Science.gov

Sample records for retinal remodeling triggered

  1. Neural remodeling in retinal degeneration.

    PubMed

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Strettoi, Enrica

    2003-09-01

    Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in

  2. Retinal remodeling in human retinitis pigmentosa.

    PubMed

    Jones, B W; Pfeiffer, R L; Ferrell, W D; Watt, C B; Marmor, M; Marc, R E

    2016-09-01

    Retinitis Pigmentosa (RP) in the human is a progressive, currently irreversible neural degenerative disease usually caused by gene defects that disrupt the function or architecture of the photoreceptors. While RP can initially be a disease of photoreceptors, there is increasing evidence that the inner retina becomes progressively disorganized as the outer retina degenerates. These alterations have been extensively described in animal models, but remodeling in humans has not been as well characterized. This study, using computational molecular phenotyping (CMP) seeks to advance our understanding of the retinal remodeling process in humans. We describe cone mediated preservation of overall topology, retinal reprogramming in the earliest stages of the disease in retinal bipolar cells, and alterations in both small molecule and protein signatures of neurons and glia. Furthermore, while Müller glia appear to be some of the last cells left in the degenerate retina, they are also one of the first cell classes in the neural retina to respond to stress which may reveal mechanisms related to remodeling and cell death in other retinal cell classes. Also fundamentally important is the finding that retinal network topologies are altered. Our results suggest interventions that presume substantial preservation of the neural retina will likely fail in late stages of the disease. Even early intervention offers no guarantee that the interventions will be immune to progressive remodeling. Fundamental work in the biology and mechanisms of disease progression are needed to support vision rescue strategies. PMID:27020758

  3. Aberrant protein trafficking in retinal degenerations: The initial phase of retinal remodeling.

    PubMed

    Bales, Katie L; Gross, Alecia K

    2016-09-01

    Retinal trafficking proteins are involved in molecular assemblies that govern protein transport, orchestrate cellular events involved in cilia formation, regulate signal transduction, autophagy and endocytic trafficking, all of which if not properly controlled initiate retinal degeneration. Improper function and or trafficking of these proteins and molecular networks they are involved in cause a detrimental cascade of neural retinal remodeling due to cell death, resulting as devastating blinding diseases. A universal finding in retinal degenerative diseases is the profound detection of retinal remodeling, occurring as a phased modification of neural retinal function and structure, which begins at the molecular level. Retinal remodeling instigated by aberrant trafficking of proteins encompasses many forms of retinal degenerations, such as the diverse forms of retinitis pigmentosa (RP) and disorders that resemble RP through mutations in the rhodopsin gene, retinal ciliopathies, and some forms of glaucoma and age-related macular degeneration (AMD). As a large majority of genes associated with these different retinopathies are overlapping, it is imperative to understand their underlying molecular mechanisms. This review will discuss some of the most recent discoveries in vertebrate retinal remodeling and retinal degenerations caused by protein mistrafficking. PMID:26632497

  4. Retinal Remodeling: Concerns, Emerging Remedies and Future Prospects

    PubMed Central

    Krishnamoorthy, Vidhyasankar; Cherukuri, Pitchaiah; Poria, Deepak; Goel, Manvi; Dagar, Sushma; Dhingra, Narender K.

    2016-01-01

    Deafferentation results not only in sensory loss, but also in a variety of alterations in the postsynaptic circuitry. These alterations may have detrimental impact on potential treatment strategies. Progressive loss of photoreceptors in retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration, leads to several changes in the remnant retinal circuitry. Müller glial cells undergo hypertrophy and form a glial seal. The second- and third-order retinal neurons undergo morphological, biochemical and physiological alterations. A result of these alterations is that retinal ganglion cells (RGCs), the output neurons of the retina, become hyperactive and exhibit spontaneous, oscillatory bursts of spikes. This aberrant electrical activity degrades the signal-to-noise ratio in RGC responses, and thus the quality of information they transmit to the brain. These changes in the remnant retina, collectively termed “retinal remodeling”, pose challenges for genetic, cellular and bionic approaches to restore vision. It is therefore crucial to understand the nature of retinal remodeling, how it affects the ability of remnant retina to respond to novel therapeutic strategies, and how to ameliorate its effects. In this article, we discuss these topics, and suggest that the pathological state of the retinal output following photoreceptor loss is reversible, and therefore, amenable to restorative strategies. PMID:26924962

  5. Retinal Remodeling and Metabolic Alterations in Human AMD

    PubMed Central

    Jones, Bryan W.; Pfeiffer, Rebecca L.; Ferrell, William D.; Watt, Carl B.; Tucker, James; Marc, Robert E.

    2016-01-01

    Age-related macular degeneration (AMD) is a progressive retinal degeneration resulting in central visual field loss, ultimately causing debilitating blindness. AMD affects 18% of Americans from 65 to 74, 30% older than 74 years of age and is the leading cause of severe vision loss and blindness in Western populations. While many genetic and environmental risk factors are known for AMD, we currently know less about the mechanisms mediating disease progression. The pathways and mechanisms through which genetic and non-genetic risk factors modulate development of AMD pathogenesis remain largely unexplored. Moreover, current treatment for AMD is palliative and limited to wet/exudative forms. Retina is a complex, heterocellular tissue and most retinal cell classes are impacted or altered in AMD. Defining disease and stage-specific cytoarchitectural and metabolic responses in AMD is critical for highlighting targets for intervention. The goal of this article is to illustrate cell types impacted in AMD and demonstrate the implications of those changes, likely beginning in the retinal pigment epithelium (RPE), for remodeling of the the neural retina. Tracking heterocellular responses in disease progression is best achieved with computational molecular phenotyping (CMP), a tool that enables acquisition of a small molecule fingerprint for every cell in the retina. CMP uncovered critical cellular and molecular pathologies (remodeling and reprogramming) in progressive retinal degenerations such as retinitis pigmentosa (RP). We now applied these approaches to normal human and AMD tissues mapping progression of cellular and molecular changes in AMD retinas, including late-stage forms of the disease. PMID:27199657

  6. Using the rd1 mouse to understand functional and anatomical retinal remodelling and treatment implications in retinitis pigmentosa: A review.

    PubMed

    Kalloniatis, M; Nivison-Smith, L; Chua, J; Acosta, M L; Fletcher, E L

    2016-09-01

    Retinitis Pigmentosa (RP) reflects a range of inherited retinal disorders which involve photoreceptor degeneration and retinal pigmented epithelium dysfunction. Despite the multitude of genetic mutations being associated with the RP phenotype, the clinical and functional manifestations of the disease remain the same: nyctalopia, visual field constriction (tunnel vision), photopsias and pigment proliferation. In this review, we describe the typical clinical phenotype of human RP and review the anatomical and functional remodelling which occurs in RP determined from studies in the rd/rd (rd1) mouse. We also review studies that report a slowing down or show an acceleration of retinal degeneration and finally we provide insights on the impact retinal remodelling may have in vision restoration strategies. PMID:26521764

  7. Bacterioopsin-triggered retinal biosynthesis is inhibited by bacteriorhodopsin formation in Halobacterium salinarium.

    PubMed

    Deshpande, A; Sonar, S

    1999-08-13

    Factors regulating retinal biosynthesis in halobacteria are not clearly understood. In halobacteria, events leading to the biosynthesis of bacteriorhodopsin have been proposed to participate in stringent regulation of retinal biosynthesis. The present study describes a novel approach of in vivo introductions of mRNA and membrane proteins via liposome fusion to test their role in cellular metabolism. Both the bacterioopsin-encoding mRNA and the liposome-encapsulated bacterioopsin (apoprotein) are independently introduced in spheroplasts of the purple membrane-negative strain Halobacterium salinarium that initially contain neither bacterioopsin nor retinal. Isoprenoid analyses of these cells indicate that the expression/presence of bacterioopsin triggers retinal biosynthesis from lycopene, and its subsequent binding to opsin generates bacteriorhodopsin. When bacteriorhodopsin and excess retinal were independently introduced into spheroplasts of purple membrane-negative cells, the introduction of bacteriorhodopsin resulted in an accumulation of lycopene, indicating an inhibition of retinal biosynthesis. These results provide direct evidence that the formation of bacterioopsin acts as a trigger for lycopene conversion to beta-carotene in retinal biosynthesis. The trigger for this event does not lie with either transcription or translation of the bop gene. It is clearly associated with the folded and the membrane-integrated state of bacterioopsin. On the other hand, the trigger signaling inhibition of retinal biosynthesis does not lie with the presence of excess retinal but with the correctly folded, retinal-bound form, bacteriorhodopsin.

  8. LPS Remodeling Triggers Formation of Outer Membrane Vesicles in Salmonella

    PubMed Central

    Elhenawy, Wael; Bording-Jorgensen, Michael; Valguarnera, Ezequiel; Haurat, M. Florencia; Wine, Eytan

    2016-01-01

    ABSTRACT Outer membrane vesicles (OMV) are proposed to mediate multiple functions during pathogenesis and symbiosis. However, the mechanisms responsible for OMV formation remain poorly understood. It has been shown in eukaryotic membranes that lipids with an inverted-cone shape favor the formation of positive membrane curvatures. Based on these studies, we formulated the hypothesis that lipid A deacylation might impose shape modifications that result in the curvature of the outer membrane (OM) and subsequent OMV formation. We tested the effect of lipid A remodeling on OMV biogenesis employing Salmonella enterica serovar Typhimurium as a model organism. Expression of the lipid A deacylase PagL resulted in increased vesiculation, without inducing an envelope stress response. Mass spectrometry analysis revealed profound differences in the patterns of lipid A in OM and OMV, with accumulation of deacylated lipid A forms exclusively in OMV. OMV biogenesis by intracellular bacteria upon macrophage infection was drastically reduced in a pagL mutant strain. We propose a novel mechanism for OMV biogenesis requiring lipid A deacylation in the context of a multifactorial process that involves the orchestrated remodeling of the outer membrane. PMID:27406567

  9. Krypton laser photocoagulation induces retinal vascular remodeling rather than choroidal neovascularization.

    PubMed

    Behar-Cohen, F; Benezra, D; Soubrane, G; Jonet, L; Jeanny, J C

    2006-08-01

    The purpose of this study is to analyze the retina and choroid response following krypton laser photocoagulation. Ninety-two C57BL6/Sev129 and 32 C57BL/6J, 5-6-week-old mice received one single krypton (630 nm) laser lesion: 50 microm, 0.05 s, 400 mW. On the following day, every day thereafter for 1 week and every 2-3 days for the following 3 weeks, serial sections throughout the lesion were systematically collected and studied. Immunohistology using specific markers or antibodies for glial fibrillary acidic protein (GFAP) (astrocytes, glia and Muller's cells), von Willebrand (vW) (vascular endothelial cells), TUNEL (cells undergoing caspase dependent apoptosis), PCNA (proliferating cell nuclear antigen) p36, CD4 and F4/80 (infiltrating inflammatory and T cells), DAPI (cell nuclei) and routine histology were carried out. Laser confocal microscopy was also performed on flat mounts. Temporal and spatial observations of the created photocoagulation lesions demonstrate that, after a few hours, activated glial cells within the retinal path of the laser beam express GFAP. After 48 h, GFAP-positive staining was also detected within the choroid lesion center. "Movement" of this GFAP-positive expression towards the lasered choroid was preceded by a well-demarcated and localized apoptosis of the retina outer nuclear layer cells within the laser beam path. Later, death of retinal outer nuclear cells and layer thinning at this site was followed by evagination of the inner nuclear retinal layer. Funneling of the entire inner nuclear and the thinned outer nuclear layers into the choroid lesion center was accompanied by "dragging" of the retinal capillaries. Thus, from days 10 to 14 after krypton laser photocoagulation onward, well-formed blood capillaries (of retinal origin) were observed within the lesion. Only a few of the vW-positive capillary endothelial cells stained also for PCNA p36. In the choroid, dilatation of the vascular bed occurred at the vicinity of the

  10. Retinal Hypercholesterolemia Triggers Cholesterol Accumulation and Esterification in Photoreceptor Cells.

    PubMed

    Saadane, Aicha; Mast, Natalia; Dao, Tung; Ahmad, Baseer; Pikuleva, Irina A

    2016-09-23

    The process of vision is impossible without the photoreceptor cells, which have a unique structure and specific maintenance of cholesterol. Herein we report on the previously unrecognized cholesterol-related pathway in the retina discovered during follow-up characterizations of Cyp27a1(-/-)Cyp46a1(-/-) mice. These animals have retinal hypercholesterolemia and convert excess retinal cholesterol into cholesterol esters, normally present in the retina in very small amounts. We established that in the Cyp27a1(-/-)Cyp46a1(-/-) retina, cholesterol esters are generated by and accumulate in the photoreceptor outer segments (OS), which is the retinal layer with the lowest cholesterol content. Mouse OS were also found to express the cholesterol-esterifying enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT1), but not lecithin-cholesterol acyltransferase (LCAT), and to differ from humans in retinal expression of ACAT1. Nevertheless, cholesterol esters were discovered to be abundant in human OS. We suggest a mechanism for cholesterol ester accumulation in the OS and that activity impairment of ACAT1 in humans may underlie the development of subretinal drusenoid deposits, a hallmark of age-related macular degeneration, which is a common blinding disease. We generated Cyp27a1(-/-)Cyp46a1(-/-)Acat1(-/-) mice, characterized their retina by different imaging modalities, and confirmed that unesterified cholesterol does accumulate in their OS and that there is photoreceptor apoptosis and OS degeneration in this line. Our results provide insights into the retinal response to local hypercholesterolemia and the retinal significance of cholesterol esterification, which could be cell-specific and both beneficial and detrimental for retinal structure and function.

  11. Retinal Hypercholesterolemia Triggers Cholesterol Accumulation and Esterification in Photoreceptor Cells.

    PubMed

    Saadane, Aicha; Mast, Natalia; Dao, Tung; Ahmad, Baseer; Pikuleva, Irina A

    2016-09-23

    The process of vision is impossible without the photoreceptor cells, which have a unique structure and specific maintenance of cholesterol. Herein we report on the previously unrecognized cholesterol-related pathway in the retina discovered during follow-up characterizations of Cyp27a1(-/-)Cyp46a1(-/-) mice. These animals have retinal hypercholesterolemia and convert excess retinal cholesterol into cholesterol esters, normally present in the retina in very small amounts. We established that in the Cyp27a1(-/-)Cyp46a1(-/-) retina, cholesterol esters are generated by and accumulate in the photoreceptor outer segments (OS), which is the retinal layer with the lowest cholesterol content. Mouse OS were also found to express the cholesterol-esterifying enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT1), but not lecithin-cholesterol acyltransferase (LCAT), and to differ from humans in retinal expression of ACAT1. Nevertheless, cholesterol esters were discovered to be abundant in human OS. We suggest a mechanism for cholesterol ester accumulation in the OS and that activity impairment of ACAT1 in humans may underlie the development of subretinal drusenoid deposits, a hallmark of age-related macular degeneration, which is a common blinding disease. We generated Cyp27a1(-/-)Cyp46a1(-/-)Acat1(-/-) mice, characterized their retina by different imaging modalities, and confirmed that unesterified cholesterol does accumulate in their OS and that there is photoreceptor apoptosis and OS degeneration in this line. Our results provide insights into the retinal response to local hypercholesterolemia and the retinal significance of cholesterol esterification, which could be cell-specific and both beneficial and detrimental for retinal structure and function. PMID:27514747

  12. Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish

    PubMed Central

    Saade, Carole J.; Alvarez-Delfin, Karen; Fadool, James M.

    2013-01-01

    Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second order neurons, bipolar cells and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6cw59 larval retina but not rod degeneration in the Xops:mCFPq13 line. In adults, rods and cones are present in approximately equal numbers, and in pde6cw59 mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once-blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2bp22bbtl or six7 morpholino-injected larvae protect from pde6cw59-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease. PMID:23365220

  13. Retinal dysfunction, photoreceptor protein dysregulation and neuronal remodelling in the R6/1 mouse model of Huntington's disease.

    PubMed

    Batcha, Abrez Hussain; Greferath, Una; Jobling, Andrew I; Vessey, Kirstan A; Ward, Michelle M; Nithianantharajah, Jess; Hannan, Anthony J; Kalloniatis, Michael; Fletcher, Erica L

    2012-03-01

    Huntington's disease (HD) is a progressive neurological disease characterised by motor dysfunction, cognitive impairment and personality changes. Previous work in HD patients and animal models of the disease has also highlighted retinal involvement. This study characterised the changes in retinal structure and function early within the progression of disease using the R6/1 mouse model of HD. The retinal phenotype was observed to occur at the same time in the disease process as other neurological deficits such as motor dysfunction (by 13 weeks of age). There was a specific functional deficit in cone response to the electroretinogram and using immunocytochemical techniques, this dysfunction was found to be likely due to a progressive and complete loss of cone opsin and transducin protein expression by 20 weeks of age. In addition, there was an increase in Müller cell gliosis and the presence of ectopic rod photoreceptor terminals. This retinal remodelling is also observed in downstream neurons, namely the rod and cone bipolar cells. While R6/1 mice exhibit significant retinal pathology simultaneously with other more classical HD alterations, this doesn't lead to extensive cell loss. These findings suggest that in HD, cone photoreceptors are initially targeted, possibly via dysregulation of protein expression or trafficking and that this process is subsequently accompanied by increased retinal stress and neuronal remodelling also involving the rod pathway. As retinal structure and connectivity are well characterised, the retina may provide a useful model tissue in which to characterise the mechanisms important in the development of neuronal pathology in HD.

  14. Overexpression of Snail in retinal pigment epithelial triggered epithelial–mesenchymal transition

    SciTech Connect

    Li, Hui; Li, Min; Xu, Ding; Zhao, Chun; Liu, Guodong; Wang, Fang

    2014-03-28

    Highlights: • First reported overexpression of Snail in RPE cells could directly trigger EMT. • Further confirmed the regulator role of Snail in RPE cells EMT in vitro. • Snail may be a potential therapeutic target to prevent the fibrosis of PVR. - Abstract: Snail transcription factor has been implicated as an important regulator in epithelial–mesenchymal transition (EMT) during tumourigenesis and fibrogenesis. Our previous work showed that Snail transcription factor was activated in transforming growth factor β1 (TGF-β1) induced EMT in retinal pigment epithelial (RPE) cells and may contribute to the development of retinal fibrotic disease such as proliferative vitreoretinopathy (PVR). However, whether Snail alone has a direct role on retinal pigment epithelial–mesenchymal transition has not been investigated. Here, we analyzed the capacity of Snail to drive EMT in human RPE cells. A vector encoding Snail gene or an empty vector were transfected into human RPE cell lines ARPE-19 respectively. Snail overexpression in ARPE-19 cells resulted in EMT, which was characterized by the expected phenotypic transition from a typical epithelial morphology to mesenchymal spindle-shaped. The expression of epithelial markers E-cadherin and Zona occludin-1 (ZO-1) were down-regulated, whereas mesenchymal markers a-smooth muscle actin (a-SMA) and fibronectin were up-regulated in Snail expression vector transfected cells. In addition, ectopic expression of Snail significantly enhanced ARPE-19 cell motility and migration. The present data suggest that overexpression of Snail in ARPE-19 cells could directly trigger EMT. These results may provide novel insight into understanding the regulator role of Snail in the development of retinal pigment epithelial–mesenchymal transition.

  15. Does collagen trigger the recruitment of osteoblasts into vacated bone resorption lacunae during bone remodeling?

    PubMed

    Abdelgawad, Mohamed Essameldin; Søe, Kent; Andersen, Thomas Levin; Merrild, Ditte M H; Christiansen, Peer; Kjærsgaard-Andersen, Per; Delaisse, Jean-Marie

    2014-10-01

    Osteoblast recruitment during bone remodeling is obligatory to re-construct the bone resorbed by the osteoclast. This recruitment is believed to be triggered by osteoclast products and is therefore likely to start early during the remodeling cycle. Several osteoclast products with osteoblast recruitment potential are already known. Here we draw the attention on the osteoblast recruitment potential of the collagen that is freshly demineralized by the osteoclast. Our evidence is based on observations on adult human cancellous bone, combined with in vitro assays. First, freshly eroded surfaces where osteoblasts have to be recruited show the presence of non-degraded demineralized collagen and close cell-collagen interactions, as revealed by electron microscopy, while surface-bound collagen strongly attracts osteoblast lineage cells in a transmembrane migration assay. Compared with other extracellular matrix molecules, collagen's potency was superior and only equaled by fibronectin. Next, the majority of the newly recruited osteoblast lineage cells positioned immediately next to the osteoclasts exhibit uPARAP/Endo180, an endocytic collagen receptor reported to be involved in collagen internalization and cell migration in various cell types, and whose inactivation is reported to lead to lack of bone formation and skeletal deformities. In the present study, an antibody directed against this receptor inhibits collagen internalization in osteoblast lineage cells and decreases to some extent their migration to surface-bound collagen in the transmembrane migration assay. These complementary observations lead to a model where collagen demineralized by osteoclasts attracts surrounding osteoprogenitors onto eroded surfaces, and where the endocytic collagen receptor uPARAP/Endo180 contributes to this migration, probably together with other collagen receptors. This model fits recent knowledge on the position of osteoprogenitor cells immediately next to remodeling sites in adult

  16. Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation

    PubMed Central

    Kimata, Naoki; Pope, Andreyah; Eilers, Markus; Opefi, Chikwado A.; Ziliox, Martine; Hirshfeld, Amiram; Zaitseva, Ekaterina; Vogel, Reiner; Sheves, Mordechai; Reeves, Philip J.; Smith, Steven O.

    2016-01-01

    The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate. Here we show that isomerization of the 11-cis retinal chromophore generates strong steric interactions between its β-ionone ring and transmembrane helices H5 and H6, while deprotonation of its protonated Schiff's base triggers the rearrangement of the hydrogen-bonding network involving residues on H6 and within the second extracellular loop. We integrate these observations with previous structural and functional studies to propose a two-stage mechanism for rhodopsin activation. PMID:27585742

  17. Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation.

    PubMed

    Kimata, Naoki; Pope, Andreyah; Eilers, Markus; Opefi, Chikwado A; Ziliox, Martine; Hirshfeld, Amiram; Zaitseva, Ekaterina; Vogel, Reiner; Sheves, Mordechai; Reeves, Philip J; Smith, Steven O

    2016-01-01

    The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate. Here we show that isomerization of the 11-cis retinal chromophore generates strong steric interactions between its β-ionone ring and transmembrane helices H5 and H6, while deprotonation of its protonated Schiff's base triggers the rearrangement of the hydrogen-bonding network involving residues on H6 and within the second extracellular loop. We integrate these observations with previous structural and functional studies to propose a two-stage mechanism for rhodopsin activation. PMID:27585742

  18. Neutrophil Attack Triggers Extracellular Trap-Dependent Candida Cell Wall Remodeling and Altered Immune Recognition

    PubMed Central

    Hopke, Alex; Nicke, Nadine; Hidu, Erica E.; Degani, Genny; Popolo, Laura

    2016-01-01

    Pathogens hide immunogenic epitopes from the host to evade immunity, persist and cause infection. The opportunistic human fungal pathogen Candida albicans, which can cause fatal disease in immunocompromised patient populations, offers a good example as it masks the inflammatory epitope β-glucan in its cell wall from host recognition. It has been demonstrated previously that β-glucan becomes exposed during infection in vivo but the mechanism behind this exposure was unknown. Here, we show that this unmasking involves neutrophil extracellular trap (NET) mediated attack, which triggers changes in fungal cell wall architecture that enhance immune recognition by the Dectin-1 β-glucan receptor in vitro. Furthermore, using a mouse model of disseminated candidiasis, we demonstrate the requirement for neutrophils in triggering these fungal cell wall changes in vivo. Importantly, we found that fungal epitope unmasking requires an active fungal response in addition to the stimulus provided by neutrophil attack. NET-mediated damage initiates fungal MAP kinase-driven responses, particularly by Hog1, that dynamically relocalize cell wall remodeling machinery including Chs3, Phr1 and Sur7. Neutrophil-initiated cell wall disruptions augment some macrophage cytokine responses to attacked fungi. This work provides insight into host-pathogen interactions during disseminated candidiasis, including valuable information about how the C. albicans cell wall responds to the biotic stress of immune attack. Our results highlight the important but underappreciated concept that pattern recognition during infection is dynamic and depends on the host-pathogen dialog. PMID:27223610

  19. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma

    PubMed Central

    Pitha, Ian F.; Nguyen, Cathy; Steinhart, Matthew R.; Nguyen, Thao D.; Pease, Mary Ellen; Oglesby, Ericka N.; Berlinicke, Cynthia A.; Mitchell, Katherine L.; Kim, Jessica; Jefferys, Joan J.

    2015-01-01

    Purpose To determine if oral losartan treatment decreases the retinal ganglion cell (RGC) death caused by experimental intraocular pressure (IOP) elevation in mice. Methods We produced IOP increase in CD1 mice and performed unilateral optic nerve crush. Mice received oral losartan, spironolactone, enalapril, or no drug to test effects of inhibiting angiotensin receptors. IOP was monitored by Tonolab, and blood pressure was monitored by tail cuff device. RGC loss was measured in masked axon counts and RGC bodies by β-tubulin labeling. Scleral changes that could modulate RGC injury were measured including axial length, scleral thickness, and retinal layer thicknesses, pressure-strain behavior in inflation testing, and study of angiotensin receptors and pathways by reverse transcription polymerase chain reaction, Western blot, and immunohistochemistry. Results Losartan treatment prevented significant RGC loss (median loss = 2.5%, p = 0.13), while median loss with water, spironolactone, and enalapril treatments were 26%, 28% and 43%; p < 0.0001). The lower RGC loss with losartan was significantly less than the loss with spironolactone or enalapril (regression model p = 0.001; drug treatment group term p = 0.01). Both losartan and enalapril significantly lowered blood pressure (p< 0.001), but losartan was protective, while enalapril led to worse than water-treated RGC loss. RGC loss after crush injury was unaffected by losartan treatment (difference from control p = 0.9). Survival of RGC in cell culture was not prolonged by sartan treatment. Axonal transport blockade after 3 day IOP elevations was less in losartan-treated than in control glaucoma eyes (p = 0.007). Losartan inhibited effects of glaucoma, including reduction in extracellular signal-related kinase activity and modification of glaucoma-related changes in scleral thickness and creep under controlled IOP. Conclusions The neuroprotective effect of losartan in mouse glaucoma is associated with adaptive changes

  20. Cardiac effects of anabolic steroids: hypertrophy, ischemia and electrical remodelling as potential triggers of sudden death.

    PubMed

    Nascimento, J H M; Medei, E

    2011-05-01

    Anabolic-androgenic steroids (AAS) are synthetic testosterone derivatives developed to maximise anabolic activity and minimise androgenic activity. AAS abuse is widespread among both athletes and non-athletes at fitness centres and is becoming a public health issue. In addition to their atherogenic, thrombogenic and spastic effects, AAS have direct cardiotoxic effects by causing hypertrophy, electrical and structural remodelling, and contractile dysfunction and by increasing the susceptibility to ischemic injuries. All of these factors contribute to an increased risk of ventricular arrhythmias and sudden cardiac death.

  1. Cell-mediated remodeling of biomimetic encapsulating hydrogels triggered by adipogenic differentiation of adipose stem cells

    PubMed Central

    Clevenger, Tracy N; Luna, Gabriel; Boctor, Daniel; Fisher, Steven K; Clegg, Dennis O

    2016-01-01

    One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for attachment and biodegradation. Poly(ethylene)-glycol hydrogels containing an Arg–Gly–Asp attachment sequence and a matrix metalloprotease 3/10 cleavage site supported adipose stem cell survival and showed remodeling initiated by adipogenic differentiation. Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed an increased number and area of lacunae or holes after adipose stem cell differentiation. Image analysis of adipose stem cells in Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed larger Voronoi domains, while cell density remained unchanged. The differentiated adipocytes residing within these newly remodeled spaces express proteins and messenger RNAs indicative of adipocytic differentiation. These engineered scaffolds may provide niches for stem cell differentiation and could prove useful in soft tissue regeneration. PMID:27733898

  2. Extensive Intestinal Resection Triggers Behavioral Adaptation, Intestinal Remodeling and Microbiota Transition in Short Bowel Syndrome

    PubMed Central

    Mayeur, Camille; Gillard, Laura; Le Beyec, Johanne; Bado, André; Joly, Francisca; Thomas, Muriel

    2016-01-01

    Extensive resection of small bowel often leads to short bowel syndrome (SBS). SBS patients develop clinical mal-absorption and dehydration relative to the reduction of absorptive area, acceleration of gastrointestinal transit time and modifications of the gastrointestinal intra-luminal environment. As a consequence of severe mal-absorption, patients require parenteral nutrition (PN). In adults, the overall adaptation following intestinal resection includes spontaneous and complex compensatory processes such as hyperphagia, mucosal remodeling of the remaining part of the intestine and major modifications of the microbiota. SBS patients, with colon in continuity, harbor a specific fecal microbiota that we called “lactobiota” because it is enriched in the Lactobacillus/Leuconostoc group and depleted in anaerobic micro-organisms (especially Clostridium and Bacteroides). In some patients, the lactobiota-driven fermentative activities lead to an accumulation of fecal d/l-lactates and an increased risk of d-encephalopathy. Better knowledge of clinical parameters and lactobiota characteristics has made it possible to stratify patients and define group at risk for d-encephalopathy crises.

  3. Extensive Intestinal Resection Triggers Behavioral Adaptation, Intestinal Remodeling and Microbiota Transition in Short Bowel Syndrome

    PubMed Central

    Mayeur, Camille; Gillard, Laura; Le Beyec, Johanne; Bado, André; Joly, Francisca; Thomas, Muriel

    2016-01-01

    Extensive resection of small bowel often leads to short bowel syndrome (SBS). SBS patients develop clinical mal-absorption and dehydration relative to the reduction of absorptive area, acceleration of gastrointestinal transit time and modifications of the gastrointestinal intra-luminal environment. As a consequence of severe mal-absorption, patients require parenteral nutrition (PN). In adults, the overall adaptation following intestinal resection includes spontaneous and complex compensatory processes such as hyperphagia, mucosal remodeling of the remaining part of the intestine and major modifications of the microbiota. SBS patients, with colon in continuity, harbor a specific fecal microbiota that we called “lactobiota” because it is enriched in the Lactobacillus/Leuconostoc group and depleted in anaerobic micro-organisms (especially Clostridium and Bacteroides). In some patients, the lactobiota-driven fermentative activities lead to an accumulation of fecal d/l-lactates and an increased risk of d-encephalopathy. Better knowledge of clinical parameters and lactobiota characteristics has made it possible to stratify patients and define group at risk for d-encephalopathy crises. PMID:27681910

  4. Extensive Intestinal Resection Triggers Behavioral Adaptation, Intestinal Remodeling and Microbiota Transition in Short Bowel Syndrome.

    PubMed

    Mayeur, Camille; Gillard, Laura; Le Beyec, Johanne; Bado, André; Joly, Francisca; Thomas, Muriel

    2016-01-01

    Extensive resection of small bowel often leads to short bowel syndrome (SBS). SBS patients develop clinical mal-absorption and dehydration relative to the reduction of absorptive area, acceleration of gastrointestinal transit time and modifications of the gastrointestinal intra-luminal environment. As a consequence of severe mal-absorption, patients require parenteral nutrition (PN). In adults, the overall adaptation following intestinal resection includes spontaneous and complex compensatory processes such as hyperphagia, mucosal remodeling of the remaining part of the intestine and major modifications of the microbiota. SBS patients, with colon in continuity, harbor a specific fecal microbiota that we called "lactobiota" because it is enriched in the Lactobacillus/Leuconostoc group and depleted in anaerobic micro-organisms (especially Clostridium and Bacteroides). In some patients, the lactobiota-driven fermentative activities lead to an accumulation of fecal d/l-lactates and an increased risk of d-encephalopathy. Better knowledge of clinical parameters and lactobiota characteristics has made it possible to stratify patients and define group at risk for d-encephalopathy crises. PMID:27681910

  5. Membrane Glycerolipid Remodeling Triggered by Nitrogen and Phosphorus Starvation in Phaeodactylum tricornutum1

    PubMed Central

    Abida, Heni; Dolch, Lina-Juana; Meï, Coline; Villanova, Valeria; Conte, Melissa; Block, Maryse A.; Finazzi, Giovanni; Bastien, Olivier; Tirichine, Leïla; Bowler, Chris; Rébeillé, Fabrice; Petroutsos, Dimitris; Jouhet, Juliette; Maréchal, Eric

    2015-01-01

    Diatoms constitute a major phylum of phytoplankton biodiversity in ocean water and freshwater ecosystems. They are known to respond to some chemical variations of the environment by the accumulation of triacylglycerol, but the relative changes occurring in membrane glycerolipids have not yet been studied. Our goal was first to define a reference for the glycerolipidome of the marine model diatom Phaeodactylum tricornutum, a necessary prerequisite to characterize and dissect the lipid metabolic routes that are orchestrated and regulated to build up each subcellular membrane compartment. By combining multiple analytical techniques, we determined the glycerolipid profile of P. tricornutum grown with various levels of nitrogen or phosphorus supplies. In different P. tricornutum accessions collected worldwide, a deprivation of either nutrient triggered an accumulation of triacylglycerol, but with different time scales and magnitudes. We investigated in depth the effect of nutrient starvation on the Pt1 strain (Culture Collection of Algae and Protozoa no. 1055/3). Nitrogen deprivation was the more severe stress, triggering thylakoid senescence and growth arrest. By contrast, phosphorus deprivation induced a stepwise adaptive response. The time scale of the glycerolipidome changes and the comparison with large-scale transcriptome studies were consistent with an exhaustion of unknown primary phosphorus-storage molecules (possibly polyphosphate) and a transcriptional control of some genes coding for specific lipid synthesis enzymes. We propose that phospholipids are secondary phosphorus-storage molecules broken down upon phosphorus deprivation, while nonphosphorus lipids are synthesized consistently with a phosphatidylglycerol-to-sulfolipid and a phosphatidycholine-to-betaine lipid replacement followed by a late accumulation of triacylglycerol. PMID:25489020

  6. Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells

    PubMed Central

    Tochitsky, Ivan; Polosukhina, Aleksandra; Degtyar, Vadim E.; Gallerani, Nicholas; Smith, Caleb M.; Friedman, Aaron; Van Gelder, Russell N.; Trauner, Dirk; Kaufer, Daniela; Kramer, Richard H.

    2014-01-01

    Summary Retinitis pigmentosa (RP) and age-related macular degeneration (AMD) are blinding diseases caused by the degeneration of rods and cones, leaving the remainder of the visual system unable to respond to light. Here we report a chemical photoswitch named DENAQ that restores retinal responses to white light of intensity similar to ordinary daylight. A single intraocular injection of DENAQ photosensitizes the blind retina for days, restoring electrophysiological and behavioral responses with no toxicity. Experiments on mouse strains with functional, non-functional, or degenerated rods and cones show that DENAQ is effective only in retinas with degenerated photoreceptors. DENAQ confers light sensitivity on a hyperpolarization-activated inward current that is enhanced in degenerated retina, enabling optical control of retinal ganglion cell firing The acceptable light sensitivity, favorable spectral sensitivity, and selective targeting to diseased tissue make DENAQ a prime drug candidate for vision restoration in patients with end-stage RP and AMD. PMID:24559673

  7. Inner Segment Remodeling and Mitochondrial Translocation in Cone Photoreceptors in Age-Related Macular Degeneration With Outer Retinal Tubulation

    PubMed Central

    Litts, Katie M.; Messinger, Jeffrey D.; Freund, K. Bailey; Zhang, Yuhua; Curcio, Christine A.

