lee, Byung Ju

    2015-01-01

    Continuous intra- and extracellular stresses induce disorder of Ca2+ homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death. PMID:25537860

  5. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to endothelial dysfunction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Endoplasmic reticulum (ER) stress is implicated as one of the mechanisms for pathophysiology of various cardiometabolic syndromes, including insulin resistance and endothelial dysfunction. ...

  6. HCV Causes Chronic Endoplasmic Reticulum Stress Leading to Adaptation and Interference with the Unfolded Protein Response

    PubMed Central

    Merquiol, Emmanuelle; Uzi, Dotan; Mueller, Tobias; Goldenberg, Daniel; Nahmias, Yaakov; Xavier, Ramnik J.

    2011-01-01

    Background The endoplasmic reticulum (ER) is the cellular site for protein folding. ER stress occurs when protein folding capacity is exceeded. This stress induces a cyto-protective signaling cascades termed the unfolded protein response (UPR) aimed at restoring homeostasis. While acute ER stress is lethal, chronic sub-lethal ER stress causes cells to adapt by attenuation of UPR activation. Hepatitis C virus (HCV), a major human pathogen, was shown to cause ER stress, however it is unclear whether HCV induces chronic ER stress, and if so whether adaptation mechanisms are initiated. We wanted to characterize the kinetics of HCV-induced ER stress during infection and assess adaptation mechanisms and their significance. Methods and Findings The HuH7.5.1 cellular system and HCV-transgenic (HCV-Tg) mice were used to characterize HCV-induced ER stress/UPR pathway activation and adaptation. HCV induced a wave of acute ER stress peaking 2–5 days post-infection, which rapidly subsided thereafter. UPR pathways were activated including IRE1 and EIF2α phosphorylation, ATF6 cleavage and XBP-1 splicing. Downstream target genes including GADD34, ERdj4, p58ipk, ATF3 and ATF4 were upregulated. CHOP, a UPR regulated protein was activated and translocated to the nucleus. Remarkably, UPR activity did not return to baseline but remained elevated for up to 14 days post infection suggesting that chronic ER stress is induced. At this time, cells adapted to ER stress and were less responsive to further drug-induced ER stress. Similar results were obtained in HCV-Tg mice. Suppression of HCV by Interferon-α 2a treatment, restored UPR responsiveness to ER stress tolerant cells. Conclusions Our study shows, for the first time, that HCV induces adaptation to chronic ER stress which was reversed upon viral suppression. These finding represent a novel viral mechanism to manipulate cellular response pathways. PMID:21949742

  7. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism

    PubMed Central

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K.; Lehtonen, Jukka Y.A.

    2016-01-01

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3′-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. PMID:26681690

  8. Placental endoplasmic reticulum stress and acidosis: relevant aspects in gestational diabetes.

    PubMed

    Jawerbaum, Alicia

    2016-10-01

    In this issue, Yung and colleagues (doi: 10.1007/s00125-016-4040-2 ) report endoplasmic reticulum stress in the placenta of patients with gestational diabetes mellitus. With the use of a trophoblast-like cell line, these authors identify putative mechanisms involved in, and treatments to prevent the induction of endoplasmic reticulum stress. Here, the relevance and possible implications of these findings and areas for further research are discussed. PMID:27379669

  9. Placental endoplasmic reticulum stress and acidosis: relevant aspects in gestational diabetes.

    PubMed

    Jawerbaum, Alicia

    2016-10-01

    In this issue, Yung and colleagues (doi: 10.1007/s00125-016-4040-2 ) report endoplasmic reticulum stress in the placenta of patients with gestational diabetes mellitus. With the use of a trophoblast-like cell line, these authors identify putative mechanisms involved in, and treatments to prevent the induction of endoplasmic reticulum stress. Here, the relevance and possible implications of these findings and areas for further research are discussed.

  10. Endoplasmic Reticulum Stress Instigates the Rotenone Induced Oxidative Apoptotic Neuronal Death: a Study in Rat Brain.

    PubMed

    Goswami, Poonam; Gupta, Sonam; Biswas, Joyshree; Sharma, Sharad; Singh, Sarika

    2016-10-01

    The present study was conducted to evaluate the involvement of endoplasmic reticulum stress in rotenone-induced oxidative neuronal death in rat brain. Rotenone (6 μg/3 μl) was administered intranigrally, unilaterally (right side) in SD rat brain. Neuronal morphology, expression level of tyrosine hydroxylase (TH) and endoplasmic reticulum (ER) stress markers like glucose-regulated protein 78 (GRP78), growth arrest and DNA damage-inducible gene 153 (GADD153), eukaryotic translation initiation factor 2α (p-eIF2α/eIF2α) and cleaved caspase-12 were estimated in the rat brain. Levels of reactive oxygen species (ROS), reduced glutathione (GSH) and enzymatic activities of glutathione peroxidase (GPx) and glutathione reductase (GRd) were estimated to assess the rotenone induced oxidative stress. Apoptotic death of neurons was assessed by estimating the mRNA level of caspase-3. Rotenone administration caused altered neuronal morphology, decreased expression of TH, augmented ROS level, decreased level of GSH and decreased activities of GPx and GRd enzymes which were significantly attenuated with the pretreatment of ER stress inhibitor, salubrinal (1 mg/kg, intraperitoneal). Significantly increased levels of GRP78, GADD, dephosphorylated eIF2α and cleaved caspase-12 was also observed after rotenone administration, which was inhibited with the pretreatment of salubrinal. Rotenone-induced increased mRNA level of caspase-3 was also attenuated by pretreatment of salubrinal. Findings suggested that salubrinal treatment significantly inhibited the rotenone-induced neurotoxicity implicating that ER stress initiates the rotenone-induced oxidative stress and neuronal death. PMID:26446018

  11. Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines.

    PubMed

    Pan, Mu-Yun; Shen, Yuh-Chiang; Lu, Chien-Hsing; Yang, Shu-Yi; Ho, Tsing-Fen; Peng, Yu-Ta; Chang, Chia-Che

    2012-12-15

    Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ER stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin's capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin's tumoricidal effect. Mechanistically, prodigiosin engages the IRE1-JNK and PERK-eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death.

  12. Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells

    PubMed Central

    Mahadevan, Navin R.; Rodvold, Jeffrey; Sepulveda, Homero; Rossi, Steven; Drew, Angela F.; Zanetti, Maurizio

    2011-01-01

    Metabolic, infectious, and tumor cell-intrinsic noxae can all evoke the endoplasmic reticulum (ER) stress response in tumor cells, which is critical for tumor cell growth and cancer progression. Evidence exists that the ER stress response can drive a proinflammatory program in tumor cells and macrophages but, to our knowledge, a role for the tumor ER stress response in influencing macrophages and inflammation in the tumor microenvironment has not been suggested. Here we show that macrophages cultured in conditioned medium from ER-stressed tumor cells become activated, and themselves undergo ER stress with the up-regulation of Grp78, Gadd34, Chop, and Xbp-1 splicing, suggesting a general activation of the ER stress-signaling pathways. Furthermore, these macrophages recapitulate, amplify and expand the proinflammatory response of tumor cells. We term this phenomenon “transmissible” ER stress. Although neither Toll-like receptor (TLR)2 nor interleukin 6 receptor (IL6R) signaling is involved, a reduction was observed in the transmission of ER stress to TLR4 KO macrophages, consistent with the fact that a second signal through TLR4 combined with exposure to tumor ER stress-conditioned medium results in a faster ER stress response and an enhancement of proinflammatory cytokine production in macrophages. The injection of tumor ER stress-conditioned medium into WT mice elicited a generalized ER stress response in the liver. We suggest that transmissible ER stress is a mechanism through which tumor cells can control myeloid cells by directing them toward a proinflammatory phenotype, thus facilitating tumor progression. PMID:21464300

  13. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayoshi; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  14. The antitumor natural compound falcarindiol promotes cancer cell death by inducing endoplasmic reticulum stress

    PubMed Central

    Jin, H R; Zhao, J; Zhang, Z; Liao, Y; Wang, C-Z; Huang, W-H; Li, S-P; He, T-C; Yuan, C-S; Du, W

    2012-01-01

    Falcarindiol (FAD) is a natural polyyne with various beneficial biological activities. We show here that FAD preferentially kills colon cancer cells but not normal colon epithelial cells. Furthermore, FAD inhibits tumor growth in a xenograft tumor model and exhibits strong synergistic killing of cancer cells with 5-fluorouracil, an approved cancer chemotherapeutic drug. We demonstrate that FAD-induced cell death is mediated by induction of endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). Decreasing the level of ER stress, either by overexpressing the ER chaperone protein glucose-regulated protein 78 (GRP78) or by knockout of components of the UPR pathway, reduces FAD-induced apoptosis. In contrast, increasing the level of ER stress by knocking down GRP78 potentiates FAD-induced apoptosis. Finally, FAD-induced ER stress and apoptosis is correlated with the accumulation of ubiquitinated proteins, suggesting that FAD functions at least in part by interfering with proteasome function, leading to the accumulation of unfolded protein and induction of ER stress. Consistent with this, inhibition of protein synthesis by cycloheximide significantly decreases the accumulation of ubiquitinated proteins and blocks FAD-induced ER stress and cell death. Taken together, our study shows that FAD is a potential new anticancer agent that exerts its activity through inducing ER stress and apoptosis. PMID:22914324

  15. Unveiling the Role of the Integrated Endoplasmic Reticulum Stress Response in Leishmania Infection – Future Perspectives

    PubMed Central

    Dias-Teixeira, K. L.; Pereira, R. M.; Silva, J. S.; Fasel, N.; Aktas, B. H.; Lopes, U. G.

    2016-01-01

    The integrated endoplasmic reticulum stress response (IERSR) is an evolutionarily conserved adaptive mechanism that ensures endoplasmic reticulum (ER) homeostasis and cellular survival in the presence of stress including nutrient deprivation, hypoxia, and imbalance of Ca+ homeostasis, toxins, and microbial infection. Three transmembrane proteins regulate integrated signaling pathways that comprise the IERSR, namely, IRE-1 that activates XBP-1, the pancreatic ER kinase (PERK) that phosphorylates the eukaryotic translation initiation factor 2 and transcription factor 6 (ATF6). The roles of IRE-1, PERK, and ATF4 in viral and some bacterial infections are well characterized. The role of IERSR in infections by intracellular parasites is still poorly understood, although one could anticipate that IERSR may play an important role on the host’s cell response. Recently, our group reported the important aspects of XBP-1 activation in Leishmania amazonensis infection. It is, however, necessary to address the relevance of the other IERSR branches, together with the possible role of IERSR in infections by other Leishmania species, and furthermore, to pursue the possible implications in the pathogenesis and control of parasite replication in macrophages. PMID:27499755

  16. Relevance of Endoplasmic Reticulum Stress Cell Signaling in Liver Cold Ischemia Reperfusion Injury

    PubMed Central

    Folch-Puy, Emma; Panisello, Arnau; Oliva, Joan; Lopez, Alexandre; Castro Benítez, Carlos; Adam, René; Roselló-Catafau, Joan

    2016-01-01

    The endoplasmic reticulum (ER) is involved in calcium homeostasis, protein folding and lipid biosynthesis. Perturbations in its normal functions lead to a condition called endoplasmic reticulum stress (ERS). This can be triggered by many physiopathological conditions such as alcoholic steatohepatitis, insulin resistance or ischemia-reperfusion injury. The cell reacts to ERS by initiating a defensive process known as the unfolded protein response (UPR), which comprises cellular mechanisms for adaptation and the safeguarding of cell survival or, in cases of excessively severe stress, for the initiation of the cell death program. Recent experimental data suggest the involvement of ERS in ischemia/reperfusion injury (IRI) of the liver graft, which has been considered as one of major problems influencing outcome after liver transplantation. The purpose of this review is to summarize updated data on the molecular mechanisms of ERS/UPR and the consequences of this pathology, focusing specifically on solid organ preservation and liver transplantation models. We will also discuss the potential role of ERS, beyond the simple adaptive response and the regulation of cell death, in the modification of cell functional properties and phenotypic changes. PMID:27231901

  17. Relevance of Endoplasmic Reticulum Stress Cell Signaling in Liver Cold Ischemia Reperfusion Injury.

    PubMed

    Folch-Puy, Emma; Panisello, Arnau; Oliva, Joan; Lopez, Alexandre; Castro Benítez, Carlos; Adam, René; Roselló-Catafau, Joan

    2016-01-01

    The endoplasmic reticulum (ER) is involved in calcium homeostasis, protein folding and lipid biosynthesis. Perturbations in its normal functions lead to a condition called endoplasmic reticulum stress (ERS). This can be triggered by many physiopathological conditions such as alcoholic steatohepatitis, insulin resistance or ischemia-reperfusion injury. The cell reacts to ERS by initiating a defensive process known as the unfolded protein response (UPR), which comprises cellular mechanisms for adaptation and the safeguarding of cell survival or, in cases of excessively severe stress, for the initiation of the cell death program. Recent experimental data suggest the involvement of ERS in ischemia/reperfusion injury (IRI) of the liver graft, which has been considered as one of major problems influencing outcome after liver transplantation. The purpose of this review is to summarize updated data on the molecular mechanisms of ERS/UPR and the consequences of this pathology, focusing specifically on solid organ preservation and liver transplantation models. We will also discuss the potential role of ERS, beyond the simple adaptive response and the regulation of cell death, in the modification of cell functional properties and phenotypic changes. PMID:27231901

  18. Uncovering a Dual Regulatory Role for Caspases During Endoplasmic Reticulum Stress-induced Cell Death

    PubMed Central

    Anania, Veronica G.; Yu, Kebing; Gnad, Florian; Pferdehirt, Rebecca R.; Li, Han; Ma, Taylur P.; Jeon, Diana; Fortelny, Nikolaus; Forrest, William; Ashkenazi, Avi; Overall, Christopher M.; Lill, Jennie R.

    2016-01-01

    Many diseases are associated with endoplasmic reticulum (ER) stress, which results from an accumulation of misfolded proteins. This triggers an adaptive response called the “unfolded protein response” (UPR), and prolonged exposure to ER stress leads to cell death. Caspases are reported to play a critical role in ER stress-induced cell death but the underlying mechanisms by which they exert their effect continue to remain elusive. To understand the role caspases play during ER stress, a systems level approach integrating analysis of the transcriptome, proteome, and proteolytic substrate profile was employed. This quantitative analysis revealed transcriptional profiles for most human genes, provided information on protein abundance for 4476 proteins, and identified 445 caspase substrates. Based on these data sets many caspase substrates were shown to be downregulated at the protein level during ER stress suggesting caspase activity inhibits their cellular function. Additionally, RNA sequencing revealed a role for caspases in regulation of ER stress-induced transcriptional pathways and gene set enrichment analysis showed expression of multiple gene targets of essential transcription factors to be upregulated during ER stress upon inhibition of caspases. Furthermore, these transcription factors were degraded in a caspase-dependent manner during ER stress. These results indicate that caspases play a dual role in regulating the cellular response to ER stress through both post-translational and transcriptional regulatory mechanisms. Moreover, this study provides unique insight into progression of the unfolded protein response into cell death, which may help identify therapeutic strategies to treat ER stress-related diseases. PMID:27125827

  19. Thioredoxin-1 Increases Survival in Sepsis by Inflammatory Response Through Suppressing Endoplasmic Reticulum Stress.

    PubMed

    Chen, Guobing; Li, Xiang; Huang, Mengbing; Li, Mei; Zhou, Xiaoshuang; Li, Ye; Bai, Jie

    2016-07-01

    Sepsis is the main cause of death in critically ill patients, pathogenesis of which is still unclear. The nuclear factor κB (NF-κB) inflammatory signal pathway mediated by endoplasmic reticulum stress is involved in sepsis. Thioredoxin-1 (Trx-1) is an important protein of regulating oxidative stress. It plays a crucial role in the anti-oxidation, anti-apoptosis, and anti-inflammation. However, the role and the mechanism of Trx-1 in sepsis have not been extensively studied. In the present study, we showed that the survival was longer in sepsis induced by cecal ligation and puncture in Trx-1 overexpression transgenic (Tg) mice compared with wild-type mice. Wet/dry lung weight ratio was decreased in Trx-1 Tg mice. The levels of TNF-α and IL-1β in plasma and lung tissue were inhibited in Tg mice. The expressions of glucose-regulated protein 78, inositol-requiring enzyme 1α (IRE1α), tumor necrosis factor receptor-associated factor 2, C/EBP homologous protein, NF-κB, and inhibitors of NF-κBα were increased in lung tissue. More importantly, the overexpression of Trx-1 in transgenic mice suppressed NF-κB inflammatory signal pathway by inhibiting the activation of molecules involved in ER stress. Our results suggest that Trx-1 may play protective role in extending survival in sepsis by regulating inflammatory response through suppressing ER stress. PMID:27299588

  20. p53-mediated control of gene expression via mRNA translation during Endoplasmic Reticulum stress.

    PubMed

    López, Ignacio; Tournillon, Anne-Sophie; Nylander, Karin; Fåhraeus, Robin

    2015-01-01

    p53 is activated by different stress and damage pathways and regulates cell biological responses including cell cycle arrest, repair pathways, apoptosis and senescence. Following DNA damage, the levels of p53 increase and via binding to target gene promoters, p53 induces expression of multiple genes including p21(CDKN1A) and mdm2. The effects of p53 on gene expression during the DNA damage response are well mimicked by overexpressing p53 under normal conditions. However, stress to the Endoplasmic Reticulum (ER) and the consequent Unfolded Protein Response (UPR) leads to the induction of the p53/47 isoform that lacks the first 40 aa of p53 and to an active suppression of p21(CDKN1A) transcription and mRNA translation. We now show that during ER stress p53 also suppresses MDM2 protein levels via a similar mechanism. These observations not only raise questions about the physiological role of MDM2 during ER stress but it also reveals a new facet of p53 as a repressor toward 2 of its major target genes during the UPR. As suppression of p21(CDKN1A) and MDM2 protein synthesis is mediated via their coding sequences, it raises the possibility that p53 controls mRNA translation via a common mechanism that might play an important role in how p53 regulates gene expression during the UPR, as compared to the transcription-dependent gene regulation taking place during the DNA damage response.

  1. Endoplasmic reticulum stress signal impairs erythropoietin production: a role for ATF4.

    PubMed

    Chiang, Chih-Kang; Nangaku, Masaomi; Tanaka, Tetsuhiro; Iwawaki, Takao; Inagi, Reiko

    2013-02-15

    Hypoxia upregulates the hypoxia-inducible factor (HIF) pathway and the endoplasmic reticulum (ER) stress signal, unfolded protein response (UPR). The cross talk of both signals affects the pathogenic alteration by hypoxia. Here we showed that ER stress induced by tunicamycin or thapsigargin suppressed inducible (CoCl(2) or hypoxia) transcription of erythropoietin (EPO), a representative HIF target gene, in HepG2. This suppression was inversely correlated with UPR activation, as estimated by expression of the UPR regulator glucose-regulated protein 78, and restored by an ER stress inhibitor, salubrinal, in association with normalization of the UPR state. Importantly, the decreased EPO expression was also observed in HepG2 overexpressing UPR activating transcription factor (ATF)4. Overexpression of mutated ATF4 that lacks the transcriptional activity did not alter EPO transcriptional regulation. Transcriptional activity of the EPO 3'-enhancer, which is mainly regulated by HIF, was abolished by both ER stressors and ATF4 overexpression, while nuclear HIF accumulation or expression of other HIF target genes was not suppressed by ER stress. Chromatin immunoprecipitation analysis identified a novel ATF4 binding site (TGACCTCT) within the EPO 3'-enhancer region, suggesting a distinct role for ATF4 in UPR-dependent suppression of the enhancer. Induction of ER stress in rat liver and kidney by tunicamycin decreased the hepatic and renal mRNA and plasma level of EPO. Collectively, ER stress selectively impairs the transcriptional activity of EPO but not of other HIF target genes. This effect is mediated by suppression of EPO 3'-enhancer activity via ATF4 without any direct effect on HIF, indicating that UPR contributes to oxygen-sensing regulation of EPO. PMID:23242184

  2. Endoplasmic reticulum stress induces PRNP prion protein gene expression in breast cancer

    PubMed Central

    2013-01-01

    Introduction High prion protein (PrP) levels are associated with breast, colon and gastric cancer resistance to treatment and with a poor prognosis for the patients. However, little is known about the underlying molecular mechanism(s) regulating human PrP gene (PRNP) expression in cancers. Because endoplasmic reticulum (ER) stress is associated with solid tumors, we investigated a possible regulation of PRNP gene expression by ER stress. Methods Published microarray databases of breast cancer tissues and breast carcinoma cell lines were analyzed for PrP mRNA and ER stress marker immunoglobulin heavy chain binding protein (BiP) levels. Breast cancer tissue microarrays (TMA) were immunostained for BiP and PrP. Breast carcinoma MCF-7, MDA-MB-231, HS578T and HCC1500 cells were treated with three different ER stressors - Brefeldin A, Tunicamycin, Thapsigargin - and levels of PrP mRNA or protein assessed by RT-PCR and Western blot analyses. A human PRNP promoter-luciferase reporter was used to assess transcriptional activation by ER stressors. Site-directed mutagenesis identified the ER stress response elements (ERSE). Chromatin immunoprecipitation (ChIP) analyses were done to identify the ER stress-mediated transcriptional regulators. The role of cleaved activating transcription factor 6α (ΔATF6α) and spliced X-box protein-1 (sXBP1) in PRNP gene expression was assessed with over-expression or silencing techniques. The role of PrP protection against ER stress was assessed with PrP siRNA and by using Prnp null cell lines. Results We find that mRNA levels of BiP correlated with PrP transcript levels in breast cancer tissues and breast carcinoma cell lines. PrP mRNA levels were enriched in the basal subtype and were associated with poor prognosis in breast cancer patients. Higher PrP and BiP levels correlated with increasing tumor grade in TMA. ER stress was a positive regulator of PRNP gene transcription in MCF-7 cells and luciferase reporter assays identified one ER

  3. Regulation of endoplasmic reticulum turnover by selective autophagy.

    PubMed

    Khaminets, Aliaksandr; Heinrich, Theresa; Mari, Muriel; Grumati, Paolo; Huebner, Antje K; Akutsu, Masato; Liebmann, Lutz; Stolz, Alexandra; Nietzsche, Sandor; Koch, Nicole; Mauthe, Mario; Katona, Istvan; Qualmann, Britta; Weis, Joachim; Reggiori, Fulvio; Kurth, Ingo; Hübner, Christian A; Dikic, Ivan

    2015-06-18

    The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.

  4. The deadly connection between endoplasmic reticulum, Ca2+, protein synthesis, and the endoplasmic reticulum stress response in malignant glioma cells

    PubMed Central

    Johnson, Guyla G.; White, Misti C.; Wu, Jian-He; Vallejo, Matthew; Grimaldi, Maurizio

    2014-01-01

    Background The endoplasmic reticulum (ER) is involved in Ca2+ signaling and protein processing. Accumulation of unfolded proteins following ER Ca2+ depletion triggers the ER stress response (ERSR), which facilitates protein folding and removal of damaged proteins and can induce cell death. Unfolded proteins bind to chaperones, such as the glucose-regulated protein (GRP)78 and cause the release of GRP78-repressed proteins executing ERSR. Methods Several glioma cell lines and primary astrocytes were used to analyze ERSR using standard western blots, reverse transcription–PCR, viability assays, and single cell Ca2+ imaging. Results ERSR induction with thapsigargin results in a more intense ERSR associated with a larger loss of ER Ca2+, activation of ER-associated caspases (4/12) and caspase 3, and a higher rate of malignant glioma cell death than in normal glial cells. Malignant glioma cells have higher levels of protein synthesis and expression of the translocon (a component of the ribosomal complex, guiding protein entry in the ER), the activity of which is associated with the loss of ER Ca2+. Our experiments confirm increased expression of the translocon in malignant glioma cells. In addition, blockade of the ribosome-translocon complex with agents differently affecting translocon Ca2+ permeability causes opposite effects on ERSR deployment and death of malignant glioma cells. Conclusions Excessive ER Ca2+ loss due to translocon activity appears to be responsible for the enhancement of ERSR, leading to the death of glioma cells. The results reveal a characteristic of malignant glioma cells that could be exploited to develop new therapeutic strategies to treat incurable glial malignancies. PMID:24569545

  5. Advanced oxidation protein products induce apoptosis in podocytes through induction of endoplasmic reticulum stress.

    PubMed

    Rong, Guang; Tang, Xun; Guo, Tingting; Duan, Na; Wang, Yue; Yang, Lei; Zhang, Jun; Liang, Xiujie

    2015-09-01

    Although podocyte apoptosis has been shown to be induced by the accumulation of advanced oxidation protein products (AOPPs), the mechanisms through which AOPPs trigger apoptosis in these cells remain unclear. In this study, we investigated the role of endoplasmic reticulum (ER) stress in AOPP-induced podocyte apoptosis. AOPP treatment induced overexpression of glucose-regulated protein 78 and CCAAT/enhancer-binding protein-homologous protein (CHOP) in podocytes, indicating that AOPPs induced ER stress. Notably, AOPP-induced increase in the rate of podocyte apoptosis was partly reversed by salubrinal, an ER stress inhibitor, whereas the AOPP effect was reproduced by an inducer of ER stress, thapsigargin, suggesting that AOPPs triggered podocyte apoptosis by inducing ER stress. Furthermore, AOPP-induced reactive oxygen species (ROS) generation, ER stress, and podocyte apoptosis were significantly inhibited by an nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, a ROS scavenger, or receptor of advanced glycation end products (RAGE) small interfering RNA (siRNA). Moreover, silencing of the three ER stress sensors, protein kinase-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol requiring 1 (IRE1), respectively, significantly lowered the apoptotic rate of the cells compared with that of the scramble siRNA-transfected cells. Lastly, our data suggested that CHOP- and caspase-12-dependent pathways were involved in ER stress-mediated podocyte apoptosis and that Bcl-2 suppression was involved in CHOP-mediated apoptosis. Collectively, our results indicate for the first time that AOPPs trigger podocyte apoptosis through induction of ER stress, which might be regulated by NADPH oxidase-dependent ROS through RAGE, and that this apoptosis is mediated by three unfolded protein response pathways, the PERK, ATF6, and IRE1 pathways, and the mediators, CHOP and caspase-12. PMID:26197866

  6. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract.

    PubMed

    Li, Gongbo; Petiwala, Sakina M; Pierce, Dana R; Nonn, Larisa; Johnson, Jeremy J

    2013-01-01

    The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.

  7. Endoplasmic Reticulum Calcium Regulates Epidermal Barrier Response and Desmosomal Structure

    PubMed Central

    Celli, Anna; Crumrine, Debra; Meyer, Jason M.; Mauro, Theodora M.

    2016-01-01

    Ca2+ fluxes direct keratinocyte differentiation, cell-to-cell adhesion, migration, and epidermal barrier homeostasis. We previously showed that intracellular Ca2+ stores constitute a major portion of the calcium gradient especially in the stratum granulosum. Loss of the calcium gradient triggers epidermal barrier homeostatic responses. In this report, using unfixed ex vivo epidermis and human epidermal equivalents we show that endoplasmic reticulum (ER) Ca2+ is released in response to barrier perturbation, and that this release constitutes the major shift in epidermal Ca2+ seen after barrier perturbation. We find that ER Ca2+ release correlates with a transient increase in extracellular Ca2+. Lastly, we show that ER calcium release resulting from barrier perturbation triggers transient desmosomal remodeling, seen as an increase in extracellular space and a loss of the desmosomal intercellular midline. Topical application of thapsigargin, which inhibits the ER Ca2+ ATPase activity without compromising barrier integrity, also leads to desmosomal remodeling and loss of the midline structure. These experiments establish the ER Ca2+ store as a master regulator of the Ca2+ gradient response to epidermal barrier perturbation, and suggest that ER Ca2+ homeostasis also modulates normal desmosomal reorganization, both at rest and after acute barrier perturbation. PMID:27255610

  8. Endoplasmic Reticulum Stress Plays a Key Role in Rotenone-Induced Apoptotic Death of Neurons.

    PubMed

    Goswami, Poonam; Gupta, Sonam; Biswas, Joyshree; Joshi, Neeraj; Swarnkar, Supriya; Nath, Chandishwar; Singh, Sarika

    2016-01-01

    Rotenone, a pesticide, causes neurotoxicity via the mitochondrial complex-I inhibition. The present study was conducted to evaluate the role of endoplasmic reticulum (ER) stress in rotenone-induced neuronal death. Cell viability, cytotoxicity, reactive oxygen species (ROS) generation, nitrite level, mitochondrial membrane potential (MMP), and DNA damage were assessed in rotenone-treated neuro-2A cells. Protein levels of ER stress markers glucose regulated protein 78 (GRP78), growth arrest- and DNA damage-inducible gene 153 (GADD153), and phosphorylation of eukaryotic translation initiation factor 2 subunit α (eIF2-α) were estimated to assess the ER stress. To confirm the apoptotic death of neurons, mRNA levels of caspase-9, caspase-12 and caspase-3 were estimated. Further, to confirm the involvement of ER stress, neuro-2A cells were pretreated with ER stress inhibitor salubrinal. Co-treatment of antioxidant melatonin was also given to assess the role of oxidative stress in rotenone-induced apoptosis. Rotenone (0.1, 0.5, and 1 μM) treatment to neurons caused significantly decreased cell viability, increased cytotoxicity, increased ROS generation, increased expression of GRP78 and GADD, DNA damage and activation of caspase-12 and caspase-3 which were significantly attenuated by pretreatment of salubrinal (25 μM). Rotenone-induced dephosphorylation of eIF2α was also inhibited with salubrinal treatment. However, pretreatment of salubrinal did not affect the rotenone-induced increased nitrite levels, decreased MMP and caspase-9 activation. Co-treatment of antioxidant melatonin (1 mM) did not offer attenuation against rotenone-induced increased expression of caspase-9, caspase-12 and caspase-3. In conclusion, results indicated that ER stress plays a key role in rotenone-induced neuronal death, rather than oxidative stress. Graphical Abstract Pictorial presentation showed the involvement of endoplasmic reticulum (ER) stress, increased reactive oxygen species (ROS

  9. Critical Role of Endoplasmic Reticulum Stress in Cognitive Impairment Induced by Microcystin-LR

    PubMed Central

    Cai, Fei; Liu, Jue; Li, Cairong; Wang, Jianghua

    2015-01-01

    Recent studies showed that cyanobacteria-derived microcystin-leucine-arginine (MCLR) can cause hippocampal pathological damage and trigger cognitive impairment; but the underlying mechanisms have not been well understood. The objective of the present study was to investigate the mechanism of MCLR-induced cognitive deficit; with a focus on endoplasmic reticulum (ER) stress. The Morris water maze test and electrophysiological study demonstrated that MCLR caused spatial memory injury in male Wistar rats; which could be inhibited by ER stress blocker; tauroursodeoxycholic acid (TUDCA). Meanwhile; real-time polymerase chain reaction (real-time PCR) and immunohistochemistry demonstrated that the expression level of the 78-kDa glucose-regulated protein (GRP78); C/EBP homologous protein (CHOP) and caspase 12 were significantly up-regulated. These effects were rescued by co-administration of TUDCA. In agreement with this; we also observed that treatment of rats with TUDCA blocked the alterations in ER ultrastructure and apoptotic cell death in CA1 neurons from rats exposed to MCLR. Taken together; the present results suggested that ER stress plays an important role in potential memory impairments in rats treated with MCLR; and amelioration of ER stress may serve as a novel strategy to alleviate damaged cognitive function triggered by MCLR. PMID:26602924

  10. Endoplasmic Reticulum Stress in Heat- and Shake-Induced Injury in the Rat Small Intestine

    PubMed Central

    Yin, Peng; Xu, Jianqin; He, Shasha; Liu, Fenghua; Yin, Jie; Wan, Changrong; mei, Chen; Yin, Yulong; Xu, Xiaolong; Xia, Zhaofei

    2015-01-01

    We investigated the mechanisms underlying damage to rat small intestine in heat- and shake-induced stress. Eighteen Sprague-Dawley rats were randomly divided into a control group and a 3-day stressed group treated 2 h daily for 3 days on a rotary platform at 35°C and 60 r/min. Hematoxylin and eosin-stained paraffin sections of the jejunum following stress revealed shedding of the villus tip epithelial cells and lamina propria exposure. Apoptosis increased at the villus tip and extended to the basement membrane. Photomicrographs revealed that the microvilli were shorter and sparser; the nuclear envelope invaginated and gaps in the karyolemma increased; and the endoplasmic reticulum (ER) swelled significantly. Gene microarray analysis assessed 93 differentially expressed genes associated with apoptosis, ER stress, and autophagy. Relevant genes were compiled from the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Forty-one genes were involved in the regulation of apoptosis, fifteen were related to autophagy, and eleven responded to ER stress. According to KEGG, the apoptosis pathways, mitogen-activated protein kinase(MAPK) signaling pathway, the mammalian target of rapamycin (mTOR) signaling pathway, and regulation of autophagy were involved. Caspase3 (Casp3), caspase12 (Casp12), and microtubule-associate proteins 1 light chain 3(LC3) increased significantly at the villus tip while mTOR decreased; phosphorylated-AKT (P-AKT) decreased. ER stress was involved and induced autophagy and apoptosis in rat intestinal damage following heat and shake stress. Bioinformatic analysis will help determine the underlying mechanisms in stress-induced damage in the small intestine. PMID:26636675

  11. Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain.

    PubMed

    Pavlovsky, A A; Boehning, D; Li, D; Zhang, Y; Fan, X; Green, T A

    2013-08-29

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors activating transcription factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated is unknown. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative polymerase chain reaction (PCR) and RNA sequencing. Restraint stress and cocaine-induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components x-box binding protein 1 (XBP1) and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. PMID:23644055

  12. Psychological Stress, Cocaine and Natural Reward Each Induce Endoplasmic Reticulum Stress Genes in Rat Brain

    PubMed Central

    Pavlovsky, Ashly A.; Boehning, Darren; Li, Dingge; Zhang, Yafang; Fan, Xiuzhen; Green, Thomas A.

    2013-01-01

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors Activating Transcription Factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently it is unknown the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative PCR and RNA sequencing. Restraint stress and cocaine induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components XBP1 and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. PMID:23644055

  13. The protective effect of the earthworm active ingredients on hepatocellular injury induced by endoplasmic reticulum stress.

    PubMed

    Wang, Qi; Duan, Leng-Xin; Xu, Zheng-Shun; Wang, Jian-Gang; Xi, Shou-Min

    2016-08-01

    The earthworm is a widely used Chinese herbal medicine. There are more than 40 prescriptions including earthworms in the "Compendium of Materia Medica". TCM theory holds that earthworms exert antispasmodic and antipyretic effects through the liver meridian to calm the liver. However, the clinical effect of earthworms on liver injury has not been clearly demonstrated. We have previously established a method to extract the active ingredients from earthworms (hereinafter referred to as EWAs) [1]. In the present study, we observed protective effect of the EWAs on tunicamycin-induced ERS (endoplasmic reticulum stress) model in human hepatic L02 cells. The results showed that the EWAs promote proliferation and reduced apoptosis of ERS model in L02 cells (P<0.01). The up-regulation of ERS-related proteins, including PERK (protein kinase RNA-like endoplasmic reticulum kinase), eIF2a (eukaryotic translation initiation factor 2a), ATF4 (activating transcription factor 4) and CHOP (CCAAT/enhancer binding protein homologous protein), in L02 cell under ERS was inhibited by treatment of the EWAs (P<0.01). In summary, our data suggest the EWAs can significant attenuate ERS-induced hepatocyte injury via PERK-eIF2a-ATF4 pathway. PMID:27470367

  14. Involvement of endoplasmic reticulum stress in capsaicin-induced apoptosis of human pancreatic cancer cells.

    PubMed

    Lin, Shengzhang; Zhang, Jianhong; Chen, Hui; Chen, Kangjie; Lai, Fuji; Luo, Jiang; Wang, Zhaohong; Bu, Heqi; Zhang, Riyuan; Li, Honghai; Tong, Hongfei

    2013-01-01

    Capsaicin, main pungent ingredient of hot chilli peppers, has been shown to have anticarcinogenic effect on various cancer cells through multiple mechanisms. In this study, we investigated the apoptotic effect of capsaicin on human pancreatic cancer cells in both in vitro and in vivo systems, as well as the possible mechanisms involved. In vitro, treatment of both the pancreatic cancer cells (PANC-1 and SW1990) with capsaicin resulted in cells growth inhibition, G0/G1 phase arrest, and apoptosis in a dose-dependent manner. Knockdown of growth arrest- and DNA damage-inducible gene 153 (GADD153), a marker of the endoplasmic-reticulum-stress- (ERS-) mediated apoptosis pathway, by specific siRNA attenuated capsaicin-induced apoptosis both in PANC-1 and SW1990 cells. Moreover, in vivo studies capsaicin effectively inhibited the growth and metabolism of pancreatic cancer and prolonged the survival time of pancreatic cancer xenograft tumor-induced mice. Furthermore, capsaicin increased the expression of some key ERS markers, including glucose-regulated protein 78 (GRP78), phosphoprotein kinase-like endoplasmic reticulum kinase (phosphoPERK), and phosphoeukaryotic initiation factor-2 α (phospho-eIF2 α ), activating transcription factor 4 (ATF4) and GADD153 in tumor tissues. In conclusion, we for the first time provide important evidence to support the involvement of ERS in the induction of apoptosis in pancreatic cancer cells by capsaicin.

  15. Honokiol abrogates chronic restraint stress-induced cognitive impairment and depressive-like behaviour by blocking endoplasmic reticulum stress in the hippocampus of mice.

    PubMed

    Jangra, Ashok; Dwivedi, Shubham; Sriram, Chandra Shaker; Gurjar, Satendra Singh; Kwatra, Mohit; Sulakhiya, Kunjbihari; Baruah, Chandana C; Lahkar, Mangala

    2016-01-01

    The primary objective of our study is to investigate the neuroprotective efficacy of honokiol and imipramine against restraint stress (RS)-induced cognitive impairment and depressive-like behaviour in mice. We examined whether the neuroprotective activity of honokiol and imipramine mediates through the inhibition of endoplasmic reticulum stress. Adult Swiss albino mice were restrained for 6h/day for 28 days. Honokiol (3 and 10mg/kg) and Imipramine (10 and 30mg/kg) were administered for last 7 days to the different groups. Cognitive function was assessed by Morris water maze and novel object recognition test. Forced swimming test and tail suspension test were performed to evaluate the restraint stress-induced depressive-like behaviour. Proinflammatory cytokines, brain-derived neurotrophic factor, and ER stress markers i.e. 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) were quantified in the hippocampus. We observed cognitive impairment and depressive-like behaviour in RS-exposed animals. Honokiol (10mg/kg) treated group depicted marked reduction in cognitive impairment and depressive-like behaviour. However, imipramine (10 and 30mg/kg) prevented the depressive-like behaviour but failed to prevent RS-induced cognitive impairment. Moreover, proinflammatory cytokines, GRP78 and CHOP were elevated in the hippocampus of stressed mice as compared to unstressed mice. Honokiol (10mg/kg) significantly prevented the RS-induced elevated levels of proinflammatory cytokines and endoplasmic reticulum stress markers. Our results clearly suggest the beneficial potential of honokiol in restraint stress through inhibition of proinflammatory cytokines and endoplasmic reticulum stress. Honokiol could be an intriguing therapeutic approach in endoplasmic reticulum stress related neuro-pathophysiological conditions.

  16. Aldehyde Dehydrogenase-2 Deficiency Aggravates Cardiac Dysfunction Elicited by Endoplasmic Reticulum Stress Induction

    PubMed Central

    Liao, Jianquan; Sun, Aijun; Xie, Yeqing; Isse, Toyoshi; Kawamoto, Toshihiro; Zou, Yunzeng; Ge, Junbo

    2012-01-01

    Mitochondrial aldehyde dehydrogenase-2 (ALDH2) has been characterized as an important mediator of endogenous cytoprotection in the heart. This study was designed to examine the role of ALDH2 knockout (KO) in the regulation of cardiac function after endoplasmic reticulum (ER) stress. Wild-type (WT) and ALDH2 KO mice were subjected to a tunicamycin challenge, and the echocardiographic property was examined. Protein levels of six items—78 kDa glucose-regulated protein (GRP78), phosphorylation of eukaryotic initiation factor 2 subunit α (p-eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP), phosphorylation of Akt, p47phox nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and 4-hydroxynonenal—were determined by using Western blot analysis. Cytotoxicity and apoptosis were estimated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay and caspase-3 activity, respectively. ALDH2 deficiency exacerbated cardiac contractile dysfunction and promoted ER stress after ER stress induction, manifested by the changes of ejection fraction and fractional shortening. In vitro study revealed that tunicamycin significantly upregulated the levels of GRP78, p-eIF2α, CHOP, p47phox NADPH oxidase and 4-hydroxynonenal, which was exacerbated by ALDH2 knockdown and abolished by ALDH2 overexpression, respectively. Overexpression of ALDH2 abrogated tunicamycin-induced dephosphorylation Akt. Inhibition of phosphatidylinositol 3-kinase using LY294002 did not affect ALDH2-conferred protection against ER stress, although LY294002 reversed the antiapoptotic action of ALDH2 associated with p47phox NADPH oxidase. These results suggest a pivotal role of ALDH2 in the regulation of ER stress and ER stress–induced apoptosis. The protective role of ALDH2 against ER stress–induced cell death was probably mediated by Akt via a p47phox NADPH oxidase-dependent manner. These findings indicate the critical role of ALDH2 in the pathogenesis of ER stress

  17. Involvement of endoplasmic reticulum stress in the necroptosis of microglia/macrophages after spinal cord injury.

    PubMed

    Fan, H; Tang, H-B; Kang, J; Shan, L; Song, H; Zhu, K; Wang, J; Ju, G; Wang, Y-Z

    2015-12-17

    Microglia/macrophages play a crucial role in inflammation after spinal cord injury (SCI). Although extensive studies have been performed on the mechanisms of microglia/macrophage activation and recruitment, how microglia/macrophages are eliminated remains unclear. In the present study, we observed a high-level expression of mixed lineage kinase domain-like protein (MLKL), a key molecule in the execution of necroptosis, in microglia/macrophages after SCI in mice. In vivo PI-labeling and Necrostatin-1 treatment confirmed the necroptosis of microglia/macrophages. Interestingly, our electronic microscopic (EM) study revealed that MLKL localized not only at the membrane but also on the endoplasmic reticulum (ER) of necroptotic microglia/macrophages. Furthermore, receptor-interacting protein 3 (RIP3), another necrosome component, was also found on the ER of necroptotic microglia/macrophages. And Glucose-regulated protein 78 (GRP78), an ER stress sensor, was up-regulated in MLKL-positive microglia/macrophages after SCI, suggesting a possible link between necroptosis and ER stress. In vitro, oxygen-glucose deprivation (OGD) stress induced ER stress and necroptosis in microglia. Inhibiting ER stress by 4-phenylbutyrate (4-PBA) significantly blocked the OGD-induced necroptosis of microglia. In the end, our data showed that, GRP78 and phosphorylated MLKL were co-expressed by the microglia/macrophages in the injured human spinal cord. Taken together, these results suggested that microglia/macrophages undergo an ER-stress involved necroptosis after SCI, implying that ER stress and necroptosis could be manipulated for modulating inflammation post-SCI.

  18. The endoplasmic reticulum stress response in aging and age-related diseases

    PubMed Central

    Brown, Marishka K.; Naidoo, Nirinjini

    2012-01-01

    The endoplasmic reticulum(ER) is a multifunctional organelle within which protein folding, lipid biosynthesis, and calcium storage occurs. Perturbations such as energy or nutrient depletion, disturbances in calcium or redox status that disrupt ER homeostasis lead to the misfolding of proteins, ER stress and up-regulation of several signaling pathways coordinately called the unfolded protein response (UPR). The UPR is characterized by the induction of chaperones, degradation of misfolded proteins and attenuation of protein translation. The UPR plays a fundamental role in the maintenance of cellular homeostasis and thus is central to normal physiology. However, sustained unresolved ER stress leads to apoptosis. Aging linked declines in expression and activity of key ER molecular chaperones and folding enzymes compromise proper protein folding and the adaptive response of the UPR. One mechanism to explain age associated declines in cellular functions and age-related diseases is a progressive failure of chaperoning systems. In many of these diseases, proteins or fragments of proteins convert from their normally soluble forms to insoluble fibrils or plaques that accumulate in a variety of organs including the liver, brain or spleen. This group of diseases, which typically occur late in life includes Alzheimer's, Parkinson's, type II diabetes and a host of less well known but often equally serious conditions such as fatal familial insomnia. The UPR is implicated in many of these neurodegenerative and familial protein folding diseases as well as several cancers and a host of inflammatory diseases including diabetes, atherosclerosis, inflammatory bowel disease and arthritis. This review will discuss age-related changes in the ER stress response and the role of the UPR in age-related diseases. PMID:22934019

  19. Regulation of RYR2 by sarcoplasmic reticulum Ca(2+).

    PubMed

    Zhang, Joe Z; Waddell, Helen M M; Jones, Peter P

    2015-06-01

    Ca(2+) is arguably the most important ion involved in the contraction of the heart. The cardiac ryanodine receptor (RyR2), the major Ca(2+) release channel located in the sarcoplasmic reticulum (SR) membrane, is responsible for releasing the bulk of Ca(2+) required for contraction. Moreover, RyR2 is also crucial for maintaining SR Ca(2+) homeostasis by releasing Ca(2+) from the SR when it becomes overloaded with Ca(2+) . During normal contraction, RyR2 is activated by cytosolic Ca(2+) , whereas during store overload conditions, the opening of RyR2 is governed by SR Ca(2+) . Although the process of the cytosolic control of RyR2 is well established, the molecular mechanism by which SR luminal Ca(2+) regulates RyR2 has only recently been elucidated and remains controversial. In addition to the activation of RyR2, SR luminal Ca(2+) also determines when the RyR2 channel closes. RyR2-mediated Ca(2+) release from the SR does not continue until the SR is completely depleted. Rather, it ceases when SR luminal Ca(2+) falls below a certain level. Given the importance of SR Ca(2+) , it is not surprising that the SR luminal Ca(2+) level is tightly controlled by SR Ca(2+) -buffering proteins. Consequently, the opening and closing of RyR2 is heavily influenced by the presence of such proteins, particularly those associated with RyR2, such as calsequestrin and the histidine-rich Ca(2+) -binding protein. These proteins appear to indirectly alter RyR2 activity by modifying the microdomain SR Ca(2+) level surrounding RyR2. PMID:25603835

  20. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress

    NASA Astrophysics Data System (ADS)

    Chiu, Hui-Wen; Xia, Tian; Lee, Yu-Hsuan; Chen, Chun-Wan; Tsai, Jui-Chen; Wang, Ying-Jan

    2014-12-01

    Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung epithelial (BEAS-2B) cells. Furthermore, NH2-PS could induce autophagic cell death. NH2-PS increased autophagic flux due to reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress caused by misfolded protein aggregation. The inhibition of ER stress decreased cytotoxicity and autophagy in the NH2-PS-treated cells. In addition, the Akt/mTOR and AMPK signaling pathways were involved in the regulation of NH2-PS-triggered autophagic cell death. These results suggest an important role of autophagy in cationic NP-induced cell death and provide mechanistic insights into the inhibition of the toxicity and safe material design.Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung

  1. Fluoride-elicited developmental testicular toxicity in rats: Roles of endoplasmic reticulum stress and inflammatory response

    SciTech Connect

    Zhang, Shun; Jiang, Chunyang; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Gao, Hui; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Zhenglun; Wang, Aiguo

    2013-09-01

    Long-term excessive fluoride intake is known to be toxic and can damage a variety of organs and tissues in the human body. However, the molecular mechanisms underlying fluoride-induced male reproductive toxicity are not well understood. In this study, we used a rat model to simulate the situations of human exposure and aimed to evaluate the roles of endoplasmic reticulum (ER) stress and inflammatory response in fluoride-induced testicular injury. Sprague–Dawley rats were administered with sodium fluoride (NaF) at 25, 50 and 100 mg/L via drinking water from pre-pregnancy to gestation, birth and finally to post-puberty. And then the testes of male offspring were studied at 8 weeks of age. Our results demonstrated that fluoride treatment increased MDA accumulation, decreased SOD activity, and enhanced germ cell apoptosis. In addition, fluoride elevated mRNA and protein levels of glucose-regulated protein 78 (GRP78), inositol requiring ER-to-nucleus signal kinase 1 (IRE1), and C/EBP homologous protein (CHOP), indicating activation of ER stress signaling. Furthermore, fluoride also induced testicular inflammation, as manifested by gene up-regulation of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in a nuclear factor-κB (NF-κB)-dependent manner. These were associated with marked histopathological lesions including injury of spermatogonia, decrease of spermatocytes and absence of elongated spermatids, as well as severe ultrastructural abnormalities in testes. Taken together, our results provide compelling evidence that ER stress and inflammation would be novel and significant mechanisms responsible for fluoride-induced disturbance of spermatogenesis and germ cell loss in addition to oxidative stress. - Highlights: • We used a rat model to simulate the situations of human fluoride (F) exposure. • Developmental F exposure induces testicular damage related with oxidative stress.

  2. Erlotinib promotes endoplasmic reticulum stress-mediated injury in the intestinal epithelium

    SciTech Connect

    Fan, Lu; Hu, Lingna; Yang, Baofang; Fang, Xianying; Gao, Zhe; Li, Wanshuai; Sun, Yang; Shen, Yan; Wu, Xuefeng; Shu, Yongqian; Gu, Yanhong; Wu, Xudong; Xu, Qiang

    2014-07-01

    Erlotinib, a popular drug for treating non-small cell lung cancer (NSCLC), causes diarrhea in approximately 55% of patients receiving this drug. In the present study, we found that erlotinib induced barrier dysfunction in rat small intestine epithelial cells (IEC-6) by increasing epithelial permeability and down-regulating E-cadherin. The mRNA levels of various pro-inflammatory cytokines (Il-6, Il-25 and Il-17f) were increased after erlotinib treatment in IEC-6 cells. Erlotinib concentration- and time-dependently induced apoptosis and endoplasmic reticulum (ER) stress in both IEC-6 and human colon epithelial cells (CCD 841 CoN). Intestinal epithelial injury was also observed in male C57BL/6J mice administrated with erlotinib. Knockdown of C/EBP homologous protein (CHOP) with small interference RNA partially reversed erlotinib-induced apoptosis, production of IL-6 and down-regulation of E-cadherin in cultured intestinal epithelial cells. In conclusion, erlotinib caused ER stress-mediated injury in the intestinal epithelium, contributing to its side effects of diarrhea in patients. - Highlights: • Erlotinib destroyed barrier integrity both in vitro and in vivo. • Erlotinib induced inflammation both in vitro and in vivo. • Erlotinib induced apoptosis both in vitro and in vivo. • ER stress contributed to erlotinib-induced barrier dysfunction.

  3. Tauroursodeoxycholic acid suppresses endoplasmic reticulum stress in the chondrocytes of patients with osteoarthritis.

    PubMed

    Liu, Chao; Cao, Yongping; Yang, Xin; Shan, Pengcheng; Liu, Heng

    2015-10-01

    The main pathogenic events in osteoarthritis (OA) include loss and abnormal remodeling of cartilage extracellular matrix. The present study aimed to evaluate the protective effect of tauroursodeoxycholic acid on chondrocyte apoptosis induced by endoplasmic reticulum (ER) stress. Articular cartilage tissues were collected from 18 patients who underwent total knee arthroplasty and were analyzed histologically. Subsequently, chondrocyte apoptosis was assessed by TUNEL. Quantitative polymerase chain reaction and western blot analysis were employed to evaluate gene and protein expression, respectively, of ER stress markers, including glucose‑regulated protein 78 (GRP78), growth arrest and DNA‑damage‑inducible gene 153 (GADD153) and caspase‑12 along with type II collagen. Chondrocytes obtained from osteoarthritis patients at different stages were cultured in three conditions including: No treatment (CON group), tunicamycin treatment to induce ER stress (ERS group) and tauroursodeoxycholic acid treatment after 4 h of tunicamycin (TDA group); and cell proliferation, apoptosis, function and ER stress level were assessed. Degradation of cartilage resulted in histological damage with more apoptotic cartilage cells observed. Of note, GRP78, GADD153 and caspase‑12 mRNA and protein expression increased gradually from grade I to III cartilage tissue, while type II collagen expression decreased. Tunicamycin induced ER stress, as shown by a high expression of ER stress markers, reduced cell proliferation, increased apoptosis and decreased synthesis of type II collagen. Notably, tauroursodeoxycholic acid treatment resulted in the improvement of tunicamycin‑induced ER stress. These results indicated that ER stress is highly involved in the tunicamycin‑induced apoptosis in chondrocytes, which can be prevented by tauroursodeoxycholic acid. PMID:26238983

  4. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress.

    PubMed

    San Cheang, Wai; Yuen Ngai, Ching; Yen Tam, Ye; Yu Tian, Xiao; Tak Wong, Wing; Zhang, Yang; Wai Lau, Chi; Chen, Zhen Yu; Bian, Zhao-Xiang; Huang, Yu; Ping Leung, Fung

    2015-01-01

    Hypertensive patients have been found to be associated with elevated levels of homocysteine, known as hyperhomocysteinemia. Homocysteine (Hcy) can induce endoplasmic reticulum (ER) stress in endothelial cells. This study aims to investigate whether black tea (BT) protects against hypertension-associated endothelial dysfunction through alleviation of ER stress. Rat aortae and cultured rat aortic endothelial cells were treated with Hcy, BT extract, and theaflavin-3,3'-digallate (TF3). Male Sprague Dawley rats were infused with angiotensin II (Ang II) to induce hypertension and orally administrated with BT extract at 15 mg/kg/day for 2 weeks. Hcy impaired endothelium-dependent relaxations of rat aortae and led to ER stress in endothelial cells, which were ameliorated by co-incubation of BT extract and TF3. The blood pressure of Ang II-infused rats and plasma Hcy level were normalized by BT consumption. Impaired endothelium-dependent relaxations in renal arteries, carotid arteries and aortae, and flow-mediated dilatations in third-order mesenteric resistance arteries were improved. Elevations of ER stress markers and ROS level, plus down-regulation of Hcy metabolic enzymes in aortae from Ang II-infused rats were prevented by BT treatment. Our data reveal the novel cardiovascular benefits of BT in ameliorating vascular dysfunctions, providing insight into developing BT into beneficial dietary supplements in hypertensive patients. PMID:25976123

  5. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress

    PubMed Central

    San Cheang, Wai; Yuen Ngai, Ching; Yen Tam, Ye; Yu Tian, Xiao; Tak Wong, Wing; Zhang, Yang; Wai Lau, Chi; Chen, Zhen Yu; Bian, Zhao-Xiang; Huang, Yu; Ping Leung, Fung

    2015-01-01

    Hypertensive patients have been found to be associated with elevated levels of homocysteine, known as hyperhomocysteinemia. Homocysteine (Hcy) can induce endoplasmic reticulum (ER) stress in endothelial cells. This study aims to investigate whether black tea (BT) protects against hypertension-associated endothelial dysfunction through alleviation of ER stress. Rat aortae and cultured rat aortic endothelial cells were treated with Hcy, BT extract, and theaflavin-3,3’-digallate (TF3). Male Sprague Dawley rats were infused with angiotensin II (Ang II) to induce hypertension and orally administrated with BT extract at 15 mg/kg/day for 2 weeks. Hcy impaired endothelium-dependent relaxations of rat aortae and led to ER stress in endothelial cells, which were ameliorated by co-incubation of BT extract and TF3. The blood pressure of Ang II-infused rats and plasma Hcy level were normalized by BT consumption. Impaired endothelium-dependent relaxations in renal arteries, carotid arteries and aortae, and flow-mediated dilatations in third-order mesenteric resistance arteries were improved. Elevations of ER stress markers and ROS level, plus down-regulation of Hcy metabolic enzymes in aortae from Ang II-infused rats were prevented by BT treatment. Our data reveal the novel cardiovascular benefits of BT in ameliorating vascular dysfunctions, providing insight into developing BT into beneficial dietary supplements in hypertensive patients. PMID:25976123

  6. Endoplasmic reticulum stress protects human thyroid carcinoma cell lines against ionizing radiation-induced apoptosis.