    2015-01-01

    Purpose. To quantify impressions of mitochondrial translocation in degenerating cones and to determine the nature of accumulated material in the subretinal space with apparent inner segment (IS)-like features by examining cone IS ultrastructure. Methods. Human donor eyes with advanced age-related macular degeneration (AMD) were screened for outer retinal tubulation (ORT) in macula-wide, high-resolution digital sections. Degenerating cones inside ORT (ORT cones) and outside ORT (non-ORT cones) from AMD eyes and unaffected cones in age-matched control eyes were imaged using transmission electron microscopy. The distances of mitochondria to the external limiting membrane (ELM), cone IS length, and cone IS width at the ELM were measured. Results. Outer retinal tubulation and non-ORT cones lose outer segments (OS), followed by shortening of IS and mitochondria. In non-ORT cones, IS broaden. Outer retinal tubulation and non-ORT cone IS myoids become undetectable due to mitochondria redistribution toward the nucleus. Some ORT cones were found lacking IS and containing mitochondria in the outer fiber (between soma and ELM). Unlike long, thin IS mitochondria in control cones, ORT and non-ORT IS mitochondria are ovoid or reniform. Shed IS, some containing mitochondria, were found in the subretinal space. Conclusions. In AMD, macula cones exhibit loss of detectable myoid due to IS shortening in addition to OS loss, as described. Mitochondria shrink and translocate toward the nucleus. As reflectivity sources, translocating mitochondria may be detectable using in vivo imaging to monitor photoreceptor degeneration in retinal disorders. These results improve the knowledge basis for interpreting high-resolution clinical retinal imaging. PMID:25758815

  8. Retinal fibrosis in diabetic retinopathy.

    PubMed

    Roy, Sayon; Amin, Shruti; Roy, Sumon

    2016-01-01

    In response to injury, reparative processes are triggered to restore the damaged tissue; however, such processes are not always successful in rebuilding the original state. The formation of fibrous connective tissue is known as fibrosis, a hallmark of the reparative process. For fibrosis to be successful, delicately balanced cellular events involving cell proliferation, cell migration, and extracellular matrix (ECM) remodeling must occur in a highly orchestrated manner. While successful repair may result in a fibrous scar, this often restores structural stability and functionality to the injured tissue. However, depending on the functionality of the injured tissue, a fibrotic scar can have a devastating effect. For example, in the retina, fibrotic scarring may compromise vision and ultimately lead to blindness. In this review, we discuss some of the retinal fibrotic complications and highlight mechanisms underlying the development of retinal fibrosis in diabetic retinopathy.

  9. Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types.

    PubMed

    El-Danaf, Rana N; Huberman, Andrew D

    2015-02-11

    Retinal ganglion cell (RGC) loss is a hallmark of glaucoma and the second leading cause of blindness worldwide. The type and timing of cellular changes leading to RGC loss in glaucoma remain incompletely understood, including whether specific RGC subtypes are preferentially impacted at early stages of this disease. Here we applied the microbead occlusion model of glaucoma to different transgenic mouse lines, each expressing green fluorescent protein in 1-2 specific RGC subtypes. Targeted filling, reconstruction, and subsequent comparison of the genetically identified RGCs in control and bead-injected eyes revealed that some subtypes undergo significant dendritic rearrangements as early as 7 d following induction of elevated intraocular pressure (IOP). By comparing specific On-type, On-Off-type and Off-type RGCs, we found that RGCs that target the majority of their dendritic arbors to the scleral half or "Off" sublamina of the inner plexiform layer (IPL) undergo the greatest changes, whereas RGCs with the majority of their dendrites in the On sublamina did not alter their structure at this time point. Moreover, M1 intrinsically photosensitive RGCs, which functionally are On RGCs but structurally stratify their dendrites in the Off sublamina of the IPL, also underwent significant changes in dendritic structure 1 week after elevated IOP. Thus, our findings reveal that certain RGC subtypes manifest significant changes in dendritic structure after very brief exposure to elevated IOP. The observation that RGCs stratifying most of their dendrites in the Off sublamina are first to alter their structure may inform the development of new strategies to detect, monitor, and treat glaucoma in humans.

  10. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol.

    PubMed

    Malitsky, Sergey; Ziv, Carmit; Rosenwasser, Shilo; Zheng, Shuning; Schatz, Daniella; Porat, Ziv; Ben-Dor, Shifra; Aharoni, Asaph; Vardi, Assaf

    2016-04-01

    Viruses that infect marine photosynthetic microorganisms are major ecological and evolutionary drivers of microbial food webs, estimated to turn over more than a quarter of the total photosynthetically fixed carbon. Viral infection of the bloom-forming microalga Emiliania huxleyi induces the rapid remodeling of host primary metabolism, targeted towards fatty acid metabolism. We applied a liquid chromatography-mass spectrometry (LC-MS)-based lipidomics approach combined with imaging flow cytometry and gene expression profiling to explore the impact of viral-induced metabolic reprogramming on lipid composition. Lytic viral infection led to remodeling of the cellular lipidome, by predominantly inducing the biosynthesis of highly saturated triacylglycerols (TAGs), coupled with a significant accumulation of neutral lipids within lipid droplets. Furthermore, TAGs were found to be a major component (77%) of the lipidome of isolated virions. Interestingly, viral-induced TAGs were significantly more saturated than TAGs produced under nitrogen starvation. This study highlights TAGs as major products of the viral-induced metabolic reprogramming during the host-virus interaction and indicates a selective mode of membrane recruitment during viral assembly, possibly by budding of the virus from specialized subcellular compartments. These findings provide novel insights into the role of viruses infecting microalgae in regulating metabolism and energy transfer in the marine environment and suggest their possible biotechnological application in biofuel production. PMID:26856244

  11. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases.

    PubMed

    Cuenca, Nicolás; Fernández-Sánchez, Laura; Campello, Laura; Maneu, Victoria; De la Villa, Pedro; Lax, Pedro; Pinilla, Isabel

    2014-11-01

    Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.

  12. STATE TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and Its Absence Triggers Remodeling of Photosynthetic Protein Complexes1

    PubMed Central

    Bergner, Sonja Verena; Scholz, Martin; Trompelt, Kerstin; Barth, Johannes; Gäbelein, Philipp; Steinbeck, Janina; Xue, Huidan; Clowez, Sophie; Fucile, Geoffrey; Goldschmidt-Clermont, Michel; Fufezan, Christian; Hippler, Michael

    2015-01-01

    In plants and algae, the serine/threonine kinase STN7/STT7, orthologous protein kinases in Chlamydomonas reinhardtii and Arabidopsis (Arabidopsis thaliana), respectively, is an important regulator in acclimation to changing light environments. In this work, we assessed STT7-dependent protein phosphorylation under high light in C. reinhardtii, known to fully induce the expression of LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEIN3 (LHCSR3) and a nonphotochemical quenching mechanism, in relationship to anoxia where the activity of cyclic electron flow is stimulated. Our quantitative proteomics data revealed numerous unique STT7 protein substrates and STT7-dependent protein phosphorylation variations that were reliant on the environmental condition. These results indicate that STT7-dependent phosphorylation is modulated by the environment and point to an intricate chloroplast phosphorylation network responding in a highly sensitive and dynamic manner to environmental cues and alterations in kinase function. Functionally, the absence of the STT7 kinase triggered changes in protein expression and photoinhibition of photosystem I (PSI) and resulted in the remodeling of photosynthetic complexes. This remodeling initiated a pronounced association of LHCSR3 with PSI-LIGHT HARVESTING COMPLEX I (LHCI)-ferredoxin-NADPH oxidoreductase supercomplexes. Lack of STT7 kinase strongly diminished PSII-LHCII supercomplexes, while PSII core complex phosphorylation and accumulation were significantly enhanced. In conclusion, our study provides strong evidence that the regulation of protein phosphorylation is critical for driving successful acclimation to high light and anoxic growth environments and gives new insights into acclimation strategies to these environmental conditions. PMID:25858915

  13. Thermal Stress Triggers Broad Pocillopora damicornis Transcriptomic Remodeling, while Vibrio coralliilyticus Infection Induces a More Targeted Immuno-Suppression Response

    PubMed Central

    Vidal-Dupiol, Jeremie; Dheilly, Nolwenn M.; Rondon, Rodolfo; Grunau, Christoph; Cosseau, Céline; Smith, Kristina M.; Freitag, Michael; Adjeroud, Mehdi; Mitta, Guillaume

    2014-01-01

    Global change and its associated temperature increase has directly or indirectly changed the distributions of hosts and pathogens, and has affected host immunity, pathogen virulence and growth rates. This has resulted in increased disease in natural plant and animal populations worldwide, including scleractinian corals. While the effects of temperature increase on immunity and pathogen virulence have been clearly identified, their interaction, synergy and relative weight during pathogenesis remain poorly documented. We investigated these phenomena in the interaction between the coral Pocillopora damicornis and the bacterium Vibrio coralliilyticus, for which the infection process is temperature-dependent. We developed an experimental model that enabled unraveling the effects of thermal stress, and virulence vs. non-virulence of the bacterium. The physiological impacts of various treatments were quantified at the transcriptome level using a combination of RNA sequencing and targeted approaches. The results showed that thermal stress triggered a general weakening of the coral, making it more prone to infection, non-virulent bacterium induced an ‘efficient’ immune response, whereas virulent bacterium caused immuno-suppression in its host. PMID:25259845

  14. Retinitis Pigmentosa

    MedlinePlus

    ... Action You are here Home › Retinal Diseases Listen Retinitis Pigmentosa What is retinitis pigmentosa? What are the symptoms? ... available? Are there any related diseases? What is retinitis pigmentosa? Retinitis pigmentosa (RP) refers to a group of ...

  15. Non-Centered Spike-Triggered Covariance Analysis Reveals Neurotrophin-3 as a Developmental Regulator of Receptive Field Properties of ON-OFF Retinal Ganglion Cells

    PubMed Central

    Cantrell, Donald R.; Cang, Jianhua; Troy, John B.; Liu, Xiaorong

    2010-01-01

    The functional separation of ON and OFF pathways, one of the fundamental features of the visual system, starts in the retina. During postnatal development, some retinal ganglion cells (RGCs) whose dendrites arborize in both ON and OFF sublaminae of the inner plexiform layer transform into RGCs with dendrites that monostratify in either the ON or OFF sublamina, acquiring final dendritic morphology in a subtype-dependent manner. Little is known about how the receptive field (RF) properties of ON, OFF, and ON-OFF RGCs mature during this time because of the lack of a reliable and efficient method to classify RGCs into these subtypes. To address this deficiency, we developed an innovative variant of Spike Triggered Covariance (STC) analysis, which we term Spike Triggered Covariance – Non-Centered (STC-NC) analysis. Using a multi-electrode array (MEA), we recorded the responses of a large population of mouse RGCs to a Gaussian white noise stimulus. As expected, the Spike-Triggered Average (STA) fails to identify responses driven by symmetric static nonlinearities such as those that underlie ON-OFF center RGC behavior. The STC-NC technique, in contrast, provides an efficient means to identify ON-OFF responses and quantify their RF center sizes accurately. Using this new tool, we find that RGCs gradually develop sensitivity to focal stimulation after eye opening, that the percentage of ON-OFF center cells decreases with age, and that RF centers of ON and ON-OFF cells become smaller. Importantly, we demonstrate for the first time that neurotrophin-3 (NT-3) regulates the development of physiological properties of ON-OFF center RGCs. Overexpression of NT-3 leads to the precocious maturation of RGC responsiveness and accelerates the developmental decrease of RF center size in ON-OFF cells. In summary, our study introduces STC-NC analysis which successfully identifies subtype RGCs and demonstrates how RF development relates to a neurotrophic driver in the retina. PMID

  16. Retinitis Pigmentosa.

    ERIC Educational Resources Information Center

    Carr, Ronald E.

    1979-01-01

    The author describes the etiology of retinitis pigmentosa, a visual dysfunction which results from progressive loss of the retinal photoreceptors. Sections address signs and symptoms, ancillary findings, heredity, clinical diagnosis, therapy, and research. (SBH)

  17. Engagement of Arginine Finger to ATP Triggers Large Conformational Changes in NtrC1 AAA+ ATPase for Remodeling Bacterial RNA Polymerase

    SciTech Connect

    Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang; De Carlo, Sacha; Hanson, Jeffrey A.; Yang, Haw; Nixon, B. Tracy

    2010-11-19

    The NtrC-like AAA+ ATPases control virulence and other important bacterial activities through delivering mechanical work to {sigma}54-RNA polymerase to activate transcription from {sigma}54-dependent genes. We report the first crystal structure for such an ATPase, NtrC1 of Aquifex aeolicus, in which the catalytic arginine engages the {gamma}-phosphate of ATP. Comparing the new structure with those previously known for apo and ADP-bound states supports a rigid-body displacement model that is consistent with large-scale conformational changes observed by low-resolution methods. First, the arginine finger induces rigid-body roll, extending surface loops above the plane of the ATPase ring to bind {sigma}54. Second, ATP hydrolysis permits Pi release and retraction of the arginine with a reversed roll, remodeling {sigma}54-RNAP. This model provides a fresh perspective on how ATPase subunits interact within the ring-ensemble to promote transcription, directing attention to structural changes on the arginine-finger side of an ATP-bound interface.

  18. Retinitis pigmentosa and retinal oedema.

    PubMed Central

    Spalton, D J; Bird, A C; Cleary, P E

    1978-01-01

    Twenty-five patients with retinitis pigmentosa and retinal leakage were investigated. Oedema was present in dominant and X-linked inherited disease and is likely to be present in recessive disease as well. We suggest that this might be a general response seen in many types of tapeto-retinal degeneration to actively degenerating photoreceptors or pigment epithelium. Images PMID:638111

  19. Retinal detachment

    PubMed Central

    2010-01-01

    Introduction Rhegmatogenous retinal detachment (RRD) is the most common form of retinal detachment, where a retinal "break" allows the ingress of fluid from the vitreous cavity to the subretinal space, resulting in retinal separation. It occurs in about 1 in 10,000 people a year. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of interventions to prevent progression from retinal breaks or lattice degeneration to retinal detachment? What are the effects of different surgical interventions in people with rhegmatogenous retinal detachment? What are the effects of interventions to treat proliferative vitreoretinopathy occurring as a complication of retinal detachment or previous treatment for retinal detachment? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2010 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 21 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: corticosteroids, cryotherapy, daunorubicin, fluorouracil plus low molecular weight heparin, laser photocoagulation, pneumatic retinopexy, scleral buckling, short-acting or long-acting gas tamponade, silicone oil tamponade, and vitrectomy. PMID:21406128

  20. Pulsatile Fluid Shear in Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Frangos, John A.

    1997-01-01

    The objective of this investigation was to elucidate the sensitivity to transients in fluid shear stress in bone remodeling. Bone remodeling is clearly a function of the local mechanical environment which includes interstitial fluid flow. Traditionally, load-induced remodeling has been associated with low frequency (1-2 Hz) signals attributed to normal locomotion. McLeod and Rubin, however, demonstrated in vivo remodeling events associated with high frequency (15-30 Hz) loading. Likewise, other in vivo studies demonstrated that slowly applied strains did not trigger remodeling events. We therefore hypothesized that the mechanosensitive pathways which control bone maintenance and remodeling are differentially sensitive to varying rates of applied fluid shear stress.

  1. Retinal cartography.

    PubMed

    Mosier, M A

    1982-10-01

    This paper analyses retinal cartography in terms of its reflection of anatomic data and its relation to several forms of geographic methods of map-making. It shows that the distances between anatomic landmarks of the eye are reasonably similar to the relative distances on the retinal drawing chart currently used. Two forms of geographic cartography--azimuth equidistant and orthographic--are described and compared with retinal cartography. The retinal drawing chart currently used most closely approximates an azimuth equidistant projection, which suffers from circumferential distortion, a fact that retinal surgeons must keep in mind. It is therefore recommended that the chart be modified to have equally spaced concentric circles and clearer identification of the ora serrata; the present accurate marking of anatomic landmarks, such as the equator and the posterior border of the ciliary body, should be preserved.

  2. Retinal Prosthesis

    PubMed Central

    Weiland, James D.; Humayun, Mark S.

    2015-01-01

    Retinal prosthesis have been translated from the laboratory to the clinical over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa. These devices provide partial sight restoration and patients use this improved vision in their everyday lives. Improved mobility and object detection are some of the more notable findings from the clinical trials. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. This paper reviews the recent clinical trials, highlights technology breakthroughs that will contribute to next generation of retinal prostheses. PMID:24710817

  3. Retinal Disorders

    MedlinePlus

    ... be serious enough to cause blindness. Examples are Macular degeneration - a disease that destroys your sharp, central vision Diabetic eye disease Retinal detachment - a medical emergency, when the retina is ... children. Macular pucker - scar tissue on the macula Macular hole - ...

  4. Retinal Changes in an ATP-Induced Model of Retinal Degeneration

    PubMed Central

    Aplin, Felix P.; Vessey, Kirstan A.; Luu, Chi D.; Guymer, Robyn H.; Shepherd, Robert K.; Fletcher, Erica L.

    2016-01-01

    In rodents and felines, intravitreal administration of adenosine triphosphate (ATP) has been shown to induce photoreceptor death providing a tractable model of retinal degeneration in these species. This study investigated the long term effects of photoreceptor loss in an ATP induced feline model of retinal degeneration. Six normal sighted felines were unilaterally blinded using intravitreal ATP injections and assessed using electroretinography (ERG) and optical coherence tomography (OCT). At 30 h (n = 3) or 12 weeks (n = 3) post-injection, the animals were euthanized and the eyes enucleated. Retinae were sectioned and labeled using immunohistochemistry for markers of cell death, neural remodeling and gliosis. Ongoing cell death and retinal degeneration was observed in the outer retina at both 30 h and 12 weeks following unilateral ATP injection. Markers of mid to late-stage retinal remodeling such as cell displacement and aberrant neurite growth were observed in the inner retina at 12 weeks post-injection. Ganglion cells appeared to remain intact in ATP injected eyes. Müller cell gliosis was observed throughout the inner and outer retina, in some parts completely enveloping and/or displacing the surviving neural tissue. Our data suggests that the ATP injected feline retina continues to undergo progressive retinal degeneration and exhibits abnormalities consistent with a description of retinal remodeling commonly seen in other models of retinal degeneration. These findings validate the use of intravitreal ATP injection in feline as a large animal model of retinal degeneration which may aid in development of therapies aiming to restore visual function after photoreceptor degeneration. PMID:27199678

  5. Müller cell metabolic chaos during retinal degeneration.

    PubMed

    Pfeiffer, Rebecca L; Marc, Robert E; Kondo, Mineo; Terasaki, Hiroko; Jones, Bryan W

    2016-09-01

    Müller cells play a critical role in retinal metabolism and are among the first cells to demonstrate metabolic changes in retinal stress or disease. The timing, extent, regulation, and impacts of these changes are not yet known. We evaluated metabolic phenotypes of Müller cells in the degenerating retina. Retinas harvested from wild-type (WT) and rhodopsin Tg P347L rabbits were fixed in mixed aldehydes and resin embedded for computational molecular phenotyping (CMP). CMP facilitates small molecule fingerprinting of every cell in the retina, allowing evaluation of metabolite levels in single cells. CMP revealed signature variations in metabolite levels across Müller cells from TgP347L retina. In brief, neighboring Müller cells demonstrated variability in taurine, glutamate, glutamine, glutathione, glutamine synthetase (GS), and CRALBP. This variability showed no correlation across metabolites, implying the changes are functionally chaotic rather than simply heterogeneous. The inability of any clustering algorithm to classify Müller cell as a single class in the TgP347L retina is a formal proof of metabolic variability in the present in degenerating retina. Although retinal degeneration is certainly the trigger, Müller cell metabolic alterations are not a coherent response to the microenvironment. And while GS is believed to be the primary enzyme responsible for the conversion of glutamate to glutamine in the retina, alternative pathways appear to be unmasked in degenerating retina. Somehow, long term remodeling involves loss of Müller cell coordination and identity, which has negative implications for therapeutic interventions that target neurons alone. PMID:27142256

  6. Selective impairment of a subset of Ran-GTP-binding domains of ran-binding protein 2 (Ranbp2) suffices to recapitulate the degeneration of the retinal pigment epithelium (RPE) triggered by Ranbp2 ablation.

    PubMed

    Patil, Hemangi; Saha, Arjun; Senda, Eugene; Cho, Kyoung-in; Haque, MdEmdadul; Yu, Minzhong; Qiu, Sunny; Yoon, Dosuk; Hao, Ying; Peachey, Neal S; Ferreira, Paulo A

    2014-10-24

    Retinal pigment epithelium (RPE) degeneration underpins diseases triggered by disparate genetic lesions, noxious insults, or both. The pleiotropic Ranbp2 controls the expression of intrinsic and extrinsic pathological stressors impinging on cellular viability. However, the physiological targets and mechanisms controlled by Ranbp2 in tissue homeostasis, such as RPE, are ill defined. We show that mice, RPE-cre::Ranbp2(-/-), with selective Ranbp2 ablation in RPE develop pigmentary changes, syncytia, hypoplasia, age-dependent centrifugal and non-apoptotic degeneration of the RPE, and secondary leakage of choriocapillaris. These manifestations are accompanied by the development of F-actin clouds, metalloproteinase-11 activation, deregulation of expression or subcellular localization of critical RPE proteins, atrophic cell extrusions into the subretinal space, and compensatory proliferation of peripheral RPE. To gain mechanistic insights into what Ranbp2 activities are vital to the RPE, we performed genetic complementation analyses of transgenic lines of bacterial artificial chromosomes of Ranbp2 harboring loss of function of selective Ranbp2 domains expressed in a Ranbp2(-/-) background. Among the transgenic lines produced, only Tg(RBD2/3*-HA)::RPE-cre::Ranbp2(-/-)-expressing mutations, which selectively impair binding of RBD2/3 (Ran-binding domains 2 and 3) of Ranbp2 to Ran-GTP, recapitulate RPE degeneration, as observed with RPE-cre::Ranbp2(-/-). By contrast, Tg(RBD2/3*-HA) expression rescues the degeneration of cone photoreceptors lacking Ranbp2. The RPE of RPE-cre::Ranbp2(-/-) and Tg(RBD2/3*-HA)::RPE-cre::Ranbp2(-/-) share proteostatic deregulation of Ran GTPase, serotransferrin, and γ-tubulin and suppression of light-evoked electrophysiological responses. These studies unravel selective roles of Ranbp2 and its RBD2 and RBD3 in RPE survival and functions. We posit that the control of Ran GTPase by Ranbp2 emerges as a novel therapeutic target in diseases promoting

  7. Retinal Detachment Vision Simulator

    MedlinePlus

    ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment Vision Simulator Mar. 01, 2016 How does a detached or torn retina affect your vision? If a retinal tear is occurring, you may ...

  8. Retinal holes.

    PubMed

    Foos, R Y

    1978-09-01

    Holes of the peripheral retina, defined as full-thickness breaks of trophic origin with no associated flap or free operculum, were found in 136 (2.4%) eyes from 2,800 autopsied subjects. Primary retinal holes (those with no indication of a proximal causative lesion and with no lattice degeneration in either eye) occurred in only eight of the 5,600 eyes studied; all were unilateral, single, less than 0.25 disk diameter in size, within the basal zone, and in eyes from elderly subjects. Secondary holes were found in 128 (2.3%) of eyes and of these, lattice degeneration was the most common cause (103). Other lesions complicated by hole formation included zonular traction tufts (10), chorioretinitis (9), meridional folds (3), and pavingstone degeneration (2). Retinal holes in surgically aphakic eyes did not differ qualitatively or quantitatively from those in age-matched phakic eyes.

  9. Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina.

    PubMed

    Merriman, Dana K; Sajdak, Benjamin S; Li, Wei; Jones, Bryan W

    2016-09-01

    With a photoreceptor mosaic containing ∼85% cones, the ground squirrel is one of the richest known mammalian sources of these important retinal cells. It also has a visual ecology much like the human's. While the ground squirrel retina is understandably prominent in the cone biochemistry, physiology, and circuitry literature, far less is known about the remodeling potential of its retinal pigment epithelium, neurons, macroglia, or microglia. This review aims to summarize the data from ground squirrel retina to this point in time, and to relate them to data from other brain areas where appropriate. We begin with a survey of the ground squirrel visual system, making comparisons with traditional rodent models and with human. Because this animal's status as a hibernator often goes unnoticed in the vision literature, we then present a brief primer on hibernation biology. Next we review what is known about ground squirrel retinal remodeling concurrent with deep torpor and with rapid recovery upon re-warming. Notable here is rapidly-reversible, temperature-dependent structural plasticity of cone ribbon synapses, as well as pre- and post-synaptic plasticity throughout diverse brain regions. It is not yet clear if retinal cell types other than cones engage in torpor-associated synaptic remodeling. We end with the small but intriguing literature on the ground squirrel retina's remodeling responses to insult by retinal detachment. Notable for widespread loss of (cone) photoreceptors, there is surprisingly little remodeling of the RPE or Müller cells. Microglial activation appears minimal, and remodeling of surviving second- and third-order neurons seems absent, but both require further study. In contrast, traumatic brain injury in the ground squirrel elicits typical macroglial and microglial responses. Overall, the data to date strongly suggest a heretofore unrecognized, natural checkpoint between retinal deafferentiation and RPE and Müller cell remodeling events. As we

  10. Astrocyte structural reactivity and plasticity in models of retinal detachment.

    PubMed

    Luna, Gabriel; Keeley, Patrick W; Reese, Benjamin E; Linberg, Kenneth A; Lewis, Geoffrey P; Fisher, Steven K

    2016-09-01

    Although retinal neurodegenerative conditions such as age-related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and retinal detachment have different etiologies and pathological characteristics, they also have many responses in common at the cellular level, including neural and glial remodeling. Structural changes in Müller cells, the large radial glia of the retina in retinal disease and injury have been well described, that of the retinal astrocytes remains less so. Using modern imaging technology to describe the structural remodeling of retinal astrocytes after retinal detachment is the focus of this paper. We present both a review of critical literature as well as novel work focusing on the responses of astrocytes following rhegmatogenous and serous retinal detachment. The mouse presents a convenient model system in which to study astrocyte reactivity since the Mϋller cell response is muted in comparison to other species thereby allowing better visualization of the astrocytes. We also show data from rat, cat, squirrel, and human retina demonstrating similarities and differences across species. Our data from immunolabeling and dye-filling experiments demonstrate previously undescribed morphological characteristics of normal astrocytes and changes induced by detachment. Astrocytes not only upregulate GFAP, but structurally remodel, becoming increasingly irregular in appearance, and often penetrating deep into neural retina. Understanding these responses, their consequences, and what drives them may prove to be an important component in improving visual outcome in a variety of therapeutic situations. Our data further supports the concept that astrocytes are important players in the retina's overall response to injury and disease. PMID:27060374

  11. Astrocyte structural reactivity and plasticity in models of retinal detachment.

    PubMed

    Luna, Gabriel; Keeley, Patrick W; Reese, Benjamin E; Linberg, Kenneth A; Lewis, Geoffrey P; Fisher, Steven K

    2016-09-01

    Although retinal neurodegenerative conditions such as age-related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and retinal detachment have different etiologies and pathological characteristics, they also have many responses in common at the cellular level, including neural and glial remodeling. Structural changes in Müller cells, the large radial glia of the retina in retinal disease and injury have been well described, that of the retinal astrocytes remains less so. Using modern imaging technology to describe the structural remodeling of retinal astrocytes after retinal detachment is the focus of this paper. We present both a review of critical literature as well as novel work focusing on the responses of astrocytes following rhegmatogenous and serous retinal detachment. The mouse presents a convenient model system in which to study astrocyte reactivity since the Mϋller cell response is muted in comparison to other species thereby allowing better visualization of the astrocytes. We also show data from rat, cat, squirrel, and human retina demonstrating similarities and differences across species. Our data from immunolabeling and dye-filling experiments demonstrate previously undescribed morphological characteristics of normal astrocytes and changes induced by detachment. Astrocytes not only upregulate GFAP, but structurally remodel, becoming increasingly irregular in appearance, and often penetrating deep into neural retina. Understanding these responses, their consequences, and what drives them may prove to be an important component in improving visual outcome in a variety of therapeutic situations. Our data further supports the concept that astrocytes are important players in the retina's overall response to injury and disease.

  12. Branch retinal vein occlusion.

    PubMed

    Hamid, Sadaf; Mirza, Sajid Ali; Shokh, Ishrat

    2008-01-01

    Retinal vein occlusions (RVO) are the second commonest sight threatening vascular disorder. Branch retinal vein occlusion (BRVO) and central retinal vein occlusion (CRVO) are the two basic types of vein occlusion. Branch retinal vein occlusion is three times more common than central retinal vein occlusion and- second only to diabetic retinopathy as the most common retinal vascular cause of visual loss. The origin of branch retinal vein occlusion undoubtedly includes both systemic factors such as hypertension and local anatomic factors such as arteriovenous crossings. Branch retinal vein occlusion causes a painless decrease in vision, resulting in misty or distorted vision. Current treatment options don't address the underlying aetiology of branch retinal vein occlusion. Instead they focus on treating sequelae of the occluded venous branch, such as macular oedema, vitreous haemorrhage and traction retinal detachment from neovascularization. Evidences suggest that the pathogenesis of various types of retinal vein occlusion, like many other ocular vascular occlusive disorders, is a multifactorial process and there is no single magic bullet that causes retinal vein occlusion. A comprehensive management of patients with retinal vascular occlusions is necessary to correct associated diseases or predisposing abnormalities that could lead to local recurrences or systemic event. Along with a review of the literature, a practical approach for the management of retinal vascular occlusions is required, which requires collaboration between the ophthalmologist and other physicians: general practitioner, cardiologist, internist etc. as appropriate according to each case. PMID:19385476

  13. Chromatin remodelling initiation during human spermiogenesis

    PubMed Central

    De Vries, Marieke; Ramos, Liliana; Housein, Zjwan; De Boer, Peter

    2012-01-01

    Summary During the last phase of spermatogenesis, spermiogenesis, haploid round spermatids metamorphose towards spermatozoa. Extensive cytoplasmic reduction and chromatin remodelling together allow a dramatic decrease of cellular, notably nuclear volume. DNA packing by a nucleosome based chromatin structure is largely replaced by a protamine based one. At the cytoplasmic level among others the acrosome and perinuclear theca (PNT) are formed. In this study we describe the onset of chromatin remodelling to occur concomitantly with acrosome and PNT development. In spread human round spermatid nuclei, we show development of a DAPI-intense doughnut-like structure co-localizing with the acrosomal sac and sub acrosomal PNT. At this structure we observe the first gradual decrease of nucleosomes and several histones. Histone post-translational modifications linked to chromatin remodelling such as H4K8ac and H4K16ac also delineate the doughnut, that is furthermore marked by H3K9me2. During the capping phase of acrosome development, the size of the doughnut-like chromatin domain increases, and this area often is marked by uniform nucleosome loss and the first appearance of transition protein 2 and protamine 1. In the acrosome phase at nuclear elongation, chromatin remodelling follows the downward movement of the marginal ring of the acrosome. Our results indicate that acrosome development and chromatin remodelling are interacting processes. In the discussion we relate chromatin remodelling to the available data on the nuclear envelope and the linker of nucleoskeleton and cytoskeleton (LINC) complex of spermatids, suggesting a signalling route for triggering chromatin remodelling. PMID:23213436

  14. ED 04-4 RETINAL ARTERIOLAR STRUCTURE AS A MAKER OF VASCULAR HEALTH.

    PubMed

    Wong, Tien

    2016-09-01

    The vasculature in the retina can be viewed directly and non-invasively in vivo, offers a unique perspective of the human microvasculature, and therefore the ability to understand early changes, processes, pathways and consequences of hypertension. In the past 15 years, advances in high resolution digital retinal photography and automated or semi-automated computer image software have been applied to measure and quantify a variety of retinal microvascular parameter, including retinal arteriolar and venular caliber, tortuosity, branching patterns and fractal dimensions. Clinical and epidemiological studies show that hypertension is strongly associated with many of these retinal microvascular changes. Concurrently, these retinal parameters are associated with a range of systemic conditions, including subclinical target organ damage (e.g., silent cerebral infarctions, myocardial perfusion, vascular remodelling, left ventricular hypertrophy and microalbuminuria) as well as clinical outcomes (e.g., clinical stroke, myocardial infarction, congestive heart failure, chronic kidney disease, cardiovascular mortality). Furthermore, some of the retinal measures are seen in children at risk of hypertension (e.g., higher BMI or low birth weight) and normotensive patients before they subsequently develop hypertension, suggesting that retinal microvascular changes may reflect the vascular remodelling processes in early hypertension. There are increasing data from genome-wide association studies that indicate genetic influence on retinal vascular caliber, possibly providing new genetic markers of systemic vascular diseases. Retinal vascular imaging provides the opportunity to interrogate early, subclinical microcirculatory effects associated with elevated blood pressure, and thus new insights into the pathogenesis and vascular consequences of hypertension. PMID:27643070

  15. Dynamic triggering

    USGS Publications Warehouse

    Hill, David P.; Prejean, Stephanie; Schubert, Gerald

    2015-01-01

    Dynamic stresses propagating as seismic waves from large earthquakes trigger a spectrum of responses at global distances. In addition to locally triggered earthquakes in a variety of tectonic environments, dynamic stresses trigger tectonic (nonvolcanic) tremor in the brittle–plastic transition zone along major plate-boundary faults, activity changes in hydrothermal and volcanic systems, and, in hydrologic domains, changes in spring discharge, water well levels, soil liquefaction, and the eruption of mud volcanoes. Surface waves with periods of 15–200 s are the most effective triggering agents; body-wave trigger is less frequent. Triggering dynamic stresses can be < 1 kPa.

  16. Genetic pediatric retinal diseases

    PubMed Central

    Say, Emil Anthony T.

    2014-01-01

    Hereditary pediatric retinal diseases are a diverse group of disorders with pathologies affecting different cellular structures or retinal development. Many can mimic typical pediatric retinal disease such as retinopathy of prematurity, vitreous hemorrhage, retinal detachment and cystoid macular edema. Multisystem involvement is frequently seen in hereditary pediatric retinal disease. A thorough history coupled with a good physical examination can oftentimes lead the ophthalmologist or pediatrician to the correct genetic test and correct diagnosis. In some instances, evaluation of parents or siblings may be required to determine familial involvement when the history is inconclusive or insufficient and clinical suspicion is high.

  17. Genetic pediatric retinal diseases.

    PubMed

    Say, Emil Anthony T

    2014-12-01

    Hereditary pediatric retinal diseases are a diverse group of disorders with pathologies affecting different cellular structures or retinal development. Many can mimic typical pediatric retinal disease such as retinopathy of prematurity, vitreous hemorrhage, retinal detachment and cystoid macular edema. Multisystem involvement is frequently seen in hereditary pediatric retinal disease. A thorough history coupled with a good physical examination can oftentimes lead the ophthalmologist or pediatrician to the correct genetic test and correct diagnosis. In some instances, evaluation of parents or siblings may be required to determine familial involvement when the history is inconclusive or insufficient and clinical suspicion is high. PMID:27625880

  18. Crude Saponins of Panax notoginseng Have Neuroprotective Effects To Inhibit Palmitate-Triggered Endoplasmic Reticulum Stress-Associated Apoptosis and Loss of Postsynaptic Proteins in Staurosporine Differentiated RGC-5 Retinal Ganglion Cells.

    PubMed

    Wang, Dan-dan; Zhu, Hua-zhang; Li, Shi-wei; Yang, Jia-ming; Xiao, Yang; Kang, Qiang-rong; Li, Chen-yang; Zhao, Yun-shi; Zeng, Yong; Li, Yan; Zhang, Jian; He, Zhen-dan; Ying, Ying

    2016-02-24

    Increased apoptosis of retinal ganglion cells (RGCs) contributes to the gradual loss of retinal neurons at the early phase of diabetic retinopathy (DR). There is an urgent need to search for drugs with neuroprotective effects against apoptosis of RGCs for the early treatment of DR. This study aimed to investigate the neuroprotective effects of saponins extracted from Panax notoginseng, a traditional Chinese medicine, on apoptosis of RGCs stimulated by palmitate, a metabolic factor for the development of diabetes and its complications, and to explore the potential molecular mechanism. We showed that crude saponins of P. notoginseng (CSPN) inhibited the increased apoptosis and loss of postsynaptic protein PSD-95 by palmitate in staurosporine-differentiated RGC-5 cells. Moreover, CSPN suppressed palmitate-induced reactive oxygen species generation and endoplasmic reticulum stress-associated eIF2α/ATF4/CHOP and caspase 12 pathways. Thus, our findings address the potential therapeutic significance of CSPN for the early stage of DR. PMID:26832452

  19. Retinal prosthetics, optogenetics, and chemical photoswitches.

    PubMed

    Marc, Robert; Pfeiffer, Rebecca; Jones, Bryan

    2014-10-15

    Three technologies have emerged as therapies to restore light sensing to profoundly blind patients suffering from late-stage retinal degenerations: (1) retinal prosthetics, (2) optogenetics, and (3) chemical photoswitches. Prosthetics are the most mature and the only approach in clinical practice. Prosthetic implants require complex surgical intervention and provide only limited visual resolution but can potentially restore navigational ability to many blind patients. Optogenetics uses viral delivery of type 1 opsin genes from prokaryotes or eukaryote algae to restore light responses in survivor neurons. Targeting and expression remain major problems, but are potentially soluble. Importantly, optogenetics could provide the ultimate in high-resolution vision due to the long persistence of gene expression achieved in animal models. Nevertheless, optogenetics remains challenging to implement in human eyes with large volumes, complex disease progression, and physical barriers to viral penetration. Now, a new generation of photochromic ligands or chemical photoswitches (azobenzene-quaternary ammonium derivatives) can be injected into a degenerated mouse eye and, in minutes to hours, activate light responses in neurons. These photoswitches offer the potential for rapidly and reversibly screening the vision restoration expected in an individual patient. Chemical photoswitch variants that persist in the cell membrane could make them a simple therapy of choice, with resolution and sensitivity equivalent to optogenetics approaches. A major complexity in treating retinal degenerations is retinal remodeling: pathologic network rewiring, molecular reprogramming, and cell death that compromise signaling in the surviving retina. Remodeling forces a choice between upstream and downstream targeting, each engaging different benefits and defects. Prosthetics and optogenetics can be implemented in either mode, but the use of chemical photoswitches is currently limited to downstream

  20. Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina

    PubMed Central

    Haq, Wadood; Arango-Gonzalez, Blanca; Zrenner, Eberhart; Euler, Thomas; Schubert, Timm

    2014-01-01

    During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs) establish contacts with remnant cone photoreceptors (cones) as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca2+ imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs), we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from interneurons such as HCs and/or possibly interplexiform cells. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type) cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates) the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells. PMID:25249942

  1. Genetics Home Reference: retinitis pigmentosa

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions retinitis pigmentosa retinitis pigmentosa Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Retinitis pigmentosa is a group of related eye disorders that ...

  2. Retinal hemorrhages in newborn.

    PubMed

    Govind, A; Kumari, S; Lath, N K

    1989-02-01

    Two hundred and fifty eight newborn babies were studied for the presence of retinal hemorrhages between 1-3 days of birth. The overall incidence of retinal hemorrhages was found to be 18.9%. It was observed that the incidence of retinal hemorrhages was higher in unassisted vaginal deliveries than in assisted births. Also, a two fold higher incidence was noted in term infants as compared to preterm babies. No association was seen with birth asphyxia.

  3. Allosteric Remodelling of the Histone H3 Binding Pocket in the Pygo2 PHD Finger Triggered by Its Binding to the B9L/BCL9 Co-Factor

    PubMed Central

    Miller, Thomas C.R.; Rutherford, Trevor J.; Johnson, Christopher M.; Fiedler, Marc; Bienz, Mariann

    2010-01-01

    The Zn-coordinated PHD fingers of Pygopus (Pygo) proteins are critical for β-catenin-dependent transcriptional switches in normal and malignant tissues. They bind to methylated histone H3 tails, assisted by their BCL9 co-factors whose homology domain 1 (HD1) binds to the rear PHD surface. Although histone-binding residues are identical between the two human Pygo paralogs, we show here that Pygo2 complexes exhibit slightly higher binding affinities for methylated histone H3 tail peptides than Pygo1 complexes. We solved the crystal structure of the Pygo2 PHD–BCL9-2 HD1 complex, which revealed paralog-specific interactions in its PHD–HD1 interface that could contribute indirectly to its elevated affinity for the methylated histone H3 tail. Interestingly, using NMR spectroscopy, we discovered that HD1 binding to PHD triggers an allosteric communication with a conserved isoleucine residue that lines the binding channel for histone H3 threonine 3 (T3), the link between the two adjacent binding pockets accommodating histone H3 alanine 1 and methylated lysine 4, respectively. This modulates the surface of the T3 channel, providing a plausible explanation as to how BCL9 co-factors binding to Pygo PHD fingers impact indirectly on their histone binding affinity. Intriguingly, this allosteric modulation of the T3 channel is propagated through the PHD structural core by a highly conserved tryptophan, the signature residue defining the PHD subclass of Zn fingers, which suggests that other PHD proteins may also be assisted by co-factors in their decoding of modified histone H3 tails. PMID:20637214

  4. Modern retinal laser therapy.

    PubMed

    Kozak, Igor; Luttrull, Jeffrey K

    2015-01-01

    Medicinal lasers are a standard source of light to produce retinal tissue photocoagulation to treat retinovascular disease. The Diabetic Retinopathy Study and the Early Treatment Diabetic Retinopathy Study were large randomized clinical trials that have shown beneficial effect of retinal laser photocoagulation in diabetic retinopathy and have dictated the standard of care for decades. However, current treatment protocols undergo modifications. Types of lasers used in treatment of retinal diseases include argon, diode, dye and multicolor lasers, micropulse lasers and lasers for photodynamic therapy. Delivery systems include contact lens slit-lamp laser delivery, indirect ophthalmocope based laser photocoagulation and camera based navigated retinal photocoagulation with retinal eye-tracking. Selective targeted photocoagulation could be a future alternative to panretinal photocoagulation. PMID:25892934

  5. Trigger finger

    MedlinePlus

    ... Redness in your cut or hand Swelling or warmth in your cut or hand Yellow or green drainage from the cut Hand pain or discomfort Fever If your trigger finger returns, call your surgeon. You may need another surgery.

  6. Retinal Proliferation Response in the Buphthalmic Zebrafish, bugeye

    PubMed Central

    Sherpa, Tshering; Hunter, Samuel S.; Frey, Ruth A.; Robison, Barrie D.; Stenkamp, Deborah L.

    2011-01-01

    The zebrafish retina regenerates in response to acute retinal lesions, replacing damaged neurons with new neurons. In this study we test the hypothesis that chronic stress to inner retinal neurons also triggers a retinal regeneration response in the bugeye zebrafish. Mutations in the lrp2 gene in zebrafish are associated with a progressive eye phenotype (bugeye) that models several risk factors for human glaucoma including buphthalmos (enlarged eyes), elevated intraocular pressure (IOP), and upregulation of genes related to retinal ganglion cell pathology. The retinas of adult bugeye zebrafish showed high rates of ongoing proliferation which resulted in the production of a small number of new retinal neurons, particularly photoreceptors. A marker of mechanical cell stress, Hsp27, was strongly expressed in inner retinal neurons and glia of bugeye retinas. The more enlarged eyes of individual bugeye zebrafish showed disrupted retinal lamination, and a persistent reduced density of neurons in the ganglion cell layer (GCL), although total numbers of GCL neurons were higher than in control eyes. Despite the presence of a proliferative response to damage, the adult bugeye zebrafish remained behaviorally blind. These findings suggest the existence of an unsuccessful regenerative response to a persistent pathological condition in the bugeye zebrafish. PMID:21723280

  7. Nucleosome Remodeling and Epigenetics

    PubMed Central

    Becker, Peter B.; Workman, Jerry L.

    2013-01-01

    Eukaryotic chromatin is kept flexible and dynamic to respond to environmental, metabolic, and developmental cues through the action of a family of so-called “nucleosome remodeling” ATPases. Consistent with their helicase ancestry, these enzymes experience conformation changes as they bind and hydrolyze ATP. At the same time they interact with DNA and histones, which alters histone–DNA interactions in target nucleosomes. Their action may lead to complete or partial disassembly of nucleosomes, the exchange of histones for variants, the assembly of nucleosomes, or the movement of histone octamers on DNA. “Remodeling” may render DNA sequences accessible to interacting proteins or, conversely, promote packing into tightly folded structures. Remodeling processes participate in every aspect of genome function. Remodeling activities are commonly integrated with other mechanisms such as histone modifications or RNA metabolism to assemble stable, epigenetic states. PMID:24003213

  8. Retinal and optic nerve diseases.

    PubMed

    Margalit, Eyal; Sadda, Srinivas R

    2003-11-01

    A variety of disease processes can affect the retina and/or the optic nerve, including vascular or ischemic disease, inflammatory or infectious disease, and degenerative disease. These disease processes may selectively damage certain parts of the retina or optic nerve, and the specific areas that are damaged may have implications for the design of potential therapeutic visual prosthetic devices. Outer retinal diseases include age-related macular degeneration, pathologic myopia, and retinitis pigmentosa. Although the retinal photoreceptors may be lost, the inner retina is relatively well-preserved in these diseases and may be a target for retinal prosthetic devices. Inner retinal diseases include retinal vascular diseases such as diabetic retinopathy, retinal venous occlusive disease, and retinopathy of prematurity. Other retinal diseases such as ocular infections (retinitis, endophthalmitis) may affect all retinal layers. Because the inner retinal cells, including the retinal ganglion cells, may be destroyed in these diseases (inner retinal or whole retinal), prosthetic devices that stimulate the inner retina may not be effective. Common optic nerve diseases include glaucoma, optic neuritis, and ischemic optic neuropathy. Because the ganglion cell nerve fibers themselves are damaged, visual prosthetics for these diseases will need to target more distal portions of the visual pathway, such as the visual cortex. Clearly, a sound understanding of retinal and optic nerve disease pathophysiology is critical for designing and choosing the optimal visual prosthetic device.

  9. Triggering Klystrons

    SciTech Connect

    Stefan, Kelton D.; /Purdue U. /SLAC

    2010-08-25

    To determine if klystrons will perform to the specifications of the LCLS (Linac Coherent Light Source) project, a new digital trigger controller is needed for the Klystron/Microwave Department Test Laboratory. The controller needed to be programmed and Windows based user interface software needed to be written to interface with the device over a USB (Universal Serial Bus). Programming the device consisted of writing logic in VHDL (VHSIC (Very High Speed Integrated Circuits) hardware description language), and the Windows interface software was written in C++. Xilinx ISE (Integrated Software Environment) was used to compile the VHDL code and program the device, and Microsoft Visual Studio 2005 was used to compile the C++ based Windows software. The device was programmed in such a way as to easily allow read/write operations to it using a simple addressing model, and Windows software was developed to interface with the device over a USB connection. A method of setting configuration registers in the trigger device is absolutely necessary to the development of a new triggering system, and the method developed will fulfill this need adequately. More work is needed before the new trigger system is ready for use. The configuration registers in the device need to be fully integrated with the logic that will generate the RF signals, and this system will need to be tested extensively to determine if it meets the requirements for low noise trigger outputs.

  10. Perspectives on biomechanical growth and remodeling mechanisms in glaucoma⋆

    PubMed Central

    Grytz, Rafael; Girkin, Christopher A.; Libertiaux, Vincent; Downs, J. Crawford

    2012-01-01

    Glaucoma is a blinding diseases in which damage to the axons results in loss of retinal ganglion cells. Experimental evidence indicates that chronic intraocular pressure elevation initiates axonal insult at the level of the lamina cribrosa. The lamina cribrosa is a porous collagen structure through which the axons pass on their path from the retina to the brain. Recent experimental studies revealed the extensive structural changes of the lamina cribrosa and its surrounding tissues during the development and progression of glaucoma. In this perspective paper we review the experimental evidence for growth and remodeling mechanisms in glaucoma including adaptation of tissue anisotropy, tissue thickening/thinning, tissue elongation/shortening and tissue migration. We discuss the existing predictive computational approaches that try to elucidate the potential biomechanical basis of theses growth and remodeling mechanisms and highlight open questions, challenges, and avenues for further development. PMID:23109748

  11. Retinal vein occlusion

    MedlinePlus

    ... most often caused by hardening of the arteries ( atherosclerosis ) and the formation of a blood clot. Blockage ... arteries that have been thickened or hardened by atherosclerosis cross over and place pressure on a retinal ...

  12. Retinal artery occlusion

    MedlinePlus

    ... eds. Textbook of Family Medicine . 9th ed. Philadelphia, PA: Elsevier; 2016:chap 17. Duker JS. Retinal arterial ... M, Duker JS, eds. Ophthalmology. 4th ed. Philadelphia, PA: Elsevier; 2014:chap 6.18. Reiss GR, Sipperley ...

  13. Remodeling and Shuttling

    PubMed Central

    Rodrigueza, Wendi V.; Williams, Kevin Jon; Rothblat, George H.; Phillips, Michael C.

    2016-01-01

    In normal physiology, cells are exposed to cholesterol acceptors of different sizes simultaneously. The current study examined the possible interactions between two different classes of acceptors, one large (large unilamellar phospholipid vesicles, LUVs) and one small (HDL or other small acceptors), added separately or in combination to Fu5AH rat hepatoma cells. During a 24-hour incubation, LUVs of palmitoyl-oleoyl phosphatidylcholine at 1 mg phospholipid (PL) per milliliter extracted ≈20% of cellular unesterified cholesterol (UC) label and mass in a slow, continuous fashion (half-time [t½] for UC efflux was ≈50 hours) and human HDL3 at 25 μg PL per milliliter extracted ≈15% cellular UC label with no change in cellular cholesterol mass (t½ of ≈8 hours). In contrast, the combination of LUVs and HDL3 extracted over 90% of UC label (t½ of ≈4 hours) and ≈50% of the UC mass, indicating synergy. To explain this synergy, specific particle interactions were examined, namely, remodeling, in which the two acceptors alter each other’s composition and thus the ability to mobilize cellular cholesterol, and shuttling, in which the small acceptor ferries cholesterol from cells to the large acceptor. To examine remodeling, LUVs and HDL were coincubated and reisolated before application to cells. This HDL became UC depleted, PL enriched, and lost a small amount of apolipoprotein A-I. Compared with equivalent numbers of control HDL particles, remodeled HDL caused faster efflux (t½ ≈4 hours) and exhibited a greater capacity to sequester cellular cholesterol over 24 hours (≈38% versus ≈15% for control HDL), consistent with their enrichment in PL. Remodeled LUVs still extracted ≈20% of cellular UC. Thus, remodeling accounted for some but not all of the synergy between LUVs and HDL. To examine shuttling, several approaches were used. First, reisolation of particles after an 8-hour exposure to cells revealed that HDL contained very little of the cellular UC

  14. Retinal detachment in pseudophakia.

    PubMed

    Galin, M A; Poole, T A; Obstbaum, S A

    1979-07-01

    In a series of cataract patients excluding myopic individuals, under age 60 years, and cases in which vitreous loss occurred, retinal detachment was no less frequent after intracapsular cataract extraction and Sputnik iris supported lenses than in controls. Both groups were followed up for a minimum of two years. The detachments predominantly occurred from retinal breaks in areas of the retina that looked normal preoperatively. PMID:464014

  15. Retinal compensatory changes after light damage in albino mice

    PubMed Central

    Montalbán-Soler, Luis; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Salinas-Navarro, Manuel; Galindo-Romero, Caridad; Bezerra de Sá, Fabrízio; García-Ayuso, Diego; Avilés-Trigueros, Marcelino; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta

    2012-01-01

    Purpose To investigate the anatomic and functional changes triggered by light exposure in the albino mouse retina and compare them with those observed in the albino rat. Methods BALB/c albino mice were exposed to 3,000 lx of white light during 24 h and their retinas analyzed from 1 to 180 days after light exposure (ALE). Left pupil mydriasis was induced with topical atropine. Retinal function was analyzed by electroretinographic (ERG) recording. To assess retinal degeneration, hematoxylin and eosin staining, the TdT-mediated dUTP nick-end labeling (TUNEL) technique, and quantitative immunohistofluorescence for synaptophysin and protein kinase Cα (PKCα) were used in cross sections. Intravenous injection of horseradish peroxidase and Fluoro-Gold™ tracing were used in whole-mounted retinas to study the retinal vasculature and the retinal ganglion cell (RGC) population, respectively. Results Light exposure caused apoptotic photoreceptor death in the central retina. This death was more severe in the dorsal than in the ventral retina, sparing the periphery. Neither retinal vascular leakage nor retinal ganglion cell death was observed ALE. The electroretinographic a-wave was permanently impaired, while the b-wave decreased but recovered gradually by 180 days ALE. The scotopic threshold responses, associated with the inner retinal function, diminished at first but recovered completely by 14 days ALE. This functional recovery was concomitant with the upregulation of protein kinase Cα and synaptophysin. Similar results were obtained in both eyes, irrespective of mydriasis. Conclusions In albino mice, light exposure induces substantial retinal damage, but the surviving photoreceptors, together with compensatory morphological/molecular changes, allow an important restoration of the retinal function. PMID:22509098

  16. The Unfolded Protein Response in Retinal Vascular Diseases: Implications and Therapeutic Potential Beyond Protein Folding

    PubMed Central

    Zhang, Sarah X.; Ma, Jacey H.; Bhatta, Maulasri; Fliesler, Steven J.; Wang, Joshua J.

    2015-01-01

    Angiogenesis is a complex, step-wise process of new vessel formation that is involved in both normal embryonic development as well as postnatal pathological processes, such as cancer, cardiovascular disease, and diabetes. Aberrant blood vessel growth, also known as neovascularization, in the retina and the choroid is a major cause of vision loss in severe eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity, and central and branch retinal vein occlusion. Yet, retinal neovascularization is causally and dynamically associated with vasodegeneration, ischemia, and vascular remodeling in retinal tissues. Understanding the mechanisms of retinal neovascularization is an urgent unmet need for developing new treatments for these devastating diseases. Accumulating evidence suggests a vital role for the unfolded protein response (UPR) in regulation of angiogenesis, in part through coordinating the secretion of pro-angiogenic growth factors, such as VEGF, and modulating endothelial cell survival and activity. Herein, we summarize current research in the context of endoplasmic reticulum (ER) stress and UPR signaling in retinal angiogenesis and vascular remodeling, highlighting potential implications of targeting these stress response pathways in the prevention and treatment of retinal vascular diseases that result in visual deficits and blindness. PMID:25529848

  17. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa

    PubMed Central

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina. PMID:26733810

  18. Remodeling with the sun

    SciTech Connect

    Bodzin, S.

    1997-05-01

    Remodeling is the perfect time to improve daylighting, direct gain heating and shading with passive solar techniques. It can also provide the best opportunity to add solar water heating or even photoboltaics to a home. This article describes addition of such energy efficient plans to a home in terms of what is needed and what the benefits are: adding windows, North glass, east and west glass, south glass, daylighting, the roof, shingles and roofing tiles, walls and floors, solar hot water, photovoltaics. Two side bars discuss the sunplace: a passive solar room and angles and overhangs.

  19. Progressive outer retinal necrosis-like retinitis in immunocompetent hosts.

    PubMed

    Chawla, Rohan; Tripathy, Koushik; Gogia, Varun; Venkatesh, Pradeep

    2016-01-01

    We describe two young immunocompetent women presenting with bilateral retinitis with outer retinal necrosis involving posterior pole with centrifugal spread and multifocal lesions simulating progressive outer retinal necrosis (PORN) like retinitis. Serology was negative for HIV and CD4 counts were normal; however, both women were on oral steroids at presentation for suspected autoimmune chorioretinitis. The retinitis in both eyes responded well to oral valaciclovir therapy. However, the eye with the more fulminant involvement developed retinal detachment with a loss of vision. Retinal atrophy was seen in the less involved eye with preservation of vision. Through these cases, we aim to describe a unique evolution of PORN-like retinitis in immunocompetent women, which was probably aggravated by a short-term immunosuppression secondary to oral steroids. PMID:27511757

  20. Progressive outer retinal necrosis-like retinitis in immunocompetent hosts.

    PubMed

    Chawla, Rohan; Tripathy, Koushik; Gogia, Varun; Venkatesh, Pradeep

    2016-08-10

    We describe two young immunocompetent women presenting with bilateral retinitis with outer retinal necrosis involving posterior pole with centrifugal spread and multifocal lesions simulating progressive outer retinal necrosis (PORN) like retinitis. Serology was negative for HIV and CD4 counts were normal; however, both women were on oral steroids at presentation for suspected autoimmune chorioretinitis. The retinitis in both eyes responded well to oral valaciclovir therapy. However, the eye with the more fulminant involvement developed retinal detachment with a loss of vision. Retinal atrophy was seen in the less involved eye with preservation of vision. Through these cases, we aim to describe a unique evolution of PORN-like retinitis in immunocompetent women, which was probably aggravated by a short-term immunosuppression secondary to oral steroids.

  1. Photovoltaic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, James; Mathieson, Keith; Kamins, Ted; Wang, Lele; Galambos, Ludwig; Huie, Philip; Sher, Alexander; Harris, James; Palanker, Daniel

    2011-03-01

    Electronic retinal prostheses seek to restore sight to patients suffering from retinal degenerative disorders. Implanted electrode arrays apply patterned electrical stimulation to surviving retinal neurons, producing visual sensations. All current designs employ inductively coupled coils to transmit power and/or data to the implant. We present here the design and initial testing of a photovoltaic retinal prosthesis fabricated with a pixel density of up to 177 pixels/mm2. Photodiodes within each pixel of the subretinal array directly convert light to stimulation current, avoiding the use of bulky coil implants, decoding electronics, and wiring, and thereby reducing surgical complexity. A goggles-mounted camera captures the visual scene and transmits the data stream to a pocket processor. The resulting images are projected into the eyes by video goggles using pulsed, near infrared (~900 nm) light. Prostheses with three pixel densities (15, 55, and 177 pix/mm2) are being fabricated, and tests indicate a charge injection limit of 1.62 mC/cm2 at 25Hz. In vitro tests of the photovoltaic retinal stimulation using a 512-element microelectrode array have recorded stimulated spikes from the ganglion cells, with latencies in the 1-100ms range, and with peak irradiance stimulation thresholds varying from 0.1 to 1 mW/mm2. With 1ms pulses at 25Hz the average irradiance is more than 100 times below the IR retinal safety limit. Elicited retinal response disappeared upon the addition of synaptic blockers, indicating that the inner retina is stimulated rather than the ganglion cells directly, and raising hopes that the prosthesis will preserve some of the retina's natural signal processing.

  2. Therapeutic Approaches to Histone Reprogramming in Retinal Degeneration.

    PubMed

    Berner, Andre K; Kleinman, Mark E

    2016-01-01

    Recent data have revealed epigenetic derangements and subsequent chromatin remodeling as a potent biologic switch for chronic inflammation and cell survival which are important therapeutic targets in the pathogenesis of several retinal degenerations. Histone deacetylases (HDACs) are a major component of this system and serve as a unique control of the chromatin remodeling process. With a multitude of targeted HDAC inhibitors now available, their use in both basic science and clinical studies has widened substantially. In the field of ocular biology, there are data to suggest that HDAC inhibition may suppress neovascularization and may be a possible treatment for retinitis pigmentosa and dry age-related macular degeneration (AMD). However, the effects of these inhibitors on cell survival and chemokine expression in the chorioretinal tissues remain very unclear. Here, we review the multifaceted biology of HDAC activity and pharmacologic inhibition while offering further insight into the importance of this epigenetic pathway in retinal degenerations. Our laboratory investigations aim to open translational avenues to advance dry AMD therapeutics while exploring the role of acetylation on inflammatory gene expression in the aging and degenerating retina. PMID:26427391

  3. To Remodel or To Build?

    ERIC Educational Resources Information Center

    Rosenblum, Todd

    2009-01-01

    The question of remodeling an existing house to make it wheelchair accessible or building a new barrier-free house is a difficult decision. This article presents some initial questions and considerations followed by a list of pros and cons for remodeling an existing house vs. building a new house.

  4. Retinal pigment epithelial cell proliferation

    PubMed Central

    Temple, Sally

    2015-01-01

    The human retinal pigment epithelium forms early in development and subsequently remains dormant, undergoing minimal proliferation throughout normal life. Retinal pigment epithelium proliferation, however, can be activated in disease states or by removing retinal pigment epithelial cells into culture. We review the conditions that control retinal pigment epithelial proliferation in culture, in animal models and in human disease and interpret retinal pigment epithelium proliferation in context of the recently discovered retinal pigment epithelium stem cell that is responsible for most in vitro retinal pigment epithelial proliferation. Retinal pigment epithelial proliferation-mediated wound repair that occurs in selected macular diseases is contrasted with retinal pigment epithelial proliferation-mediated fibroblastic scar formation that underlies proliferative vitreoretinopathy. We discuss the role of retinal pigment epithelial proliferation in age-related macular degeneration which is reparative in some cases and destructive in others. Macular retinal pigment epithelium wound repair and regression of choroidal neovascularization are more pronounced in younger than older patients. We discuss the possibility that the limited retinal pigment epithelial proliferation and latent wound repair in older age-related macular degeneration patients can be stimulated to promote disease regression in age-related macular degeneration. PMID:26041390

  5. Probabilistic retinal vessel segmentation

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  6. Bioelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Weiland, James D.

    2016-05-01

    Retinal prosthesis have been translated to clinical use over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa and one device is in clinical trials for treatment of age-related macular degeneration. These devices provide partial sight restoration and patients use this improved vision in their everyday lives to navigate and to detect large objects. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. In particular, current retinal prostheses do not provide peripheral visions due to technical and surgical limitations, thus limiting the effectiveness of the treatment. This paper reviews recent results from human implant patients and presents technical approaches for peripheral vision.

  7. No-Regrets Remodeling, 2nd Edition

    SciTech Connect

    2013-12-01

    No-Regrets Remodeling, sponsored by Oak Ridge National Laboratory, is an informative publication that walks homeowners and/or remodelers through various home remodeling projects. In addition to remodeling information, the publication provides instruction on how to incorporate energy efficiency into the remodeling process. The goal of the publication is to improve homeowner satisfaction after completing a remodeling project and to provide the homeowner with a home that saves energy and is comfortable and healthy.

  8. Pathway to Retinal Oximetry

    PubMed Central

    Beach, James

    2014-01-01

    Events and discoveries in oxygen monitoring over the past two centuries are presented as the background from which oximetry of the human retina evolved. Achievements and the people behind them are discussed, showing parallels between the work in tissue measurements and later in the eye. Developments in the two-wavelength technique for oxygen saturation measurements in retinal vessels are shown to exploit the forms of imaging technology available over time. The last section provides a short summary of the recent research in retinal diseases using vessel oximetry. PMID:25237591

  9. Retinal lesions in septicemia.

    PubMed

    Neudorfer, M; Barnea, Y; Geyer, O; Siegman-Igra, Y

    1993-12-15

    We explored the association between septicemia and specific retinal lesions in a prospective controlled study. Hemorrhages, cotton-wool spots, or Roth's spots were found in 24 of 101 septicemic patients (24%), compared to four of 99 age- and gender-matched control patients (4%) (P = .0002). There was no significant association between types of organisms or focus of infection and the presence of specific lesions. Histologic examination of affected eyes disclosed cytoid bodies in the nerve fiber layer without inflammation. A definite association between septicemia and retinal lesions was found and indicates the need for routine ophthalmoscopy in septicemic patients. PMID:8250076

  10. Tickling the retina: integration of subthreshold electrical pulses can activate retinal neurons

    NASA Astrophysics Data System (ADS)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2016-08-01

    Objective. The field of retinal prosthetics has made major progress over the last decade, restoring visual percepts to people suffering from retinitis pigmentosa. The stimulation pulses used by present implants are suprathreshold, meaning individual pulses are designed to activate the retina. In this paper we explore subthreshold pulse sequences as an alternate stimulation paradigm. Subthreshold pulses have the potential to address important open problems such as fading of visual percepts when patients are stimulated at moderate pulse repetition rates and the difficulty in preferentially stimulating different retinal pathways. Approach. As a first step in addressing these issues we used Gaussian white noise electrical stimulation combined with spike-triggered averaging to interrogate whether a subthreshold sequence of pulses can be used to activate the mouse retina. Main results. We demonstrate that the retinal network can integrate multiple subthreshold electrical stimuli under an experimental paradigm immediately relevant to retinal prostheses. Furthermore, these characteristic stimulus sequences varied in their shape and integration window length across the population of retinal ganglion cells. Significance. Because the subthreshold sequences activate the retina at stimulation rates that would typically induce strong fading (25 Hz), such retinal ‘tickling’ has the potential to minimize the fading problem. Furthermore, the diversity found across the cell population in characteristic pulse sequences suggests that these sequences could be used to selectively address the different retinal pathways (e.g. ON versus OFF). Both of these outcomes may significantly improve visual perception in retinal implant patients.

  11. Retinal profile and structural differences between myopes and emmetropes

    NASA Astrophysics Data System (ADS)

    Clark, Christopher Anderson

    Refractive development has been shown to be influenced by optical defocus in the eye and the interpretation of this signal appears to be localized in the retina. Optical defocus is not uniform across the retina and has been suggested as a potential cause of myopia development. Specifically hyperopic focus, i.e. focusing light behind the retina, may signal the eye to elongate, causing myopia. This non-uniform hyperopic signal appears to be due to the retinal shape. Ultimately, these signals are detected by the retina in an as yet undetermined manner. The purpose of this thesis is to examine the retinal profile using a novel method developed at Indiana University and then to examine retinal structural changes across the retina associated with myopia. Myopes exhibited more prolate retinas than hyperopes/emmetropes using the SD OCT. Using the SD OCT, this profile difference was detectable starting at 5 degrees from the fovea, which was closer than previously reported in the literature. These results agreed significantly with results found from peripheral refraction and peripheral axial length at 10 degrees. Overall, the total retina was thinner for myopes than hyperopes/emmetropes. It was also statistically significantly thinner for the Outer Nuclear Layer (ONL), Inner Nuclear Layer (INL) and Outer Plexiform Layer (OPL) but not for other retinal layers such as the Ganglion Layer. Thinning generally occurred outside of 5 degrees. The SD OCT method provided a nearly 10 fold increase in sensitivity which allowed for detection of profile changes closer to the fovea. The location of the retinal changes may be interesting as the layers that showed significant differences in thickness are also layers that contain cells believed to be associated with refractive development (amacrine, bipolar, and photoreceptor cells.) The reason for the retinal changes cannot be determined with this study, but possible theories include stretch due to axial elongation, neural remodeling due to

  12. The Effect of Inital-Phase Bone Remodeling on Implant Wound Healing.

    PubMed

    Hsu, Yung-Ting; Oh, Tae-Ju; Rudek, Ivan; Wang, Hom-Lay

    2016-01-01

    This case series aimed to investigate the initial-phase bone remodeling during implant wound healing and to discuss the possible contributing factors. A total of 11 implants with polished collars were placed in premaxillary regions via flapless approach with the aid of computer technology. After 15 months of follow-up, the results suggested that the presence of polished collars triggered bone resorption via a bone remodeling mechanism. The overall vertical crestal resorption was 0.78 ± 0.46 mm on average. This initial-phase bone remodeling primarily occurred within the first 3 months postoperatively. The slightly exposed polished collar may not worsen crestal bone level. PMID:27560679

  13. Accumulation of Rhodopsin in Late Endosomes Triggers Photoreceptor Cell Degeneration

    PubMed Central

    Chinchore, Yashodhan; Mitra, Amitavo; Dolph, Patrick J.

    2009-01-01

    Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late endosome to lysosome trafficking, we were able to show that rhodopsin accumulates in endosomal compartments in these mutants and leads to light-dependent retinal degeneration. Moreover, we also show that in dying photoreceptors the internalized rhodopsin is not degraded but instead shows characteristics of insoluble proteins. Together these data implicate buildup of rhodopsin in the late endosomal system as a novel trigger of death of photoreceptor neurons. PMID:19214218

  14. Nanomaterials and Retinal Toxicity

    EPA Science Inventory

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  15. Degenerative retinal disorders

    SciTech Connect

    Hollyfield, J.G. Anderson, R.E. LaVail, M.M. . Dept. of Anatomy)

    1987-01-01

    This book contains papers divided among three sections. Some of the paper titles are: Molecular Genetics of Gyrate Atrophy; Molecular Site of Expression and Genetic Interaction of the rd and the rds Loci in the Retina of the Mouse; and Studies on Abnormal Cyclic GMP Metabolism in Animal Models of Retinal Degeneration: Genetic Relationships and Cellular Compartmentalization.

  16. Firearm trigger assembly

    SciTech Connect

    Crandall, David L.; Watson, Richard W.

    2010-02-16

    A firearm trigger assembly for use with a firearm includes a trigger mounted to a forestock of the firearm so that the trigger is movable between a rest position and a triggering position by a forwardly placed support hand of a user. An elongated trigger member operatively associated with the trigger operates a sear assembly of the firearm when the trigger is moved to the triggering position. An action release assembly operatively associated with the firearm trigger assembly and a movable assembly of the firearm prevents the trigger from being moved to the triggering position when the movable assembly is not in the locked position.

  17. The Retinal Homeobox (Rx) gene is necessary for retinal regeneration

    PubMed Central

    Martinez-De Luna, Reyna I.; Kelly, Lisa E.; El-Hodiri, Heithem M.

    2011-01-01

    The Retinal Homeobox (Rx) gene is essential for vertebrate eye development. Rx function is required for the specification and maintenance of retinal progenitor cells (RPCs). Loss of Rx function leads to a lack of eye development in a variety of species. Here we show that Rx function is also necessary during retinal regeneration. We performed a thorough characterization of retinal regeneration after partial retinal resection in pre-metamorphic X. laevis. We show that after injury the wound is repopulated with retinal progenitor cells (RPCs) that express Rx and other RPC marker genes. We used an shRNA-based approach to specifically silence Rx expression in vivo in tadpoles. We found that loss of Rx function results in impaired retinal regeneration, including defects in the cells that repopulate the wound and the RPE at the wound site. We show that the regeneration defects can be rescued by provision of exogenous Rx. These results demonstrate for the first time that Rx, in addition to being essential during retinal development, also functions during retinal regeneration. PMID:21334323

  18. Retinal Detachment: Torn or Detached Retina Diagnosis

    MedlinePlus

    ... Eye Health / Eye Health A-Z Detached or Torn Retina Sections Retinal Detachment: What Is a Torn ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment: Torn or Detached Retina Diagnosis Written by: Kierstan Boyd ...

  19. Retinal Detachment: Torn or Detached Retina Symptoms

    MedlinePlus

    ... Eye Health / Eye Health A-Z Detached or Torn Retina Sections Retinal Detachment: What Is a Torn ... Retina Treatment Retinal Detachment Vision Simulator Retinal Detachment: Torn or Detached Retina Symptoms Written by: Kierstan Boyd ...

  20. Small Animal Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Choi, WooJhon; Drexler, Wolfgang; Fujimoto, James G.

    Developing and validating new techniques and methods for small animal imaging is an important research area because there are many small animal models of retinal diseases such as diabetic retinopathy, age-related macular degeneration, and glaucoma [1-6]. Because the retina is a multilayered structure with distinct abnormalities occurring in different intraretinal layers at different stages of disease progression, there is a need for imaging techniques that enable visualization of these layers individually at different time points. Although postmortem histology and ultrastructural analysis can be performed for investigating microscopic changes in the retina in small animal models, this requires sacrificing animals, which makes repeated assessment of the same animal at different time points impossible and increases the number of animals required. Furthermore, some retinal processes such as neurovascular coupling cannot be fully characterized postmortem.

  1. The peripheral retinal 'map'.

    PubMed Central

    Williams, D. H.

    1975-01-01

    The condition of the periphery of the retinal field of the human eye is of considerable significance, it is suggested, to those participating in various sporting activities. Its boundaries shrink and expand depending upon the physiological conditions imposed both upon the eye and upon the organism as a whole. Consequently its message to the brain may be impaired under stress with resulting danger owing to delayed response. Images Fig. 3 Fig. 4 Fig. 5 PMID:1148574

  2. Inherited Retinal Degenerative Disease Registry

    ClinicalTrials.gov

    2016-03-21

    Eye Diseases Hereditary; Retinal Disease; Achromatopsia; Bardet-Biedl Syndrome; Bassen-Kornzweig Syndrome; Batten Disease; Best Disease; Choroidal Dystrophy; Choroideremia; Cone Dystrophy; Cone-Rod Dystrophy; Congenital Stationary Night Blindness; Enhanced S-Cone Syndrome; Fundus Albipunctatus; Goldmann-Favre Syndrome; Gyrate Atrophy; Juvenile Macular Degeneration; Kearns-Sayre Syndrome; Leber Congenital Amaurosis; Refsum Syndrome; Retinitis Pigmentosa; Retinitis Punctata Albescens; Retinoschisis; Rod-Cone Dystrophy; Rod Dystrophy; Rod Monochromacy; Stargardt Disease; Usher Syndrome

  3. Glutamatergic Retinal Waves

    PubMed Central

    Kerschensteiner, Daniel

    2016-01-01

    Spontaneous activity patterns propagate through many parts of the developing nervous system and shape the wiring of emerging circuits. Prior to vision, waves of activity originating in the retina propagate through the lateral geniculate nucleus (LGN) of the thalamus to primary visual cortex (V1). Retinal waves have been shown to instruct the wiring of ganglion cell axons in LGN and of thalamocortical axons in V1 via correlation-based plasticity rules. Across species, retinal waves mature in three stereotypic stages (I–III), in which distinct circuit mechanisms give rise to unique activity patterns that serve specific functions in visual system refinement. Here, I review insights into the patterns, mechanisms, and functions of stage III retinal waves, which rely on glutamatergic signaling. As glutamatergic waves spread across the retina, neighboring ganglion cells with opposite light responses (ON vs. OFF) are activated sequentially. Recent studies identified lateral excitatory networks in the inner retina that generate and propagate glutamatergic waves, and vertical inhibitory networks that desynchronize the activity of ON and OFF cells in the wavefront. Stage III wave activity patterns may help segregate axons of ON and OFF ganglion cells in the LGN, and could contribute to the emergence of orientation selectivity in V1. PMID:27242446

  4. Mitochondrial dysfunction in retinal diseases.

    PubMed

    Barot, Megha; Gokulgandhi, Mitan R; Mitra, Ashim K

    2011-12-01

    The mitochondrion is a vital intracellular organelle for retinal cell function and survival. There is growing confirmation to support an association between mitochondrial dysfunction and a number of retinal degenerations. Investigations have also unveiled mitochondrial genomic instability as one of the contributing factors for age-related retinal pathophysiology. This review highlights the role of mitochondrial dysfunction originating from oxidative stress in the etiology of retinal diseases including diabetic retinopathy, glaucoma and age-related macular degeneration (AMD). Moreover, mitochondrial DNA (mtDNA) damage associated with AMD due to susceptibility of mtDNA to oxidative damage and failure of mtDNA repair pathways is also highlighted in this review. The susceptibility of neural retina and retinal pigment epithelium (RPE) mitochondria to oxidative damage with ageing appears to be a major factor in retinal degeneration. It thus appears that the mitochondrion is a weak link in the antioxidant defenses of retinal cells. In addition, failure of mtDNA repair pathways can also specifically contribute towards pathogenesis of AMD. This review will further summarize the prospective role of mitochondria targeting therapeutic agents for the treatment of retinal disease. Mitochondria based drug targeting to diminish oxidative stress or promote repair of mtDNA damage may offer potential alternatives for the treatment of various retinal degenerative diseases.