    PubMed

    Wu, Xin-Yu; Fan, Rui-Tai; Yan, Xin-Hui; Cui, Jing; Xu, Jun-Ling; Gu, Hao; Gao, Yong-Ju

    2015-03-01

    Radiotherapy is one of the most effective forms of cancer treatment, used in the treatment of a number of malignant tumors. However, the resistance of tumor cells to ionizing radiation remains a major therapeutic problem and the critical mechanisms determining radiation resistance are poorly defined. In the present study, a cellular endoplasmic reticulum (ER) stress microenvironment was established through the pretreatment of cultured thyroid cancer cells with tunicamycin (TM) and thapsigargin (TG), in order to mimic the ER stress response in a tumor microenvironment. This microenviroment was confirmed through the X‑box binding protein 1 splice process, glucose‑regulated protein 78 kD and ER degradation‑enhancing α‑mannosidase‑like mRNA expression. A clonogenic assay was used to measure cancer cell resistance to 60Co‑γ following TM pretreatment; in addition, human C/EBP homologous protein (CHOP) mRNA expression was determined and apoptosis assays were performed. The results showed that TM or TG pretreatment inhibited CHOP expression and reduced the apoptotic rate of cells. Furthermore, the results demonstrated that the induced ER stress response rendered cancer cells more resistant to ionizing radiation‑induced apoptosis. Therefore, the ER stress pathway may be a potential therapeutic target in order to improve the clinical efficiency of radiotherapy.

  7. Endoplasmic Reticulum Stress-Sensing Mechanism Is Activated in Entamoeba histolytica upon Treatment with Nitric Oxide

    PubMed Central

    Santi-Rocca, Julien; Smith, Sherri; Weber, Christian; Pineda, Erika; Hon, Chung-Chau; Saavedra, Emma; Olivos-García, Alfonso; Rousseau, Sandrine; Dillies, Marie-Agnès; Coppée, Jean-Yves; Guillén, Nancy

    2012-01-01

    The Endoplasmic Reticulum stores calcium and is a site of protein synthesis and modification. Changes in ER homeostasis lead to stress responses with an activation of the unfolded protein response (UPR). The Entamoeba histolytica endomembrane system is simple compared to those of higher eukaryotes, as a canonical ER is not observed. During amoebiasis, an infection of the human intestine and liver by E. histolytica, nitric oxide (NO) triggers an apoptotic-like event preceded by an impairment of energy production and a loss of important parasite pathogenic features. We address the question of how this ancient eukaryote responds to stress induced by immune components (i.e. NO) and whether stress leads to ER changes and subsequently to an UPR. Gene expression analysis suggested that NO triggers stress responses marked by (i) dramatic up-regulation of hsp genes although a bona fide UPR is absent; (ii) induction of DNA repair and redox gene expression and iii) up-regulation of glycolysis-related gene expression. Enzymology approaches demonstrate that NO directly inhibits glycolysis and enhance cysteine synthase activity. Using live imaging and confocal microscopy we found that NO dramatically provokes extensive ER fragmentation. ER fission in E. histolytica appears as a protective response against stress, as it has been recently proposed for neuron self-defense during neurologic disorders. Chronic ER stress is also involved in metabolic diseases including diabetes, where NO production reduces ER calcium levels and activates cell death. Our data highlighted unique cellular responses of interest to understand the mechanisms of parasite death during amoebiasis. PMID:22384074

  8. Involvement of endoplasmic reticulum stress in all-trans-retinal-induced retinal pigment epithelium degeneration.

    PubMed

    Li, Jie; Cai, Xianhui; Xia, Qingqing; Yao, Ke; Chen, Jingmeng; Zhang, Yanli; Naranmandura, Hua; Liu, Xin; Wu, Yalin

    2015-01-01

    Excess accumulation of endogenous all-trans-retinal (atRAL) contributes to degeneration of the retinal pigment epithelium (RPE) and photoreceptor cells, and plays a role in the etiologies of age-related macular degeneration (AMD) and Stargardt's disease. In this study, we reveal that human RPE cells tolerate exposure of up to 5 µM atRAL without deleterious effects, but higher concentrations are detrimental and induce cell apoptosis. atRAL treatment significantly increased production of intracellular reactive oxygen species (ROS) and up-regulated mRNA expression of Nrf2, HO-1, and γ-GCSh within RPE cells, thereby causing oxidative stress. ROS localized to mitochondria and endoplasmic reticulum (ER). ER-resident molecular chaperone BiP, a marker of ER stress, was up-regulated at the translational level, and meanwhile, the PERK-eIF2α-ATF4 signaling pathway was activated. Expression levels of ATF4, CHOP, and GADD34 in RPE cells increased in a concentration-dependent manner after incubation with atRAL. Salubrinal, a selective inhibitor of ER stress, alleviated atRAL-induced cell death. The antioxidant N-acetylcysteine (NAC) effectively blocked RPE cell loss and ER stress activation, suggesting that atRAL-induced ROS generation is responsible for RPE degeneration and is an early trigger of ER stress. Furthermore, the mitochondrial transmembrane potential was lost after atRAL exposure, and was followed by caspase-3 activation and poly (ADP-ribose) polymerase cleavage. The results demonstrate that atRAL-driven ROS overproduction-induced ER stress is involved in cellular mitochondrial dysfunction and apoptosis of RPE cells. PMID:25331497

  9. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    SciTech Connect

    Wu, Dan; Liu, Jing; Wu, Baiyan; Tu, Bo; Zhu, Weiguo; Luo, Jianyuan

    2014-04-25

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration.

  10. Panax quinquefolium saponin attenuates cardiomyocyte apoptosis induced by thapsigargin through inhibition of endoplasmic reticulum stress

    PubMed Central

    Liu, Mi; Xue, Mei; Wang, Xiao-Reng; Tao, Tian-Qi; Xu, Fei-Fei; Liu, Xiu-Hua; Shi, Da-Zhuo

    2015-01-01

    Background Endoplasmic reticulum (ER) stress-related apoptosis is involved in the pathophysiology of many cardiovascular diseases, and Panax quinquefolium saponin (PQS) is able to inhibit excessive ER stress-related apoptosis of cardiomyocytes following hypoxia/reoxygenation and myocardial infarction. However, the pathway by which PQS inhibits the ER stress-related apoptosis is not well understood. To further investigate the protective effect of PQS against ER stress-related apoptosis, primary cultured cardiomyocytes were stimulated with thapsigargin (TG), which is widely used to model cellular ER stress, and it could induce apoptotic cell death in sufficient concentration. Methods Primary cultured cardiomyocytes from neonatal rats were exposed to TG (1 µmol/L) treatment for 24 h, following PQS pre-treatment (160 µg/mL) for 24 h or pre-treatment with small interfering RNA directed against protein kinase-like endoplasmic reticulum kinase (Si-PERK) for 6 h. The viability and apoptosis rate of cardiomyocytes were detected by cell counting kit-8 and flow cytometry respectively. ER stress-related protein expression, such as glucose-regulated protein 78 (GRP78), calreticulin, PERK, eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) were assayed by western blotting. Results Both PQS pre-treatment and PERK knockdown remarkably inhibited the cardiomyocyte apoptosis induced by TG, increased cell viability, decreased phosphorylation of both PERK and eIF2α, and decreased protein levels of both ATF4 and CHOP. There was no statistically significant difference between PQS pre-treatment and PERK knockdown in the cardioprotective effect. Conclusions Our data indicate that the PERK-eIF2α-ATF4-CHOP pathway of ER stress is involved in the apoptosis induced by TG, and PQS might prevent TG-induced cardiomyocyte apoptosis through a mechanism involving the suppression of this pathway. These findings

  11. Reduced Endoplasmic Reticulum Luminal Calcium Links Saturated Fatty Acid-Mediated Endoplasmic Reticulum Stress and Cell Death in Liver Cells

    PubMed Central

    Wei, Yuren; Wang, Dong; Gentile, Christopher L.; Pagliassotti, Michael J.

    2010-01-01

    Chronic exposure to elevated free fatty acids, in particular long chain saturated fatty acids, provokes endoplasmic reticulum (ER) stress and cell death in a number of cell types. The perturbations to the ER that instigate ER stress and activation of the unfolded protein in response to fatty acids in hepatocytes have not been identified. The present study employed H4IIE liver cells and primary rat hepatocytes to examine the hypothesis that saturated fatty acids induce ER stress via effects on ER luminal calcium stores. Exposure of H4IIE liver cells and primary hepatocytes to palmitate and stearate reduced thapsigargin-sensitive calcium stores and biochemical markers of ER stress over similar time courses (6h). These changes preceded cell death, which was only observed at later time points (16h). Co-incubation with oleate prevented the reduction in calcium stores, induction of ER stress markers and cell death observed in response to palmitate. Inclusion of calcium chelators, BAPTA-AM or EGTA, reduced palmitate- and stearate-mediated enrichment of cytochrome c in post-mitochondrial supernatant fractions and cell death. These data suggest that redistribution of ER luminal calcium contributes to long chain saturated fatty acid-mediated ER stress and cell death. PMID:19444596

  12. Asbestos-Induced Alveolar Epithelial Cell Apoptosis. The Role of Endoplasmic Reticulum Stress Response

    PubMed Central

    Liu, Gang; Cheresh, Paul; Kim, Seok-Jo; Mueller, Amanda; Lam, Anna P; Trejo, Humberto; Williams, David; Tulasiram, Sandhya; Baker, Margaret; Ridge, Karen; Chandel, Navdeep S.; Beri, Rohinee

    2013-01-01

    Asbestos exposure results in pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully understood. Alveolar epithelial cell (AEC) apoptosis is important in the development of pulmonary fibrosis after exposure to an array of toxins, including asbestos. An endoplasmic reticulum (ER) stress response and mitochondria-regulated (intrinsic) apoptosis occur in AECs of patients with idiopathic pulmonary fibrosis, a disease with similarities to asbestosis. Asbestos induces AEC intrinsic apoptosis, but the role of the ER is unclear. The objective of this study was to determine whether asbestos causes an AEC ER stress response that promotes apoptosis. Using human A549 and rat primary isolated alveolar type II cells, amosite asbestos fibers increased AEC mRNA and protein expression of ER stress proteins involved in the unfolded protein response, such as inositol-requiring kinase (IRE) 1 and X-box–binding protein-1, as well as ER Ca²2+ release ,as assessed by a FURA-2 assay. Eukarion-134, a superoxide dismutase/catalase mimetic, as well as overexpression of Bcl-XL in A549 cells each attenuate asbestos-induced AEC ER stress (IRE-1 and X-box–binding protein-1 protein expression; ER Ca²2+ release) and apoptosis. Thapsigargin, a known ER stress inducer, augments AEC apoptosis, and eukarion-134 or Bcl-XL overexpression are protective. Finally, 4-phenylbutyric acid, a chemical chaperone that attenuates ER stress, blocks asbestos- and thapsigargin-induced AEC IRE-1 protein expression, but does not reduce ER Ca²2+ release or apoptosis. These results show that asbestos triggers an AEC ER stress response and subsequent intrinsic apoptosis that is mediated in part by ER Ca²2+ release. PMID:23885834

  13. Intermittent selective clamping improves rat liver regeneration by attenuating oxidative and endoplasmic reticulum stress.

    PubMed

    Ben Mosbah, I; Duval, H; Mbatchi, S-F; Ribault, C; Grandadam, S; Pajaud, J; Morel, F; Boudjema, K; Compagnon, P; Corlu, A

    2014-03-06

    Intermittent clamping of the portal trial is an effective method to avoid excessive blood loss during hepatic resection, but this procedure may cause ischemic damage to liver. Intermittent selective clamping of the lobes to be resected may represent a good alternative as it exposes the remnant liver only to the reperfusion stress. We compared the effect of intermittent total or selective clamping on hepatocellular injury and liver regeneration. Entire hepatic lobes or only lobes to be resected were subjected twice to 10 min of ischemia followed by 5 min of reperfusion before hepatectomy. We provided evidence that the effect of intermittent clamping can be damaging or beneficial depending to its mode of application. Although transaminase levels were similar in all groups, intermittent total clamping impaired liver regeneration and increased apoptosis. In contrast, intermittent selective clamping improved liver protein secretion and hepatocyte proliferation when compared with standard hepatectomy. This beneficial effect was linked to better adenosine-5'-triphosphate (ATP) recovery, nitric oxide production, antioxidant activities and endoplasmic reticulum adaptation leading to limit mitochondrial damage and apoptosis. Interestingly, transient and early chaperone inductions resulted in a controlled activation of the unfolded protein response concomitantly to endothelial nitric oxide synthase, extracellular signal-regulated kinase-1/2 (ERK1/2) and p38 MAPK activation that favors liver regeneration. Endoplasmic reticulum stress is a central target through which intermittent selective clamping exerts its cytoprotective effect and improves liver regeneration. This procedure could be applied as a powerful protective modality in the field of living donor liver transplantation and liver surgery.

  14. Intermittent selective clamping improves rat liver regeneration by attenuating oxidative and endoplasmic reticulum stress.

    PubMed

    Ben Mosbah, I; Duval, H; Mbatchi, S-F; Ribault, C; Grandadam, S; Pajaud, J; Morel, F; Boudjema, K; Compagnon, P; Corlu, A

    2014-01-01

    Intermittent clamping of the portal trial is an effective method to avoid excessive blood loss during hepatic resection, but this procedure may cause ischemic damage to liver. Intermittent selective clamping of the lobes to be resected may represent a good alternative as it exposes the remnant liver only to the reperfusion stress. We compared the effect of intermittent total or selective clamping on hepatocellular injury and liver regeneration. Entire hepatic lobes or only lobes to be resected were subjected twice to 10 min of ischemia followed by 5 min of reperfusion before hepatectomy. We provided evidence that the effect of intermittent clamping can be damaging or beneficial depending to its mode of application. Although transaminase levels were similar in all groups, intermittent total clamping impaired liver regeneration and increased apoptosis. In contrast, intermittent selective clamping improved liver protein secretion and hepatocyte proliferation when compared with standard hepatectomy. This beneficial effect was linked to better adenosine-5'-triphosphate (ATP) recovery, nitric oxide production, antioxidant activities and endoplasmic reticulum adaptation leading to limit mitochondrial damage and apoptosis. Interestingly, transient and early chaperone inductions resulted in a controlled activation of the unfolded protein response concomitantly to endothelial nitric oxide synthase, extracellular signal-regulated kinase-1/2 (ERK1/2) and p38 MAPK activation that favors liver regeneration. Endoplasmic reticulum stress is a central target through which intermittent selective clamping exerts its cytoprotective effect and improves liver regeneration. This procedure could be applied as a powerful protective modality in the field of living donor liver transplantation and liver surgery. PMID:24603335

  15. L-carnitine attenuates H2O2-induced neuron apoptosis via inhibition of endoplasmic reticulum stress.

    PubMed

    Ye, Junli; Han, Yantao; Chen, Xuehong; Xie, Jing; Liu, Xiaojin; Qiao, Shunhong; Wang, Chunbo

    2014-12-01

    Both oxidative stress and endoplasmic reticulum stress (ER stress) have been linked to pathogenesis of neurodegenerative diseases. Our previous study has shown that L-carnitine may function as an antioxidant to inhibit H2O2-induced oxidative stress in neuroblastoma SH-SY5Y cells. To further explore the neuroprotection of L-carnitine, here we study the effects of L-carnitine on the ER stress response in H2O2-induced SH-SY5Y cell injury. Our results showed that L-carnitine pretreatment could increase cell viability; inhibit apoptosis and ROS accumulation caused by H2O2 or tunicamycin (TM). L-carnitine suppress the endoplasmic reticulum dilation and activation of ER stress-associated proteins including glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein-homologous protein (CHOP), JNK, Bax and Bim induced by H2O2 or TM. In addition, H2O2-induced cell apoptosis and activation of ER stress can also be attenuated by antioxidant N-acetylcysteine (NAC), CHOP siRNA and the inhibitor of ER stress 4-phenylbutyric acid (4-PBA). Taken together, our results demonstrated that H2O2 could trigger both oxidative stress and ER stress in SH-SY5Y cells, and ER stress participated in SH-SY5Y apoptosis mediated by H2O2-induced oxidative stress. CHOP/Bim or JNK/Bim-dependent ER stress signaling pathways maybe related to the neuroprotective effects of L-carnitine against H2O2-induced apoptosis and oxidative injury.

  16. The Dichotomy of Endoplasmic Reticulum Stress Response in Liver Ischemia-Reperfusion Injury.

    PubMed

    Zhou, Haomming; Zhu, Jianjun; Yue, Shi; Lu, Ling; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Wang, Xuehao; Zhai, Yuan

    2016-02-01

    Endoplasmic reticulum (ER) stress plays critical roles in the pathogenesis of liver ischemia-reperfusion injury (IRI). As ER stress triggers an adaptive cellular response, the question of what determines its functional outcome in liver IRI remains to be defined. In a murine liver partial warm ischemia model, we studied how transient (30 minutes) or prolonged (90 minutes) liver ischemia regulated local ER stress response and autophagy activities and their relationship with liver IRI. Effects of chemical chaperon 4-phenylbutyrate (4-PBA) or autophagy inhibitor 3-methyladenine (3-MA) were evaluated. Our results showed that although the activating transcription factor 6 branch of ER stress response was induced in livers by both types of ischemia, liver autophagy was activated by transient, but inhibited by prolonged, ischemia. Although 3-MA had no effects on liver IRI after prolonged ischemia, it significantly increased liver IRI after transient ischemia. The 4-PBA treatment protected livers from IRI after prolonged ischemia by restoring autophagy flux, and the adjunctive 3-MA treatment abrogated its liver protective effect. The same 4-PBA treatment, however, increased liver IRI and disrupted autophagy flux after transient ischemia. Although both types of ischemia activated 5' adenosine monophosphate-activated protein kinase and inactivated protein kinase B (Akt), prolonged ischemia also resulted in downregulations of autophagy-related gene 3 and autophagy-related gene 5 in ischemic livers. These results indicate a functional dichotomy of ER stress response in liver IRI via its regulation of autophagy. Transient ischemia activates autophagy to protect livers from IRI, whereas prolonged ischemia inhibits autophagy to promote the development of liver IRI.

  17. Lecithin:Cholesterol Acyltransferase Deficiency Protects against Cholesterol-induced Hepatic Endoplasmic Reticulum Stress in Mice*

    PubMed Central

    Hager, Lauren; Li, Lixin; Pun, Henry; Liu, Lu; Hossain, Mohammad A.; Maguire, Graham F.; Naples, Mark; Baker, Chris; Magomedova, Lilia; Tam, Jonathan; Adeli, Khosrow; Cummins, Carolyn L.; Connelly, Philip W.; Ng, Dominic S.

    2012-01-01

    We recently reported that lecithin:cholesterol acyltransferase (LCAT) knock-out mice, particularly in the LDL receptor knock-out background, are hypersensitive to insulin and resistant to high fat diet-induced insulin resistance (IR) and obesity. We demonstrated that chow-fed Ldlr−/−xLcat+/+ mice have elevated hepatic endoplasmic reticulum (ER) stress, which promotes IR, compared with wild-type controls, and this effect is normalized in Ldlr−/−xLcat−/− mice. In the present study, we tested the hypothesis that hepatic ER cholesterol metabolism differentially regulates ER stress using these models. We observed that the Ldlr−/−xLcat+/+ mice accumulate excess hepatic total and ER cholesterol primarily attributed to increased reuptake of biliary cholesterol as we observed reduced biliary cholesterol in conjunction with decreased hepatic Abcg5/g8 mRNA, increased Npc1l1 mRNA, and decreased Hmgr mRNA and nuclear SREBP2 protein. Intestinal NPC1L1 protein was induced. Expression of these genes was reversed in the Ldlr−/−xLcat−/− mice, accounting for the normalization of total and ER cholesterol and ER stress. Upon feeding a 2% high cholesterol diet (HCD), Ldlr−/−xLcat−/− mice accumulated a similar amount of total hepatic cholesterol compared with the Ldlr−/−xLcat+/+ mice, but the hepatic ER cholesterol levels remained low in conjunction with being protected from HCD-induced ER stress and IR. Hepatic ER stress correlates strongly with hepatic ER free cholesterol but poorly with hepatic tissue free cholesterol. The unexpectedly low ER cholesterol seen in HCD-fed Ldlr−/−xLcat−/− mice was attributable to a coordinated marked up-regulation of ACAT2 and suppressed SREBP2 processing. Thus, factors influencing the accumulation of ER cholesterol may be important for the development of hepatic insulin resistance. PMID:22500017

  18. Endoplasmic reticulum stress pathway mediates isoflurane-induced neuroapoptosis and cognitive impairments in aged rats.

    PubMed

    Ge, Hong-Wei; Hu, Wen-Wen; Ma, Lei-Lei; Kong, Fei-Juan

    2015-11-01

    Postoperative cognitive dysfunction (POCD) is increasingly being recognized as an important clinical syndrome. Although it has been documented that volatile anesthetics induce neuronal apoptosis and cognitive deficits in several aged animal models, the underlying mechanisms are not well understood. Endoplasmic reticulum stress (ERS) is considered as an initial or early response of cells under stress and linked to neuronal death in various neurodegenerative diseases. The study was designed to explore the possible role of ERS pathway in isoflurane-induced neuroapoptosis and cognitive impairments. In the present study, twenty-month-old rats were exposed to 1.3% isoflurane for 4h. Two weeks later, the rats were subjected to behavioral study. Protein and mRNA expressions of ERS markers were evaluated. Meanwhile, hippocampal neuronal apoptosis was also detected. We found that isoflurane triggered ERS as evidenced by increased phosphorylation of eukaryotic initiation factor (EIF) 2α, and increased expression of 78-kDa glucose-regulated protein (GRP78), activating transcription factor (ATF) 4 and C/EBP homologous protein (CHOP). Furthermore, the level of apoptosis in the hippocampus was significantly up-regulated after isoflurane exposure, and salubrinal (ERS inhibitor) treatment attenuated the increase. More importantly, cognitive impairments caused by isoflurane were also effectively alleviated by salubrinal pretreatment. These results indicate that ERS-mediated apoptotic pathway is involved in isoflurane neurotoxicity in aged rats. Inhibition of ERS overactivation contributes to the relief of isoflurane-induced neurohistopathologic changes. PMID:26162760

  19. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    PubMed Central

    Zhang, Chao; Wang, Chendan; Ren, Jianbo; Guo, Xiangjie; Yun, Keming

    2016-01-01

    Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS). Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER) stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress. PMID:27783050

  20. Asymmetric dimethylarginine triggers macrophage apoptosis via the endoplasmic reticulum stress pathway.

    PubMed

    Hong, Dan; Gao, Hai-Chao; Wang, Xiang; Li, Ling-Fang; Li, Chuan-Chang; Luo, Ying; Wang, Kang-Kai; Bai, Yong-Ping; Zhang, Guo-Gang

    2015-01-01

    Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), is emerging as a key contributing factor in atherogenesis, a process in turn known to involve macrophage apoptosis. The aim of this study was to determine the effect of ADMA on macrophage apoptosis, with specific reference to the endoplasmic reticulum (ER) stress pathway. Macrophage apoptosis was evaluated by Annexin V- Propidium iodide (PI) and Hoechst 33258 staining assays. Levels of the ER stress marker glucose regulated protein 78 (GRP78) were characterized by western blot. Levels of the proapoptotic C/EBP-homologous protein (CHOP) were evaluated by western blot and reverse transcription polymerase chain reaction (RT-PCR), and caspase-4 activity was measured using a colorimetric protease assay kit. We observed ADMA dose- and time-dependent increases in macrophage levels of GRP78. Similar ADMA dose- and time-dependent increases were detected in intracellular caspase-4 activity and macrophage apoptosis, all of which were sensitive to treatment with siRNAs for protein kinase RNA-like ER kinase and inositol-requiring protein-1 (IRE1), the ADMA antagonist L-arginine, as well as inhibitors of eukaryotic translation initiation factor-2 (salubrinal), IRE1 (irestatin 9389), and c-Jun N-terminal kinase (SP600125). Our results indicate that ADMA triggers macrophage apoptosis via the ER stress pathway. PMID:25209804

  1. Chaperone-targeting cytotoxin and endoplasmic reticulum stress-inducing drug synergize to kill cancer cells.

    PubMed

    Backer, Joseph M; Krivoshein, Arcadius V; Hamby, Carl V; Pizzonia, John; Gilbert, Kenneth S; Ray, Yonaton S; Brand, Harrison; Paton, Adrienne W; Paton, James C; Backer, Marina V

    2009-11-01

    Diverse physiological and therapeutic insults that increase the amount of unfolded or misfolded proteins in the endoplasmic reticulum (ER) induce the unfolded protein response, an evolutionarily conserved protective mechanism that manages ER stress. Glucose-regulated protein 78/immunoglobulin heavy-chain binding protein (GRP78/BiP) is an ER-resident protein that plays a central role in the ER stress response and is the only known substrate of the proteolytic A subunit (SubA) of a novel bacterial AB(5) toxin. Here, we report that an engineered fusion protein, epidermal growth factor (EGF)-SubA, combining EGF and SubA, is highly toxic to growing and confluent epidermal growth factor receptor-expressing cancer cells, and its cytotoxicity is mediated by a remarkably rapid cleavage of GRP78/BiP. Systemic delivery of EGF-SubA results in a significant inhibition of human breast and prostate tumor xenografts in mouse models. Furthermore, EGF-SubA dramatically increases the sensitivity of cancer cells to the ER stress-inducing drug thapsigargin, and vice versa, demonstrating the first example of mechanism-based synergism in the action of a cytotoxin and an ER-targeting drug.

  2. Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways

    PubMed Central

    Promlek, Thanyarat; Ishiwata-Kimata, Yuki; Shido, Masahiro; Sakuramoto, Mitsuru; Kohno, Kenji; Kimata, Yukio

    2011-01-01

    Eukaryotic cells activate the unfolded-protein response (UPR) upon endoplasmic reticulum (ER) stress, where the stress is assumed to be the accumulation of unfolded proteins in the ER. Consistent with previous in vitro studies of the ER-luminal domain of the mutant UPR initiator Ire1, our study show its association with a model unfolded protein in yeast cells. An Ire1 luminal domain mutation that compromises Ire1's unfolded-protein–associating ability weakens its ability to respond to stress stimuli, likely resulting in the accumulation of unfolded proteins in the ER. In contrast, this mutant was activated like wild-type Ire1 by depletion of the membrane lipid component inositol or by deletion of genes involved in lipid homeostasis. Another Ire1 mutant lacking the authentic luminal domain was up-regulated by inositol depletion as strongly as wild-type Ire1. We therefore conclude that the cytosolic (or transmembrane) domain of Ire1 senses membrane aberrancy, while, as proposed previously, unfolded proteins accumulating in the ER interact with and activate Ire1. PMID:21775630

  3. Endoplasmic reticulum stress is involved in restraint stress-induced hippocampal apoptosis and cognitive impairments in rats.

    PubMed

    Zhang, Yue; Liu, Wei; Zhou, Yi; Ma, Chunling; Li, Shujin; Cong, Bin

    2014-05-28

    Long-term exposure to stressful stimuli can reduce hippocampal volume and cause cognitive impairments, but the underlying mechanisms are not well understood. Endoplasmic reticulum stress (ERS) is considered an early or initial response of cells under stress and linked to neuronal death in various neurodegenerative diseases. The present study investigated the involvement of ERS in restraint stress (RS)-induced hippocampal apoptosis and cognitive impairments. Using the rat RS model for 21 consecutive days, we found that the hippocampal apoptotic rate was significantly up-regulated as compared with unstressed controls, and salubrinal (ERS inhibitor) pretreatment effectively reduced the increase. As the marker of ERS, the 78-kDa glucose-regulated protein (GRP78) and the target molecule of the unfolded protein response (UPR), the splice variant of X-box binding protein 1 (sXBP-1) were also markedly increased in RS rats. Furthermore, in the three possible signaling pathways of ERS-induced apoptosis, the protein and mRNA levels of C/EBP homologous protein (CHOP) were significantly up-regulated, and caspase-12 was activated and cleaved, which suggested that these two pathways crucially contributed to hippocampal cell death. However, we found no changes in protein levels of phosphorylated JNK, implying that the JNK pathway was not the primary pathway involved in hippocampal apoptosis. It is more important that the cognitive impairments caused by RS were also effectively alleviated by salubrinal pretreatment. The present results suggested that ERS in hippocampus was excessively activated under stress, and amelioration of ERS could be a novel strategy to prevent and treat impaired cognitive function induced by RS. PMID:24732417

  4. Deletion of the Human Cytomegalovirus US17 Gene Increases the Ratio of Genomes per Infectious Unit and Alters Regulation of Immune and Endoplasmic Reticulum Stress Response Genes at Early and Late Times after Infection

    PubMed Central

    Gurczynski, Stephen J.; Das, Subhendu

    2014-01-01

    Human cytomegalovirus (HCMV) employs numerous strategies to combat, subvert, or co-opt host immunity. One evolutionary strategy for this involves capture of a host gene and then its successive duplication and divergence, forming a family of genes, many of which have immunomodulatory activities. The HCMV US12 family consists of 10 tandemly arranged sequence-related genes in the unique short (US) region of the HCMV genome (US12 to US21). Each gene encodes a protein possessing seven predicted transmembrane domains, patches of sequence similarity with cellular G-protein-coupled receptors, and the Bax inhibitor 1 family of antiapoptotic proteins. We show that one member, US17, plays an important role during virion maturation. Microarray analysis of cells infected with a recombinant HCMV isolate with a US17 deletion (the ΔUS17 mutant virus) revealed blunted host innate and interferon responses at early times after infection (12 h postinfection [hpi]), a pattern opposite that previously seen in the absence of the immunomodulatory tegument protein pp65 (pUL83). Although the ΔUS17 mutant virus produced numbers of infectious particles in fibroblasts equal to the numbers produced by the parental virus, it produced >3-fold more genome-containing noninfectious viral particles and delivered increased amounts of pp65 to newly infected cells. These results suggest that US17 has evolved to control virion composition, to elicit an appropriately balanced host immune response. At later time points (96 hpi), ΔUS17 mutant-infected cells displayed aberrant expression of several host endoplasmic reticulum stress response genes and chaperones, some of which are important for the final stages of virion assembly and egress. Our results suggest that US17 modulates host pathways to enable production of virions that elicit an appropriately balanced host immune response. PMID:24335296

  5. Indium and indium tin oxide induce endoplasmic reticulum stress and oxidative stress in zebrafish (Danio rerio).

    PubMed

    Brun, Nadja Rebecca; Christen, Verena; Furrer, Gerhard; Fent, Karl

    2014-10-01

    Indium and indium tin oxide (ITO) are extensively used in electronic technologies. They may be introduced into the environment during production, use, and leaching from electronic devices at the end of their life. At present, surprisingly little is known about potential ecotoxicological implications of indium contamination. Here, molecular effects of indium nitrate (In(NO3)3) and ITO nanoparticles were investigated in vitro in zebrafish liver cells (ZFL) cells and in zebrafish embryos and novel insights into their molecular effects are provided. In(NO3)3 led to induction of endoplasmic reticulum (ER) stress response, induction of reactive oxygen species (ROS) and induction of transcripts of pro-apoptotic genes and TNF-α in vitro at a concentration of 247 μg/L. In(NO3)3 induced the ER stress key gene BiP at mRNA and protein level, as well as atf6, which ultimately led to induction of the important pro-apoptotic marker gene chop. The activity of In(NO3)3 on ER stress induction was much stronger than that of ITO, which is explained by differences in soluble free indium ion concentrations. The effect was also stronger in ZFL cells than in zebrafish embryos. Our study provides first evidence of ER stress and oxidative stress induction by In(NO3)3 and ITO indicating a critical toxicological profile that needs further investigation.

  6. (-)-Epicatechin mitigates high fructose-associated insulin resistance by modulating redox signaling and endoplasmic reticulum stress

    PubMed Central

    Bettaieb, Ahmed; Vazquez Prieto, Marcela A.; Rodriguez Lanzi, Cecilia; Miatello, Roberto M.; Haj, Fawaz G.; Fraga, César G.; Oteiza, Patricia I.

    2014-01-01

    We investigated the capacity of dietary (-)-epicatechin (EC) to mitigate insulin resistance through the modulation of redox-regulated mechanisms in a rat model of metabolic syndrome (MetS). Adolescent rats were fed a regular chow diet without or with high fructose (HFr) (10% (w/v)) in drinking water for 8 weeks, and a group of HFr-fed rats was supplemented with EC in the diet. HFr-fed rats developed insulin resistance which was mitigated by EC supplementation. Accordingly, the activation of components of the insulin signaling cascade (insulin receptor (IR), IRS-1, Akt and ERK1/2) was impaired, while negative regulators (PKC, IKK, JNK and PTP1B) were upregulated in the liver and adipose tissue of HFr rats. These alterations were partially or totally prevented by EC supplementation. In addition, EC inhibited events which contribute to insulin resistance: HFr-associated increased expression and activity of NADPH oxidase, activation of redox-sensitive signals, expression of NF-κB-regulated pro-inflammatory cytokines and chemokines, and some sub-arms of endoplasmic reticulum stress signaling. Collectively, these findings indicate that EC supplementation can mitigate HFr-induced insulin resistance and are relevant to define interventions that can prevent/mitigate MetS-associated insulin resistance. PMID:24746618

  7. Polychlorinated biphenyl quinone induces endoplasmic reticulum stress, unfolded protein response, and calcium release.

    PubMed

    Xu, Demei; Su, Chuanyang; Song, Xiufang; Shi, Qiong; Fu, Juanli; Hu, Lihua; Xia, Xiaomin; Song, Erqun; Song, Yang

    2015-06-15

    Organisms are able to respond to environmental insult to maintain cellular homeostasis, which include the activation of a wide range of cellular adaptive responses with tightly controlled mechanisms. The endoplasmic reticulum (ER) is an organelle responsible for protein folding and calcium storage. ER stress leads to the accumulation of unfolded proteins in the ER lumen. To be against or respond to this effect, cells have a comprehensive signaling system, called unfolded protein response (UPR), to restore homeostasis and normal ER function or activate the cell death program. Therefore, it is critical to understand how environmental insult regulates the ingredients of ER stress and UPR signalings. Previously, we have demonstrated that polychlorinated biphenyl (PCB) quinone caused oxidative stress, cytotoxicity, genotoxicity, and apoptosis in HepG2 cells. Here, we investigated the role of a PCB quinone, PCB29-pQ on ER stress, UPR, and calcium release. PCB29-pQ markedly increased the hallmark genes of ER stress, namely, glucose-regulated protein 78 (GRP78), GRP94, and C/EBP homologous protein (CHOP) on both protein and mRNA levels in HepG2 cells. We also confirmed PCB29-pQ induced ER morphological defects by using transmission electron microscopy. Moreover, PCB29-pQ induced intracellular calcium accumulation and calpain activity, which were significantly inhibited by the pretreatment of BAPTA-AM (Ca(2+) chelator). These results were correlated with the outcome that PCB29-pQ induces ER stress-related apoptosis through caspase family gene 12, while salubrinal and Z-ATAD-FMK (a specific inhibitor of caspase 12) partially ameliorated this effect, respectively. N-Acetyl-l-cysteine (NAC) scavenged ROS formation and consequently alleviated PCB29-pQ-induced expression of ER stress-related genes. In conclusion, our result demonstrated for the first time that PCB quinone leads to ROS-dependent induction of ER stress, and UPR and calcium release in HepG2 cells, and the

  8. Ischemia-like Oxygen and Glucose Deprivation Mediates Down-regulation of Cell Surface γ-Aminobutyric AcidB Receptors via the Endoplasmic Reticulum (ER) Stress-induced Transcription Factor CCAAT/Enhancer-binding Protein (C/EBP)-homologous Protein (CHOP)*

    PubMed Central

    Maier, Patrick J.; Zemoura, Khaled; Acuña, Mario A.; Yévenes, Gonzalo E.; Zeilhofer, Hanns Ulrich; Benke, Dietmar

    2014-01-01

    Cerebral ischemia frequently leads to long-term disability and death. Excitotoxicity is believed to be the main cause for ischemia-induced neuronal death. Although a role of glutamate receptors in this process has been firmly established, the contribution of metabotropic GABAB receptors, which control excitatory neurotransmission, is less clear. A prominent characteristic of ischemic insults is endoplasmic reticulum (ER) stress associated with the up-regulation of the transcription factor CCAAT/enhancer-binding protein-homologous protein (CHOP). After inducing ER stress in cultured cortical neurons by sustained Ca2+ release from intracellular stores or by a brief episode of oxygen and glucose deprivation (in vitro model of cerebral ischemia), we observed an increased expression of CHOP accompanied by a strong reduction of cell surface GABAB receptors. Our results indicate that down-regulation of cell surface GABAB receptors is caused by the interaction of the receptors with CHOP in the ER. Binding of CHOP prevented heterodimerization of the receptor subunits GABAB1 and GABAB2 and subsequent forward trafficking of the receptors to the cell surface. The reduced level of cell surface receptors diminished GABAB receptor signaling and, thus, neuronal inhibition. These findings indicate that ischemia-mediated up-regulation of CHOP down-regulates cell surface GABAB receptors by preventing their trafficking from the ER to the plasma membrane. This mechanism leads to diminished neuronal inhibition and may contribute to excitotoxicity in cerebral ischemia. PMID:24668805

  9. Role of Endoplasmic Reticulum Stress in Brain Damage After Cardiopulmonary Resuscitation in Rats.

    PubMed

    Zhang, Jincheng; Xie, Xuemeng; Pan, Hao; Wu, Ziqian; Lu, Wen; Yang, Guangtian

    2015-07-01

    Postcardiac arrest syndrome yields poor neurological outcomes, but the mechanisms underlying this condition remain poorly understood. This study investigated whether endoplasmic reticulum (ER) stress-mediated apoptosis is induced in injured brain after resuscitation. Sprague-Dawley rats were subjected to 6 min of cardiac arrest (CA) and then resuscitated successfully. In the first experiment, animals were sacrificed 1, 3, 6, 12, or 24 h (n = 3 per group) after successful cardiopulmonary resuscitation. Brain tissues were analyzed by real-time polymerase chain reaction and Western blotting. In the second experiment, either dimethyl sulfoxide or salubrinal (Sal; 1 mg/kg), an ER stress inhibitor, was injected 30 min before the induction of CA (n = 10 per group). Neurological deficits were evaluated 24 h after CA. Brain specimens were analyzed using electron microscopy, terminal deoxynucleotidyl transferase dUTP nick end labeling assays and immunohistochemistry. We found that the messenger RNA and protein levels of glucose-regulated protein 78, X-box binding protein 1, C/EBP homologous protein, and caspase 12 were significantly elevated after resuscitation. We also observed that rats treated with Sal exhibited an improved neurological deficit score (32.3 ± 15.5 in the Sal group vs. 49.8 ± 20.9 in controls, P < 0.05). In addition, morphological improvements in the hippocampal ER were observed in the Sal group compared with the dimethyl sulfoxide group 24 h after reperfusion. Furthermore, in situ immunostaining revealed that markers of ER stress were significantly inhibited by Sal pretreatment. Our findings suggested that ER stress and the associated apoptotic pathways were activated in the hippocampus after resuscitation. Administration of Sal 30 min before cardiopulmonary resuscitation ameliorated neurological dysfunction 24 h after CA, possibly through the inhibition of ER stress after postresuscitation brain injury. PMID:25705860

  10. Role of Endoplasmic Reticulum Stress in Brain Damage After Cardiopulmonary Resuscitation in Rats.

    PubMed

    Zhang, Jincheng; Xie, Xuemeng; Pan, Hao; Wu, Ziqian; Lu, Wen; Yang, Guangtian

    2015-07-01

    Postcardiac arrest syndrome yields poor neurological outcomes, but the mechanisms underlying this condition remain poorly understood. This study investigated whether endoplasmic reticulum (ER) stress-mediated apoptosis is induced in injured brain after resuscitation. Sprague-Dawley rats were subjected to 6 min of cardiac arrest (CA) and then resuscitated successfully. In the first experiment, animals were sacrificed 1, 3, 6, 12, or 24 h (n = 3 per group) after successful cardiopulmonary resuscitation. Brain tissues were analyzed by real-time polymerase chain reaction and Western blotting. In the second experiment, either dimethyl sulfoxide or salubrinal (Sal; 1 mg/kg), an ER stress inhibitor, was injected 30 min before the induction of CA (n = 10 per group). Neurological deficits were evaluated 24 h after CA. Brain specimens were analyzed using electron microscopy, terminal deoxynucleotidyl transferase dUTP nick end labeling assays and immunohistochemistry. We found that the messenger RNA and protein levels of glucose-regulated protein 78, X-box binding protein 1, C/EBP homologous protein, and caspase 12 were significantly elevated after resuscitation. We also observed that rats treated with Sal exhibited an improved neurological deficit score (32.3 ± 15.5 in the Sal group vs. 49.8 ± 20.9 in controls, P < 0.05). In addition, morphological improvements in the hippocampal ER were observed in the Sal group compared with the dimethyl sulfoxide group 24 h after reperfusion. Furthermore, in situ immunostaining revealed that markers of ER stress were significantly inhibited by Sal pretreatment. Our findings suggested that ER stress and the associated apoptotic pathways were activated in the hippocampus after resuscitation. Administration of Sal 30 min before cardiopulmonary resuscitation ameliorated neurological dysfunction 24 h after CA, possibly through the inhibition of ER stress after postresuscitation brain injury.

  11. Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2−/− mice

    PubMed Central

    Zhao, Fang; Edwards, Robert; Dizon, Diana; Mastroianni, Jennifer R.; Geyfman, Mikhail; Ouellette, André J.; Andersen, Bogi; Lipkin, Steven M

    2010-01-01

    Anterior Gradient 2 (AGR2) is a protein disulfide isomerase that plays important roles in diverse processes in multiple cell lineages as a developmental regulator, survival factor and susceptibility gene for inflammatory bowel disease. Here, we show using germline and inducible Agr2−/− mice that Agr2 plays important roles in intestinal homeostasis. Agr2−/− intestine has decreased goblet cell Mucin 2, dramatic expansion of the Paneth cell compartment, abnormal Paneth cell localization, elevated endoplasmic reticulum (ER) stress, severe terminal ileitis and colitis. Cell culture experiments show that Agr2 expression is induced by ER stress, and that siRNA knockdown of Agr2 increases ER stress response. These studies implicate Agr2 in intestinal homeostasis and ER stress and suggest a role in the etiology of inflammatory bowel disease. PMID:20025862

  12. Severe Injury Is Associated With Insulin Resistance, Endoplasmic Reticulum Stress Response, and Unfolded Protein Response

    PubMed Central

    Jeschke, Marc G.; Finnerty, Celeste C.; Herndon, David N.; Song, Juquan; Boehning, Darren; Tompkins, Ronald G.; Baker, Henry V.; Gauglitz, Gerd G.

    2012-01-01

    Objective We determined whether postburn hyperglycemia and insulin resistance are associated with endoplasmic reticulum (ER) stress/unfolded protein response (UPR) activation leading to impaired insulin receptor signaling. Background Inflammation and cellular stress, hallmarks of severely burned and critically ill patients, have been causally linked to insulin resistance in type 2 diabetes via induction of ER stress and the UPR. Methods Twenty severely burned pediatric patients were compared with 36 nonburned children. Clinical markers, protein, and GeneChip analysis were used to identify transcriptional changes in ER stress and UPR and insulin resistance–related signaling cascades in peripheral blood leukocytes, fat, and muscle at admission and up to 466 days postburn. Results Burn-induced inflammatory and stress responses are accompanied by profound insulin resistance and hyperglycemia. Genomic and protein analysis revealed that burn injury was associated with alterations in the signaling pathways that affect insulin resistance, ER/sarcoplasmic reticulum stress, inflammation, and cell growth/apoptosis up to 466 days postburn. Conclusion Burn-induced insulin resistance is associated with persistent ER/sarcoplasmic reticulum stress/UPR and subsequent suppressed insulin receptor signaling over a prolonged period of time. PMID:22241293

  13. XBP1 mitigates aminoglycoside-induced endoplasmic reticulum stress and neuronal cell death

    PubMed Central

    Oishi, N; Duscha, S; Boukari, H; Meyer, M; Xie, J; Wei, G; Schrepfer, T; Roschitzki, B; Boettger, E C; Schacht, J

    2015-01-01

    Here we study links between aminoglycoside-induced mistranslation, protein misfolding and neuropathy. We demonstrate that aminoglycosides induce misreading in mammalian cells and assess endoplasmic reticulum (ER) stress and unfolded protein response (UPR) pathways. Genome-wide transcriptome and proteome analyses revealed upregulation of genes related to protein folding and degradation. Quantitative PCR confirmed induction of UPR markers including C/EBP homologous protein, glucose-regulated protein 94, binding immunoglobulin protein and X-box binding protein-1 (XBP1) mRNA splicing, which is crucial for UPR activation. We studied the effect of a compromised UPR on aminoglycoside ototoxicity in haploinsufficient XBP1 (XBP1+/−) mice. Intra-tympanic aminoglycoside treatment caused high-frequency hearing loss in XBP1+/− mice but not in wild-type littermates. Densities of spiral ganglion cells and synaptic ribbons were decreased in gentamicin-treated XBP1+/− mice, while sensory cells were preserved. Co-injection of the chemical chaperone tauroursodeoxycholic acid attenuated hearing loss. These results suggest that aminoglycoside-induced ER stress and cell death in spiral ganglion neurons is mitigated by XBP1, masking aminoglycoside neurotoxicity at the organismal level. PMID:25973683

  14. Brain endoplasmic reticulum stress mechanistically distinguishes the saline-intake and hypertensive response to deoxycorticosterone acetate-salt.

    PubMed

    Jo, Fusakazu; Jo, Hiromi; Hilzendeger, Aline M; Thompson, Anthony P; Cassell, Martin D; Rutkowski, D Thomas; Davisson, Robin L; Grobe, Justin L; Sigmund, Curt D

    2015-06-01

    Endoplasmic reticulum stress has become an important mechanism in hypertension. We examined the role of endoplasmic reticulum stress in mediating the increased saline-intake and hypertensive effects in response to deoxycorticosterone acetate (DOCA)-salt. Intracerebroventricular delivery of the endoplasmic reticulum stress-reducing chemical chaperone tauroursodeoxycholic acid did not affect the magnitude of hypertension, but markedly decreased saline-intake in response to DOCA-salt. Increased saline-intake returned after tauroursodeoxycholic acid was terminated. Decreased saline-intake was also observed after intracerebroventricular infusion of 4-phenylbutyrate, another chemical chaperone. Immunoreactivity to CCAAT homologous binding protein, a marker of irremediable endoplasmic reticulum stress, was increased in the subfornical organ and supraoptic nucleus of DOCA-salt mice, but the signal was absent in control and CCAAT homologous binding protein-deficient mice. Electron microscopy revealed abnormalities in endoplasmic reticulum structure (decrease in membrane length, swollen membranes, and decreased ribosome numbers) in the subfornical organ consistent with endoplasmic reticulum stress. Subfornical organ-targeted adenoviral delivery of GRP78, a resident endoplasmic reticulum chaperone, decreased DOCA-salt-induced saline-intake. The increase in saline-intake in response to DOCA-salt was blunted in CCAAT homologous binding protein-deficient mice, but these mice exhibited a normal hypertensive response. We conclude that (1) brain endoplasmic reticulum stress mediates the saline-intake, but not blood pressure response to DOCA-salt, (2) DOCA-salt causes endoplasmic reticulum stress in the subfornical organ, which when attenuated by GRP78 blunts saline-intake, and (3) CCAAT homologous binding protein may play a functional role in DOCA-salt-induced saline-intake. The results suggest a mechanistic distinction between the importance of endoplasmic reticulum stress in

  15. Bifidobacteria Prevent Tunicamycin-Induced Endoplasmic Reticulum Stress and Subsequent Barrier Disruption in Human Intestinal Epithelial Caco-2 Monolayers.

    PubMed

    Akiyama, Takuya; Oishi, Kenji; Wullaert, Andy

    2016-01-01

    Endoplasmic reticulum (ER) stress is caused by accumulation of unfolded and misfolded proteins in the ER, thereby compromising its vital cellular functions in protein production and secretion. Genome wide association studies in humans as well as experimental animal models linked ER stress in intestinal epithelial cells (IECs) with intestinal disorders including inflammatory bowel diseases. However, the mechanisms linking the outcomes of ER stress in IECs to intestinal disease have not been clarified. In this study, we investigated the impact of ER stress on intestinal epithelial barrier function using human colon carcinoma-derived Caco-2 monolayers. Tunicamycin-induced ER stress decreased the trans-epithelial electrical resistance of Caco-2 monolayers, concomitant with loss of cellular plasma membrane integrity. Epithelial barrier disruption in Caco-2 cells after ER stress was not caused by caspase- or RIPK1-dependent cell death but was accompanied by lysosomal rupture and up-regulation of the ER stress markers Grp78, sXBP1 and Chop. Interestingly, several bifidobacteria species inhibited tunicamycin-induced ER stress and thereby diminished barrier disruption in Caco-2 monolayers. Together, these results showed that ER stress compromises the epithelial barrier function of Caco-2 monolayers and demonstrate beneficial impacts of bifidobacteria on ER stress in IECs. Our results identify epithelial barrier loss as a potential link between ER stress and intestinal disease development, and suggest that bifidobacteria could exert beneficial effects on this phenomenon. PMID:27611782

  16. Bifidobacteria Prevent Tunicamycin-Induced Endoplasmic Reticulum Stress and Subsequent Barrier Disruption in Human Intestinal Epithelial Caco-2 Monolayers

    PubMed Central

    Akiyama, Takuya; Oishi, Kenji

    2016-01-01

    Endoplasmic reticulum (ER) stress is caused by accumulation of unfolded and misfolded proteins in the ER, thereby compromising its vital cellular functions in protein production and secretion. Genome wide association studies in humans as well as experimental animal models linked ER stress in intestinal epithelial cells (IECs) with intestinal disorders including inflammatory bowel diseases. However, the mechanisms linking the outcomes of ER stress in IECs to intestinal disease have not been clarified. In this study, we investigated the impact of ER stress on intestinal epithelial barrier function using human colon carcinoma-derived Caco-2 monolayers. Tunicamycin-induced ER stress decreased the trans-epithelial electrical resistance of Caco-2 monolayers, concomitant with loss of cellular plasma membrane integrity. Epithelial barrier disruption in Caco-2 cells after ER stress was not caused by caspase- or RIPK1-dependent cell death but was accompanied by lysosomal rupture and up-regulation of the ER stress markers Grp78, sXBP1 and Chop. Interestingly, several bifidobacteria species inhibited tunicamycin-induced ER stress and thereby diminished barrier disruption in Caco-2 monolayers. Together, these results showed that ER stress compromises the epithelial barrier function of Caco-2 monolayers and demonstrate beneficial impacts of bifidobacteria on ER stress in IECs. Our results identify epithelial barrier loss as a potential link between ER stress and intestinal disease development, and suggest that bifidobacteria could exert beneficial effects on this phenomenon. PMID:27611782

  17. Arsenic induces cell apoptosis in cultured osteoblasts through endoplasmic reticulum stress

    SciTech Connect

    Tang, C.-H.; Chiu, Y.-C.; Huang, C.-F.; Chen, Y.-W.; Chen, P.-C.

    2009-12-01

    Osteoporosis is characterized by low bone mass resulting from an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Therefore, decreased bone formation by osteoblasts may lead to the development of osteoporosis, and rate of apoptosis is responsible for the regulation of bone formation. Arsenic (As) exists ubiquitously in our environment and increases the risk of neurotoxicity, liver injury, peripheral vascular disease and cancer. However, the effect of As on apoptosis of osteoblasts is mostly unknown. Here, we found that As induced cell apoptosis in osteoblastic cell lines (including hFOB, MC3T3-E1 and MG-63) and mouse bone marrow stromal cells (M2-10B4). As also induced upregulation of Bax and Bak, downregulation of Bcl-2 and dysfunction of mitochondria in osteoblasts. As also triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosolic-calcium levels. We found that As increased the expression and activities of glucose-regulated protein 78 (GRP78) and calpain. Transfection of cells with GRP78 or calpain siRNA reduced As-mediated cell apoptosis in osteoblasts. Therefore, our results suggest that As increased cell apoptosis in cultured osteoblasts and increased the risk of osteoporosis.

  18. The Natural Occurring Compounds Targeting Endoplasmic Reticulum Stress.

    PubMed

    Liu, Hai; Yang, Jianqiong; Li, Linfu; Shi, Weimei; Yuan, Xiaoliang; Wu, Longhuo

    2016-01-01

    ER stress has been implicated in pathophysiological development of many diseases. Persistent overwhelming stimuli trigger ER stress to initiate apoptosis, autophagy, and cell death. IRE1-JNK and eIF2α-CHOP signaling pathways are the two important players of ER stress, which is also modulated by ROS production, calcium disturbance, and inflammatory factors. ER stress has been developed as a novel strategy for diseases management. Recently, a vast of research focuses on the natural occurring compounds targeting ER stress, which results in medical benefits to human diseases. These small reported molecules mainly include polyphenols, alkaloids, and saponins. Many of them have been developed for use in clinical applications. To better understand the pharmacological mechanism of these molecules in ER stress in diseases, efforts have been made to discover and deliver medical merits. In this paper, we will summarize the natural occurring compounds targeting ER stress. PMID:27563337

  19. The Natural Occurring Compounds Targeting Endoplasmic Reticulum Stress

    PubMed Central

    Liu, Hai; Yang, Jianqiong; Li, Linfu; Shi, Weimei

    2016-01-01

    ER stress has been implicated in pathophysiological development of many diseases. Persistent overwhelming stimuli trigger ER stress to initiate apoptosis, autophagy, and cell death. IRE1-JNK and eIF2α-CHOP signaling pathways are the two important players of ER stress, which is also modulated by ROS production, calcium disturbance, and inflammatory factors. ER stress has been developed as a novel strategy for diseases management. Recently, a vast of research focuses on the natural occurring compounds targeting ER stress, which results in medical benefits to human diseases. These small reported molecules mainly include polyphenols, alkaloids, and saponins. Many of them have been developed for use in clinical applications. To better understand the pharmacological mechanism of these molecules in ER stress in diseases, efforts have been made to discover and deliver medical merits. In this paper, we will summarize the natural occurring compounds targeting ER stress. PMID:27563337

  20. Hydrogen sulfide exhibits cardioprotective effects by decreasing endoplasmic reticulum stress in a diabetic cardiomyopathy rat model.

    PubMed

    Li, Fang; Luo, Jian; Wu, Zhixiong; Xiao, Ting; Zeng, Ou; Li, Lin; Li, Yan; Yang, Jun

    2016-07-01

    Endoplasmic reticulum (ER) stress is critical in the occurrence and development of diabetic cardiomyopathy (DC). Hydrogen sulfide (H2S) has been found to be the third gaseous signaling molecule with anti‑ER stress effects. Previous studies have shown that H2S acts as a potent inhibitor of fibrosis in the heart of diabetic rats. This study aimed to demonstrate whether H2S exhibits protective effects on the myocardium of streptozotocin (STZ)‑induced diabetic rats by suppressing ER stress. In this study, diabetic models were established by intraperitoneal (i.p.) injection of 40 mg/kg STZ. The STZ‑treated mice were divided into three groups, and subsequently treated with normal saline, 30 µmol/kg or 100 µmol/kg NaHS, i.p., respectively, for 8 weeks. The extent of myocyte hypertrophy was measured using hematoxylin and eosin‑stained sections and collagen components were investigated using immunostaining. The expression of glucose-regulated protein (Grp78), C/EBP‑homologous protein (CHOP) and caspase‑12 in the heart tissue of each group was detected by western blot analysis. It was demonstrated that H2S could improve myocardial hypertrophy and myocardial collagen deposition in diabetic rats. In addition, it could reduce the expression of Grp78, caspase-12 and CHOP. In conclusion, these findings demonstrate that H2S suppresses STZ‑induced ER stress in the hearts of rats, and it may serve as a novel cardioprotective agent for DC. PMID:27222111

  1. A transgenic zebrafish model for monitoring xbp1 splicing and endoplasmic reticulum stress in vivo.

    PubMed

    Li, Junling; Chen, Zhiliang; Gao, Lian-Yong; Colorni, Angelo; Ucko, Michal; Fang, Shengyun; Du, Shao Jun

    2015-08-01

    Accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER) triggers ER stress that initiates unfolded protein response (UPR). XBP1 is a transcription factor that mediates one of the key signaling pathways of UPR to cope with ER stress through regulating gene expression. Activation of XBP1 involves an unconventional mRNA splicing catalyzed by IRE1 endonuclease that removes an internal 26 nucleotides from xbp1 mRNA transcripts in the cytoplasm. Researchers have taken advantage of this unique activation mechanism to monitor XBP1 activation, thereby UPR, in cell culture and transgenic models. Here we report a Tg(ef1α:xbp1δ-gfp) transgenic zebrafish line to monitor XBP1 activation using GFP as a reporter especially in zebrafish oocytes and developing embryos. The Tg(ef1α:xbp1δ-gfp) transgene was constructed using part of the zebrafish xbp1 cDNA containing the splicing element. ER stress induced splicing results in the cDNA encoding a GFP-tagged partial XBP1 without the transactivation activation domain (XBP1Δ-GFP). The results showed that xbp1 transcripts mainly exist as the spliced active isoform in unfertilized oocytes and zebrafish embryos prior to zygotic gene activation at 3 hours post fertilization. A strong GFP expression was observed in unfertilized oocytes, eyes, brain and skeletal muscle in addition to a weak expression in the hatching gland. Incubation of transgenic zebrafish embryos with (dithiothreitol) DTT significantly induced XBP1Δ-GFP expression. Collectively, these studies unveil the presence of maternal xbp1 splicing in zebrafish oocytes, fertilized eggs and early stage embryos. The Tg(ef1α:xbp1δ-gfp) transgenic zebrafish provides a useful model for in vivo monitoring xbp1 splicing during development and under ER stress conditions.