  5. [Application of retinal oximeter in ophthalmology].

    PubMed

    Li, Jing; Ma, Jianmin; Wang, Ningli

    2015-11-01

    Retinal oximeter is a new machine which has been used in the diagnose, treatment and research of several ophthalmic diseases for recent years. It allows ophthalmologists to gain retinal oxygen saturation directly. Therefore, retinal oximeter might be useful for ophthalmologists to understand ophthalmic diseases more deeper and clarify the impact of ischemia on retinal function. It has been reported in the literatures that retinal oximeter has potentially useful diagnostic and therapeutic indications in various eye diseases such as diabetic retinopathy, central retinal vein and artery occlusion, retinitis pigmentosa, glaucomatous optic neuropathy, et al. In this thesis, the application of retinal oximeter in ophthalmology is reviewed.

  6. microRNAs and Cardiovascular Remodeling.

    PubMed

    Ono, Koh

    2015-01-01

    Heart failure (HF) is associated with significant morbidity and mortality attributable largely to structural changes in the heart and with associated cardiac dysfunction. Remodeling is defined as alteration of the mass, dimensions, or shape of the heart (termed cardiac or ventricular remodeling) and vessels (vascular remodeling) in response to hemodynamic load and/or cardiovascular injury in association with neurohormonal activation. Remodeling may be described as physiologic or pathologic; alternatively, remodeling may be classified as adaptive or maladaptive. The importance of remodeling as a pathogenic mechanism has been controversial because factors leading to remodeling as well as the remodeling itself may be major determinants of patients' prognosis. The basic mechanisms of cardiovascular remodeling, and especially the roles of microRNAs in HF progression and vascular diseases, will be reviewed here.

  7. Intraocular retinal prosthesis.

    PubMed Central

    Humayun, M S

    2001-01-01

    PURPOSE: An electronic implant that can bypass the damaged photoreceptors and electrically stimulate the remaining retinal neurons to restore useful vision has been proposed. A number of key questions remain to make this approach feasible. The goal of this thesis is to address the following 2 specific null hypotheses: (1) Stimulus parameters make no difference in the electrically elicited retinal responses. (2) Just as we have millions of photoreceptors, so it will take a device that can generate millions of pixels/light points to create useful vision. METHODS: For electrophysiologic experiments, 2 different setups were used. In the first setup, charge-balanced pulses were delivered to the retinal surface via electrodes inserted through an open sky approach in normal or blind retinal degenerate (rd) mice. In the second setup, the rabbit retina was removed under red light conditions from an enucleated eye and then maintained in a chamber while being superfused with oxygenated, heated Ames media. In both setups, stimulating electrodes and recording electrodes were positioned on the retinal surface to evaluate the effect of varying stimulation parameters on the orthodromic retinal responses (i.e., recording electrode placed between stimulating electrodes and optic nerve head). For psychophysical experiments, visual images were divided into pixels of light that could be projected in a pattern on the retina in up to 8 sighted volunteers. Subjects were asked to perform various tasks ranging from reading and face recognition to various activities of daily living. RESULTS: Electrophysiologic experiments: In a normal mouse, a single cycle of a 1-kHz sine wave was significantly more efficient than a 1-kHz square wave (P < .05), but no such difference was noted in either of the 8- or 16-week-old rd mouse groups (8-week-old, P = .426; 16-week-old, P = .078). Charge threshold was significantly higher in 16-week-old rd mouse versus both 8-week-old rd and normal mouse for every

  8. Dynamics of Lung Defense in Pneumonia: Resistance, Resilience, and Remodeling

    PubMed Central

    Quinton, Lee J.; Mizgerd, Joseph P.

    2015-01-01

    Pneumonia is initiated by microbes in the lung, but physiological processes integrating responses across diverse cell types and organ systems dictate the outcome of respiratory infection. Resistance, or actions of the host to eradicate living microbes, in the lungs involves a combination of innate and adaptive immune responses triggered by air-space infection. Resilience, or the ability of the host tissues to withstand the physiologically damaging effects of microbial and immune activities, is equally complex, precisely regulated, and determinative. Both immune resistance and tissue resilience are dynamic and change throughout the lifetime, but we are only beginning to understand such remodeling and how it contributes to the incidence of severe pneumonias, which diminishes as childhood progresses and then increases again among the elderly. Here, we review the concepts of resistance, resilience, and remodeling as they apply to pneumonia, highlighting recent advances and current significant knowledge gaps. PMID:25148693

  9. Air pollution and adverse cardiac remodeling: clinical effects and basic mechanisms.

    PubMed

    Liu, Yonggang; Goodson, Jamie M; Zhang, Bo; Chin, Michael T

    2015-01-01

    Exposure to air pollution has long been known to trigger cardiovascular events, primarily through activation of local and systemic inflammatory pathways that affect the vasculature. Detrimental effects of air pollution exposure on heart failure and cardiac remodeling have also been described in human populations. Recent studies in both human subjects and animal models have provided insights into the basic physiological, cellular and molecular mechanisms that play a role in adverse cardiac remodeling. This review will give a brief overview of the relationship between air pollution and cardiovascular disease, describe the clinical effects of air pollution exposure on cardiac remodeling, describe the basic mechanisms that affect remodeling as described in human and animal systems and will discuss future areas of investigation.

  10. Retinal Imaging and Image Analysis

    PubMed Central

    Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2011-01-01

    Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships. PMID:21743764

  11. Perceptual Fading without Retinal Adaptation

    ERIC Educational Resources Information Center

    Hsieh, Po-Jang; Colas, Jaron T.

    2012-01-01

    A retinally stabilized object readily undergoes perceptual fading and disappears from consciousness. This startling phenomenon is commonly believed to arise from local bottom-up sensory adaptation to edge information that occurs early in the visual pathway, such as in the lateral geniculate nucleus of the thalamus or retinal ganglion cells. Here…

  12. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  13. Retinal Image Quality Assessment for Spaceflight-Induced Vision Impairment Study

    NASA Technical Reports Server (NTRS)

    Vu, Amanda Cadao; Raghunandan, Sneha; Vyas, Ruchi; Radhakrishnan, Krishnan; Taibbi, Giovanni; Vizzeri, Gianmarco; Grant, Maria; Chalam, Kakarla; Parsons-Wingerter, Patricia

    2015-01-01

    Long-term exposure to space microgravity poses significant risks for visual impairment. Evidence suggests such vision changes are linked to cephalad fluid shifts, prompting a need to directly quantify microgravity-induced retinal vascular changes. The quality of retinal images used for such vascular remodeling analysis, however, is dependent on imaging methodology. For our exploratory study, we hypothesized that retinal images captured using fluorescein imaging methodologies would be of higher quality in comparison to images captured without fluorescein. A semi-automated image quality assessment was developed using Vessel Generation Analysis (VESGEN) software and MATLAB® image analysis toolboxes. An analysis of ten images found that the fluorescein imaging modality provided a 36% increase in overall image quality (two-tailed p=0.089) in comparison to nonfluorescein imaging techniques.

  14. Retinal connectivity and primate vision

    PubMed Central

    Lee, Barry B.; Martin, Paul R.; Grünert, Ulrike

    2012-01-01

    The general principles of retinal organization are now well known. It may seem surprising that retinal organization in the primate, which has a complex visual behavioral repertoire, appears relatively simple. In this review, we primarily consider retinal structure and function in primate species. Photoreceptor distribution and connectivity are considered as are connectivity in the outer and inner retina. One key issue is the specificity of retinal connections; we suggest that the retina shows connectional specificity but this is seldom complete, and we consider here the functional consequences of imprecise wiring. Finally, we consider how retinal systems can be linked to psychophysical descriptions of different channels, chromatic and luminance, which are proposed to exist in the primate visual system. PMID:20826226

  15. Selective inner retinal layer involvement in early syphilitic retinitis as evidenced by spectral domain OCT

    PubMed Central

    Klemencic, Stephanie A.; Newman, Tricia L.; Messner, Leonard V.

    2011-01-01

    Retinitis as a feature of syphilitic uveitis in immunocompromised individuals is a common finding. We present spectral domain OCT images of early syphilitic retinitis pre and post treatment with penicillin. This case suggests that the inner retinal layers may be selectively involved with early syphilitic retinitis. Early treatment is important to avoid outer layer retinal involvement and to decrease ocular morbidity.

  16. Special Report: The Rush to Remodel

    ERIC Educational Resources Information Center

    Nation's Schools, 1973

    1973-01-01

    As more and more districts scurry to remodel outdated buildings and individual rooms, the detailed how-to-do-it sometimes gets lost in the overall planning. This article furnishes specific help in ways to remodel economically. (Author/JN)

  17. Stereotyped initiation of retinal waves by bipolar cells via presynaptic NMDA autoreceptors

    PubMed Central

    Zhang, Rong-wei; Li, Xiao-quan; Kawakami, Koichi; Du, Jiu-lin

    2016-01-01

    Glutamatergic retinal waves, the spontaneous patterned neural activities propagating among developing retinal ganglion cells (RGCs), instruct the activity-dependent refinement of visuotopic maps. However, its initiation and underlying mechanism remain largely elusive. Here using larval zebrafish and multiple in vivo approaches, we discover that bipolar cells (BCs) are responsible for the generation of glutamatergic retinal waves. The wave originates from BC axon terminals (ATs) and propagates laterally to nearby BCs and vertically to downstream RGCs and the optic tectum. Its initiation is triggered by the activation of and consequent glutamate release from BC ATs, and is mediated by the N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) expressed at these ATs. Intercellular asymmetry of NMDAR expression at BC ATs enables the preferential initiation of waves at the temporal retina, where BC ATs express more NMDARs. Thus, our findings indicate that glutamatergic retinal waves are initiated by BCs through a presynaptic NMDA autoreceptor-dependent process. PMID:27586999

  18. Stereotyped initiation of retinal waves by bipolar cells via presynaptic NMDA autoreceptors.

    PubMed

    Zhang, Rong-Wei; Li, Xiao-Quan; Kawakami, Koichi; Du, Jiu-Lin

    2016-01-01

    Glutamatergic retinal waves, the spontaneous patterned neural activities propagating among developing retinal ganglion cells (RGCs), instruct the activity-dependent refinement of visuotopic maps. However, its initiation and underlying mechanism remain largely elusive. Here using larval zebrafish and multiple in vivo approaches, we discover that bipolar cells (BCs) are responsible for the generation of glutamatergic retinal waves. The wave originates from BC axon terminals (ATs) and propagates laterally to nearby BCs and vertically to downstream RGCs and the optic tectum. Its initiation is triggered by the activation of and consequent glutamate release from BC ATs, and is mediated by the N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) expressed at these ATs. Intercellular asymmetry of NMDAR expression at BC ATs enables the preferential initiation of waves at the temporal retina, where BC ATs express more NMDARs. Thus, our findings indicate that glutamatergic retinal waves are initiated by BCs through a presynaptic NMDA autoreceptor-dependent process. PMID:27586999

  19. Longitudinal in vivo imaging of retinal gliosis in a diabetic mouse model.

    PubMed

    Kumar, Saravana; Zhuo, Lang

    2010-10-01

    In this study, we visualize and quantify retinal gliosis in vivo for monitoring early diabetic retinopathy (DR) in a transgenic mouse model. Onset of diabetes was triggered via intraperitoneal injection of streptozotocin (STZ) into transgenic F1 hybrid (FVB/N × C57BL/6J) mice expressing green fluorescent protein (GFP) under the control of glial fibrillary acidic protein (GFAP) promoter. Retinal glial cells are imaged once pre-STZ treatment followed by weekly post-STZ imaging for five weeks using a confocal scanning laser ophthalmoscope. Mice develop diabetes one week after STZ induction as confirmed from the high blood glucose levels (>13.9 mmol/L). A significant increase is observed in the GFAP-GFP transgene expression from astrocytic cell bodies and processes as early as week 5 for the STZ-treated mice. Retinal astrocytes also undergo hyperplasia progressively from week 0 to 5. This precedes any structural abnormalities to the retinal vasculature. Immunohistochemistry (IHC) on retinal sections as well as quantitative RT-PCR of endogenous and transgene GFAP mRNA supports our in vivo observation. Our in vivo data correlates with clinical reports with regards to retinal gliosis-related inflammatory response during early diabetic retinopathy. This opens up the possibility of using in vivo molecular imaging of retinal glial cells as a platform for monitoring the efficacy of anti-DR drug candidates which intervene at an early stage.

  20. Identifying asthma triggers.

    PubMed

    McCarty, Justin C; Ferguson, Berrylin J

    2014-02-01

    Asthma has many triggers including rhinosinusitis; allergy; irritants; medications (aspirin in aspirin-exacerbated respiratory disease); and obesity. Paradoxic vocal fold dysfunction mimics asthma and may be present along with asthma. This article reviews each of these triggers, outlining methods of recognizing the trigger and then its management. In many patients more than one trigger may be present. Full appreciation of the complexity of these relationships and targeted therapy to the trigger is needed to best care for the patient with asthma.

  1. Flexible retinal electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.; Christenson, Todd R.

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  2. Shape Remodeling Assemblies in Biologically Inspired Materials

    NASA Astrophysics Data System (ADS)

    Safinya, Cyrus

    2013-03-01

    Much of our research is inspired by, and directed at, understanding the formation of novel structures (both relatively static and highly dynamic) with distinct shapes and morphologies observed in charged biological systems. The structures, in turn, often correlate to specific functions. For example, charged nanoscale tubules and rods and their assemblies are of interest in a range of applications, including as templates for hierarchical nanostructures, encapsulation systems, and biosensors. A series of studies will be described on charged biological assemblies exhibiting ``molecularly-triggered'' dynamical shape changes. In particular, we will focus on protein and lipid based nanotubule formation through small molecule stimuli-induced shape remodeling events. The systems include invertible protein nanotubes from two-state tubulin-protein building blocks and lipid nanotubes and nanorods from curvature stabilizing lipids (mimicking membrane curvature generating proteins). Funded by DOE-BES grant number DOE-DE-FG02-06ER46314 (protein and lipid assembly, lipid synthesis, structure-function) and NSF-DMR-1101900 (phase behavior).

  3. Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis

    PubMed Central

    Castaldi, E.; Cicchini, G. M.; Cinelli, L.; Rizzo, S.; Morrone, M. C.

    2016-01-01

    Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI). After surgery, six out of seven retinitis pigmentosa (RP) blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD) activity in V1 and the lateral geniculate nucleus (LGN) was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation. PMID:27780207

  4. Intraocular retinal transplantation: a review.

    PubMed

    Hammer, R M; Yinon, U

    1991-01-01

    This review covers intraocular transplantation of retinal tissue. This has importance both for theoretical understanding of retinal and neural development and for possible future clinical application. Transplantation sites have ranged from the anterior chamber through the retina to the subretinal space. Transplanted tissue has ranged from whole retina to specific retinal layers or specific types of retinal cells. Both within-species and inter-species transplants have been performed, and donor age has ranged from embryonic to adult. The ability of transplanted tissue to be accepted and to differentiate in host eyes has been studied. The conditions under which successful transplants are obtained, host-graft interactions, and transplantation methodologies have been explored. Morphological, and to a small extent, also functional characteristics of the transplants have been studied. PMID:1747393

  5. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling.

    PubMed

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA-DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx (-/-) pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration. PMID:27462424

  6. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling

    PubMed Central

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA–DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx−/− pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration. PMID:27462424

  7. Ventricular restoration--a surgical approach to reverse ventricular remodeling.

    PubMed

    Buckberg, Gerald D

    2004-10-01

    Congestive heart failure is most often caused by scar from coronary occlusion. The transition from occluded vessel to scar to dilation results in a remodeled ventricle that changes shape from ellipse to sphere. This shape change following an index event is called remodeling and a surgical approach for restoration (bring back to normal) will be described that uses the patient's own tissue, rather than employing heart replacement by mechanical devices or transplantation. The surgical restoration approach was taken by the RESTORE group that comprises an international medical and surgical team that will report (a) the remodeling infrastructure, role of compensatory remote muscle, and factors underlying surgical restoration decisions, (b) structural basis for ventricular geometric changes and surgical background for restoration, (c) individual rebuilding experience in 1150 patients over 20 years from one center, (d) integrated 5 year results from the RESTORE team in 1198 patients, (e) electrical aspects of restoration in 382 patients with only one AICD used, (f) how restoration improves mechanical synchrony without electrical devices, (g) geometric reasons for secondary mitral insufficiency and impact of adding mitral repair during SVR procedures, and (h) importance of defining site specific scar in no ischemic disease to identify a similar trigger lesion in non ischemic cardiomyopathy. The importance of a team approach by the RESTORE group may set the benchmark for collaborative world wide groups, and thereby depart from traditional focal approaches by individual disciplines. PMID:15886970

  8. Microsystems Technology for Retinal Implants

    NASA Astrophysics Data System (ADS)

    Weiland, James

    2005-03-01

    The retinal prosthesis is targeted to treat age-related macular degeneration, retinitis pigmentosa, and other outer retinal degenerations. Simulations of artificial vision have predicted that 600-1000 individual pixels will be needed if a retinal prosthesis is to restore function such as reading large print and face recognition. An implantable device with this many electrode contacts will require microsystems technology as part of its design. An implantable retinal prosthesis will consist of several subsystems including an electrode array and hermetic packaging. Microsystems and microtechnology approaches are being investigated as possible solutions for these design problems. Flexible polydimethylsiloxane (PDMS) substrate electrode arrays and silicon micromachined electrode arrays are under development. Inactive PDMS electrodes have been implanted in 3 dogs to assess mechanical biocompatibility. 3 dogs were followed for 6 months. The implanted was securely fastened to the retina with a single retinal tack. No post-operative complications were evident. The array remained within 100 microns of the retinal surface. Histological evaluation showed a well preserved retina underneath the electrode array. A silicon device with electrodes suspended on micromachined springs has been implanted in 4 dogs (2 acute implants, 2 chronic implants). The device, though large, could be inserted into the eye and positioned on the retina. Histological analysis of the retina from the spring electrode implants showed that spring mounted posts penetrated the retina, thus the device will be redesigned to reduce the strength of the springs. These initial implants will provide information for the designers to make the next generation silicon device. We conclude that microsystems technology has the potential to make possible a retinal prosthesis with 1000 individual contacts in close proximity to the retina.

  9. Frontiers in growth and remodeling

    PubMed Central

    Menzel, Andreas; Kuhl, Ellen

    2012-01-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  10. Vascular Remodeling in Pulmonary Hypertension

    PubMed Central

    Shimoda, Larissa A; Laurie, Steven S.

    2013-01-01

    Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions and the appearance of cells expressing smooth muscle specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular trans-differentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting. PMID:23334338

  11. Frontiers in growth and remodeling.

    PubMed

    Menzel, Andreas; Kuhl, Ellen

    2012-06-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  12. Chromatin remodeling in plant development.

    PubMed

    Jarillo, José A; Piñeiro, Manuel; Cubas, Pilar; Martínez-Zapater, José M

    2009-01-01

    Plant development results from specific patterns of gene expression that are tightly regulated in a spatio-temporal manner. Chromatin remodeling plays a central role in establishing these expression patterns and maintaining epigenetic transcriptional states through successive rounds of mitosis that take place within a cell lineage. Plant epigenetic switches occur not only at the embryo stage, but also during postembryonic developmental transitions, suggesting that chromatin remodeling activities in plants can provide a higher degree of regulatory flexibility which probably underlies their developmental plasticity. Here, we highlight recent progress in the understanding of plant chromatin dynamic organization, facilitating the activation or repression of specific sets of genes involved in different developmental programs and integrating them with the response to environmental signals. Chromatin conformation controls gene expression both in actively dividing undifferentiated cells and in those already fate-determined. In this context, we first describe chromatin reorganization activities required to maintain meristem function stable through DNA replication and cell division. Organ initiation at the apex, with emphasis on reproductive development, is next discussed to uncover the chromatin events involved in the establishment and maintenance of expression patterns associated with differentiating cells; this is illustrated with the complex epigenetic regulation of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Finally, we discuss the involvement of chromatin remodeling in plant responses to environmental cues and to different types of stress conditions.

  13. The mechanics of retinal detachment

    NASA Astrophysics Data System (ADS)

    Chou, Tom; Siegel, Michael

    2013-03-01

    We present a model of the mechanical and fluid forces associated with exudative retinal detachments where the retinal photoreceptor cells separate typically from the underlying retinal pigment epithelium (RPE). By computing the total fluid volume flow arising from transretinal, vascular, and retinal pigment epithelium (RPE) pump currents, we determine the conditions under which the subretinal fluid pressure exceeds the maximum yield stress holding the retina and RPE together, giving rise to an irreversible, extended retinal delamination. We also investigate localized, blister-like retinal detachments by balancing mechanical tension in the retina with both the retina-RPE adhesion energy and the hydraulic pressure jump across the retina. For detachments induced by traction forces, we find a critical radius beyond which the blister is unstable to growth. Growth of a detached blister can also be driven by inflamed tissue within which e.g., the hydraulic conductivities of the retina or choroid increase, the RPE pumps fail, or the adhesion properties change. We determine the parameter regimes in which the blister either becomes unstable to growth, remains stable and finite-sized, or shrinks, allowing possible healing. This work supported by the Army Research Office through grant 58386MA

  14. Retinal oxygen extraction in humans

    NASA Astrophysics Data System (ADS)

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-10-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy.

  15. Retinal implants: a systematic review.

    PubMed

    Chuang, Alice T; Margo, Curtis E; Greenberg, Paul B

    2014-07-01

    Retinal implants present an innovative way of restoring sight in degenerative retinal diseases. Previous reviews of research progress were written by groups developing their own devices. This systematic review objectively compares selected models by examining publications describing five representative retinal prostheses: Argus II, Boston Retinal Implant Project, Epi-Ret 3, Intelligent Medical Implants (IMI) and Alpha-IMS (Retina Implant AG). Publications were analysed using three criteria for interim success: clinical availability, vision restoration potential and long-term biocompatibility. Clinical availability: Argus II is the only device with FDA approval. Argus II and Alpha-IMS have both received the European CE Marking. All others are in clinical trials, except the Boston Retinal Implant, which is in animal studies. Vision restoration: resolution theoretically correlates with electrode number. Among devices with external cameras, the Boston Retinal Implant leads with 100 electrodes, followed by Argus II with 60 electrodes and visual acuity of 20/1262. Instead of an external camera, Alpha-IMS uses a photodiode system dependent on natural eye movements and can deliver visual acuity up to 20/546. Long-term compatibility: IMI offers iterative learning; Epi-Ret 3 is a fully intraocular device; Alpha-IMS uses intraocular photosensitive elements. Merging the results of these three criteria, Alpha-IMS is the most likely to achieve long-term success decades later, beyond current clinical availability. PMID:24403565

  16. LIM Kinase, a Newly Identified Regulator of Presynaptic Remodeling by Rod Photoreceptors After Injury

    PubMed Central

    Wang, Weiwei; Townes-Anderson, Ellen

    2015-01-01

    Purpose Rod photoreceptors retract their axon terminals and develop neuritic sprouts in response to retinal detachment and reattachment, respectively. This study examines the role of LIM kinase (LIMK), a component of RhoA and Rac pathways, in the presynaptic structural remodeling of rod photoreceptors. Methods Phosphorylated LIMK (p-LIMK), the active form of LIMK, was examined in salamander retina with Western blot and confocal microscopy. Axon length within the first 7 hours and process growth after 3 days of culture were assessed in isolated rod photoreceptors treated with inhibitors of upstream regulators ROCK and p21-activated kinase (Pak) (Y27632 and IPA-3) and a direct LIMK inhibitor (BMS-5). Porcine retinal explants were also treated with BMS-5 and analyzed 24 hours after detachment. Because Ca2+ influx contributes to axonal retraction, L-type channels were blocked in some experiments with nicardipine. Results Phosphorylated LIMK is present in rod terminals during retraction and in newly formed processes. Axonal retraction over 7 hours was significantly reduced by inhibition of LIMK or its regulators, ROCK and Pak. Process growth was reduced by LIMK or Pak inhibition especially at the basal (axon-bearing) region of the rod cells. Combining Ca2+ channel and LIMK inhibition had no additional effect on retraction but did further inhibit sprouting after 3 days. In detached porcine retina, LIMK inhibition reduced rod axonal retraction and improved retinal morphology. Conclusions Thus structural remodeling, in the form of either axonal retraction or neuritic growth, requires LIMK activity. LIM kinase inhibition may have therapeutic potential for reducing pathologic rod terminal plasticity after retinal injury. PMID:26658506

  17. Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response

    PubMed Central

    Vandersmissen, Ine; Craps, Sander; Depypere, Maarten; Coppiello, Giulia; van Gastel, Nick; Maes, Frederik; Carmeliet, Geert; Schrooten, Jan; Jones, Elizabeth A.V.; Umans, Lieve; Devlieger, Roland; Koole, Michel; Gheysens, Olivier; Zwijsen, An; Aranguren, Xabier L.

    2015-01-01

    Collateral remodeling is critical for blood flow restoration in peripheral arterial disease and is triggered by increasing fluid shear stress in preexisting collateral arteries. So far, no arterial-specific mediators of this mechanotransduction response have been identified. We show that muscle segment homeobox 1 (MSX1) acts exclusively in collateral arterial endothelium to transduce the extrinsic shear stimulus into an arteriogenic remodeling response. MSX1 was specifically up-regulated in remodeling collateral arteries. MSX1 induction in collateral endothelial cells (ECs) was shear stress driven and downstream of canonical bone morphogenetic protein–SMAD signaling. Flow recovery and collateral remodeling were significantly blunted in EC-specific Msx1/2 knockout mice. Mechanistically, MSX1 linked the arterial shear stimulus to arteriogenic remodeling by activating the endothelial but not medial layer to a proinflammatory state because EC but not smooth muscle cellMsx1/2 knockout mice had reduced leukocyte recruitment to remodeling collateral arteries. This reduced leukocyte infiltration in EC Msx1/2 knockout mice originated from decreased levels of intercellular adhesion molecule 1 (ICAM1)/vascular cell adhesion molecule 1 (VCAM1), whose expression was also in vitro driven by promoter binding of MSX1. PMID:26391659

  18. Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response.

    PubMed

    Vandersmissen, Ine; Craps, Sander; Depypere, Maarten; Coppiello, Giulia; van Gastel, Nick; Maes, Frederik; Carmeliet, Geert; Schrooten, Jan; Jones, Elizabeth A V; Umans, Lieve; Devlieger, Roland; Koole, Michel; Gheysens, Olivier; Zwijsen, An; Aranguren, Xabier L; Luttun, Aernout

    2015-09-28

    Collateral remodeling is critical for blood flow restoration in peripheral arterial disease and is triggered by increasing fluid shear stress in preexisting collateral arteries. So far, no arterial-specific mediators of this mechanotransduction response have been identified. We show that muscle segment homeobox 1 (MSX1) acts exclusively in collateral arterial endothelium to transduce the extrinsic shear stimulus into an arteriogenic remodeling response. MSX1 was specifically up-regulated in remodeling collateral arteries. MSX1 induction in collateral endothelial cells (ECs) was shear stress driven and downstream of canonical bone morphogenetic protein-SMAD signaling. Flow recovery and collateral remodeling were significantly blunted in EC-specific Msx1/2 knockout mice. Mechanistically, MSX1 linked the arterial shear stimulus to arteriogenic remodeling by activating the endothelial but not medial layer to a proinflammatory state because EC but not smooth muscle cellMsx1/2 knockout mice had reduced leukocyte recruitment to remodeling collateral arteries. This reduced leukocyte infiltration in EC Msx1/2 knockout mice originated from decreased levels of intercellular adhesion molecule 1 (ICAM1)/vascular cell adhesion molecule 1 (VCAM1), whose expression was also in vitro driven by promoter binding of MSX1. PMID:26391659

  19. Ruptured retinal arterial macroaneurysm: diagnosis and management.

    PubMed

    Speilburg, Ashley M; Klemencic, Stephanie A

    2014-01-01

    Retinal arterial macroaneurysm is an acquired, focal dilation of a retinal artery, typically occurring within the first three bifurcations of the central retinal artery. The clinical presentation of a retinal arterial macroaneurysm is highly variable, making initial diagnosis difficult and differentials many. Identification of retinal arterial macroaneurysms is crucial to appropriately co-manage with the primary care physician for hypertension control. Prognosis is generally good and observation is often an adequate treatment. However, in cases of macular threat or involvement, some treatment options are available and referral to a retinal specialist is indicated.

  20. Factors regulating capillary remodeling in a reversible model of inflammatory corneal angiogenesis

    PubMed Central

    Mukwaya, Anthony; Peebo, Beatrice; Xeroudaki, Maria; Ali, Zaheer; Lennikov, Anton; Jensen, Lasse; Lagali, Neil

    2016-01-01

    Newly formed microcapillary networks arising in adult organisms by angiogenic and inflammatory stimuli contribute to pathologies such as corneal and retinal blindness, tumor growth, and metastasis. Therapeutic inhibition of pathologic angiogenesis has focused on targeting the VEGF pathway, while comparatively little attention has been given to remodeling of the new microcapillaries into a stabilized, functional, and persistent vascular network. Here, we used a novel reversible model of inflammatory angiogenesis in the rat cornea to investigate endogenous factors rapidly invoked to remodel, normalize and regress microcapillaries as part of the natural response to regain corneal avascularity. Rapid reversal of an inflammatory angiogenic stimulus suppressed granulocytic activity, enhanced recruitment of remodelling macrophages, induced capillary intussusception, and enriched pathways and processes involving immune cells, chemokines, morphogenesis, axonal guidance, and cell motility, adhesion, and cytoskeletal functions. Whole transcriptome gene expression analysis revealed suppression of numerous inflammatory and angiogenic factors and enhancement of endogenous inhibitors. Many of the identified genes function independently of VEGF and represent potentially new targets for molecular control of the critical process of microvascular remodeling and regression in the cornea. PMID:27561355

  1. Factors regulating capillary remodeling in a reversible model of inflammatory corneal angiogenesis.

    PubMed

    Mukwaya, Anthony; Peebo, Beatrice; Xeroudaki, Maria; Ali, Zaheer; Lennikov, Anton; Jensen, Lasse; Lagali, Neil

    2016-01-01

    Newly formed microcapillary networks arising in adult organisms by angiogenic and inflammatory stimuli contribute to pathologies such as corneal and retinal blindness, tumor growth, and metastasis. Therapeutic inhibition of pathologic angiogenesis has focused on targeting the VEGF pathway, while comparatively little attention has been given to remodeling of the new microcapillaries into a stabilized, functional, and persistent vascular network. Here, we used a novel reversible model of inflammatory angiogenesis in the rat cornea to investigate endogenous factors rapidly invoked to remodel, normalize and regress microcapillaries as part of the natural response to regain corneal avascularity. Rapid reversal of an inflammatory angiogenic stimulus suppressed granulocytic activity, enhanced recruitment of remodelling macrophages, induced capillary intussusception, and enriched pathways and processes involving immune cells, chemokines, morphogenesis, axonal guidance, and cell motility, adhesion, and cytoskeletal functions. Whole transcriptome gene expression analysis revealed suppression of numerous inflammatory and angiogenic factors and enhancement of endogenous inhibitors. Many of the identified genes function independently of VEGF and represent potentially new targets for molecular control of the critical process of microvascular remodeling and regression in the cornea. PMID:27561355

  2. Asthma triggers (image)

    MedlinePlus

    ... common asthma triggers are mold, pets, dust, grasses, pollen, cockroaches, odors from chemicals, and smoke from cigarettes. ... common asthma triggers are mold, pets, dust, grasses, pollen, cockroaches, odors from chemicals, and smoke from cigarettes.

  3. Gender differences in cardiac hypertrophic remodeling.

    PubMed

    Patrizio, Mario; Marano, Giuseppe

    2016-01-01

    Cardiac remodeling is a complex process that occurs in response to different types of cardiac injury such as ischemia and hypertension, and that involves cardiomyocytes, fibroblasts, vascular smooth muscle cells, vascular endothelial cells, and inflammatory cells. The end result is cardiomyocyte hypertrophy, fibrosis, inflammation, vascular, and electrophysiological remodeling. This paper reviews a large number of studies on the influence of gender on pathological cardiac remodeling and shows how sex differences result in different clinical outcomes and therapeutic responses, with males which generally develop greater cardiac remodeling responses than females. Although estrogens appear to have an important role in attenuating adverse cardiac remodeling, the mechanisms through which gender modulates myocardial remodeling remain to be identified. PMID:27364397

  4. Temperature controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Schlott, Kerstin; Koinzer, Stefan; Baade, Alexander; Birngruber, Reginald; Roider, Johann; Brinkmann, Ralf

    2013-06-01

    Retinal photocoagulation lacks objective dosage in clinical use, thus the commonly applied lesions are too deep and strong, associated with pain reception and the risk of visual field defects and induction of choroidal neovascularisations. Optoacoustics allows real-time non-invasive temperature measurement in the fundus during photocoagulation by applying short probe laser pulses additionally to the treatment radiation, which excite the emission of ultrasonic waves. Due to the temperature dependence of the Grüneisen parameter, the amplitudes of the ultrasonic waves can be used to derive the temperature of the absorbing tissue. By measuring the temperatures in real-time and automatically controlling the irradiation by feedback to the treatment laser, the strength of the lesions can be defined. Different characteristic functions for the time and temperature dependent lesion sizes were used as rating curves for the treatment laser, stopping the irradiation automatically after a desired lesion size is achieved. The automatically produced lesion sizes are widely independent of the adjusted treatment laser power and individual absorption. This study was performed on anaesthetized rabbits and is a step towards a clinical trial with automatically controlled photocoagulation.

  5. βA3/A1-crystallin is required for proper astrocyte template formation and vascular remodeling in the retina

    PubMed Central

    Sinha, Debasish; Valapala, Mallika; Bhutto, Imran; Patek, Bonnie; Zhang, Cheng; Hose, Stacey; Yang, Fang; Cano, Marisol; Stark, Walter J.; Lutty, Gerard A.; Zigler, J. Samuel; Wawrousek, Eric F.

    2013-01-01

    Nuc1 is a spontaneous rat mutant resulting from a mutation in the Cryba1 gene, coding for βA3/A1-crystallin. Our earlier studies with Nuc1 provided novel evidence that astrocytes, which express βA3/A1-crystallin, have a pivotal role in retinal remodeling. The role of astrocytes in the retina is only beginning to be explored. One of the limitations in the field is the lack of appropriate animal models to better investigate the function of astrocytes in retinal health and disease. We have now established transgenic mice that overexpress the Nuc1 mutant form of Cryba1, specifically in astrocytes. Astrocytes in wild type mice show normal compact stellate structure, producing a honeycomb-like network. In contrast, in transgenics over-expressing the mutant (Nuc1) Cryba1 in astrocytes, bundle-like structures with abnormal patterns and morphology were observed. In the nerve fiber layer of the transgenic mice, an additional layer of astrocytes adjacent to the vitreous is evident. This abnormal organization of astrocytes affects both the superficial and deep retinal vascular density and remodeling. Fluorescein angiography showed increased venous dilation and tortuosity of branches in the transgenic retina, as compared to wild type. Moreover, there appear to be fewer interactions between astrocytes and endothelial cells in the transgenic retina than in normal mouse retina. Further, astrocytes overexpressing the mutant βA3/A1-crystallin migrate into the vitreous, and ensheath the hyaloid artery, in a manner similar to that seen in the Nuc1 rat. Together, these data demonstrate that developmental abnormalities of astrocytes can affect the normal remodeling process of both fetal and retinal vessels of the eye and that βA3/A1-crystallin is essential for normal astrocyte function in the retina. PMID:22427112

  6. Color Doppler imaging of retinal diseases.

    PubMed

    Dimitrova, Galina; Kato, Satoshi

    2010-01-01

    Color Doppler imaging (CDI) is a widely used method for evaluating ocular circulation that has been used in a number of studies on retinal diseases. CDI assesses blood velocity parameters by using ultrasound waves. In ophthalmology, these assessments are mainly performed on the retrobulbar blood vessels: the ophthalmic, the central retinal, and the short posterior ciliary arteries. In this review, we discuss CDI use for the assessment of retinal diseases classified into the following: vascular diseases, degenerations, dystrophies, and detachment. The retinal vascular diseases that have been investigated by CDI include diabetic retinopathy, retinal vein occlusions, retinal artery occlusions, ocular ischemic conditions, and retinopathy of prematurity. Degenerations and dystrophies included in this review are age-related macular degeneration, myopia, and retinitis pigmentosa. CDI has been used for the differential diagnosis of retinal detachment, as well as the evaluation of retrobulbar circulation in this condition. CDI is valuable for research and is a potentially useful diagnostic tool in the clinical setting.

  7. [Unusual retinal abnormality: retinal hemorrhages related to scurvy].

    PubMed

    Errera, M-H; Dupas, B; Man, H; Gualino, V; Gaudric, A; Massin, P

    2011-03-01

    A diet restricted to rice and boiled fruit and vegetables leads to vitamin C deficiency. We describe the third case, to our knowledge, of retinal hemorrhages related to scurvy. Reduced bilateral visual acuity in a 50-year-old patient was associated with macrocytic anemia, denutrition, and cutaneous ecchymoses. Oral vitamin C treatment provided subjective clinical improvement and regression of the retinal hemorrhages on fundus examination, with no side effects. Vitamin C plays an important role in collagen stability in vascular and bone walls. PMID:21392843

  8. [Unusual retinal abnormality: retinal hemorrhages related to scurvy].

    PubMed

    Errera, M-H; Dupas, B; Man, H; Gualino, V; Gaudric, A; Massin, P

    2011-03-01

    A diet restricted to rice and boiled fruit and vegetables leads to vitamin C deficiency. We describe the third case, to our knowledge, of retinal hemorrhages related to scurvy. Reduced bilateral visual acuity in a 50-year-old patient was associated with macrocytic anemia, denutrition, and cutaneous ecchymoses. Oral vitamin C treatment provided subjective clinical improvement and regression of the retinal hemorrhages on fundus examination, with no side effects. Vitamin C plays an important role in collagen stability in vascular and bone walls.

  9. Analysis by NASA's VESGEN Software of Retinal Blood Vessels Before and After 70-Day Bed Rest: A Retrospective Study

    NASA Technical Reports Server (NTRS)

    Raghunandan, Sneha; Vyas, Ruchi J.; Vizzeri, Gianmarco; Taibbi, Giovanni; Zanello, Susana B.; Ploutz-Snyder, Robert; Parsons-Wingerter, Patricia A.

    2016-01-01

    Significant risks for visual impairment associated with increased intracranial pressure (VIIP) are incurred by microgravity spaceflight, especially long-duration missions. Impairments include decreased near visual acuity, posterior globe flattening, choroidal folds, optic disc edema and cotton wool spots. We hypothesize that microgravity-induced fluid shifts result in pathological changes within the retinal blood vessels that precede development of visual and other ocular impairments. Potential contributions of retinal vascular remodeling to VIIP etiology are therefore being investigated by NASAs innovative VESsel GENeration Analysis (VESGEN) software for two studies: (1) head-down tilt in human subjects before and after 70 days of bed rest, and (2) U.S. crew members before and after ISS missions. VESGEN analysis in previous research supported by the US National Institutes of Health identified surprising new opportunities to regenerate retinal vessels during early-stage, potentially reversible progression of the visually impairing and blinding disease, diabetic retinopathy.

  10. Transcorneal Electrical Stimulation Therapy for Retinal Disease

    ClinicalTrials.gov

    2012-05-03

    Retinitis Pigmentosa; Macula Off; Primary Open Angle Glaucoma; Hereditary Macular Degeneration; Treated Retina Detachment; Retinal Artery Occlusion; Retinal Vein Occlusion; Non-Arthritic-Anterior-Ischemic Optic-Neuropathy; Hereditary Autosomal Dominant Optic Atrophy; Dry Age Related Macular Degeneration; Ischemic Macula Edema

  11. Retinal spot size with wavelength

    NASA Astrophysics Data System (ADS)

    Rockwell, Benjamin A.; Hammer, Daniel X.; Kennedy, Paul K.; Amnotte, Rodney E.; Eilert, Brent; Druessel, Jeffrey J.; Payne, Dale J.; Phillips, Shana L.; Stolarski, David J.; Noojin, Gary D.; Thomas, Robert J.; Cain, Clarence P.

    1997-06-01

    We have made an indirect in-vivo determination of spot size focusing in the rhesus monkey model. Measurement of the laser induced breakdown threshold both in-vitro and in-vivo allow correlation and assignment of a spot size after focusing through the living eye. We discuss and analyze the results and show how trends in minimum visible lesion data should be assessed in light of chromatic aberration. National laser safety standards are based on minimal visual lesion (MVL) threshold studies in different animal models. The energy required for a retinal lesion depends upon may parameters including wavelength and retinal spot size. We attempt to explain trends in reported MVL threshold studies using a model of the eye which allows calculation of changes in retinal spot size due to chromatic aberration.

  12. Clinical Trials in Retinal Dystrophies.

    PubMed

    Grob, Seanna R; Finn, Avni; Papakostas, Thanos D; Eliott, Dean

    2016-01-01

    Research development is burgeoning for genetic and cellular therapy for retinal dystrophies. These dystrophies are the focus of many research efforts due to the unique biology and accessibility of the eye, the transformative advances in ocular imaging technology that allows for in vivo monitoring, and the potential benefit people would gain from success in the field - the gift of renewed sight. Progress in the field has revealed the immense complexity of retinal dystrophies and the challenges faced by researchers in the development of this technology. This study reviews the current trials and advancements in genetic and cellular therapy in the treatment of retinal dystrophies and also discusses the current and potential future challenges. PMID:26957839

  13. Exploring the retinal connectome

    PubMed Central

    Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Shaw, Margaret V.; Yang, Jia-Hui; DeMill, David; Lauritzen, James S.; Lin, Yanhua; Rapp, Kevin D.; Mastronarde, David; Koshevoy, Pavel; Grimm, Bradley; Tasdizen, Tolga; Whitaker, Ross

    2011-01-01

    Purpose A connectome is a comprehensive description of synaptic connectivity for a neural domain. Our goal was to produce a connectome data set for the inner plexiform layer of the mammalian retina. This paper describes our first retinal connectome, validates the method, and provides key initial findings. Methods We acquired and assembled a 16.5 terabyte connectome data set RC1 for the rabbit retina at ≈2 nm resolution using automated transmission electron microscope imaging, automated mosaicking, and automated volume registration. RC1 represents a column of tissue 0.25 mm in diameter, spanning the inner nuclear, inner plexiform, and ganglion cell layers. To enhance ultrastructural tracing, we included molecular markers for 4-aminobutyrate (GABA), glutamate, glycine, taurine, glutamine, and the in vivo activity marker, 1-amino-4-guanidobutane. This enabled us to distinguish GABAergic and glycinergic amacrine cells; to identify ON bipolar cells coupled to glycinergic cells; and to discriminate different kinds of bipolar, amacrine, and ganglion cells based on their molecular signatures and activity. The data set was explored and annotated with Viking, our multiuser navigation tool. Annotations were exported to additional applications to render cells, visualize network graphs, and query the database. Results Exploration of RC1 showed that the 2 nm resolution readily recapitulated well known connections and revealed several new features of retinal organization: (1) The well known AII amacrine cell pathway displayed more complexity than previously reported, with no less than 17 distinct signaling modes, including ribbon synapse inputs from OFF bipolar cells, wide-field ON cone bipolar cells and rod bipolar cells, and extensive input from cone-pathway amacrine cells. (2) The axons of most cone bipolar cells formed a distinct signal integration compartment, with ON cone bipolar cell axonal synapses targeting diverse cell types. Both ON and OFF bipolar cells receive

  14. Rat retinal transcriptome

    PubMed Central

    Kozhevnikova, Oyuna S.; Korbolina, Elena E.; Ershov, Nikita I.; Kolosova, Natalia G.

    2013-01-01

    Pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, remains poorly understood due to the paucity of animal models that fully replicate the human disease. Recently, we showed that senescence-accelerated OXYS rats develop a retinopathy similar to human AMD. To identify alterations in response to normal aging and progression of AMD-like retinopathy, we compared gene expression profiles of retina from 3- and 18-mo-old OXYS and control Wistar rats by means of high-throughput RNA sequencing (RNA-Seq). We identified 160 and 146 age-regulated genes in Wistar and OXYS retinas, respectively. The majority of them are related to the immune system and extracellular matrix turnover. Only 24 age-regulated genes were common for the two strains, suggestive of different rates and mechanisms of aging. Over 600 genes showed significant differences in expression between the two strains. These genes are involved in disease-associated pathways such as immune response, inflammation, apoptosis, Ca2+ homeostasis and oxidative stress. The altered expression for selected genes was confirmed by qRT-PCR analysis. To our knowledge, this study represents the first analysis of retinal transcriptome from young and old rats with biologic replicates generated by RNA-Seq technology. We can conclude that the development of AMD-like retinopathy in OXYS rats is associated with an imbalance in immune and inflammatory responses. Aging alters the expression profile of numerous genes in the retina, and the genetic background of OXYS rats has a profound impact on the development of AMD-like retinopathy. PMID:23656783

  15. Intracranial pressure and skull remodeling

    PubMed Central

    McCulley, Timothy J.; Jordan Piluek, W.; Chang, Jessica

    2014-01-01

    In this article we review bony changes resulting from alterations in intracranial pressure (ICP) and the implications for ophthalmologists and the patients for whom we care. Before addressing ophthalmic implications, we will begin with a brief overview of bone remodeling. Bony changes seen with chronic intracranial hypotension and hypertension will be discussed. The primary objective of this review was to bring attention to bony changes seen with chronic intracranial hypotension. Intracranial hypotension skull remodeling can result in enophthalmos. In advanced disease enophthalmos develops to a degree that is truly disfiguring. The most common finding for which subjects are referred is ocular surface disease, related to loss of contact between the eyelids and the cornea. Other abnormalities seen include abnormal ocular motility and optic atrophy. Recognition of such changes is important to allow for diagnosis and treatment prior to advanced clinical deterioration. Routine radiographic assessment of bony changes may allow for the identification of patient with abnormal ICP prior to the development of clinically significant disease. PMID:25859141

  16. Adrenocortical Zonation, Renewal, and Remodeling

    PubMed Central

    Pihlajoki, Marjut; Dörner, Julia; Cochran, Rebecca S.; Heikinheimo, Markku; Wilson, David B.

    2015-01-01

    The adrenal cortex is divided into concentric zones. In humans the major cortical zones are the zona glomerulosa, zona fasciculata, and zona reticularis. The adrenal cortex is a dynamic organ in which senescent cells are replaced by newly differentiated ones. This constant renewal facilitates organ remodeling in response to physiological demand for steroids. Cortical zones can reversibly expand, contract, or alter their biochemical profiles to accommodate needs. Pools of stem/progenitor cells in the adrenal capsule, subcapsular region, and juxtamedullary region can differentiate to repopulate or expand zones. Some of these pools appear to be activated only during specific developmental windows or in response to extreme physiological demand. Senescent cells can also be replenished through direct lineage conversion; for example, cells in the zona glomerulosa can transform into cells of the zona fasciculata. Adrenocortical cell differentiation, renewal, and function are regulated by a variety of endocrine/paracrine factors including adrenocorticotropin, angiotensin II, insulin-related growth hormones, luteinizing hormone, activin, and inhibin. Additionally, zonation and regeneration of the adrenal cortex are controlled by developmental signaling pathways, such as the sonic hedgehog, delta-like homolog 1, fibroblast growth factor, and WNT/β-catenin pathways. The mechanisms involved in adrenocortical remodeling are complex and redundant so as to fulfill the offsetting goals of organ homeostasis and stress adaptation. PMID:25798129

  17. HDL biogenesis, remodeling, and catabolism.

    PubMed

    Zannis, Vassilis I; Fotakis, Panagiotis; Koukos, Georgios; Kardassis, Dimitris; Ehnholm, Christian; Jauhiainen, Matti; Chroni, Angeliki

    2015-01-01

    In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research. PMID:25522986

  18. New Wrinkles in Retinal Densitometry

    PubMed Central

    Masella, Benjamin D.; Hunter, Jennifer J.; Williams, David R.

    2014-01-01

    Purpose. Retinal densitometry provides objective information about retinal function. But, a number of factors, including retinal reflectance changes that are not directly related to photopigment depletion, complicate its interpretation. We explore these factors and suggest a method to minimize their impact. Methods. An adaptive optics scanning light ophthalmoscope (AOSLO) was used to measure changes in photoreceptor reflectance in monkeys before and after photopigment bleaching with 514-nm light. Reflectance measurements at 514 nm and 794 nm were recorded simultaneously. Several methods of normalization to extract the apparent optical density of the photopigment were compared. Results. We identified stimulus-related fluctuations in 794-nm reflectance that are not associated with photopigment absorptance and occur in both rods and cones. These changes had a magnitude approaching those associated directly with pigment depletion, precluding the use of infrared reflectance for normalization. We used a spatial normalization method instead, which avoided the fluctuations in the near infrared, as well as a confocal AOSLO designed to minimize light from layers other than the receptors. However, these methods produced a surprisingly low estimate of the apparent rhodopsin density (animal 1: 0.073 ± 0.006, animal 2: 0.032 ± 0.003). Conclusions. These results confirm earlier observations that changes in photopigment absorption are not the only source of retinal reflectance change during dark adaptation. It appears that the stray light that has historically reduced the apparent density of cone photopigment in retinal densitometry arises predominantly from layers near the photoreceptors themselves. Despite these complications, this method provides a valuable, objective measure of retinal function. PMID:25316726

  19. Retinal Image Quality During Accommodation

    PubMed Central

    López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.

    2013-01-01

    Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced

  20. Retinal Optical Coherence Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Fujimoto, James G.

    The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in

  1. Mechanoelectrical remodeling and arrhythmias during progression of hypertrophy

    PubMed Central

    Jin, Hongwei; Chemaly, Elie R.; Lee, Ahyoung; Kho, Changwon; Hadri, Lahouaria; Hajjar, Roger J.; Akar, Fadi G.

    2010-01-01

    Despite a clear association between left ventricular (LV) mechanical dysfunction in end-stage heart failure and the incidence of arrhythmias, the majority of sudden cardiac deaths occur at earlier stages of disease development. The mechanisms by which structural, mechanical, and molecular alterations predispose to arrhythmias at the tissue level before the onset of LV dysfunction remain unclear. In a rat model of pressure overload hypertrophy (PoH) produced by ascending aortic banding, we correlated mechanical and structural changes measured in vivo with key electrophysiological changes measured ex vivo in the same animals. We found that action potential prolongation, a hallmark of electrical remodeling at the tissue level, is highly correlated with changes in LV wall thickness but not mechanical function. In contrast, conduction delays are not predicted by either mechanical or structural changes during disease development. Moreover, disrupted Cx43 phosphorylation at intermediate (increased) and late (decreased) stages of PoH are associated with moderate and severe conduction delays, respectively. Interestingly, the level of interaction between Cx43 and the cytoskeletal protein ZO-1 is exclusively decreased at the late stage of PoH. Closely coupled action potentials consistent with afterdepolarization-mediated triggered beats were readily observed in 6 of 15 PoH hearts but never in controls. Similarly, PoH (8/15) but not control hearts exhibited sustained episodes of ventricular tachycardia after rapid stimulation. The initiation and early maintenance of arrhythmias in PoH were formed by rapid and highly uniform activation wavefronts emanating from sites distal to the former site of stimulation. In conclusion, repolarization but not conduction delays are predicted by structural remodeling in PoH. Cx43 phosphorylation is disrupted at intermediate (increased) and late (decreased) stages, which are associated with conduction delays. Dephosphorylation of Cx43 is

  2. Comparative retinal physiology in anthropoids.

    PubMed

    Kremers, J; Lee, B B

    1998-11-01

    During the last decade it has become clear that colour vision in platyrrhines (New World monkeys) differs from the uniform trichromatic pattern normally found in catarrhines (Old World monkeys, apes and human). Colour vision in most platyrrhine species is polymorphic, with many dichromatic individuals. The comparison of response properties in retinal ganglion cells and lateral geniculate cells between catarrhines and playrrhines elucidates how the evolution of trichromatic colour vision influenced the post-receptoral processing. We find that spatial and temporal processing is very similar in the platyrrhine and catarrhine retina, strongly suggesting that the retinal structure and function, found in living anthropoids, was already present in their common ancestor. PMID:9893846

  3. Retinitis pigmentosa in southern Africa.

    PubMed

    Greenberg, J; Bartmann, L; Ramesar, R; Beighton, P

    1993-11-01

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal disorders which are a common cause of genetic blindness. The relative frequencies of the different forms of RP in South Africa, as determined from the register at the DNA banking centre for RP at the Department of Human Genetics, University of Cape Town, are presented and discussed. Of the 125 families analysed, 29 (23%) showed autosomal dominant, 33 (27%) autosomal recessive and 3 (3%) X-linked inheritance. In 10 families the pedigree data were insufficient to allow accurate genetic subtyping and a further 50 patients were sporadic without a family history of RP or other syndromic features which would allow categorization.

  4. Transcriptome analysis and molecular signature of human retinal pigment epithelium

    PubMed Central

    Strunnikova, N.V.; Maminishkis, A.; Barb, J.J.; Wang, F.; Zhi, C.; Sergeev, Y.; Chen, W.; Edwards, A.O.; Stambolian, D.; Abecasis, G.; Swaroop, A.; Munson, P.J.; Miller, S.S.

    2010-01-01

    Retinal pigment epithelium (RPE) is a polarized cell layer critical for photoreceptor function and survival. The unique physiology and relationship to the photoreceptors make the RPE a critical determinant of human vision. Therefore, we performed a global expression profiling of native and cultured human fetal and adult RPE and determined a set of highly expressed ‘signature’ genes by comparing the observed RPE gene profiles to the Novartis expression database (SymAtlas: http://wombat.gnf.org/index.html) of 78 tissues. Using stringent selection criteria of at least 10-fold higher expression in three distinct preparations, we identified 154 RPE signature genes, which were validated by qRT-PCR analysis in RPE and in an independent set of 11 tissues. Several of the highly expressed signature genes encode proteins involved in visual cycle, melanogenesis and cell adhesion and Gene ontology analysis enabled the assignment of RPE signature genes to epithelial channels and transporters (ClCN4, BEST1, SLCA20) or matrix remodeling (TIMP3, COL8A2). Fifteen RPE signature genes were associated with known ophthalmic diseases, and 25 others were mapped to regions of disease loci. An evaluation of the RPE signature genes in a recently completed AMD genomewide association (GWA) data set revealed that TIMP3, GRAMD3, PITPNA and CHRNA3 signature genes may have potential roles in AMD pathogenesis and deserve further examination. We propose that RPE signature genes are excellent candidates for retinal diseases and for physiological investigations (e.g. dopachrome tautomerase in melanogenesis). The RPE signature gene set should allow the validation of RPE-like cells derived from human embryonic or induced pluripotent stem cells for cell-based therapies of degenerative retinal diseases. PMID:20360305

  5. Bone remodeling and silicon deficiency in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alveolar bone undergoes continuous remodeling to meet physiologic and functional demands. The aim of the present work was to evaluate histologically and histomorphometrically the effect of silicon deficiency on bone modeling and remodeling in the periodontal cortical plate. Two groups of weaning mal...

  6. Chromatin Remodelers: From Function to Dysfunction.

    PubMed

    Längst, Gernot; Manelyte, Laura

    2015-01-01

    Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development. PMID:26075616

  7. ACUTE RETINAL ARTERIAL OCCLUSIVE DISORDERS

    PubMed Central

    Hayreh, Sohan Singh

    2011-01-01

    The initial section deals with basic sciences; among the various topics briefly discussed are the anatomical features of ophthalmic, central retinal and cilioretinal arteries which may play a role in acute retinal arterial ischemic disorders. Crucial information required in the management of central retinal artery occlusion (CRAO) is the length of time the retina can survive following that. An experimental study shows that CRAO for 97 minutes produces no detectable permanent retinal damage but there is a progressive ischemic damage thereafter, and by 4 hours the retina has suffered irreversible damage. In the clinical section, I discuss at length various controversies on acute retinal arterial ischemic disorders. Classification of acute retinal arterial ischemic disorders These are of 4 types: CRAO, branch retinal artery occlusion (BRAO), cotton wools spots and amaurosis fugax. Both CRAO and BRAO further comprise multiple clinical entities. Contrary to the universal belief, pathogenetically, clinically and for management, CRAO is not one clinical entity but 4 distinct clinical entities – non-arteritic CRAO, non-arteritic CRAO with cilioretinal artery sparing, arteritic CRAO associated with giant cell arteritis (GCA) and transient non-arteritic CRAO. Similarly, BRAO comprises permanent BRAO, transient BRAO and cilioretinal artery occlusion (CLRAO), and the latter further consists of 3 distinct clinical entities - non-arteritic CLRAO alone, non-arteritic CLRAO associated with central retinal vein occlusion and arteritic CLRAO associated with GCA. Understanding these classifications is essential to comprehend fully various aspects of these disorders. Central retinal artery occlusion The pathogeneses, clinical features and management of the various types of CRAO are discussed in detail. Contrary to the prevalent belief, spontaneous improvement in both visual acuity and visual fields does occur, mainly during the first 7 days. The incidence of spontaneous visual

  8. Nucleosome dynamics during chromatin remodeling in vivo

    PubMed Central

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    ABSTRACT Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  9. Lipid Acyl Chain Remodeling in Yeast

    PubMed Central

    Renne, Mike F.; Bao, Xue; De Smet, Cedric H.; de Kroon, Anton I. P. M.

    2015-01-01

    Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed. PMID:26819558

  10. Myofascial trigger points.

    PubMed

    Lavelle, Elizabeth Demers; Lavelle, William; Smith, Howard S

    2007-03-01

    Painful conditions of the musculoskeletal system, including myofascial pain syndrome, constitute some of the most important chronic problems encountered in a clinical practice. A myofascial trigger points is a hyperirritable spot, usually within a taut band of skeletal muscle, which is painful on compression and can give rise to characteristic referred pain, motor dysfunction, and autonomic phenomena. Trigger points may be relieved through noninvasive measures, such as spray and stretch, transcutaneous electrical stimulation, physical therapy, and massage. Invasive treatments for myofascial trigger points include injections with local anesthetics, corticosteroids, or botulism toxin or dry needling. The etiology, pathophysiology, and treatment of myofascial trigger points are addressed in this article.

  11. Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye.

    PubMed

    Palczewska, Grazyna; Dong, Zhiqian; Golczak, Marcin; Hunter, Jennifer J; Williams, David R; Alexander, Nathan S; Palczewski, Krzysztof

    2014-07-01

    Two-photon excitation microscopy can image retinal molecular processes in vivo. Intrinsically fluorescent retinyl esters in subcellular structures called retinosomes are an integral part of the visual chromophore regeneration pathway. Fluorescent condensation products of all-trans-retinal accumulate in the eye with age and are also associated with age-related macular degeneration (AMD). Here, we report repetitive, dynamic imaging of these compounds in live mice through the pupil of the eye. By leveraging advanced adaptive optics, we developed a data acquisition algorithm that permitted the identification of retinosomes and condensation products in the retinal pigment epithelium by their characteristic localization, spectral properties and absence in genetically modified or drug-treated mice. This imaging approach has the potential to detect early molecular changes in retinoid metabolism that trigger light- and AMD-induced retinal defects and to assess the effectiveness of treatments for these conditions.

  12. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.

    PubMed

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  13. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders

    PubMed Central

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  14. New aspects of vascular remodelling: the involvement of all vascular cell types.

    PubMed

    McGrath, John C; Deighan, Clare; Briones, Ana M; Shafaroudi, Majid Malekzadeh; McBride, Melissa; Adler, Jeremy; Arribas, Silvia M; Vila, Elisabet; Daly, Craig J

    2005-07-01

    Conventionally, the architecture of arteries is based around the close-packed smooth muscle cells and extracellular matrix. However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. A new dynamic picture has emerged of blood vessels in a constant state of self-maintenance. Recent work raises fundamental questions about the cellular heterogeneity of arteries and the time course and triggering of normal and pathological remodelling. A common denominator emerging in hypertensive remodelling is an early increase in adventitial cell density suggesting that adventitial cells drive remodelling and may initiate subsequent changes such as re-arrangement of smooth muscle cells and extracellular matrix. The organization of vascular smooth muscle cells follows regular arrangements that can be modelled mathematically. In hypertension, new patterns can be quantified in these terms and give insights to how structure affects function. As with smooth muscle, little is known about the organization of the vascular endothelium, or its role in vascular remodelling. Current observations suggest that there may be a close relationship between the helical organization of smooth muscle cells and the underlying pattern of endothelial cells. The function of myoendothelial connections is a topic of great current interest and may relate to the structure of the internal elastic lamina through which the connections must pass. In hypertensive remodelling this must present an organizational challenge. The objective of this paper is to show how the functions of blood vessels depend on their architecture and a continuous interaction of different cell types and extracellular proteins.

  15. Prospects of Stem Cells for Retinal Diseases.

    PubMed

    Ng, Tsz Kin; Lam, Dennis S C; Cheung, Herman S

    2013-01-01

    Retinal diseases, including glaucoma, retinitis pigmentosa, diabetic retinopathy, and age-related macular degeneration, are the leading causes of irreversible visual impairment and blindness in developed countries. Traditional and current treatment regimens are based on surgical or medical interventions to slow down the disease progression. However, the number of retinal cells would continue to diminish, and the diseases could not be completely cured. There is an emerging role of stem cells in retinal research. The stem cell therapy on retinal diseases is based on 2 theories: cell replacement therapy and neuroprotective effect. The former hypothesizes that new retinal cells could be regenerated from stem cells to substitute the damaged cells in the diseased retina, whereas the latter believes that the paracrine effects of stem cells modulate the microenvironments of the diseased retina so as to protect the retinal neurons. This article summarizes the choice of stem cells in retinal research. Moreover, the current progress of retinal research on stem cells and the clinical applications of stem cells on retinal diseases are reviewed. In addition, potential challenges and future prospects of retinal stem cell research are discussed.

  16. [Progress of research in retinal image registration].

    PubMed

    Yu, Lun; Wei, Lifang; Pan, Lin

    2011-10-01

    The retinal image registration has important applications in the processes of auxiliary diagnosis and treatment for a variety of diseases. The retinal image registration can be used to measure the disease process and the therapeutic effect. A variety of retinal image registration techniques have been studied extensively in recent years. However, there are still many problems existing and there are numerous research possibilities. Based on extensive investigation of existing literatures, the present paper analyzes the feature of retinal image and current challenges of retinal image registration, and reviews the transformation models of the retinal image registration technology and the main research algorithms in current retinal image registration, and analyzes the advantages and disadvantages of various types of algorithms. Some research challenges and future developing trends are also discussed.

  17. Chromatin remodeling in nuclear cloning.

    PubMed

    Wade, Paul A; Kikyo, Nobuaki

    2002-05-01

    Nuclear cloning is a procedure to create new animals by injecting somatic nuclei into unfertilized oocytes. Recent successes in mammalian cloning with differentiated adult nuclei strongly indicate that oocyte cytoplasm contains unidentified remarkable reprogramming activities with the capacity to erase the previous memory of cell differentiation. At the heart of this nuclear reprogramming lies chromatin remodeling as chromatin structure and function define cell differentiation through regulation of the transcriptional activities of the cells. Studies involving the modification of chromatin elements such as selective uptake or release of binding proteins, covalent histone modifications including acetylation and methylation, and DNA methylation should provide significant insight into the molecular mechanisms of nuclear dedifferentiation and redifferentiation in oocyte cytoplasm.

  18. Thyroid Hormone and Vascular Remodeling.

    PubMed

    Ichiki, Toshihiro

    2016-01-01

    Both hyperthyroidism and hypothyroidism affect the cardiovascular system. Hypothyroidism is known to be associated with enhanced atherosclerosis and ischemic heart diseases. The accelerated atherosclerosis in the hypothyroid state has been traditionally ascribed to atherogenic lipid profile, diastolic hypertension, and impaired endothelial function. However, recent studies indicate that thyroid hormone has direct anti-atherosclerotic effects, such as production of nitric oxide and suppression of smooth muscle cell proliferation. These data suggest that thyroid hormone inhibits atherogenesis through direct effects on the vasculature as well as modification of risk factors for atherosclerosis. This review summarizes the basic and clinical studies on the role of thyroid hormone in vascular remodeling. The possible application of thyroid hormone mimetics to the therapy of hypercholesterolemia and atherosclerosis is also discussed. PMID:26558400

  19. Retinitis Pigmentosa and Education Issues

    ERIC Educational Resources Information Center

    Brown, Thomas J.

    2005-01-01

    Retinitis Pigmentosa includes a number of inherited diseases which usually result in blindness. The disease is progressive in nature and begins with the deterioration of cells in the eye responsible for peripheral vision. As the condition worsens there is a gradual loss of peripheral vision and night blindness. Proper educational planning requires…

  20. Automatic temperature controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Schlott, Kerstin; Koinzer, Stefan; Ptaszynski, Lars; Bever, Marco; Baade, Alex; Roider, Johann; Birngruber, Reginald; Brinkmann, Ralf

    2012-06-01

    Laser coagulation is a treatment method for many retinal diseases. Due to variations in fundus pigmentation and light scattering inside the eye globe, different lesion strengths are often achieved. The aim of this work is to realize an automatic feedback algorithm to generate desired lesion strengths by controlling the retinal temperature increase with the irradiation time. Optoacoustics afford non-invasive retinal temperature monitoring during laser treatment. A 75 ns/523 nm Q-switched Nd:YLF laser was used to excite the temperature-dependent pressure amplitudes, which were detected at the cornea by an ultrasonic transducer embedded in a contact lens. A 532 nm continuous wave Nd:YAG laser served for photocoagulation. The ED50 temperatures, for which the probability of ophthalmoscopically visible lesions after one hour in vivo in rabbits was 50%, varied from 63°C for 20 ms to 49°C for 400 ms. Arrhenius parameters were extracted as ΔE=273 J mol-1 and A=3.1044 s-1. Control algorithms for mild and strong lesions were developed, which led to average lesion diameters of 162+/-34 μm and 189+/-34 μm, respectively. It could be demonstrated that the sizes of the automatically controlled lesions were widely independent of the treatment laser power and the retinal pigmentation.

  1. Lessons from (triggered) tremor

    USGS Publications Warehouse

    Gomberg, Joan

    2010-01-01

    I test a “clock-advance” model that implies triggered tremor is ambient tremor that occurs at a sped-up rate as a result of loading from passing seismic waves. This proposed model predicts that triggering probability is proportional to the product of the ambient tremor rate and a function describing the efficacy of the triggering wave to initiate a tremor event. Using data mostly from Cascadia, I have compared qualitatively a suite of teleseismic waves that did and did not trigger tremor with ambient tremor rates. Many of the observations are consistent with the model if the efficacy of the triggering wave depends on wave amplitude. One triggered tremor observation clearly violates the clock-advance model. The model prediction that larger triggering waves result in larger triggered tremor signals also appears inconsistent with the measurements. I conclude that the tremor source process is a more complex system than that described by the clock-advance model predictions tested. Results of this and previous studies also demonstrate that (1) conditions suitable for tremor generation exist in many tectonic environments, but, within each, only occur at particular spots whose locations change with time; (2) any fluid flow must be restricted to less than a meter; (3) the degree to which delayed failure and secondary triggering occurs is likely insignificant; and 4) both shear and dilatational deformations may trigger tremor. Triggered and ambient tremor rates correlate more strongly with stress than stressing rate, suggesting tremor sources result from time-dependent weakening processes rather than simple Coulomb failure.

  2. AMY trigger system

    SciTech Connect

    Sakai, Yoshihide

    1989-04-01

    A trigger system of the AMY detector at TRISTAN e{sup +}e{sup -} collider is described briefly. The system uses simple track segment and shower cluster counting scheme to classify events to be triggered. It has been operating successfully since 1987.

  3. Reversibility of Adverse, Calcineurin-Dependent Cardiac Remodeling

    PubMed Central

    Berry, Jeff M.; Le, Vien; Rotter, David; Battiprolu, Pavan K.; Grinsfelder, Bennett; Tannous, Paul; Burchfield, Jana S.; Czubryt, Michael; Backs, Johannes; Olson, Eric N.; Rothermel, Beverly A.; Hill, Joseph A.

    2011-01-01

    Background Studies to dissect the role of calcineurin in pathological cardiac remodeling have relied heavily on murine models, where genetic gain- and loss-of-function manipulations are initiated at or before birth. However, the great majority of clinical cardiac pathology occurs in adults. Yet, nothing is known about the effects of calcineurin when its activation commences in adulthood. Further, despite the fact that ventricular hypertrophy is a well established risk factor for heart failure, the relative pace and progression of these two major phenotypic features of heart disease are unknown. Methods and Results We engineered mice harboring in cardiomyocytes a constitutively active calcineurin transgene driven by a tetracycline-responsive promoter element. Expression of the mutant calcineurin transgene was initiated for variable lengths of time to determine the natural history of disease pathogenesis, and to determine when, if ever, these events are reversible. Activation of the calcineurin transgene in adult mice triggered rapid and robust cardiac growth with features characteristic of pathological hypertrophy. Concentric hypertrophy preceded the development of systolic dysfunction, fetal gene activation, fibrosis, and clinical heart failure. Further, cardiac hypertrophy reversed spontaneously when calcineurin activity was turned off, and expression of fetal genes reverted to baseline. Fibrosis, a prominent feature of pathological cardiac remodeling, manifested partial reversibility. Conclusions Together, these data establish and define the deleterious effects of calcineurin signaling in adult heart and reveal that calcineurin-dependent hypertrophy with concentric geometry precedes systolic dysfunction and heart failure. Furthermore, these findings demonstrate that during much of the disease process, calcineurin-dependent remodeling remains reversible. PMID:21700928

  4. Chromatin Remodeling Inactivates Activity Genes and Regulates Neural Coding

    PubMed Central

    Hill, Kelly K.; Hemberg, Martin; Reddy, Naveen C.; Cho, Ha Y.; Guthrie, Arden N.; Oldenborg, Anna; Heiney, Shane A.; Ohmae, Shogo; Medina, Javier F.; Holy, Timothy E.; Bonni, Azad

    2016-01-01

    Activity-dependent transcription influences neuronal connectivity, but the roles and mechanisms of inactivation of activity-dependent genes have remained poorly understood. Genome-wide analyses in the mouse cerebellum revealed that the nucleosome remodeling and deacetylase (NuRD) complex deposits the histone variant H2A.z at promoters of activity-dependent genes, thereby triggering their inactivation. Purification of translating mRNAs from synchronously developing granule neurons (Sync-TRAP) showed that conditional knockout of the core NuRD subunit Chd4 impairs inactivation of activity-dependent genes when neurons undergo dendrite pruning. Chd4 knockout or expression of NuRD-regulated activity genes impairs dendrite pruning. Imaging of behaving mice revealed hyperresponsivity of granule neurons to sensorimotor stimuli upon Chd4 knockout. Our findings define an epigenetic mechanism that inactivates activity-dependent transcription and regulates dendrite patterning and sensorimotor encoding in the brain. PMID:27418512

  5. Stress-induced remodeling of hippocampal CA3 pyramidal neurons.

    PubMed

    McEwen, Bruce S

    2016-08-15

    The discovery of steroid hormone receptors in brain regions that mediate virtually every aspect of brain function has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the brain and the body via hormonal and neural pathways. The brain is the central organ of stress and adaptation to stress because it perceives and determines what is threatening, as well as determining the behavioral and physiological responses to the stressor. The adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neurogenesis leading to neuronal replacement, dendritic remodeling, and synapse turnover. Stress causes an imbalance of neural circuitry subserving cognition, decision-making, anxiety and mood that can alter expression of those behaviors and behavioral states. The two Brain Research papers noted in this review played an important role in triggering these advances. This article is part of a Special Issue entitled SI:50th Anniversary Issue. PMID:26740399

  6. Retinal vasculature classification using novel multifractal features

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Ward, W. O. C.; Duan, Jinming; Auer, D. P.; Gowland, Penny; Bai, L.