  2. The endoplasmic reticulum stress and the HIF-1 signalling pathways are involved in the neuronal damage caused by chemical hypoxia

    PubMed Central

    López-Hernández, Beatriz; Ceña, Valentin; Posadas, Inmaculada

    2015-01-01

    Background and Purpose Hypoxia inducible factor-1 (HIF-1) promotes transitory neuronal survival suggesting that additional mechanisms such as the endoplasmic reticulum (ER) stress might be involved in determining neuronal survival or death. Here, we examined the involvement of ER stress in hypoxia-induced neuronal death and analysed the relationship between ER stress and the HIF-1 pathways. Experimental Approach Cultures of rat cortical neurons were exposed to chemical hypoxia induced by 200 μM CoCl2, and its effect on neuronal viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and counting apoptotic nuclei. Protein levels were determined by Western blot analysis. RT-PCR was performed to analyse the content and the t1/2 of HIF-1α mRNA. Key Results Chemical hypoxia induced neuronal apoptosis in a time-dependent manner and activated the ER stress PRK-like endoplasmic reticulum kinase (PERK)-dependent pathway. At later stages, chemical hypoxia increased the expression of the C/EBP homologous protein (CHOP) and caspase 12 activity. CoCl2 reduced HIF-1α mRNA t1/2 leading to a decrease in HIF-1α mRNA and protein content, simultaneously activating the ER stress PERK-dependent pathway. Salubrinal, a selective inhibitor of phospho-eIF2α phosphatase, protected neurons from chemical hypoxia by reducing CHOP levels and caspase 12 activity, and increasing the t1/2 of HIF-1α mRNA and the levels of HIF-1α protein. Knocking down HIF-1α blocked the neuroprotective effects of salubrinal. Conclusions and Implications Neuronal apoptosis induced by chemical hypoxia is a process regulated by HIF-1α stabilization early on and by ER stress activation at later stages. Our data also suggested that HIF-1α levels were regulated by ER stress. PMID:25625917

  3. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins

    PubMed Central

    Jing, Maofeng; Guo, Baodian; Li, Haiyang; Yang, Bo; Wang, Haonan; Kong, Guanghui; Zhao, Yao; Xu, Huawei; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Qiao, Yongli; Tyler, Brett M.; Ma, Wenbo; Wang, Yuanchao

    2016-01-01

    Phytophthora pathogens secrete an array of specific effector proteins to manipulate host innate immunity to promote pathogen colonization. However, little is known about the host targets of effectors and the specific mechanisms by which effectors increase susceptibility. Here we report that the soybean pathogen Phytophthora sojae uses an essential effector PsAvh262 to stabilize endoplasmic reticulum (ER)-luminal binding immunoglobulin proteins (BiPs), which act as negative regulators of plant resistance to Phytophthora. By stabilizing BiPs, PsAvh262 suppresses ER stress-triggered cell death and facilitates Phytophthora infection. The direct targeting of ER stress regulators may represent a common mechanism of host manipulation by microbes. PMID:27256489

  4. Mechanical stretch-induced endoplasmic reticulum stress, apoptosis and inflammation contribute to thoracic aortic aneurysm and dissection.

    PubMed

    Jia, Li-Xin; Zhang, Wen-Mei; Zhang, Hong-Jia; Li, Tao-Tao; Wang, Yue-Li; Qin, Yan-Wen; Gu, Hong; Du, Jie

    2015-07-01

    Thoracic aortic aneurysm/dissection (TAAD) is characterized by excessive smooth muscle cell (SMC) loss, extracellular matrix (ECM) degradation and inflammation. In response to certain stimuli, endoplasmic reticulum (ER) stress is activated and regulates apoptosis and inflammation. Excessive apoptosis promotes aortic inflammation and degeneration, leading to TAAD. Therefore, we studied the role of ER stress in TAAD formation. A lysyl oxidase inhibitor, 3-aminopropionitrile fumarate (BAPN), was administrated to induce TAAD formation in mice, which showed significant SMC loss (α-SMA level). Excessive apoptosis (TUNEL staining) and ER stress (ATF4 and CHOP), along with inflammation, were present in TAAD samples from both mouse and human. Transcriptional profiling of SMCs after mechanical stress demonstrated the expression of genes for ER stress and inflammation. To explore the causal role of ER stress in initiating degenerative signalling events and TAAD, we treated wild-type (CHOP(+/+)) or CHOP(-/-) mice with BAPN and found that CHOP deficiency protected against TAAD formation and rupture, as well as reduction in α-SMA level. Both SMC apoptosis and inflammation were significantly reduced in CHOP(-/-) mice. Moreover, SMCs isolated from CHOP(-/-) mice were resistant to mechanical stress-induced apoptosis. Taken together, our results demonstrated that mechanical stress-induced ER stress promotes SMCs apoptosis, inflammation and degeneration, providing insight into TAAD formation and progression.

  5. Mechanical stretch-induced endoplasmic reticulum stress, apoptosis and inflammation contribute to thoracic aortic aneurysm and dissection.

    PubMed

    Jia, Li-Xin; Zhang, Wen-Mei; Zhang, Hong-Jia; Li, Tao-Tao; Wang, Yue-Li; Qin, Yan-Wen; Gu, Hong; Du, Jie

    2015-07-01

    Thoracic aortic aneurysm/dissection (TAAD) is characterized by excessive smooth muscle cell (SMC) loss, extracellular matrix (ECM) degradation and inflammation. In response to certain stimuli, endoplasmic reticulum (ER) stress is activated and regulates apoptosis and inflammation. Excessive apoptosis promotes aortic inflammation and degeneration, leading to TAAD. Therefore, we studied the role of ER stress in TAAD formation. A lysyl oxidase inhibitor, 3-aminopropionitrile fumarate (BAPN), was administrated to induce TAAD formation in mice, which showed significant SMC loss (α-SMA level). Excessive apoptosis (TUNEL staining) and ER stress (ATF4 and CHOP), along with inflammation, were present in TAAD samples from both mouse and human. Transcriptional profiling of SMCs after mechanical stress demonstrated the expression of genes for ER stress and inflammation. To explore the causal role of ER stress in initiating degenerative signalling events and TAAD, we treated wild-type (CHOP(+/+)) or CHOP(-/-) mice with BAPN and found that CHOP deficiency protected against TAAD formation and rupture, as well as reduction in α-SMA level. Both SMC apoptosis and inflammation were significantly reduced in CHOP(-/-) mice. Moreover, SMCs isolated from CHOP(-/-) mice were resistant to mechanical stress-induced apoptosis. Taken together, our results demonstrated that mechanical stress-induced ER stress promotes SMCs apoptosis, inflammation and degeneration, providing insight into TAAD formation and progression. PMID:25788370

  6. Endoplasmic reticulum stress in obesity and obesity-related disorders: An expanded view.

    PubMed

    Pagliassotti, Michael J; Kim, Paul Y; Estrada, Andrea L; Stewart, Claire M; Gentile, Christopher L

    2016-09-01

    The endoplasmic reticulum (ER) is most notable for its central roles in calcium ion storage, lipid biosynthesis, and protein sorting and processing. By virtue of its extensive membrane contact sites that connect the ER to most other organelles and to the plasma membrane, the ER can also regulate diverse cellular processes including inflammatory and insulin signaling, nutrient metabolism, and cell proliferation and death via a signaling pathway called the unfolded protein response (UPR). Chronic UPR activation has been observed in liver and/or adipose tissue of dietary and genetic murine models of obesity, and in human obesity and non-alcoholic fatty liver disease (NAFLD). Activation of the UPR in obesity and obesity-related disorders likely has two origins. One linked to classic ER stress involving the ER lumen and one linked to alterations to the ER membrane environment. This review discusses both of these origins and also considers the role of post-translational protein modifications, such as acetylation and palmitoylation, and ER-mitochondrial interactions to obesity-mediated impairments in the ER and activation of the UPR. PMID:27506731

  7. [Ophiopogonin D protects cardiomyocytes against doxorubicin-induced injury through suppressing endoplasmic reticulum stress].

    PubMed

    Meng, Chen; Yuan, Cai-Hua; Zhang, Chen-Chen; Wen, Ming-Da; Gao, Yan-Hong; Ding, Xiao-Yu; Zhang, Ying-Yu; Zhang, Zhao

    2014-08-01

    This study aimed to examine whether ophiopogonin D (OP-D) is capable of protecting cardiomyocytes against DOX-induced injury and the mechanisms involved. H9c2 cells were cultured. MTT assay was used to evaluate cell viability and toxicity. Mito-tracker as fluorescence probe was used to measure ROS content raised from mitochondria. The mRNA and protein expression of ATF6alpha, GRP78 and CHOP were analyzed using real-time PCR and Western blotting, respectively. The results showed that a significant endoplasmic reticulum stress (ERS) was induced upon exposure of H9c2 cells to DOX as indicated by the increase in the expression of ERS related proteins, which was paralleled with the accumulation of reactive oxygen species (ROS) and decrease in the viability of H9c2 cells. Whereas, DOX-induced ROS accumulation and up-regulation of ERS related proteins were partially abolished by pretreatment with OP-D. Consequently, a DOX-induced ERS was mitigated by application of OP-D. Similarly, DOX-induced decrease in cell viability was partially attenuated by either inhibiting CHOP or pretreatment with N-acetylcysteine (NAC), an antioxidant. Moreover, cardiac ultrastructural abnormalities seen in mouse receiving DOX injections were obviously ameliorated by pretreatment of OP-D. Taken together, the present study proved that OP-D protects cardiomyocytes against DOX-induced injury, at least in part, through reducing ROS accumulation and alleviating ERS. PMID:25322552

  8. Trinitrotoluene Induces Endoplasmic Reticulum Stress and Apoptosis in HePG2 Cells

    PubMed Central

    Song, Li; Wang, Yue; Wang, Jun; Yang, Fan; Li, Xiaojun; Wu, Yonghui

    2015-01-01

    Background This study aims to describe trinitrotoluene (TNT)-induced endoplasmic reticulum stress (ERS) and apoptosis in HePG2 cells. Material/Methods HePG2 cells were cultured in vitro with 0, 6, 12, or 24 μg/ml TNT solution for 12, 24, and 48 h. Western blotting was performed to detect intracellular ERS-related proteins, including glucose-regulated protein (GRP) 78, GRP94, Caspase 4, p-Jun N-terminal kinase (JNK), and C/EBP homologous protein (CHOP). Real-time PCR was used to measure mRNA expression from the respective genes. Results The expressions of ERS-related proteins GRP78 and GRP94 as well as mRNA and protein expression of ERS signaling apoptotic CHOP in the TNT treatment group were significantly increased. In addition, the mRNA and protein expression levels of ERS-induced apoptotic protein Caspase-4 were significantly increased. Flow cytometry revealed that after TNT treatment, the apoptosis rate also significantly increased. Conclusions TNT could increase the expression levels of GRP78, GRP94, Caspase-4, and CHOP in HePG2 cells; this increase in protein expression might be involved in HePG2 apoptosis through the induction of the ERS pathway. PMID:26551326

  9. Effect of pioglitazone treatment on endoplasmic reticulum stress response in human adipose and in palmitate-induced stress in human liver and adipose cell lines.

    PubMed

    Das, Swapan K; Chu, Winston S; Mondal, Ashis K; Sharma, Neeraj K; Kern, Philip A; Rasouli, Neda; Elbein, Steven C

    2008-08-01

    Obesity and elevated cytokine secretion result in a chronic inflammatory state and may cause the insulin resistance observed in type 2 diabetes. Recent studies suggest a key role for endoplasmic reticulum stress in hepatocytes and adipocytes from obese mice, resulting in reduced insulin sensitivity. To address the hypothesis that thiazolidinediones, which improve peripheral insulin sensitivity, act in part by reducing the endoplasmic reticulum stress response, we tested subcutaneous adipose tissue from 20 obese volunteers treated with pioglitazone for 10 wk. We also experimentally induced endoplasmic reticulum stress using palmitate, tunicamycin, and thapsigargin in the human HepG2 liver cell line with or without pioglitazone pretreatment. We quantified endoplasmic reticulum stress response by measuring both gene expression and phosphorylation. Pioglitazone significantly improved insulin sensitivity in human volunteers (P = 0.002) but did not alter markers of endoplasmic reticulum stress. Differences in pre- and posttreatment endoplasmic reticulum stress levels were not correlated with changes in insulin sensitivity or body mass index. In vitro, palmitate, thapsigargin, and tunicamycin but not oleate induced endoplasmic reticulum stress in HepG2 cells, including increased transcripts CHOP, ERN1, GADD34, and PERK, and increased XBP1 splicing along with phosphorylation of eukaryotic initiation factor eIF2alpha, JNK1, and c-jun. Although patterns of endoplasmic reticulum stress response differed among palmitate, tunicamycin, and thapsigargin, pioglitazone pretreatment had no significant effect on any measure of endoplasmic reticulum stress, regardless of the inducer. Together, our data suggest that improved insulin sensitivity with pioglitazone is not mediated by a reduction in endoplasmic reticulum stress.

  10. Neuroprotective effects of atorvastatin against cerebral ischemia/reperfusion injury through the inhibition of endoplasmic reticulum stress.

    PubMed

    Yang, Jian-Wen; Hu, Zhi-Ping

    2015-08-01

    Cerebral ischemia triggers secondary ischemia/reperfusion injury and endoplasmic reticulum stress initiates cell apoptosis. However, the regulatory mechanism of the signaling pathway remains unclear. We hypothesize that the regulatory mechanisms are mediated by the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α in the endoplasmic reticulum stress signaling pathway. To verify this hypothesis, we occluded the middle cerebral artery in rats to establish focal cerebral ischemia/reperfusion model. Results showed that the expression levels of protein kinase-like endoplasmic reticulum kinase and caspase-3, as well as the phosphorylation of eukaryotic initiation factor 2α, were increased after ischemia/reperfusion. Administration of atorvastatin decreased the expression of protein kinase-like endoplasmic reticulum kinase, caspase-3 and phosphorylated eukaryotic initiation factor 2α, reduced the infarct volume and improved ultrastructure in the rat brain. After salubrinal, the specific inhibitor of phosphorylated eukaryotic initiation factor 2α was given into the rats intragastrically, the expression levels of caspase-3 and phosphorylated eukaryotic initiation factor 2α in the were decreased, a reduction of the infarct volume and less ultrastructural damage were observed than the untreated, ischemic brain. However, salubrinal had no impact on the expression of protein kinase-like endoplasmic reticulum kinase. Experimental findings indicate that atorvastatin inhibits endoplasmic reticulum stress and exerts neuroprotective effects. The underlying mechanisms of attenuating ischemia/reperfusion injury are associated with the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/caspase-3 pathway. PMID:26487850

  11. Neuroprotective effects of atorvastatin against cerebral ischemia/reperfusion injury through the inhibition of endoplasmic reticulum stress

    PubMed Central

    Yang, Jian-wen; Hu, Zhi-ping

    2015-01-01

    Cerebral ischemia triggers secondary ischemia/reperfusion injury and endoplasmic reticulum stress initiates cell apoptosis. However, the regulatory mechanism of the signaling pathway remains unclear. We hypothesize that the regulatory mechanisms are mediated by the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α in the endoplasmic reticulum stress signaling pathway. To verify this hypothesis, we occluded the middle cerebral artery in rats to establish focal cerebral ischemia/reperfusion model. Results showed that the expression levels of protein kinase-like endoplasmic reticulum kinase and caspase-3, as well as the phosphorylation of eukaryotic initiation factor 2α, were increased after ischemia/reperfusion. Administration of atorvastatin decreased the expression of protein kinase-like endoplasmic reticulum kinase, caspase-3 and phosphorylated eukaryotic initiation factor 2α, reduced the infarct volume and improved ultrastructure in the rat brain. After salubrinal, the specific inhibitor of phosphorylated eukaryotic initiation factor 2α was given into the rats intragastrically, the expression levels of caspase-3 and phosphorylated eukaryotic initiation factor 2α in the were decreased, a reduction of the infarct volume and less ultrastructural damage were observed than the untreated, ischemic brain. However, salubrinal had no impact on the expression of protein kinase-like endoplasmic reticulum kinase. Experimental findings indicate that atorvastatin inhibits endoplasmic reticulum stress and exerts neuroprotective effects. The underlying mechanisms of attenuating ischemia/reperfusion injury are associated with the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/caspase-3 pathway. PMID:26487850

  12. Endoplasmic Reticulum Stress and Bipolar Disorder - Almost Forgotten Therapeutic Drug Targets in the Unfolded Protein Response Pathway Revisited.

    PubMed

    Bengesser, Susanne A; Fuchs, Robert; Lackner, Nina; Birner, Armin; Reininghaus, Bernd; Meier-Allard, Nathalie; Stracke, Anika; Kapfhammer, Hans-Peter; Reininghaus, Eva Z; Wallner-Liebmann, Sandra

    2016-01-01

    Bipolar Disorder (BD) is characterized by recurring mood swings, which are not completely understood yet. So far, it is an accepted theory that multiple factors contribute to pathogenesis of BD according to the vulnerability-stressmodel. This model combines on the one hand biological predisposing vulnerability, and on the other hand several chronic and acute stressful negative events as underlying mechanisms of BD. Recently, ER (Endoplasmic Reticulum) stress reached the spotlight of BD research again. The expression of the chaperone BiP (syn. GRP78/glucose-regulated protein, 78kDa), which is highly expressed in the Endoplasmic Reticulum (ER), is upregulated by different kinds of mood stabilizers. These results implied that the ER, an organelle which is prone towards different kinds of cellular stress, might be involved in the pathophysiology of BD. This hypothesis was further strengthened by hypothesis driven genetic association studies, which showed significant association of BiP promotor polymorphisms with BD. Also other ER-stress associated genes like XBP1 (X-box binding protein 1) or GRP94 (glucose-regulated protein, 94kDa, synonym for heat shock protein HSP90B1) were recently linked to BD in hypothesis driven gene association studies. In addition to the proteins mentioned before, our review focuses on further UPR (Unfolded Protein Response) related proteins associated with BD and raises the hypothesis that ER-stress may represent a common interface between BD and obesity which is overrepresented in BD patients. Finally, members of the UPR pathway are discussed as putative targets for mood stabilizers.

  13. Dehydrocostuslactone, a medicinal plant-derived sesquiterpene lactone, induces apoptosis coupled to endoplasmic reticulum stress in liver cancer cells.

    PubMed

    Hsu, Ya-Ling; Wu, Ling-Yu; Kuo, Po-Lin

    2009-05-01

    This study is the first to investigate the anticancer effect of dehydrocostuslactone [DHE (3aS,6aR,9aR,9bS)-decahydro-3,6,9-tris(methylene) azuleno[4,5-b]furan-2(3H)-one)], a medicinal plant-derived sesquiterpene lactone, on hepatocellular carcinoma. Our results showed that DHE inhibits the proliferation of HepG2 and PLC/PRF/5 cells by inducing apoptosis. DHE induces up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-XL, and nuclear relocation of the mitochondrial factors apoptosis-inducing factor (AIF) and endonuclease G (Endo G). DHE triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosol-calcium levels, double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase phosphorylation, inositol-requiring protein 1 (IRE1) and CHOP/GADD153 up-regulation, X-box transcription factor-1 mRNA splicing, and caspase-4 activation. Enhancement of ER stress by DHE is through p38 and extracellular signal-regulated kinase 1/2-dependent manners and subsequently causes c-Jun NH(2)-terminal kinase activation, resulting in AIF and Endo G nuclear relocation. Both of IRE1 small interfering RNA transfection and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester pretreatment inhibit DHE-mediated apoptosis, supporting the hypothesis that DHE induces cell death through ER stress. It is noteworthy that animal studies have revealed a dramatic 50% reduction in tumor volume after 45 days of treatment. This study demonstrates that DHE may be a novel anticancer agent for the treatment of liver cancer. PMID:19188481

  14. p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner.

    PubMed

    Giorgi, Carlotta; Bonora, Massimo; Sorrentino, Giovanni; Missiroli, Sonia; Poletti, Federica; Suski, Jan M; Galindo Ramirez, Fabian; Rizzuto, Rosario; Di Virgilio, Francesco; Zito, Ester; Pandolfi, Pier Paolo; Wieckowski, Mariusz R; Mammano, Fabio; Del Sal, Giannino; Pinton, Paolo

    2015-02-10

    The tumor suppressor p53 is a key protein in preventing cell transformation and tumor progression. Activated by a variety of stimuli, p53 regulates cell-cycle arrest and apoptosis. Along with its well-documented transcriptional control over cell-death programs within the nucleus, p53 exerts crucial although still poorly understood functions in the cytoplasm, directly modulating the apoptotic response at the mitochondrial level. Calcium (Ca(2+)) transfer between the endoplasmic reticulum (ER) and mitochondria represents a critical signal in the induction of apoptosis. However, the mechanism controlling this flux in response to stress stimuli remains largely unknown. Here we show that, in the cytoplasm, WT p53 localizes at the ER and at specialized contact domains between the ER and mitochondria (mitochondria-associated membranes). We demonstrate that, upon stress stimuli, WT p53 accumulates at these sites and modulates Ca(2+) homeostasis. Mechanistically, upon activation, WT p53 directly binds to the sarco/ER Ca(2+)-ATPase (SERCA) pump at the ER, changing its oxidative state and thus leading to an increased Ca(2+) load, followed by an enhanced transfer to mitochondria. The consequent mitochondrial Ca(2+) overload causes in turn alterations in the morphology of this organelle and induction of apoptosis. Pharmacological inactivation of WT p53 or naturally occurring p53 missense mutants inhibits SERCA pump activity at the ER, leading to a reduction of the Ca(2+) signaling from the ER to mitochondria. These findings define a critical nonnuclear function of p53 in regulating Ca(2+) signal-dependent apoptosis. PMID:25624484

  15. C/EBP-β Regulates Endoplasmic Reticulum Stress–Triggered Cell Death in Mouse and Human Models

    PubMed Central

    Meir, Ofir; Dvash, Efrat; Werman, Ariel; Rubinstein, Menachem

    2010-01-01

    Endoplasmic reticulum (ER) stress elicits the unfolded protein response (UPR), initially aimed at coping with the stress, but triggering cell death upon further stress. ER stress induces the C/EBP-® variant Liver-enriched Activating Protein (LAP), followed by the dominant-negative variant, Liver Inhibitory Protein (LIP). However, the distinct role of LAP and LIP in ER stress is unknown. We found that the kinetics of the ER stress-induced expression of LIP overlapped with that of the cell death in mouse B16 melanoma cells. Furthermore, inducible over-expression of LIP augmented ER stress-triggered cell death whereas over-expression of LAP attenuated cell death. Similar results were obtained in human 293T cells. Limited vasculature in tumors triggers hypoxia, nutrient shortage and accumulation of toxic metabolites, all of which eliciting continuous ER stress. We found that LAP promoted and LIP inhibited B16 melanoma tumor progression without affecting angiogenesis or accelerating the cell cycle. Rather, LAP attenuated, whereas LIP augmented tumor ER stress. We therefore suggest that C/EBP-® regulates the transition from the protective to the death–promoting phase of the UPR. We further suggest that the over-expression of LAP observed in many solid tumors promotes tumor progression by attenuating ER stress–triggered tumor cell death. PMID:20209087

  16. Endoplasmic Reticulum Stress and Nox-Mediated Reactive Oxygen Species Signaling in the Peripheral Vasculature: Potential Role in Hypertension

    PubMed Central

    Nabeebaccus, Adam A.; Shah, Ajay M.; Camargo, Livia L.; Filho, Sidney V.; Lopes, Lucia R.

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) are produced during normal endoplasmic reticulum (ER) metabolism. There is accumulating evidence showing that under stress conditions such as ER stress, ROS production is increased via enzymes of the NADPH oxidase (Nox) family, especially via the Nox2 and Nox4 isoforms, which are involved in the regulation of blood pressure. Hypertension is a major contributor to cardiovascular and renal disease, and it has a complex pathophysiology involving the heart, kidney, brain, vessels, and immune system. ER stress activates the unfolded protein response (UPR) signaling pathway that has prosurvival and proapoptotic components. Recent Advances: Here, we summarize the evidence regarding the association of Nox enzymes and ER stress, and its potential contribution in the setting of hypertension, including the role of other conditions that can lead to hypertension (e.g., insulin resistance and diabetes). Critical Issues: A better understanding of this association is currently of great interest, as it will provide further insights into the cellular mechanisms that can drive the ER stress-induced adaptive versus maladaptive pathways linked to hypertension and other cardiovascular conditions. More needs to be learnt about the precise signaling regulation of Nox(es) and ER stress in the cardiovascular system. Future Directions: The development of specific approaches that target individual Nox isoforms and the UPR signaling pathway may be important for the achievement of therapeutic efficacy in hypertension. Antioxid. Redox Signal. 20, 121–134. PMID:23472786

  17. Melatonin inhibits autophagy and endoplasmic reticulum stress in mice with carbon tetrachloride-induced fibrosis.

    PubMed

    San-Miguel, Beatriz; Crespo, Irene; Sánchez, Diana I; González-Fernández, Bárbara; Ortiz de Urbina, Juan J; Tuñón, María J; González-Gallego, Javier

    2015-09-01

    This study aimed to investigate whether inhibition of autophagy and endoplasmic reticulum (ER stress) associates with the antifibrogenic effect of melatonin in mice treated with carbon tetrachloride (CCl4 ). Mice received CCl4 5 μL/g body wt i.p. twice a week for 4 wk or 6 wk. Melatonin was given at 5 or 10 mg/kg/day i.p, beginning 2 wk after the start of CCl4 administration. Treatment with CCl4 resulted in fibrosis evidenced by the staining of α-smooth muscle actin (α-SMA)-positive cells. CCl4 induced an autophagic response measured as the presence of autophagic vesicles, protein 1 light chain 3 (LC3) staining, conversion of LC3-I to autophagosome-associated LC3-II, changes in expression of beclin-1, UV radiation resistance-associated gene (UVRAG), ubiquitin-like autophagy-related (Atg5), Atg12, Atg16L1, sequestosome 1 (p62/SQSTM1), and lysosome-associated membrane protein (LAMP)-2, and increased phosphorylation of the mammalian target of rapamycin (mTOR). There was an increase in the expression of the ER stress chaperones CCAAT/enhancer-binding protein homologous protein (CHOP), immunoglobulin-heavy-chain-binding protein (BiP/GRP78), and 94-kDa glucose-regulated protein (GRP94), and in the mRNA levels of pancreatic ER kinase (PERK), activating transcription factor 6 (ATF6), ATF4, inositol-requiring enzyme 1 (IRE1), and spliced X-box-binding protein-1 (XBP1). Phospho-IRE1, ATF6, and phospho-PERK protein concentration also increased significantly. Immunohistochemical staining of α-SMA indicated an abrogation of hepatic stellate cells activation by melatonin. Furthermore, treatment with the indole resulted in significant inhibition of the autophagic flux and the unfolded protein response. Findings from this study give new insight into molecular pathways accounting for the protective effect of melatonin in fibrogenesis.

  18. Endoplasmic reticulum stress is induced in the human placenta during labour.

    PubMed

    Veerbeek, J H W; Tissot Van Patot, M C; Burton, G J; Yung, H W

    2015-01-01

    Placental endoplasmic reticulum (ER) stress has been postulated in the pathophysiology of pre-eclampsia (PE) and intrauterine growth restriction (IUGR), but its activation remains elusive. Oxidative stress induced by ischaemia/hypoxia-reoxygenation activates ER stress in vitro. Here, we explored whether exposure to labour represents an in vivo model for the study of acute placental ER stress. ER stress markers, GRP78, P-eIF2α and XBP-1, were significantly higher in laboured placentas than in Caesarean-delivered controls localised mainly in the syncytiotrophoblast. The similarities to changes observed in PE/IUGR placentas suggest exposure to labour can be used to investigate induction of ER stress in pathological placentas.

  19. Endoplasmic reticulum stress inhibition is a valid therapeutic strategy in vitrifying oocytes.

    PubMed

    Zhao, Nan; Liu, Xue-Jun; Li, Jun-Tao; Zhang, Ling; Fu, Yang; Zhang, Ya-Jie; Chen, Ru-Xin; Wei, Xiao-Qing; Wang, Rui; Wang, Yu; Zhang, Jian-Min

    2015-02-01

    The aim of this study is to determine the link between oocyte cryopreservation and endoplasmic reticulum (ER) stress; whether ER stress inhibition improves the efficiency of oocyte vitrification is also explored. Oocytes from mice were exposure to tauroursodeoxycholic acid (TUDCA, an ER stress inhibitor) or TM (tunicamycin, an ER stress inducer) with or without vitrification. The expressions of X-box binding protein-1 (XBP-1) protein and caspase-12 protein, viability of vitrified-warmed oocytes, and their subsequent embryo competence were measured. The levels of XBP-1 protein and caspase-12 protein expression in vitrified-warmed oocytes were significantly higher than those of fresh control oocytes. TUDCA improved the viability of vitrified-warmed oocytes and their subsequent embryo competence. Mouse oocyte cryopreservation is associated with ER stress, and ER stress inhibition improves the efficiency of oocyte vitrification.

  20. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    PubMed

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis.

  1. PI3K-Akt-mTOR signal inhibition affects expression of genes related to endoplasmic reticulum stress.

    PubMed

    Song, Q; Han, C C; Xiong, X P; He, F; Gan, W; Wei, S H; Liu, H H; Li, L; Xu, H Y

    2016-01-01

    PI3K-Akt-mTOR signaling pathway is associated with endoplasmic reticulum (ER) stress. However, it is not clear how this signaling pathway affects the ER stress. The present study aimed to determine whether the PI3K-Akt-mTOR signaling pathway regulates tunicamycin (TM)-induced increases in mRNA levels of genes involved in the ER stress, to help elucidate the mechanism by which this pathway affects the ER stress in primary goose hepatocytes. Primary hepatocytes were isolated from geese and cultured in vitro. After 12 h in a serum-free medium, the hepatocytes were incubated for 24 h in a medium with either no addition (control) or with supplementation of TM or TM together with PI3K-Akt-mTOR signaling pathway inhibitors (LY294002, rapamycin, NVP-BEZ235). Thereafter, the expression levels of genes involved in the ER stress (BIP, EIF2a, ATF6, and XBP1) were assessed. The results indicated that the mRNA level of BIP was up-regulated in 0.2, 2, and 20 μM TM treatment group (P < 0.05), whereas the mRNA levels of EIF2a, ATF6, and XBP1 were up-regulated in the 2 μM TM treatment group (P < 0.05). However, the TM mediated induction of mRNA levels of genes involved in the ER stress (BIP, EIF2a, ATF6, and XBP1) was down-regulated after the treatment with PI3K-Akt-mTOR pathway inhibitors (LY294002, NVP-BEZ235, and rapamycin). Therefore, our results strongly suggest that the PI3K-Akt-mTOR signaling pathway might be involved in the down-regulation of the TM-induced ER stress in primary goose hepatocytes. PMID:27525855

  2. Endoplasmic reticulum stress-mediated apoptotic pathway is involved in corpus luteum regression in rats.

    PubMed

    Yang, Yanzhou; Sun, Miao; Shan, Yuanyuan; Zheng, Xiaomin; Ma, Huiming; Ma, Wenzhi; Wang, Zhisheng; Pei, Xiuying; Wang, Yanrong

    2015-05-01

    Endoplasmic reticulum stress (ERS), which is a novel pathway of regulating cellular apoptosis and the function of ERS during corpus luteum (CL) regression, is explored. Early-luteal stage (day 2), mid-luteal stage (day 7), and late-luteal stage (day 14 and 20) were induced, and the apoptosis of luteal cells was detected by a terminal 2'-deoxyuridine 5'-triphosphate nick-end labeling (TUNEL) assay. The apoptotic cells were increased with the regression of CL, especially during the late-luteal stage. The ERS markers glucose-regulated protein 78 (Grp78), CCAAT/enhancer-binding protein homologous protein (CHOP), X-box binding protein 1 (XBP1), activating transcription factor 6α (ATF6α), eukaryotic initiation factor 2α (eIF2α), inositol-requiring protein 1α (IRE1α), caspase 12, and apoptosis marker caspase 3 were analyzed by real-time polymerase chain reaction (PCR) and immunohistochemistry, in agreement with the results of the TUNEL assay; the expression levels of CHOP, caspase 12, and caspase 3 were increased during the process of CL regression. Luteal cells were isolated and cultured in vitro, and the apoptosis of luteal cells was induced by prostaglandin F2α. The ERS was attenuated by the ERS inhibitor tauroursodeoxycholic acid, and the apoptotic rate was analyzed by flow cytometry. The ERS markers Grp78, CHOP, XBP1s, ATF6α, eIF2α, IRE1α, caspase 12, and apoptotic execute marker caspase 3 were analyzed by real-time PCR and immunofluorescence, and the results suggested that the expression of CHOP, caspase 12, and caspase 3 were increased, and there was increased apoptosis of luteal cells. But the expression of IRE1α/XBP1s and eIF2α was not detected. Taken together, the ERS is involved in the CL regression of rats through the CHOP and caspase 12 pathway.

  3. Endoplasmic Reticulum Stress-Mediated Apoptotic Pathway Is Involved in Corpus Luteum Regression in Rats

    PubMed Central

    Yang, Yanzhou; Sun, Miao; Shan, Yuanyuan; Zheng, Xiaomin; Ma, Huiming; Ma, Wenzhi; Wang, Zhisheng

    2015-01-01

    Endoplasmic reticulum stress (ERS), which is a novel pathway of regulating cellular apoptosis and the function of ERS during corpus luteum (CL) regression, is explored. Early-luteal stage (day 2), mid-luteal stage (day 7), and late-luteal stage (day 14 and 20) were induced, and the apoptosis of luteal cells was detected by a terminal 2′-deoxyuridine 5′-triphosphate nick-end labeling (TUNEL) assay. The apoptotic cells were increased with the regression of CL, especially during the late-luteal stage. The ERS markers glucose-regulated protein 78 (Grp78), CCAAT/enhancer-binding protein homologous protein (CHOP), X-box binding protein 1 (XBP1), activating transcription factor 6α (ATF6α), eukaryotic initiation factor 2α (eIF2α), inositol-requiring protein 1α (IRE1α), caspase 12, and apoptosis marker caspase 3 were analyzed by real-time polymerase chain reaction (PCR) and immunohistochemistry, in agreement with the results of the TUNEL assay; the expression levels of CHOP, caspase 12, and caspase 3 were increased during the process of CL regression. Luteal cells were isolated and cultured in vitro, and the apoptosis of luteal cells was induced by prostaglandin F2α. The ERS was attenuated by the ERS inhibitor tauroursodeoxycholic acid, and the apoptotic rate was analyzed by flow cytometry. The ERS markers Grp78, CHOP, XBP1s, ATF6α, eIF2α, IRE1α, caspase 12, and apoptotic execute marker caspase 3 were analyzed by real-time PCR and immunofluorescence, and the results suggested that the expression of CHOP, caspase 12, and caspase 3 were increased, and there was increased apoptosis of luteal cells. But the expression of IRE1α/XBP1s and eIF2α was not detected. Taken together, the ERS is involved in the CL regression of rats through the CHOP and caspase 12 pathway. PMID:25332219

  4. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway

    USGS Publications Warehouse

    Jung, T.W.; Lee, M.W.; Lee, Y.-J.; Kim, S.M.

    2012-01-01

    Type 2 diabetes mellitus is thought to be partially associated with endoplasmic reticulum (ER) stress toxicity on pancreatic beta cells and the result of decreased insulin synthesis and secretion. In this study, we showed that a well-known insulin sensitizer, metformin, directly protects against dysfunction and death of ER stress-induced NIT-1 cells (a mouse pancreatic beta cell line) via AMP-activated protein kinase (AMPK) and phosphatidylinositol-3 (PI3) kinase activation. We also showed that exposure of NIT-1 cells to metformin (5mM) increases cellular resistance against ER stress-induced NIT-1 cell dysfunction and death. AMPK and PI3 kinase inhibitors abolished the effect of metformin on cell function and death. Metformin-mediated protective effects on ER stress-induced apoptosis were not a result of an unfolded protein response or the induced inhibitors of apoptotic proteins. In addition, we showed that exposure of ER stressed-induced NIT-1 cells to metformin decreases the phosphorylation of c-Jun NH(2) terminal kinase (JNK). These data suggest that metformin is an important determinant of ER stress-induced apoptosis in NIT-1 cells and may have implications for ER stress-mediated pancreatic beta cell destruction via regulation of the AMPK-PI3 kinase-JNK pathway.

  5. Endoplasmic reticulum stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) protects against pressure overload-induced heart failure and lung remodeling.

    PubMed

    Liu, Xiaoyu; Kwak, Dongmin; Lu, Zhongbing; Xu, Xin; Fassett, John; Wang, Huan; Wei, Yidong; Cavener, Douglas R; Hu, Xinli; Hall, Jennifer; Bache, Robert J; Chen, Yingjie

    2014-10-01

    Studies have reported that development of congestive heart failure is associated with increased endoplasmic reticulum stress. Double stranded RNA-activated protein kinase R-like endoplasmic reticulum kinase (PERK) is a major transducer of the endoplasmic reticulum stress response and directly phosphorylates eukaryotic initiation factor 2α, resulting in translational attenuation. However, the physiological effect of PERK on congestive heart failure development is unknown. To study the effect of PERK on ventricular structure and function, we generated inducible cardiac-specific PERK knockout mice. Under unstressed conditions, cardiac PERK knockout had no effect on left ventricular mass, or its ratio to body weight, cardiomyocyte size, fibrosis, or left ventricular function. However, in response to chronic transverse aortic constriction, PERK knockout mice exhibited decreased ejection fraction, increased left ventricular fibrosis, enhanced cardiomyocyte apoptosis, and exacerbated lung remodeling in comparison with wild-type mice. PERK knockout also dramatically attenuated cardiac sarcoplasmic reticulum Ca(2+)-ATPase expression in response to aortic constriction. Our findings suggest that PERK is required to protect the heart from pressure overload-induced congestive heart failure.

  6. Calcium homoeostasis modulator 1 (CALHM1) reduces the calcium content of the endoplasmic reticulum (ER) and triggers ER stress.

    PubMed

    Gallego-Sandín, Sonia; Alonso, María Teresa; García-Sancho, Javier

    2011-08-01

    CALHM1 (calcium homoeostasis modulator 1), a membrane protein with similarity to NMDA (N-methyl-D-aspartate) receptor channels that localizes in the plasma membrane and the ER (endoplasmic reticulum) of neurons, has been shown to generate a plasma-membrane Ca(2+) conductance and has been proposed to influence Alzheimer's disease risk. In the present study we have investigated the effects of CALHM1 on intracellular Ca(2+) handling in HEK-293T [HEK (human embryonic kidney)-293 cells expressing the large T-antigen of SV40 (simian virus 40)] cells by using targeted aequorins for selective monitorization of Ca(2+) transport by organelles. We find that CALHM1 increases Ca(2+) leak from the ER and, more importantly, reduces ER Ca(2+) uptake by decreasing both the transport capacity and the Ca(2+) affinity of SERCA (sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase). As a result, the Ca(2+) content of the ER is drastically decreased. This reduction in the Ca(2+) content of the ER triggered the UPR (unfolded protein response) with induction of several ER stress markers, such as CHOP [C/EBP (CCAAT/enhancer-binding protein)-homologous protein], ERdj4, GRP78 (glucose-regulated protein of 78 kDa) and XBP1 (X-box-binding protein 1). Thus CALHM1 might provide a relevant link between Ca(2+) homoeostasis disruption, ER stress and cell damage in the pathogenesis of neurodegenerative diseases.

  7. Epigallocatechin-3-gallate protects against cisplatin-induced nephrotoxicity by inhibiting endoplasmic reticulum stress-induced apoptosis

    PubMed Central

    Chen, Binbin; Liu, Guangyi; Zou, Peimei; Li, Xing; Hao, Qiufa; Jiang, Bei; Yang, Xiangdong

    2015-01-01

    Cisplatin (CP)-induced nephrotoxicity hampers its application in clinic. Green tea, particularly its predominant polyphenolic constituent epigallocatechin-3-gallate (EGCG), possesses anti-inflammatory, antioxidant, and anti-apoptotic properties. The present study was designed to investigate the protective effects of EGCG against CP-induced nephrotoxicity in mice. Male C57/BL6 mice in different groups received single injection of CP (20 mg/kg) and EGCG (100 mg/kg) in various sets and kidney tissues and blood were collected after killing. Then, samples were used for biochemical and immunohistochemical assay. Our results showed EGCG decreased biochemical factors and immunohistochemical damage induced by CP. Besides, expression of phosphorylated-extracellular signal-regulated kinase (p-ERK), glucose-regulated protein 78 (GRP78), caspase-12, and apoptosis of kidney were decreased by EGCG via inhibition of endoplasmic reticulum (ER) stress-induced apoptosis. PMID:25716017

  8. Sarco(endo)plasmic reticulum ATPase is a molecular partner of Wolfram syndrome 1 protein, which negatively regulates its expression.

    PubMed

    Zatyka, Malgorzata; Da Silva Xavier, Gabriela; Bellomo, Elisa A; Leadbeater, Wendy; Astuti, Dewi; Smith, Joel; Michelangeli, Frank; Rutter, Guy A; Barrett, Timothy G

    2015-02-01

    Wolfram syndrome is an autosomal recessive disorder characterized by neurodegeneration and diabetes mellitus. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER)-resident transmembrane protein that is involved in the regulation of the unfolded protein response (UPR), intracellular ion homeostasis, cyclic adenosine monophosphate production and regulation of insulin biosynthesis and secretion. In this study, single cell Ca(2+) imaging with fura-2 and direct measurements of free cytosolic ATP concentration ([ATP]CYT) with adenovirally expressed luciferase confirmed a reduced and delayed rise in cytosolic free Ca(2+) concentration ([Ca(2+)]CYT), and additionally, diminished [ATP]CYT rises in response to elevated glucose concentrations in WFS1-depleted MIN6 cells. We also observed that sarco(endo)plasmic reticulum ATPase (SERCA) expression was elevated in several WFS1-depleted cell models and primary islets. We demonstrated a novel interaction between WFS1 and SERCA by co-immunoprecipitation in Cos7 cells and with endogenous proteins in human neuroblastoma cells. This interaction was reduced when cells were treated with the ER stress inducer dithiothreitol. Treatment of WFS1-depleted neuroblastoma cells with the proteasome inhibitor MG132 resulted in reduced accumulation of SERCA levels compared with wild-type cells. Together these results reveal a role for WFS1 in the negative regulation of SERCA and provide further insights into the function of WFS1 in calcium homeostasis. PMID:25274773

  9. N-acetylcysteine protects against cadmium-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in testes.

    PubMed

    Ji, Yan-Li; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Xu, De-Xiang

    2013-03-01

    Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The aim of the present study was to investigate the effects of N-acetylcysteine (NAC), an antioxidant, on Cd-induced ER stress and germ cell apoptosis in the testes. Male CD-1 mice were intraperitoneally injected with CdCl2 (2.0 mg kg(-1)). As expected, acute Cd exposure induced germ cell apoptosis in the testes, as determined by terminal dUTP nick-end labelling (TUNEL). However, the administration of NAC alleviated Cd-induced germ cell apoptosis in the testes. Further analysis showed that NAC attenuated the Cd-induced upregulation of testicular glucose-regulated protein 78 (GRP78), an important ER molecular chaperone. Moreover, NAC inhibited the Cd-induced phosphorylation of testicular eukaryotic translation initiation factor 2α (eIF2α), a downstream target of the double-stranded RNA-activated kinase-like ER kinase (PERK) pathway. In addition, NAC blocked the Cd-induced activation of testicular X binding protein (XBP)-1, indicating that NAC attenuates the Cd-induced ER stress and the unfolded protein response (UPR). Interestingly, NAC almost completely prevented the Cd-induced elevation of C/EBP homologous protein (CHOP) and phosphorylation of c-Jun N-terminal kinase (JNK), two components of the ER stress-mediated apoptotic pathway. In conclusion, NAC protects against Cd-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in the testes. PMID:23353715

  10. Role of Endoplasmic Reticulum Stress in Atherosclerosis and Diabetic Macrovascular Complications

    PubMed Central

    Chistiakov, Dmitry A.; Sobenin, Igor A.; Orekhov, Alexander N.; Bobryshev, Yuri V.

    2014-01-01

    Age-related changes in endoplasmic reticulum (ER) are associated with stress of this cell organelle. Unfolded protein response (UPR) is a normal physiological reaction of a cell in order to prevent accumulation of unfolded and misfolded proteins in the ER and improve the normal ER function. However, in pathologic conditions such as atherosclerosis, obesity, and diabetes, ER function becomes impaired, leading to the development of ER stress. In chronic ER stress, defective posttranslational protein folding results in deposits of aberrantly folded proteins in the ER and the induction of cell apoptosis mediated by UPR sensors C/EBPα-homologous protein (CHOP) and inositol requiring protein-1 (IRE1). Since ER stress and ER-induced cell death play a nonredundant role in the pathogenesis of atherosclerosis and diabetic macrovascular complications, pharmaceutical targeting of ER stress components and pathways may be beneficial in the treatment and prevention of cardiovascular pathology. PMID:25061609

  11. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib.

    PubMed

    Ji, Chao; Zhang, Ziping; Chen, Lihong; Zhou, Kunli; Li, Dongjun; Wang, Ping; Huang, Shuying; Gong, Ting; Cheng, Bo

    2016-01-01

    Melanoma is one of the deadliest skin cancers and accounts for most skin-related deaths due to strong resistance to chemotherapy drugs. In the present study, we investigated the mechanisms of dabrafenib-induced drug resistance in human melanoma cell lines A375 and MEL624. Our studies support that both endoplasmic reticulum (ER) stress and autophagy were induced in the melanoma cells after the treatment with dabrafenib. In addition, ER stress-induced autophagy protects melanoma cells from the toxicity of dabrafenib. Moreover, inhibition of both ER stress and autophagy promote the sensitivity of melanoma cells to dabrafenib. Taken together, the data suggest that ER stress-induced autophagy determines the sensitivity of melanoma cells to dabrafenib. These results provide us with promising evidence that the inhibition of autophagy and ER stress could serve a therapeutic effect for the conventional dabrafenib chemotherapy. PMID:27536070

  12. Endoplasmic Reticulum Stress Signaling in Mammalian Oocytes and Embryos: Life in the Balance

    PubMed Central

    Latham, Keith E.

    2015-01-01

    Mammalian oocytes and embryos are exquisitely sensitive to a wide range of insults related to physical stress, chemical exposure, and exposures to adverse maternal nutrition or health status. Although cells manifest specific responses to various stressors, many of these stressors intersect at the endoplasmic reticulum, where disruptions in protein folding and production of reactive oxygen species initiate downstream signaling events. These signals modulate mRNA translation and gene transcription, leading to recovery, activation of autophagy, or with severe and prolonged stress, apoptosis. ER stress signaling has recently come to the fore as a major contributor to embryo demise. Accordingly, agents that modulate or inhibit ER stress signaling have yielded beneficial effects on embryo survival and long-term developmental potential. We review here the mechanisms of ER stress signaling, their connections to mammalian oocytes and embryos, and the promising indications that interventions in this pathway may provide new opportunities for improving mammalian reproduction and health. PMID:25805126

  13. Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae.

    PubMed

    Fei, Weihua; Wang, Han; Fu, Xin; Bielby, Christopher; Yang, Hongyuan

    2009-11-15

    LDs (lipid droplets) are cellular organelles which can be found in nearly all eukaryotic cells. Despite their importance in cell biology, the mechanism underlying LD biogenesis remains largely unknown. In the present study we report that conditions of ER (endoplasmic reticulum) stress stimulate LD formation in Saccharomyces cerevisiae. We found that LDs accumulated in yeast mutants with compromised protein glycosylation or ER-associated protein degradation. Moreover, tunicamycin and Brefeldin A, agents which induce ER stress, were found to stimulate LD formation. In contrast, the restoration of protein glycosylation reduced LD accumulation. Interestingly, enhanced neutral lipids synthesis and LD formation under conditions of ER stress was not dependent on Ire1p. Lastly, we demonstrated that the absence of LDs did not compromise cell viability under ER stress. Our results suggest that although more LDs are produced, LDs are not essential to cell survival under ER stress. PMID:19708857

  14. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib

    PubMed Central

    Ji, Chao; Zhang, Ziping; Chen, Lihong; Zhou, Kunli; Li, Dongjun; Wang, Ping; Huang, Shuying; Gong, Ting; Cheng, Bo

    2016-01-01

    Melanoma is one of the deadliest skin cancers and accounts for most skin-related deaths due to strong resistance to chemotherapy drugs. In the present study, we investigated the mechanisms of dabrafenib-induced drug resistance in human melanoma cell lines A375 and MEL624. Our studies support that both endoplasmic reticulum (ER) stress and autophagy were induced in the melanoma cells after the treatment with dabrafenib. In addition, ER stress-induced autophagy protects melanoma cells from the toxicity of dabrafenib. Moreover, inhibition of both ER stress and autophagy promote the sensitivity of melanoma cells to dabrafenib. Taken together, the data suggest that ER stress-induced autophagy determines the sensitivity of melanoma cells to dabrafenib. These results provide us with promising evidence that the inhibition of autophagy and ER stress could serve a therapeutic effect for the conventional dabrafenib chemotherapy. PMID:27536070

  15. Tributyltin-induced endoplasmic reticulum stress and its Ca{sup 2+}-mediated mechanism

    SciTech Connect

    Isomura, Midori; Kotake, Yaichiro Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-10-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca{sup 2+} signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca{sup 2+} homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca{sup 2+} depletion, and to test this idea, we examined the effect of TBT on intracellular Ca{sup 2+} concentration using fura-2 AM, a Ca{sup 2+} fluorescent probe. TBT increased intracellular Ca{sup 2+} concentration in a TBT-concentration-dependent manner, and Ca{sup 2+} increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca{sup 2+} concentration by releasing Ca{sup 2+} from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca{sup 2+} release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca{sup 2+}.

  16. Protrudin Regulates Endoplasmic Reticulum Morphology and Function Associated with the Pathogenesis of Hereditary Spastic Paraplegia*

    PubMed Central

    Hashimoto, Yutaka; Shirane, Michiko; Matsuzaki, Fumiko; Saita, Shotaro; Ohnishi, Takafumi; Nakayama, Keiichi I.

    2014-01-01

    Protrudin is a membrane protein that regulates polarized vesicular trafficking in neurons. The protrudin gene (ZFYVE27) is mutated in a subset of individuals with hereditary spastic paraplegia (HSP), and protrudin is therefore also referred to as spastic paraplegia (SPG) 33. We have now generated mice that express a transgene for dual epitope-tagged protrudin under control of a neuron-specific promoter, and we have subjected highly purified protrudin-containing complexes isolated from the brain of these mice to proteomics analysis to identify proteins that associate with protrudin. Protrudin was found to interact with other HSP-related proteins including myelin proteolipid protein 1 (SPG2), atlastin-1 (SPG3A), REEP1 (SPG31), REEP5 (similar to REEP1), Kif5A (SPG10), Kif5B, Kif5C, and reticulon 1, 3, and 4 (similar to reticulon 2, SPG12). Membrane topology analysis indicated that one of three hydrophobic segments of protrudin forms a hydrophobic hairpin domain similar to those of other SPG proteins. Protrudin was found to localize predominantly to the tubular endoplasmic reticulum (ER), and forced expression of protrudin promoted the formation and stabilization of the tubular ER network. The protrudin(G191V) mutant, which has been identified in a subset of HSP patients, manifested an increased intracellular stability, and cells expressing this mutant showed an increased susceptibility to ER stress. Our results thus suggest that protrudin contributes to the regulation of ER morphology and function, and that its deregulation by mutation is a causative defect in HSP. PMID:24668814

  17. Hyperactivity of the Ero1α Oxidase Elicits Endoplasmic Reticulum Stress but No Broad Antioxidant Response

    PubMed Central

    Hansen, Henning Gram; Schmidt, Jonas Damgård; Søltoft, Cecilie Lützen; Ramming, Thomas; Geertz-Hansen, Henrik Marcus; Christensen, Brian; Sørensen, Esben Skipper; Juncker, Agnieszka Sierakowska; Appenzeller-Herzog, Christian; Ellgaard, Lars

    2012-01-01

    Oxidizing equivalents for the process of oxidative protein folding in the endoplasmic reticulum (ER) of mammalian cells are mainly provided by the Ero1α oxidase. The molecular mechanisms that regulate Ero1α activity in order to harness its oxidative power are quite well understood. However, the overall cellular response to oxidative stress generated by Ero1α in the lumen of the mammalian ER is poorly characterized. Here we investigate the effects of overexpressing a hyperactive mutant (C104A/C131A) of Ero1α. We show that Ero1α hyperactivity leads to hyperoxidation of the ER oxidoreductase ERp57 and induces expression of two established unfolded protein response (UPR) targets, BiP (immunoglobulin-binding protein) and HERP (homocysteine-induced ER protein). These effects could be reverted or aggravated by N-acetylcysteine and buthionine sulfoximine, respectively. Because both agents manipulate the cellular glutathione redox buffer, we conclude that the observed effects of Ero1α-C104A/C131A overexpression are likely caused by an oxidative perturbation of the ER glutathione redox buffer. In accordance, we show that Ero1α hyperactivity affects cell viability when cellular glutathione levels are compromised. Using microarray analysis, we demonstrate that the cell reacts to the oxidative challenge caused by Ero1α hyperactivity by turning on the UPR. Moreover, this analysis allowed the identification of two new targets of the mammalian UPR, CRELD1 and c18orf45. Interestingly, a broad antioxidant response was not induced. Our findings suggest that the hyperoxidation generated by Ero1α-C104A/C131A is addressed in the ER lumen and is unlikely to exert oxidative injury throughout the cell. PMID:23027870

  18. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    SciTech Connect

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana; Mairal, Aline; Mališová, Lucia; Štich, Vladimír; Langin, Dominique; Rossmeislová, Lenka

    2015-05-08

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  19. Marchantin M Induces Apoptosis of Prostate Cancer Cells Through Endoplasmic Reticulum Stress

    PubMed Central

    Zhang, Tian-Wei; Xing, Li; Tang, Jun-Long; Lu, Jing-Xiao; Liu, Chun-Xiao

    2015-01-01

    Background Apoptosis is mediated by the endoplasmic reticulum (ER) stress pathway, mitochondrial pathway, and death receptor. Data herein suggested an inhibitory effect of marchantin M on tumor formation in nude mice as well as the impact on CHOP and GRP78 expression. Material/Methods The role of marchantin M on proliferation and apoptosis of DU145 cells were measured by MTT and flow cytometry, respectively. Western blot was applied to detect the expression of GRP78 and CHOP. The mice received abdominal injection at 1 time/2 d and 2 ml/time. Tumor volume was measured every 6 days. The mice were euthanatized 30 days after marchantin injection and tumor weight was measured. Cell apoptosis was determined by TUNEL. The expressions of CHOP and GRP78 were detected by immunohistochemistry. Results Tumor size and weight in marchantin groups were significantly lower than in the control group (A, B) (P<0.05), and the inhibitory rate presented a dose-dependent increase. Compared with controls, the levels of CHOP and GRP78 expression elevated obviously following the treatment with marchantin (P<0.05). It showed statistically significant difference among groups C, D, E, with different levels of apoptosis indexes incremented in groups of marchantin H, M, L, compared with groups A and B (P<0.05). Conclusions Overall, this study shows that marchantin M circumvents the growth of prostate cancer PC-3 tumor and up-regulates expressions of CHOP and GRP78. Our data also indicate that marchantin M limits the proliferation and favors apoptosis of DU145 cells in a time- and dose-dependent manner. PMID:26581488

  20. Expression levels of urotensin II are associated with endoplasmic reticulum stress in patients with severe preeclampsia.