    2015-11-01

    Retinal blood vessels have been implicated in a large number of diseases including diabetic retinopathy and cardiovascular diseases, which cause damages to retinal blood vessels. The availability of retinal vessel imaging provides an excellent opportunity for monitoring and diagnosis of retinal diseases, and automatic analysis of retinal vessels will help with the processes. However, state of the art vascular analysis methods such as counting the number of branches or measuring the curvature and diameter of individual vessels are unsuitable for the microvasculature. There has been published research using fractal analysis to calculate fractal dimensions of retinal blood vessels, but so far there has been no systematic research extracting discriminant features from retinal vessels for classifications. This paper introduces new methods for feature extraction from multifractal spectra of retinal vessels for classification. Two publicly available retinal vascular image databases are used for the experiments, and the proposed methods have produced accuracies of 85.5% and 77% for classification of healthy and diabetic retinal vasculatures. Experiments show that classification with multiple fractal features produces better rates compared with methods using a single fractal dimension value. In addition to this, experiments also show that classification accuracy can be affected by the accuracy of vessel segmentation algorithms.

  7. Maternal uterine vascular remodeling during pregnancy.

    PubMed

    Osol, George; Mandala, Maurizio

    2009-02-01

    Sufficient uteroplacental blood flow is essential for normal pregnancy outcome and is accomplished by the coordinated growth and remodeling of the entire uterine circulation, as well as the creation of a new fetal vascular organ: the placenta. The process of remodeling involves a number of cellular processes, including hyperplasia and hypertrophy, rearrangement of existing elements, and changes in extracellular matrix. In this review, we provide information on uterine blood flow increases during pregnancy, the influence of placentation type on the distribution of uterine vascular resistance, consideration of the patterns, nature, and extent of maternal uterine vascular remodeling during pregnancy, and what is known about the underlying cellular mechanisms.

  8. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro

    PubMed Central

    Martins, João; Elvas, Filipe; Brudzewsky, Dan; Martins, Tânia; Kolomiets, Bogdan; Tralhão, Pedro; Gøtzsche, Casper R.; Cavadas, Cláudia; Castelo-Branco, Miguel; Woldbye, David P. D.; Picaud, Serge; Santiago, Ana R.

    2015-01-01

    Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo rat retinal preparations, we have measured RGC intracellular free calcium concentration ([Ca2+]i) and RGC spiking activity, respectively. We found that NPY attenuated the increase in the [Ca2+]i triggered by glutamate mainly via Y1 receptor activation. Moreover, (Leu31, Pro34)−NPY, a Y1/Y5 receptor agonist, increased the initial burst response of OFF-type RGCs, although no effect was observed on RGC spontaneous spiking activity. The Y1 receptor activation was also able to directly modulate RGC responses by attenuating the NMDA-induced increase in RGC spiking activity. These results suggest that Y1 receptor activation, at the level of inner or outer plexiform layers, leads to modulation of RGC receptive field properties. Using in vitro cultures of rat retinal explants exposed to NMDA, we found that NPY pretreatment prevented NMDA-induced cell death. However, in an animal model of retinal ischemia-reperfusion injury, pretreatment with NPY or (Leu31, Pro34)−NPY was not able to prevent apoptosis or rescue RGCs. In conclusion, we found modulatory effects of NPY application that for the first time were detected at the level of RGCs. However, further studies are needed to evaluate whether NPY neuroprotective actions detected in retinal explants can be translated into animal models of retinal degenerative diseases. PMID:26311075

  9. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro.

    PubMed

    Martins, João; Elvas, Filipe; Brudzewsky, Dan; Martins, Tânia; Kolomiets, Bogdan; Tralhão, Pedro; Gøtzsche, Casper R; Cavadas, Cláudia; Castelo-Branco, Miguel; Woldbye, David P D; Picaud, Serge; Santiago, Ana R; Ambrósio, António F

    2015-01-01

    Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo rat retinal preparations, we have measured RGC intracellular free calcium concentration ([Ca2+]i) and RGC spiking activity, respectively. We found that NPY attenuated the increase in the [Ca2+]i triggered by glutamate mainly via Y1 receptor activation. Moreover, (Leu31, Pro34)-NPY, a Y1/Y5 receptor agonist, increased the initial burst response of OFF-type RGCs, although no effect was observed on RGC spontaneous spiking activity. The Y1 receptor activation was also able to directly modulate RGC responses by attenuating the NMDA-induced increase in RGC spiking activity. These results suggest that Y1 receptor activation, at the level of inner or outer plexiform layers, leads to modulation of RGC receptive field properties. Using in vitro cultures of rat retinal explants exposed to NMDA, we found that NPY pretreatment prevented NMDA-induced cell death. However, in an animal model of retinal ischemia-reperfusion injury, pretreatment with NPY or (Leu31, Pro34)-NPY was not able to prevent apoptosis or rescue RGCs. In conclusion, we found modulatory effects of NPY application that for the first time were detected at the level of RGCs. However, further studies are needed to evaluate whether NPY neuroprotective actions detected in retinal explants can be translated into animal models of retinal degenerative diseases.

  10. LHCb Topological Trigger Reoptimization

    NASA Astrophysics Data System (ADS)

    Likhomanenko, Tatiana; Ilten, Philip; Khairullin, Egor; Rogozhnikov, Alex; Ustyuzhanin, Andrey; Williams, Michael

    2015-12-01

    The main b-physics trigger algorithm used by the LHCb experiment is the so- called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger, which utilized a custom boosted decision tree algorithm, selected a nearly 100% pure sample of b-hadrons with a typical efficiency of 60-70%; its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and neural networks. The topological trigger algorithm is designed to select all ’interesting” decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. Methods studied include cascading, ensembling and blending techniques. Furthermore, novel boosting techniques have been implemented that will help reduce systematic uncertainties in Run 2 measurements. We demonstrate that the reoptimized topological trigger is expected to significantly improve on the Run 1 performance for a wide range of b-hadron decays.

  11. Involvement of endoplasmic reticulum stress in all-trans-retinal-induced retinal pigment epithelium degeneration.

    PubMed

    Li, Jie; Cai, Xianhui; Xia, Qingqing; Yao, Ke; Chen, Jingmeng; Zhang, Yanli; Naranmandura, Hua; Liu, Xin; Wu, Yalin

    2015-01-01

    Excess accumulation of endogenous all-trans-retinal (atRAL) contributes to degeneration of the retinal pigment epithelium (RPE) and photoreceptor cells, and plays a role in the etiologies of age-related macular degeneration (AMD) and Stargardt's disease. In this study, we reveal that human RPE cells tolerate exposure of up to 5 µM atRAL without deleterious effects, but higher concentrations are detrimental and induce cell apoptosis. atRAL treatment significantly increased production of intracellular reactive oxygen species (ROS) and up-regulated mRNA expression of Nrf2, HO-1, and γ-GCSh within RPE cells, thereby causing oxidative stress. ROS localized to mitochondria and endoplasmic reticulum (ER). ER-resident molecular chaperone BiP, a marker of ER stress, was up-regulated at the translational level, and meanwhile, the PERK-eIF2α-ATF4 signaling pathway was activated. Expression levels of ATF4, CHOP, and GADD34 in RPE cells increased in a concentration-dependent manner after incubation with atRAL. Salubrinal, a selective inhibitor of ER stress, alleviated atRAL-induced cell death. The antioxidant N-acetylcysteine (NAC) effectively blocked RPE cell loss and ER stress activation, suggesting that atRAL-induced ROS generation is responsible for RPE degeneration and is an early trigger of ER stress. Furthermore, the mitochondrial transmembrane potential was lost after atRAL exposure, and was followed by caspase-3 activation and poly (ADP-ribose) polymerase cleavage. The results demonstrate that atRAL-driven ROS overproduction-induced ER stress is involved in cellular mitochondrial dysfunction and apoptosis of RPE cells. PMID:25331497

  12. Retinal vascular changes in hypertensive patients in Ibadan, Sub-Saharan Africa

    PubMed Central

    Oluleye, Sunday Tunji; Olusanya, Bolutife Ayokunu; Adeoye, Abiodun Moshood

    2016-01-01

    Background Earlier studies in Nigeria reported the rarity of retinal vascular changes in hypertensives. The aim of this study was to describe the various retinal vascular changes in the hypertensive patients of Nigeria. Patients and methods Nine hundred and three hypertensive patients were studied. This study was approved by the ethical and research committee of the University of Ibadan and University College Hospital, Ibadan, Nigeria. Blood pressure and anthropometric measurements were measured. Cardiac echocardiography was performed on 156 patients. All patients had dilated fundoscopy and fundus photography using the Kowa portable fundus camera and an Apple iPhone with 20 D lens. Statistical analysis was done with Statistical Packages for the Social Sciences (Version 21). Results The mean age of patients was 57 years with a male:female ratio of 1. No retinopathy was found in 556 (61.5%) patients. In all, 175 (19.4%) patients had features of hypertensive retinopathy. Retinal vascular occlusion was a significant finding in 121 patients (13.4%), of which branch retinal vein occlusion, 43 (4.7%), and central retinal vein occlusion, 30 (3.3%), were the most prominent ones in cases. Hemicentral retinal vein occlusion, 26 (2.9%), and central retinal artery occlusion, 17 (1.9%), were significant presentations. Other findings included nonarteritic anterior ischemic optic neuropathy in five (0.6%) patients, hypertensive choroidopathy in seven (0.8%) patients, and hemorrhagic choroidal detachment in five (0.6%) patients. Left ventricular (LV) geometry was abnormal in 85 (55.5%) patients. Concentric remodeling, eccentric hypertrophy, and concentric hypertrophy were observed in 43 (27.6%), 26 (17.2%), and 15 (9.7%) patients, respectively. LV hypertrophy was found in 42 (27%) patients, while 60 (39%) patients had increased relative wall thickness. In this study, bivariate analysis showed a correlation between LV relative wall thickness and severity of retinopathy in both eyes

  13. Strain history and TGF-β1 induce urinary bladder wall smooth muscle remodeling and elastogenesis

    PubMed Central

    Heise, Rebecca L.; Parekh, Aron; Joyce, Erinn M.; Chancellor, Michael B.; Sacks, Michael S.

    2011-01-01

    Mechanical cues that trigger pathological remodeling in smooth muscle tissues remain largely unknown and are thought to be pivotal triggers for strain-induced remodeling. Thus, an understanding of the effects mechanical stimulation is important to elucidate underlying mechanisms of disease states and in the development of methods for smooth muscle tissue regeneration. For example, the urinary bladder wall (UBW) adaptation to spinal cord injury (SCI) includes extensive hypertrophy as well as increased collagen and elastin, all of which profoundly alter its mechanical response. In addition, the pro-fibrotic growth factor TGF-β1 is upregulated in pathologies of other smooth muscle tissues and may contribute to pathological remodeling outcomes. In the present study, we utilized an ex vivo organ culture system to investigate the response of UBW tissue under various strain-based mechanical stimuli and exogenous TGF-β1 to assess extracellular matrix (ECM) synthesis, mechanical responses, and bladder smooth muscle cell (BSMC) phenotype. Results indicated that a 0.5-Hz strain frequency triangular waveform stimulation at 15% strain resulted in fibrillar elastin production, collagen turnover, and a more compliant ECM. Further, this stretch regime induced changes in cell phenotype while the addition of TGF-β1 altered this phenotype. This phenotypic shift was further confirmed by passive strip biomechanical testing, whereby the bladder groups treated with TGF-β1 were more compliant than all other groups. TGF-β1 increased soluble collagen production in the cultured bladders. Overall, the 0.5-Hz strain-induced remodeling caused increased compliance due to elastogenesis, similar to that seen in early SCI bladders. Thus, organ culture of bladder strips can be used as an experimental model to examine ECM remodeling and cellular phenotypic shift and potentially elucidate BMSCs ability to produce fibrillar elastin using mechanical stretch either alone or in combination with

  14. Strain history and TGF-β1 induce urinary bladder wall smooth muscle remodeling and elastogenesis.

    PubMed

    Heise, Rebecca L; Parekh, Aron; Joyce, Erinn M; Chancellor, Michael B; Sacks, Michael S

    2012-01-01

    Mechanical cues that trigger pathological remodeling in smooth muscle tissues remain largely unknown and are thought to be pivotal triggers for strain-induced remodeling. Thus, an understanding of the effects mechanical stimulation is important to elucidate underlying mechanisms of disease states and in the development of methods for smooth muscle tissue regeneration. For example, the urinary bladder wall (UBW) adaptation to spinal cord injury (SCI) includes extensive hypertrophy as well as increased collagen and elastin, all of which profoundly alter its mechanical response. In addition, the pro-fibrotic growth factor TGF-β1 is upregulated in pathologies of other smooth muscle tissues and may contribute to pathological remodeling outcomes. In the present study, we utilized an ex vivo organ culture system to investigate the response of UBW tissue under various strain-based mechanical stimuli and exogenous TGF-β1 to assess extracellular matrix (ECM) synthesis, mechanical responses, and bladder smooth muscle cell (BSMC) phenotype. Results indicated that a 0.5-Hz strain frequency triangular waveform stimulation at 15% strain resulted in fibrillar elastin production, collagen turnover, and a more compliant ECM. Further, this stretch regime induced changes in cell phenotype while the addition of TGF-β1 altered this phenotype. This phenotypic shift was further confirmed by passive strip biomechanical testing, whereby the bladder groups treated with TGF-β1 were more compliant than all other groups. TGF-β1 increased soluble collagen production in the cultured bladders. Overall, the 0.5-Hz strain-induced remodeling caused increased compliance due to elastogenesis, similar to that seen in early SCI bladders. Thus, organ culture of bladder strips can be used as an experimental model to examine ECM remodeling and cellular phenotypic shift and potentially elucidate BMSCs ability to produce fibrillar elastin using mechanical stretch either alone or in combination with

  15. The severity of retinal pathology in homozygous Crb1rd8/rd8 mice is dependent on additional genetic factors.

    PubMed

    Luhmann, Ulrich F O; Carvalho, Livia S; Holthaus, Sophia-Martha Kleine; Cowing, Jill A; Greenaway, Simon; Chu, Colin J; Herrmann, Philipp; Smith, Alexander J; Munro, Peter M G; Potter, Paul; Bainbridge, James W B; Ali, Robin R

    2015-01-01

    Understanding phenotype-genotype correlations in retinal degeneration is a major challenge. Mutations in CRB1 lead to a spectrum of autosomal recessive retinal dystrophies with variable phenotypes suggesting the influence of modifying factors. To establish the contribution of the genetic background to phenotypic variability associated with the Crb1(rd8/rd8) mutation, we compared the retinal pathology of Crb1(rd8/rd8)/J inbred mice with that of two Crb1(rd8/rd8) lines backcrossed with C57BL/6JOlaHsd mice. Topical endoscopic fundal imaging and scanning laser ophthalmoscopy fundus images of all three Crb1(rd8/rd8) lines showed a significant increase in the number of inferior retinal lesions that was strikingly variable between the lines. Optical coherence tomography, semithin, ultrastructural morphology and assessment of inflammatory and vascular marker by immunohistochemistry and quantitative reverse transcriptase-polymerase chain reaction revealed that the lesions were associated with photoreceptor death, Müller and microglia activation and telangiectasia-like vascular remodelling-features that were stable in the inbred, variable in the second, but virtually absent in the third Crb1(rd8/rd8) line, even at 12 months of age. This suggests that the Crb1(rd8/rd8) mutation is necessary, but not sufficient for the development of these degenerative features. By whole-genome SNP analysis of the genotype-phenotype correlation, a candidate region on chromosome 15 was identified. This may carry one or more genetic modifiers for the manifestation of the retinal pathology associated with mutations in Crb1. This study also provides insight into the nature of the retinal vascular lesions that likely represent a clinical correlate for the formation of retinal telangiectasia or Coats-like vasculopathy in patients with CRB1 mutations that are thought to depend on such genetic modifiers.

  16. Current perspectives of herpesviral retinitis and choroiditis.

    PubMed

    Madhavan, H N; Priya, K; Biswas, J

    2004-10-01

    Vision-threatening viral retinitis are primarily caused by members of the herpesvirus family. The biology and molecular characterization of herpesviruses, clinical presentations of retinopathies, pathology and pathogenesis including the host responses, epidemiology and the laboratory methods of aetiological diagnosis of these diseases are described. Clinical syndromes are acute retinal necrosis (ARN), progressive outer retinal necrosis (PORN), cytomegalovirus (CMV) retinitis, multifocal choroiditis and serpiginous choroiditis besides other viral retinopathies. Herpes simplex virus (HSV) retinitis is more common in immunocompetent persons while varicella zoster virus (VZV) affects both immunocompetent and immunosuppressed patients equally. CMV retinitis is most common among patients with AIDS. The currently employed laboratory methods of antigen detection, virus isolation and antibody detection by enzyme linked immuno-sorbent assay (ELISA) have low sensitivity. Polymerase chain reaction (PCR) has increased the value of diagnosis due to its high clinical sensitivity and absolute specificity in detection of herpesviruses in intraocular specimens. PMID:16295367

  17. The progressive outer retinal necrosis syndrome.

    PubMed

    Holland, G N

    1994-01-01

    The progressive outer retinal necrosis (PORN) syndrome is a recently described clinical variant of necrotizing herpetic retinopathy in patients with the acquired immunodeficiency syndrome (AIDS). It is caused by varicellazoster virus infection of the retina. Its course and clinical features distinguish it from the acute retinal necrosis syndrome and CMV retinopathy. Early disease is characterized by multifocal deep retinal opacification. Lesions rapidly coalesce and progress to total retinal necrosis over a short period of time. Despite aggressive therapy with intravenous antivirial drugs, prognosis is poor; disease progression and/or recurrence is common, and the majority of patients develop no light perception vision. Total retinal detachments are common. Prophylaxis against retinal detachment using laser retinopexy has not been useful in most cases. PORN syndrome is an uncommon, but devastating complication of AIDS.

  18. Current perspectives of herpesviral retinitis and choroiditis.

    PubMed

    Madhavan, H N; Priya, K; Biswas, J

    2004-10-01

    Vision-threatening viral retinitis are primarily caused by members of the herpesvirus family. The biology and molecular characterization of herpesviruses, clinical presentations of retinopathies, pathology and pathogenesis including the host responses, epidemiology and the laboratory methods of aetiological diagnosis of these diseases are described. Clinical syndromes are acute retinal necrosis (ARN), progressive outer retinal necrosis (PORN), cytomegalovirus (CMV) retinitis, multifocal choroiditis and serpiginous choroiditis besides other viral retinopathies. Herpes simplex virus (HSV) retinitis is more common in immunocompetent persons while varicella zoster virus (VZV) affects both immunocompetent and immunosuppressed patients equally. CMV retinitis is most common among patients with AIDS. The currently employed laboratory methods of antigen detection, virus isolation and antibody detection by enzyme linked immuno-sorbent assay (ELISA) have low sensitivity. Polymerase chain reaction (PCR) has increased the value of diagnosis due to its high clinical sensitivity and absolute specificity in detection of herpesviruses in intraocular specimens.

  19. Retinal blood vessels extraction using probabilistic modelling.

    PubMed

    Kaba, Djibril; Wang, Chuang; Li, Yongmin; Salazar-Gonzalez, Ana; Liu, Xiaohui; Serag, Ahmed

    2014-01-01

    The analysis of retinal blood vessels plays an important role in detecting and treating retinal diseases. In this review, we present an automated method to segment blood vessels of fundus retinal image. The proposed method could be used to support a non-intrusive diagnosis in modern ophthalmology for early detection of retinal diseases, treatment evaluation or clinical study. This study combines the bias correction and an adaptive histogram equalisation to enhance the appearance of the blood vessels. Then the blood vessels are extracted using probabilistic modelling that is optimised by the expectation maximisation algorithm. The method is evaluated on fundus retinal images of STARE and DRIVE datasets. The experimental results are compared with some recently published methods of retinal blood vessels segmentation. The experimental results show that our method achieved the best overall performance and it is comparable to the performance of human experts.

  20. The progressive outer retinal necrosis syndrome.

    PubMed

    Holland, G N

    1994-01-01

    The progressive outer retinal necrosis (PORN) syndrome is a recently described clinical variant of necrotizing herpetic retinopathy in patients with the acquired immunodeficiency syndrome (AIDS). It is caused by varicellazoster virus infection of the retina. Its course and clinical features distinguish it from the acute retinal necrosis syndrome and CMV retinopathy. Early disease is characterized by multifocal deep retinal opacification. Lesions rapidly coalesce and progress to total retinal necrosis over a short period of time. Despite aggressive therapy with intravenous antivirial drugs, prognosis is poor; disease progression and/or recurrence is common, and the majority of patients develop no light perception vision. Total retinal detachments are common. Prophylaxis against retinal detachment using laser retinopexy has not been useful in most cases. PORN syndrome is an uncommon, but devastating complication of AIDS. PMID:7852023

  1. Retinal abnormalities in β-thalassemia major.

    PubMed

    Bhoiwala, Devang L; Dunaief, Joshua L

    2016-01-01

    Patients with beta (β)-thalassemia (β-TM: β-thalassemia major, β-TI: β-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202

  2. Role of retinal vascular endothelial cells in development of CMV retinitis.

    PubMed Central

    Rao, N A; Zhang, J; Ishimoto, S

    1998-01-01

    PURPOSE: Although cytomegalovirus (CMV) retinitis is known to occur in association with retinal microangiopathy in individuals with marked immunodeficiency, glial cells are believed to be the initial target cells in the development of retinitis. Moreover, it has been hypothesized that CMV gains access to the retinal glia because of altered vascular permeability. In an attempt to address the hypothesis, we studied 30 autopsy eyes of AIDS patients with systemic CMV infection, with or without clinically apparent CMV retinitis. METHODS: The autopsy eyes were processed in three ways. First, dual immunohistochemical studies were done by using anti-CMV antibodies for immediate early, early, and late antigens. The retinal cell types infected with the virus were then determined by using anti-GFAP, anti-VonWillebrand's factor, neuronal specific enolase, and leukocyte marker CD68. Second, selected eyes were processed for in situ hybridization with DNA probe specific to CMV. Third, an eye with clinically apparent CMV retinitis was submitted for electron microscopic examination. RESULTS: At the site of retinal necrosis in those eyes with a clinical diagnosis of CMV retinitis, the immunohistochemical, in situ hybridization, and ultrastructural examinations revealed that CMV was present primarily in the Müller cells and in perivascular glial cells. Adjacent to these infected cells, focal areas of positive staining for CMV antigen were seen in the glial cells, neuronal cells, and retinal pigment epithelial cells. At these sites most of the retinal capillaries were devoid of endothelial cells. Few vessels located at the advancing margin of retinal necrosis showed the presence of viral proteins in the endothelial cells. CONCLUSIONS: The present results indicate that retinal vascular endothelial cells could be the initial target in the development of viral retinitis, with subsequent spread of the infection to perivascular glia, Müller cells, and other retinal cells, including the

  3. Raise the Floor When Remodeling Science Labs

    ERIC Educational Resources Information Center

    Nation's Schools, 1972

    1972-01-01

    A new remodeling idea adopts the concept of raised floor covering gas, water, electrical, and drain lines. The accessible floor has removable panels set into an adjustable support frame 24 inches above a concrete subfloor. (Author)

  4. Lead Poisoning in Remodeling of Old Homes

    ERIC Educational Resources Information Center

    Barnes, Bart

    1973-01-01

    An article based on Dr. Muriel D. Wolf's study of elevated blood lead levels in children and adults present during the remodeling of old homes. Lead poisoning examples, symptoms, and precautions are given. (ST)

  5. Retinal vein occlusion: current treatment.

    PubMed

    Lattanzio, Rosangela; Torres Gimeno, Ana; Battaglia Parodi, Maurizio; Bandello, Francesco

    2011-01-01

    Retinal vein occlusion (RVO) is a pathology noted for more than 150 years. Although a lot has been written on the matter, it is still a frequent condition with multifactorial etiopathogenesis with many unclear aspects. The RVO pathogenesis has varied systemic and local implications that make it difficult to elaborate treatment guidelines. The management of the patient with RVO is very complex and a multidisciplinary approach is required in order to identify and correct the associated risk factors. Laser therapy remains the gold standard in RVO, but only modest functional improvement has been shown in branch retinal occlusion forms. Multicenter studies of intravitreal drugs present them as an option to combine with laser. Anti-vascular endothelial growth factor, corticosteroids and sustained-release implants are the future weapons to stop disease progression and get a better visual outcome. Consequently, it is useful to clarify some aspects of the pathology that allow a better patient management. PMID:20938213

  6. Gene Therapy for Retinal Diseases

    PubMed Central

    Samiy, Nasrollah

    2014-01-01

    Gene therapy has a growing research potential particularly in the field of ophthalmic and retinal diseases owing to three main characteristics of the eye; accessibility in terms of injections and surgical interventions, its immune-privileged status facilitating the accommodation to the antigenicity of a viral vector, and tight blood-ocular barriers which save other organs from unwanted contamination. Gene therapy has tremendous potential for different ocular diseases. In fact, the perspective of gene therapy in the field of eye research does not confine to exclusive monogenic ophthalmic problems and it has the potential to include gene based pharmacotherapies for non-monogenic problems such as age related macular disease and diabetic retinopathy. The present article has focused on how gene transfer into the eye has been developed and used to treat retinal disorders with no available therapy at present. PMID:25709778

  7. Retinal vein occlusion: current treatment.

    PubMed

    Lattanzio, Rosangela; Torres Gimeno, Ana; Battaglia Parodi, Maurizio; Bandello, Francesco

    2011-01-01

    Retinal vein occlusion (RVO) is a pathology noted for more than 150 years. Although a lot has been written on the matter, it is still a frequent condition with multifactorial etiopathogenesis with many unclear aspects. The RVO pathogenesis has varied systemic and local implications that make it difficult to elaborate treatment guidelines. The management of the patient with RVO is very complex and a multidisciplinary approach is required in order to identify and correct the associated risk factors. Laser therapy remains the gold standard in RVO, but only modest functional improvement has been shown in branch retinal occlusion forms. Multicenter studies of intravitreal drugs present them as an option to combine with laser. Anti-vascular endothelial growth factor, corticosteroids and sustained-release implants are the future weapons to stop disease progression and get a better visual outcome. Consequently, it is useful to clarify some aspects of the pathology that allow a better patient management.

  8. Retinitis pigmentosa in southern Africa.

    PubMed

    Greenberg, J; Bartmann, L; Ramesar, R; Beighton, P

    1993-11-01

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal disorders which are a common cause of genetic blindness. The relative frequencies of the different forms of RP in South Africa, as determined from the register at the DNA banking centre for RP at the Department of Human Genetics, University of Cape Town, are presented and discussed. Of the 125 families analysed, 29 (23%) showed autosomal dominant, 33 (27%) autosomal recessive and 3 (3%) X-linked inheritance. In 10 families the pedigree data were insufficient to allow accurate genetic subtyping and a further 50 patients were sporadic without a family history of RP or other syndromic features which would allow categorization. PMID:8313621

  9. Operational challenges of retinal prostheses.

    PubMed

    Schmid, Erich W; Fink, Wolfgang; Wilke, Robert

    2014-12-01

    Two computational models for research on retinal implants are presented. In the first model, the electric field produced by a multi-electrode array in a uniform retina is calculated. It is shown how cross talk of activated electrodes and the resulting bunching of field lines in monopole and dipole activation prevent high resolution imaging with retinal implants. Furthermore, it is demonstrated how sequential stimulation and multipolar stimulation may overcome this limitation. In the second model a target volume, i.e., a probe cylinder approximating a bipolar cell, in the retina is chosen, and the passive Heaviside cable equation is solved inside this target volume to calculate the depolarization of the cell membrane. The depolarization as a function of time indicates that shorter signals stimulate better as long as the current does not change sign during stimulation of the retina, i.e., mono-phasic stimulation. Both computational models are equally applicable to epiretinal, subretinal, and suprachoroidal vision implants. PMID:25443535

  10. Bone Remodeling Under Pathological Conditions.

    PubMed

    Xiao, Wenmei; Li, Shuai; Pacios, Sandra; Wang, Yu; Graves, Dana T

    2016-01-01

    Bone is masterfully programmed to repair itself through the coupling of bone formation following bone resorption, a process referred to as coupling. In inflammatory or other conditions, the balance between bone resorption and bone formation shifts so that a net bone loss results. This review focuses on four pathologic conditions in which remodeling leads to net loss of bone, postmenopausal osteoporosis, arthritis, periodontal disease, and disuse bone loss, which is similar to bone loss associated with microgravity. In most of these there is an acceleration of the resorptive process due to increased formation of bone metabolic units. This initially leads to a net bone loss since the time period of resorption is much faster than the time needed for bone formation that follows. In addition, each of these processes is characterized by an uncoupling that leads to net bone loss. Mechanisms responsible for increased rates of bone resorption, i.e. the formation of more bone metabolic units, involve enhanced expression of inflammatory cytokines and increased expression of RANKL. Moreover, the reasons for uncoupling are discussed which range from a decrease in expression of growth factors and bone morphogenetic proteins to increased expression of factors that inhibit Wnt signaling. PMID:26599114

  11. Acquired retinal folds in the cat.

    PubMed

    MacMillan, A D

    1976-06-01

    Retinal folds were found in 5 cats. The apparent cause of the folding was varied: in 1 cat the folds appeared after a localized retinal detachment; in 2 cats the condition accompanied other intraocular abnormalities associated with feline infectious peritonitis; 1 cat had active keratitis, and the retinal changes were thought to have been injury related; and 1 cat, bilaterally affected, had chronic glomerulonephritis. PMID:945253

  12. Remodeling kitchens: A smorgasbord of energy savings

    SciTech Connect

    Sullivan, B.

    1995-09-01

    The kitchen is often the busiest room in the house and is most likely to remodeled repeatedly over the life of a house. The kitchen also represents a concentration of household energy use. Remodeling a kitchen can mean introducing a host of new energy-saving features or making major energy blunders. This article discusses ways to utilized the best features: layout and design; appliances; lighting; windows and skylights; ventilation; insulation and air sealing; water; household recycling; green building materials.

  13. [Bone remodelling using the boundary element method].

    PubMed

    Martínez, Gabriela; Cerrolaza, Miguel

    2003-01-01

    An algorithm for the mathematical representation of external bone remodeling is proposed. The Boundary element method is used for the numerical analysis of trabecular bone, together with the remodeling algorithm presented by Fridez. The versatility and power of the algorithm discussed herein are shown by some numerical examples. As well, the method converges very fast to the solution, which is one of the main advantages of the proposed numerical scheme.

  14. Biomechanics of vascular mechanosensation and remodeling

    PubMed Central

    Baeyens, Nicolas; Schwartz, Martin A.

    2016-01-01

    Flowing blood exerts a frictional force, fluid shear stress (FSS), on the endothelial cells that line the blood and lymphatic vessels. The magnitude, pulsatility, and directional characteristics of FSS are constantly sensed by the endothelium. Sustained increases or decreases in FSS induce vessel remodeling to maintain proper perfusion of tissue. In this review, we discuss these mechanisms and their relevance to physiology and disease, and propose a model for how information from different mechanosensors might be integrated to govern remodeling. PMID:26715421

  15. Common Asthma Triggers

    MedlinePlus

    ... your bedding on the hottest water setting. Outdoor Air Pollution Outdoor air pollution can trigger an asthma attack. This pollution can ... your newspaper to plan your activities for when air pollution levels will be low. Cockroach Allergen Cockroaches and ...

  16. Dealing with Asthma Triggers

    MedlinePlus

    ... smell given off by paint or gas, and air pollution. If you notice that an irritant triggers your ... or other tobacco products around you. If outdoor air pollution is a problem, running the air conditioner or ...

  17. ELECTRONIC TRIGGER CIRCUIT

    DOEpatents

    Russell, J.A.G.

    1958-01-01

    An electronic trigger circuit is described of the type where an output pulse is obtained only after an input voltage has cqualed or exceeded a selected reference voltage. In general, the invention comprises a source of direct current reference voltage in series with an impedance and a diode rectifying element. An input pulse of preselected amplitude causes the diode to conduct and develop a signal across the impedance. The signal is delivered to an amplifier where an output pulse is produced and part of the output is fed back in a positive manner to the diode so that the amplifier produces a steep wave front trigger pulsc at the output. The trigger point of the described circuit is not subject to variation due to the aging, etc., of multi-electrode tabes, since the diode circuit essentially determines the trigger point.

  18. Retinal pathways influence temporal niche

    PubMed Central

    Doyle, Susan E.; Yoshikawa, Tomoko; Hillson, Holly; Menaker, Michael

    2008-01-01

    In mammals, light input from the retina entrains central circadian oscillators located in the suprachiasmatic nuclei (SCN). The phase of circadian activity rhythms with respect to the external light:dark cycle is reversed in diurnal and nocturnal species, although the phase of SCN rhythms relative to the light cycle remains unchanged. Neural mechanisms downstream from the SCN are therefore believed to determine diurnality or nocturnality. Here, we report a switch from nocturnal to diurnal entrainment of circadian activity rhythms in double-knockout mice lacking the inner-retinal photopigment melanopsin (OPN4) and RPE65, a key protein used in retinal chromophore recycling. These mice retained only a small amount of rod function. The change in entrainment phase of Rpe65−/−;Opn4−/− mice was accompanied by a reversal of the rhythm of clock gene expression in the SCN and a reversal in acute masking effects of both light and darkness on activity, suggesting that the nocturnal to diurnal switch is due to a change in the neural response to light upstream from the SCN. A switch from nocturnal to diurnal activity rhythms was also found in wild-type mice transferred from standard intensity light:dark cycles to light:dark cycles in which the intensity of the light phase was reduced to scotopic levels. These results reveal a novel mechanism by which changes in retinal input can mediate acute temporal-niche switching. PMID:18695249

  19. Multineuronal codes in retinal signaling.

    PubMed Central

    Meister, M

    1996-01-01

    The visual world is presented to the brain through patterns of action potentials in the population of optic nerve fibers. Single-neuron recordings show that each retinal ganglion cell has a spatially restricted receptive field, a limited integration time, and a characteristic spectral sensitivity. Collectively, these response properties define the visual message conveyed by that neuron's action potentials. Since the size of the optic nerve is strictly constrained, one expects the retina to generate a highly efficient representation of the visual scene. By contrast, the receptive fields of nearby ganglion cells often overlap, suggesting great redundancy among the retinal output signals. Recent multineuron recordings may help resolve this paradox. They reveal concerted firing patterns among ganglion cells, in which small groups of nearby neurons fire synchronously with delays of only a few milliseconds. As there are many more such firing patterns than ganglion cells, such a distributed code might allow the retina to compress a large number of distinct visual messages into a small number of optic nerve fibers. This paper will review the evidence for a distributed coding scheme in the retinal output. The performance limits of such codes are analyzed with simple examples, illustrating that they allow a powerful trade-off between spatial and temporal resolution. PMID:8570603

  20. Mitochondria, myocardial remodeling, and cardiovascular disease.

    PubMed

    Verdejo, Hugo E; del Campo, Andrea; Troncoso, Rodrigo; Gutierrez, Tomás; Toro, Barbra; Quiroga, Clara; Pedrozo, Zully; Munoz, Juan Pablo; Garcia, Lorena; Castro, Pablo F; Lavandero, Sergio

    2012-12-01

    The process of muscle remodeling lies at the core of most cardiovascular diseases. Cardiac adaptation to pressure or volume overload is associated with a complex molecular change in cardiomyocytes which leads to anatomic remodeling of the heart muscle. Although adaptive at its beginnings, the sustained cardiac hypertrophic remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure and ultimately death. One of the features of cardiac remodeling is a progressive impairment in mitochondrial function. The heart has the highest oxygen uptake in the human body and accordingly it has a large number of mitochondria, which form a complex network under constant remodeling in order to sustain the high metabolic rate of cardiac cells and serve as Ca(2+) buffers acting together with the endoplasmic reticulum (ER). However, this high dependence on mitochondrial metabolism has its costs: when oxygen supply is threatened, high leak of electrons from the electron transport chain leads to oxidative stress and mitochondrial failure. These three aspects of mitochondrial function (Reactive oxygen species signaling, Ca(2+) handling and mitochondrial dynamics) are critical for normal muscle homeostasis. In this article, we will review the latest evidence linking mitochondrial morphology and function with the process of myocardial remodeling and cardiovascular disease.

  1. Physiology and pathophysiology of bone remodeling.

    PubMed

    Raisz, L G

    1999-08-01

    The skeleton is a metabolically active organ that undergoes continuous remodeling throughout life. This remodeling is necessary both to maintain the structural integrity of the skeleton and to subserve its metabolic functions as a storehouse of calcium and phosphorus. These dual functions often come into conflict under conditions of changing mechanical forces or metabolic and nutritional stress. The bone remodeling cycle involves a complex series of sequential steps that are highly regulated. The "activation" phase of remodeling is dependent on the effects of local and systemic factors on mesenchymal cells of the osteoblast lineage. These cells interact with hematopoietic precursors to form osteoclasts in the "resorption" phase. Subsequently, there is a "reversal" phase during which mononuclear cells are present on the bone surface. They may complete the resorption process and produce the signals that initiate formation. Finally, successive waves of mesenchymal cells differentiate into functional osteoblasts, which lay down matrix in the "formation" phase. The effects of calcium-regulating hormones on this remodeling cycle subserve the metabolic functions of the skeleton. Other systemic hormones control overall skeletal growth. The responses to changes in mechanical force and repair of microfractures, as well as the maintenance of the remodeling cycle, are determined locally by cytokines, prostaglandins, and growth factors. Interactions between systemic and local factors are important in the pathogenesis of osteoporosis as well as the skeletal changes in hyperparathyroidism and hyperthyroidism. Local factors are implicated in the pathogenesis of the skeletal changes associated with immobilization, inflammation, and Paget disease of bone. PMID:10430818

  2. Epigenomic regulation of oncogenesis by chromatin remodeling.

    PubMed

    Kumar, R; Li, D-Q; Müller, S; Knapp, S

    2016-08-25

    Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy. PMID:26804164

  3. Mitochondria, myocardial remodeling, and cardiovascular disease.

    PubMed

    Verdejo, Hugo E; del Campo, Andrea; Troncoso, Rodrigo; Gutierrez, Tomás; Toro, Barbra; Quiroga, Clara; Pedrozo, Zully; Munoz, Juan Pablo; Garcia, Lorena; Castro, Pablo F; Lavandero, Sergio

    2012-12-01

    The process of muscle remodeling lies at the core of most cardiovascular diseases. Cardiac adaptation to pressure or volume overload is associated with a complex molecular change in cardiomyocytes which leads to anatomic remodeling of the heart muscle. Although adaptive at its beginnings, the sustained cardiac hypertrophic remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure and ultimately death. One of the features of cardiac remodeling is a progressive impairment in mitochondrial function. The heart has the highest oxygen uptake in the human body and accordingly it has a large number of mitochondria, which form a complex network under constant remodeling in order to sustain the high metabolic rate of cardiac cells and serve as Ca(2+) buffers acting together with the endoplasmic reticulum (ER). However, this high dependence on mitochondrial metabolism has its costs: when oxygen supply is threatened, high leak of electrons from the electron transport chain leads to oxidative stress and mitochondrial failure. These three aspects of mitochondrial function (Reactive oxygen species signaling, Ca(2+) handling and mitochondrial dynamics) are critical for normal muscle homeostasis. In this article, we will review the latest evidence linking mitochondrial morphology and function with the process of myocardial remodeling and cardiovascular disease. PMID:22972531

  4. Update on Pharmacologic Retinal Vascular Toxicity.

    PubMed

    Schwartz, Stephen G; Grzybowski, Andrzej; Wasinska-Borowiec, Weronika; Flynn, Harry W; Mieler, William F

    2015-01-01

    Several medications are associated with retinal vascular toxicity. These include intraocular aminoglycosides, oral contraceptives, interferon alpha, several other agents, and talc, which occurs as a vehicle in some oral medications that may be abused intravenously. As a group, these entities represent a small but clinically relevant category of retinal toxicity from medications. Some of the manifestations (e.g., retinal vascular occlusion) are nonspecific, but others are more specific, including clinically visible talc emboli in retinal vessels. Toxicity may be asymptomatic or may cause irreversible visual loss. By maintaining a high index of suspicion, the correct diagnosis can usually be made.

  5. Retinal Macroglial Responses in Health and Disease

    PubMed Central

    de Hoz, Rosa; Rojas, Blanca; Ramírez, Ana I.; Salazar, Juan J.; Gallego, Beatriz I.; Triviño, Alberto; Ramírez, José M.

    2016-01-01

    Due to their permanent and close proximity to neurons, glial cells perform essential tasks for the normal physiology of the retina. Astrocytes and Müller cells (retinal macroglia) provide physical support to neurons and supplement them with several metabolites and growth factors. Macroglia are involved in maintaining the homeostasis of extracellular ions and neurotransmitters, are essential for information processing in neural circuits, participate in retinal glucose metabolism and in removing metabolic waste products, regulate local blood flow, induce the blood-retinal barrier (BRB), play fundamental roles in local immune response, and protect neurons from oxidative damage. In response to polyetiological insults, glia cells react with a process called reactive gliosis, seeking to maintain retinal homeostasis. When malfunctioning, macroglial cells can become primary pathogenic elements. A reactive gliosis has been described in different retinal pathologies, including age-related macular degeneration (AMD), diabetes, glaucoma, retinal detachment, or retinitis pigmentosa. A better understanding of the dual, neuroprotective, or cytotoxic effect of macroglial involvement in retinal pathologies would help in treating the physiopathology of these diseases. The extensive participation of the macroglia in retinal diseases points to these cells as innovative targets for new drug therapies. PMID:27294114

  6. [Novel mechanism for retinal vascular diseases].

    PubMed

    Suzuma, Kiyoshi

    2015-03-01

    I. A new therapeutic target for diabetic retinopathy. Recent reports state that succinate may be an independent retinal angiogenic factor. We evaluated concentrations in vitreous from proliferative diabetic retinopathy (PDR), and found that succinate increased significantly in PDR. Interestingly, levels of succinate from bevacizumab-pre-injected PDR were normal, suggesting that vascular endothelial growth factor (VEGF) had a positive feedback mechanism for succinate since succinate was previously reported to induce VEGF. II. A new understanding of central retinal vein occlusion (CRVO). We evaluated retinal blood flow velocity with laser speckle flowgraphy (LSFG) made in Japan, and found that cases in which both macular edema and retinal blood flow velocity improved after anti-VEGF therapy had better prognosis. In ischemic CRVO at final visit, mean retinal blood velocity was less than 50% of fellow eyes after 1st anti-VEGF therapy, suggesting that those cases might have poor prognosis. LSFG is useful for evaluation and decision in CRVO treatment. III. From exploration for mechanism in retinal vascular diseases to re-vascularization therapy. The standard treatment for retinal non-perfusion area is scatter laser photocoagulation, which is both invasive of the peripheral retina and may prove destructive. Re-vascularization is an ideal strategy for treatment of retinal non-perfusion area. To develop a new methods for re-vascularization in retinal non-perfusion area, we have designed experiments using a retina without vasculature differentiated from induced pluripotent stem(iPS) cells.

  7. Retinal detachment associated with atopic dermatitis.

    PubMed Central

    Takahashi, M; Suzuma, K; Inaba, I; Ogura, Y; Yoneda, K; Okamoto, H

    1996-01-01

    BACKGROUND: Retinal detachment associated with atopic dermatitis, one of the most common forms of dermatitis in Japan, has markedly increased in Japan in the past 10 years. To clarify pathogenic mechanisms of retinal detachment in such cases, we retrospectively studied clinical characteristics of retinal detachment associated with atopic dermatitis. METHODS: We examined the records of 80 patients (89 eyes) who had retinal detachment associated with atopic dermatitis. The patients were classified into three groups according to lens status: group A, eyes with clear lenses (40 eyes); group B, eyes with cataract (38 eyes), and group C, aphakic or pseudophakic eyes (11 eyes). RESULTS: No significant differences were noted in the ratio of males to females, age distribution, refractive error, or characteristic of retinal detachment among the three groups. The types of retinal breaks, however, were different in eyes with and without lens changes. While atrophic holes were dominant in group A, retinal dialysis was mainly seen in groups B and C. CONCLUSION: These findings suggested that anterior vitreoretinal traction may play an important role in the pathogenesis of retinal breaks in eyes with atopic cataract and that the same pathological process may affect the formation of cataract and tractional retinal breaks in patients with atopic dermatitis. PMID:8664234

  8. Retinal Cell Degeneration in Animal Models

    PubMed Central

    Niwa, Masayuki; Aoki, Hitomi; Hirata, Akihiro; Tomita, Hiroyuki; Green, Paul G.; Hara, Akira

    2016-01-01

    The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage. PMID:26784179

  9. Update on Pharmacologic Retinal Vascular Toxicity.

    PubMed

    Schwartz, Stephen G; Grzybowski, Andrzej; Wasinska-Borowiec, Weronika; Flynn, Harry W; Mieler, William F

    2015-01-01

    Several medications are associated with retinal vascular toxicity. These include intraocular aminoglycosides, oral contraceptives, interferon alpha, several other agents, and talc, which occurs as a vehicle in some oral medications that may be abused intravenously. As a group, these entities represent a small but clinically relevant category of retinal toxicity from medications. Some of the manifestations (e.g., retinal vascular occlusion) are nonspecific, but others are more specific, including clinically visible talc emboli in retinal vessels. Toxicity may be asymptomatic or may cause irreversible visual loss. By maintaining a high index of suspicion, the correct diagnosis can usually be made. PMID:26350526

  10. Annexin II-dependent actin remodelling evoked by hydrogen peroxide requires the metalloproteinase/sphingolipid pathway

    PubMed Central

    Cinq-Frais, Christel; Coatrieux, Christelle; Savary, Aude; D’Angelo, Romina; Bernis, Corinne; Salvayre, Robert; Nègre-Salvayre, Anne; Augé, Nathalie

    2014-01-01

    Actin remodeling is a dynamic process associated with cell shape modification occurring during cell cycle and proliferation. Oxidative stress plays a role in actin reorganization via various systems including p38MAPK. Beside, the mitogenic response evoked by hydrogen peroxide (H2O2) in fibroblasts and smooth muscle cells (SMC) involves the metalloproteinase (MMPs)/sphingomyelinase 2 (nSMase2) signaling pathway. The aim of this work was to investigate whether this system plays a role in actin remodeling induced by H2O2. Low H2O2 dose (5 µM) rapidly triggered a signaling cascade leading to nSMase2 activation, src and annexin 2 (AnxA2) phosphorylation, and actin remodeling, in fibroblasts and SMC. These events were blocked by pharmacological inhibitors of MMPs (Ro28-2653) and p38MAPK (SB203580), and were lacking in MMP2−/− and in nSMase2-mutant (fro) fibroblasts. Likewise, H2O2 was unable to induce actin remodeling in fro and MMP2−/− fibroblasts or in cells pretreated with p38MAPK, or MMP inhibitors. Finally we show that nSMase2 activation by H2O2, depends on MMP2 and p38MAPK, and is required for the src-dependent phosphorylation of AnxA2, and actin remodeling. Taken together, these findings indicate for the first time that AnxA2 phosphorylation and actin remodeling evoked by oxidative stress depend on the sphingolipid pathway, via MMP2 and p38MAPK. PMID:25574848

  11. Uterine artery remodeling in pseudopregnancy is comparable to that in early pregnancy.

    PubMed

    van der Heijden, Olivier W H; Essers, Yvonne P G; Spaanderman, Marc E A; De Mey, Jo G R; van Eys, Guillaume J J M; Peeters, Louis L H

    2005-12-01

    During pregnancy, the lumenal diameter and wall mass of the uterine artery (UA) increase, most likely in response to the increased hemodynamic strain resulting from the chronically elevated uterine blood flow (UBF). In this remodeling process, the phenotype of vascular smooth-muscle cells (VSMC) is transiently altered to enable VSMC proliferation. These phenomena are already seen during early pregnancy, when the rise in UBF is still modest. This raises the question whether the newly instituted endocrine environment of pregnancy is involved in the onset of the pregnancy-related UA remodeling. We tested the hypothesis that the conceptus is not essential for the onset of UA remodeling of pregnancy. Six control and 18 pseudopregnant (Postcopulation Days 5, 11, and 17; n = 6 per subgroup) C57Bl/6 mice were killed and UAs were dissected and processed for either morphometric analysis or immunohistochemistry. The latter consisted of staining UA cross sections for the differentiation markers smooth muscle alpha-actin and smoothelin, and for the proliferation marker MKI67. We analyzed the UA changes in response to pseudopregnancy by ANOVA. Data are presented as mean +/- SD. By Day 11 of pseudopregnancy, the UA lumen was 25% wider and the media cross-sectional area 71% larger than in control mice. These differences were accompanied by reduced smoothelin expression and increased proliferation of UA medial VSMC. All UA morphological differences had returned or were in the process of returning to baseline values by Day 17 of pseudopregnancy. The structural and cellular aspects of UA remodeling as seen at midpregnancy are also seen in pseudopregnancy. These results support the concept that the conceptus does not contribute to the initiation of UA remodeling. We suggest that ovarian hormones trigger the onset of UA remodeling.

  12. The LHCb Trigger System

    NASA Astrophysics Data System (ADS)

    Rodrigues, E.; LHCb Collaboration

    2007-08-01

    The LHCb detector has been conceived to study with high precision CP violation and rare decays of b-flavoured hadrons produced at the LHC. The LHCb trigger is of crucial importance in selecting the collisions of interest for b-physics studies. The trigger is based on a two-level system. The first level, Level-0, is implemented in hardware and uses information from the calorimeter, muon and pile-up systems to select events containing particles with relatively large transverse momentum, typically above 1-2 GeV. The Level-0 trigger accepts events at a rate of 1 MHz. All the detector information is then read out and fed into the High Level Trigger. This software trigger runs in the event-filter farm composed of about 1800 CPU nodes. Events are selected at a rate of 2 kHz and sent for mass storage and subsequent offline reconstruction and analysis. The current status and expected performance of the trigger system are described.

  13. Crewmembers in the middeck with the Retinal Photography experiment.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mission Pilot Robert Cabana conducting the Retinal Photography life sciences experiment on test subject Mission Specialist Michael Clifford. The Retinal Photography experiment is Detailed Supplementary Objective # 474.

  14. Cardiac remodelling and RAS inhibition.

    PubMed

    Ferrario, Carlos M

    2016-06-01

    Risk factors such as hypertension and diabetes are known to augment the activity and tissue expression of angiotensin II (Ang II), the major effector peptide of the renin-angiotensin system (RAS). Overstimulation of the RAS has been implicated in a chain of events that contribute to the pathogenesis of cardiovascular (CV) disease, including the development of cardiac remodelling. This chain of events has been termed the CV continuum. The concept of CV disease existing as a continuum was first proposed in 1991 and it is believed that intervention at any point within the continuum can modify disease progression. Treatment with antihypertensive agents may result in regression of left ventricular hypertrophy, with different drug classes exhibiting different degrees of efficacy. The greatest decrease in left ventricular mass is observed following treatment with angiotensin converting enzyme inhibitors (ACE-Is), which inhibit Ang II formation. Although ACE-Is and angiotensin receptor blockers (ARBs) provide significant benefits in terms of CV events and stroke, mortality remains high. This is partly due to a failure to completely suppress the RAS, and, as our knowledge has increased, an escape phenomenon has been proposed whereby the human sequence of the 12 amino acid substrate angiotensin-(1-12) is converted to Ang II by the mast cell protease, chymase. Angiotensin-(1-12) is abundant in a wide range of organs and has been shown to increase blood pressure in animal models, an effect abolished by the presence of ACE-Is or ARBs. This review explores the CV continuum, in addition to examining the influence of the RAS. We also consider novel pathways within the RAS and how new therapeutic approaches that target this are required to further reduce Ang II formation, and so provide patients with additional benefits from a more complete blockade of the RAS. PMID:27105891

  15. Second harmonic generation from Langmuir-Blodgett films of retinal and retinal Schiff bases

    SciTech Connect

    Huang, J.; Lewis, A.; Rasing, T.

    1988-04-07

    The second harmonic signal from monolayers of retinal and retinal Schiff bases is reported. The results have yielded information on the monolayer structure and demonstrate that retinal and retinal Schiff bases have large second-order molecular hyperpolarizabilities with values of 1.4 x 10/sup -28/, 1.2 x 10/sup -28/, and 2.3 x 10/sup -28/ esu for retinal, the unprotonated Schiff base, and the protonated Schiff base, respectively. These values compare well with the known variation in the alteration in the dipole moment of such chromophores upon excitation.

  16. Periprosthetic Bone Remodelling in Total Knee Arthroplasty

    PubMed Central

    GEORGEANU, Vlad; ATASIEI, Tudor; GRUIONU, Lucian

    2014-01-01

    Introduction: The clinical studies have shown that the displacement of the prosthesis components, especially of the tibial one is higher during the first year, after which it reaches an equilibrum position compatible with a good long term functioning. This displacement takes place due to bone remodelling close to the implant secondary to different loading concentrations over different areas of bone. Material and Method: Our study implies a simulation on a computational model using the finite element analysis. The simulation started taking into account arbitrary points because of non-linear conditions of bone-prosthesis interface and it was iterative.. A hundred consecutive situations corresponding to intermediate bone remodelling phases have been calculated according to given loadings. Bone remodelling was appreciated as a function of time and bone density for each constitutive element of the computational model created by finite element method. For each constitutive element a medium value of stress during the walking cycle was applied. Results: Analyse of proximal epiphysis-prosthesis complex slices showed that bone density increase is maintained all over the stem in the immediately post-operative period. At 10 months, the moment considered to be the end of bone remodelling, areas with increased bone density are fewer and smaller. Meanwhile, their distribution with a concentration toward the internal compartment in the distal metaphysis is preserved. Conclusions: After the total knee arthroplasty the tibial bone suffered a process of remodelling adapted to the new stress conditions. This bone remodelling can influence, sometimes negatively, especially in the cases with tibial component varus malposition, the fixation, respectively the survival of the prosthesis. This process has been demonstrated both by clinical trials and by simulation, using the finite elements method of periprosthetic bone remodelling. PMID:25553127

  17. The bacterial toxin CNF1 as a tool to induce retinal degeneration reminiscent of retinitis pigmentosa

    PubMed Central

    Guadagni, Viviana; Cerri, Chiara; Piano, Ilaria; Novelli, Elena; Gargini, Claudia; Fiorentini, Carla; Caleo, Matteo; Strettoi, Enrica

    2016-01-01

    Retinitis pigmentosa (RP) comprises a group of inherited pathologies characterized by progressive photoreceptor degeneration. In rodent models of RP, expression of defective genes and retinal degeneration usually manifest during the first weeks of postnatal life, making it difficult to distinguish consequences of primary genetic defects from abnormalities in retinal development. Moreover, mouse eyes are small and not always adequate to test pharmacological and surgical treatments. An inducible paradigm of retinal degeneration potentially extensible to large animals is therefore desirable. Starting from the serendipitous observation that intraocular injections of a Rho GTPase activator, the bacterial toxin Cytotoxic Necrotizing Factor 1 (CNF1), lead to retinal degeneration, we implemented an inducible model recapitulating most of the key features of Retinitis Pigmentosa. The model also unmasks an intrinsic vulnerability of photoreceptors to the mechanism of CNF1 action, indicating still unexplored molecular pathways potentially leading to the death of these cells in inherited forms of retinal degeneration. PMID:27775019

  18. Retinal nerve fiber layer thickness and retinal vessel calibers in children with thalassemia minor

    PubMed Central

    Acer, Semra; Balcı, Yasemin I; Pekel, Gökhan; Ongun, Tuğba T; Polat, Aziz; Çetin, Ebru N; Yağcı, Ramazan

    2016-01-01

    Objectives: Evaluation of the peripapillary retinal nerve fiber layer thickness, subfoveal choroidal thickness, and retinal vessel caliber measurements in children with thalassemia minor. Methods: In this cross-sectional and comparative study, 30 thalassemia minor patients and 36 controls were included. Heidelberg spectral domain optical coherence tomography was used for peripapillary retinal nerve fiber layer thickness, subfoveal choroidal thickness, and retinal vessel caliber measurements. Results: There was no statistically significant difference in retinal nerve fiber layer thickness and subfoveal choroidal thickness between the two groups (p > 0.05). There was no correlation between retinal nerve fiber layer thickness and hemoglobin values. Both the arterioral and venular calibers were higher in thalassemia minor group (p < 0.05). Conclusion: There is increased retinal arterioral and venular calibers in children with thalassemia minor compared with controls. PMID:27540484

  19. Trigger mechanism for engines

    SciTech Connect

    Clark, L.R.

    1989-02-28

    A trigger mechanism is described for a blower-vacuum apparatus having a trigger mounted within a handle and a small engine comprising: a throttle; a ''L'' shaped lever having first and second legs mounted for rotation about an intermediate pivot within the handle when the trigger is depressed, interconnecting the trigger and the throttle, the second leg having first teeth defined therein, the lever further having idle, full throttle and stop positions; a normally raised latch means adapted to be rotated and axially depressed, the latch means having second teeth situated on a cam to engage the first teeth for holding the lever in an intermediate position between the idle and full throttle positions when the latch means is rotated. The latch means further are cam teeth into potential engagement with the lever teeth when the trigger is depressed, lever is biased to the stop position; and idle adjusting means means for intercepting the second leg for preventing the second leg from reaching the stop position when the latch means is raised.

  20. Cygnus Trigger System

    SciTech Connect

    G. Corrow, M. Hansen, D. Henderson, C. Mitton

    2008-02-01

    The Cygnus Dual Beam Radiographic Facility consists of two radiographic sources (Cygnus 1, Cygnus 2) each with a dose rating of 4 rads at 1 m, and a 1-mm diameter spot size. The electrical specifications are: 2.25 MV, 60 kA, 60 ns. This facility is located in an underground environment at the Nevada Test Site (NTS). These sources were developed as a primary diagnostic for subcritical tests, which are single-shot, high-value events. In such an application there is an emphasis on reliability and reproducibility. A robust, low-jitter trigger system is a key element for meeting these goals. The trigger system was developed with both commercial and project-specific equipment. In addition to the traditional functions of a trigger system there are novel features added to protect the investment of a high-value shot. Details of the trigger system, including elements designed specifically for a subcritical test application, will be presented. The individual electronic components have their nominal throughput, and when assembled have a system throughput with a measured range of jitter. The shot-to-shot jitter will be assessed both individually and in combination. Trigger reliability and reproducibility results will be presented for a substantial number of shots executed at the NTS.

  1. Fundus autofluorescence applications in retinal imaging

    PubMed Central

    Gabai, Andrea; Veritti, Daniele; Lanzetta, Paolo

    2015-01-01

    Fundus autofluorescence (FAF) is a relatively new imaging technique that can be used to study retinal diseases. It provides information on retinal metabolism and health. Several different pathologies can be detected. Peculiar AF alterations can help the clinician to monitor disease progression and to better understand its pathogenesis. In the present article, we review FAF principles and clinical applications. PMID:26139802

  2. Argus II retinal prosthesis system: An update.

    PubMed

    Rachitskaya, Aleksandra V; Yuan, Alex

    2016-09-01

    This review focuses on a description of the Argus II retinal prosthesis system (Argus II; Second Sight Medical Products, Sylmar, CA) that was approved for humanitarian use by the FDA in 2013 in patients with retinitis pigmentosa with bare or no light perception vision. The article describes the components of Argus II, the studies on the implant, and future directions. PMID:26855177

  3. Obesity and carotid artery remodeling

    PubMed Central

    Kozakova, M; Palombo, C; Morizzo, C; Højlund, K; Hatunic, M; Balkau, B; Nilsson, P M; Ferrannini, E

    2015-01-01

    Background/Objective: The present study tested the hypothesis that obesity-related changes in carotid intima-media thickness (IMT) might represent not only preclinical atherosclerosis but an adaptive remodeling meant to preserve circumferential wall stress (CWS) in altered hemodynamic conditions characterized by body size-dependent increase in stroke volume (SV) and blood pressure (BP). Subjects/Methods: Common carotid artery (CCA) luminal diameter (LD), IMT and CWS were measured in three different populations in order to study: (A) cross-sectional associations between SV, BP, anthropometric parameters and CCA LD (266 healthy subjects with wide range of body weight (24–159 kg)); (B) longitudinal associations between CCA LD and 3-year IMT progression rate (ΔIMT; 571 healthy non-obese subjects without increased cardiovascular (CV) risk); (C) the impact of obesity on CCA geometry and CWS (88 obese subjects without CV complications and 88 non-obese subjects matched for gender and age). Results: CCA LD was independently associated with SV that was determined by body size. In the longitudinal study, baseline LD was an independent determinant of ΔIMT, and ΔIMT of subjects in the highest LD quartile was significantly higher (28±3 μm) as compared with those in the lower quartiles (8±3, 16±4 and 16±3 μm, P=0.001, P<0.05 and P=0.01, respectively). In addition, CCA CWS decreased during the observational period in the highest LD quartile (from 54.2±8.6 to 51.6±7.4 kPa, P<0.0001). As compared with gender- and age-matched lean individuals, obese subjects had highly increased CCA LD and BP (P<0.0001 for both), but only slightly higher CWS (P=0.05) due to a significant increase in IMT (P=0.005 after adjustment for confounders). Conclusions: Our findings suggest that in obese subjects, the CCA wall thickens to compensate the luminal enlargement caused by body size-induced increase in SV, and therefore, to normalize the wall stress. CCA diameter in obesity could

  4. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W.; Schare, Joshua M.; Bunch, Kyle

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  5. A fly's view of neuronal remodeling.

    PubMed

    Yaniv, Shiri P; Schuldiner, Oren

    2016-09-01

    Developmental neuronal remodeling is a crucial step in sculpting the final and mature brain connectivity in both vertebrates and invertebrates. Remodeling includes degenerative events, such as neurite pruning, that may be followed by regeneration to form novel connections during normal development. Drosophila provides an excellent model to study both steps of remodeling since its nervous system undergoes massive and stereotypic remodeling during metamorphosis. Although pruning has been widely studied, our knowledge of the molecular and cellular mechanisms is far from complete. Our understanding of the processes underlying regrowth is even more fragmentary. In this review, we discuss recent progress by focusing on three groups of neurons that undergo stereotypic pruning and regrowth during metamorphosis, the mushroom body γ neurons, the dendritic arborization neurons and the crustacean cardioactive peptide peptidergic neurons. By comparing and contrasting the mechanisms involved in remodeling of these three neuronal types, we highlight the common themes and differences as well as raise key questions for future investigation in the field. WIREs Dev Biol 2016, 5:618-635. doi: 10.1002/wdev.241 For further resources related to this article, please visit the WIREs website. PMID:27351747

  6. Retinal artery occlusions in children.

    PubMed

    Dharmasena, Aruna; Wallis, Simon

    2014-01-01

    The purpose of this study is to present a case of RAO in a 13 year old girl with a preceding history of hyperextension of the neck at her hairdressers for a long duration and use of her mobile phone handset resting it against the side of her neck presumably exerting some pressure on carotids during the same time. Materials and methods of this study was reported as case report and review of literature. A 13 year-old girl presented with the left supero-nasal scotoma due to an inferior temporal branch retinal artery occlusion (BRAO). She underwent extensive investigations and no underlying cause was discovered. She gave a history of cervical extension over a long period of time while having the hair coloured twice in the preceding week. She also mentioned that she was using her mobile phone more or less continuously during both these occasions keeping it against her neck. Given the above history it is possible that the pressure on the ipsilateral carotid arteries or the prolong neck extension may have been responsible for the formation of a platelet embolus resulting in the BRAO. In conclusion, although cerebro-vascular accidents due to 'beauty parlor stroke syndrome' (JAMA 269:2085-2086, 1993) have been reported previously it has not been reported in children to our knowledge. On the other hand, 'beauty parlor stroke syndrome' occurs due to a dissection of the vertebral arteries or due to mechanical compression of the vertebral arteries during the prolonged hyperextension of the neck. The central retinal artery originates from the internal carotid circulation and it is highly unlikely for an embolus to enter the retinal circulation from the vertebral arteries. Therefore, the authors favour the possibility that the compulsive use of a mobile phone exerting pressure on the carotid arteries for a long time may have led to the formation of an embolus and subsequent RAO in this case.

  7. The cell stress machinery and retinal degeneration.

    PubMed

    Athanasiou, Dimitra; Aguilà, Monica; Bevilacqua, Dalila; Novoselov, Sergey S; Parfitt, David A; Cheetham, Michael E

    2013-06-27

    Retinal degenerations are a group of clinically and genetically heterogeneous disorders characterised by progressive loss of vision due to neurodegeneration. The retina is a highly specialised tissue with a unique architecture and maintaining homeostasis in all the different retinal cell types is crucial for healthy vision. The retina can be exposed to a variety of environmental insults and stress, including light-induced damage, oxidative stress and inherited mutations that can lead to protein misfolding. Within retinal cells there are different mechanisms to cope with disturbances in proteostasis, such as the heat shock response, the unfolded protein response and autophagy. In this review, we discuss the multiple responses of the retina to different types of stress involved in retinal degenerations, such as retinitis pigmentosa, age-related macular degeneration and glaucoma. Understanding the mechanisms that maintain and re-establish proteostasis in the retina is important for developing new therapeutic approaches to fight blindness. PMID:23684651

  8. [Intravitreal ganciclovir in cytomegalovirus retinitis in AIDS].

    PubMed

    Olea, J L; Salvat, M; Mateos, J M; Vila, J; Villalonga, C; Riera, M

    1996-04-01

    A retrospective study was made of 26 patients with AIDS who initially presented with retinitis as the only clinical manifestation of cytomegalovirus infection (39 eyes). Sixty-five induction or re-induction therapeutic courses were administered with intravitreal ganciclovir. The efficiency rate of therapy was 93.8%. Thirty-eight maintenance therapeutic courses (200 micrograms/week) were evaluated. The non-compliance rate was 23%. Bilateral retinitis occurred in 44.4% of cases. The systemic administration of therapy had to be substituted for the intravitreal administration in 32% of patients during the clinical course of their conditions. The mean survival rate was 9.5 months. Both retinal detachment and vitreal hemorrhage occurred in 5% of patients. When retinitis is the first clinical manifestation of cytomegalovirus infection, therapy with intravitreal ganciclovir is efficacious to inactivate lesions. Although bilateral retinitis and extraocular dissemination are common, the mean survival rate is high.

  9. Video Event Trigger

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.; Lichter, Michael J.

    1994-01-01

    Video event trigger (VET) processes video image data to generate trigger signal when image shows significant change like motion or appearance, disappearance, change in color, change in brightness, or dilation of object. System aids in efficient utilization of image-data-storage and image-data-processing equipment in applications in which many video frames show no changes and are wasteful to record and analyze all frames when only relatively few frames show changes of interest. Applications include video recording of automobile crash tests, automated video monitoring of entrances, exits, parking lots, and secure areas.

  10. Primary Reactions in Retinal Proteins

    NASA Astrophysics Data System (ADS)

    Diller, R.

    Conversion of sunlight into energy or information and their storage on a chemical level is essential for life on earth. An important family of chromoproteins performing these tasks is that of retinal binding proteins. Prominent examples are rhodopsin (Rh) [1,2] as the visual pigment in vertebrate and invertebrate animals, the archaeal rhodopsins bacteriorhodopsin (BR) [3] as a light driven proton pump, halorhodopsin (HR) [4,5] as a light driven chloride pump, sensory rhodopsin I and II (SRI, SRII) [6] as photoreceptors, and proteorhodopsin (PR) [7] as another bacterial proton pump.

  11. A profile of transcriptomic changes in the rd10 mouse model of retinitis pigmentosa

    PubMed Central

    Uren, Philip J.; Lee, Justine T.; Doroudchi, M. Mehdi; Smith, Andrew D.

    2014-01-01

    Purpose Retinitis pigmentosa (RP) is a photoreceptor disease that affects approximately 100,000 people in the United States. Treatment options are limited, and the prognosis for most patients is progressive vision loss. Unfortunately, understanding of the molecular underpinnings of RP initiation and progression is still limited. However, the development of animal models of RP, coupled with high-throughput sequencing, has provided an opportunity to study the underlying cellular and molecular changes in this disease. Methods Using RNA-Seq, we present the first retinal transcriptome analysis of the rd10 murine model of retinal degeneration. Results Our data confirm the loss of rod-specific transcripts and the increased relative expression of Müller-specific transcripts, emphasizing the important role of reactive gliosis and innate immune activation in RP. Moreover, we report substantial changes in relative isoform usage among neuronal differentiation and morphogenesis genes, including a marked shift to shorter transcripts. Conclusions Our analyses implicate remodeling of the inner retina and possible Müller cell dedifferentiation. PMID:25489233

  12. Proliferation Potential of Müller Glia after Retinal Damage Varies between Mouse Strains

    PubMed Central

    Suga, Akiko; Sadamoto, Kazuyo; Fujii, Momo; Mandai, Michiko; Takahashi, Masayo

    2014-01-01

    Retinal Müller glia can serve as a source for regeneration of damaged retinal neurons in fish, birds and mammals. However, the proliferation rate of Müller glia has been reported to be low in the mammalian retina. To overcome this problem, growth factors and morphogens have been studied as potent promoters of Müller glial proliferation, but the molecular mechanisms that limit the proliferation of Müller glia in the mammalian retina remain unknown. In the present study, we found that the degree of damage-induced Müller glia proliferation varies across mouse strains. In mouse line 129×1/SvJ (129), there was a significantly larger proliferative response compared with that observed in C57BL/6 (B6) after photoreceptor cell death. Treatment with a Glycogen synthase kinase 3 (GSK3) inhibitor enhanced the proliferation of Müller glia in 129 but not in B6 mouse retinas. We therefore focused on the different gene expression patterns during retinal degeneration between B6 and 129. Expression levels of Cyclin D1 and Nestin correlated with the degree of Müller glial proliferation. A comparison of genome-wide gene expression between B6 and 129 showed that distinct sets of genes were upregulated in the retinas after damage, including immune response genes and chromatin remodeling factors. PMID:24747725

  13. Complement system in pathogenesis of AMD: dual player in degeneration and protection of retinal tissue.

    PubMed

    Kawa, Milosz P; Machalinska, Anna; Roginska, Dorota; Machalinski, Boguslaw

    2014-01-01

    Age-related macular degeneration (AMD) is the most common cause of blindness among the elderly, especially in Western countries. Although the prevalence, risk factors, and clinical course of the disease are well described, its pathogenesis is not entirely elucidated. AMD is associated with a variety of biochemical abnormalities, including complement components deposition in the retinal pigment epithelium-Bruch's membrane-choriocapillaris complex. Although the complement system (CS) is increasingly recognized as mediating important roles in retinal biology, its particular role in AMD pathogenesis has not been precisely defined. Unrestricted activation of the CS following injury may directly damage retinal tissue and recruit immune cells to the vicinity of active complement cascades, therefore detrimentally causing bystander damage to surrounding cells and tissues. On the other hand, recent evidence supports the notion that an active complement pathway is a necessity for the normal maintenance of the neurosensory retina. In this scenario, complement activation appears to have beneficial effect as it promotes cell survival and tissue remodeling by facilitating the rapid removal of dying cells and resulting cellular debris, thus demonstrating anti-inflammatory and neuroprotective activities. In this review, we discuss both the beneficial and detrimental roles of CS in degenerative retina, focusing on the diverse aspects of CS functions that may promote or inhibit macular disease.