    PubMed

    He, W-Y; Chen, G-J; Lai, X; Wu, F; Tang, C-S; Zhang, A-H

    2016-02-01

    Hypertensive disorders in pregnancy remain a leading cause of maternal and perinatal mortality and morbidity. We aim to study urotensin II (UII) and its association with the markers of endoplasmic reticulum stress (ERS) in placentas of patients with severe preeclampsia (SPE). Thirty-three patients with hypertensive disorders in pregnancy and twenty-two healthy pregnant women designated as healthy controls were recruited. Expression levels of UII, UII receptor (GPR14) and the markers of ERS in placenta specimens of patients were performed. Plasma and urinary UII levels were measured by radioimmunoassay method. Our study showed that the plasma levels of UII in patients with hypertensive disorders during pregnancy were significantly higher than that of the healthy control group. However, the urinary levels of UII had no difference in two groups. The expression level of mRNA and protein of UII, CCAAT/enhancer-binding protein homologous protein (CHOP) and glucose regulation protein 78 in placentas of SPE was significantly increased. Immunohistochemical analyses show that the expression levels of UII and ERS markers were mainly located in the cytoplasm of placental trophoblastic cells. Moreover, expression level of UII mRNA and protein was positively correlated with that of the markers of ERS. The positive correlation between UII and ERS markers expression level also corresponded with the level of patient's systolic blood pressure and proteinuria. In conclusion, we first verify that expression of UII is associated with ERS in patients with SPE. Our results indicate that UII may trigger ERS in placental trophoblastic cells in patients with preeclampsia.

  1. Reduction of endoplasmic reticulum stress attenuates the defects caused by Drosophila mitofusin depletion

    PubMed Central

    Debattisti, Valentina; Pendin, Diana; Ziviani, Elena; Daga, Andrea

    2014-01-01

    Ablation of the mitochondrial fusion and endoplasmic reticulum (ER)–tethering protein Mfn2 causes ER stress, but whether this is just an epiphenomenon of mitochondrial dysfunction or a contributor to the phenotypes in mitofusin (Mfn)-depleted Drosophila melanogaster is unclear. In this paper, we show that reduction of ER dysfunction ameliorates the functional and developmental defects of flies lacking the single Mfn mitochondrial assembly regulatory factor (Marf). Ubiquitous or neuron- and muscle-specific Marf ablation was lethal, altering mitochondrial and ER morphology and triggering ER stress that was conversely absent in flies lacking the fusion protein optic atrophy 1. Expression of Mfn2 and ER stress reduction in flies lacking Marf corrected ER shape, attenuating the developmental and motor defects. Thus, ER stress is a targetable pathogenetic component of the phenotypes caused by Drosophila Mfn ablation. PMID:24469638

  2. Targeting the hallmarks of cancer with therapy-induced endoplasmic reticulum (ER) stress

    PubMed Central

    Garg, Abhishek D; Maes, Hannelore; van Vliet, Alexander R; Agostinis, Patrizia

    2015-01-01

    The endoplasmic reticulum (ER) is at the center of a number of vital cellular processes such as cell growth, death, and differentiation, crosstalk with immune or stromal cells, and maintenance of proteostasis or homeostasis, and ER functions have implications for various pathologies including cancer. Recently, a number of major hallmarks of cancer have been delineated that are expected to facilitate the development of anticancer therapies. However, therapeutic induction of ER stress as a strategy to broadly target multiple hallmarks of cancer has been seldom discussed despite the fact that several primary or secondary ER stress-inducing therapies have been found to exhibit positive clinical activity in cancer patients. In the present review we provide a brief historical overview of the major discoveries and milestones in the field of ER stress biology with important implications for anticancer therapy. Furthermore, we comprehensively discuss possible strategies enabling the targeting of multiple hallmarks of cancer with therapy-induced ER stress. PMID:27308392

  3. Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress

    NASA Astrophysics Data System (ADS)

    Leitman, Julia; Ulrich Hartl, F.; Lederkremer, Gerardo Z.

    2013-11-01

    In Huntington’s disease, as in other neurodegenerative diseases, it was initially thought that insoluble protein aggregates are the toxic species. However, growing evidence implicates soluble oligomeric polyglutamine-expanded huntingtin in cytotoxicity. Here we show that pathogenic huntingtin inhibits endoplasmic reticulum (ER)-associated degradation and induces ER stress before its aggregation into visible inclusions. All three branches of the unfolded protein response are activated. ER stress can be compensated by overexpression of p97/VCP, suggesting its sequestration by pathogenic huntingtin as a main cause. Stress correlates with the presence of huntingtin oligomers and is independent of continual huntingtin synthesis. Stress levels, measured in striatal neurons, are stabilized but only slowly subside on huntingtin aggregation into inclusions. Our results can be explained by the constant conversion of huntingtin monomers to toxic oligomers; large aggregates sequester the former, precluding further conversion, whereas pre-existing toxic oligomers are only gradually depleted.

  4. Endoplasmic Reticulum Stress in Intestinal Epithelial Cell Function and Inflammatory Bowel Disease

    PubMed Central

    Luo, Katherine; Cao, Stewart Siyan

    2015-01-01

    In eukaryotic cells, perturbation of protein folding homeostasis in the endoplasmic reticulum (ER) causes accumulation of unfolded and misfolded proteins in the ER lumen, which activates intracellular signaling pathways termed the unfolded protein response (UPR). Recent studies have linked ER stress and the UPR to inflammatory bowel disease (IBD). The microenvironment of the ER is affected by a myriad of intestinal luminal molecules, implicating ER stress and the UPR in proper maintenance of intestinal homeostasis. Several intestinal cell populations, including Paneth and goblet cells, require robust ER function for protein folding, maturation, and secretion. Prolonged ER stress and impaired UPR signaling may cause IBD through: (1) induction of intestinal epithelial cell apoptosis, (2) disruption of mucosal barrier function, and (3) induction of the proinflammatory response in the gut. Based on our increased understanding of ER stress in IBD, new pharmacological approaches can be developed to improve intestinal homeostasis by targeting ER protein-folding in the intestinal epithelial cells (IECs). PMID:25755668

  5. Endoplasmic reticulum stress activation mediates Ginseng Rg3-induced anti-gallbladder cancer cell activity.

    PubMed

    Wu, Keren; Li, Ning; Sun, Huaqin; Xu, Tao; Jin, Fa; Nie, Jifeng

    2015-10-23

    In the current study, we examined the potential effect of Ginsenoside Rg3 against gallbladder cancer cells, the underlying signaling mechanisms were also studied. We demonstrated that Rg3 exerted potent cytotoxic and pro-apoptotic activity against established and primary human gallbladder cancer cells. Yet it was safe to non-cancerous gallbladder epithelial cells. At the molecular level, we showed that Rg3 induced endoplasmic reticulum (ER) stress activation, the latter was evidenced by C/EBP homologous protein (CHOP) upregulation, inositol-requiring enzyme 1 (IRE1)/PKR-like endoplasmic reticulum kinase (PERK) phosphorylations, and caspase-12 activation in gallbladder cancer cells. Reversely, the ER stress inhibitor salubrinal, the caspase-12 inhibitor z-ATAD-fmk as well as CHOP shRNA knockdown significantly attenuated Rg3-induced cytotoxicity against gallbladder cancer cells. In vivo, we showed that Rg3 oral administration significantly inhibited GBC-SD gallbladder cancer xenograft growth in nude mice, its activity was, however, compromised with co-administration of the ER stress inhibitor salubrinal. Thus, we suggest that ER stress activation mediates Ginseng Rg3-induced anti-gallbladder cancer cell activity in vitro and in vivo. PMID:26361144

  6. Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination

    PubMed Central

    2013-01-01

    Background Calreticulin (CRT) is a chaperone protein, which aids correct folding of glycosylated proteins in the endoplasmic reticulum (ER). Under conditions of ER stress, CRT is upregulated and may be displayed on the surface of cells or be secreted. This ‘ecto-CRT’ may activate the innate immune response or it may aid clearance of apoptotic cells. Our and other studies have demonstrated upregulation of ER stress markers CHOP, BiP, ATF4, XBP1 and phosphorylated e-IF2 alpha (p-eIF2 alpha) in biopsy and post-mortem human multiple sclerosis (MS) samples. We extend this work by analysing changes in expression of CRT, BiP, CHOP, XBP1 and p-eIF2 alpha in a rat model of inflammatory demyelination. Demyelination was induced in the spinal cord by intradermal injection of recombinant mouse MOG mixed with incomplete Freund’s adjuvant (IFA) at the base of the tail. Tissue samples were analysed by semi-quantitative scoring of immunohistochemically stained frozen tissue sections. Data generated following sampling of tissue from animals with spinal cord lesions, was compared to that obtained using tissue derived from IFA- or saline-injected controls. CRT present in rat serum and in a cohort of human serum derived from 14 multiple sclerosis patients and 11 healthy controls was measured by ELISA. Results Stained tissue scores revealed significantly (p<0.05) increased amounts of CRT, CHOP and p-eIF2 alpha in the lesion, lesion edge and normal-appearing white matter when compared to controls. CHOP and p-eIF2 alpha were also significantly raised in regions of grey matter and the central canal (p<0.05). Immunofluorescent dual-label staining confirmed expression of these markers in astrocytes, microglia or neurons. Dual staining of rat and human spinal cord lesions with Oil Red O and CRT antibody showed co-localisation of CRT with the rim of myelin fragments. ELISA testing of sera from control and EAE rats demonstrated significant down-regulation (p<0.05) of CRT in the serum of

  7. Angiogenin Mediates Cell-Autonomous Translational Control under Endoplasmic Reticulum Stress and Attenuates Kidney Injury.

    PubMed

    Mami, Iadh; Bouvier, Nicolas; El Karoui, Khalil; Gallazzini, Morgan; Rabant, Marion; Laurent-Puig, Pierre; Li, Shuping; Tharaux, Pierre-Louis; Beaune, Philippe; Thervet, Eric; Chevet, Eric; Hu, Guo-Fu; Pallet, Nicolas

    2016-03-01

    Endoplasmic reticulum (ER) stress is involved in the pathophysiology of kidney disease and aging, but the molecular bases underlying the biologic outcomes on the evolution of renal disease remain mostly unknown. Angiogenin (ANG) is a ribonuclease that promotes cellular adaptation under stress but its contribution to ER stress signaling remains elusive. In this study, we investigated the ANG-mediated contribution to the signaling and biologic outcomes of ER stress in kidney injury. ANG expression was significantly higher in samples from injured human kidneys than in samples from normal human kidneys, and in mouse and rat kidneys, ANG expression was specifically induced under ER stress. In human renal epithelial cells, ER stress induced ANG expression in a manner dependent on the activity of transcription factor XBP1, and ANG promoted cellular adaptation to ER stress through induction of stress granules and inhibition of translation. Moreover, the severity of renal lesions induced by ER stress was dramatically greater in ANG knockout mice (Ang(-/-)) mice than in wild-type mice. These results indicate that ANG is a critical mediator of tissue adaptation to kidney injury and reveal a physiologically relevant ER stress-mediated adaptive translational control mechanism. PMID:26195817

  8. Angiogenin Mediates Cell-Autonomous Translational Control under Endoplasmic Reticulum Stress and Attenuates Kidney Injury.

    PubMed

    Mami, Iadh; Bouvier, Nicolas; El Karoui, Khalil; Gallazzini, Morgan; Rabant, Marion; Laurent-Puig, Pierre; Li, Shuping; Tharaux, Pierre-Louis; Beaune, Philippe; Thervet, Eric; Chevet, Eric; Hu, Guo-Fu; Pallet, Nicolas

    2016-03-01

    Endoplasmic reticulum (ER) stress is involved in the pathophysiology of kidney disease and aging, but the molecular bases underlying the biologic outcomes on the evolution of renal disease remain mostly unknown. Angiogenin (ANG) is a ribonuclease that promotes cellular adaptation under stress but its contribution to ER stress signaling remains elusive. In this study, we investigated the ANG-mediated contribution to the signaling and biologic outcomes of ER stress in kidney injury. ANG expression was significantly higher in samples from injured human kidneys than in samples from normal human kidneys, and in mouse and rat kidneys, ANG expression was specifically induced under ER stress. In human renal epithelial cells, ER stress induced ANG expression in a manner dependent on the activity of transcription factor XBP1, and ANG promoted cellular adaptation to ER stress through induction of stress granules and inhibition of translation. Moreover, the severity of renal lesions induced by ER stress was dramatically greater in ANG knockout mice (Ang(-/-)) mice than in wild-type mice. These results indicate that ANG is a critical mediator of tissue adaptation to kidney injury and reveal a physiologically relevant ER stress-mediated adaptive translational control mechanism.

  9. Infusion of glucose and lipids at physiological rates causes acute endoplasmic reticulum stress in rat liver.

    PubMed

    Boden, Guenther; Song, Weiwei; Duan, Xunbao; Cheung, Peter; Kresge, Karen; Barrero, Carlos; Merali, Salim

    2011-07-01

    Endoplasmic reticulum (ER) stress has recently been implicated as a cause for obesity-related insulin resistance; however, what causes ER stress in obesity has remained uncertain. Here, we have tested the hypothesis that macronutrients can cause acute (ER) stress in rat liver. Examined were the effects of intravenously infused glucose and/or lipids on proximal ER stress sensor activation (PERK, eIF2-α, ATF4, Xbox protein 1 (XBP1s)), unfolded protein response (UPR) proteins (GRP78, calnexin, calreticulin, protein disulphide isomerase (PDI), stress kinases (JNK, p38 MAPK) and insulin signaling (insulin/receptor substrate (IRS) 1/2 associated phosphoinositol-3-kinase (PI3K)) in rat liver. Glucose and/or lipid infusions, ranging from 23.8 to 69.5 kJ/4 h (equivalent to between ~17% and ~50% of normal daily energy intake), activated the proximal ER stress sensor PERK and ATF6 increased the protein abundance of calnexin, calreticulin and PDI and increased two GRP78 isoforms. Glucose and glucose plus lipid infusions induced comparable degrees of ER stress, but only infusions containing lipid activated stress kinases (JNK and p38 MAPK) and inhibited insulin signaling (PI3K). In summary, physiologic amounts of both glucose and lipids acutely increased ER stress in livers 12-h fasted rats and dependent on the presence of fat, caused insulin resistance. We conclude that this type of acute ER stress is likely to occur during normal daily nutrient intake.

  10. Endoplasmic reticulum stress stimulates heme oxygenase-1 gene expression in vascular smooth muscle. Role in cell survival.

    PubMed

    Liu, Xiao-ming; Peyton, Kelly J; Ensenat, Diana; Wang, Hong; Schafer, Andrew I; Alam, Jawed; Durante, William

    2005-01-14

    Heme oxygenase-1 (HO-1) is a cytoprotective protein that catalyzes the degradation of heme to biliverdin, iron, and carbon monoxide (CO). In the present study, we found that endoplasmic reticulum (ER) stress induced by a variety of experimental agents stimulated a time- and concentration-dependent increase in HO-1 mRNA and protein in vascular smooth muscle cells (SMC). The induction of HO-1 by ER stress was blocked by actinomycin D or cycloheximide and was independent of any changes in HO-1 mRNA stability. Luciferase reporter assays indicated that ER stress stimulated HO-1 promoter activity via the antioxidant response element. Moreover, ER stress induced the nuclear import of Nrf2 and the binding of Nrf2 to the HO-1 antioxidant response element. Interestingly, ER stress stimulated SMC apoptosis, as demonstrated by annexin V binding, caspase-3 activation, and DNA laddering. The induction of apoptosis by ER stress was potentiated by HO inhibition, whereas it was prevented by addition of HO substrate. In addition, exposure of SMC to exogenously administered CO inhibited ER stress-mediated apoptosis, and this was associated with a decrease in the expression of the proapoptotic protein, GADD153. In contrast, the other HO-1 products failed to block apoptosis or GADD153 expression during ER stress. These results demonstrated that ER stress is an inducer of HO-1 gene expression in vascular SMC and that HO-1-derived CO acts in an autocrine fashion to inhibit SMC apoptosis. The capacity of ER stress to stimulate the HO-1/CO system provides a novel mechanism by which this organelle regulates cell survival.

  11. Hydrogen Sulfide Inhibits Formaldehyde-Induced Endoplasmic Reticulum Stress in PC12 Cells by Upregulation of SIRT-1

    PubMed Central

    Zhang, Ping; Chen, Li-Xun; Wang, Li; Xie, Ming; Wang, Chun-Yan; Tang, Xiao-Qing

    2014-01-01

    Background Formaldehyde (FA), a well-known environmental pollutant, has been classified as a neurotoxic molecule. Our recent data demonstrate that hydrogen sulfide (H2S), the third gaseous transmitter, has a protective effect on the neurotoxicity of FA. However, the exact mechanisms underlying this protection remain largely unknown. Endoplasmic reticulum (ER) stress has been implicated in the neurotoxicity of FA. Silent mating type information regulator 2 homolog 1 (SIRT-1), a histone deacetylases, has various biological activities, including the extension of lifespan, the modulation of ER stress, and the neuroprotective action. Objective We hypothesize that the protection of H2S against FA-induced neurotoxicity involves in inhibiting ER stress by upregulation of SIRT-1. The present study attempted to investigate the protective effect of H2S on FA-induced ER stress in PC12 cells and the contribution of SIRT-1 to the protection of H2S against FA-induced injuries, including ER stress, cytotoxicity and apoptosis. Principal Findings We found that exogenous application of sodium hydrosulfide (NaHS; an H2S donor) significantly attenuated FA-induced ER stress responses, including the upregulated levels of glucose-regulated protein 78, C/EBP homologous protein, and cleaved caspase-12 expression. We showed that NaHS upregulates the expression of SIRT-1 in PC12 cells. Moreover, the protective effects of H2S on FA-elicited ER stress, cytotoxicity and apoptosis were reversed by Sirtinol, a specific inhibitor of SIRT-1. Conclusion/Significance These data indicate that H2S exerts its protection against the neurotoxicity of FA through overcoming ER stress via upregulation of SIRT-1. Our findings provide novel insights into the protective mechanisms of H2S against FA-induced neurotoxicity. PMID:24587076

  12. Minimally modified low-density lipoprotein induces macrophage endoplasmic reticulum stress via toll-like receptor 4.

    PubMed

    Yao, Shutong; Yang, Nana; Song, Guohua; Sang, Hui; Tian, Hua; Miao, Cheng; Zhang, Ying; Qin, Shucun

    2012-07-01

    Minimally modified low-density lipoprotein (mm-LDL) induces intimal foam cell formation, which is promoted by endoplasmic reticulum stress (ERS), a cross-point to link cellular processes with multiple risk factors that exist in all stages of atherosclerosis. However, it remains unclear whether mm-LDL-induced lipid accumulation in macrophages involves ERS and its underlying mechanisms. We showed that mm-LDL induced the accumulation of lipid droplets in RAW264.7 macrophages with increased free cholesterol in the endoplasmic reticulum, which was markedly attenuated by pretreatment with an antibody against toll-like receptor 4 (TLR4). Additionally, mm-LDL stimulated the transport of Cy3-labeled activating transcription factor 6 (ATF6), a key sensor to the unfolded protein response (UPR), from cytoplasm into nucleus. The expression of phosphorylated inositol-requiring enzyme 1 (p-IRE1), another sensor to the UPR, and its two downstream molecules, X box binding protein 1 and glucose-regulated protein 78 (GRP78), were significantly upregulated by mm-LDL. The alterations induced by mm-LDL were all significantly inhibited by antibodies against TLR4 or CD36. In addition, the upregulation of p-IRE1 and GRP78 and the nuclear translocation of ATF6 induced by mm-LDL were significantly attenuated by TLR4 siRNA. These results suggest that mm-LDL may induce free cholesterol accumulation in the endoplasmic reticulum and subsequently stimulate ERS and activate the UPR signaling pathway mediated by ATF6 and IRE1 in macrophages, a process that is potentially mediated by TLR4. PMID:22480542

  13. Endoplasmic reticulum-associated N-glycan degradation of cold-upregulated glycoproteins in response to chilling stress in Arabidopsis.

    PubMed

    Ma, Jun; Wang, Dinghe; She, Jessica; Li, Jianming; Zhu, Jian-Kang; She, Yi-Min

    2016-10-01

    N-glycosylation has a great impact on glycoprotein structure, conformation, stability, solubility, immunogenicity and enzyme activity. Structural characterization of N-glycoproteome has been challenging but can provide insights into the extent of protein folding and surface topology. We describe a highly sensitive proteomics method for large-scale identification and quantification of glycoproteins in Arabidopsis through (15) N-metabolic labeling, selective enrichment of glycopeptides, data-dependent MS/MS analysis and automated database searching. In-house databases of Arabidopsis glycoproteins and glycopeptides containing Asn-X-Ser/Thr/Cys motifs were constructed by reducing 20% and 90% of the public database size, respectively, to enable a rapid analysis of large datasets for comprehensive identification and quantification of glycoproteins and heterogeneous N-glycans in a complex mixture. Proteome-wide analysis identified c. 100 stress-related N-glycoproteins, of which the endoplasmic reticulum (ER) resident proteins were examined to be up-regulated. Quantitative measurements provided a molecular signature specific to glycoproteins for determining the degree of plant stress at low temperature. Structural N-glycoproteomics following time-course cold treatments revealed the stress-responsive degradation of high-mannose type N-glycans in ER in response to chilling stress, which may aid in elucidating the cellular mechanisms of protein relocation, transport, trafficking, misfolding and degradation under stress conditions. PMID:27558752

  14. Saturated lipids decrease mitofusin 2 leading to endoplasmic reticulum stress activation and insulin resistance in hypothalamic cells.

    PubMed

    Diaz, Brenda; Fuentes-Mera, Lizeth; Tovar, Armando; Montiel, Teresa; Massieu, Lourdes; Martínez-Rodríguez, Herminia Guadalupe; Camacho, Alberto

    2015-11-19

    Endoplasmic reticulum (ER) and mitochondria dysfunction contribute to insulin resistance generation during obesity and diabetes. ER and mitochondria interact through Mitofusin 2 (MTF2), which anchors in the outer mitochondrial and ER membranes regulating energy metabolism. Ablation of MTF2 leads to ER stress activation and insulin resistance. Here we determine whether lipotoxic insult induced by saturated lipids decreases MTF2 expression leading to ER stress response in hypothalamus and its effects on insulin sensitivity using in vitro and in vivo models. We found that lipotoxic stimulation induced by palmitic acid, but not the monounsaturated palmitoleic acid, decreases MTF2 protein levels in hypothalamic mHypoA-CLU192 cells. Also, palmitic acid incubation activates ER stress response evidenced by increase in the protein levels of GRP78/BIP marker at later stage than MTF2 downregulation. Additionally, we found that MTF2 alterations induced by palmitic, but not palmitoleic, stimulation exacerbate insulin resistance in hypothalamic cells. Insulin resistance induced by palmitic acid is prevented by pre-incubation of the anti-inflammatory and the ER stress release reagents, sodium salicylate and 4 phenylbutirate, respectively. Finally, we demonstrated that lipotoxic insult induced by high fat feeding to mice decreases MTF2 proteins levels in arcuate nucleus of hypothalamus. Our data indicate that saturated lipids modulate MTF2 expression in hypothalamus coordinating the ER stress response and the susceptibility to insulin resistance.

  15. Oxalicumone A, a new dihydrothiophene-condensed sulfur chromone induces apoptosis in leukemia cells through endoplasmic reticulum stress pathway.

    PubMed

    Wang, Jie; Wang, Qiao-Li; Nong, Xu-Hua; Zhang, Xiao-Yong; Xu, Xin-Ya; Qi, Shu-Hua; Wang, Yi-Fei

    2016-07-15

    Oxalicumone A (POA1), a novel dihydrothiophene-condensed sulfur chromone isolated from the marine fungus Penicillium oxalicum SCSGAF 0023, showed cytotoxicity against several cancer cells previously. In this study, its anti-cancer activity and underlying mechanism of this action were investigated in leukemia cells like KG-1a, HL60, U937, and K562. The results showed that POA1 inhibited dose-/time-dependently cell growth and induced apoptosis in leukemia cells. Also, POA1 caused cleavages of caspase-3, 8, 9 and PARP1, loss of mitochondrial membrane potential, up-regulations of phosphorylated p38 and JNK, and activation of endoplasmic reticulum stress (ER stress). Furthermore, 4-PBA (an ER stress inhibitor) but not SP600125 and SB203580 (JNK and p38 inhibitor, respectively) could largely inhibit POA1-induced growth suppression. Additionally, 4-PBA obstructed mitochondrial depolarization and cleavage of PARP1. These data suggested that ER stress pathway might be an important mediator in POA1-induced apoptosis. In conclusion, POA1 may have antitumor effects in leukemia cells through the induction of ER stress pathway.

  16. [Oxidized low density lipoprotein induces macrophage endoplasmic reticulum stress via CD36.].

    PubMed

    Yao, Shu-Tong; Sang, Hui; Yang, Na-Na; Kang, Li; Tian, Hua; Zhang, Ying; Song, Guo-Hua; Qin, Shu-Cun

    2010-10-25

    The purpose of the present study is to explore the effect of oxidized low density lipoprotein (ox-LDL) on the induction of endoplasmic reticulum stress (ERS) and the underlying mechanisms in ox-LDL-induced macrophage foam-forming process. RAW264.7 macrophages were cultured in DMEM medium containing 10% fetal bovine serum, and then treated with ox-LDL (25, 50 and 100 mg/L), anti-CD36 monoclonal antibody+ox-LDL and tunicamycin (TM), respectively. After incubation for 24 h, the cells were collected. The cellular lipid accumulation was showed by oil red O staining and the content of cellular total cholesterol was quantified by enzymatic colorimetry. The expression of glucose-regulated protein 94 (GRP94), a molecular marker of ERS, was determined by immunocytochemistry assay. The levels of GRP94 protein, phosphorylated inositol-requiring enzyme 1 (p-IRE1) and X box binding protein 1 (XBP1) in RAW264.7 cells were detected by Western blotting. The results indicated that after incubation with ox-LDL (25, 50 and 100 mg/L) for 24 h, a large amount of lipid droplets were found in the cytoplasm, and the contents of cellular total cholesterol were increased by 2.1, 2.8 and 3.1 folds compared with the control, respectively. Anti-CD36 antibody decreased markedly the cellular lipid accumulation induced by ox-LDL at 100 mg/L. Both ox-LDL and TM, a specific ERS inducer, could up-regulate the protein expression of GRP94 in a dose-dependent manner. Furthermore, p-IRE1 and XBP1, two key components of the unfolded protein response, were also significantly induced by the treatment with ox-LDL. The up-regulations of the three proteins induced by ox-LDL were inhibited significantly when the macrophages were pre-incubated with anti-CD36 antibody. These results suggest that ox-LDL may induce ERS in a dose-dependent way and subsequently activate the unfolded protein response signaling pathway in RAW264.7 macrophages, which is potentially mediated by scavenger receptor CD36. PMID:20945046

  17. Endoplasmic reticulum (ER) stress-suppressive compounds from scrap cultivation beds of the mushroom Hericium erinaceum.

    PubMed

    Ueda, Keiko; Kodani, Shinya; Kubo, Masakazu; Masuno, Kazuhiko; Sekiya, Atsushi; Nagai, Kaoru; Kawagishi, Hirokazu

    2009-08-01

    Four compounds were isolated from scrap cultivation beds of the mushroom, Hericium erinaceum. Compounds 1-4 were identified as methyl 4-hydroxy-3-(3-methylbutanoyl) benzoate, 2-chloro-1,3-dimethoxy-5-methylbenzene, methyl 4-chloro-3,5-dimethoxybenzoate, and 4-chloro-3,5-dimethoxybenzaldehyde by an interpretation of the NMR and MS data, respectively. This is the first reported isolation of 1 from a natural source. All the compounds showed protective activity against endoplasmic reticulum stress-dependent cell death.

  18. Bufotalin-induced apoptosis in osteoblastoma cells is associated with endoplasmic reticulum stress activation.

    PubMed

    Zhu, Yun-Rong; Xu, Yong; Fang, Jian-Feng; Zhou, Feng; Deng, Xiong-Wei; Zhang, Yun-Qing

    2014-08-15

    The search for novel and more efficient chemo-agents against malignant osteoblastoma is important. In this study, we examined the potential anti-osteoblastoma function of bufotalin, and studied the underlying mechanisms. Our results showed that bufotalin induced osteoblastoma cell death and apoptosis in dose- and time-dependent manners. Further, bufotalin induced endoplasmic reticulum (ER) stress activation in osteoblastoma cells, the latter was detected by the induction of C/EBP homologous protein (CHOP), phosphorylation of inositol-requiring enzyme 1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), as well as caspase-12 activation. Conversely, the ER stress inhibitor salubrinal, the caspase-12 inhibitor z-ATAD-fmk as well as CHOP depletion by shRNA significantly inhibited bufotalin-induced osteoblastoma cell death and apoptosis. Finally, by using a mice xenograft model, we demonstrated that bufotalin inhibited U2OS osteoblastoma cell growth in vivo. In summary, our results suggest that ER stress contributes to bufotalin-induced apoptosis in osteoblastoma cells. Bufotalin might be investigated as a novel anti-osteoblastoma agent. PMID:25068992

  19. Activating Transcription Factor 3-mediated Chemo-intervention with Cancer Chemokines in a Noncanonical Pathway under Endoplasmic Reticulum Stress*

    PubMed Central

    Park, Seong-Hwan; Kim, Juil; Do, Kee Hun; Park, Jiyeon; Oh, Chang Gyu; Choi, Hye Jin; Song, Bo Gyoung; Lee, Seung Joon; Kim, Yong Sik; Moon, Yuseok

    2014-01-01

    The cell-protective features of the endoplasmic reticulum (ER) stress response are chronically activated in vigorously growing malignant tumor cells, which provide cellular growth advantages over the adverse microenvironment including chemotherapy. As an intervention with ER stress responses in the intestinal cancer cells, preventive exposure to flavone apigenin potentiated superinduction of a regulatory transcription factor, activating transcription factor 3 (ATF3), which is also known to be an integral player coordinating ER stress response-related gene expression. ATF3 superinduction was due to increased turnover of ATF3 transcript via stabilization with HuR protein in the cancer cells under ER stress. Moreover, enhanced ATF3 caused inhibitory action against ER stress-induced cancer chemokines that are potent mediators determining the survival and metastatic potential of epithelial cancer cells. Although enhanced ATF3 was a negative regulator of the well known proinflammatory transcription factor NF-κB, blocking of NF-κB signaling did not affect ER stress-induced chemokine expression. Instead, immediately expressed transcription factor early growth response protein 1 (EGR-1) was positively involved in cancer chemokine induction by ER stressors. ER stress-induced EGR-1 and subsequent chemokine production were repressed by ATF3. Mechanistically, ATF3 directly interacted with and recruited HDAC1 protein, which led to epigenetic suppression of EGR-1 expression and subsequent chemokine production. Conclusively, superinduced ATF3 attenuated ER stress-induced cancer chemokine expression by epigenetically interfering with induction of EGR-1, a transcriptional modulator crucial to cancer chemokine production. Thus, these results suggest a potent therapeutic intervention of ER stress response-related cancer-favoring events by ATF3. PMID:25122760

  20. Activating transcription factor 3-mediated chemo-intervention with cancer chemokines in a noncanonical pathway under endoplasmic reticulum stress.

    PubMed

    Park, Seong-Hwan; Kim, Juil; Do, Kee Hun; Park, Jiyeon; Oh, Chang Gyu; Choi, Hye Jin; Song, Bo Gyoung; Lee, Seung Joon; Kim, Yong Sik; Moon, Yuseok

    2014-09-26

    The cell-protective features of the endoplasmic reticulum (ER) stress response are chronically activated in vigorously growing malignant tumor cells, which provide cellular growth advantages over the adverse microenvironment including chemotherapy. As an intervention with ER stress responses in the intestinal cancer cells, preventive exposure to flavone apigenin potentiated superinduction of a regulatory transcription factor, activating transcription factor 3 (ATF3), which is also known to be an integral player coordinating ER stress response-related gene expression. ATF3 superinduction was due to increased turnover of ATF3 transcript via stabilization with HuR protein in the cancer cells under ER stress. Moreover, enhanced ATF3 caused inhibitory action against ER stress-induced cancer chemokines that are potent mediators determining the survival and metastatic potential of epithelial cancer cells. Although enhanced ATF3 was a negative regulator of the well known proinflammatory transcription factor NF-κB, blocking of NF-κB signaling did not affect ER stress-induced chemokine expression. Instead, immediately expressed transcription factor early growth response protein 1 (EGR-1) was positively involved in cancer chemokine induction by ER stressors. ER stress-induced EGR-1 and subsequent chemokine production were repressed by ATF3. Mechanistically, ATF3 directly interacted with and recruited HDAC1 protein, which led to epigenetic suppression of EGR-1 expression and subsequent chemokine production. Conclusively, superinduced ATF3 attenuated ER stress-induced cancer chemokine expression by epigenetically interfering with induction of EGR-1, a transcriptional modulator crucial to cancer chemokine production. Thus, these results suggest a potent therapeutic intervention of ER stress response-related cancer-favoring events by ATF3.

  1. Activation of endoplasmic reticulum stress is involved in the activity of icariin against human lung adenocarcinoma cells.

    PubMed

    Di, Shouyin; Fan, Chongxi; Yang, Yang; Jiang, Shuai; Liang, Miaomiao; Wu, Guiling; Wang, Bodong; Xin, Zhenlong; Hu, Wei; Zhu, Yifang; Li, Weimiao; Zhou, Yongan; Li, Xiaofei; Yan, Xiaolong

    2015-09-01

    In this study, we investigated the anticancer activity of icariin (ICA) against human lung adenocarcinoma cells in vitro and in vivo and explored the role of endoplasmic reticulum (ER) stress (ERS) signaling in this process. ICA treatment resulted in a dose- and time-dependent decrease in the viability of human lung adenocarcinoma A549 cells. Additionally, ICA exhibited potent anticancer activity, as evidenced by reductions in A549 cell adhesion, migration and intracellular glutathione (GSH) levels and increases in the apoptotic index, Caspase 3 activity, and reactive oxygen species. Furthermore, ICA treatment increased the expression of ERS-related molecules (p-PERK, ATF6, GRP78, p-eIF2α, and CHOP), up-regulated the apoptosis-related protein PUMA and down-regulated the anti-apoptosis-related protein Bcl2. The down-regulation of ERS signaling using PERK siRNA desensitized lung adenocarcinoma cells to ICA treatment, whereas the up-regulation of ERS signaling using thapsigargin (THA) sensitized lung adenocarcinoma cells to ICA treatment. Additionally, ICA inhibited the growth of human lung adenocarcinoma A549 cell xenografts by increasing the expression of ERS-related molecules (p-PERK and CHOP), up-regulating PUMA, and down-regulating Bcl2. These data indicate that ICA is a potential inhibitor of lung adenocarcinoma cell growth by targeting ERS signaling and suggest that the activation of ERS signaling may represent a novel therapeutic intervention for lung adenocarcinoma.

  2. Sodium fluoride induces apoptosis through reactive oxygen species-mediated endoplasmic reticulum stress pathway in Sertoli cells.

    PubMed

    Yang, Yang; Lin, Xinwei; Huang, Hui; Feng, Demin; Ba, Yue; Cheng, Xuemin; Cui, Liuxin

    2015-04-01

    Excessive fluoride exposure is known to contribute to reproductive system dysfunction, ultimately leading to pathological damage and apoptosis in cells. Although both oxidative and endoplasmic reticulum (ER) stresses have been implicated in fluorosis, the signaling pathways and their roles in sodium fluoride (NaF)-induced apoptosis of Sertoli cells have been sparsely described. In this study, oxidative damage, ER stress, and apoptosis were analyzed after Sertoli cells were treated with varying doses of NaF for 24hr. Moreover, the antioxidant N-acetylcysteine (NAC) and pro-apoptotic transcription factor CHOP knockdown were used to clarify the precise interplay between reactive oxygen species (ROS), ER stress and their roles in NaF-induced apoptosis in Sertoli cells. The present study indicated that NaF significantly decreased cell viability and induced apoptosis in Sertoli cells. In addition, NaF exposure facilitated the accumulation of ROS and increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) in Sertoli cells. Treatment with NAC caused remarkable recovery from these NaF-induced responses. Meanwhile, excessive NaF triggered ER stress as evidenced by up-regulated glucose-regulated protein 78 kDa (GRP78), PKR-like ER kinase (PERK), phosphorylation of eukaryotic translation initiation factor 2α (p-eIF2α) and CCAAT/enhancer-binding protein-homologous protein (CHOP), without affecting total eukaryotic translation initiation factor 2α (eIF2α). NAC effectively blocked the activation of ER stress, suggesting that NaF-induced ROS is an early event that triggers ER stress. Taken together, the results demonstrate that the ROS-mediated ER stress pathway is the crucial mechanistic event involved in NaF-induced apoptosis of Sertoli cells. PMID:25872712

  3. Exogenous hepatitis B virus envelope proteins induce endoplasmic reticulum stress: involvement of cannabinoid axis in liver cancer cells

    PubMed Central

    Montalbano, Roberta; Honrath, Birgit; Wissniowski, Thaddeus Till; Elxnat, Moritz; Roth, Silvia; Ocker, Matthias; Quint, Karl; Churin, Yuri; Roederfeld, Martin; Schroeder, Dirk; Glebe, Dieter; Roeb, Elke; Fazio, Pietro Di

    2016-01-01

    HBV represents the most common chronic viral infection and major cause of hepatocellular carcinoma (HCC), although its exact role in liver tumorigenesis is unclear. Massive storage of the small (SHBs), middle (MHBs) and large surface (LHBs) HBV envelope proteins leads to cell stress and sustained inflammatory responses. Cannabinoid (CB) system is involved in the pathogenesis of liver diseases, stimulating acute and chronic inflammation, liver damage and fibrogenesis; it triggers endoplasmic reticulum (ER) stress response. The aim of our work was to investigate the activation of ER stress pathway after ectopic HBV envelope proteins expression, in liver cancer cells, and the role exerted by CB receptors. PCR, immunofluorescence and western blotting showed that exogenous LHBs and MHBs induce a clear ER stress response in Huh-7 cells expressing CB1 receptor. Up-regulation of the chaperone BiP/GRP78 (Binding Immunoglobulin Protein/Glucose-Regulated Protein 78) and of the transcription factor CHOP/GADD153 (C/EBP Homologous Protein/Growth Arrest and DNA Damage inducible gene 153), phosphorylation of PERK (PKR-like ER Kinase) and eIF2α (Eukaryotic Initiation Factor 2α) and splicing of XBP1 (X-box binding protein 1) was observed. CB1−/− HepG2 cells did not show any ER stress activation. Inhibition of CB1 receptor counteracted BiP expression in transfected Huh-7 and in HBV+ PLC/PRF/5 cells; whereas no effect was observed in HBV− HLF cells. These results suggest that HBV envelope proteins are able to induce the ER stress pathway. CB1 expression is directly correlated with ER stress function. Further investigations are needed to clarify the involvement of cannabinoid in HCC progression after HBV infection. PMID:26967385

  4. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response

    PubMed Central

    Prinz, William A.; Thorn, Kurt S.; Voss, Christiane; Walter, Peter

    2009-01-01

    Cells constantly adjust the sizes and shapes of their organelles according to need. In this study, we examine endoplasmic reticulum (ER) membrane expansion during the unfolded protein response (UPR) in the yeast Saccharomyces cerevisiae. We find that membrane expansion occurs through the generation of ER sheets, requires UPR signaling, and is driven by lipid biosynthesis. Uncoupling ER size control and the UPR reveals that membrane expansion alleviates ER stress independently of an increase in ER chaperone levels. Converting the sheets of the expanded ER into tubules by reticulon overexpression does not affect the ability of cells to cope with ER stress, showing that ER size rather than shape is the key factor. Thus, increasing ER size through membrane synthesis is an integral yet distinct part of the cellular program to overcome ER stress. PMID:19948500

  5. Atf6 plays protective and pathologic roles in fatty liver disease due to endoplasmic reticulum stress

    PubMed Central

    Cinaroglu, Ayca; Gao, Chuan; Imrie, Dru; Sadler, Kirsten C.

    2011-01-01

    Many etiologies of fatty liver disease (FLD) are associated with hyper-activation of one of the three pathways that comprise the unfolded protein response (UPR), a harbinger of endoplasmic reticulum (ER) stress. The UPR is mediated by pathways initiated by PERK, IRE1a/XBP1and ATF6, and each of these pathways have been implicated as either protective or pathological in FLD. We use zebrafish with FLD and hepatic ER stress to explore the relationship between Atf6 and steatosis. Mutation of the foie gras (foigr) gene causes FLD and hepatic ER stress. Prolonged treatment of wild-type larvae with a dose of tunicamycin that causes chronic ER stress phenocopies foigr. In contrast, acute exposure to a high dose of tunicamycin robustly activates the UPR but is less effective at inducing steatosis. The Srebp transcription factors are not required for steatosis in any of these models. Instead, depleting larvae of active Atf6 either through mbtps1 mutation or atf6 morpholino injection protects against steatosis caused by chronic ER stress whereas it exacerbates steatosis caused by acute tunicamycin treatment. Conclusion ER stress causes FLD. Loss of Atf6 prevents steatosis caused by chronic ER stress but can also potentiate steatosis caused by acute ER stress. This demonstrates that Atf6 can play both protective and pathological roles in FLD. PMID:21538441

  6. Reduction of endoplasmic reticulum stress inhibits neointima formation after vascular injury.

    PubMed

    Ishimura, Shutaro; Furuhashi, Masato; Mita, Tomohiro; Fuseya, Takahiro; Watanabe, Yuki; Hoshina, Kyoko; Kokubu, Nobuaki; Inoue, Katsumi; Yoshida, Hideaki; Miura, Tetsuji

    2014-11-06

    Endoplasmic reticulum (ER) stress and inappropriate adaptation through the unfolded protein response (UPR) are predominant features of pathological processes. However, little is known about the link between ER stress and endovascular injury. We investigated the involvement of ER stress in neointima hyperplasia after vascular injury. The femoral arteries of 7-8-week-old male mice were subjected to wire-induced vascular injury. After 4 weeks, immunohistological analysis showed that ER stress markers were upregulated in the hyperplastic neointima. Neointima formation was increased by 54.8% in X-box binding protein-1 (XBP1) heterozygous mice, a model of compromised UPR. Knockdown of Xbp1 in human coronary artery smooth muscle cells (CASMC) in vitro promoted cell proliferation and migration. Furthermore, treatment with ER stress reducers, 4-phenylbutyrate (4-PBA) and tauroursodeoxycholic acid (TUDCA), decreased the intima-to-media ratio after wire injury by 50.0% and 72.8%, respectively. Chronic stimulation of CASMC with PDGF-BB activated the UPR, and treatment with 4-PBA and TUDCA significantly suppressed the PDGF-BB-induced ER stress markers in CASMC and the proliferation and migration of CASMC. In conclusion, increased ER stress contributes to neointima formation after vascular injury, while UPR signaling downstream of XBP1 plays a suppressive role. Suppression of ER stress would be a novel strategy against post-angioplasty vascular restenosis.

  7. Identification of agents that promote endoplasmic reticulum stress using an assay that monitors luciferase secretion

    PubMed Central

    Doudican, Nicole A.; Wen, Shih Ya; Mazumder, Amitabha; Orlow, Seth J.

    2015-01-01

    Disruption of protein processing in the secretory pathway is a measurable hallmark of endoplasmic reticulum (ER) stress. Activation of ER stress-mediated pathways has been implicated in numerous diseases including cancer. To identify agents that induce ER stress, we established a screen for compounds that reduce secretion of the reporter protein Gaussia luciferase (GLUC). Given the clinically validated importance of targeting ER stress-mediated pathways in the treatment of multiple myeloma (MM), we used this hematological malignancy as a model for validating our screening system. From a screen of 2000 marketed drugs and natural compounds in KMS11 and ARP1 MM cells, we identified 97 agents that reduced GLUC secretion in both cell lines by at least 30%. In order to confirm inducers of ER stress, we applied a secondary screen that assessed splicing of the unfolded protein response (UPR) transcription factor XBP1. One agent, theaflavin-3,3′–digallate (TF-3), was chosen based on its history of safe human consumption and further validated through studies of ER stress-related pathways including the UPR and apoptosis. Given these promising results, this screen could be a useful tool to identify agents targeting ER stress-related mechanisms in other cellular systems wherein ER stress plays a role in disease etiology. PMID:24371212

  8. Effect of amiloride on endoplasmic reticulum stress response in the injured spinal cord of rats.

    PubMed

    Kuroiwa, Masahiro; Watanabe, Masahiko; Katoh, Hiroyuki; Suyama, Kaori; Matsuyama, Daisuke; Imai, Takeshi; Mochida, Joji

    2014-10-01

    After traumatic spinal cord injury (SCI), endoplasmic reticulum (ER) stress exacerbates secondary injury, leading to expansion of demyelination and reduced remyelination due to oligodendrocyte precursor cell (OPC) apoptosis. Although recent studies have revealed that amiloride controls ER stress and leads to improvement in several neurological disorders including SCI, its mechanism is not completely understood. Here, we used a rat SCI model to assess the effects of amiloride on functional recovery, secondary damage expansion, ER stress-induced cell death and OPC survival. Hindlimb function in rats with spinal cord contusion significantly improved after amiloride administration. Amiloride significantly decreased the expression of the pro-apoptotic transcription factor CHOP in the injured spinal cord and significantly increased the expression of the ER chaperone GRP78, which protects cells against ER stress. In addition, amiloride treatment led to a significant decrease in ER stress-induced apoptosis and a significant increase of NG2-positive OPCs in the injured spinal cord. Furthermore, in vitro experiments performed to investigate the direct effect of amiloride on OPCs revealed that amiloride reduced CHOP expression in OPCs cultured under ER stress. These results suggest that amiloride controls ER stress in SCI and inhibits cellular apoptosis, contributing to OPC survival. The present study suggests that amiloride may be an effective treatment to reduce ER stress-induced cell death in the acute phase of SCI.

  9. Hepatic Xbp1 Gene Deletion Promotes Endoplasmic Reticulum Stress-induced Liver Injury and Apoptosis.

    PubMed

    Olivares, Shantel; Henkel, Anne S

    2015-12-11

    Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR), a highly conserved signaling cascade that functions to alleviate stress and promote cell survival. If, however, the cell is unable to adapt and restore homeostasis, then the UPR activates pathways that promote apoptotic cell death. The molecular mechanisms governing the critical transition from adaptation and survival to initiation of apoptosis remain poorly understood. We aim to determine the role of hepatic Xbp1, a key mediator of the UPR, in controlling the adaptive response to ER stress in the liver. Liver-specific Xbp1 knockout mice (Xbp1(LKO)) and Xbp1(fl/fl) control mice were subjected to varying levels and durations of pharmacologic ER stress. Xbp1(LKO) and Xbp1(fl/fl) mice showed robust and equal activation of the UPR acutely after induction of ER stress. By 24 h, Xbp1(fl/fl) controls showed complete resolution of UPR activation and no liver injury, indicating successful adaptation to the stress. Conversely, Xbp1(LKO) mice showed ongoing UPR activation associated with progressive liver injury, apoptosis, and, ultimately, fibrosis by day 7 after induction of ER stress. These data indicate that hepatic XBP1 controls the adaptive response of the UPR and is critical to restoring homeostasis in the liver in response to ER stress. PMID:26504083

  10. Amplified RLR signaling activation through an interferon-stimulated gene-endoplasmic reticulum stress-mitochondrial calcium uniporter protein loop.

    PubMed

    Cheng, Jinbo; Liao, Yajin; Zhou, Lujun; Peng, Shengyi; Chen, Hong; Yuan, Zengqiang

    2016-01-01

    Type I interferon (IFN-I) is critical for a host against viral and bacterial infections via induction of hundreds of interferon-stimulated genes (ISGs), but the mechanism underlying the regulation of IFN-I remains largely unknown. In this study, we first demonstrate that ISG expression is required for optimal IFN-β levels, an effect that is further enhanced by endoplasmic reticulum (ER) stress. Furthermore, we identify mitochondrial calcium uniporter protein (MCU) as a mitochondrial antiviral signaling protein (MAVS)-interacting protein that is important for ER stress induction and amplified MAVS signaling activation. In addition, by performing an ectopic expression assay to screen a library of 117 human ISGs for effects on IFN-β levels, we found that tumor necrosis factor receptor 1 (TNFR1) significantly increases IFN-β levels independent of ER stress. Altogether, our findings suggest that MCU and TNFR1 are involved in the regulation of RIG-I-like receptors (RLR) signaling. PMID:26892273

  11. Regulation of Protein Secretion Through Controlled Aggregation in the Endoplasmic Reticulum

    NASA Astrophysics Data System (ADS)

    Rivera, Victor M.; Wang, Xiurong; Wardwell, Scott; Courage, Nancy L.; Volchuk, Allen; Keenan, Terence; Holt, Dennis A.; Gilman, Michael; Orci, Lelio; Cerasoli, Frank; Rothman, James E.; Clackson, Tim

    2000-02-01

    A system for direct pharmacologic control of protein secretion was developed to allow rapid and pulsatile delivery of therapeutic proteins. A protein was engineered so that it accumulated as aggregates in the endoplasmic reticulum. Secretion was then stimulated by a synthetic small-molecule drug that induces protein disaggregation. Rapid and transient secretion of growth hormone and insulin was achieved in vitro and in vivo. A regulated pulse of insulin secretion resulted in a transient correction of serum glucose concentrations in a mouse model of hyperglycemia. This approach may make gene therapy a viable method for delivery of polypeptides that require rapid and regulated delivery.

  12. Regulation of protein secretion through controlled aggregation in the endoplasmic reticulum.

    PubMed

    Rivera, V M; Wang, X; Wardwell, S; Courage, N L; Volchuk, A; Keenan, T; Holt, D A; Gilman, M; Orci, L; Cerasoli, F; Rothman, J E; Clackson, T

    2000-02-01

    A system for direct pharmacologic control of protein secretion was developed to allow rapid and pulsatile delivery of therapeutic proteins. A protein was engineered so that it accumulated as aggregates in the endoplasmic reticulum. Secretion was then stimulated by a synthetic small-molecule drug that induces protein disaggregation. Rapid and transient secretion of growth hormone and insulin was achieved in vitro and in vivo. A regulated pulse of insulin secretion resulted in a transient correction of serum glucose concentrations in a mouse model of hyperglycemia. This approach may make gene therapy a viable method for delivery of polypeptides that require rapid and regulated delivery. PMID:10657290

  13. Inhibition of homocysteine-induced endoplasmic reticulum stress and endothelial cell damage by l-serine and glycine.

    PubMed

    Sim, Woo-Cheol; Han, Inhoi; Lee, Wonseok; Choi, You-Jin; Lee, Kang-Yo; Kim, Dong Gwang; Jung, Seung-Hwan; Oh, Seon-Hee; Lee, Byung-Hoon

    2016-08-01

    Hyperhomocysteinemia is an independent risk factor for several cardiovascular diseases. The use of vitamins to modulate homocysteine metabolism substantially lowers the risk by reducing plasma homocysteine levels. In this study, we evaluated the effects of l-serine and related amino acids on homocysteine-induced endoplasmic reticulum (ER) stress and endothelial cell damage using EA.hy926 human endothelial cells. Homocysteine treatment decreased cell viability and increased apoptosis, which were reversed by cotreatment with l-serine. l-Serine inhibited homocysteine-induced ER stress as verified by decreased glucose-regulated protein 78kDa (GRP78) and C/EBP homologous protein (CHOP) expression as well as X-box binding protein 1 (xbp1) mRNA splicing. The effects of l-serine on homocysteine-induced ER stress are not attributed to intracellular homocysteine metabolism, but instead to decreased homocysteine uptake. Glycine exerted effects on homocysteine-induced ER stress, apoptosis, and cell viability that were comparable to those of l-serine. Although glycine did not affect homocysteine uptake or export, coincubation of homocysteine with glycine for 24h reduced the intracellular concentration of homocysteine. Taken together, l-serine and glycine cause homocysteine-induced endothelial cell damage by reducing the level of intracellular homocysteine. l-Serine acts by competitively inhibiting homocysteine uptake in the cells. However, the mechanism(s) by which glycine lowers homocysteine levels are unclear. PMID:27064126

  14. Inhibition of homocysteine-induced endoplasmic reticulum stress and endothelial cell damage by l-serine and glycine.

    PubMed

    Sim, Woo-Cheol; Han, Inhoi; Lee, Wonseok; Choi, You-Jin; Lee, Kang-Yo; Kim, Dong Gwang; Jung, Seung-Hwan; Oh, Seon-Hee; Lee, Byung-Hoon

    2016-08-01

    Hyperhomocysteinemia is an independent risk factor for several cardiovascular diseases. The use of vitamins to modulate homocysteine metabolism substantially lowers the risk by reducing plasma homocysteine levels. In this study, we evaluated the effects of l-serine and related amino acids on homocysteine-induced endoplasmic reticulum (ER) stress and endothelial cell damage using EA.hy926 human endothelial cells. Homocysteine treatment decreased cell viability and increased apoptosis, which were reversed by cotreatment with l-serine. l-Serine inhibited homocysteine-induced ER stress as verified by decreased glucose-regulated protein 78kDa (GRP78) and C/EBP homologous protein (CHOP) expression as well as X-box binding protein 1 (xbp1) mRNA splicing. The effects of l-serine on homocysteine-induced ER stress are not attributed to intracellular homocysteine metabolism, but instead to decreased homocysteine uptake. Glycine exerted effects on homocysteine-induced ER stress, apoptosis, and cell viability that were comparable to those of l-serine. Although glycine did not affect homocysteine uptake or export, coincubation of homocysteine with glycine for 24h reduced the intracellular concentration of homocysteine. Taken together, l-serine and glycine cause homocysteine-induced endothelial cell damage by reducing the level of intracellular homocysteine. l-Serine acts by competitively inhibiting homocysteine uptake in the cells. However, the mechanism(s) by which glycine lowers homocysteine levels are unclear.

  15. Hydrogen sulfide preconditioning protects against myocardial ischemia/reperfusion injury in rats through inhibition of endo/sarcoplasmic reticulum stress

    PubMed Central

    Li, Changyong; Hu, Min; Wang, Yuan; Lu, Huan; Deng, Jing; Yan, Xiaohong

    2015-01-01

    Ischemia reperfusion (I/R) injury is a major cause of myocardial damage. Hydrogen sulfide (H2S), a gaseous signal molecule, has drawn considerable attention for its role in various pathophysiological processes. Multiple lines of evidence reveal the protective effects of H2S in various models of cardiac injury, however, the exact mechanism underlying this protective effect of H2S against myocardial I/R injury is not fully understood. The present study was designed to investigate whether H2S preconditioning attenuates myocardial I/R injury in rats and whether the observed protection is associated with reduced endo/sarcoplasmic reticulum (ER/SR) stress. We found that H2S preconditioning significantly reduced myocardial infarct size, preserved left ventricular function, and inhibited I/R-induced cardiomyocyte apoptosis in vivo. Furthermore, H2S preconditioning significantly attenuated I/R-induced ER/SR stress responses, including the increased expression of glucose-regulated protein 78, C/EBP homologous protein, and activate transcription factor in myocardium. Additionally, we demonstrate that H2S preconditioning attenuates ER/SR stress and inhibits cardiomyocyte apoptosis in an in vitro model of hypoxia/reoxygenation in rat H9c2 cardiac myocytes. In conclusion, these results suggest that H2S-attenuated ER/SR stress plays an important role in its protective effects against I/R-induced myocardial injury. PMID:26339339

  16. Involvement of caspase-2 and caspase-9 in endoplasmic reticulum stress-induced apoptosis: A role for the IAPs

    SciTech Connect

    Cheung, Herman H.; Lynn Kelly, N.; Liston, Peter; Korneluk, Robert G. . E-mail: bob@mgcheo.med.uottawa.ca

    2006-07-15

    Dysregulation of apoptosis is involved in a wide spectrum of disease ranging from proliferative to degenerative disorders. An emerging area of study in apoptosis is the critical contribution of the endoplasmic reticulum (ER) in both mitochondrial and ER specific apoptosis pathways. Here we show that brefeldin A and tunicamycin-mediated ER stress lead to caspase-dependent apoptosis involving caspase-2. Confocal microscopy and subcellular fractionation indicate that caspase-2 is localized to the ER, and following ER stress, the processing of caspase-2 and -9 is an early event preceding the activation of caspase-3 and -7 and the cleavage of the caspase substrate poly(ADP-ribose) polymerase (PARP). Inhibition and silencing of either caspase-2 or caspase-9 suppress ER stress-induced apoptosis, as demonstrated by annexin V binding. Similarly, transduction with an adenovirus encoding either Inhibitors of Apoptosis (IAP) protein HIAP1/c-IAP2 or HIAP2/c-IAP1 also suppresses ER stress-induced apoptosis. However, among HIAP1, HIAP2 and XIAP, only HIAP2 binds and inhibits caspase-2. Our results thus indicate a novel mechanism by which HIAP2 can regulate ER-initiated apoptosis by modulating the activity of caspase-2.

  17. Genes and Gene Networks Involved in Sodium Fluoride-Elicited Cell Death Accompanying Endoplasmic Reticulum Stress in Oral Epithelial Cells

    PubMed Central

    Tabuchi, Yoshiaki; Yunoki, Tatsuya; Hoshi, Nobuhiko; Suzuki, Nobuo; Kondo, Takashi

    2014-01-01

    Here, to understand the molecular mechanisms underlying cell death induced by sodium fluoride (NaF), we analyzed gene expression patterns in rat oral epithelial ROE2 cells exposed to NaF using global-scale microarrays and bioinformatics tools. A relatively high concentration of NaF (2 mM) induced cell death concomitant with decreases in mitochondrial membrane potential, chromatin condensation and caspase-3 activation. Using 980 probe sets, we identified 432 up-regulated and 548 down-regulated genes, that were differentially expressed by >2.5-fold in the cells treated with 2 mM of NaF and categorized them into 4 groups by K-means clustering. Ingenuity® pathway analysis revealed several gene networks from gene clusters. The gene networks Up-I and Up-II included many up-regulated genes that were mainly associated with the biological function of induction or prevention of cell death, respectively, such as Atf3, Ddit3 and Fos (for Up-I) and Atf4 and Hspa5 (for Up-II). Interestingly, knockdown of Ddit3 and Hspa5 significantly increased and decreased the number of viable cells, respectively. Moreover, several endoplasmic reticulum (ER) stress-related genes including, Ddit3, Atf4 and Hapa5, were observed in these gene networks. These findings will provide further insight into the molecular mechanisms of NaF-induced cell death accompanying ER stress in oral epithelial cells. PMID:24853129

  18. Induction of endoplasmic reticulum-derived oxidative stress by an occult infection related S surface antigen variant

    PubMed Central

    Lee, In-Kyung; Lee, Seoung-Ae; Kim, Hong; Won, You-Sub; Kim, Bum-Joon

    2015-01-01

    AIM: To investigate the mechanism of endoplasmic reticulum (ER) stress induction by an occult infection related hepatitis B virus S surface antigen (HBsAg) variant. METHODS: We used an HBsAg variant with lower secretion capacity, which was a KD variant from a Korean subject who was occultly infected with the genotype C. We compared the expression profiles of ER stress-related proteins between HuH-7 cells transfected with HBsAg plasmids of a wild-type and a KD variant using Western blot. RESULTS: Confocal microscopy indicated that the KD variant had higher levels of co-localization with ER than the wild-type HBsAg. The KD variant up-regulated ER stress-related proteins and induced reactive oxygen species (ROS) compared to the wild-type via an increase in calcium. The KD variant also down-regulated anti-oxidant proteins (HO-1, catalase and SOD) compared to the wild-type, which indicates positive amplification loops of the ER-ROS axis. The KD variant also induced apoptotic cell death via the up-regulation of caspase proteins (caspase 6, 9 and 12). Furthermore, the KD variant induced a higher level of nitric oxide than wild-type HBsAg via the up-regulation of the iNOS protein. CONCLUSION: Our data indicate that occult infection related HBsAg variants can lead to ER-derived oxidative stress and liver cell death in HuH-7 cells. PMID:26078563

  19. Surviving Endoplasmic Reticulum Stress Is Coupled to Altered Chondrocyte Differentiation and Function

    PubMed Central

    Cheslett, Deborah; Chan, Wilson C. W; So, Chi Leong; Melhado, Ian G; Chan, Tori W. Y; Kwan, Kin Ming; Hunziker, Ernst B; Yamada, Yoshihiko; Bateman, John F; Cheung, Kenneth M. C; Cheah, Kathryn S. E

    2007-01-01

    In protein folding and secretion disorders, activation of endoplasmic reticulum (ER) stress signaling (ERSS) protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs) during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del), misfolded α1(X) chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia. PMID:17298185

  20. Endoplasmic Reticulum Stress is a Mediator of Post-Transplant Injury in Severely Steatotic Liver Allografts

    PubMed Central

    Anderson, Christopher D.; Upadhya, Gundumi; Conzen, Kendra D.; Jia, Jianlou; Brunt, Elizabeth M.; Tiriveedhi, Venkataswarup; Xie, Yan; Ramachandran, Sabarinathan; Mohanakumar, Thalachallour; Davidson, Nicholas O.; Chapman, William C.

    2010-01-01

    Hepatic steatosis continues to present a major challenge in liver transplantation. These organs have been shown to have an increased susceptibility to cold ischemia and reperfusion (CIR) injury compared to otherwise comparable lean livers; the mechanisms governing this increased susceptibility to CIR injury are not fully understood. Endoplasmic reticulum (ER) stress is an important link between hepatic steatosis, insulin resistance and the metabolic syndrome. In this study, we investigated ER stress signaling and blockade in the mediation of CIR injury in severely steatotic rodent allografts. Steatotic allografts from genetically leptin-resistant rodents had increased ER stress responses and increased markers of hepatocellular injury following liver transplantation into strain-matched lean recipients. ER stress response components were decreased by the chemical chaperone, TUDCA, resulting in improvement of the allograft injury. TUDCA treatment decreased NF-κB activation, and the pro-inflammatory cytokines IL-6 and IL-1β. However, the predominant response was decreased expression of the ER stress cell death mediator, CHOP. Further, activation of the inflammation-associated caspase 11 was decreased linking ER Stress/CHOP to pro-inflammatory cytokine production following steatotic liver transplantation. These data confirm ER stress in steatotic allografts, and implicate this as a mediating mechanism of inflammation and hepatocyte death in the steatotic liver allograft. PMID:21280192

  1. Inhibition of endoplasmic reticulum stress improves coronary artery function in the spontaneously hypertensive rats

    PubMed Central

    Choi, Soo-Kyoung; Lim, Mihwa; Byeon, Seon-Hee; Lee, Young-Ho

    2016-01-01

    Endoplasmic reticulum (ER) stress has been shown to play a critical role in the pathogenesis of cardiovascular complications. However, the role and mechanisms of ER stress in hypertension remain unclear. Thus, we hypothesized that enhanced ER stress contributes to the maintenance of hypertension in spontaneously hypertensive rats (SHRs). Sixteen-week old male SHRs and Wistar Kyoto Rats (WKYs) were used in this study. The SHRs were treated with ER stress inhibitor (Tauroursodeoxycholic acid; TUDCA, 100 mg/kg/day) for two weeks. There was a decrease in systolic blood pressure in SHR treated with TUDCA. The pressure-induced myogenic tone was significantly increased, whereas endothelium-dependent relaxation was significantly attenuated in SHR compared with WHY. Interestingly, treatment of ER stress inhibitor normalized myogenic responses and endothelium-dependent relaxation in SHR. These data were associated with an increase in expression or phosphorylation of ER stress markers (Bip, ATF6, CHOP, IRE1, XBP1, PERK, and eIF2α) in SHRs, which were reduced by TUDCA treatment. Furthermore, phosphorylation of MLC20 was increased in SHRs, which was reduced by the treatment of TUDCA. Therefore, our results suggest that ER stress could be a potential target for hypertension. PMID:27550383

  2. Inhibition of endoplasmic reticulum stress improves coronary artery function in the spontaneously hypertensive rats.

    PubMed

    Choi, Soo-Kyoung; Lim, Mihwa; Byeon, Seon-Hee; Lee, Young-Ho

    2016-01-01

    Endoplasmic reticulum (ER) stress has been shown to play a critical role in the pathogenesis of cardiovascular complications. However, the role and mechanisms of ER stress in hypertension remain unclear. Thus, we hypothesized that enhanced ER stress contributes to the maintenance of hypertension in spontaneously hypertensive rats (SHRs). Sixteen-week old male SHRs and Wistar Kyoto Rats (WKYs) were used in this study. The SHRs were treated with ER stress inhibitor (Tauroursodeoxycholic acid; TUDCA, 100 mg/kg/day) for two weeks. There was a decrease in systolic blood pressure in SHR treated with TUDCA. The pressure-induced myogenic tone was significantly increased, whereas endothelium-dependent relaxation was significantly attenuated in SHR compared with WHY. Interestingly, treatment of ER stress inhibitor normalized myogenic responses and endothelium-dependent relaxation in SHR. These data were associated with an increase in expression or phosphorylation of ER stress markers (Bip, ATF6, CHOP, IRE1, XBP1, PERK, and eIF2α) in SHRs, which were reduced by TUDCA treatment. Furthermore, phosphorylation of MLC20 was increased in SHRs, which was reduced by the treatment of TUDCA. Therefore, our results suggest that ER stress could be a potential target for hypertension. PMID:27550383

  3. Roles of endoplasmic reticulum stress and unfolded protein response associated genes in seed stratification and bud endodormancy during chilling accumulation in Prunus persica.

    PubMed

    Fu, Xi Ling; Xiao, Wei; Wang, Dong Ling; Chen, Min; Tan, Qiu Ping; Li, Ling; De Chen, Xiu; Gao, Dong Sheng

    2014-01-01

    Dormancy mechanisms in seeds and buds arrest growth until environmental conditions are optimal for development. A genotype-specific period of chilling is usually required to release dormancy, but the underlying molecular mechanisms are still not fully understood. To discover transcriptional pathways associated with dormancy release common to seed stratification and bud endodormancy, we explored the chilling-dependent expression of 11 genes involved in endoplasmic reticulum stress and the unfolded protein response signal pathways. We propose that endoplasmic reticulum stress and the unfolded protein response impact on seed as well as bud germination and development by chilling-dependent mechanisms. The emerging discovery of similarities between seed stratification and bud endodormancy status indicate that these two processes are probably regulated by common endoplasmic reticulum stress and unfolded protein response signalling pathways. Clarification of regulatory pathways common to both seed and bud dormancy may enhance understanding of the mechanisms underlying dormancy and breeding programs may benefit from earlier prediction of chilling requirements for uniform blooming of novel genotypes of deciduous fruit tree species.

  4. Alcohol Dehydrogenase Protects against Endoplasmic Reticulum Stress-Induced Myocardial Contractile Dysfunction via Attenuation of Oxidative Stress and Autophagy: Role of PTEN-Akt-mTOR Signaling

    PubMed Central

    Pang, Jiaojiao; Fuller, Nathan D.; Hu, Nan; Barton, Linzi A.; Henion, Jeremy M.; Guo, Rui; Chen, Yuguo; Ren, Jun

    2016-01-01

    Background The endoplasmic reticulum (ER) plays an essential role in ensuring proper folding of the newly synthesized proteins. Aberrant ER homeostasis triggers ER stress and development of cardiovascular diseases. ADH is involved in catalyzing ethanol to acetaldehyde although its role in cardiovascular diseases other than ethanol metabolism still remains elusive. This study was designed to examine the impact of ADH on ER stress-induced cardiac anomalies and underlying mechanisms involved using cardiac-specific overexpression of alcohol dehydrogenase (ADH). Methods ADH and wild-type FVB mice were subjected to the ER stress inducer tunicamycin (1 mg/kg, i.p., for 48 hrs). Myocardial mechanical and intracellular Ca2+ properties, ER stress, autophagy and associated cell signaling molecules were evaluated. Results ER stress compromised cardiac contractile function (evidenced as reduced fractional shortening, peak shortening, maximal velocity of shortening/relengthening, prolonged relengthening duration and impaired intracellular Ca2+ homeostasis), oxidative stress and upregulated autophagy (increased LC3B, Atg5, Atg7 and p62), along with dephosphorylation of PTEN, Akt and mTOR, all of which were attenuated by ADH. In vitro study revealed that ER stress-induced cardiomyocyte anomaly was abrogated by ADH overexpression or autophagy inhibition using 3-MA. Interestingly, the beneficial effect of ADH was obliterated by autophagy induction, inhibition of Akt and mTOR. ER stress also promoted phosphorylation of the stress signaling ERK and JNK, the effect of which was unaffected by ADH transgene. Conclusions Taken together, these findings suggested that ADH protects against ER stress-induced cardiac anomalies possibly via attenuation of oxidative stress and PTEN/Akt/mTOR pathway-regulated autophagy. PMID:26807981

  5. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL.

    PubMed

    Plaisance, Valérie; Brajkovic, Saška; Tenenbaum, Mathie; Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment. PMID:27636901

  6. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL

    PubMed Central

    Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R.; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment. PMID:27636901

  7. Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress.

    PubMed

    Hosoi, Toru; Yamaguchi, Rie; Noji, Kikuko; Matsuo, Suguru; Baba, Sachiko; Toyoda, Keisuke; Suezawa, Takahiro; Kayano, Takaaki; Tanaka, Shinpei; Ozawa, Koichiro

    2014-03-01

    Endoplasmic reticulum (ER) stress, caused by the accumulation of unfolded proteins, is involved in the development of obesity. We demonstrated that flurbiprofen, a nonsteroidal anti-inflammatory drug (NSAID), exhibited chaperone activity, which reduced protein aggregation and alleviated ER stress-induced leptin resistance, characterized by insensitivity to the actions of the anti-obesity hormone leptin. This result was further supported by flurbiprofen attenuating high-fat diet-induced obesity in mice. The other NSAIDs tested did not exhibit such effects, which suggested that this anti-obesity action is mediated independent of NSAIDs. Using ferriteglycidyl methacrylate beads, we identified aldehyde dehydrogenase as the target of flurbiprofen, but not of the other NSAIDs. These results suggest that flurbiprofen may have unique pharmacological properties that reduce the accumulation of unfolded proteins and may represent a new class of drug for the fundamental treatment of obesity.

  8. Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress

    PubMed Central

    Hosoi, Toru; Yamaguchi, Rie; Noji, Kikuko; Matsuo, Suguru; Baba, Sachiko; Toyoda, Keisuke; Suezawa, Takahiro; Kayano, Takaaki; Tanaka, Shinpei; Ozawa, Koichiro

    2014-01-01

    Endoplasmic reticulum (ER) stress, caused by the accumulation of unfolded proteins, is involved in the development of obesity. We demonstrated that flurbiprofen, a nonsteroidal anti-inflammatory drug (NSAID), exhibited chaperone activity, which reduced protein aggregation and alleviated ER stress-induced leptin resistance, characterized by insensitivity to the actions of the anti-obesity hormone leptin. This result was further supported by flurbiprofen attenuating high-fat diet-induced obesity in mice. The other NSAIDs tested did not exhibit such effects, which suggested that this anti-obesity action is mediated independent of NSAIDs. Using ferriteglycidyl methacrylate beads, we identified aldehyde dehydrogenase as the target of flurbiprofen, but not of the other NSAIDs. These results suggest that flurbiprofen may have unique pharmacological properties that reduce the accumulation of unfolded proteins and may represent a new class of drug for the fundamental treatment of obesity. Subject Categories Metabolism; Pharmacology & Drug Discovery PMID:24421337

  9. Mutations in the SPTLC1 protein cause mitochondrial structural abnormalities and endoplasmic reticulum stress in lymphoblasts.

    PubMed

    Myers, Simon J; Malladi, Chandra S; Hyland, Ryan A; Bautista, Tara; Boadle, Ross; Robinson, Phillip J; Nicholson, Garth A

    2014-07-01

    Mutations in serine palmitoyltransferase long chain subunit 1 (SPTLC1) cause the typical length-dependent axonal degeneration hereditary sensory neuropathy type 1 (HSN1). Transmission electron microscopy studies on SPTLC1 mutant lymphoblasts derived from patients revealed specific structural abnormalities of mitochondria. Swollen mitochondria with abnormal cristae were clustered around the nucleus, with some mitochondria being wrapped in rough endoplasmic reticulum (ER) membranes. Total mitochondrial counts revealed a significant change in mitochondrial numbers between healthy and diseased lymphocytes but did not reveal any change in length to width ratios nor were there any changes to cellular function. However, there was a notable change in ER homeostasis, as assessed using key ER stress markers, BiP and ERO1-Lα, displaying reduced protein expression. The observations suggest that SPTLC1 mutations cause mitochondrial abnormalities and ER stress in HSN1 cells. PMID:24673574

  10. Possible Pharmacological Approach Targeting Endoplasmic Reticulum Stress to Ameliorate Leptin Resistance in Obesity

    PubMed Central

    Hosoi, Toru; Ozawa, Koichiro

    2016-01-01

    Obesity is associated with metabolic syndrome, such as diabetes, hypertension, and hyperlipidemia. Therefore, drug development for the treatment of obesity is needed. Leptin is an anti-obesity hormone that inhibits food intake and increases energy metabolism, and, as such, treatments involving leptin were expected to be beneficial for obesity; however, since most obese patients are in a state of leptin resistance, these treatments may not be useful. Therefore, the amelioration of leptin resistance has recently been attracting interest as a treatment for obesity. The mechanisms underlying the development of leptin resistance need to be elucidated in more detail. Endoplasmic reticulum (ER) stress was recently suggested to be involved in the pathogenesis of leptin resistance. The molecular mechanisms responsible for leptin resistance and possible pharmacological treatments for obesity have been discussed herein, with a focus on ER stress. PMID:27375555

  11. Crystal structures reveal transient PERK luminal domain tetramerization in endoplasmic reticulum stress signaling

    PubMed Central

    Carrara, Marta; Prischi, Filippo; Nowak, Piotr R; Ali, Maruf MU

    2015-01-01

    Stress caused by accumulation of misfolded proteins within the endoplasmic reticulum (ER) elicits a cellular unfolded protein response (UPR) aimed at maintaining protein-folding capacity. PERK, a key upstream component, recognizes ER stress via its luminal sensor/transducer domain, but the molecular events that lead to UPR activation remain unclear. Here, we describe the crystal structures of mammalian PERK luminal domains captured in dimeric state as well as in a novel tetrameric state. Small angle X-ray scattering analysis (SAXS) supports the existence of both crystal structures also in solution. The salient feature of the tetramer interface, a helix swapped between dimers, implies transient association. Moreover, interface mutations that disrupt tetramer formation in vitro reduce phosphorylation of PERK and its target eIF2α in cells. These results suggest that transient conversion from dimeric to tetrameric state may be a key regulatory step in UPR activation. PMID:25925385

  12. Endoplasmic reticulum stress: relevance and therapeutics in central nervous system diseases.

    PubMed

    Zhang, Hong-Yu; Wang, Zhou-guang; Lu, Xiang-Hong; Kong, Xiao-Xia; Wu, Fen-Zan; Lin, Li; Tan, Xiaohua; Ye, Li-Bing; Xiao, Jian

    2015-01-01

    Endoplasmic reticulum (ER) stress plays an important role in a range of neurological disorders, such as neurodegenation diseases, cerebral ischemia, spinal cord injury, sclerosis, and diabetic neuropathy. Protein misfolding and accumulation in the ER lumen initiate unfolded protein response in energy-starved neurons which are relevant to toxic effects. In neurological disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, ER dysfunction is well recognized, but the mechanisms remain unclear. In stroke and ischemia, spinal cord injury, and amyotrophic lateral sclerosis, chronic activation of ER stress is considered as main pathogeny which causes neuronal disorders. By targeting components of these ER signaling responses, to explore clinical treatment strategies or new drugs in CNS neurological diseases might become possible and valuable in the future.

  13. Effects of chronic social defeat stress on behaviour, endoplasmic reticulum proteins and choline acetyltransferase in adolescent mice.

    PubMed

    Huang, Guang-Biao; Zhao, Tong; Muna, Sushma Shrestha; Bagalkot, Tarique Rajasaheb; Jin, Hong-Mei; Chae, Han-Jung; Chung, Young-Chul

    2013-08-01

    The present study investigated the effects of social defeat stress on the behaviours and expressions of 78-kDa glucose-regulated protein (Grp78), CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) and choline acetyltransferase (Chat) in the brains of adolescent mice. Adolescent male C57BL/6J mice were divided into two groups (susceptible and unsusceptible) after 10 d social defeat stress. In expt 1, behavioural tests were conducted and brains were processed for Western blotting on day 21 after stress. In expt 2, social avoidance tests were conducted and brains were subsequently processed for Western blotting on day 12 after stress. Chronic social defeat stress produced more pronounced depression-like behaviours such as decreased locomotion and social interaction, increased anxiety-like behaviours and immobility, and impaired memory performance in susceptible mice. Moreover, susceptible mice showed greater expression of Grp78 and CHOP in the amygdala (Amyg) on days 12 and 21 compared with the other groups. Susceptible and unsusceptible groups showed significant increases in Grp78 and CHOP expression in the prefrontal cortex (PFC) and hippocampus (Hipp) on day 12 compared with the control group; this persisted until day 21. The levels of Chat measured on days 12 and 21 were significantly lower in the PFC, Amyg and Hipp of all defeated mice compared with controls. The findings of the behavioural tests indicate that chronic social defeat in adolescents produces anxiety-like behaviours, social withdrawal, despair-like behaviours and cognitive impairment. The Grp78, CHOP and Chat results suggest that the selective response of endoplasmic reticulum stress proteins in the Amyg plays an important role in the vulnerability-stress model of depression.

  14. Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells

    PubMed Central

    Saveljeva, S; Mc Laughlin, S L; Vandenabeele, P; Samali, A; Bertrand, M J M

    2015-01-01

    Endoplasmic reticulum (ER) stress-induced cellular dysfunction and death is associated with several human diseases. It has been widely reported that ER stress kills through activation of the intrinsic mitochondrial apoptotic pathway. Here we demonstrate that ER stress can also induce necroptosis, an receptor-interacting protein kinase 1 (RIPK1)/RIPK3/mixed lineage kinase domain-like protein (MLKL)-dependent form of necrosis. Remarkably, we observed that necroptosis induced by various ER stressors in L929 cells is dependent on tumor necrosis factor receptor 1 (TNFR1), but occurs independently of autocrine TNF or lymphotoxin α production. Moreover, we found that repression of either TNFR1, RIPK1 or MLKL did not protect the cells from death but instead allowed a switch to ER stress-induced apoptosis. Interestingly, while caspase inhibition was sufficient to protect TNFR1- or MLKL-deficient cells from death, rescue of the RIPK1-deficient cells additionally required RIPK3 depletion, indicating a switch back to RIPK3-dependent necroptosis in caspase-inhibited conditions. The finding that ER stress also induces necroptosis may open new therapeutic opportunities for the treatment of pathologies resulting from unresolved ER stress. PMID:25569104

  15. Impaired endoplasmic reticulum stress response in bipolar disorder: cellular evidence of illness progression.

    PubMed

    Pfaffenseller, Bianca; Wollenhaupt-Aguiar, Bianca; Fries, Gabriel Rodrigo; Colpo, Gabriela Delevati; Burque, Renan Kubiachi; Bristot, Giovana; Ferrari, Pâmela; Ceresér, Keila Maria Mendes; Rosa, Adriane Ribeiro; Klamt, Fábio; Kapczinski, Flávio

    2014-09-01

    Bipolar disorder (BD) is a severe chronic psychiatric disorder that has been associated with cellular dysfunctions related to mitochondria, neurotrophin levels, and oxidative stress. Evidence has shown that endoplasmic reticulum (ER) stress may be a common pathway of the cellular changes described in BD. In the present study we assessed unfolded protein response (UPR) and the effects of this cellular process on lymphocytes from patients with BD. We also evaluated whether the stage of chronicity of BD was associated with changes in UPR parameters. Cultured lymphocytes from 30 patients with BD and 32 age- and sex-matched controls were treated with tunicamycin, an ER stressor, for 12 or 24 h to measure levels of UPR-related proteins (GRP78, eIF2α-P, and CHOP) using flow cytometry, and for 48 h to analyse ER stress-induced cell death. In healthy controls but not in patients we found an increase in levels of GRP78, eIF2α-P, and CHOP after ER stress induction. In addition, tunicamycin-induced cell death was significantly higher in patients compared to controls. More importantly, early-stage patients did not differ from controls while the late-stage patients showed an impaired ER stress response. Thus, dysfunction in ER-related stress response may be associated with decreased cellular resilience in BD and illness progression.

  16. Asymmetric dimethylarginine (ADMA) treatment induces apoptosis in cultured rat mesangial cells via endoplasmic reticulum stress activation.

    PubMed

    Park, Min-Jung; Oh, Ki-Seok; Nho, Jong-Hyun; Kim, Gye-Yeop; Kim, Dong-Il

    2016-06-01

    Asymmetric dimethylarginine (ADMA), a high risk factor for endothelial dysfunction and cardiovascular disease (CVD), has been reported to promote cellular dysfunction via endoplasmic reticulum (ER) stress activation in various cells. Additionally, increased serum ADMA levels have been observed in incipient kidney diseases. Previously, we reported that activated ER stress is associated with mesangial cell apoptosis, observed mainly in overt nephropathy or chronic kidney disease (CKD). However, the effect of ADMA on mesangial cell apoptosis is unknown. Thus, we investigated the effects of ADMA on mesangial cell apoptosis and ER stress signaling. ADMA treatment increased caspase-3 activity and activated three branches of ER stress signaling (PERK, IRE1, and ATF6) that induce mesangial cell apoptosis. Pharmacological inhibitors of ER stress (inhibitors of PERK, IRE1, and S1P) attenuated ADMA-induced cleavage of caspase-3 and induced a decrease in the mitochondrial membrane potential. Furthermore, these inhibitors diminished the number of apoptotic cells induced by ADMA treatment. Taken together, our results indicated that ADMA treatment induces mesangial cell apoptosis via ER stress signaling. These results suggest that ADMA-induced mesangial cell apoptosis could contribute to the progression of overt nephropathy and CKD.

  17. Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro.

    PubMed

    Liu, Shing-Hwa; Yang, Ching-Chin; Chan, Ding-Cheng; Wu, Cheng-Tien; Chen, Li-Ping; Huang, Jenq-Wen; Hung, Kuan-Yu; Chiang, Chih-Kang

    2016-04-19

    Renal tubulointerstitial fibrosis is the common and final pathologic change of kidney in end-stage renal disease. Interesting, endoplasmic reticulum (ER) stress is known to contribute to the pathophysiological mechanisms during the development of renal fibrosis. Here, we investigated the effects of chemical chaperon sodium 4-phenylbutyrate (4-PBA) on renal fibrosis in vivo and in vitro. In a rat unilateral ureteral obstruction (UUO) model, 4-PBA mimicked endogenous ER chaperon in the kidneys and significantly reduced glucose regulated protein 78 (GRP78), CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), activating transcription factor 4 (ATF4), and phosphorylated JNK protein expressions as well as restored spliced X-box-binding protein 1 (XBP1) expressions in the kidneys of UUO rats. 4-PBA also attenuated the increases of α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) protein expressions, tubulointerstitial fibrosis, and apoptosis in the kidneys of UUO rats. Moreover, transforming growth factor (TGF)-β markedly increased ER stress-associated molecules, profibrotic factors, and apoptotic markers in the renal tubular cells (NRK-52E), all of which could be significantly counteracted by 4-PBA treatment. 4-PBA also diminished TGF-β-increased CTGF promoter activity and CTGF mRNA expression in NRK-52E cells. Taken together, our results indicated that 4-PBA acts as an ER chaperone to ameliorate ER stress-induced renal tubular cell apoptosis and renal fibrosis.

  18. Myricetin induces apoptosis via endoplasmic reticulum stress and DNA double-strand breaks in human ovarian cancer cells

    PubMed Central

    XU, YE; XIE, QI; WU, SHAOHUA; YI, DAN; YU, YANG; LIU, SHIBING; LI, SONGYAN; LI, ZHIXIN

    2016-01-01

    The mechanisms underlying myricetin-induced cancer cell apoptosis remain to be elucidated. Certain previous studies have shown that myricetin induces apoptosis through the mitochondrial pathway. Apoptosis, however, can also be induced by other classical pathways, including endoplasmic reticulum (ER) stress and DNA double-strand breaks (DSBs). The aim of the present study was to assess whether these two apoptotic pathways are involved in myricetin-induced cell death in SKOV3 ovarian cancer cells. The results revealed that treatment with myricetin inhibited viability of SKOV3 cells in a dose-dependent manner. Myricetin induced nuclear chromatin condensation and fragmentation, and also upregulated the protein levels of active caspase 3 in a time-dependent manner. In addition, myricetin upregulated ER stress-associated proteins, glucose-regulated protein-78 and C/EBP homologous protein in SKOV3 cells. Phosphorylation of H2AX, a marker of DNA DSBs, was revealed to be upregulated in myricetin-treated cells. The data indicated that myricetin induces DNA DSBs and ER stress, which leads to apoptosis in SKOV3 cells. PMID:26782830

  19. Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro.

    PubMed

    Liu, Shing-Hwa; Yang, Ching-Chin; Chan, Ding-Cheng; Wu, Cheng-Tien; Chen, Li-Ping; Huang, Jenq-Wen; Hung, Kuan-Yu; Chiang, Chih-Kang

    2016-04-19

    Renal tubulointerstitial fibrosis is the common and final pathologic change of kidney in end-stage renal disease. Interesting, endoplasmic reticulum (ER) stress is known to contribute to the pathophysiological mechanisms during the development of renal fibrosis. Here, we investigated the effects of chemical chaperon sodium 4-phenylbutyrate (4-PBA) on renal fibrosis in vivo and in vitro. In a rat unilateral ureteral obstruction (UUO) model, 4-PBA mimicked endogenous ER chaperon in the kidneys and significantly reduced glucose regulated protein 78 (GRP78), CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), activating transcription factor 4 (ATF4), and phosphorylated JNK protein expressions as well as restored spliced X-box-binding protein 1 (XBP1) expressions in the kidneys of UUO rats. 4-PBA also attenuated the increases of α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) protein expressions, tubulointerstitial fibrosis, and apoptosis in the kidneys of UUO rats. Moreover, transforming growth factor (TGF)-β markedly increased ER stress-associated molecules, profibrotic factors, and apoptotic markers in the renal tubular cells (NRK-52E), all of which could be significantly counteracted by 4-PBA treatment. 4-PBA also diminished TGF-β-increased CTGF promoter activity and CTGF mRNA expression in NRK-52E cells. Taken together, our results indicated that 4-PBA acts as an ER chaperone to ameliorate ER stress-induced renal tubular cell apoptosis and renal fibrosis. PMID:26959118

  20. Capsaicin mediates apoptosis in human nasopharyngeal carcinoma NPC-TW 039 cells through mitochondrial depolarization and endoplasmic reticulum stress.

    PubMed

    Ip, S-W; Lan, S-H; Lu, H-F; Huang, A-C; Yang, J-S; Lin, J-P; Huang, H-Y; Lien, J-C; Ho, C-C; Chiu, C-F; Wood, Wg; Chung, J-G

    2012-06-01

    Capsaicin, a pungent compound found in hot chili peppers, has been reported to have antitumor activities in many human cancer cell lines, but the induction of precise apoptosis signaling pathway in human nasopharyngeal carcinoma (NPC) cells is unclear. Here, we investigated the molecular mechanisms of capsaicin-induced apoptosis in human NPC, NPC-TW 039, cells. Effects of capsaicin involved endoplasmic reticulum (ER) stress, caspase-3 activation and mitochondrial depolarization. Capsaicin-induced cytotoxic effects (cell death) through G0/G1 phase arrest and induction of apoptosis of NPC-TW 039 cells in a dose-dependent manner. Capsaicin treatment triggered ER stress by promoting the production of reactive oxygen species (ROS), increasing levels of inositol-requiring 1 enzyme (IRE1), growth arrest and DNA-damage-inducible 153 (GADD153) and glucose-regulated protein 78 (GRP78). Other effects included an increase in cytosolic Ca(2+), loss of the mitochondrial transmembrane potential (ΔΨ(m)), releases of cytochrome c and apoptosis-inducing factor (AIF), and activation of caspase-9 and -3. Furthermore, capsaicin induced increases in the ratio of Bax/Bcl-2 and abundance of apoptosis-related protein levels. These results suggest that ER stress- and mitochondria-mediated cell death is involved in capsaicin-induced apoptosis in NPC-TW 039 cells. PMID:21859781

  1. Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro

    PubMed Central

    Wu, Cheng-Tien; Chen, Li-Ping; Huang, Jenq-Wen; Hung, Kuan-Yu; Chiang, Chih-Kang

    2016-01-01

    Renal tubulointerstitial fibrosis is the common and final pathologic change of kidney in end-stage renal disease. Interesting, endoplasmic reticulum (ER) stress is known to contribute to the pathophysiological mechanisms during the development of renal fibrosis. Here, we investigated the effects of chemical chaperon sodium 4-phenylbutyrate (4-PBA) on renal fibrosis in vivo and in vitro. In a rat unilateral ureteral obstruction (UUO) model, 4-PBA mimicked endogenous ER chaperon in the kidneys and significantly reduced glucose regulated protein 78 (GRP78), CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), activating transcription factor 4 (ATF4), and phosphorylated JNK protein expressions as well as restored spliced X-box-binding protein 1 (XBP1) expressions in the kidneys of UUO rats. 4-PBA also attenuated the increases of α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) protein expressions, tubulointerstitial fibrosis, and apoptosis in the kidneys of UUO rats. Moreover, transforming growth factor (TGF)-β markedly increased ER stress-associated molecules, profibrotic factors, and apoptotic markers in the renal tubular cells (NRK-52E), all of which could be significantly counteracted by 4-PBA treatment. 4-PBA also diminished TGF-β-increased CTGF promoter activity and CTGF mRNA expression in NRK-52E cells. Taken together, our results indicated that 4-PBA acts as an ER chaperone to ameliorate ER stress-induced renal tubular cell apoptosis and renal fibrosis. PMID:26959118

  2. Capsaicin mediates apoptosis in human nasopharyngeal carcinoma NPC-TW 039 cells through mitochondrial depolarization and endoplasmic reticulum stress.

    PubMed

    Ip, S-W; Lan, S-H; Lu, H-F; Huang, A-C; Yang, J-S; Lin, J-P; Huang, H-Y; Lien, J-C; Ho, C-C; Chiu, C-F; Wood, Wg; Chung, J-G

    2012-06-01

    Capsaicin, a pungent compound found in hot chili peppers, has been reported to have antitumor activities in many human cancer cell lines, but the induction of precise apoptosis signaling pathway in human nasopharyngeal carcinoma (NPC) cells is unclear. Here, we investigated the molecular mechanisms of capsaicin-induced apoptosis in human NPC, NPC-TW 039, cells. Effects of capsaicin involved endoplasmic reticulum (ER) stress, caspase-3 activation and mitochondrial depolarization. Capsaicin-induced cytotoxic effects (cell death) through G0/G1 phase arrest and induction of apoptosis of NPC-TW 039 cells in a dose-dependent manner. Capsaicin treatment triggered ER stress by promoting the production of reactive oxygen species (ROS), increasing levels of inositol-requiring 1 enzyme (IRE1), growth arrest and DNA-damage-inducible 153 (GADD153) and glucose-regulated protein 78 (GRP78). Other effects included an increase in cytosolic Ca(2+), loss of the mitochondrial transmembrane potential (ΔΨ(m)), releases of cytochrome c and apoptosis-inducing factor (AIF), and activation of caspase-9 and -3. Furthermore, capsaicin induced increases in the ratio of Bax/Bcl-2 and abundance of apoptosis-related protein levels. These results suggest that ER stress- and mitochondria-mediated cell death is involved in capsaicin-induced apoptosis in NPC-TW 039 cells.

  3. Endoplasmic Reticulum Stress-Activated Transcription Factor ATF6α Requires the Disulfide Isomerase PDIA5 To Modulate Chemoresistance

    PubMed Central

    Higa, Arisa; Taouji, Said; Lhomond, Stéphanie; Jensen, Devon; Fernandez-Zapico, Martin E.; Simpson, Jeremy C.; Pasquet, Jean-Max; Schekman, Randy

    2014-01-01

    ATF6α, a membrane-anchored transcription factor from the endoplasmic reticulum (ER) that modulates the cellular response to stress as an effector of the unfolded-protein response (UPR), is a key player in the development of tumors of different origin. ATF6α activation has been linked to oncogenic transformation and tumor maintenance; however, the mechanism(s) underlying this phenomenon remains elusive. Here, using a phenotypic small interfering RNA (siRNA) screening, we identified a novel role for ATF6α in chemoresistance and defined the protein disulfide isomerase A5 (PDIA5) as necessary for ATF6α activation upon ER stress. PDIA5 contributed to disulfide bond rearrangement in ATF6α under stress conditions, thereby leading to ATF6α export from the ER and activation of its target genes. Further analysis of the mechanism demonstrated that PDIA5 promotes ATF6α packaging into coat protein complex II (COPII) vesicles and that the PDIA5/ATF6α activation loop is essential to confer chemoresistance on cancer cells. Genetic and pharmacological inhibition of the PDIA5/ATF6α axis restored sensitivity to the drug treatment. This work defines the mechanisms underlying the role of ATF6α activation in carcinogenesis and chemoresistance; furthermore, it identifies PDIA5 as a key regulator ATF6α-mediated cellular functions in cancer. PMID:24636989

  4. Titanium Dioxide Nanoparticles Induce Endoplasmic Reticulum Stress-Mediated Autophagic Cell Death via Mitochondria-Associated Endoplasmic Reticulum Membrane Disruption in Normal Lung Cells.

    PubMed

    Yu, Kyeong-Nam; Chang, Seung-Hee; Park, Soo Jin; Lim, Joohyun; Lee, Jinkyu; Yoon, Tae-Jong; Kim, Jun-Sung; Cho, Myung-Haing

    2015-01-01

    Nanomaterials are used in diverse fields including food, cosmetic, and medical industries. Titanium dioxide nanoparticles (TiO2-NP) are widely used, but their effects on biological systems and mechanism of toxicity have not been elucidated fully. Here, we report the toxicological mechanism of TiO2-NP in cell organelles. Human bronchial epithelial cells (16HBE14o-) were exposed to 50 and 100 μg/mL TiO2-NP for 24 and 48 h. Our results showed that TiO2-NP induced endoplasmic reticulum (ER) stress in the cells and disrupted the mitochondria-associated endoplasmic reticulum membranes (MAMs) and calcium ion balance, thereby increasing autophagy. In contrast, an inhibitor of ER stress, tauroursodeoxycholic acid (TUDCA), mitigated the cellular toxic response, suggesting that TiO2-NP promoted toxicity via ER stress. This novel mechanism of TiO2-NP toxicity in human bronchial epithelial cells suggests that further exhaustive research on the harmful effects of these nanoparticles in relevant organisms is needed for their safe application. PMID:26121477

  5. Protective effect of catechin in type I Gaucher disease cells by reducing endoplasmic reticulum stress

    SciTech Connect

    Lee, Yea-Jin; Kim, Sung-Jo; Heo, Tae-Hwe

    2011-09-23

    Highlights: {yields} Catechin reduces the expression level of ER stress marker protein in type I Gaucher disease cells. {yields} Catechin induces the proliferation rate of GD cells similar levels to normal cells. {yields} Catechin improves wound healing activity. {yields} Catechin-mediated reductions in ER stress may be associated with enhanced cell survival. {yields} We identified catechin as a protective agent against ER stress in GD cells. -- Abstract: Gaucher disease (GD) is the most common lysosomal storage disorder (LSD) and is divided into three phenotypes, I, II, and III. Type I is the most prevalent form and has its onset in adulthood. The degree of endoplasmic reticulum (ER) stress is one of the factors that determine GD severity. It has recently been reported that antioxidants reduce ER stress and apoptosis by scavenging the oxidants that cause oxidative stress. For this report, we investigated the possibility that catechin can act on type I GD patient cells to alleviate the pathogenic conditions of GD. We treated GD cells with catechin and examined the expression level of GRP78/BiP (an ER stress marker) by western blots and fluorescence microscopy, the proliferation rate of GD cells, and scratch-induced wound healing activity. Our results show that catechin reduces the expression level of GRP78/BiP, leads to cell proliferation rates of GD cells similar levels to normal cells, and improves wound healing activity. We conclude that catechin protects against ER stress in GD cells and catechin-mediated reductions in ER stress may be associated with enhanced cell survival.

  6. Indomethacin induces endoplasmic reticulum stress, but not apoptosis, in the rat kidney.

    PubMed

    Nagappan, Arumugam Suriyam; Varghese, Joe; James, Jithu V; Jacob, Molly

    2015-08-15

    Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used in clinical practice. However, their use is often associated with adverse effects in the gastrointestinal tract and kidney. Our earlier work with indomethacin, a prototype NSAID, has shown that it induced oxidative stress in the kidney in rats, an event that has been postulated to contribute to pathogenesis of its adverse effects in this organ. Endoplasmic reticulum (ER) stress responses have been shown to occur in response to oxidative stress. We investigated whether this occurred in the rat kidney, in response to indomethacin. For this, Wistar rats were orally gavaged with indomethacin (20mg/kg). Markers of ER stress were studied in the kidneys 1, 12 and 24h later. GRP78, p-PERK and nuclear sXBP-1, all markers of ER stress, were found to be increased in the rat kidney at 12h, in response to indomethacin; levels of these markers fell by 24h. The effects seen at 12h were attenuated by pre-treatment with zinc, a known anti-oxidant, which has earlier been shown to ameliorate indomethacin-induced oxidative stress. Activation of an ER stress response was not associated with induction of apoptosis, as measured by markers of apoptosis such as release of cytochrome c from mitochondria into the cytosol, activation of caspases 3 and 9, cleavage of poly-ADP ribose polymerase and the presence of DNA laddering. We conclude that indomethacin-induced oxidative stress activated ER stress, but did not lead to apoptosis in the rat kidney.

  7. Asbestos-induced disruption of calcium homeostasis induces endoplasmic reticulum stress in macrophages.

    PubMed

    Ryan, Alan J; Larson-Casey, Jennifer L; He, Chao; Murthy, Shuhba; Carter, A Brent

    2014-11-28

    Although the mechanisms for fibrosis development remain largely unknown, recent evidence indicates that endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) may act as an important fibrotic stimulus in diseased lungs. ER stress is observed in lungs of patients with idiopathic pulmonary fibrosis. In this study we evaluated if ER stress and the UPR was present in macrophages exposed to chrysotile asbestos and if ER stress in macrophages was associated with asbestos-induced pulmonary fibrosis. Macrophages exposed to chrysotile had elevated transcript levels of several ER stress genes. Macrophages loaded with the Ca(2+)-sensitive dye Fura2-AM showed that cytosolic Ca(2+) increased significantly within minutes after chrysotile exposure and remained elevated for a prolonged time. Chrysotile-induced increases in cytosolic Ca(2+) were partially inhibited by either anisomycin, an inhibitor of passive Ca(2+) leak from the ER, or 1,2-bis(2-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), an intracellular Ca(2+) chelator known to deplete ER Ca(2+) stores. Anisomycin inhibited X-box-binding protein 1 (XBP1) mRNA splicing and reduced immunoglobulin-binding protein (BiP) levels, whereas BAPTA-AM increased XBP1 splicing and BiP expression, suggesting that ER calcium depletion may be one factor contributing to ER stress in cells exposed to chrysotile. To evaluate ER stress in vivo, asbestos-exposed mice showed fibrosis development, and alveolar macrophages from fibrotic mice showed increased expression of BiP. Bronchoalveolar macrophages from asbestosis patients showed increased expression of several ER stress genes compared with normal subjects. These findings suggest that alveolar macrophages undergo ER stress, which is associated with fibrosis development.

  8. Endoplasmic Reticulum Stress: Its Role in Disease and Novel Prospects for Therapy

    PubMed Central

    Schönthal, Axel H.

    2012-01-01

    The endoplasmic reticulum (ER) is a multifunctional organelle required for lipid biosynthesis, calcium storage, and protein folding and processing. A number of physiological and pathological conditions, as well as a variety of pharmacological agents, are able to disturb proper ER function and thereby cause ER stress, which severely impairs protein folding and therefore poses the risk of proteotoxicity. Specific triggers for ER stress include, for example, particular intracellular alterations (e.g., calcium or redox imbalances), certain microenvironmental conditions (e.g., hypoglycemia, hypoxia, and acidosis), high-fat and high-sugar diet, a variety of natural compounds (e.g., thapsigargin, tunicamycin, and geldanamycin), and several prescription drugs (e.g., bortezomib/Velcade, celecoxib/Celebrex, and nelfinavir/Viracept). The cell reacts to ER stress by initiating a defensive process, called the unfolded protein response (UPR), which is comprised of cellular mechanisms aimed at adaptation and safeguarding cellular survival or, in cases of excessively severe stress, at initiation of apoptosis and elimination of the faulty cell. In recent years, this dichotomic stress response system has been linked to several human diseases, and efforts are underway to develop approaches to exploit ER stress mechanisms for therapy. For example, obesity and type 2 diabetes have been linked to ER stress-induced failure of insulin-producing pancreatic beta cells, and current research efforts are aimed at developing drugs that ameliorate cellular stress and thereby protect beta cell function. Other studies seek to pharmacologically aggravate chronic ER stress in cancer cells in order to enhance apoptosis and achieve tumor cell death. In the following, these principles will be presented and discussed. PMID:24278747

  9. Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury

    PubMed Central

    Zhang, Xiangnan; Yuan, Yang; Jiang, Lei; Zhang, Jingying; Gao, Jieqiong; Shen, Zhe; Zheng, Yanrong; Deng, Tian; Yan, Haijing; Li, Wenlu; Hou, Wei-Wei; Lu, Jianxin; Shen, Yao; Dai, Haibing; Hu, Wei-Wei; Zhang, Zhuohua; Chen, Zhong

    2014-01-01

    Transient cerebral ischemia leads to endoplasmic reticulum (ER) stress. However, the contributions of ER stress to cerebral ischemia are not clear. To address this issue, the ER stress activators tunicamycin (TM) and thapsigargin (TG) were administered to transient middle cerebral artery occluded (tMCAO) mice and oxygen-glucose deprivation-reperfusion (OGD-Rep.)-treated neurons. Both TM and TG showed significant protection against ischemia-induced brain injury, as revealed by reduced brain infarct volume and increased glucose uptake rate in ischemic tissue. In OGD-Rep.-treated neurons, 4-PBA, the ER stress releasing mechanism, counteracted the neuronal protection of TM and TG, which also supports a protective role of ER stress in transient brain ischemia. Knocking down the ER stress sensor Eif2s1, which is further activated by TM and TG, reduced the OGD-Rep.-induced neuronal cell death. In addition, both TM and TG prevented PARK2 loss, promoted its recruitment to mitochondria, and activated mitophagy during reperfusion after ischemia. The neuroprotection of TM and TG was reversed by autophagy inhibition (3-methyladenine and Atg7 knockdown) as well as Park2 silencing. The neuroprotection was also diminished in Park2+/− mice. Moreover, Eif2s1 and downstream Atf4 silencing reduced PARK2 expression, impaired mitophagy induction, and counteracted the neuroprotection. Taken together, the present investigation demonstrates that the ER stress induced by TM and TG protects against the transient ischemic brain injury. The PARK2-mediated mitophagy may be underlying the protection of ER stress. These findings may provide a new strategy to rescue ischemic brains by inducing mitophagy through ER stress activation. PMID:25126734

  10. Conserved and plant-unique strategies for overcoming endoplasmic reticulum stress.

    PubMed

    Ruberti, Cristina; Brandizzi, Federica

    2014-01-01

    Stress caused by environmental conditions or physiological growth can lead to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) causing ER stress, which in turn triggers a cytoprotective mechanism termed the unfolded protein response (UPR). Under mild-short stress conditions the UPR can restore ER functioning and cell growth, such as reducing the load of unfolded proteins through the upregulation of genes involved in protein folding and in degrading mis-folded proteins, and through autophagy activation, but it can also lead to cell death under prolonged and severe stress conditions. A diversified suite of sensors has been evolved in the eukaryotic lineages to orchestrate the UPR most likely to suit the cell's necessity to respond to the different kinds of stress in a conserved as well as species-specific manner. In plants three UPR sensors cooperate with non-identical signaling pathways: the protein kinase inositol-requiring enzyme (IRE1), the ER-membrane-associated transcription factor bZIP28, and the GTP-binding protein β1 (AGB1). In this mini-review, we show how plants differ from the better characterized metazoans and fungi, providing an overview of the signaling pathways of the UPR, and highlighting the overlapping and the peculiar roles of the different UPR branches in light of evolutionary divergences in eukaryotic kingdoms.

  11. Endoplasmic Reticulum Stress Response in Non-alcoholic Steatohepatitis: The Possible Role of Physical Exercise.

    PubMed

    Passos, Emanuel; Ascensão, António; Martins, Maria João; Magalhães, José

    2015-07-01

    Sedentary lifestyle coupled with excessive consumption of high caloric food has been related to the epidemic increase of non-alcoholic fatty liver disease, which can progress from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and, eventually, may culminate in hepatocellular carcinoma. Although the precise mechanisms underlying the progression of NASH are not completely understood, endoplasmic reticulum (ER) dysfunction seems to play a key role in the process. Hepatic ER stress has been associated to hepatic steatosis, insulin resistance, inflammation, oxidative stress and hepatocyte death, contributing to liver dysfunction. Physical exercise seems to be the most effective preventive and therapeutic non-pharmacological strategy to mitigate several features related to NASH, possibly targeting most of the referred mechanisms associated with the pathophysiology of ER-related NASH. Nevertheless, little is known about the impact of physical exercise on NASH-related ER stress. In this review, we will discuss the ER stress associated to NASH conditions and highlight the possible benefits of physical exercise in the attenuation and/or reversion of NASH-related ER stress. PMID:25838034

  12. Cannabidiol protects oligodendrocyte progenitor cells from inflammation-induced apoptosis by attenuating endoplasmic reticulum stress

    PubMed Central

    Mecha, M; Torrao, A S; Mestre, L; Carrillo-Salinas, F J; Mechoulam, R; Guaza, C

    2012-01-01

    Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 μM CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFNγ through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPARγ receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2α, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2α induced by LPS/IFNγ. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the ‘oligoprotective' effects of CBD during inflammation. PMID:22739983

  13. Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma.

    PubMed

    Lin, Wensheng; Harding, Heather P; Ron, David; Popko, Brian

    2005-05-23

    Interferon-gamma (IFN-gamma) is believed to contribute to immune-mediated demyelinating disorders by targeting the myelin-producing oligodendrocyte, a cell known to be highly sensitive to the disruption of protein synthesis and to the perturbation of the secretory pathway. We found that apoptosis induced by IFN-gamma in cultured rat oligodendrocytes was associated with endoplasmic reticulum (ER) stress. ER stress also accompanied oligodendrocyte apoptosis and hypomyelination in transgenic mice that inappropriately expressed IFN-gamma in the central nervous system (CNS). Compared with a wild-type genetic background, the enforced expression of IFN-gamma in mice that were heterozygous for a loss of function mutation in pancreatic ER kinase (PERK) dramatically reduced animal survival, promoted CNS hypomyelination, and enhanced oligodendrocyte loss. PERK encodes an ER stress-inducible kinase that phosphorylates eukaryotic translation initiation factor 2alpha and specifically maintains client protein homeostasis in the stressed ER. Therefore, the hypersensitivity of PERK+/- mice to IFN-gamma implicates ER stress in demyelinating disorders that are induced by CNS inflammation. PMID:15911877

  14. Evidence that endoplasmic reticulum (ER) stress and caspase-4 activation occur in human neutrophils.

    PubMed

    Binet, François; Chiasson, Sonia; Girard, Denis

    2010-01-01

    Apoptosis can result from activation of three major pathways: the extrinsic, the intrinsic, and the most recently identified endoplasmic reticulum (ER) stress-mediated pathway. While the two former pathways are known to be operational in human polymorphonuclear neutrophils (PMNs), the existence of the ER stress-mediated pathway, generally involving caspase-4, has never been reported in these cells. Recently, we have documented that arsenic trioxide (ATO) induced apoptosis in human PMNs by a mechanism that needs to be further investigated. In this study, using immunofluorescence and electron microscopy, we present evidence of ER alterations in PMNs activated by the ER stress inducer arsenic trioxide (ATO). Several key players of the unfolded protein response, including GRP78, GADD153, ATF6, XBP1 and eIF2alpha are expressed and activated in PMNs treated with ATO or other ER stress inducers. Although caspase-4 is expressed and activated in neutrophils, treatment with a caspase-4 inhibitor did not attenuate the pro-apoptotic effect of ATO at a concentration that reverses caspase-4 processing and activation. Our results demonstrate for the first time that the ER stress-mediated apoptotic pathway operates in human neutrophils.

  15. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum

    PubMed Central

    Echevarría, Wihelma; Leite, M. Fatima; Guerra, Mateus T.; Zipfel, Warren R.; Nathanson, Michael H.

    2013-01-01

    Calcium is a second messenger in virtually all cells and tissues1. Calcium signals in the nucleus have effects on gene transcription and cell growth that are distinct from those of cytosolic calcium signals; however, it is unknown how nuclear calcium signals are regulated. Here we identify a reticular network of nuclear calcium stores that is continuous with the endoplasmic reticulum and the nuclear envelope. This network expresses inositol 1,4,5-trisphosphate (InsP3) receptors, and the nuclear component of InsP3-mediated calcium signals begins in its locality. Stimulation of these receptors with a little InsP3 results in small calcium signals that are initiated in this region of the nucleus. Localized release of calcium in the nucleus causes nuclear protein kinase C (PKC) to translocate to the region of the nuclear envelope, whereas release of calcium in the cytosol induces translocation of cytosolic PKC to the plasma membrane. Our findings show that the nucleus contains a nucleoplasmic reticulum with the capacity to regulate calcium signals in localized subnuclear regions. The presence of such machinery provides a potential mechanism by which calcium can simultaneously regulate many independent processes in the nucleus. PMID:12717445

  16. Suppression of endoplasmic reticulum stress improves endothelium-dependent contractile responses in aorta of the spontaneously hypertensive rat.

    PubMed

    Spitler, Kathryn M; Matsumoto, Takayuki; Webb, R Clinton

    2013-08-01

    A contributing factor to increased peripheral resistance seen during hypertension is an increased production of endothelium-derived contractile factors (EDCFs). The main EDCFs are vasoconstrictor prostanoids, metabolites of arachidonic acid (AA) produced by Ca(2+)-dependent cytosolic phospholipase A2 (cPLA2) following phosphorylation (at Ser(505)) mediated by extracellular signal-regulated kinase (ERK1/2) and cyclooxygenase (COX) activations. Although endoplasmic reticulum (ER) stress has been shown to contribute to pathophysiological alterations in cardiovascular diseases, the relationship between ER stress and EDCF-mediated responses remains unclear. We tested the hypothesis that ER stress plays a role in EDCF-mediated responses via activation of the cPLA2/COX pathway in the aorta of the spontaneously hypertensive rat (SHR). Male SHR and Wistar-Kyoto rats (WKY) were treated with ER stress inhibitor, tauroursodeoxycholic acid or 4-phenlybutyric acid (TUDCA or PBA, respectively, 100 mg·kg(-1)·day(-1) ip) or PBS (control, 300 μl/day ip) for 1 wk. There was a decrease in systolic blood pressure in SHR treated with TUDCA or PBA compared with control SHR (176 ± 3 or 181 ± 5, respectively vs. 200 ± 2 mmHg). In the SHR, treatment with TUDCA or PBA normalized aortic (vs. control SHR) 1) contractions to acetylcholine (ACh), AA, and tert-butyl hydroperoxide, 2) ACh-stimulated releases of prostanoids (thromboxane A2, PGF2α, and prostacyclin), 3) expression of COX-1, 4) phosphorylation of cPLA2 and ERK1/2, and 5) production of H2O2. Our findings demonstrate a novel interplay between ER stress and EDCF-mediated responses in the aorta of the SHR. Moreover, ER stress inhibition normalizes such responses by suppressing the cPLA2/COX pathway.

  17. Angiotensin 1-7 Protects against Angiotensin II-Induced Endoplasmic Reticulum Stress and Endothelial Dysfunction via Mas Receptor

    PubMed Central

    Murugan, Dharmani; Lau, Yeh Siang; Lau, Wai Chi; Mustafa, Mohd Rais; Huang, Yu

    2015-01-01

    Angiotensin 1–7 (Ang 1–7) counter-regulates the cardiovascular actions of angiotensin II (Ang II). The present study investigated the protective effect of Ang 1–7 against Ang II-induced endoplasmic reticulum (ER) stress and endothelial dysfunction. Ex vivo treatment with Ang II (0.5 μM, 24 hours) impaired endothelium-dependent relaxation in mouse aortas; this harmful effect of Ang II was reversed by co-treatment with ER stress inhibitors, l4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) as well as Ang 1–7. The Mas receptor antagonist, A779, antagonized the effect of Ang 1–7. The elevated mRNA expression of CHOP, Grp78 and ATF4 or protein expression of p-eIF2α and ATF6 (ER stress markers) in Ang II-treated human umbilical vein endothelial cells (HUVECs) and mouse aortas were blunted by co-treatment with Ang 1–7 and the latter effect was reversed by A779. Furthermore, Ang II-induced reduction in both eNOS phosphorylation and NO production was inhibited by Ang 1–7. In addition, Ang 1–7 decreased the levels of ER stress markers and augmented NO production in HUVECs treated with ER stress inducer, tunicamycin. The present study provides new evidence for functional antagonism between the two arms of the renin-angiotensin system in endothelial cells by demonstrating that Ang 1–7 ameliorates Ang II-stimulated ER stress to raise NO bioavailability, and subsequently preserves endothelial function. PMID:26709511

  18. Endoplasmic reticulum stress plays critical role in brain damage after chronic intermittent hypoxia in growing rats.

    PubMed

    Cai, Xiao-Hong; Li, Xiu-Cui; Jin, Sheng-Wei; Liang, Dong-Shi; Wen, Zheng-Wang; Cao, Hong-Chao; Mei, Hong-Fang; Wu, Ying; Lin, Zhong-Dong; Wang, Liang-Xing

    2014-07-01

    Obstructive sleep apnea hypopnea syndrome (OSAHS) in children is associated with multiple system morbidities. Cognitive dysfunction as a result of central nervous system complication has been reported in children with OSAHS. However, the underlying mechanisms are poorly understood. Endoplasmic reticulum stress (ERS)-related apoptosis plays an important role in various diseases of the central nervous system, but very little is known about the role of ERS in mediating pathophysiological reactions to cognitive dysfunction in OSAHS. Chronic intermittent hypoxia (CIH) exposures, modeling OSAHS, across 2 and 4weeks in growing rats made more reference memory errors, working memory errors and total memory errors in the 8-Arm radial maze task, increased significantly TUNEL positive cells, upregulated the unfolded protein response in the hippocampus and prefrontal cortex as evidenced by increased phosphorylation of PKR-like endoplasmic reticulum kinase, inositol-requiring enzyme l and some downstream products. A selective inhibitor of eukaryotic initiation factor-2a dephosphorylation, salubrinal, prevented C/EBP-homologous protein activation in the hippocampus and prefrontal cortex throughout hypoxia/reoxygenation exposure. Our findings suggest that ERS mediated cell apoptosis may be one of the underlying mechanisms of cognitive dysfunction in OSAHS children. Further, a specific ERS inhibitor Salubrinal should be tested for neuroprotection against CIH-induced injury. PMID:24810321

  19. Dysregulated phosphatidylinositol signaling promotes endoplasmic-reticulum-stress-mediated intestinal mucosal injury and inflammation in zebrafish

    PubMed Central

    Thakur, Prakash C.; Davison, Jon M.; Stuckenholz, Carsten; Lu, Lili; Bahary, Nathan

    2014-01-01

    Dysregulated phosphatidylinositol (PI) signaling has been implicated in human gastrointestinal (GI) malignancies and inflammatory states, underlining the need to study pathophysiological roles of PI in an in vivo genetic model. Here, we study the significance of PI in GI pathophysiology using the zebrafish mutant cdipthi559, which lacks PI synthesis, and unravel a crucial role of PI in intestinal mucosal integrity and inflammation. The cdipthi559 mutants exhibit abnormal villous architecture and disorganized proliferation of intestinal epithelial cells (IECs), with pathologies reminiscent of inflammatory bowel disease (IBD), including apoptosis of goblet cells, abnormal mucosecretion, bacterial overgrowth and leukocyte infiltration. The mutant IECs exhibit vacuolation, microvillus atrophy and impaired proliferation. The cdipthi559 gene expression profile shows enrichment of acute phase response signaling, and the endoplasmic reticulum (ER) stress factors hspa5 and xbp1 are robustly activated in the mutant GI tissue. Temporal electron micrographic analyses reveal that PI-deficient IECs undergo sequential ER-Golgi disruption, mitochondrial depletion, macroautophagy and cell death, consistent with chronic ER-stress-mediated cytopathology. Furthermore, pharmacological induction of ER stress by inhibiting protein glycosylation or PI synthase inhibition in leukocyte-specific reporter lines replicates the cdipthi559 inflammatory phenotype, suggesting a fundamental role of PI metabolism and ER stress in mucosal inflammation. Antibiotics and anti-inflammatory drugs resolved the inflammation, but not the autophagic necroapoptosis of IECs, suggesting that bacterial overgrowth can exacerbate ER stress pathology, whereas persistent ER stress is sufficient to trigger inflammation. Interestingly, the intestinal phenotype was partially alleviated by chemical chaperones, suggesting their therapeutic potential. Using zebrafish genetic and pharmacological models, this study

  20. Endoplasmic reticulum stress contributes to aortic stiffening via proapoptotic and fibrotic signaling mechanisms.

    PubMed

    Spitler, Kathryn M; Webb, R Clinton

    2014-03-01

    Vascular smooth muscle cell apoptosis and collagen synthesis contribute to aortic stiffening. A cellular signaling mechanism contributing to apoptotic and fibrotic events is endoplasmic reticulum (ER) stress. In this study, we tested the hypothesis that induction of ER stress in a normotensive rat would cause profibrotic and apoptotic signaling, thereby contributing to aortic stiffening. Furthermore, we hypothesized that inhibition of ER stress in an angiotensin II (Ang II) model of hypertension would improve aortic stiffening. Induction of ER stress with tunicamycin in normotensive Sprague-Dawley rats (10 μg/kg per day, osmotic pump, 28 days) caused an increase in systolic blood pressure (mm Hg; 160±5) compared with vehicle-treated (127±3) or tunicamycin-treated rats that were cotreated with ER stress inhibitor 4-phenylbutyric acid (100 mg/kg per day, 28 days, [124±6]). There was an increase in aortic apoptosis (fold; 3.0±0.3), collagen content (1.4±0.1), and fibrosis (2.0±0.1) in the tunicamycin-treated rats compared with vehicle-treated rats. Inhibition of ER stress in male Sprague-Dawley rats given Ang II (60 ng/min, osmotic pump, 28 days) and treated with either tauroursodeoxycholic acid or phenylbutyric acid (100 mg/kg per day, i.p., 28 days) led to a 20 mm Hg decrease in blood pressure with either inhibitor compared with Ang II treatment alone. Aortic apoptosis, increased collagen content, and fibrosis in Ang II-treated rats were attenuated with ER stress inhibition. We conclude that ER stress is a new signaling mechanism that contributes to aortic stiffening via promoting apoptosis and fibrosis.

  1. Oxidative Stress Induces Monocyte Necrosis with Enrichment of Cell-Bound Albumin and Overexpression of Endoplasmic Reticulum and Mitochondrial Chaperones

    PubMed Central

    Tang, Haiping; Tian, Enbing; Liu, Chongdong; Wang, Qingtao; Deng, Haiteng

    2013-01-01

    In the present study, monocytes were treated with 5-azacytidine (azacytidine), gossypol or hydrogen peroxide to induce cell death through oxidative stress. A shift from apoptotic to necrotic cell death occurred when monocytes were treated with 100 µM azacytidine for more than 12 hours. Necrotic monocytes exhibited characteristics, including enrichment of cell-bound albumin and up-regulation of endoplasmic reticulum (ER)- and mitochondrial-specific chaperones to protect mitochondrial integrity, which were not observed in other necrotic cells, including HUH-7, A2780, A549 and HOC1a. Our results show that the cell-bound albumin originates in the culture medium rather than from monocyte-derived hepatocytes, and that HSP60 is a potential binding partner of the cell-bound albumin. Proteomic analysis shows that HSP60 and protein disulfide isomerase are the most abundant up-regulated mitochondrial and ER-chaperones, and that both HSP60 and calreticulin are ubiquitinated in necrotic monocytes. In contrast, expression levels of the cytosolic chaperones HSP90 and HSP71 were down-regulated in the azacytidine-treated monocytes, concomitant with an increase in the levels of these chaperones in the cell culture medium. Collectively, our results demonstrates that chaperones from different organelles behave differently in necrotic monocytes, ER- and mitochondrial chaperones being retained and cytosolic and nuclear chaperones being released into the cell culture medium through the ruptured cell membrane. HSP60 may serve as a new target for development of myeloid leukemia treatment. PMID:23555724

  2. Acute Endoplasmic Reticulum Stress-Independent Unconventional Splicing of XBP1 mRNA in the Nucleus of Mammalian Cells.

    PubMed

    Wang, Yuanyuan; Xing, Pan; Cui, Wenjing; Wang, Wenwen; Cui, Yanfen; Ying, Guoguang; Wang, Xin; Li, Binghui

    2015-06-10

    The regulation of expression of X-box-binding protein-1 (XBP1), a transcriptional factor, involves an unconventional mRNA splicing that removes the 26 nucleotides intron. In contrast to the conventional splicing that exclusively takes place in the nucleus, determining the location of unconventional splicing still remains controversial. This study was designed to examine whether the unconventional spicing of XBP1 mRNA could occur in the nucleus and its possible biological relevance. We use RT-PCR reverse transcription system and the expand high fidelity PCR system to detect spliced XBP1 mRNA, and fraction cells to determine the location of the unconventional splicing of XBP1 mRNA. We employ reporter constructs to show the presence of unconventional splicing machinery in mammal cells independently of acute endoplasmic reticulum (ER) stress. Our results reveal the presence of basal unconventional splicing of XBP1 mRNA in the nucleus that also requires inositol-requiring transmembrane kinase and endonuclease 1α (IRE1α) and can occur independently of acute ER stress. Furthermore, we confirm that acute ER stress induces the splicing of XBP1 mRNA predominantly occurring in the cytoplasm, but it also promotes the splicing in the nucleus. The deletion of 5'-nucleotides in XBP1 mRNA significantly increases its basal unconventional splicing, suggesting that the secondary structure of XBP1 mRNA may determine the location of unconventional splicing. These results suggest that the unconventional splicing of XBP1 mRNA can take place in the nucleus and/or cytoplasm, which possibly depends on the elaborate regulation. The acute ER stress-independent unconventional splicing in the nucleus is most likely required for the maintaining of day-to-day folding protein homeostasis.

  3. Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae.

    PubMed

    Liang, Xinwen; Dickman, Martin B; Becker, Donald F

    2014-10-01

    The amino acid proline is uniquely involved in cellular processes that underlie stress response in a variety of organisms. Proline is known to minimize protein aggregation, but a detailed study of how proline impacts cell survival during accumulation of misfolded proteins in the endoplasmic reticulum (ER) has not been performed. To address this we examined in Saccharomyces cerevisiae the effect of knocking out the PRO1, PRO2, and PRO3 genes responsible for proline biosynthesis. The null mutants pro1, pro2, and pro3 were shown to have increased sensitivity to ER stress relative to wild-type cells, which could be restored by proline or the corresponding genetic complementation. Of these mutants, pro3 was the most sensitive to tunicamycin and was rescued by anaerobic growth conditions or reduced thiol reagents. The pro3 mutant cells have higher intracellular reactive oxygen species, total glutathione, and a NADP(+)/NADPH ratio than wild-type cells under limiting proline conditions. Depletion of proline biosynthesis also inhibits the unfolded protein response (UPR) indicating proline protection involves the UPR. To more broadly test the role of proline in ER stress, increased proline biosynthesis was shown to partially rescue the ER stress sensitivity of a hog1 null mutant in which the high osmolality pathway is disrupted.

  4. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells.

    PubMed

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L; Festuccia, Claudio; Limonta, Patrizia

    2016-01-01

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma. PMID:27461002

  5. Ascorbic acid protects against cadmium-induced endoplasmic reticulum stress and germ cell apoptosis in testes.

    PubMed

    Ji, Yan-Li; Wang, Zhen; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Meng, Xiu-Hong; Xu, De-Xiang

    2012-11-01

    Cadmium (Cd) is a testicular toxicant which induces endoplasmic reticulum (ER) stress and germ cell apoptosis in testes. This study investigated the effects of ascorbic acid on Cd-evoked ER stress and germ cell apoptosis in testes. Male mice were intraperitoneally injected with CdCl(2) (2.0 mg/kg). As expected, a single dose of Cd induced testicular germ cell apoptosis. Interestingly, Cd-triggered testicular germ cell apoptosis was almost completely inhibited in mice treated with ascorbic acid. Interestingly, ascorbic acid significantly attenuated Cd-induced upregulation of GRP78 in testes. In addition, ascorbic acid significantly attenuated Cd-triggered testicular IRE1α and eIF2α phosphorylation and XBP-1 activation, indicating that this antioxidant counteracts Cd-induced unfolded protein response (UPR) in testes. Finally, ascorbic acid significantly attenuated Cd-evoked upregulation of CHOP and JNK phosphorylation, two components in ER stress-mediated apoptotic pathway. In conclusion, ascorbic acid protects mice from Cd-triggered germ cell apoptosis via inhibiting ER stress and UPR in testes. PMID:22569276

  6. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153).

    PubMed Central

    Wang, X Z; Lawson, B; Brewer, J W; Zinszner, H; Sanjay, A; Mi, L J; Boorstein, R; Kreibich, G; Hendershot, L M; Ron, D

    1996-01-01

    The gene encoding C/EBP-homologous protein (CHOP), also known as growth arrest and DNA-damage-inducible gene 153 (GADD153), is activated by agents that adversely affect the function of the endoplasmic reticulum (ER). Because of the pleiotropic effects of such agents on other cellular processes, the role of ER stress in inducing CHOP gene expression has remained unclear. We find that cells with conditional (temperature-sensitive) defects in protein glycosylation (CHO K12 and BHK tsBN7) induce CHOP when cultured at the nonpermissive temperature. In addition, cells that are defective in initiating the ER stress response, because of overexpression of an exogenous ER chaperone, BiP/GRP78, exhibit attenuated inducibility of CHOP. Surprisingly, attenuated induction of CHOP was also noted in BiP-overexpressing cells treated with methyl methanesulfonate, an agent thought to activate CHOP by causing DNA damage. The roles of DNA damage and growth arrest in the induction of CHOP were therefore reexamined. Induction of growth arrest by culture to confluence or treatment with the enzymatic inhibitor N-(phosphonacetyl)-L-aspartate did not induce CHOP. Furthermore, both a DNA-damage-causing nucleoside analog (5-hydroxymethyl-2'-deoxyuridine) and UV light alone did not induce CHOP. These results suggest that CHOP is more responsive to ER stress than to growth arrest or DNA damage and indicate a potential role for CHOP in linking stress in the ER to alterations in gene expression. PMID:8754828

  7. Emodin induces apoptosis of human osteosarcoma cells via mitochondria- and endoplasmic reticulum stress-related pathways

    PubMed Central

    Ying, Jinhe; Xu, Huan; Wu, Dhua; Wu, Xiaoguang

    2015-01-01

    Aim: Emodin showed anti-cancer activity against multiple human malignant tumors by inducing apoptosis. However, the apoptotic inducing effect against human osteosarcoma and related mechanism are still not studied. This study was aimed to investigate them. Methods: Emodin was used to incubate human OS cell U2OS cells at serially diluted concentrations. Hoechst staining was used to evaluate apoptosis; flow cytometry was applied to assess the collapse of mitochondrial membrane potential (MMP); intracellular ROS generation was detected by DCFH-DA staining; endoplasmic reticulum stress activation was examined by western blotting. Results: Cell apoptosis of U2OS cells was induced by emodin incubation in a concentration-dependent manner; MMP collapse and ROS generation were identified at starting concentration of 80 μmol/L of emodin in a concentration-dependent manner. ER stress activation was found at beginning concentration of 40 μmol/L of emodin. The MMP collapse was inhibited while the ER stress was not inhibited by NAC administration. Conclusions: Emodin induces death of human osteosarcoma cells by initiating ROS-dependent mitochondria-induced and ROS-independent ER stress-induced apoptosis. PMID:26722474

  8. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells

    PubMed Central

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M.; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L.; Festuccia, Claudio; Limonta, Patrizia

    2016-01-01

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma. PMID:27461002

  9. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells.

    PubMed

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L; Festuccia, Claudio; Limonta, Patrizia

    2016-07-27

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma.

  10. Miltirone exhibits antileukemic activity by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction pathways

    PubMed Central

    Zhou, Ling; Jiang, Lifeng; Xu, Maolei; Liu, Qun; Gao, Ning; Li, Ping; Liu, E-Hu

    2016-01-01

    In this study, we investigated the effects of miltirone in human leukemia cell lines, primary leukemia cells, and nude mice U937 xenograft. Treatment of cells with miltirone resulted in apoptosis, mitochondria membrane potential (MMP) collapses, increase of Bax/Bcl-2 ratio, and cytochrome c release. Miltirone triggered the endoplasmic reticulum (ER) stress identified through several key molecules of the unfolded protein response, including phosphorylated PERK, eIF2a, GRP78, GRP94, and caspase-12. Miltrone treatment also resulted in the release of Ca2+ from the ER stores and mitochondrial Ca2+ loading in the cells. Further research revealed that miltirone resulted in dose-dependent decrease in complex III activity and elevated reactive oxygen species (ROS) production in these cells. Miltirone-induced apoptosis, dissipation of MMP and ER stress were dramatically blocked by pretreatment with antioxidant N-acetylcysteine (NAC). In contrast, treatment with ER stress inhibitor TUDCA significantly attenuated miltirone-induced ROS and apoptosis in leukemia cells. Moreover, our in vivo findings showed that administration of miltirone markedly inhibited tumor growth and induced apoptosis in U937 xenograft model with low systemic toxicity. Taken together, these findings indicate that miltirone may exert its antileukemic activity by inducing apoptosis through a ROS-dependent destructive cycle involving ER stress and mitochondrial dysfunction. PMID:26848099

  11. The roles of endoplasmic reticulum stress response in female mammalian reproduction.

    PubMed

    Yang, Yanzhou; Pei, Xiuying; Jin, Yaping; Wang, Yanrong; Zhang, Cheng

    2016-03-01

    Endoplasmic reticulum stress (ERS) activates a protective pathway, called the unfold protein response, for maintaining cellular homeostasis, but cellular apoptosis is triggered by excessive or persistent ERS. Several recent studies imply that the ERS response might have broader physiological roles in the various reproductive processes of female mammals, including embryo implantation, decidualization, preimplantation embryonic development, follicle atresia, and the development of the placenta. This review summarizes the existing data concerning the molecular and biological roles of the ERS response. The study of the functions of the ERS response in mammalian reproduction might provide novel insights into and an understanding of reproductive cell survival and apoptosis under physiological and pathological conditions. The ERS response is a novel signaling pathway for reproductive cell survival and apoptosis. Infertility might be a result of disturbing the ERS response during the process of female reproduction. PMID:26022337

  12. Hydrogen Sulfide Improves Vascular Calcification in Rats by Inhibiting Endoplasmic Reticulum Stress

    PubMed Central

    Yang, Rui; Teng, Xu; Li, Hui; Xue, Hong-Mei; Guo, Qi; Xiao, Lin; Wu, Yu-Ming

    2016-01-01

    In this study, the vitamin D3 plus nicotine (VDN) model of rats was used to prove that H2S alleviates vascular calcification (VC) and phenotype transformation of vascular smooth muscle cells (VSMC). Besides, H2S can also inhibit endoplasmic reticulum stress (ERS) of calcified aortic tissues. The effect of H2S on alleviating VC and phenotype transformation of VSMC can be blocked by TM, while PBA also alleviated VC and phenotype transformation of VSMC that was similar to the effect of H2S. These results suggest that H2S may alleviate rat aorta VC by inhibiting ERS, providing new target and perspective for prevention and treatment of VC. PMID:27022436

  13. Endoplasmic reticulum stress-mediated pathways to both apoptosis and autophagy: Significance for melanoma treatment

    PubMed Central

    Hassan, Mohamed; Selimovic, Denis; Hannig, Matthias; Haikel, Youssef; Brodell, Robert T; Megahed, Mossaad

    2015-01-01

    Melanoma is the most aggressive form of skin cancer. Disrupted intracellular signaling pathways are responsible for melanoma's extraordinary resistance to current chemotherapeutic modalities. The pathophysiologic basis for resistance to both chemo- and radiation therapy is rooted in altered genetic and epigenetic mechanisms that, in turn, result in the impairing of cell death machinery and/or excessive activation of cell growth and survival-dependent pathways. Although most current melanoma therapies target mitochondrial dysregulation, there is increasing evidence that endoplasmic reticulum (ER) stress-associated pathways play a role in the potentiation, initiation and maintenance of cell death machinery and autophagy. This review focuses on the reliability of ER-associated pathways as therapeutic targets for melanoma treatment. PMID:26618107

  14. BODIPY-Coumarin Conjugate as an Endoplasmic Reticulum Membrane Fluidity Sensor and Its Application to ER Stress Models.

    PubMed

    Lee, Hoyeon; Yang, Zhigang; Wi, Youngjin; Kim, Tae Woo; Verwilst, Peter; Lee, Yun Hak; Han, Ga-In; Kang, Chulhun; Kim, Jong Seung

    2015-12-16

    An endoplasmic reticulum (ER) membrane-selective chemosensor composed of BODIPY and coumarin moieties and a long alkyl chain (n-C18) was synthesized. The emission ratio of BODIPY to coumarin depends on the solution viscosity. The probe is localized to the ER membrane and was applied to reveal the reduced ER membrane fluidity under ER stress conditions.

  15. Identification of a calmodulin-regulated Ca2+-ATPase in the endoplasmic reticulum

    NASA Technical Reports Server (NTRS)

    Hong, B.; Ichida, A.; Wang, Y.; Gens, J. S.; Pickard, B. G.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    1999-01-01

    A unique subfamily of calmodulin-dependent Ca2+-ATPases was recently identified in plants. In contrast to the most closely related pumps in animals, plasma membrane-type Ca2+-ATPases, members of this new subfamily are distinguished by a calmodulin-regulated autoinhibitor located at the N-terminal instead of a C-terminal end. In addition, at least some isoforms appear to reside in non-plasma membrane locations. To begin delineating their functions, we investigated the subcellular localization of isoform ACA2p (Arabidopsis Ca2+-ATPase, isoform 2 protein) in Arabidopsis. Here we provide evidence that ACA2p resides in the endoplasmic reticulum (ER). In buoyant density sucrose gradients performed with and without Mg2+, ACA2p cofractionated with an ER membrane marker and a typical "ER-type" Ca2+-ATPase, ACA3p/ECA1p. To visualize its subcellular localization, ACA2p was tagged with a green fluorescence protein at its C terminus (ACA2-GFPp) and expressed in transgenic Arabidopsis. We collected fluorescence images from live root cells using confocal and computational optical-sectioning microscopy. ACA2-GFPp appeared as a fluorescent reticulum, consistent with an ER location. In addition, we observed strong fluorescence around the nuclei of mature epidermal cells, which is consistent with the hypothesis that ACA2p may also function in the nuclear envelope. An ER location makes ACA2p distinct from all other calmodulin-regulated pumps identified in plants or animals.

  16. The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA).

    PubMed

    Stammers, Andrew N; Susser, Shanel E; Hamm, Naomi C; Hlynsky, Michael W; Kimber, Dustin E; Kehler, D Scott; Duhamel, Todd A

    2015-10-01

    The sarco(endo)plasmic reticulum calcium ATPase (SERCA) is responsible for transporting calcium (Ca(2+)) from the cytosol into the lumen of the sarcoplasmic reticulum (SR) following muscular contraction. The Ca(2+) sequestering activity of SERCA facilitates muscular relaxation in both cardiac and skeletal muscle. There are more than 10 distinct isoforms of SERCA expressed in different tissues. SERCA2a is the primary isoform expressed in cardiac tissue, whereas SERCA1a is the predominant isoform expressed in fast-twitch skeletal muscle. The Ca(2+) sequestering activity of SERCA is regulated at the level of protein content and is further modified by the endogenous proteins phospholamban (PLN) and sarcolipin (SLN). Additionally, several novel mechanisms, including post-translational modifications and microRNAs (miRNAs) are emerging as integral regulators of Ca(2+) transport activity. These regulatory mechanisms are clinically relevant, as dysregulated SERCA function has been implicated in the pathology of several disease states, including heart failure. Currently, several clinical trials are underway that utilize novel therapeutic approaches to restore SERCA2a activity in humans. The purpose of this review is to examine the regulatory mechanisms of the SERCA pump, with a particular emphasis on the influence of exercise in preventing the pathological conditions associated with impaired SERCA function.

  17. Humanin Protects RPE Cells from Endoplasmic Reticulum Stress-Induced Apoptosis by Upregulation of Mitochondrial Glutathione

    PubMed Central

    Matsunaga, Douglas; Sreekumar, Parameswaran G.; Ishikawa, Keijiro; Terasaki, Hiroto; Barron, Ernesto; Cohen, Pinchas

    2016-01-01

    Humanin (HN) is a small mitochondrial-encoded peptide with neuroprotective properties. We have recently shown protection of retinal pigmented epithelium (RPE) cells by HN in oxidative stress; however, the effect of HN on endoplasmic reticulum (ER) stress has not been evaluated in any cell type. Our aim here was to study the effect of HN on ER stress-induced apoptosis in RPE cells with a specific focus on ER-mitochondrial cross-talk. Dose dependent effects of ER stressors (tunicamycin (TM), brefeldin A, and thapsigargin) were studied after 12 hr of treatment in confluent primary human RPE cells with or without 12 hr of HN pretreatment (1–20 μg/mL). All three ER stressors induced RPE cell apoptosis in a dose dependent manner. HN pretreatment significantly decreased the number of apoptotic cells with all three ER stressors in a dose dependent manner. HN pretreatment similarly protected U-251 glioma cells from TM-induced apoptosis in a dose dependent manner. HN pretreatment significantly attenuated activation of caspase 3 and ER stress-specific caspase 4 induced by TM. TM treatment increased mitochondrial superoxide production, and HN co-treatment resulted in a decrease in mitochondrial superoxide compared to TM treatment alone. We further showed that depleted mitochondrial glutathione (GSH) levels induced by TM were restored with HN co-treatment. No significant changes were found for the expression of several antioxidant enzymes between TM and TM plus HN groups except for the expression of glutamylcysteine ligase catalytic subunit (GCLC), the rate limiting enzyme required for GSH biosynthesis, which is upregulated with TM and TM+HN treatment. These results demonstrate that ER stress promotes mitochondrial alterations in RPE that lead to apoptosis. We further show that HN has a protective effect against ER stress-induced apoptosis by restoring mitochondrial GSH. Thus, HN should be further evaluated for its therapeutic potential in disorders linked to ER stress. PMID

  18. Increased endoplasmic reticulum stress in mouse osteocytes with aging alters Cox-2 response to mechanical stimuli.

    PubMed

    Chalil, Sreeda; Jaspers, Richard T; Manders, Ralph J; Klein-Nulend, Jenneke; Bakker, Astrid D; Deldicque, Louise

    2015-02-01

    Aging reduces bone mass as well as the anabolic response of bone to mechanical stimuli, resulting in osteopenia. Endoplasmic reticulum (ER) stress impairs the response of myogenic cells to anabolic stimuli, and is involved in sarcopenia, but whether ER stress also contributes to osteopenia is unknown. Therefore, we tested whether ER stress exists in bones of aged mice, and whether this impairs the osteocyte response to mechanical stimulation. Primary osteocytes were obtained from long bones of adult (8 months) and old (24-26 months) mice, treated with or without the pharmacological ER stress inducer tunicamycin, and either or not subjected to mechanical loading by pulsating fluid flow (PFF). The osteocyte response to PFF was assessed by measuring cyclooxygenase-2 (Cox-2) mRNA levels and nitric oxide (NO) production. mRNA levels of ER stress markers were higher in old versus adult osteocytes (+40% for activating transcription factor-4, +120% for C/EBP homologous protein, and +120% for spliced X-box binding protein-1, p < 0.05). The Cox-2 response to PFF was fourfold decreased in cells from old bones (p < 0.001), while tunicamycin decreased PFF-induced Cox-2 expression by threefold in cells from adult bones (p < 0.01). PFF increased NO production by 50% at 60 min in osteocytes from old versus adult bones (p < 0.01). In conclusion, our data indicate that the expression of several ER stress markers was higher in osteocytes from bones of old compared to adult mice. Since ER stress altered the response of osteocytes to mechanical loading, it could be a novel factor contributing to osteopenia. PMID:25539857

  19. Protective Effects of Alisma orientale Extract against Hepatic Steatosis via Inhibition of Endoplasmic Reticulum Stress.

    PubMed

    Jang, Min-Kyung; Han, Yu-Ran; Nam, Jeong Soo; Han, Chang Woo; Kim, Byung Joo; Jeong, Han-Sol; Ha, Ki-Tae; Jung, Myeong Ho

    2015-01-01

    Endoplasmic reticulum (ER) stress is associated with the pathogenesis of hepatic steatosis. Alisma orientale Juzepzuk is a traditional medicinal herb for diuretics, diabetes, hepatitis, and inflammation. In this study, we investigated the protective effects of methanol extract of the tuber of Alisma orientale (MEAO) against ER stress-induced hepatic steatosis in vitro and in vivo. MEAO inhibited the tunicamycin-induced increase in luciferase activity of ER stress-reporter constructs containing ER stress response element and ATF6 response element. MEAO significantly inhibited tunicamycin-induced ER stress marker expression including GRP78, CHOP, and XBP-1 in tunicamycin-treated Human hepatocellular carcinoma (HepG2) cells and the livers of tunicamycin-injected mice. It also inhibited tunicamycin-induced accumulation of cellular triglyceride. Similar observations were made under physiological ER stress conditions such as in palmitate (PA)-treated HepG2 cells and the livers of high-fat diet (HFD)-induced obese mice. MEAO repressed hepatic lipogenic gene expression in PA-treated HepG2 cells and the livers of HFD obese mice. Furthermore, MEAO repressed very low-density lipoprotein receptor (VLDLR) expression and improved ApoB secretion in the livers of tunicamycin-injected mice or HFD obese mice as well as in tunicamycin or PA-treated HepG2 cells. Alismol, a guaiane-type sesquiterpenes in Alisma orientale, inhibited GRP78 expression in tunicamycin-treated HepG2 cells. In conclusion, MEAO attenuates ER stress and prevents hepatic steatosis pathogenesis via inhibition of expression of the hepatic lipogenic genes and VLDLR, and enhancement of ApoB secretion. PMID:26540043

  20. Protective Effects of Alisma orientale Extract against Hepatic Steatosis via Inhibition of Endoplasmic Reticulum Stress.

    PubMed

    Jang, Min-Kyung; Han, Yu-Ran; Nam, Jeong Soo; Han, Chang Woo; Kim, Byung Joo; Jeong, Han-Sol; Ha, Ki-Tae; Jung, Myeong Ho

    2015-11-02

    Endoplasmic reticulum (ER) stress is associated with the pathogenesis of hepatic steatosis. Alisma orientale Juzepzuk is a traditional medicinal herb for diuretics, diabetes, hepatitis, and inflammation. In this study, we investigated the protective effects of methanol extract of the tuber of Alisma orientale (MEAO) against ER stress-induced hepatic steatosis in vitro and in vivo. MEAO inhibited the tunicamycin-induced increase in luciferase activity of ER stress-reporter constructs containing ER stress response element and ATF6 response element. MEAO significantly inhibited tunicamycin-induced ER stress marker expression including GRP78, CHOP, and XBP-1 in tunicamycin-treated Human hepatocellular carcinoma (HepG2) cells and the livers of tunicamycin-injected mice. It also inhibited tunicamycin-induced accumulation of cellular triglyceride. Similar observations were made under physiological ER stress conditions such as in palmitate (PA)-treated HepG2 cells and the livers of high-fat diet (HFD)-induced obese mice. MEAO repressed hepatic lipogenic gene expression in PA-treated HepG2 cells and the livers of HFD obese mice. Furthermore, MEAO repressed very low-density lipoprotein receptor (VLDLR) expression and improved ApoB secretion in the livers of tunicamycin-injected mice or HFD obese mice as well as in tunicamycin or PA-treated HepG2 cells. Alismol, a guaiane-type sesquiterpenes in Alisma orientale, inhibited GRP78 expression in tunicamycin-treated HepG2 cells. In conclusion, MEAO attenuates ER stress and prevents hepatic steatosis pathogenesis via inhibition of expression of the hepatic lipogenic genes and VLDLR, and enhancement of ApoB secretion.

  1. Triapine and a more potent dimethyl derivative induce endoplasmic reticulum stress in cancer cells.

    PubMed

    Trondl, Robert; Flocke, Lea S; Kowol, Christian R; Heffeter, Petra; Jungwirth, Ute; Mair, Georg E; Steinborn, Ralf; Enyedy, Éva A; Jakupec, Michael A; Berger, Walter; Keppler, Bernhard K

    2014-03-01

    Triapine (3-AP; 3-aminopyridine-2-carboxaldehyde thiosemicarbazone), a ribonucleotide reductase inhibitor, has been extensively evaluated in clinical trials in the last decade. This study addresses the role of endoplasmic reticulum (ER) stress in the anticancer activity of 3-AP and the derivative N(4),N(4)-dimethyl-triapine (3-AP-Me), differing from 3-AP only by dimethylation of the terminal nitrogen. Treatment of colon cancer cells with 3-AP or 3-AP-Me activated all three ER stress pathways (PERK, IRE1a, ATF6) by phosphorylation of eIF2α and upregulation of gene expression of activating transcription factors ATF4 and ATF6. In particular, 3-AP-Me led to an upregulation of the alternatively spliced mRNA variant XBP1 (16-fold). Moreover, 3-AP and 3-AP-Me activated the cellular stress kinases c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases, and inhibition of JNK activity antagonized the cytotoxic effect of both compounds. Subsequent to induction of the unfolded protein response, a significant upregulation of proapoptotic proteins was detected, including the transcription factor CHOP and Bim, an essential factor for ER stress-related apoptosis. In correlation with the higher degree of ER stress after 3-AP-Me treatment, also a more potent depolarization of mitochondrial membranes was found. These data suggest that 3-AP and 3-AP-Me induce apoptosis via ER stress. This was further corroborated by showing that inhibition of protein biosynthesis with cycloheximide prior to 3-AP and 3-AP-Me treatment leads to a significant reduction of the antiproliferative properties of both compounds. Taken together, this study demonstrates that induction of ER stress contributes to the mode of action of 3-AP and that terminal dimethylation leads to an even more pronounced manifestation of this effect.

  2. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    SciTech Connect

    Chang, Yoke-Chen; Wang, James D.; Svoboda, Kathy K.; Casillas, Robert P.; Laskin, Jeffrey D.; Gordon, Marion K.; Gerecke, Donald R.

    2013-04-15

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM.

  3. Protective Effects of Alisma orientale Extract against Hepatic Steatosis via Inhibition of Endoplasmic Reticulum Stress

    PubMed Central

    Jang, Min-Kyung; Han, Yu-Ran; Nam, Jeong Soo; Han, Chang Woo; Kim, Byung Joo; Jeong, Han-Sol; Ha, Ki-Tae; Jung, Myeong Ho

    2015-01-01

    Endoplasmic reticulum (ER) stress is associated with the pathogenesis of hepatic steatosis. Alisma orientale Juzepzuk is a traditional medicinal herb for diuretics, diabetes, hepatitis, and inflammation. In this study, we investigated the protective effects of methanol extract of the tuber of Alisma orientale (MEAO) against ER stress-induced hepatic steatosis in vitro and in vivo. MEAO inhibited the tunicamycin-induced increase in luciferase activity of ER stress-reporter constructs containing ER stress response element and ATF6 response element. MEAO significantly inhibited tunicamycin-induced ER stress marker expression including GRP78, CHOP, and XBP-1 in tunicamycin-treated Human hepatocellular carcinoma (HepG2) cells and the livers of tunicamycin-injected mice. It also inhibited tunicamycin-induced accumulation of cellular triglyceride. Similar observations were made under physiological ER stress conditions such as in palmitate (PA)-treated HepG2 cells and the livers of high-fat diet (HFD)-induced obese mice. MEAO repressed hepatic lipogenic gene expression in PA-treated HepG2 cells and the livers of HFD obese mice. Furthermore, MEAO repressed very low-density lipoprotein receptor (VLDLR) expression and improved ApoB secretion in the livers of tunicamycin-injected mice or HFD obese mice as well as in tunicamycin or PA-treated HepG2 cells. Alismol, a guaiane-type sesquiterpenes in Alisma orientale, inhibited GRP78 expression in tunicamycin-treated HepG2 cells. In conclusion, MEAO attenuates ER stress and prevents hepatic steatosis pathogenesis via inhibition of expression of the hepatic lipogenic genes and VLDLR, and enhancement of ApoB secretion. PMID:26540043

  4. Endoplasmic reticulum stress and unfolded protein response in inflammatory bowel disease.

    PubMed

    Cao, Stewart S

    2015-03-01

    In eukaryotic cells, protein folding and modification in the endoplasmic reticulum (ER) is highly sensitive to disturbances of homeostasis. The accumulation of unfolded and misfolded proteins in the ER lumen, termed ER stress, activates intracellular signaling pathways to resolve the protein-folding defect. This unfolded protein response (UPR) increases the capacity of ER protein folding, reduces global protein synthesis, and activates ER-associated protein degradation. If ER stress is too severe or chronic, or the UPR is compromised and not able to restore ER protein-folding homeostasis, numerous apoptotic signaling pathways are activated. Preclinical and clinical studies in the past decade indicate that ER stress and the UPR have a significant impact on the pathogenesis of inflammatory bowel disease. Paneth and goblet cells, 2 epithelial cell populations in the gut, rely on a robust ER function for protein folding and secretion. Several immune cells are orchestrated by ER stress and the UPR for differentiation, activation, migration, and survival. In addition, a variety of exogenous and endogenous molecules in the intestinal lumen affect ER function, making ER stress and the UPR relevant cellular signals in intestinal homeostasis. Recent studies demonstrated that unresolved ER stress and/or dysregulated UPR may cause inflammatory bowel disease by inducing epithelial cell death, impairing mucosal barrier function, and activating proinflammatory response in the gut. With our increased understanding of ER stress in inflammatory bowel disease pathogenesis, it is now possible to develop novel therapies to improve ER protein-folding homeostasis and target-specific UPR pathways in cells residing in the intestinal mucosa.

  5. Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPARδ signaling pathway.

    PubMed

    Choy, Ker-Woon; Mustafa, Mohd Rais; Lau, Yeh Siang; Liu, Jian; Murugan, Dharmani; Lau, Chi Wai; Wang, Li; Zhao, Lei; Huang, Yu

    2016-09-15

    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway.

  6. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation.

    PubMed

    Chen, Rui; Huo, Lingling; Shi, Xiaofei; Bai, Ru; Zhang, Zhenjiang; Zhao, Yuliang; Chang, Yanzhong; Chen, Chunying

    2014-03-25

    Zinc oxide nanoparticles (ZnO NPs) have been widely used in cosmetics and sunscreens, advanced textiles, self-charging and electronic devices; the potential for human exposure and the health impact at each stage of their manufacture and use are attracting great concerns. In addition to pulmonary damage, nanoparticle exposure is also strongly correlated with the increase in incidences of cardiovascular diseases; however, their toxic potential remains largely unclear. Herein, we investigated the cellular responses and endoplasmatic reticulum (ER) stress induced by ZnO NPs in human umbilical vein endothelial cells (HUVECs) in comparison with the Zn2+ ions and CeO2 NPs. We found that the dissolved zinc ion was the most significant factor for cytotoxicity in HUVECs. More importantly, ZnO NPs at noncytotoxic concentration, but not CeO2 NPs, can induce significant cellular ER stress response with higher expression of spliced xbp-1, chop, and caspase-12 at the mRNA level, and associated ER marker proteins including BiP, Chop, GADD34, p-PERK, p-eIF2α, and cleaved Caspase-12 at the protein levels. Moreover, ER stress was widely activated after treatment with ZnO NPs, while six of 84 marker genes significantly increased. ER stress response is a sensitive marker for checking the interruption of ER homeostasis by ZnO NPs. Furthermore, higher dosage of ZnO NPs (240 μM) quickly rendered ER stress response before inducing apoptosis. These results demonstrate that ZnO NPs activate ER stress-responsive pathway and the ER stress response might be used as an earlier and sensitive end point for nanotoxicological study.

  7. Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPARδ signaling pathway.

    PubMed

    Choy, Ker-Woon; Mustafa, Mohd Rais; Lau, Yeh Siang; Liu, Jian; Murugan, Dharmani; Lau, Chi Wai; Wang, Li; Zhao, Lei; Huang, Yu

    2016-09-15

    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway. PMID:27449753

  8. Nonesterified Fatty Acid-Induced Endoplasmic Reticulum Stress in Cattle Cumulus Oocyte Complexes Alters Cell Metabolism and Developmental Competence.

    PubMed

    Sutton-McDowall, Melanie L; Wu, Linda L Y; Purdey, Malcolm; Abell, Andrew D; Goldys, Ewa M; MacMillan, Keith L; Thompson, Jeremy G; Robker, Rebecca L

    2016-01-01

    Reduced oocyte quality has been associated with poor fertility of high-performance dairy cows during peak lactation, due to negative energy balance. We examined the role of nonesterified fatty acids (NEFAs), known to accumulate within follicular fluid during under- and overnutrition scenarios, in causing endoplasmic reticulum (ER) stress of in vitro maturated cattle cumulus-oocyte complexes (COCs). NEFA concentrations were: palmitic acid (150 μM), oleic acid (200 μM), and steric acid (75 μM). Abattoir-derived COCs were randomly matured for 24 h in the presence of NEFAs and/or an ER stress inhibitor, salubrinal. Total and hatched blastocyst yields were negatively impacted by NEFA treatment compared with controls, but this was reversed by salubrinal. ER stress markers, activating transcription factor 4 (Atf4) and heat shock protein 5 (Hspa5), but not Atf6, were significantly up-regulated by NEFA treatment within whole COCs but reversed by coincubation with salubrinal. Likewise, glucose uptake and lactate production, measured in spent medium samples, showed a similar pattern, suggesting that cumulus cell metabolism is sensitive to NEFAs via an ER stress-mediated process. In contrast, while mitochondrial DNA copy number was recovered in NEFA-treated oocytes, oocyte autofluorescence of the respiratory chain cofactor, FAD, was lower following NEFA treatment of COCs, and this was not reversed by salubrinal, suggesting the negative impact was via reduced mitochondrial function. These results reveal the significance of NEFA-induced ER stress on bovine COC developmental competence, revealing a potential therapeutic target for improving oocyte quality during peak lactation. PMID:26658709

  9. Ebselen alters cellular oxidative status and induces endoplasmic reticulum stress in rat hippocampal astrocytes.

    PubMed

    Santofimia-Castaño, Patricia; Izquierdo-Alvarez, Alicia; de la Casa-Resino, Irene; Martinez-Ruiz, Antonio; Perez-Lopez, Marcos; Portilla, Juan C; Salido, Gines M; Gonzalez, Antonio

    2016-05-16

    Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. Because of its properties, it may be protective against injury to the nervous tissue. However, evidence suggests that its glutathione peroxidase activity could underlie certain deleterious actions on cell physiology. In this study we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular oxidative status, cytosolic free-Ca(2+) concentration ([Ca(2+)]c), setting of endoplasmic reticulum stress and phosphorylation of glial fibrillary acidic protein and major mitogen-activated protein kinases were analyzed. Our results show that ebselen induced a concentration-dependent increase in the generation of reactive oxygen species in the mitochondria. We observed a concentration-dependent increase in global cysteine oxidation and in the level of malondialdehyde in the presence of ebselen. We also detected increases in catalase, glutathione S-transferase and glutathione reductase activity. Ebselen also evoked a concentration-dependent increase in [Ca(2+)]c. Moreover, we observed a concentration-dependent increase in the phosphorylation of the unfolded protein response markers, eukaryotic translation initiation factor 2α and X-box binding protein 1. Finally, ebselen also induced an increase in the phosphorylation of glial fibrillary acidic protein, SAPK/JNK, p38 MAPK and p44/42 MAPK. Our results provide strong evidence that implicate endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in an oxidative damage of cells in the presence of ebselen. The compound thus might exert deleterious actions on astrocyte physiology that could compromise their function. PMID:27282967

  10. Chronic restraint stress promotes learning and memory impairment due to enhanced neuronal endoplasmic reticulum stress in the frontal cortex and hippocampus in male mice.

    PubMed

    Huang, Rong-Rong; Hu, Wen; Yin, Yan-Yan; Wang, Yu-Chan; Li, Wei-Ping; Li, Wei-Zu

    2015-02-01

    Chronic stress has been implicated in many types of neurodegenerative diseases, such as Alzheimer's disease (AD). In our previous study, we demonstrated that chronic restraint stress (CRS) induced reactive oxygen species (ROS) overproduction and oxidative damage in the frontal cortex and hippocampus in mice. In the present study, we investigated the effects of CRS (over a period of 8 weeks) on learning and memory impairment and endoplasmic reticulum (ER) stress in the frontal cortex and hippocampus in male mice. The Morris water maze was used to investigate the effects of CRS on learning and memory impairment. Immunohistochemistry and immunoblot analysis were also used to determine the expression levels of protein kinase C α (PKCα), 78 kDa glucose-regulated protein (GRP78), C/EBP-homologous protein (CHOP) and mesencephalic astrocyte-derived neurotrophic factor (MANF). The results revealed that CRS significantly accelerated learning and memory impairment, and induced neuronal damage in the frontal cortex and hippocampus CA1 region. Moreover, CRS significantly increased the expression of PKCα, CHOP and MANF, and decreased that of GRP78 in the frontal cortex and hippocampus. Our data suggest that exposure to CRS (for 8 weeks) significantly accelerates learning and memory impairment, and the mechanisms involved may be related to ER stress in the frontal cortex and hippocampus.

  11. Nur77 exacerbates PC12 cellular injury in vitro by aggravating mitochondrial impairment and endoplasmic reticulum stress

    PubMed Central

    Gao, Huimin; Chen, Zhaoyu; Fu, Yongmei; Yang, Xiaoyan; Weng, Ruihui; Wang, Rui; Lu, Jianjun; Pan, Mengqiu; Jin, Kunlin; McElroy, Chris; Tang, Beisha; Xia, Ying; Wang, Qing

    2016-01-01

    The nuclear orphan receptor, Nur77 plays important roles in neuroimflammation, apoptosis, and dopaminergic neurodegeneration. We conducted a further mechanistic investigation into the association of Nur77 with cell death. Cytosporone B (Csn-B), an agonist for Nur77, and Nur77 knockdown were adopted in the 6-hydroxydopamine (OHDA)-lesioned PC12 cells to investigate the mechanisms underlying Nur77-mediated injury. The 6-OHDA incubation caused Nur77 translocation from the nucleus to cytosol and Endoplasm reticulum (ER) and induced co-localization of Tom20/Nur77 and Protein Disulfide Isomerase (PDI)/Nur77. Nur77 activation further decreased cell viability, aggravated intracellular LDH release, intracellular Ca2+, ROS levels, apoptosis, ER tress and, mitochondrial transmembrane potential (ΔΨm) decline. In addition, Nur77 activation significantly enhanced the efficiency of autophagy as indicated by an up-regulation of Beclin-1/LC-3 and downregulation of p62, and aggravated mitochondrial dysfunctions and ER stress as shown by increased HSP60/Cytochrome C (Cyt C) and CHOP-ATF3 levels respectively. These changes could be partially reversed by Nur77 knockdown. Moreover, Nur77 activation upregulated PINK1 and downregulated Parkin levels. We conclude that Nur77 exacerbates PC12 cell death at least partially by aggravating the mitochondrial impairment and ER stress and enhancing autophagy. We propose that Nur77 is likely a critical target in the PD therapy. PMID:27679973

  12. Olmesartan, an AT1 Antagonist, Attenuates Oxidative Stress, Endoplasmic Reticulum Stress and Cardiac Inflammatory Mediators in Rats with Heart Failure Induced by Experimental Autoimmune Myocarditis

    PubMed Central

    Sukumaran, Vijayakumar; Watanabe, Kenichi; Veeraveedu, Punniyakoti T.; Gurusamy, Narasimman; Ma, Meilei; Thandavarayan, Rajarajan A.; Lakshmanan, Arun Prasath; Yamaguchi, Ken'ichi; Suzuki, Kenji; Kodama, Makoto

    2011-01-01

    Studies have demonstrated that angiotensin II has been involved in immune and inflammatory responses which might contribute to the pathogenesis of immune-mediated diseases. Recent evidence suggests that oxidative stress may play a role in myocarditis. Here, we investigated whether olmesartan, an AT1R antagonist protects against experimental autoimmune myocarditis (EAM) by suppression of oxidative stress, endoplasmic reticulum (ER) stress and inflammatory cytokines. EAM was induced in Lewis rats by immunization with porcine cardiac myosin, were divided into two groups and treated with either olmesartan (10 mg/kg/day) or vehicle for a period of 21 days. Myocardial functional parameters measured by hemodynamic and echocardiographic analyses were significantly improved by the treatment with olmesartan compared with those of vehicle-treated rats. Treatment with olmesartan attenuated the myocardial mRNA expressions of proinflammatory cytokines, [Interleukin (IL)-1β, monocyte chemoattractant protein-1, tumor necrosis factor-α and interferon-γ)] and the protein expression of tumor necrosis factor-α compared with that of vehicle-treated rats. Myocardial protein expressions of AT1R, NADPH oxidase subunits (p47phox, p67phox, gp91phox) and the expression of markers of oxidative stress (3-nitrotyrosine and 4-hydroxy-2-nonenal), and the cardiac apoptosis were also significantly decreased by the treatment with olmesartan compared with those of vehicle-treated rats. Furthermore, olmesartan treatment down-regulated the myocardial expressions of glucose regulated protein-78, growth arrest and DNA damage-inducible gene, caspase-12, phospho-p38 mitogen-activated protein kinase (MAPK) and phospho-JNK. These findings suggest that olmesartan protects against EAM in rats, at least in part via suppression of oxidative stress, ER stress and inflammatory cytokines. PMID:21383952

  13. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway

    SciTech Connect

    Luo, Ying; Li, Shu-Jun; Yang, Jian; Qiu, Yuan-Zhen; Chen, Fang-Ping

    2013-09-06

    Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulum stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway.

  14. Aluminium induced endoplasmic reticulum stress mediated cell death in SH-SY5Y neuroblastoma cell line is independent of p53.

    PubMed

    Mustafa Rizvi, Syed Husain; Parveen, Arshiya; Verma, Anoop K; Ahmad, Iqbal; Arshad, Md; Mahdi, Abbas Ali

    2014-01-01

    Aluminium (Al) is the third most abundant element in the earth's crust and its compounds are used in the form of house hold utensils, medicines and in antiperspirant etc. Increasing number of evidences suggest the involvement of Al+3 ions in a variety of neurodegenerative disorders including Alzheimer's disease. Here, we have attempted to investigate the role of Al in endoplasmic reticulum stress and the regulation of p53 during neuronal apoptosis using neuroblastoma cell line. We observed that Al caused oxidative stress by increasing ROS production and intracellular calcium levels together with depletion of intracellular GSH levels. We also studied modulation of key pro- and anti-apoptotic proteins and found significant alterations in the levels of Nrf2, NQO1, pAKT, p21, Bax, Bcl2, Aβ1-40 and Cyt c together with increase in endoplasmic reticulum (ER) stress related proteins like CHOP and caspase 12. However, with respect to the role of p53, we observed downregulation of its transcript as well as protein levels while analysis of its ubiquitination status revealed no significant changes. Not only did Al increase the activities of caspase 9, caspase 12 and caspase 3, but, by the use of peptide inhibitors of specific and pan-caspases, we observed significant protection against neuronal cell death upon inhibition of caspase 12, demonstrating the prominent role of endoplasmic reticulum stress generated responses in Al toxicity. Overall our findings suggest that Al induces ER stress and ROS generation which compromises the antioxidant defenses of neuronal cells thereby promoting neuronal apoptosis in p53 independent pathway.

  15. Aluminium Induced Endoplasmic Reticulum Stress Mediated Cell Death in SH-SY5Y Neuroblastoma Cell Line Is Independent of p53

    PubMed Central

    Mustafa Rizvi, Syed Husain; Parveen, Arshiya; Verma, Anoop K.; Ahmad, Iqbal; Arshad, Md; Mahdi, Abbas Ali

    2014-01-01

    Aluminium (Al) is the third most abundant element in the earth’s crust and its compounds are used in the form of house hold utensils, medicines and in antiperspirant etc. Increasing number of evidences suggest the involvement of Al+3 ions in a variety of neurodegenerative disorders including Alzheimer’s disease. Here, we have attempted to investigate the role of Al in endoplasmic reticulum stress and the regulation of p53 during neuronal apoptosis using neuroblastoma cell line. We observed that Al caused oxidative stress by increasing ROS production and intracellular calcium levels together with depletion of intracellular GSH levels. We also studied modulation of key pro- and anti-apoptotic proteins and found significant alterations in the levels of Nrf2, NQO1, pAKT, p21, Bax, Bcl2, Aβ1-40 and Cyt c together with increase in endoplasmic reticulum (ER) stress related proteins like CHOP and caspase 12. However, with respect to the role of p53, we observed downregulation of its transcript as well as protein levels while analysis of its ubiquitination status revealed no significant changes. Not only did Al increase the activities of caspase 9, caspase 12 and caspase 3, but, by the use of peptide inhibitors of specific and pan-caspases, we observed significant protection against neuronal cell death upon inhibition of caspase 12, demonstrating the prominent role of endoplasmic reticulum stress generated responses in Al toxicity. Overall our findings suggest that Al induces ER stress and ROS generation which compromises the antioxidant defenses of neuronal cells thereby promoting neuronal apoptosis in p53 independent pathway. PMID:24878590

  16. Aluminium induced endoplasmic reticulum stress mediated cell death in SH-SY5Y neuroblastoma cell line is independent of p53.

    PubMed

    Mustafa Rizvi, Syed Husain; Parveen, Arshiya; Verma, Anoop K; Ahmad, Iqbal; Arshad, Md; Mahdi, Abbas Ali

    2014-01-01

    Aluminium (Al) is the third most abundant element in the earth's crust and its compounds are used in the form of house hold utensils, medicines and in antiperspirant etc. Increasing number of evidences suggest the involvement of Al+3 ions in a variety of neurodegenerative disorders including Alzheimer's disease. Here, we have attempted to investigate the role of Al in endoplasmic reticulum stress and the regulation of p53 during neuronal apoptosis using neuroblastoma cell line. We observed that Al caused oxidative stress by increasing ROS production and intracellular calcium levels together with depletion of intracellular GSH levels. We also studied modulation of key pro- and anti-apoptotic proteins and found significant alterations in the levels of Nrf2, NQO1, pAKT, p21, Bax, Bcl2, Aβ1-40 and Cyt c together with increase in endoplasmic reticulum (ER) stress related proteins like CHOP and caspase 12. However, with respect to the role of p53, we observed downregulation of its transcript as well as protein levels while analysis of its ubiquitination status revealed no significant changes. Not only did Al increase the activities of caspase 9, caspase 12 and caspase 3, but, by the use of peptide inhibitors of specific and pan-caspases, we observed significant protection against neuronal cell death upon inhibition of caspase 12, demonstrating the prominent role of endoplasmic reticulum stress generated responses in Al toxicity. Overall our findings suggest that Al induces ER stress and ROS generation which compromises the antioxidant defenses of neuronal cells thereby promoting neuronal apoptosis in p53 independent pathway. PMID:24878590

  17. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    PubMed

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-01-01

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders. PMID:26984393

  18. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation

    PubMed Central

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-01-01

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders. PMID:26984393

  19. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    PubMed

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-03-17

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.

  20. Endoplasmic reticulum stress impairment in the spinal dorsal horn of a neuropathic pain model.

    PubMed

    Zhang, Enji; Yi, Min-Hee; Shin, Nara; Baek, Hyunjung; Kim, Sena; Kim, Eunjee; Kwon, Kisang; Lee, Sunyeul; Kim, Hyun-Woo; Chul Bae, Yong; Kim, Yonghyun; Kwon, O-Yu; Lee, Won Hyung; Kim, Dong Woon

    2015-01-01

    Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases, but its role in neuropathic pain remains unclear. In this study, we examined the ER stress and the unfolded protein response (UPR) activation in a L5 spinal nerve ligation (SNL)-induced rat neuropathic pain model. SNL-induced neuropathic pain was assessed behaviorally using the CatWalk system, and histologically with microglial activation in the dorsal spinal horn. L5 SNL induced BIP upregulation in the neuron of superficial laminae of dorsal spinal horn. It also increased the level of ATF6 and intracellular localization into the nuclei in the neurons. Moreover, spliced XBP1 was also markedly elevated in the ipsilateral spinal dorsal horn. The PERK-elF2 pathway was activated in astrocytes of the spinal dorsal horn in the SNL model. In addition, electron microscopy revealed the presence of swollen cisternae in the dorsal spinal cord after SNL. Additionally, inhibition of the ATF6 pathway by intrathecal treatment with ATF6 siRNA reduced pain behaviors and BIP expression in the dorsal horn. The results suggest that ER stress might be involved in the induction and maintenance of neuropathic pain. Furthermore, a disturbance in UPR signaling may render the spinal neurons vulnerable to peripheral nerve injury or neuropathic pain stimuli. PMID:26109318

  1. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    SciTech Connect

    Su, Chen-Ming; Wang, Shih-Wei; Lee, Tzong-Huei; Tzeng, Wen-Pei; Hsiao, Che-Jen; Liu, Shih-Chia; Tang, Chih-Hsin

    2013-10-15

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  2. Reactive Oxygen Species, Endoplasmic Reticulum Stress and Mitochondrial Dysfunction: The Link with Cardiac Arrhythmogenesis

    PubMed Central

    Tse, Gary; Yan, Bryan P.; Chan, Yin W. F.; Tian, Xiao Yu; Huang, Yu

    2016-01-01

    Background: Cardiac arrhythmias represent a significant problem globally, leading to cerebrovascular accidents, myocardial infarction, and sudden cardiac death. There is increasing evidence to suggest that increased oxidative stress from reactive oxygen species (ROS), which is elevated in conditions such as diabetes and hypertension, can lead to arrhythmogenesis. Method: A literature review was undertaken to screen for articles that investigated the effects of ROS on cardiac ion channel function, remodeling and arrhythmogenesis. Results: Prolonged endoplasmic reticulum stress is observed in heart failure, leading to increased production of ROS. Mitochondrial ROS, which is elevated in diabetes and hypertension, can stimulate its own production in a positive feedback loop, termed ROS-induced ROS release. Together with activation of mitochondrial inner membrane anion channels, it leads to mitochondrial depolarization. Abnormal function of these organelles can then activate downstream signaling pathways, ultimately culminating in altered function or expression of cardiac ion channels responsible for generating the cardiac action potential (AP). Vascular and cardiac endothelial cells become dysfunctional, leading to altered paracrine signaling to influence the electrophysiology of adjacent cardiomyocytes. All of these changes can in turn produce abnormalities in AP repolarization or conduction, thereby increasing likelihood of triggered activity and reentry. Conclusion: ROS plays a significant role in producing arrhythmic substrate. Therapeutic strategies targeting upstream events include production of a strong reducing environment or the use of pharmacological agents that target organelle-specific proteins and ion channels. These may relieve oxidative stress and in turn prevent arrhythmic complications in patients with diabetes, hypertension, and heart failure. PMID:27536244

  3. Tauroursodeoxycholic acid dampens oncogenic apoptosis induced by endoplasmic reticulum stress during hepatocarcinogen exposure

    PubMed Central

    Vandewynckel, Yves-Paul; Laukens, Debby; Devisscher, Lindsey; Paridaens, Annelies; Bogaerts, Eliene; Verhelst, Xavier; Van den Bussche, Anja; Raevens, Sarah; Van Steenkiste, Christophe; Van Troys, Marleen; Ampe, Christophe; Descamps, Benedicte; Vanhove, Chris; Govaere, Olivier; Geerts, Anja; Van Vlierberghe, Hans

    2015-01-01

    Hepatocellular carcinoma (HCC) is characterized by the accumulation of unfolded proteins in the endoplasmic reticulum (ER), which activates the unfolded protein response (UPR). However, the role of ER stress in tumor initiation and progression is controversial. To determine the impact of ER stress, we applied tauroursodeoxycholic acid (TUDCA), a bile acid with chaperone properties. The effects of TUDCA were assessed using a diethylnitrosamine-induced mouse HCC model in preventive and therapeutic settings. Cell metabolic activity, proliferation and invasion were investigated in vitro. Tumor progression was assessed in the HepG2 xenograft model. Administration of TUDCA in the preventive setting reduced carcinogen-induced elevation of alanine and aspartate aminotransferase levels, apoptosis of hepatocytes and tumor burden. TUDCA also reduced eukaryotic initiation factor 2α (eIf2α) phosphorylation, C/EBP homologous protein expression and caspase-12 processing. Thus, TUDCA suppresses carcinogen-induced pro-apoptotic UPR. TUDCA alleviated hepatic inflammation by increasing NF-κB inhibitor IκBα. Furthermore, TUDCA altered the invasive phenotype and enhanced metabolic activity but not proliferation in HCC cells. TUDCA administration after tumor development did not alter orthotopic tumor or xenograft growth. Taken together, TUDCA attenuates hepatocarcinogenesis by suppressing carcinogen-induced ER stress-mediated cell death and inflammation without stimulating tumor progression. Therefore, this chemical chaperone could represent a novel chemopreventive agent. PMID:26293671

  4. Interferon-gamma inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress.

    PubMed

    Lin, Wensheng; Kemper, April; Dupree, Jeffrey L; Harding, Heather P; Ron, David; Popko, Brian

    2006-05-01

    Interferon-gamma (IFN-gamma) is believed to play a deleterious role in the immune-mediated demyelinating disorder multiple sclerosis. Here we have exploited transgenic mice that ectopically express IFN-gamma in a temporally controlled manner in the CNS to specifically study its effects on remyelination in the cuprizone-induced demyelination model and in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. CNS delivery of IFN-gamma severely suppressed remyelination in both models and impaired the clinical recovery of the mice experiencing EAE. These observations correlated with a dramatic reduction of oligodendroglial repopulation in the demyelinated lesions. Moreover, we found that in cuprizone-treated mice the detrimental actions of IFN-gamma were associated with endoplasmic reticulum (ER) stress in remyelinating oligodendrocytes. Compared with a wild-type genetic background, the presence of IFN-gamma in mice heterozygous for a loss of function mutation in the pancreatic ER kinase (PERK), a kinase that responds specifically to ER stress, further reduced the percentage of remyelinated axons and oligodendrocyte numbers in cuprizone-induced demyelinated lesions. Thus, these data suggest that IFN-gamma is capable of inhibiting remyelination in demyelinated lesions and that ER stress modulates the response of remyelinating oligodendrocytes to this cytokine. PMID:16504972

  5. Endoplasmic reticulum stress in amelogenesis imperfecta and phenotypic rescue using 4-phenylbutyrate.

    PubMed

    Brookes, Steven J; Barron, Martin J; Boot-Handford, Ray; Kirkham, Jennifer; Dixon, Michael J

    2014-05-01

    Inherited diseases caused by genetic mutations can arise due to loss of protein function. Alternatively, mutated proteins may mis-fold, impairing endoplasmic reticulum (ER) trafficking, causing ER stress and triggering the unfolded protein response (UPR). The UPR attempts to restore proteostasis but if unsuccessful drives affected cells towards apoptosis. Previously, we reported that in mice, the p.Tyr64His mutation in the enamel extracellular matrix (EEM) protein amelogenin disrupts the secretory pathway in the enamel-forming ameloblasts, resulting in eruption of malformed tooth enamel that phenocopies human amelogenesis imperfecta (AI). Defective amelogenin post-secretory self-assembly and processing within the developing EEM has been suggested to underlie the pathogenesis of X chromosome-linked AI. Here, we challenge this concept by showing that AI pathogenesis associated with the p.Tyr64His amelogenin mutation involves ameloblast apoptosis induced by ER stress. Furthermore, we show that 4-phenylbutyrate can rescue the enamel phenotype in affected female mice by promoting cell survival over apoptosis such that they are able to complete enamel formation despite the presence of the mutation, offering a potential therapeutic option for patients with this form of AI and emphasizing the importance of ER stress in the pathogenesis of this inherited conformational disease.

  6. Berberine prevents progression from hepatic steatosis to steatohepatitis and fibrosis by reducing endoplasmic reticulum stress

    PubMed Central

    Zhang, Zhiguo; Li, Bo; Meng, Xiangjian; Yao, Shuangshuang; Jin, Lina; Yang, Jian; Wang, Jiqiu; Zhang, Huizhi; Zhang, Zhijian; Cai, Dongsheng; Zhang, Yifei; Ning, Guang

    2016-01-01

    The histological spectrum of nonalcoholic fatty liver diseases (NAFLD) ranges from hepatic steatosis to steatohepatitis and fibrosis. Berberine (BBR) is known for its therapeutic effect on obesity, hyperglycaemia and dyslipidaemia; however, its effect on NAFLD has yet to be thoroughly explored. Db/db mice and methionine-choline-deficient diet-fed mice were administered BBR via gavage. We found that BBR-treated mice were more resistant to steatosis in the liver than vehicle-treated mice and that BBR significantly reduced hepatic inflammation, fibrosis and lipid peroxides. The beneficial effect of BBR was associated with suppressing endoplasmic reticulum (ER) stress. Additionally, BBR decreased the free fatty acid-induced lipid accumulation and tunicamycin-induced ER stress in primary hepatocytes and hepatocyte cell lines. We demonstrated that BBR exhibited chaperone activity, reduced protein aggregation in vitro and alleviated tunicamycin-induced triglyceride and collagen deposition in vivo. Finally, we showed that BBR could reverse ER stress-activated lipogenesis through the ATF6/SREBP-1c pathway in vitro. These results indicated that BBR may be a new therapeutic strategy against hepatic steatosis and non-alcoholic steatohepatitis. PMID:26857750

  7. Combined inhibition of Hsp90 and heme oxygenase-1 induces apoptosis and endoplasmic reticulum stress in melanoma.

    PubMed

    Barbagallo, Ignazio; Parenti, Rosalba; Zappalà, Agata; Vanella, Luca; Tibullo, Daniele; Pepe, Francesco; Onni, Toniangelo; Li Volti, Giovanni

    2015-10-01

    Heat shock proteins are ubiquitous molecular chaperones involved in post-translational folding, stability, activation and maturation of many proteins that are essential mediators of signal transduction and cell cycle progression. Heat shock protein 90 (Hsp90) has recently emerged as an attractive therapeutic target in cancer treatment since it may act as a key regulator of various oncogene products and cell-signaling molecules. Heme oxygenase-1 (HO-1; also known as Hsp32) is an inducible enzyme participating in heme degradation and involved in oxidative stress resistance. Recent studies indicate that HO-1 activation may play a role in tumor development and progression. In the present study we investigated the chemotherapic effects of combining an Hsp90 inhibitor (NMS E973) and an HO-1 inhibitor (SnMP) on A375 melanoma cells. NMS E973 treatment was able to reduce cell viability and induce endoplasmic reticulum (ER) stress (i.e. Ire1α, ERO1, PDI, BIP and CHOP). Interestingly, no significant effect was observed in reactive oxygen species (ROS) formation. Finally, NMS E973 treatment resulted in a significant HO-1 overexpression, which in turn serves as a possible chemoresistance molecular mechanism. Interestingly, the combination of NMS E973 and SnMP produced an increase of ROS and reduced cell viability compared to NMS E973 treatment alone. The inhibitors combination exhibited higher ER stress, apoptosis as evidenced by bifunctional apoptosis regulator (BFAR) mRNA expression and lower phosphorylation of Akt when compared to NMS E973 alone. In conclusion, these data suggest that HO-1 inhibition potentiates NMS E973 toxicity and may be exploited as a strategy for melanoma treatment.

  8. Apolipoprotein E4 impairs macrophage efferocytosis and potentiates apoptosis by accelerating endoplasmic reticulum stress.

    PubMed

    Cash, James G; Kuhel, David G; Basford, Joshua E; Jaeschke, Anja; Chatterjee, Tapan K; Weintraub, Neal L; Hui, David Y

    2012-08-10

    Apolipoprotein (apo) E4 is a major genetic risk factor for a wide spectrum of inflammatory metabolic diseases, including atherosclerosis, diabetes, and Alzheimer disease. This study compared diet-induced adipose tissue inflammation as well as functional properties of macrophages isolated from human APOE3 and APOE4 mice to identify the mechanism responsible for the association between apoE4 and inflammatory metabolic diseases. The initial study confirmed previous reports that APOE4 gene replacement mice were less sensitive than APOE3 mice to diet-induced body weight gain but exhibited hyperinsulinemia, and their adipose tissues were similarly inflamed as those in APOE3 mice. Peritoneal macrophages isolated from APOE4 mice were defective in efferocytosis compared with APOE3 macrophages. Increased cell death was also observed in APOE4 macrophages when stimulated with LPS or oxidized LDL. Western blot analysis of cell lysates revealed that APOE4 macrophages displayed elevated JNK phosphorylation indicative of cell stress even under basal culturing conditions. Significantly higher cell stress due mainly to potentiation of endoplasmic reticulum (ER) stress signaling was also observed in APOE4 macrophages after LPS and oxidized LDL activation. The defect in efferocytosis and elevated apoptosis sensitivity of APOE4 macrophages was ameliorated by treatment with the ER chaperone tauroursodeoxycholic acid. Taken together, these results showed that apoE4 expression causes macrophage dysfunction and promotes apoptosis via ER stress induction. The reduction of ER stress in macrophages may be a viable option to reduce inflammation and inflammation-related metabolic disorders associated with the apoE4 polymorphism.

  9. Endoplasmic reticulum stress involved in heart and liver injury in iron-loaded rats.

    PubMed

    Lou, Li-Xia; Geng, Bin; Chen, Yu; Yu, Fang; Zhao, Jing; Tang, Chao-Shu

    2009-07-01

    1. Iron overload contributes to the pathogenesis of various diseases and directly induces tissue injury. In the present study, we investigated the relationship between heart and liver injury induced by iron overload and cellular endoplasmic reticulum (ER) stress to explore the molecular mechanism of iron overload-induced cellular injury. 2. Iron overload in rats was generated by intraperitoneal injection of iron-dextran chronically (30 mg/kg per day for 9 weeks) or acutely (300 mg/kg once). Tissue injury was assessed by determining serum lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, as well as malondialdehyde (MDA) content in the heart and liver. The ER stress response was analysed by expression of glucose-response protein 78 (GRP78) and activation of caspase 12. 3. In chronic iron-loaded rats, iron levels in the heart and liver were higher, by approximately 2- and 7.8-fold, respectively (P < 0.01), compared with control. Serum LDH, ALT and AST activity, as well as MDA content, GRP78 expression and caspase 12 activity in the heart and liver, were upregulated in chronically iron-loaded rats. In acute iron-loaded rats, iron content in the heart and liver was 51% and 63% higher than in controls (both P < 0.01). Serum LDH, ALT and AST activity, MDA content in the heart and liver and levels of ER stress markers were all increased in acute iron-loaded rats. N-Acetylcysteine (150 mg/kg, s.c.) lowered the levels of these parameters in acute iron-loaded rats. 4. The results of the present study indicate that ER stress may play an important role in iron-induced tissue injury and that reactive oxygen species may mediate the ER stress response in the pathogenesis of iron-overload cellular injury. PMID:19594550

  10. Attenuation of the unfolded protein response and endoplasmic reticulum stress after mechanical unloading in dilated cardiomyopathy

    PubMed Central

    Castillero, Estibaliz; Akashi, Hirokazu; Pendrak, Klara; Yerebakan, Halit; Najjar, Marc; Wang, Catherine; Naka, Yoshifumi; Mancini, Donna; Sweeney, H. Lee; D′Armiento, Jeanine; Ali, Ziad A.; Schulze, P. Christian

    2015-01-01

    Abnormal intracellular calcium (Ca2+) handling can trigger endoplasmic reticulum (ER) stress, leading to activation of the unfolded protein response (UPR) in an attempt to prevent cell death. Mechanical unloading with a left ventricular assist device (LVAD) relieves pressure-volume overload and promotes reverse remodeling of the failing myocardium. We hypothesized that mechanical unloading would alter the UPR in patients with advanced heart failure (HF). UPR was analyzed in paired myocardial tissue from 10 patients with dilated cardiomyopathy obtained during LVAD implantation and explantation. Samples from healthy hearts served as controls. Markers of UPR [binding immunoglobulin protein (BiP), phosphorylated (P-) eukaryotic initiation factor (eIF2α), and X-box binding protein (XBP1)] were significantly increased in HF, whereas LVAD support significantly decreased BiP, P-eIF2α, and XBP1s levels. Apoptosis as reflected by C/EBP homologous protein and DNA damage were also significantly reduced after LVAD support. Improvement in left ventricular dimensions positively correlated with P-eIF2α/eIF2α and apoptosis level recovery. Furthermore, significant dysregulation of calcium-handling proteins [P-ryanodine receptor, Ca2+ storing protein calsequestrin, Na+-Ca2+ exchanger, sarcoendoplasmic reticulum Ca2+-ATPase (SERCA2a), ER chaperone protein calreticulin] was normalized after LVAD support. Reduced ER Ca2+ content as a causative mechanism for UPR was confirmed using AC16 cells treated with a calcium ionophore (A23187) and SERCA2a inhibitor (thapsigargin). UPR activation and apoptosis are reduced after mechanical unloading, which may be mediated by the improvement of Ca2+ handling in patients with advanced HF. These changes may impact the potential for myocardial recovery. PMID:26055788

  11. Fisetin induces apoptosis and endoplasmic reticulum stress in human non-small cell lung cancer through inhibition of the MAPK signaling pathway.

    PubMed

    Kang, Kyoung Ah; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Ryu, Yea Seong; Oh, Min Chang; Kwon, Taeg Kyu; Chae, Sungwook; Hyun, Jin Won

    2016-07-01

    Fisetin (3,3',4',7-tetrahydroxyflavone), a dietary flavonoid compound, is currently being investigated for its anticancer effect in various cancer models, including lung cancer. Recent studies show that fisetin induces cell growth inhibition and apoptosis in the human non-small cell lung cancer line NCI-H460. In this study, we investigated whether fisetin can induce endoplasmic reticulum (ER) stress-mediated apoptosis in NCI-H460 cells. Fisetin induced mitochondrial reactive oxygen species (ROS) and characteristic signs of ER stress: ER staining; mitochondrial Ca(2+) overload; expression of ER stress-related proteins; glucose-regulated protein (GRP)-78, phosphorylation of protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylation of eukaryotic initiation factor-2 α subunit; cleavage of activating transcription factor-6; phosphorylation of inositol-requiring kinase-1 and splicing of X-box transcription factor-1; induction of C/EBP homologous protein and cleaved caspase-12. siRNA-mediated knockdown of CHOP and ATF-6 attenuated fisetin-induced apoptotic cell death. In addition, fisetin induced phosphorylation of ERK, JNK, and p38 MAPK. Moreover, silencing of the MAPK signaling pathway prevented apoptotic cell death. In summary, our results indicate that, in NCI-H460 cells, fisetin induces apoptosis and ER stress that is mediated by induction of the MAPK signaling pathway.

  12. Palmitate induces endoplasmic reticulum stress and autophagy in mature adipocytes: implications for apoptosis and inflammation.

    PubMed

    Yin, Jiajing; Wang, Yufan; Gu, Liping; Fan, Nengguang; Ma, Yuhang; Peng, Yongde

    2015-04-01

    Endoplasmic reticulum (ER) stress and inflammation induced by obesity lead to adipocyte dysfunction, with the impairment of the insulin pathway. Recent studies have indicated that understanding the physiological role of autophagy is of great significance. In the present study, an in vitro model was used in which 3T3-L1 adipocytes were pre-loaded with palmitate (PA) to generate artificially hypertrophied mature adipocytes. PA induced an autophagic flux, determined by an increased microtubule-associated protein 1 light chain 3 (LC3)-II formation, as shown by western blot analysis and fluorescence microscopy, and was confirmed using transmission electron microscopy (TEM). Using TEM and western blot analysis, we observed increased ER stress in response to PA, as indicated by the increased levels of the ER stress markers, BiP, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), and the phosphoralytion of eukaryotic translation initiation factor 2α and c-Jun N-terminal kinase (JNK). Of note, we observed that the PA-induced ER stress occurred prior to the activation of autophagy. We confirmed that autophagy was induced in response to JNK-dependent ER stress, as autophagy was suppressed by treatment with the ER stress inhibitor, 4-phenyl butyrate (4-PBA), and the JNK inhibitor, SP600125. Upon the inhibition of autophagy using chloroquine (CQ), we observed exacerbated ER stress and an increased level of cell death. Importantly, to determine whether autophagy is linked to inflammation, the autophagy inhibitor, 3-methyladenine (3-MA) was used. The inhibition of autophagy led to a further increase in the PA-induced expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6). Consistently, such an increase was also observed following treatment with SP600125. In conclusion, our data indicate that PA elicits a ER stress-JNK-autophagy axis, and that this confers a pro-survival effect against PA-induced cell death and stress in

  13. Critical Role of Endoplasmic Reticulum Stress in Chronic Intermittent Hypoxia-Induced Deficits in Synaptic Plasticity and Long-Term Memory

    PubMed Central

    Xu, Lin-Hao; Xie, Hui; Shi, Zhi-Hui; Du, Li-Da; Wing, Yun-Kwok; Li, Albert M.

    2015-01-01

    Abstract Aims: This study examined the role of endoplasmic reticulum (ER) stress in mediating chronic intermittent hypoxia (IH)-induced neurocognitive deficits. We designed experiments to demonstrate that ER stress is initiated in the hippocampus under chronic IH and determined its role in apoptotic cell death, impaired synaptic structure and plasticity, and memory deficits. Results: Two weeks of IH disrupted ER fine structure and upregulated ER stress markers, glucose-regulated protein 78, caspase-12, and C/EBP homologous protein, in the hippocampus, which could be suppressed by ER stress inhibitors, tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid. Meanwhile, ER stress induced apoptosis via decreased Bcl-2, promoted reactive oxygen species production, and increased malondialdehyde formation and protein carbonyl, as well as suppressed mitochondrial function. These effects were largely prevented by ER stress inhibitors. On the other hand, suppression of oxidative stress could reduce ER stress. In addition, the length of the synaptic active zone and number of mature spines were reduced by IH. Long-term recognition memory and spatial memory were also impaired, which was accompanied by reduced long-term potentiation in the Schaffer collateral pathway. These effects were prevented by coadministration of the TUDCA. Innovation and Conclusion: These results show that ER stress plays a critical role in underlying memory deficits in obstructive sleep apnea (OSA)-associated IH. Attenuators of ER stress may serve as novel adjunct therapeutic agents for ameliorating OSA-induced neurocognitive impairment. Antioxid. Redox Signal. 23, 695–710. PMID:25843188

  14. Two In-and-out Modulation Strategies for Endoplasmic Reticulum Stress-linked Gene Expression of Pro-apoptotic Macrophage-inhibitory Cytokine 1*

    PubMed Central

    Park, Seong-Hwan; Choi, Hye Jin; Yang, Hyun; Do, Kee Hun; Kim, Juil; Kim, Hyun-Hong; Lee, Heejeong; Oh, Chang Gyu; Lee, Dong Won; Moon, Yuseok

    2012-01-01

    Excessive and persistent insults during endoplasmic reticulum (ER) stress lead to apoptotic cell death that is implicated in a range of chronic inflammatory diseases and cancers. Macrophage inhibitory cytokine 1 (MIC-1), a member of the transforming growth factor-β superfamily, is diversely linked to the pathogenesis of cancer. To investigate the precise molecular mechanisms of MIC-1 gene regulation, ER stress and its related signals were studied in human colon cancer cells. Functionally, MIC-1 played pivotal roles in ER stress-linked apoptotic death, which was also influenced by C/EBP homologous protein, a well known apoptotic mediator of ER stress. ER stress enhanced MIC-1 mRNA stability instead of transcriptional activation, and there were two mechanistic translocations critical for mRNA stabilization. First, C/EBP homologous protein triggered protein kinase C-linked cytosolic translocation of the HuR/ELAVL1 (Elav-like RNA-binding protein 1) RNA-binding protein, which bound to and stabilized MIC-1 transcript. As the second critical in-and-out regulation, ER stress-activated ERK1/2 signals contributed to enhanced stabilization of MIC-1 transcript by controlling the extended holding of the nucleated mRNA in the stress granules fusing with the mRNA-decaying processing body. We propose that these two sequential in-and-out modulations can account for stabilized transcription and subsequent translation of pro-apoptotic MIC-1 gene in human cancer cells under ER stress. PMID:22511768

  15. Endoplasmic Reticulum Stress and Autophagy in Homocystinuria Patients with Remethylation Defects

    PubMed Central

    Martínez-Pizarro, Ainhoa; Desviat, Lourdes R.; Ugarte, Magdalena; Pérez, Belén; Richard, Eva

    2016-01-01

    Proper function of endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site as well as perturbation of mitochondria-associated ER membranes (MAMs) have been linked to neurodegenerative and metabolic diseases. Previously, we have observed an increase in ROS and apoptosis levels in patient-derived fibroblasts with remethylation disorders causing homocystinuria. Here we show increased mRNA and protein levels of Herp, Grp78, IP3R1, pPERK, ATF4, CHOP, asparagine synthase and GADD45 in patient-derived fibroblasts suggesting ER stress and calcium perturbations in homocystinuria. In addition, overexpressed MAM-associated proteins (Grp75, σ-1R and Mfn2) were found in these cells that could result in mitochondrial calcium overload and oxidative stress increase. Our results also show an activation of autophagy process and a substantial degradation of altered mitochondria by mitophagy in patient-derived fibroblasts. Moreover, we have observed that autophagy was partially abolished by antioxidants suggesting that ROS participate in this process that may have a protective role. Our findings argue that alterations in Ca2+ homeostasis and autophagy may contribute to the development of this metabolic disorder and suggest a therapeutic potential in homocystinuria for agents that stabilize calcium homeostasis and/or restore the proper function of ER-mitochondria communications. PMID:26959487

  16. Arsenic trioxide induces endoplasmic reticulum stress-related events in neutrophils.

    PubMed

    Binet, François; Chiasson, Sonia; Girard, Denis

    2010-04-01

    We recently reported that the endoplasmic reticulum (ER)-induced cell pathway of apoptosis is operational in human neutrophils and that some ER stressors can accelerate this process. Recent data suggest that arsenic trioxide (As(2)O(3) or ATO), may also act as an ER stressor. The aims of the present study were to elucidate if other ER stress-related events occur in ATO-induced neutrophils, and to determine the role of caspase-4 in the proapoptotic activity of ATO. We found that ATO induced ubiquitination of proteins, and increased calcium concentration and gene expression of calcineurin in neutrophils. In addition to caspase-4, activities of caspase-3, -8 and -9 were increased by ATO. The processing of caspase-4 was reversed by a caspase-8 inhibitor, indicating that caspase-4 activation requires the action of upstream initiator components, questioning on the role of caspase-4 in ATO-induced ER stress-mediated cell apoptosis. Using caspase-4 deficient THP-1 cells, we demonstrated that the proapoptotic effect of ATO was similar to that of control caspase-4-positive cells. We conclude that ATO is an ER stressor that can induce cell apoptosis by a mechanism which does not require caspase-4. In addition, we conclude that caspase-4 activation in ATO-induced neutrophils could be involved in functions other than apoptosis.

  17. Prolonged endoplasmic reticulum stress alters placental morphology and causes low birth weight

    SciTech Connect

    Kawakami, Takashige Yoshimi, Masaki; Kadota, Yoshito; Inoue, Masahisa; Sato, Masao; Suzuki, Shinya

    2014-03-01

    The role of endoplasmic reticulum (ER) stress in pregnancy remains largely unknown. Pregnant mice were subcutaneously administered tunicamycin (Tun), an ER stressor, as a single dose [0, 50, and 100 μg Tun/kg/body weight (BW)] on gestation days (GDs) 8.5, 12.5, and 15.5. A high incidence (75%) of preterm delivery was observed only in the group treated with Tun 100 μg/kg BW at GD 15.5, indicating that pregnant mice during late gestation are more susceptible to ER stress on preterm delivery. We further examined whether prolonged in utero exposure to ER stress affects fetal development. Pregnant mice were subcutaneously administered a dose of 0, 20, 40, and 60 μg Tun/kg from GD 12.5 to 16.5. Tun treatment decreased the placental and fetal weights in a dose-dependent manner. Histological evaluation showed the formation of a cluster of spongiotrophoblast cells in the labyrinth zone of the placenta of Tun-treated mice. The glycogen content of the fetal liver and placenta from Tun-treated mice was lower than that from control mice. Tun treatment decreased mRNA expression of Slc2a1/glucose transporter 1 (GLUT1), which is a major transporter for glucose, but increased placental mRNA levels of Slc2a3/GLUT3. Moreover, maternal exposure to Tun resulted in a decrease in vascular endothelial growth factor receptor-1 (VEGFR-1), VEGFR-2, and placental growth factor. These results suggest that excessive and exogenous ER stress may induce functional abnormalities in the placenta, at least in part, with altered GLUT and vascular-related gene expression, resulting in low infant birth weight. - Highlights: • Maternal exposure to excessive ER stress induced preterm birth and IUGR. • Prolonged excessive ER stress altered the formation of the placental labyrinth. • ER stress decreased GLUT1 mRNA expression in the placenta, but increased GLUT3. • ER stress-induced IUGR causes decreased glycogen and altered glucose transport.

  18. Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy.

    PubMed

    Cao, Ai-Li; Wang, Li; Chen, Xia; Wang, Yun-Man; Guo, Heng-Jiang; Chu, Shuang; Liu, Cheng; Zhang, Xue-Mei; Peng, Wen

    2016-06-01

    Endoplasmic reticulum (ER) stress, resulting from the accumulation of misfolded and/or unfolded proteins in ER membranes, is involved in the pathogenesis of diabetic nephropathy (DN). The aim of this study was to investigate the role of ER stress inhibitors ursodeoxycholic acid (UDCA) and 4-phenylbutyrate (4-PBA) in the treatment of DN in db/db mice. Findings have revealed that diabetic db/db mice were more hyperglycemic than their non-diabetic controls, and exhibited a marked increase in body weight, water intake, urine volume, fasting plasma glucose, systolic blood pressure, glucose and insulin tolerance. UDCA (40 mg/kg/day) or 4-PBA (100 mg/kg/day) treatment for 12 weeks resulted in an improvement in these biochemical and physical parameters. Moreover, UDCA or 4-PBA intervention markedly decreased urinary albuminuria and attenuated mesangial expansion in diabetic db/db mice, compared with db/db mice treated with vehicle. These beneficial effects of UDCA or 4-PBA on DN were associated with the inhibition of ER stress, as evidenced by the decreased expression of BiP, phospho-IRE1α, phospho-eIF2α, CHOP, ATF-6 and spliced X-box binding protein-1 in vitro and in vivo. UDCA or 4-PBA prevented hyperglycemia-induced or high glucose (HG)-induced apoptosis in podocytes in vivo and in vitro via the inhibition of caspase-3 and caspase-12 activation. Autophagy deficiency was also seen in glomeruli in diabetic mice and HG-incubated podocytes, exhibiting decreased expression of LC3B and Beclin-1, which could be restored by UDCA or 4-PBA treatment. Taken together, our results have revealed an important role of ER stress in the development of DN, and UDCA or 4-PBA treatment may be a potential novel therapeutic approach for the treatment of DN. PMID:26999661

  19. Hypoxia-Induced Iron Accumulation in Oligodendrocytes Mediates Apoptosis by Eliciting Endoplasmic Reticulum Stress.

    PubMed

    Rathnasamy, Gurugirijha; Murugan, Madhuvika; Ling, Eng-Ang; Kaur, Charanjit

    2016-09-01

    This study was aimed at evaluating the role of increased iron accumulation in oligodendrocytes and its role in their apoptosis in the periventricular white matter damage (PWMD) following a hypoxic injury to the neonatal brain. In response to hypoxia, in the PWM, there was increased expression of proteins involved in iron acquisition, such as iron regulatory proteins (IRP1, IRP2) and transferrin receptor in oligodendrocytes. Consistent with this, following a hypoxic exposure, there was increased accumulation of iron in primary cultured oligodendrocytes. The increased concentration of iron within hypoxic oligodendrocytes was found to elicit ryanodine receptor (RyR) expression, and the expression of endoplasmic reticulum (ER) stress markers such as binding-immunoglobulin protein (BiP) and inositol-requiring enzyme (IRE)-1α. Associated with ER stress, there was reduced adenosine triphosphate (ATP) levels within hypoxic oligodendrocytes. However, treatment with deferoxamine reduced the increased expression of RyR, BiP, and IRE-1α and increased ATP levels in hypoxic oligodendrocytes. Parallel to ER stress there was enhanced reactive oxygen species production within mitochondria of hypoxic oligodendrocytes, which was attenuated when these cells were treated with deferoxamine. At the ultrastructural level, hypoxic oligodendrocytes frequently showed dilated ER and disrupted mitochondria, which became less evident in those treated with deferoxamine. Associated with these subcellular changes, the apoptosis of hypoxic oligodendrocytes was evident with an increase in p53 and caspase-3 expression, which was attenuated when these cells were treated with deferoxamine. Thus, the present study emphasizes that the excess iron accumulated within oligodendrocytes in hypoxic PWM could result in their death by eliciting ER stress and mitochondrial disruption.

  20. Prolonged endoplasmic reticulum stress alters placental morphology and causes low birth weight.

    PubMed

    Kawakami, Takashige; Yoshimi, Masaki; Kadota, Yoshito; Inoue, Masahisa; Sato, Masao; Suzuki, Shinya

    2014-03-01

    The role of endoplasmic reticulum (ER) stress in pregnancy remains largely unknown. Pregnant mice were subcutaneously administered tunicamycin (Tun), an ER stressor, as a single dose [0, 50, and 100 μg Tun/kg/body weight (BW)] on gestation days (GDs) 8.5, 12.5, and 15.5. A high incidence (75%) of preterm delivery was observed only in the group treated with Tun 100 μg/kg BW at GD 15.5, indicating that pregnant mice during late gestation are more susceptible to ER stress on preterm delivery. We further examined whether prolonged in utero exposure to ER stress affects fetal development. Pregnant mice were subcutaneously administered a dose of 0, 20, 40, and 60 μg Tun/kg from GD 12.5 to 16.5. Tun treatment decreased the placental and fetal weights in a dose-dependent manner. Histological evaluation showed the formation of a cluster of spongiotrophoblast cells in the labyrinth zone of the placenta of Tun-treated mice. The glycogen content of the fetal liver and placenta from Tun-treated mice was lower than that from control mice. Tun treatment decreased mRNA expression of Slc2a1/glucose transporter 1 (GLUT1), which is a major transporter for glucose, but increased placental mRNA levels of Slc2a3/GLUT3. Moreover, maternal exposure to Tun resulted in a decrease in vascular endothelial growth factor receptor-1 (VEGFR-1), VEGFR-2, and placental growth factor. These results suggest that excessive and exogenous ER stress may induce functional abnormalities in the placenta, at least in part, with altered GLUT and vascular-related gene expression, resulting in low infant birth weight.

  1. Excessive fluoride induces endoplasmic reticulum stress and interferes enamel proteinases secretion.

    PubMed

    Wei, Wei; Gao, Yanhui; Wang, Cheng; Zhao, Lijun; Sun, Dianjun

    2013-06-01

    Protein retention in the enamel layer during tooth formation is well known to be associated with dental fluorosis but the underlying mechanism is unclear. The functions of the endoplasmic reticulum (ER) correlate directly with secreted protein metabolism. We used an ameloblast-derived cell line to determine whether excessive amounts of fluoride cause ER stress, and whether this interferes with the secretion of enamel matrix proteinases. ER stress activates a signaling network called the unfolded protein response (UPR). Here, we used real-time RT-PCR and immunofluorescence to study the effect of fluoride on the expression, translation, and secretion of UPR transcription factors in ameloblast-like cells. Measurement of both the gene and protein expression of UPR transcription factors indicated that high-dose fluoride increases the expression of UPR transcription factors in a dose-dependent manner. We also used ELISA to detect and quantify the enamel proteinases secreted by ameloblasts. We found a corresponding decrease in extracellular secretion of the enamel proteinases matrix metalloproteinase-20 and kallikrein-4, after exposure to fluoride. Furthermore, correlation analysis indicated that the expression of UPR transcription factors showed a strong inverse correlation with that of enamel proteinases. The results suggest that high-dose fluoride initiates an ER stress response in ameloblasts and induces the UPR, which interferes with the synthesis and secretion of enamel proteinases. Taken together, these results suggest that excessive ingestion of fluoride during tooth formation can decrease the secretion of proteinases, thus causing protein retention in the enamel layer, indicating that the ER stress response may be responsible for dental fluorosis.

  2. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues

    PubMed Central

    Laing, Suzette; Wang, Guohui; Briazova, Tamara; Zhang, Chunbin; Wang, Aixia; Zheng, Ze; Gow, Alexander; Chen, Alex F.; Rajagopalan, Sanjay; Chen, Lung Chi; Sun, Qinghua

    2010-01-01

    Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases. However, a precise understanding of the biological mechanism underlying PM-associated toxicity and pathogenesis remains elusive. Here, we investigated the impact of PM exposure in intracellular stress signaling pathways with animal models and cultured cells. Inhalation exposure of the mice to environmentally relevant fine particulate matter (aerodynamic diameter < 2.5 μm, PM2.5) induces endoplasmic reticulum (ER) stress and activation of unfolded protein response (UPR) in the lung and liver tissues as well as in the mouse macrophage cell line RAW264.7. Ambient PM2.5 exposure activates double-strand RNA-activated protein kinase-like ER kinase (PERK), leading to phosphorylation of translation initiation factor eIF2α and induction of C/EBP homologous transcription factor CHOP/GADD153. Activation of PERK-mediated UPR pathway relies on the production of reactive oxygen species (ROS) and is critical for PM2.5-induced apoptosis. Furthermore, PM2.5 exposure can activate ER stress sensor IRE1α, but it decreases the activity of IRE1α in splicing the mRNA encoding the UPR trans-activator X-box binding protein 1 (XBP1). Together, our study suggests that PM2.5 exposure differentially activates the UPR branches, leading to ER stress-induced apoptosis through the PERK-eIF2α-CHOP UPR branch. This work provides novel insights into the cellular and molecular basis by which ambient PM2.5 exposure elicits its cytotoxic effects that may be related to air pollution-associated pathogenesis. PMID:20554909

  3. Induction of autophagy by the MG‑132 proteasome inhibitor is associated with endoplasmic reticulum stress in MCF‑7 cells.

    PubMed

    Bao, Wenhua; Gu, Yiqi; Ta, La; Wang, Keren; Xu, Zheli

    2016-01-01

    The aim of the present study was to investigate whether endoplasmic reticulum (ER) stress is involved in MG‑132‑induced autophagy, and to determine the effects of the inhibition of autophagy and ER stress on cell viability following MG‑132 treatment. The proteasome inhibitor, MG‑132, was used to induce autophagy in MCF‑7 cells, and 3‑methyladenine (3‑MA) and salubrinal were used to inhibit autophagy and ER stress, respectively. An MTT assay was used to analyze cell viability. Apoptosis and the cell cycle were analyzed using flow cytometry. The expression levels of apoptosis‑ and ER stress‑associated genes were investigated using western blot and reverse transcription‑quantitative polymerase chain reaction analyses. MG‑132 inhibited cell proliferation, and induced apoptosis and cell cycle arrest at the G2 phase of the cell cycle. Notably, MG‑132 increased the autophagy‑associated conversion of microtubule‑associated protein 1 light chain 3 (LC3)‑I to LC3‑II, which was partially attenuated by the ER stress inhibitor, salubrinal. In addition, MG‑132 inhibited the protein expression of the anti‑apoptotic protein, B‑cell lymphoma (Bcl)‑2, whereas the expression levels of Bcl‑2‑associated X protein and caspase‑3 were upregulated. These effects were enhanced by co‑treatment with either 3‑MA or salubrinal. Furthermore, the mRNA and protein levels of the ER stress‑associated genes, glucose‑regulated protein 78, growth arrest and DNA damage induced gene‑153, and caspase‑12, were upregulated by MG132, and these levels were significantly inhibited by co‑treatment of the cells with salubrinal. Taken together, the results of the present study indicated that the induction of autophagy by the proteasome inhibitor was associated with ER stress in the MCF‑7 cells, and that the inhibition of autophagy or ER stress enhanced MG‑132‑induced apoptosis. These findings suggest the potential application of inhibitors of ER

  4. Bone morphogenetic protein-2 activates NADPH oxidase to increase endoplasmic reticulum stress and human coronary artery smooth muscle cell calcification.

    PubMed

    Liberman, Marcel; Johnson, Rebecca C; Handy, Diane E; Loscalzo, Joseph; Leopold, Jane A

    2011-09-30

    Bone morphogenetic protein-2 (BMP-2) increases oxidant stress and endoplasmic reticulum (ER) stress to stimulate differentiation of osteoblasts; however, the role of these signaling pathways in the transition of smooth muscle cells to a calcifying osteoblast-like phenotype remains incompletely characterized. We, therefore, treated human coronary artery smooth muscle cells (HCSMC) with BMP-2 (100ng/mL) and found an increase in NADPH oxidase activity and oxidant stress that occurred via activation of the bone morphogenetic protein receptor 2 and Smad 1 signaling. BMP-2-mediated oxidant stress also increased endoplasmic reticulum (ER) stress demonstrated by increased expression of GRP78, phospho-IRE1α, and the transcription factor XBP1. Analysis of a 1kb segment of the Runx2 promoter revealed an XBP1 binding site; electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated that XBP1 bound to the Runx2 promoter at this site in BMP-2-treated HCSMC. Inhibition of oxidant stress or ER stress decreased Runx2 expression, intracellular calcium deposition, and mineralization of BMP-2-treated HCSMC. Thus, in HCSMC, BMP-2 increases oxidant stress and ER stress to increase Runx2 expression and promote vascular smooth muscle cell calcification.

  5. Cadmium-induced teratogenicity: Association with ROS-mediated endoplasmic reticulum stress in placenta

    SciTech Connect

    Wang, Zhen; Wang, Hua; Xu, Zhong Mei; Ji, Yan-Li; Chen, Yuan-Hua; Zhang, Zhi-Hui; Zhang, Cheng; Meng, Xiu-Hong; Zhao, Mei; Xu, De-Xiang

    2012-03-01

    The placenta is essential for sustaining the growth of the fetus. An increased endoplasmic reticulum (ER) stress has been associated with the impaired placental and fetal development. Cadmium (Cd) is a potent teratogen that caused fetal malformation and growth restriction. The present study investigated the effects of maternal Cd exposure on placental and fetal development. The pregnant mice were intraperitoneally injected with CdCl{sub 2} (4.5 mg/kg) on gestational day 9. As expected, maternal Cd exposure during early limb development significantly increased the incidences of forelimb ectrodactyly in fetuses. An obvious impairment in the labyrinth, a highly developed tissue of blood vessels, was observed in placenta of mice treated with CdCl{sub 2}. In addition, maternal Cd exposure markedly repressed cell proliferation and increased apoptosis in placenta. An additional experiment showed that maternal Cd exposure significantly upregulated the expression of GRP78, an ER chaperone. Moreover, maternal Cd exposure induced the phosphorylation of placental eIF2α, a downstream molecule of PERK signaling. In addition, maternal Cd exposure significantly increased the level of placental CHOP, another target of PERK signaling, indicating that the unfolded protein response (UPR) signaling was activated in placenta of mice treated with CdCl{sub 2}. Interestingly, alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, significantly alleviated Cd-induced placental ER stress and UPR. Taken together, these results suggest that reactive oxygen species (ROS)-mediated ER stress might be involved in Cd-induced impairment on placental and fetal development. Antioxidants may be used as pharmacological agents to protect against Cd-induced fetal malformation and growth restriction. -- Highlights: ► Cd induces fetal malformation and growth restriction. ► Cd induced placental ER stress and UPR. ► PBN alleviates Cd-induced ER stress and UPR in placenta. ► ROS-mediated ER

  6. Polysome profiling in liver identifies dynamic regulation of endoplasmic reticulum translatome by obesity and fasting.

    PubMed

    Fu, Suneng; Fan, Jason; Blanco, Joshua; Gimenez-Cassina, Alfredo; Danial, Nika N; Watkins, Steve M; Hotamisligil, Gökhan S

    2012-08-01

    Obesity-associated metabolic complications are generally considered to emerge from abnormalities in carbohydrate and lipid metabolism, whereas the status of protein metabolism is not well studied. Here, we performed comparative polysome and associated transcriptional profiling analyses to study the dynamics and functional implications of endoplasmic reticulum (ER)-associated protein synthesis in the mouse liver under conditions of obesity and nutrient deprivation. We discovered that ER from livers of obese mice exhibits a general reduction in protein synthesis, and comprehensive analysis of polysome-bound transcripts revealed extensive down-regulation of protein synthesis machinery, mitochondrial components, and bile acid metabolism in the obese translatome. Nutrient availability also plays an important but distinct role in remodeling the hepatic ER translatome in lean and obese mice. Fasting in obese mice partially reversed the overall translatomic differences between lean and obese nonfasted controls, whereas fasting of the lean mice mimicked many of the translatomic changes induced by the development of obesity. The strongest examples of such regulations were the reduction in Cyp7b1 and Slco1a1, molecules involved in bile acid metabolism. Exogenous expression of either gene significantly lowered plasma glucose levels, improved hepatic steatosis, but also caused cholestasis, indicating the fine balance bile acids play in regulating metabolism and health. Together, our work defines dynamic regulation of the liver translatome by obesity and nutrient availability, and it identifies a novel role for bile acid metabolism in the pathogenesis of metabolic abnormalities associated with obesity.

  7. Activating transcription factor 4 is involved in endoplasmic reticulum stress-mediated apoptosis contributing to vascular calcification.

    PubMed

    Duan, Xiao-Hui; Chang, Jin-Rui; Zhang, Jing; Zhang, Bao-Hong; Li, Yu-Lin; Teng, Xu; Zhu, Yi; Du, Jie; Tang, Chao-Shu; Qi, Yong-Fen

    2013-09-01

    Our previous work reported that endoplasmic reticulum stress (ERS)-mediated apoptosis was activated during vascular calcification (VC). Activating transcription factor 4 (ATF4) is a critical transcription factor in osteoblastogenesis and ERS-induced apoptosis. However, whether ATF4 is involved in ERS-mediated apoptosis contributing to VC remains unclear. In the present study, in vivo VC was induced in rats by administering vitamin D3 plus nicotine. Vascular smooth muscle cell (VSMC) calcification in vitro was induced by incubation in calcifying media containing β-glycerophosphate and CaCl2. ERS inhibitors taurine or 4-phenylbutyric acid attenuated ERS and VSMC apoptosis in calcified rat arteries, reduced calcification and retarded the VSMC contractile phenotype transforming into an osteoblast-like phenotype in vivo. Inhibition of ERS retarded the VSMC phenotypic transition into an osteoblast-like cell phenotype and reduced VSMC calcification and apoptosis in vitro. Interestingly, ATF4 was activated in calcified aortas and calcified VSMCs in vitro. ATF4 knockdown attenuated ERS-induced apoptosis in calcified VSMCs. ATF4 deficiency blocked VSMC calcification and negatively regulated the osteoblast phenotypic transition of VSMCs in vitro. Our results demonstrate that ATF4 was involved at least in part in the process of ERS-mediated apoptosis contributing to VC.

  8. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells

    PubMed Central

    Jorgensen, Ellen; Stinson, Andy; Shan, Lin; Yang, Jin; Gietl, Diana; Albino, Anthony P

    2008-01-01

    Background Although lung cancer is among the few malignancies for which we know the primary etiological agent (i.e., cigarette smoke), a precise understanding of the temporal sequence of events that drive tumor progression remains elusive. In addition to finding that cigarette smoke (CS) impacts the functioning of key pathways with significant roles in redox homeostasis, xenobiotic detoxification, cell cycle control, and endoplasmic reticulum (ER) functioning, our data highlighted a defensive role for the unfolded protein response (UPR) program. The UPR promotes cell survival by reducing the accumulation of aberrantly folded proteins through translation arrest, production of chaperone proteins, and increased degradation. Importance of the UPR in maintaining tissue health is evidenced by the fact that a chronic increase in defective protein structures plays a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer. Methods Gene and protein expression changes in CS exposed human cell cultures were monitored by high-density microarrays and Western blot analysis. Tissue arrays containing samples from 110 lung cancers were probed with antibodies to proteins of interest using immunohistochemistry. Results We show that: 1) CS induces ER stress and activates components of the UPR; 2) reactive species in CS that promote oxidative stress are primarily responsible for UPR activation; 3) CS exposure results in increased expression of several genes with significant roles in attenuating oxidative stress; and 4) several major UPR regulators are increased either in expression (i.e., BiP and eIF2α) or phosphorylation (i.e., phospho-eIF2α) in a majority of human lung cancers. Conclusion These data indicate that chronic ER stress and recruitment of one or more UPR effector arms upon exposure to CS may play a pivotal role in the etiology or progression of lung cancers, and that phospho-eIF2α and BiP may have diagnostic and

  9. Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress.

    PubMed

    Torres, Mauricio; Castillo, Karen; Armisén, Ricardo; Stutzin, Andrés; Soto, Claudio; Hetz, Claudio

    2010-12-29

    Prion-related disorders (PrDs) are fatal neurodegenerative disorders characterized by progressive neuronal impairment as well as the accumulation of an abnormally folded and protease resistant form of the cellular prion protein, termed PrP(RES). Altered endoplasmic reticulum (ER) homeostasis is associated with the occurrence of neurodegeneration in sporadic, infectious and familial forms of PrDs. The ER operates as a major intracellular calcium store, playing a crucial role in pathological events related to neuronal dysfunction and death. Here we investigated the possible impact of PrP misfolding on ER calcium homeostasis in infectious and familial models of PrDs. Neuro2A cells chronically infected with scrapie prions showed decreased ER-calcium content that correlated with a stronger upregulation of UPR-inducible chaperones, and a higher sensitivity to ER stress-induced cell death. Overexpression of the calcium pump SERCA stimulated calcium release and increased the neurotoxicity observed after exposure of cells to brain-derived infectious PrP(RES). Furthermore, expression of PrP mutants that cause hereditary Creutzfeldt-Jakob disease or fatal familial insomnia led to accumulation of PrP(RES) and their partial retention at the ER, associated with a drastic decrease of ER calcium content and higher susceptibility to ER stress. Finally, similar results were observed when a transmembrane form of PrP was expressed, which is proposed as a neurotoxic intermediate. Our results suggest that alterations in calcium homeostasis and increased susceptibility to ER stress are common pathological features of both infectious and familial PrD models.

  10. Methylglyoxal induces cell death through endoplasmic reticulum stress-associated ROS production and mitochondrial dysfunction.

    PubMed

    Chan, Chi-Ming; Huang, Duen-Yi; Huang, Yi-Pin; Hsu, Shu-Hao; Kang, Lan-Ya; Shen, Chung-Min; Lin, Wan-Wan

    2016-09-01

    Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are two important leading causes of acquired blindness in developed countries. As accumulation of advanced glycation end products (AGEs) in retinal pigment epithelial (RPE) cells plays an important role in both DR and AMD, and the methylglyoxal (MGO) within the AGEs exerts irreversible effects on protein structure and function, it is crucial to understand the underlying mechanism of MGO-induced RPE cell death. Using ARPE-19 as the cell model, this study revealed that MGO induces RPE cell death through a caspase-independent manner, which relying on reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP) loss, intracellular calcium elevation and endoplasmic reticulum (ER) stress response. Suppression of ROS generation can reverse the MGO-induced ROS production, MMP loss, intracellular calcium increase and cell death. Moreover, store-operated calcium channel inhibitors MRS1845 and YM-58483, but not the inositol 1,4,5-trisphosphate (IP3) receptor inhibitor xestospongin C, can block MGO-induced ROS production, MMP loss and sustained intracellular calcium increase in ARPE-19 cells. Lastly, inhibition of ER stress by salubrinal and 4-PBA can reduce the MGO-induced intracellular events and cell death. Therefore, our data indicate that MGO can decrease RPE cell viability, resulting from the ER stress-dependent intracellular ROS production, MMP loss and increased intracellular calcium increase. As MGO is one of the components of drusen in AMD and is the AGEs adduct in DR, this study could provide a valuable insight into the molecular pathogenesis and therapeutic intervention of AMD and DR. PMID:27307396

  11. Fluoxetine induces cytotoxic endoplasmic reticulum stress and autophagy in triple negative breast cancer

    PubMed Central

    Bowie, Michelle; Pilie, Patrick; Wulfkuhle, Julia; Lem, Siya; Hoffman, Abigail; Desai, Shraddha; Petricoin, Emanuel; Carter, Amira; Ambrose, Adrian; Seewaldt, Victoria; Yu, Dihua; Ibarra Drendall, Catherine

    2015-01-01

    AIM: To investigate the mechanism of action of lipophilic antidepressant fluoxetine (FLX) in representative molecular subtypes of breast cancer. METHODS: The anti-proliferative effects and mechanistic action of FLX in triple-negative (SUM149PT) and luminal (T47D and Au565) cancer cells and non-transformed MCF10A were investigated. Reverse phase protein microarray (RPPM) was performed with and without 10 μmol/L FLX for 24 and 48 h to determine which proteins are significantly changed. Viability and cell cycle analysis were also performed to determine drug effects on cell growth. Western blotting was used to confirm the change in protein expression examined by RPPM or pursue other signaling proteins. RESULTS: The FLX-induced cell growth inhibition in all cell lines was concentration- and time-dependent but less pronounced in early passage MCF10A. In comparison to the other lines, cell growth reduction in SUM149PT coincided with significant induction of endoplasmic reticulum (ER) stress and autophagy after 24 and 48 h of 10 μmol/L FLX, resulting in decreased translation of proteins along the receptor tyrosine kinase/Akt/mammalian target of rapamycin pathways. The increase in autophagy marker, cleaved microtubule-associated protein 1 light chain 3, in SUM149PT after 24 h of FLX was likely due to increased metabolic demands of rapidly dividing cells and ER stress. Consequently, the unfolded protein response mediated by double-stranded RNA-dependent protein kinase-like ER kinase resulted in inhibition of protein synthesis, growth arrest at the G1 phase, autophagy, and caspase-7-mediated cell death. CONCLUSION: Our study suggests a new role for FLX as an inducer of ER stress and autophagy, resulting in death of aggressive triple negative breast cancer SUM149PT. PMID:26677444

  12. Genome-wide analysis of tunicamycin-induced endoplasmic reticulum stress response and the protective effect of endoplasmic reticulum inhibitors in neonatal rat cardiomyocytes.

    PubMed

    Liu, Chun-Lei; Zhong, Wu; He, Yun-Yun; Li, Xin; Li, Song; He, Kun-Lun

    2016-02-01

    Tunicamycin (TM) is an inducer of endoplasmic reticulum (ER) stress. However, which genes related to ER stress was induced in cardiomyocytes on a genome-wide scale remains poorly understood. Salubrinal and its derivatives are ER stress inhibitors. However, the cellular protection mechanisms remain unresolved. Neonatal rat cardiomyocytes were cultured from ventricles of one-day-old Wistar rats. Cells were exposed to salubrinal, its derivatives (PP1-12, PP1-24) or vehicle followed by TM treatment at different times. Total RNA was isolated from cells for RNA-sequencing analysis. The expressions of 189, 182, 556, 860, and 1314 genes were changed in cells exposed to TM for 1, 3, 6, 12, and 24 h. Five well-known UPR genes (Hspa5, Hsp90b1, Calr, Ddit3, and Atf4) were significantly increased in a time-dependent manner. Six not well-known genes (Hyou1, Herpud1, Manf, Creld2, Sdf2l1, and Slc3a2) were highlighted to be involved in ER stress. Compared with TM-only treated cells, the expressions of 36 genes upregulated by TM and 74 genes downregulated by TM were reversed by salubrinal. In comparison, 121 genes upregulated by TM and 92 genes downregulated by TM were reversed by PP1-12. Most genes altered by salubrinal are in the category of transcription (1 h) and cell cycle (24 h). Most genes altered by PP1-12 are in the category of response to ER stress (3 h) and cell cycle (24 h). Our findings help elucidate the mechanism for TM treatment and may be useful for future drug screens involved in ER stress. PMID:26738490

  13. Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate

    PubMed Central

    Liu, Z; Lv, Y; Zhao, N; Guan, G; Wang, J

    2015-01-01

    Over the past few decades, understandings and evidences concerning the role of endoplasmic reticulum (ER) stress in deciding the cell fate have been constantly growing. Generally, during ER stress, the signal transductions are mainly conducted by three ER stress transducers: protein kinase R-like endoplasmic reticulum kinase (PERK), inositol-requiring kinase 1 (IRE1) and activating transcription factor 6 (ATF6). Consequently, the harmful stimuli from the ER stress transducers induce apoptosis and autophagy, which share several crosstalks and eventually decide the cell fate. The dominance of apoptosis or autophagy induced by ER stress depends on the type and degree of the stimuli. When ER stress is too severe and prolonged, apoptosis is induced to eliminate the damaged cells; however, when stimuli are mild, cell survival is promoted to maintain normal physiological functions by inducing autophagy. Although all the three pathways participate in ER stress-induced apoptosis and autophagy, PERK shows several unique characteristics by interacting with some specific downstream effectors. Notably, there are some preliminary findings on PERK-dependent mechanisms switching autophagy and apoptosis. In this review, we particularly focused on the novel, intriguing and complicated role of PERK in ER stress-decided cell fate, and also discussed more roles of PERK in restoring cellular homeostasis. However, more in-depth knowledge of PERK in the future would facilitate our understanding about many human diseases and benefit in searching for new molecular therapeutic targets. PMID:26225772

  14. Gold nanoparticles induce apoptosis, endoplasmic reticulum stress events and cleavage of cytoskeletal proteins in human neutrophils.

    PubMed

    Noël, Claudie; Simard, Jean-Christophe; Girard, Denis

    2016-03-01

    Gold nanoparticles (AuNPs) are promising candidates for developing nanomedicines, for the treatment of different disorders, including inflammatory diseases. However, how AuNPs could alter the biology of human neutrophils, key player cells in inflammation, is a poorly documented area of research. Here we found that, although AuNP of 20 nm (AuNP20) could be internalized in cytosolic vacuoles but that AuNP70 were localized at the cell membrane, both induced apoptosis similarly by a caspase-dependent mechanism. AuNPs induced degradation of the cytoskeletal proteins vimentin, lamin B1 and gelsolin, but, unexpectedly, did not increase their cell surface expression. Consequent with caspase-4 processing, AuNPs were found to activate endoplasmic reticulum (ER)-stress, as evidenced by activation of the three ER sensors, IRE1 (inositol-requiring protein-1), ATF-6 (activating transcription factor-6) and PERK (protein kinase RNA (PKR)-like ER kinase). AuNPs are novel human neutrophil proapoptotic agents indicating that they are toxic to these cells. However, the fact that they do not induce cell surface expression of cytoskeletal proteins could decrease potential adverse effects and toxicity of AuNPs by limiting, for example, the production of autoantibody against cytoskeleton components.

  15. TULP1 Missense Mutations Induces the Endoplasmic Reticulum Unfolded Protein Response Stress Complex (ER-UPR).

    PubMed

    Lobo, Glenn P; Ebke, Lindsey A; Au, Adrian; Hagstrom, Stephanie A

    2016-01-01

    Mutations in the TULP1 gene are associated with early-onset retinitis pigmentosa (RP); however, the molecular mechanisms related to the deleterious effects of TULP1 mutations remains unknown. Several studies have shown that misfolded proteins secondary to genetic mutations can accumulate within the endoplasmic reticulum (ER), causing activation of the unfolded protein response (UPR) complex followed by cellular apoptosis. We hypothesize that TULP1 mutations produce misfolded protein products that accumulate in the ER and induce cellular apoptosis via the UPR. To test our hypothesis, we first performed three in-silico analyses of TULP1 missense mutations (I459K, R420P and F491L), which predicted misfolded protein products. Subsequently, the three mutant TULP1-GFP constructs and wild-type (wt) TULP1-GFP were transiently transfected into hTERT-RPE-1 cells. Staining of cells using ER tracker followed by confocal microscopy showed wt-TULP1 localized predominantly to the cytoplasm and plasma membrane. In contrast, all three mutant TULP1 proteins revealed cytoplasmic punctate staining which co-localized with the ER. Furthermore, western blot analysis of cells expressing mutant TULP1 proteins revealed induction of downstream targets of the ER-UPR complex, including BiP/GPR-78, phosphorylated-PERK (Thr980) and CHOP. Our in-vitro analyses suggest that mutant TULP1 proteins are misfolded and accumulate within the ER leading to induction of the UPR stress response complex. PMID:26427415

  16. Ethanol promotes saturated fatty acid-induced hepatoxicity through endoplasmic reticulum (ER) stress response.

    PubMed

    Yi, Hong-Wei; Ma, Yu-Xiang; Wang, Xiao-Ning; Wang, Cui-Fen; Lu, Jian; Cao, Wei; Wu, Xu-Dong

    2015-04-01

    Serum palmitic acid (PA), a type of saturated fatty acid, causes lipid accumulation and induces toxicity in hepatocytes. Ethanol (EtOH) is metabolized by the liver and induces hepatic injury and inflammation. Herein, we analyzed the effects of EtOH on PA-induced lipotoxicity in the liver. Our results indicated that EtOH aggravated PA-induced apoptosis and lipid accumulation in primary rat hepatocytes in dose-dependent manner. EtOH intensified PA-caused endoplasmic reticulum (ER) stress response in vitro and in vivo, and the expressions of CHOP, ATF4, and XBP-1 in nucleus were significantly increased. EtOH also increased PA-caused cleaved caspase-3 in cytoplasm. In wild type and CHOP(-/-) mice treated with EtOH and high fat diet (HFD), EtOH worsened the HFD-induced liver injury and dyslipidemia, while CHOP knockout blocked toxic effects of EtOH and PA. Our study suggested that targeting UPR-signaling pathways is a promising, novel approach to reducing EtOH and saturated fatty acid-induced metabolic complications.

  17. Endoplasmic reticulum stress as a novel cellular response to di (2-ethylhexyl) phthalate exposure.

    PubMed

    Peropadre, Ana; Fernández Freire, Paloma; Pérez Martín, José Manuel; Herrero, Óscar; Hazen, María José

    2015-12-25

    Di (2-ethylhexyl) phthalate is a high-production chemical widely used as a plasticizer for polyvinyl chloride products. Due to its ubiquitous presence in environmental compartments and the constant exposure of the general population through ingestion, inhalation, and dermal absorption, this compound has been subjected to extensive in vivo and in vitro toxicological studies. Despite the available information, research on the cytotoxicity of di (2-ethylhexyl) phthalate in mammalian cells is relatively limited.In this paper, an in vitro multi-parametric approach was used to provide further mechanistic data on the toxic activity of this chemical in Vero and HaCaT cells. Our results reveal that a 24 h exposure to di (2-ethylhexyl) phthalate causes, in both cell lines, an inhibition of cell proliferation that was linked to cell cycle delay at the G1 phase. Concomitantly, the tested compound induces mild endoplasmic reticulum stress which leads to an adaptive rather than a pro-apoptotic response in mammalian cells. These findings demonstrate that there are multiple potential cellular targets of di (2-ethylhexyl) phthalate-induced toxicity and the need to develop further experimental studies for the risk assessment of this ubiquitous plasticizer.

  18. Endoplasmic reticulum stress as a novel cellular response to di (2-ethylhexyl) phthalate exposure.

    PubMed

    Peropadre, Ana; Fernández Freire, Paloma; Pérez Martín, José Manuel; Herrero, Óscar; Hazen, María José

    2015-12-25

    Di (2-ethylhexyl) phthalate is a high-production chemical widely used as a plasticizer for polyvinyl chloride products. Due to its ubiquitous presence in environmental compartments and the constant exposure of the general population through ingestion, inhalation, and dermal absorption, this compound has been subjected to extensive in vivo and in vitro toxicological studies. Despite the available information, research on the cytotoxicity of di (2-ethylhexyl) phthalate in mammalian cells is relatively limited.In this paper, an in vitro multi-parametric approach was used to provide further mechanistic data on the toxic activity of this chemical in Vero and HaCaT cells. Our results reveal that a 24 h exposure to di (2-ethylhexyl) phthalate causes, in both cell lines, an inhibition of cell proliferation that was linked to cell cycle delay at the G1 phase. Concomitantly, the tested compound induces mild endoplasmic reticulum stress which leads to an adaptive rather than a pro-apoptotic response in mammalian cells. These findings demonstrate that there are multiple potential cellular targets of di (2-ethylhexyl) phthalate-induced toxicity and the need to develop further experimental studies for the risk assessment of this ubiquitous plasticizer. PMID:26514933

  19. Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection

    PubMed Central

    Feger, Bryan J.; Thompson, J. Will; Dubois, Laura G.; Kommaddi, Reddy P.; Foster, Matthew W.; Mishra, Rajashree; Shenoy, Sudha K.; Shibata, Yoichiro; Kidane, Yared H.; Moseley, M. Arthur; Carnell, Lisa S.; Bowles, Dawn E.

    2016-01-01

    On Earth, biological systems have evolved in response to environmental stressors, interactions dictated by physical forces that include gravity. The absence of gravity is an extreme stressor and the impact of its absence on biological systems is ill-defined. Astronauts who have spent extended time under conditions of minimal gravity (microgravity) experience an array of biological alterations, including perturbations in cardiovascular function. We hypothesized that physiological perturbations in cardiac function in microgravity may be a consequence of alterations in molecular and organellar dynamics within the cellular milieu of cardiomyocytes. We used a combination of mass spectrometry-based approaches to compare the relative abundance and turnover rates of 848 and 196 proteins, respectively, in rat neonatal cardiomyocytes exposed to simulated microgravity or normal gravity. Gene functional enrichment analysis of these data suggested that the protein content and function of the mitochondria, ribosomes, and endoplasmic reticulum were differentially modulated in microgravity. We confirmed experimentally that in microgravity protein synthesis was decreased while apoptosis, cell viability, and protein degradation were largely unaffected. These data support our conclusion that in microgravity cardiomyocytes attempt to maintain mitochondrial homeostasis at the expense of protein synthesis. The overall response to this stress may culminate in cardiac muscle atrophy. PMID:27670941

  20. The role of endoplasmic reticulum stress and insulin resistance in the occurrence of goose fatty liver.

    PubMed

    Geng, Tuoyu; Xia, Lili; Li, Fuyuan; Xia, Jing; Zhang, Yihui; Wang, Qianqian; Yang, Biao; Montgomery, Sean; Cui, Hengmi; Gong, Daoqing

    2015-09-11

    In mammals, insulin resistance (IR) is required for the occurrence of non-alcoholic fatty liver disease, and endoplasmic reticulum stress (ERS) contributes to IR. As geese have physiological and metabolic characteristics different from mammals, it is unclear whether these mechanisms also underlie the occurrence of goose fatty liver. To address this, 70-day-old geese were treated with an ERS inducer or overfed, and variables associated with ERS or IR were subsequently determined. The data indicated that the group of geese treated with the ERS inducer for 20d appeared to be more intolerant to blood glucose than the control group, and their livers showed features of hepatic steatosis, suggesting ERS can induce IR and hepatic steatosis in geese. In contrast, overfeeding did not induce ERS, probably due to the upregulated expression of fatty acid desaturases, but induced higher fasting/postprandial blood glucose as well as glucose intolerance in geese, which was accompanied by a dramatic increase of liver weight. Taken together, these findings delineated the role of ERS and IR in the occurrence of goose fatty liver.

  1. Bushen Zhuangjin decoction inhibits TM-induced chondrocyte apoptosis mediated by endoplasmic reticulum stress

    PubMed Central

    LIN, PINGDONG; WENG, XIAPING; LIU, FAYUAN; MA, YUHUAN; CHEN, HOUHUANG; SHAO, XIANG; ZHENG, WENWEI; LIU, XIANXIANG; YE, HONGZHI; LI, XIHAI

    2015-01-01

    Chondrocyte apoptosis triggered by endoplasmic reticulum (ER) stress plays a vital role in the pathogenesis of osteoarthritis (OA). Bushen Zhuangjin decoction (BZD) has been widely used in the treatment of OA. However, the cellular and molecular mechanisms responsible for the inhibitory effects of BZD on chondrocyte apoptosis remain to be elucidated. In the present study, we investigated the effects of BZD on ER stress-induced chondrocyte apoptosis using a chondrocyte in vitro model of OA. Chondrocytes obtained from the articular cartilage of the knee joints of Sprague Dawley (SD) rats were detected by immunohistochemical staining for type II collagen. The ER stress-mediated apoptosis of tunicamycin (TM)-stimulated chondrocytes was detected using 4-phenylbutyric acid (4-PBA). We found that 4-PBA inhibited TM-induced chondrocyte apoptosis, which confirmed the successful induction of chondrocyte apoptosis. BZD enhanced the viability of the TM-stimulated chondrocytes in a dose- and time-dependent manner, as shown by MTT assay. The apoptotic rate and the loss of mitochondrial membrane potential (ΔΨm) of the TM-stimulated chondrocytes treated with BZD was markedly decreased compared with those of chondrocytes not treated with BZD, as shown by 4′,6-diamidino-2-phenylindole (DAPI) staining, Annexin V-FITC binding assay and JC-1 assay. To further elucidate the mechanisms responsible for the inhibitory effects of BZD on TM-induced chondrocyte apoptosis mediated by ER stress, the mRNA and protein expression levels of binding immunoglobulin protein (Bip), X-box binding protein 1 (Xbp1), activating transcription factor 4 (Atf4), C/EBP-homologous protein (Chop), caspase-9, caspase-3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were measured by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. In the TM-stimulated chondrocytes treated with BZD, the mRNA and protein expression levels of Bip, Atf4, Chop, caspase-9, caspase-3

  2. Bushen Zhuangjin decoction inhibits TM-induced chondrocyte apoptosis mediated by endoplasmic reticulum stress.

    PubMed

    Lin, Pingdong; Weng, Xiaping; Liu, Fayuan; Ma, Yuhuan; Chen, Houhuang; Shao, Xiang; Zheng, Wenwei; Liu, Xianxiang; Ye, Hongzhi; Li, Xihai

    2015-12-01

    Chondrocyte apoptosis triggered by endoplasmic reticulum (ER) stress plays a vital role in the pathogenesis of osteoarthritis (OA). Bushen Zhuangjin decoction (BZD) has been widely used in the treatment of OA. However, the cellular and molecular mechanisms responsible for the inhibitory effects of BZD on chondrocyte apoptosis remain to be elucidated. In the present study, we investigated the effects of BZD on ER stress-induced chondrocyte apoptosis using a chondrocyte in vitro model of OA. Chondrocytes obtained from the articular cartilage of the knee joints of Sprague Dawley (SD) rats were detected by immunohistochemical staining for type Ⅱ collagen. The ER stress-mediated apoptosis of tunicamycin (TM)‑stimulated chondrocytes was detected using 4-phenylbutyric acid (4‑PBA). We found that 4‑PBA inhibited TM-induced chondrocyte apoptosis, which confirmed the successful induction of chondrocyte apoptosis. BZD enhanced the viability of the TM-stimulated chondrocytes in a dose- and time-dependent manner, as shown by MTT assay. The apoptotic rate and the loss of mitochondrial membrane potential (ΔΨm) of the TM-stimulated chondrocytes treated with BZD was markedly decreased compared with those of chondrocytes not treated with BZD, as shown by 4',6-diamidino-2-phenylindole (DAPI) staining, Annexin V-FITC binding assay and JC-1 assay. To further elucidate the mechanisms responsible for the inhibitory effects of BZD on TM‑induced chondrocyte apoptosis mediated by ER stress, the mRNA and protein expression levels of binding immunoglobulin protein (Bip), X‑box binding protein 1 (Xbp1), activating transcription factor 4 (Atf4), C/EBP‑homologous protein (Chop), caspase‑9, caspase-3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were measured by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. In the TM-stimulated chondrocytes treated with BZD, the mRNA and protein expression levels of Bip, Atf4, Chop, caspase

  3. Cross-talk between endoplasmic reticulum (ER) stress and the MEK/ERK pathway potentiates apoptosis in human triple negative breast carcinoma cells: role of a dihydropyrimidone, nifetepimine.

    PubMed

    Ghosh, Swatilekha; Adhikary, Arghya; Chakraborty, Supriya; Bhattacharjee, Pushpak; Mazumder, Minakshi; Putatunda, Salil; Gorain, Mahadeo; Chakraborty, Arijit; Kundu, Gopal C; Das, Tanya; Sen, Parimal C

    2015-02-13

    Triple negative breast cancers (TNBC) are among the most aggressive and therapy-resistant breast tumors and currently possess almost no molecular targets for therapeutic options in this horizon. In the present study we discerned the molecular mechanisms of potential interaction between the endoplasmic reticulum (ER) stress response and the MEK/ERK pathway in inducing apoptosis in TNBC cells. Here we observed that induction of ER stress alone was not sufficient to trigger significant apoptosis but simultaneous inhibition of the MEK/ERK pathway enhanced ER stress-induced apoptosis via a caspase-dependent mechanism. Our study also demonstrated nifetepimine, a dihydropyrimidone derivative as a potent anti-cancer agent in TNBC cells. Nifetepimine down-regulated the MEK/ERK pathway in MDAMB-231 and MDAMB-468 cells and resulted in blockage of ER stress-mediated GRP78 up-regulation. Detailed mechanistic studies also revealed that nifetepimine by down-regulating pERK expression also declined the promoter binding activity of TFII-I to the GRP78 promoter and in turn regulated GRP78 transcription. Studies further extended to in vivo Swiss albino and SCID mice models also revalidated the anti-carcinogenic property of nifetepimine. Thus our findings cumulatively suggest that nifetepimine couples two distinct signaling pathways to induce the apoptotic death cascade in TNBC cells and raises the possibility for the use of nifetepimine as a potent anti-cancer agent with strong immune-restoring properties for therapeutic intervention for this group of cancer bearers.

  4. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow

    PubMed Central

    Chung, Jihwa; Kim, Kyoung Hwa; Lee, Seok Cheol; An, Shung Hyun; Kwon, Kihwan

    2015-01-01

    Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis. PMID:26442866

  5. Study of narrow band millimeter-wave potential interactions with endoplasmic reticulum stress sensor genes.

    PubMed

    Nicolaz, Christophe Nicolas; Zhadobov, Maxim; Desmots, Fabienne; Ansart, Armelle; Sauleau, Ronan; Thouroude, Daniel; Michel, Denis; Le Drean, Yves

    2009-07-01

    The main purpose of this article is to study potential biological effects of low-power millimeter waves (MMWs) on endoplasmic reticulum (ER), an organelle sensitive to a wide variety of environmental insults and involved in a number of pathologies. We considered exposure frequencies around 60 GHz in the context of their near-future applications in wireless communication systems. Radiations within this frequency range are strongly absorbed by oxygen molecules, and biological species have never been exposed to such radiations in natural environmental conditions. A set of five discrete frequencies has been selected; three of them coincide with oxygen spectral lines (59.16, 60.43, and 61.15 GHz) and two frequencies correspond to the spectral line overlap regions (59.87 and 60.83 GHz). Moreover, we used a microwave spectroscopy approach to select eight frequencies corresponding to the spectral lines of various molecular groups within 59-61 GHz frequency range. The human glial cell line, U-251 MG, was exposed or sham-exposed for 24 h with a peak incident power density of 0.14 mW/cm(2). The average specific absorption rate (SAR) within the cell monolayer ranges from 2.64 +/- 0.08 to 3.3 +/- 0.1 W/kg depending on the location of the exposed well. We analyzed by quantitative reverse transcription-polymerase chain reaction (RT-PCR) the level of expression of two endogenous ER-stress biomarkers, namely, the chaperones BiP/GRP78 and ORP150/GRP170. It was found that exposure to low-power MMW does not significantly modify the mRNA levels of these stress-sensitive genes suggesting that ER homeostasis is not altered by low-power MMW at the considered frequencies.

  6. High-Density Lipoprotein Prevents Endoplasmic Reticulum Stress-Induced Downregulation of Liver LOX-1 Expression

    PubMed Central

    Hong, Dan; Li, Ling-Fang; Gao, Hai-Chao; Wang, Xiang; Li, Chuan-Chang; Luo, Ying; Bai, Yong-Ping; Zhang, Guo-Gang

    2015-01-01

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a specific cell-surface receptor for oxidized-low-density lipoprotein (ox-LDL). The impact of high-density lipoprotein (HDL) on endoplasmic reticulum (ER) stress-mediated alteration of the LOX-1 level in hepatocytes remains unclear. We aimed to investigate the impact on LOX-1 expression by tunicamycin (TM)-induced ER stress and to determine the effect of HDL on TM-affected LOX-1 expression in hepatic L02 cells. Overexpression or silencing of related cellular genes was conducted in TM-treated cells. mRNA expression was evaluated using real-time polymerase chain reaction (PCR). Protein expression was analyzed by western blot and immunocytochemistry. Lipid uptake was examined by DiI-ox-LDL, followed by flow cytometric analysis. The results showed that TM induced the upregulation of ER chaperone GRP78, downregulation of LOX-1 expression, and lipid uptake. Knock down of IRE1 or XBP-1 effectively restored LOX-1 expression and improved lipid uptake in TM-treated cells. HDL treatment prevented the negative impact on LOX-1 expression and lipid uptake induced by TM. Additionally, 1–10 μg/mL HDL significantly reduced the GRP78, IRE1, and XBP-1 expression levels in TM-treated cells. Our findings reveal that HDL could prevent the TM-induced reduction of LOX-1 expression via inhibiting the IRE1/XBP-1 pathway, suggesting a new mechanism for beneficial roles of HDL in improving lipid metabolism. PMID:25923692

  7. High-Density Lipoprotein Prevents Endoplasmic Reticulum Stress-Induced Downregulation of Liver LOX-1 Expression.

    PubMed

    Hong, Dan; Li, Ling-Fang; Gao, Hai-Chao; Wang, Xiang; Li, Chuan-Chang; Luo, Ying; Bai, Yong-Ping; Zhang, Guo-Gang

    2015-01-01

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a specific cell-surface receptor for oxidized-low-density lipoprotein (ox-LDL). The impact of high-density lipoprotein (HDL) on endoplasmic reticulum (ER) stress-mediated alteration of the LOX-1 level in hepatocytes remains unclear. We aimed to investigate the impact on LOX-1 expression by tunicamycin (TM)-induced ER stress and to determine the effect of HDL on TM-affected LOX-1 expression in hepatic L02 cells. Overexpression or silencing of related cellular genes was conducted in TM-treated cells. mRNA expression was evaluated using real-time polymerase chain reaction (PCR). Protein expression was analyzed by western blot and immunocytochemistry. Lipid uptake was examined by DiI-ox-LDL, followed by flow cytometric analysis. The results showed that TM induced the upregulation of ER chaperone GRP78, downregulation of LOX-1 expression, and lipid uptake. Knock down of IRE1 or XBP-1 effectively restored LOX-1 expression and improved lipid uptake in TM-treated cells. HDL treatment prevented the negative impact on LOX-1 expression and lipid uptake induced by TM. Additionally, 1-10 μg/mL HDL significantly reduced the GRP78, IRE1, and XBP-1 expression levels in TM-treated cells. Our findings reveal that HDL could prevent the TM-induced reduction of LOX-1 expression via inhibiting the IRE1/XBP-1 pathway, suggesting a new mechanism for beneficial roles of HDL in improving lipid metabolism. PMID:25923692

  8. Crocetin prevents retinal degeneration induced by oxidative and endoplasmic reticulum stresses via inhibition of caspase activity.

    PubMed

    Yamauchi, Mika; Tsuruma, Kazuhiro; Imai, Shunsuke; Nakanishi, Tomohiro; Umigai, Naofumi; Shimazawa, Masamitsu; Hara, Hideaki

    2011-01-10

    Crocetin is a carotenoid that is the aglicone of crocin, which are found in saffron stigmas (Crocus sativus L.) and gardenia fruit (Gardenia jasminoides Ellis). In this study, we investigated the effects of crocetin on retinal damage. To examine whether crocetin affects stress pathways, we investigated intracellular oxidation induced by reactive oxygen species, expression of endoplasmic reticulum (ER) stress-related proteins, disruption of the mitochondrial membrane potential (ΔΨ(m)), and caspases activation. In vitro, we employed cultured retinal ganglion cells (RGC-5, a mouse ganglion cell-line transformed using E1A virus). Cell damage was induced by tunicamycin or hydrogen peroxide (H(2)O(2)) exposure. Crocetin at a concentration of 3μM showed the inhibitory effect of 50-60% against tunicamycin- and H(2)O(2)-induced cell death and inhibited increase in caspase-3 and -9 activity. Moreover, crocetin inhibited the enzymatic activity of caspase-9 in a cell-free system. In vivo, retinal damage in mice was induced by exposure to white light at 8000lx for 3h after dark adaptation. Photoreceptor damage was evaluated by measuring the outer nuclear layer thickness at 5days after light exposure and recording the electroretinogram (ERG). Retinal cell damage was also detected with Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining at 48h after light exposure. Crocetin at 100mg/kg, p.o. significantly inhibited photoreceptor degeneration and retinal dysfunction and halved the expression of TUNEL-positive cells. These results indicate that crocetin has protective effects against retinal damage in vitro and in vivo, suggesting that the mechanism may inhibit increase in caspase-3 and -9 activities after retinal damage. PMID:20951131

  9. Central nervous system endoplasmic reticulum stress in a murine model of type 2 diabetes

    PubMed Central

    Sims-Robinson, C.; Zhao, S.; Hur, J.

    2012-01-01

    Aims/hypothesis Type 2 diabetes is associated with complications in the central nervous system (CNS), including learning and memory, and an increased risk for neurodegenerative diseases. The mechanism underlying this association is not understood. The aim of this study was to gain greater insight into the possible mechanisms of diabetes-induced cognitive decline. Methods We used microarray technology to identify and examine changes in gene expression in the hippocampus of a murine model of type 2 diabetes, the db/db mouse. Bioinformatics approaches were then used to investigate the biological significance of these genes. To validate the biological significance we evaluated mRNA and protein levels. Results At 8 and 24 weeks, 256 and 822 genes, respectively, were differentially expressed in the db/db mice. The most significantly enriched biological functions were related to mitochondria, heat shock proteins, or the endoplasmic reticulum (ER), the majority of which were downregulated. The ER-enriched cluster was one of the clusters that contained the highest number of differentially expressed genes. Several of the downregulated genes that were differentially expressed at 24 but not at 8 weeks are directly involved in the unfolded protein response (UPR) pathway and include two heat shock proteins (encoded by Hspa5 and Hsp90b1), a transcriptional factor (x-box binding protein 1, encoded by Xbp1), and an apoptotic mediator (DNA-damage inducible transcript 3, encoded by Ddit3). Conclusions/interpretation The changes that we observed in the UPR pathway due to ER stress may play a role in the pathogenesis of CNS complications in diabetes. The results of this study are a foundation for the development of pharmacological targets to reduce ER stress in diabetic hippocampi. PMID:22581041

  10. Role of endoplasmic reticulum stress in acrolein-induced endothelial activation

    SciTech Connect

    Haberzettl, Petra; Vladykovskaya, Elena; Srivastava, Sanjay; Bhatnagar, Aruni

    2009-01-01

    Acrolein is a ubiquitous environmental pollutant and an endogenous product of lipid peroxidation. It is also generated during the metabolism of several drugs and amino acids. In this study, we examined the effects of acrolein on endothelial cells. Treatment of human umbilical vein endothelial cells (HUVECs) with 2 to 10 {mu}M acrolein led to an increase in the phosphorylation of eIF-2{alpha} within 10 to 30 min of exposure. This was followed by alternate splicing of XBP-1 mRNA and an increase in the expression of the endoplasmic reticulum (ER) chaperone genes Grp78 and Herp. Within 2-4 h of treatment, acrolein also increased the abundance and the nuclear transport of the transcription factors ATF3, AFT4, and CHOP. Acrolein-induced increase in ATF3 was prevented by treating the cells with the chemical chaperone - phenylbutyric acid (PBA). Treatment with acrolein increased phosphorylation of ERK1/2, p38, and JNK. The increase in JNK phosphorylation was prevented by PBA. Acrolein treatment led to activation and nuclear translocation of the transcription factor NF-{kappa}B and an increase in TNF-{alpha}, IL-6 and IL-8, but not MCP-1, mRNA. Increased expression of cytokine genes and NF-{kappa}B activation were not observed in cells treated with PBA. These findings suggest that exposure to acrolein induces ER stress and triggers the unfolded protein response and that NF-{kappa}B activation and stimulation of cytokine production by acrolein could be attributed, in part, to ER stress. Chemical chaperones of protein-folding may be useful in treating toxicological and pathological states associated with excessive acrolein exposure or production.

  11. ROLE OF ENDOPLASMIC RETICULUM STRESS IN ACROLEIN-INDUCED ENDOTHELIAL ACTIVATION

    PubMed Central

    Haberzettl, Petra; Vladykovskaya, Elena; Srivastava, Sanjay; Bhatnagar, Aruni

    2010-01-01

    Acrolein is a ubiquitous environmental pollutant and an endogenous product of lipid peroxidation. It is also generated during the metabolism of several drugs and amino acids. In this study, we examined the effects of acrolein on endothelial cells. Treatment of human umbilical vein endothelial cells (HUVECs) with 2 to 10 μM acrolein led to an increase in the phosphorylation of eIF-2α within 10 to 30 min of exposure. This was followed by alternate splicing of XBP-1 mRNA and an increase in the expression of the endoplasmic reticulum (ER) chaperone genes Grp78 and Herp. Within 2–4 h of treatment, acrolein also increased the abundance and the nuclear transport of the transcription factors ATF3, AFT4, and CHOP. Acrolein-induced increase in ATF3 was prevented by treating the cells with the chemical chaperone – phenylbutryic acid (PBA). Treatment with acrolein increased phosphorylation of ERK1/2, p38, and JNK. The increase in JNK phosphorylation was prevented by PBA. Acrolein treatment led to the activation and nuclear translocation of the transcription factor NF-κB and an increase in TNF-α, IL-6 and IL-8, but not MCP-1, mRNA. Increased synthesis of cytokine genes and NF-κB activation were not observed in cells treated with PBA. These findings suggest that exposure to acrolein induces ER stress and triggers the unfolded protein response and that NF-κB activation and stimulation of cytokine production by acrolein could be attributed, in part, to ER stress. Chemical chaperones of protein-folding may be useful in treating toxicological and pathological states associated with excessive acrolein exposure or production. PMID:18951912

  12. Melatonin Activates Endoplasmic Reticulum Stress and Apoptosis in Rats with Diethylnitrosamine-Induced Hepatocarcinogenesis

    PubMed Central

    Moreira, Andrea Janz; Ordoñez, Raquel; Cerski, Carlos Thadeu; Picada, Jaqueline Nascimento; García-Palomo, Andrés; Marroni, Norma Possa; Mauriz, Jose L.; González-Gallego, Javier

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal human cancers worldwide because of its high incidence, its metastatic potential and the low efficacy of conventional treatment. Inactivation of apoptosis is implicated in tumour progression and chemotherapy resistance, and has been linked to the presence of endoplasmic reticulum stress. Melatonin, the main product of the pineal gland, exerts anti-proliferative, pro-apoptotic and anti-angiogenic effects in HCC cells, but these effects still need to be confirmed in animal models. Male Wistar rats in treatment groups received diethylnitrosamine (DEN) 50 mg/kg intraperitoneally twice/once a week for 18 weeks. Melatonin was given in drinking water at 1 mg/kg/d, beginning 5 or 12 weeks after the start of DEN administration. Melatonin improved survival rates and successfully attenuated liver injury, as shown by histopathology, decreased levels of serum transaminases and reduced expression of placental glutathione S-transferase. Furthermore, melatonin treatment resulted in a significant increase of caspase 3, 8 and 9 activities, polyadenosine diphosphate (ADP) ribose polymerase (PARP) cleavage, and Bcl-associated X protein (Bax)/Bcl-2 ratio. Cytochrome c, p53 and Fas-L protein concentration were also significantly enhanced by melatonin. Melatonin induced an increased expression of activating transcription factor 6 (ATF6), C/EBP-homologous protein (CHOP) and immunoglobulin heavy chain-binding protein (BiP), while cyclooxygenase (COX)-2 expression decreased. Data obtained suggest that induction of apoptosis and ER stress contribute to the beneficial effects of melatonin in rats with DEN-induced HCC. PMID:26656265

  13. Endoplasmic Reticulum Stress Signaling in Plant Immunity—At the Crossroad of Life and Death

    PubMed Central

    Kørner, Camilla J.; Du, Xinran; Vollmer, Marie E.; Pajerowska-Mukhtar, Karolina M.

    2015-01-01

    Rapid and complex immune responses are induced in plants upon pathogen recognition. One form of plant defense response is a programmed burst in transcription and translation of pathogenesis-related proteins, of which many rely on ER processing. Interestingly, several ER stress marker genes are up-regulated during early stages of immune responses, suggesting that enhanced ER capacity is needed for immunity. Eukaryotic cells respond to ER stress through conserved signaling networks initiated by specific ER stress sensors tethered to the ER membrane. Depending on the nature of ER stress the cell prioritizes either survival or initiates programmed cell death (PCD). At present two plant ER stress sensors, bZIP28 and IRE1, have been described. Both sensor proteins are involved in ER stress-induced signaling, but only IRE1 has been additionally linked to immunity. A second branch of immune responses relies on PCD. In mammals, ER stress sensors are involved in activation of PCD, but it is unclear if plant ER stress sensors play a role in PCD. Nevertheless, some ER resident proteins have been linked to pathogen-induced cell death in plants. In this review, we will discuss the current understanding of plant ER stress signaling and its cross-talk with immune signaling. PMID:26556351

  14. Endoplasmic reticulum stress-activated glycogen synthase kinase 3β aggravates liver inflammation and hepatotoxicity in mice with acute liver failure.

    PubMed

    Ren, Feng; Zhou, Li; Zhang, Xiangying; Wen, Tao; Shi, Hongbo; Xie, Bangxiang; Li, Zhuo; Chen, Dexi; Wang, Zheling; Duan, Zhongping

    2015-01-01

    Endoplasmic reticulum stress (ER stress) has been increasingly recognized as an important mechanism in various liver diseases. However, its intrinsic physiological role in acute liver failure (ALF) remains largely undetermined. This study aimed to examine how ER stress orchestrates glycogen synthase kinase 3β (GSK3β) and inflammation to affect ALF. In a murine ALF model induced by D-galactosamine (D-GalN) and lipopolysaccharide (LPS), 4-phenylbutyric acid (4-PBA) is to be administered to relieve ER stress. The lethality rate, liver damage, cytokine expression, and the activity of GSK3β were evaluated. How to regulate LPS-induced inflammation and TNF-α-induced hepatocyte apoptosis by ER stress was investigated in vitro. In vivo, ER stress was triggered in the liver with the progression of mice ALF model. ER stress was essential for the development of ALF because ER stress inhibition by 4-PBA ameliorated the liver damage through decreasing liver inflammation and hepatocyte apoptosis. 4-PBA also decreased GSK3β activity in the livers of ALF mice. In vitro, ER stress induced by tunicamycin synergistically increased LPS-triggered pro-inflammatory cytokine induction and promoted the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathway in bone marrow-derived macrophages; moreover, tunicamycin also cooperated with TNF-α to increase hepatocyte apoptosis. ER stress promoted LPS-triggered inflammation depending on GSK3β activation because inhibition of GSK3β by SB216763, the specific inhibitor of GSK3β, resulted in downregulation of pro-inflammatory genes. ER stress contributes to liver inflammation and hepatotoxicity in ALF, particularly by regulating GSK3β, and is therefore a potential therapeutic target for ALF.

  15. A novel HAC1-based dual-luciferase reporter vector for detecting endoplasmic reticulum stress and unfolded protein response in yeast Saccharomyces cerevisiae.

    PubMed

    Fang, Zhijia; Kuang, Xin; Zhang, Youshang; Shi, Ping; Huang, Zhiwei

    2015-05-01

    Unfolded protein response (UPR) is an important cellular phenomenon induced by over-accumulation of unfolded proteins in the endoplasmic reticulum (ER) lumen. ER stress and UPR are implicated in human diseases such as diabetes, atherosclerosis and neurodegenerative diseases. Current methods for measuring ER stress levels and UPR activation usually include cells lysis and other complicated procedures such as reverse transcription-PCR (RT-PCR). These methods typically have low sensitivity and are not suitable for live detection. In this study, we developed a dual-luciferase gene reporter system to monitor UPR activation in live cells of the yeast Saccharomyces cerevisiae by taking advantage of the HAC1 intron and its unconventional splicing-regulation mechanism. We showed that this reporter can be used to monitor UPR in live cells with high sensitivity.

  16. Endoplasmic reticulum stress responses differ in meninges and associated vasculature, striatum, and parietal cortex after a neurotoxic amphetamine exposure.

    PubMed

    Thomas, Monzy; George, Nysia I; Saini, Upasana T; Patterson, Tucker A; Hanig, Joseph P; Bowyer, John F

    2010-08-01

    Amphetamine (AMPH) is used to treat attention deficit and hyperactivity disorders, but it can produce neurotoxicity and adverse vascular effects at high doses. The endoplasmic reticulum (ER) stress response (ERSR) entails the unfolded protein response, which helps to avoid or minimize ER dysfunction. ERSR is often associated with toxicities resulting from the accumulation of unfolded or misfolded proteins and has been associated with methamphetamine toxicity in the striatum. The present study evaluates the effect of AMPH on several ERSR elements in meninges and associated vasculature (MAV), parietal cortex, and striatum. Adult, male Sprague-Dawley rats were exposed to saline, environmentally induced hyperthermia (EIH) or four consecutive doses of AMPH that produce hyperthermia. Expression changes (mRNA and protein levels) of key ERSR-related genes in MAV, striatum, and parietal cortex at 3 h or 1 day postdosing were monitored. AMPH increased the expression of some ERSR-related genes in all tissues. Atf4 (activating transcription factor 4, an indicator of Perk pathway activation), Hspa5/Grp78 (Glucose regulated protein 78, master regulator of ERSR), Pdia4 (protein disulfide isomerase, protein-folding enzyme), and Nfkb1 (nuclear factor of kappa b, ERSR sensor) mRNA increased significantly in MAV and parietal cortex 3 h after AMPH. In striatum, Atf4 and Hspa5/Grp78 mRNA significantly increased 3 h after AMPH, but Pdia4 and Nfkb11 did not. Thus, AMPH caused a robust activation of the Perk pathway in all tissues, but significant Ire1 pathway activation occurred only after AMPH treatment in the parietal cortex and striatum. Ddit3/Chop, a downstream effector of the ERSR pathway related to the neurotoxicity, was only increased in striatum and parietal cortex. Conversely, Pdia4, an enzyme protective in the ERSR, was only increased in MAV. The overall ERSR manifestation varied significantly between MAV, striatum, and parietal cortex after a neurotoxic exposure to AMPH.

  17. Pneumococcal hydrogen peroxide-induced stress signaling regulates inflammatory genes.

    PubMed

    Loose, Maria; Hudel, Martina; Zimmer, Klaus-Peter; Garcia, Ernesto; Hammerschmidt, Sven; Lucas, Rudolf; Chakraborty, Trinad; Pillich, Helena

    2015-01-15

    Microbial infections can induce aberrant responses in cellular stress pathways, leading to translational attenuation, metabolic restriction, and activation of oxidative stress, with detrimental effects on cell survival. Here we show that infection of human airway epithelial cells with Streptococcus pneumoniae leads to induction of endoplasmic reticulum (ER) and oxidative stress, activation of mitogen-associated protein kinase (MAPK) signaling pathways, and regulation of their respective target genes. We identify pneumococcal H2O2 as the causative agent for these responses, as both catalase-treated and pyruvate oxidase-deficient bacteria lacked these activities. Pneumococcal H2O2 induced nuclear NF-κB translocation and transcription of proinflammatory cytokines. Inhibition of translational arrest and ER stress by salubrinal or of MAPK signaling pathways attenuate cytokine transcription. These results provide strong evidence for the notion that inhibition of translation is an important host pathway in monitoring harmful pathogen-associated activities, thereby enabling differentiation between pathogenic and nonpathogenic bacteria. PMID:25183769

  18. Disturbance of endogenous hydrogen sulfide generation and endoplasmic reticulum stress in hippocampus are involved in homocysteine-induced defect in learning and memory of rats.

    PubMed

    Li, Man-Hong; Tang, Ji-Ping; Zhang, Ping; Li, Xiang; Wang, Chun-Yan; Wei, Hai-Jun; Yang, Xue-Feng; Zou, Wei; Tang, Xiao-Qing

    2014-04-01

    Homocysteine (Hcy) is a risk factor for Alzheimer's disease (AD). Hydrogen sulfide (H2S) acts as an endogenous neuromodulator and neuroprotectant. It has been shown that endoplasmic reticulum (ER) stress is involved in the pathological mechanisms of the learning and memory dysfunctions and that H2S exerts its neuroprotective role via suppressing ER stress. In the present work, we explored the effects of intracerebroventricular injection of Hcy on the formation of learning and memory, the generation of endogenous H2S, and the expression of ER stress in the hippocampus of rats. We found that intracerebroventricular injection of Hcy in rats leads to learning and memory dysfunctions in the Morris water maze and novel of object recognition test and decreases in the expression of cystathionine-β-synthase, the major enzyme responsible for endogenous H2S generation, and the generation of endogenous H2S in the hippocampus of rats. We also showed that exposure of Hcy could up-regulate the expressions of glucose-regulated protein 78 (GRP78), CHOP, and cleaved caspase-12, which are the major mark proteins of ER stress, in the hippocampus of rats. Taken together, these results suggest that the disturbance of hippocampal endogenous H2S generation and the increase in ER stress in the hippocampus are related to Hcy-induced defect in learning and memory.

  19. Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure

    PubMed Central

    Zhang, Li; Ren, Feng; Zhang, Xiangying; Wang, Xinxin; Shi, Hongbo; Zhou, Li; Zheng, Sujun; Chen, Yu; Chen, Dexi; Li, Liying; Duan, Zhongping

    2016-01-01

    ABSTRACT Peroxisome proliferator-activated receptor α (PPARα) is a key regulator to ameliorate liver injury in cases of acute liver failure (ALF). However, its regulatory mechanisms remain largely undetermined. Endoplasmic reticulum stress (ER stress) plays an important role in a number of liver diseases. This study aimed to investigate whether PPARα activation inhibits ER stress-induced hepatocyte apoptosis, thereby protecting against ALF. In a murine model of D-galactosamine (D-GalN)- and lipopolysaccharide (LPS)-induced ALF, Wy-14643 was administered to activate PPARα, and 4-phenylbutyric acid (4-PBA) was administered to attenuate ER stress. PPARα activation ameliorated liver injury, because pre-administration of its specific inducer, Wy-14643, reduced the serum aminotransferase levels and preserved liver architecture compared with that of controls. The protective effect of PPARα activation resulted from the suppression of ER stress-induced hepatocyte apoptosis. Indeed, (1) PPARα activation decreased the expression of glucose-regulated protein 78 (Grp78), Grp94 and C/EBP-homologous protein (CHOP) in vivo; (2) the liver protection by 4-PBA resulted from the induction of PPARα expression, as 4-PBA pre-treatment promoted upregulation of PPARα, and inhibition of PPARα by small interfering RNA (siRNA) treatment reversed liver protection and increased hepatocyte apoptosis; (3) in vitro PPARα activation by Wy-14643 decreased hepatocyte apoptosis induced by severe ER stress, and PPARα inhibition by siRNA treatment decreased the hepatocyte survival induced by mild ER stress. Here, we demonstrate that PPARα activation contributes to liver protection and decreases hepatocyte apoptosis in ALF, particularly through regulating ER stress. Therefore, targeting PPARα could be a potential therapeutic strategy to ameliorate ALF. PMID:27482818

  20. Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure.

    PubMed

    Zhang, Li; Ren, Feng; Zhang, Xiangying; Wang, Xinxin; Shi, Hongbo; Zhou, Li; Zheng, Sujun; Chen, Yu; Chen, Dexi; Li, Liying; Zhao, Caiyan; Duan, Zhongping

    2016-07-01

    Peroxisome proliferator-activated receptor α (PPARα) is a key regulator to ameliorate liver injury in cases of acute liver failure (ALF). However, its regulatory mechanisms remain largely undetermined. Endoplasmic reticulum stress (ER stress) plays an important role in a number of liver diseases. This study aimed to investigate whether PPARα activation inhibits ER stress-induced hepatocyte apoptosis, thereby protecting against ALF. In a murine model of D-galactosamine (D-GalN)- and lipopolysaccharide (LPS)-induced ALF, Wy-14643 was administered to activate PPARα, and 4-phenylbutyric acid (4-PBA) was administered to attenuate ER stress. PPARα activation ameliorated liver injury, because pre-administration of its specific inducer, Wy-14643, reduced the serum aminotransferase levels and preserved liver architecture compared with that of controls. The protective effect of PPARα activation resulted from the suppression of ER stress-induced hepatocyte apoptosis. Indeed, (1) PPARα activation decreased the expression of glucose-regulated protein 78 (Grp78), Grp94 and C/EBP-homologous protein (CHOP) in vivo; (2) the liver protection by 4-PBA resulted from the induction of PPARα expression, as 4-PBA pre-treatment promoted upregulation of PPARα, and inhibition of PPARα by small interfering RNA (siRNA) treatment reversed liver protection and increased hepatocyte apoptosis; (3) in vitro PPARα activation by Wy-14643 decreased hepatocyte apoptosis induced by severe ER stress, and PPARα inhibition by siRNA treatment decreased the hepatocyte survival induced by mild ER stress. Here, we demonstrate that PPARα activation contributes to liver protection and decreases hepatocyte apoptosis in ALF, particularly through regulating ER stress. Therefore, targeting PPARα could be a potential therapeutic strategy to ameliorate ALF. PMID:27482818

  1. The Monoterpene Carvacrol Generates Endoplasmic Reticulum Stress in the Pathogenic Fungus Candida albicans

    PubMed Central

    Chaillot, Julien; Tebbji, Faiza; Remmal, Adnane; Boone, Charlie; Brown, Grant W.

    2015-01-01

    The monoterpene carvacrol, the major component of oregano and thyme oils, is known to exert potent antifungal activity against the pathogenic yeast Candida albicans. This monoterpene has been the subject of a considerable number of investigations that uncovered extensive pharmacological properties, including antifungal and antibacterial effects. However, its mechanism of action remains elusive. Here, we used integrative chemogenomic approaches, including genome-scale chemical-genetic and transcriptional profiling, to uncover the mechanism of action of carvacrol associated with its antifungal property. Our results clearly demonstrated that fungal cells require the unfolded protein response (UPR) signaling pathway to resist carvacrol. The mutants most sensitive to carvacrol in our genome-wide competitive fitness assay in the yeast Saccharomyces cerevisiae expressed mutations of the transcription factor Hac1 and the endonuclease Ire1, which is required for Hac1 activation by removing a nonconventional intron from the 3′ region of HAC1 mRNA. Confocal fluorescence live-cell imaging revealed that carvacrol affects the morphology and the integrity of the endoplasmic reticulum (ER). Transcriptional profiling of pathogenic yeast C. albicans cells treated with carvacrol demonstrated a bona fide UPR transcriptional signature. Ire1 activity detected by the splicing of HAC1 mRNA in C. albicans was activated by carvacrol. Furthermore, carvacrol was found to potentiate antifungal activity of the echinocandin antifungal caspofungin and UPR inducers dithiothreitol and tunicamycin against C. albicans. This comprehensive chemogenomic investigation demonstrated that carvacrol exerts its antifungal activity by altering ER integrity, leading to ER stress and the activation of the UPR to restore protein-folding homeostasis. PMID:26014932

  2. The Monoterpene Carvacrol Generates Endoplasmic Reticulum Stress in the Pathogenic Fungus Candida albicans.

    PubMed

    Chaillot, Julien; Tebbji, Faiza; Remmal, Adnane; Boone, Charlie; Brown, Grant W; Bellaoui, Mohammed; Sellam, Adnane

    2015-08-01

    The monoterpene carvacrol, the major component of oregano and thyme oils, is known to exert potent antifungal activity against the pathogenic yeast Candida albicans. This monoterpene has been the subject of a considerable number of investigations that uncovered extensive pharmacological properties, including antifungal and antibacterial effects. However, its mechanism of action remains elusive. Here, we used integrative chemogenomic approaches, including genome-scale chemical-genetic and transcriptional profiling, to uncover the mechanism of action of carvacrol associated with its antifungal property. Our results clearly demonstrated that fungal cells require the unfolded protein response (UPR) signaling pathway to resist carvacrol. The mutants most sensitive to carvacrol in our genome-wide competitive fitness assay in the yeast Saccharomyces cerevisiae expressed mutations of the transcription factor Hac1 and the endonuclease Ire1, which is required for Hac1 activation by removing a nonconventional intron from the 3' region of HAC1 mRNA. Confocal fluorescence live-cell imaging revealed that carvacrol affects the morphology and the integrity of the endoplasmic reticulum (ER). Transcriptional profiling of pathogenic yeast C. albicans cells treated with carvacrol demonstrated a bona fide UPR transcriptional signature. Ire1 activity detected by the splicing of HAC1 mRNA in C. albicans was activated by carvacrol. Furthermore, carvacrol was found to potentiate antifungal activity of the echinocandin antifungal caspofungin and UPR inducers dithiothreitol and tunicamycin against C. albicans. This comprehensive chemogenomic investigation demonstrated that carvacrol exerts its antifungal activity by altering ER integrity, leading to ER stress and the activation of the UPR to restore protein-folding homeostasis. PMID:26014932

  3. Endoplasmic reticulum stress is involved in arsenite-induced oxidative injury in rat brain

    SciTech Connect

    Lin, Anya M.Y.; Chao, P.L.; Fang, S.F.; Chi, C.W.; Yang, C.H.

    2007-10-15

    The mechanism underlying sodium arsenite (arsenite)-induced neurotoxicity was investigated in rat brain. Arsenite was locally infused in the substantia nigra (SN) of anesthetized rat. Seven days after infusion, lipid peroxidation in the infused SN was elevated and dopamine level in the ipsilateral striatum was reduced in a concentration-dependent manner (0.3-5 nmol). Furthermore, local infusion of arsenite (5 nmol) decreased GSH content and increased expression of heat shock protein 70 and heme oxygenase-1 in the infused SN. Aggregation of {alpha}-synuclein, a putative pathological protein involved in several CNS neurodegenerative diseases, was elevated in the arsenite-infused SN. From the breakdown pattern of {alpha}-spectrin, both necrosis and apoptosis were involved in the arsenite-induced neurotoxicity. Pyknotic nuclei, cellular shrinkage and cytoplasmic disintegration, indicating necrosis, and TUNEL-positive cells and DNA ladder, indicating apoptosis was observed in the arsenite-infused SN. Arsenite-induced apoptosis was mediated via two different organelle pathways, mitochondria and endoplasmic reticulum (ER). For mitochondrial activation, cytosolic cytochrome c and caspase-3 levels were elevated in the arsenite-infused SN. In ER pathway, arsenite increased activating transcription factor-4, X-box binding protein 1, C/EBP homologues protein (CHOP) and cytosolic immunoglobulin binding protein levels. Moreover, arsenite reduced procaspase 12 levels, an ER-specific enzyme in the infused SN. Taken together, our study suggests that arsenite is capable of inducing oxidative injury in CNS. In addition to mitochondria, ER stress was involved in the arsenite-induced apoptosis. Arsenite-induced neurotoxicity clinically implies a pathophysiological role of arsenite in CNS neurodegeneration.

  4. Supplementing dietary sugar promotes endoplasmic reticulum stress-independent insulin resistance and fatty liver in goose.

    PubMed

    Geng, Tuoyu; Zhao, Xing; Xia, Lili; Liu, Long; Li, Fuyuan; Yang, Biao; Wang, Qianqian; Montgomery, Sean; Cui, Hengmi; Gong, Daoqing

    2016-08-01

    It is known that endoplasmic reticulum stress (ERS) contributes to insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD) in mammals. However, we recently demonstrated that overfeeding with a traditional diet (mainly consisting of cooked maize) does not induce ERS in goose. As cellular studies show that high glucose and palmitate can trigger ERS in mammalian cells, we hypothesized that supplementing sugar to the traditional diet could induce ERS, thus promoting insulin resistance and fatty liver. To test the hypothesis, we first treated goose primary hepatocytes with high glucose (25 mM and 50 mM) and palmitate (0.5 mM) supplemented with or without 0.25 mM oleate. Data indicated that, as in mammalian cells, high glucose and palmitate indeed induced ERS in goose primary hepatocytes, and palmitate-induced ERS was suppressed by supplemental 0.25 mM oleate. We then tested the hypothesis with an in vivo study, in which Landes geese overfed with traditional or novel diets (i.e., the traditional diet supplemented with sugar) were compared with control geese (normally fed with cooked maize) for ERS, IR and fatty liver. The differences in glucose tolerance, insulin tolerance and postprandial blood glucose between the geese overfed with traditional and novel diets suggested that supplementing dietary sugar promoted IR. This promotion was accompanied with an increasing trend of liver weight and abdominal fat weight relative to body weight. Surprisingly, compared to overfeeding with the traditional diet, overfeeding with the novel diet did not induce ERS, even further suppressed ERS in goose fatty liver. Together, our findings suggest that supplementing dietary sugar promotes ERS-independent IR and fatty liver in goose. It is intriguing to discover the factor(s) protecting goose liver from ERS as well as the non-ERS mechanism underlying IR. PMID:27246737

  5. Regulation of polysome assembly on the endoplasmic reticulum by a coiled-coil protein, p180.

    PubMed

    Ueno, Tomonori; Kaneko, Keiko; Sata, Tetsutaro; Hattori, Shunji; Ogawa-Goto, Kiyoko

    2012-04-01

    A coiled-coil microtubule-bundling protein, p180, was originally identified as one of the ribosome receptor candidates on the rough endoplasmic reticulum (ER) and is highly expressed in secretory tissues. Recently, we reported that p180 plays crucial roles in upregulating collagen biosynthesis, mainly by facilitating ribosome association on the ER. Here, we provide evidence that p180 is required to form translationally active polysome/translocon complexes on the ER. Assembly of highly-developed polysomes on the ER was severely perturbed upon loss of p180. p180 associates with polysome/translocon complexes through multiple contact sites: it was coimmunoprecipitated with the translocon complex independently of ribosomes, while it can also bind to ribosomal large subunit specifically. The responsible domain of p180 for membrane polysome assembly was identified in the C-terminal coiled-coil region. The degree of ribosome occupation of collagen and fibronectin mRNAs was regulated in response to increased traffic demands. This effect appears to be exerted in a manner specific for a specified set of mRNAs. Collectively, our data suggest that p180 is required to form translationally active polysome/translocon complexes on the ER membrane, and plays a pivotal role in highly efficient biosynthesis on the ER membrane through facilitating polysome formation in professional secretory cells.

  6. Dehydroeffusol inhibits gastric cancer cell growth and tumorigenicity by selectively inducing tumor-suppressive endoplasmic reticulum stress and a moderate apoptosis.

    PubMed

    Zhang, Bin; Han, Hongyan; Fu, Shilong; Yang, Ping; Gu, Zhenlun; Zhou, Quansheng; Cao, Zhifei

    2016-03-15

    Gastric cancer is ranked as the third leading cause of cancer-related death in the world. Although extensive efforts have been made in recent decades to treat gastric cancer with various anticancer drugs, effective anti-gastric cancer therapeutics to cure the disease are still lacking in the clinics. Therefore, potent novel anti-gastric cancer drugs are greatly needed. In this study, we explored a novel anti-gastric cancer agent from a medicinal herb named Juncus effusus and found that the active component dehydroeffusol (DHE), a small molecular phenanthrene, effectively inhibited gastric cancer cell proliferation and tumorigenesis by inducing tumor suppressive endoplasmic reticulum (ER) stress and by triggering moderate apoptosis. Mechanistic studies revealed that DHE selectively activated the intracellular tumor suppressive stress response by promoting the overexpression of the key ER stress marker DNA damage-inducible transcript 3 (DDIT3), through upregulation of activating transcription factor 4 (ATF4). Concurrently, DHE suppressed the expression of the cell survival and ER stress marker glucose regulated protein of molecular mass 78 (GRP78) via downregulation of the transcription factor ATF6. In addition, DHE markedly activated the stress response signaling pathway MEKK4-MKK3/6-p38-DDIT3, but significantly inhibited ERK signaling. Our data suggest that DHE inhibits gastric cancer cell growth and tumorigenicity through selectively inducing a robust tumor suppressive ER stress response and a moderate apoptosis response. Therefore, DHE may provide a novel drug candidate for further development of potential anti-gastric cancer therapeutics. PMID:26774454

  7. Overexpression of BiP in tobacco alleviates endoplasmic reticulum stress.

    PubMed Central

    Leborgne-Castel, N; Jelitto-Van Dooren, E P; Crofts, A J; Denecke, J

    1999-01-01

    To study the role of the lumenal binding protein (BiP) in the transport and secretion of proteins, we have produced plants with altered BiP levels. Transgenic plants overexpressing BiP showed dramatically increased BiP mRNA levels but only a modest increase in BiP protein levels. The presence of degradation products in BiP overproducers suggests a regulatory mechanism that increases protein turnover when BiP is abundant. Antisense inhibition of BiP synthesis was not successful, demonstrating that even a minor reduction in the basal BiP level is deleterious to cell viability. Overexpression of BiP leads to downregulation of the basal transcript levels of endogenous BiP genes and greatly reduces the unfolded protein response. The data confirm that BiP transcription is regulated via a feedback mechanism that involves monitoring of BiP protein levels. To test BiP activity in vivo, we designed a functional assay, using the secretory protein alpha-amylase and a cytosolic enzyme as a control for cell viability. During tunicamycin treatment, an overall reduction of alpha-amylase synthesis was observed when compared with the cytosolic marker. We show that the tunica