  14. Selectivity for multiple stimulus features in retinal ganglion cells.

    PubMed

    Fairhall, Adrienne L; Burlingame, C Andrew; Narasimhan, Ramesh; Harris, Robert A; Puchalla, Jason L; Berry, Michael J

    2006-11-01

    Under normal viewing conditions, retinal ganglion cells transmit to the brain an encoded version of the visual world. The retina parcels the visual scene into an array of spatiotemporal features, and each ganglion cell conveys information about a small set of these features. We study the temporal features represented by salamander retinal ganglion cells by stimulating with dynamic spatially uniform flicker and recording responses using a multi-electrode array. While standard reverse correlation methods determine a single stimulus feature--the spike-triggered average--multiple features can be relevant to spike generation. We apply covariance analysis to determine the set of features to which each ganglion cell is sensitive. Using this approach, we found that salamander ganglion cells represent a rich vocabulary of different features of a temporally modulated visual stimulus. Individual ganglion cells were sensitive to at least two and sometimes as many as six features in the stimulus. While a fraction of the cells can be described by a filter-and-fire cascade model, many cells have feature selectivity that has not previously been reported. These reverse models were able to account for 80-100% of the information encoded by ganglion cells. PMID:16914609

  15. Retinal pigment epithelial function: a role for CFTR?

    PubMed

    Blaug, Sasha; Quinn, Richard; Quong, Judy; Jalickee, Stephen; Miller, Sheldon S

    2003-01-01

    In the vertebrate eye, the photoreceptor outer segments and the apical membrane of the retinal pigment epithelium (RPE) are separated by a small extracellular (subretinal) space whose volume and chemical composition varies in the light and dark. Light onset triggers relatively fast (ms) retinal responses and much slower voltage and resistance changes (s to min) at the apical and basolateral membranes of the RPE. Two of these slow RPE responses, the fast oscillation (FO) and the light peak, are measured clinically as part of the electrooculogram (EOG). Both EOG responses are mediated in part by apical and basolateral membranes proteins that form a pathway for the movement of salt and osmotically obliged fluid across the RPE, from retina to choroid. This transport pathway serves to control the volume and chemical composition of the subretinal and choroidal extracellular spaces. In human fetal RPE, we have identified one of these proteins, the cystic fibrosis transmembrane conductance regulator (CFTR) by RT-PCR, immunolocalization, and electrophysiological techniques. Evidence is presented to suggest that the FO component of the EOG is mediated directly or indirectly by CFTR. PMID:12675485

  16. Near-Infrared Photobiomodulation in Retinal Injury and Disease.

    PubMed

    Eells, Janis T; Gopalakrishnan, Sandeep; Valter, Krisztina

    2016-01-01

    Evidence is growing that exposure of tissue to low energy photon irradiation in the far-red (FR) to near-infrared (NIR) range of the spectrum, collectively termed "photobiomodulation" (PBM) can restore the function of damaged mitochondria, upregulate the production of cytoprotective factors and prevent apoptotic cell death. PBM has been applied clinically in the treatment of soft tissue injuries and acceleration of wound healing for more than 40 years. Recent studies have demonstrated that FR/NIR photons penetrate diseased tissues including the retina. The therapeutic effects of PBM have been hypothesized to result from intracellular signaling pathways triggered when FR/NIR photons are absorbed by the mitochondrial photoacceptor molecule, cytochrome c oxidase, culminating in improved mitochondrial energy metabolism, increased cytoprotective factor production and cell survival. Investigations in rodent models of methanol-induced ocular toxicity, light damage, retinitis pigmentosa and age-related macular degeneration have demonstrated the PBM attenuates photoreceptor cell death, protects retinal function and exerts anti-inflammatory actions.

  17. The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development.

    PubMed

    Harper, Angelica R; Summers, Jody A

    2015-04-01

    Myopia is a common ocular condition, characterized by excessive elongation of the ocular globe. The prevalence of myopia continues to increase, particularly among highly educated groups, now exceeding 80% in some groups. In parallel with the increased prevalence of myopia, are increases in associated blinding ocular conditions including glaucoma, retinal detachment and macular degeneration, making myopia a significant global health concern. The elongation of the eye is closely related to the biomechanical properties of the sclera, which in turn are largely dependent on the composition of the scleral extracellular matrix. Therefore an understanding of the cellular and extracellular events involved in the regulation of scleral growth and remodeling during childhood and young adulthood will provide future avenues for the treatment of myopia and its associated ocular complications.

  18. Cell Therapy Applications for Retinal Vascular Diseases: Diabetic Retinopathy and Retinal Vein Occlusion.

    PubMed

    Park, Susanna S

    2016-04-01

    Retinal vascular conditions, such as diabetic retinopathy and retinal vein occlusion, remain leading causes of vision loss. No therapy exists to restore vision loss resulting from retinal ischemia and associated retinal degeneration. Tissue regeneration is possible with cell therapy. The goal would be to restore or replace the damaged retinal vasculature and the retinal neurons that are damaged and/or degenerating from the hypoxic insult. Currently, various adult cell therapies have been explored as potential treatment. They include mesenchymal stem cells, vascular precursor cells (i.e., CD34+ cells, hematopoietic cells or endothelial progenitor cells), and adipose stromal cells. Preclinical studies show that all these cells have a paracrine trophic effect on damaged ischemic tissue, leading to tissue preservation. Endothelial progenitor cells and adipose stromal cells integrate into the damaged retinal vascular wall in preclinical models of diabetic retinopathy and ischemia-reperfusion injury. Mesenchymal stem cells do not integrate as readily but appear to have a primary paracrine trophic effect. Early phase clinical trials have been initiated and ongoing using mesenchymal stem cells or autologous bone marrow CD34+ cells injected intravitreally as potential therapy for diabetic retinopathy or retinal vein occlusion. Adipose stromal cells or pluripotent stem cells differentiated into endothelial colony-forming cells have been explored in preclinical studies and show promise as possible therapies for retinal vascular disorders. The relative safety or efficacy of these various cell therapies for treating retinal vascular disorders have yet to be determined.

  19. Triggered plasma opening switch

    DOEpatents

    Mendel, Clifford W.

    1988-01-01

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  20. Disambiguating Syntactic Triggers

    ERIC Educational Resources Information Center

    Sakas, William Gregory; Fodor, Janet Dean

    2012-01-01

    We present data from an artificial language domain that suggest new contributions to the theory of syntactic triggers. Whether a learning algorithm is capable of matching the achievements of child learners depends in part on how much parametric ambiguity there is in the input. For practical reasons this cannot be established for the domain of all…

  1. Triggered plasma opening switch

    SciTech Connect

    Mendel, C W

    1988-02-23

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  2. Scar remodeling after strabismus surgery.

    PubMed Central

    Ludwig, I H

    1999-01-01

    limitation of versions, less separation of the tendons from sclera, and thicker appearance of the scar segments. The use of nonabsorbable sutures in the repair procedure reduced the recurrence rate. Histologic examination of the clinical stretched scar specimens showed dense connective tissue that was less well organized compared with normal tendon. In the tissue culture studies, cells cultured from the stretched scar specimens grew rapidly and were irregularly shaped. A high-molecular-weight protein was identified in the culture medium. By contrast, cells cultured from normal tendon (controls) grew more slowly and regularly, stopped growing at 4 days, and produced less total protein than cultured stretched scar specimens. In the animal model studies, the collagenase-treated sites showed elongated scars with increased collagen between the muscle and the sclera, as well as increased collagen creep rates, compared with the saline-treated controls. The use of nonabsorbable sutures in collagenase-treated animal model surgery sites was associated with shorter, thicker scars compared with similar sites sutured with absorbable sutures. CONCLUSIONS: A lengthened or stretched, remodeled scar between an operated muscle tendon and sclera is a common occurrence and is a factor contributing to the variability of outcome after strabismus repair, even years later. This abnormality may be revealed by careful exploration of previously operated muscles. Definitive repair requires firm reattachment of tendon to sclera with nonabsorbable suture support. Images FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 FIGURE 20 FIGURE 21 FIGURE 22 FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 FIGURE 27 FIGURE 28 FIGURE 29 FIGURE 30 FIGURE 31 FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 35 FIGURE 36 FIGURE 37 FIGURE 38 FIGURE 39 FIGURE 40 FIGURE 41 FIGURE 42 FIGURE 43 FIGURE 44 FIGURE 45 FIGURE 46 FIGURE 52

  3. Genetic networks controlling retinal injury

    PubMed Central

    Vazquez-Chona, Felix R.; Khan, Amna N.; Chan, Chun K.; Moore, Anthony N.; Dash, Pramod K.; Hernandez, M. Rosario; Lu, Lu; Chesler, Elissa J.; Manly, Kenneth F.; Williams, Robert W.; Geisert, Eldon E.

    2010-01-01

    Purpose The present study defines genomic loci underlying coordinate changes in gene expression following retinal injury. Methods A group of acute phase genes expressed in diverse nervous system tissues was defined by combining microarray results from injury studies from rat retina, brain, and spinal cord. Genomic loci regulating the brain expression of acute phase genes were identified using a panel of BXD recombinant inbred (RI) mouse strains. Candidate upstream regulators within a locus were defined using single nucleotide polymorphism databases and promoter motif databases. Results The acute phase response of rat retina, brain, and spinal cord was dominated by transcription factors. Three genomic loci control transcript expression of acute phase genes in brains of BXD RI mouse strains. One locus was identified on chromosome 12 and was highly correlated with the expression of classic acute phase genes. Within the locus we identified the inhibitor of DNA binding 2 (Id2) as a candidate upstream regulator. Id2 was upregulated as an acute phase transcript in injury models of rat retina, brain, and spinal cord. Conclusions We defined a group of transcriptional changes associated with the retinal acute injury response. Using genetic linkage analysis of natural transcript variation, we identified regulatory loci and candidate regulators that control transcript levels of acute phase genes. PMID:16288200

  4. Fixation strategies for retinal immunohistochemistry.

    PubMed

    Stradleigh, Tyler W; Ishida, Andrew T

    2015-09-01

    Immunohistochemical and ex vivo anatomical studies have provided many glimpses of the variety, distribution, and signaling components of vertebrate retinal neurons. The beauty of numerous images published to date, and the qualitative and quantitative information they provide, indicate that these approaches are fundamentally useful. However, obtaining these images entailed tissue handling and exposure to chemical solutions that differ from normal extracellular fluid in composition, temperature, and osmolarity. Because the differences are large enough to alter intercellular and intracellular signaling in neurons, and because retinae are susceptible to crush, shear, and fray, it is natural to wonder if immunohistochemical and anatomical methods disturb or damage the cells they are designed to examine. Tissue fixation is typically incorporated to guard against this damage and is therefore critically important to the quality and significance of the harvested data. Here, we describe mechanisms of fixation; advantages and disadvantages of using formaldehyde and glutaraldehyde as fixatives during immunohistochemistry; and modifications of widely used protocols that have recently been found to improve cell shape preservation and immunostaining patterns, especially in proximal retinal neurons. PMID:25892361

  5. Measurement of retinal blood velocity

    NASA Astrophysics Data System (ADS)

    Winchester, Leonard W., Jr.; Chou, Nee-Yin

    2006-02-01

    A fundus camera was modified to illuminate the retina of a rabbit model with low power laser light in order to obtain laser speckle images. A fast-exposure charge-coupled device (CCD) camera was used to capture laser speckle images of the retina. Image acquisition was synchronized with the arterial pulses of the rabbit to ensure that all images are obtained at the same point in the cardiac cycle. The rabbits were sedated and a speculum was inserted to prevent the eyelid from closing. Both albino (New Zealand; pigmented (Dutch belted) rabbits were used in the study. The rabbit retina is almost avascular. The measurements are obtained for choroidal tissue as well as retinal tissue. Because the retina is in a region of high metabolism, blood velocity is strongly affected by blood oxygen saturation. Measurements of blood velocity obtained over a wide range of O II saturations (58%-100%) showed that blood velocity increases with decreasing O II saturation. For most experiments, the left eye of the rabbit was used for laser measurements whereas the right eye served as a control. No observable difference between pre- and post-experimented eye was noted. Histological examinations of retinal tissue subjected to repeated laser measurements showed no indication of tissue damage.

  6. Fixation Strategies For Retinal Immunohistochemistry

    PubMed Central

    Stradleigh, Tyler W.; Ishida, Andrew T.

    2015-01-01

    Immunohistochemical and ex vivo anatomical studies have provided many glimpses of the variety, distribution, and signaling components of vertebrate retinal neurons. The beauty of numerous images published to date, and the qualitative and quantitative information they provide, indicate that these approaches are fundamentally useful. However, obtaining these images entailed tissue handling and exposure to chemical solutions that differ from normal extracellular fluid in composition, temperature, and osmolarity. Because the differences are large enough to alter intercellular and intracellular signaling in neurons, and because retinae are susceptible to crush, shear, and fray, it is natural to wonder if immunohistochemical and anatomical methods disturb or damage the cells they are designed to examine. Tissue fixation is typically incorporated to guard against this damage and is therefore critically important to the quality and significance of the harvested data. Here, we describe mechanisms of fixation; advantages and disadvantages of using formaldehyde and glutaraldehyde as fixatives during immunohistochemistry; and modifications of widely used protocols that have recently been found to improve cell shape preservation and immunostaining patterns, especially in proximal retinal neurons. PMID:25892361

  7. Phase field approaches of bone remodeling based on TIP

    NASA Astrophysics Data System (ADS)

    Ganghoffer, Jean-François; Rahouadj, Rachid; Boisse, Julien; Forest, Samuel

    2016-01-01

    The process of bone remodeling includes a cycle of repair, renewal, and optimization. This adaptation process, in response to variations in external loads and chemical driving factors, involves three main types of bone cells: osteoclasts, which remove the old pre-existing bone; osteoblasts, which form the new bone in a second phase; osteocytes, which are sensing cells embedded into the bone matrix, trigger the aforementioned sequence of events. The remodeling process involves mineralization of the bone in the diffuse interface separating the marrow, which contains all specialized cells, from the newly formed bone. The main objective advocated in this contribution is the setting up of a modeling and simulation framework relying on the phase field method to capture the evolution of the diffuse interface between the new bone and the marrow at the scale of individual trabeculae. The phase field describes the degree of mineralization of this diffuse interface; it varies continuously between the lower value (no mineral) and unity (fully mineralized phase, e.g. new bone), allowing the consideration of a diffuse moving interface. The modeling framework is the theory of continuous media, for which field equations for the mechanical, chemical, and interfacial phenomena are written, based on the thermodynamics of irreversible processes. Additional models for the cellular activity are formulated to describe the coupling of the cell activity responsible for bone production/resorption to the kinetics of the internal variables. Kinetic equations for the internal variables are obtained from a pseudo-potential of dissipation. The combination of the balance equations for the microforce associated to the phase field and the kinetic equations lead to the Ginzburg-Landau equation satisfied by the phase field with a source term accounting for the dissipative microforce. Simulations illustrating the proposed framework are performed in a one-dimensional situation showing the evolution of

  8. Cholestasis‐induced adaptive remodeling of interlobular bile ducts

    PubMed Central

    Damle‐Vartak, Amruta; Richter, Beate; Dirsch, Olaf; Dahmen, Uta; Hammad, Seddik

    2016-01-01

    Cholestasis is a common complication in liver diseases that triggers a proliferative response of the biliary tree. Bile duct ligation (BDL) is a frequently used model of cholestasis in rodents. To determine which changes occur in the three‐dimensional (3D) architecture of the interlobular bile duct during cholestasis, we used 3D confocal imaging, surface reconstructions, and automated image quantification covering a period up to 28 days after BDL. We show a highly reproducible sequence of interlobular duct remodeling, where cholangiocyte proliferation initially causes corrugation of the luminal duct surface, leading to an approximately five‐fold increase in surface area. This is analogous to the function of villi in the intestine or sulci in the brain, where an expansion of area is achieved within a restricted volume. The increase in surface area is further enhanced by duct branching, branch elongation, and loop formation through self‐joining, whereby an initially relatively sparse mesh surrounding the portal vein becomes five‐fold denser through elongation, corrugation, and ramification. The number of connections between the bile duct and the lobular bile canalicular network by the canals of Hering decreases proportionally to the increase in bile duct length, suggesting that no novel connections are established. The diameter of the interlobular bile duct remains constant after BDL, a response that is qualitatively distinct from that of large bile ducts, which tend to enlarge their diameters. Therefore, volume enhancement is only due to net elongation of the ducts. Because curvature and tortuosity of the bile duct are unaltered, this enlargement of the biliary tree is caused by branching and not by convolution. Conclusion: BDL causes adaptive remodeling that aims at optimizing the intraluminal surface area by way of corrugation and branching. (Hepatology 2016;63:951–964) PMID:26610202

  9. Assessment of blood-retinal barrier integrity.

    PubMed

    Vinores, S A

    1995-01-01

    The blood-retinal barrier consists of two components which are comprised of the retinal vascular endothelium and the retinal pigment epithelium, respectively. Its functional integrity can be recognized by tight junctions between these cells with a paucity of endocytic vesicles within them and the presence of the molecules that regulate the ionic and metabolic gradients that constitute the barrier. The barrier is compromised in several disease processes and by a variety of agents, but in most cases the location and mechanism for barrier failure is not understood. Perfusion with a variety of radiolabeled tracer molecules, vitreous fluorophotometry, or magnetic resonance imaging can be used to quantitate blood-retinal barrier leakage. Fluorescein angiography or magnetic resonance imaging can localize sites of leakage in vivo with limited resolution. Evans blue dye can be used to visualize blood-retinal barrier failure in gross pathological specimens and immuno-histochemical labeling of serum proteins such as albumin or fibrinogen can be used to localize sites of blood-retinal barrier breakdown by light microscopy. Tracers such as horseradish peroxidase, microperoxidase, or lanthanum, or the immunocytochemical demonstration of albumin can be used to reveal blood-retinal barrier breakdown at the ultrastructural level and provide insights into the mechanisms involved. This review discusses the advantages and limitations of each of these methods to aid in selection of the appropriate techniques to derive the desired information.

  10. A mechanical model of retinal detachment

    NASA Astrophysics Data System (ADS)

    Chou, Tom; Siegel, Michael

    2012-08-01

    We present a model of the mechanical and fluid forces associated with exudative retinal detachments where the retinal photoreceptor cells separate, typically from the underlying retinal pigment epithelium (RPE). By computing the total fluid volume flow arising from transretinal, vascular and RPE pump currents, we determine the conditions under which the subretinal fluid pressure exceeds the maximum yield stress holding the retina and RPE together, giving rise to an irreversible, extended retinal delamination. We also investigate localized, blister-like retinal detachments by balancing mechanical tension in the retina with both the retina-RPE adhesion energy and the hydraulic pressure jump across the retina. For detachments induced by traction forces, we find a critical radius beyond which the blister is unstable to growth. Growth of a detached blister can also be driven by inflamed lesions in which the tissue has a higher choroidal hydraulic conductivity, has insufficient RPE pump activity, or has defective adhesion bonds. We determine the parameter regimes in which the blister either becomes unstable to growth, remains stable and finite-sized, or shrinks, allowing possible healing. The corresponding stable blister radius and shape are calculated. Our analysis provides a quantitative description of the physical mechanisms involved in exudative retinal detachments and can help guide the development of retinal reattachment protocols or preventative procedures.

  11. Optical Coherence Tomography Angiography in Retinal Diseases

    PubMed Central

    Chalam, K. V.; Sambhav, Kumar

    2016-01-01

    Optical coherence tomography angiography (OCTA) is a new, non-invasive imaging system that generates volumetric data of retinal and choroidal layers. It has the ability to show both structural and blood flow information. Split-spectrum amplitude-decorrelation angiography (SSADA) algorithm (a vital component of OCTA software) helps to decrease the signal to noise ratio of flow detection thus enhancing visualization of retinal vasculature using motion contrast. Published studies describe potential efficacy for OCTA in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age related macular degeneration (AMD), retinal vascular occlusions and sickle cell disease. OCTA provides a detailed view of the retinal vasculature, which allows accurate delineation of microvascular abnormalities in diabetic eyes and vascular occlusions. It helps quantify vascular compromise depending upon the severity of diabetic retinopathy. OCTA can also elucidate the presence of choroidal neovascularization (CNV) in wet AMD. In this paper, we review the knowledge, available in English language publications regarding OCTA, and compare it with the conventional angiographic standard, fluorescein angiography (FA). Finally, we summarize its potential applications to retinal vascular diseases. Its current limitations include a relatively small field of view, inability to show leakage, and tendency for image artifacts. Further larger studies will define OCTA's utility in clinical settings and establish if the technology may offer a non-invasive option of visualizing the retinal vasculature, enabling us to decrease morbidity through early detection and intervention in retinal diseases. PMID:27195091

  12. Optical Coherence Tomography Angiography in Retinal Diseases.

    PubMed

    Chalam, K V; Sambhav, Kumar

    2016-01-01

    Optical coherence tomography angiography (OCTA) is a new, non-invasive imaging system that generates volumetric data of retinal and choroidal layers. It has the ability to show both structural and blood flow information. Split-spectrum amplitude-decorrelation angiography (SSADA) algorithm (a vital component of OCTA software) helps to decrease the signal to noise ratio of flow detection thus enhancing visualization of retinal vasculature using motion contrast. Published studies describe potential efficacy for OCTA in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age related macular degeneration (AMD), retinal vascular occlusions and sickle cell disease. OCTA provides a detailed view of the retinal vasculature, which allows accurate delineation of microvascular abnormalities in diabetic eyes and vascular occlusions. It helps quantify vascular compromise depending upon the severity of diabetic retinopathy. OCTA can also elucidate the presence of choroidal neovascularization (CNV) in wet AMD. In this paper, we review the knowledge, available in English language publications regarding OCTA, and compare it with the conventional angiographic standard, fluorescein angiography (FA). Finally, we summarize its potential applications to retinal vascular diseases. Its current limitations include a relatively small field of view, inability to show leakage, and tendency for image artifacts. Further larger studies will define OCTA's utility in clinical settings and establish if the technology may offer a non-invasive option of visualizing the retinal vasculature, enabling us to decrease morbidity through early detection and intervention in retinal diseases.

  13. Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis

    PubMed Central

    Vayndorf, Elena M; Scerbak, Courtney; Hunter, Skyler; Neuswanger, Jason R; Toth, Marton; Parker, J Alex; Neri, Christian; Driscoll, Monica; Taylor, Barbara E

    2016-01-01

    Understanding cellular outcomes, such as neuronal remodeling, that are common to both healthy and diseased aging brains is essential to the development of successful brain aging strategies. Here, we used Caenorhabdits elegans to investigate how the expression of proteotoxic triggers, such as polyglutamine (polyQ)-expanded huntingtin and silencing of proteostasis regulators, such as the ubiquitin–proteasome system (UPS) and protein clearance components, may impact the morphological remodeling of individual neurons as animals age. We examined the effects of disrupted proteostasis on the integrity of neuronal cytoarchitecture by imaging a transgenic C. elegans strain in which touch receptor neurons express the first 57 amino acids of the human huntingtin (Htt) gene with expanded polyQs (128Q) and by using neuron-targeted RNA interference in adult wild-type neurons to knockdown genes encoding proteins involved in proteostasis. We found that proteostatic challenges conferred by polyQ-expanded Htt and knockdown of specific genes involved in protein homeostasis can lead to morphological changes that are restricted to specific domains of specific neurons. The age-associated branching of PLM neurons is suppressed by N-ter polyQ-expanded Htt expression, whereas ALM neurons with polyQ-expanded Htt accumulate extended outgrowths and other soma abnormalities. Furthermore, knockdown of genes important for ubiquitin-mediated degradation, lysosomal function, and autophagy modulated these age-related morphological changes in otherwise normal neurons. Our results show that the expression of misfolded proteins in neurodegenerative disease such as Huntington’s disease modifies the morphological remodeling that is normally associated with neuronal aging. Our results also show that morphological remodeling of healthy neurons during aging can be regulated by the UPS and other proteostasis pathways. Collectively, our data highlight a model in which morphological remodeling during

  14. Imaging Denatured Collagen Strands In vivo and Ex vivo via Photo-triggered Hybridization of Caged Collagen Mimetic Peptides

    PubMed Central

    Li, Yang; Foss, Catherine A.; Pomper, Martin G.; Yu, S. Michael

    2014-01-01

    Collagen is a major structural component of the extracellular matrix that supports tissue formation and maintenance. Although collagen remodeling is an integral part of normal tissue renewal, excessive amount of remodeling activity is involved in tumors, arthritis, and many other pathological conditions. During collagen remodeling, the triple helical structure of collagen molecules is disrupted by proteases in the extracellular environment. In addition, collagens present in many histological tissue samples are partially denatured by the fixation and preservation processes. Therefore, these denatured collagen strands can serve as effective targets for biological imaging. We previously developed a caged collagen mimetic peptide (CMP) that can be photo-triggered to hybridize with denatured collagen strands by forming triple helical structure, which is unique to collagens. The overall goals of this procedure are i) to image denatured collagen strands resulting from normal remodeling activities in vivo, and ii) to visualize collagens in ex vivo tissue sections using the photo-triggered caged CMPs. To achieve effective hybridization and successful in vivo and ex vivo imaging, fluorescently labeled caged CMPs are either photo-activated immediately before intravenous injection, or are directly activated on tissue sections. Normal skeletal collagen remolding in nude mice and collagens in prefixed mouse cornea tissue sections are imaged in this procedure. The imaging method based on the CMP-collagen hybridization technology presented here could lead to deeper understanding of the tissue remodeling process, as well as allow development of new diagnostics for diseases associated with high collagen remodeling activity. PMID:24513868

  15. Retinal venous pressure: the role of endothelin.

    PubMed

    Flammer, Josef; Konieczka, Katarzyna

    2015-01-01

    The retinal venous pressure (RVP) can be measured non-invasively. While RVP is equal to or slightly above intraocular pressure (IOP) in healthy people, it is often markedly increased in patients with eye or systemic diseases. Beside a mechanical obstruction, the main cause of such an elevation is a local dysregulation of a retinal vein, particularly a constriction induced by endothelin-1 (ET-1). A local increase of ET-1 can result from a high plasma level, as ET-1 can diffuse from the fenestrated capillaries of the choroid into the optic nerve head (ONH), bypassing the blood retinal barrier. A local increase can also result from increased local production either by a sick neighboring artery or retinal tissue. Generally, the main factors increasing ET-1 are inflammations and hypoxia, either locally or in a remote organ. RVP is known to be increased in patients with glaucoma, retinal vein occlusion (RVO), diabetic retinopathy, high mountain disease, and primary vascular dysregulation (PVD). PVD is the major vascular component of Flammer syndrome (FS). An increase of RVP decreases perfusion pressure, which heightens the risk for hypoxia. An increase of RVP also elevates transmural pressure, which in turn heightens the risk for retinal edema. In patients with RVO, a high level of RVP may not only be a consequence but also a potential cause of the occlusion; therefore, it risks causing a vicious circle. Narrow retinal arteries and particularly dilated retinal veins are known risk indicators for future cardiovascular events. As the major cause for such a retinal venous dilatation is an increased RVP, RVP may likely turn out to be an even stronger predictor. PMID:26504500

  16. Strategies for Energy Efficient Remodeling: SEER 2003 Case Study Report

    SciTech Connect

    2004-11-01

    The goal of the Strategies for Energy Efficiency in Remodeling (SEER) project is to provide information, based on research and case studies, to remodelers and consumers about opportunities to increase home energy performance.

  17. Aging Changes in Retinal Microglia and their Relevance to Age-related Retinal Disease.

    PubMed

    Ma, Wenxin; Wong, Wai T

    2016-01-01

    Age-related retinal diseases, such as age-related macular degeneration (AMD) and glaucoma, contain features of chronic retinal inflammation that may promote disease progression. However, the relationship between aging and neuroinflammation is unclear. Microglia are long-lived, resident immune cells of the retina, and mediate local neuroinflammatory reactions. We hypothesize that aging changes in microglia may be causally linked to neuroinflammatory changes underlying age-dependent retinal diseases. Here, we review the evidence for (1) how the retinal microglial phenotype changes with aging, (2) the factors that drive microglial aging in the retina, and (3) aging-related changes in microglial gene expression. We examine how these aspects of microglial aging changes may relate to pathogenic mechanisms of immune dysregulation driving the progression of age-related retinal disease. These relationships can highlight microglial aging as a novel target for the prevention and treatment of retinal disease.

  18. Retinoids for Treatment of Retinal Diseases

    PubMed Central

    Palczewski, Krzysztof

    2010-01-01

    Knowledge about retinal photoreceptor signal transduction and the visual cycle required for normal eyesight has expanded exponentially over the past decade. Substantial progress in human genetics has allowed identification of candidate genes and complex networks underlying inherited retinal diseases. Natural mutations in animal models that mimic human diseases have been characterized and advanced genetic manipulation now permits generation of small mammalian models of human retinal diseases. Pharmacological repair of defective visual processes in animal models not only validates their involvement in vision but also provides great promise for developing improved therapies for the millions that are progressing towards blindness or are almost completely robbed of eyesight. PMID:20435355

  19. Fluid vitreous substitutes in vitreo retinal surgery.

    PubMed

    Saxena, S; Gopal, L

    1996-12-01

    Advances in the surgical instrumentation and vitreoretinal techniques have allowed intraoperative reapproximation of retina to a more normal position. The use of intravitreally injected liquid materials (viscoelastic liquids, liquid perfluorocarbons and silicone oil), as adjunctive agents to vitreo-retinal surgery play an important role in facilitating retinal reattachment. These materials are used as intraoperative instruments to re-establish intraocular volume, assist in separating membranes adherent to the retina, manipulate retinal detachments and mechanically flatten detached retina. Over the longer term, silicone oil maintains intraocular tamponade. One should be cognizant of the potential uses, benefits and risks of each of these vitreous substitutes.

  20. [New drug therapy for retinal degeneration].

    PubMed

    Ohguro, Hiroshi

    2008-01-01

    Retinitis pigmentosa (RP) is an inherited retinal degeneration characterized by nyctalopia, ring scotoma, and bone-spicule pigmentation of the retina. So far, no effective therapy has been found for RP. As a possible molecular etiology of RP, retina-specific gene deficits are most likely involved, but little has been identified in terms of intracellular mechanisms leading to retinal photoreceptor cell death at post-translational levels. In order to find an effective therapy for RP, we must look for underlying common mechanisms that are responsible for the development of RP, instead of designing a specific therapy for each of the RP types with different causes. Therefore, in the present study, several animal models with different causes of RP were studied, including (1)Royal College of Surgeons (RCS) rats with a deficit of retinal pigment epithelium (RPE) function caused by rhodopsin mutation; (2) P23H rats, (3) S334ter rats, (4) photo stress rats, (5) retinal degeneration (rd) mice with a deficit of phosphodiesterase(PDE) function; and (6) cancer-associated retinopathy (CAR) model rats with a deficit of recoverin-dependent photoreceptor adaptation function. In each of these models, the following assessments were made in order to elucidate common pathological mechanisms among the models: (1) retinal function assessed by electroretinogram (ERG), (2) retinal morphology, (3) retinoid analysis, (4) rhodopsin regeneration, (5) rhodopsin phosphorylation and dephosphorylation, and (6) cytosolic cGMP levels. We found that unregulated photoreceptor adaptation processes caused by an imbalance of rhodopsin phosphorylation and dephosphorylation caused retinal dysfunction leading to photoreceptor cell death. As possible candidate drugs for normalizing these retinal dysfunctions and stopping further retinal degeneration, nilvadipine, a Ca channel blocker, retinoid derivatives, and anthocyanine were chosen and tested to determine their effect on the above animal models with

  1. Surgical treatment of central retinal vein occlusion.

    PubMed

    Berker, Nilufer; Batman, Cosar

    2008-05-01

    The treatment of central retinal vein occlusion (CRVO) is still a subject of debate. Medical therapy efforts, as well as retinal laser photocoagulation, have mostly dealt with management of the sequelae of CRVO, and have shown limited success in improving visual acuity. The unsatisfactory results of such therapeutic efforts led to the development of new treatment strategies focused on the surgical treatment of the occluded retinal vein. The purpose of this review is to summarize the outcomes of commonly reported surgical treatment strategies and to review different opinions on the various surgical approaches to the treatment of CRVO.

  2. Macrophages promote vasculogenesis of retinal neovascularization in an oxygen-induced retinopathy model in mice.

    PubMed

    Gao, Xiang; Wang, Yu-Sheng; Li, Xiao-Qin; Hou, Hui-Yuan; Su, Jing-Bo; Yao, Li-Bo; Zhang, Jian

    2016-06-01

    To investigate the role of macrophages in oxygen-induced retinal neovascularization (NV) in mice, particularly the involvement of bone marrow-derived cells (BMCs) and the underlying mechanisms, BMCs from green fluorescent protein (GFP) transgenic mice were transplanted into postnatal day (P) 1 mice after irradiation. The mice were exposed to 75 % oxygen from P7 to P12 to initiate oxygen-induced retinopathy (OIR). The macrophages were depleted by injection of clodronate-liposomes (lip) intraperitoneally. The eyes were collected at P12 and P17. Retinal flatmounts and histopathological cross-sections were performed to analyze the severity of retinal NV and BMC recruitment. BMCs immunopositive for CD31 (PECAM-1; endothelial cell marker) and α-SMA (smooth muscle cell marker) antigens were detected using a confocal microscope. Expression of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1) mRNA was detected by RT-PCR. The VEGF, SDF-1, CXCR4 and CD45 protein expression was detected by western blot examination. The retinal avascular area in OIR mice at P12 was unaffected after macrophage depletion carried out twice (38.27 ± 1.92 % reduction) using clodronate-lip. The retinal avascular area and the NV area at P17 were reduced after macrophage depletion four times (79.53 ± 1.02 % reduction); these findings were supported by retinal flatmounts and histopathological cross-sections. Macrophage depletion led to significant inhibition of BMC recruitment into the NV tufts at P17, with decreased expression of retinal VEGF, SDF-1, CXCR4 and CD45. The recruited BMCs differentiated primarily into CD31-positive endothelial cells (ECs) and α-SMA-positive smooth muscle cells (SMCs). This study suggested that macrophages promoted the vasculogenesis of retinal NV, particularly the contribution of BMCs in the mouse OIR model, which might be triggered by VEGF and SDF-1 production. PMID:26841878

  3. Retinal Stimulation on Rabbit Using Complementary Metal Oxide Semiconductor Based Multichip Flexible Stimulator toward Retinal Prosthesis

    NASA Astrophysics Data System (ADS)

    Tokuda, Takashi; Asano, Ryosuke; Sugitani, Sachie; Taniyama, Mari; Terasawa, Yasuo; Nunoshita, Masahiro; Nakauchi, Kazuaki; Fujikado, Takashi; Tano, Yasuo; Ohta, Jun

    2008-04-01

    The Functionality of a complementary metal oxide semiconductor (CMOS) LSI-based, multichip flexible retinal stimulator was demonstrated in retinal stimulation experiments on rabbits. A 1×4-configured multichip stimulator was fabricated for application to experiments on animals. An experimental procedure including surgical operations was developed, and retinal stimulation was performed with the fabricated multichip stimulator. Neural responses on the visual cortex were successfully evoked by the fabricated stimulator. The stimulator is confirmed to be applicable to acute animal experiments.

  4. Epigenetic regulation of aortic remodeling in hyperhomocysteinemia

    PubMed Central

    Narayanan, Nithya; Pushpakumar, Sathnur Basappa; Givvimani, Srikanth; Kundu, Sourav; Metreveli, Naira; James, Dexter; Bratcher, Adrienne P.; Tyagi, Suresh C.

    2014-01-01

    Hyperhomocysteinemia (HHcy) is prevalent in patients with hypertension and is an independent risk factor for aortic pathologies. HHcy is known to cause an imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), leading to the accumulation of collagen in the aorta and resulting in stiffness and development of hypertension. Although the exact mechanism of extracellular matrix (ECM) remodeling is unclear, emerging evidence implicates epigenetic regulation involving DNA methylation. Our purpose was to investigate whether 5-aza-2′-deoxycytidine (Aza), a DNA methyltransferase (DNMT1) inhibitor, reduces high blood pressure (BP) by regulating aortic ECM remodeling in HHcy. Wild-type and cystathionine β-synthase (CBS)+/− HHcy mice were treated with Aza (0.5 mg/kg body weight). In HHcy mice, Aza treatment normalized the plasma homocysteine (Hcy) level and BP. Thoracic and abdominal aorta ultrasound revealed a reduction in the resistive index and wall-to-lumen ratio. Vascular response to phenylephrine, acetylcholine, and sodium nitroprusside improved after Aza in HHcy mice. Histology showed a marked reduction in collagen deposition in the aorta. Aza treatment decreased the expression of DNMT1, MMP9, TIMP1, and S-adenosyl homocysteine hydrolase (SAHH) and upregulated methylene tetrahydrofolate reductase (MTHFR). We conclude that reduction of DNA methylation by Aza in HHcy reduces adverse aortic remodeling to mitigate hypertension.—Narayanan, N., Pushpakumar, S. B., Givvimani, S., Kundu, S., Metreveli, N., James, D., Bratcher, A. P., Tyagi, S. C. Epigenetic regulation of aortic remodeling in hyperhomocysteinemia. PMID:24739303

  5. Revealing remodeler function: Varied and unique

    NASA Astrophysics Data System (ADS)

    Eastlund, Allen

    Chromatin remodelers perform a necessary and required function for the successful expression of our genetic code. By modifying, shifting, or ejecting nucleosomes from the chromatin structure they allow access to the underlying DNA to the rest of the cell's machinery. This research has focused on two major remodeler motors from major families of chromatin remodelers: the trimeric motor domain of RSC and the motor domain of the ISWI family, ISWI. Using primarily stopped-flow spectrofluorometry, I have categorized the time-dependent motions of these motor domains along their preferred substrate, double-stranded DNA. Combined with collected ATP utilization data, I present the subsequent analysis and associated conclusions that stem from the underlying assumptions and models. Interestingly, there is little in common between the investigated proteins aside from their favored medium. While RSC exhibits modest translocation characteristics and highly effective motion with the ability for large molecular forces, ISWI is not only structurally different but highly inefficient in its motion leading to difficulties in determining its specific translocation mechanics. While chromatin remodeling is a ubiquitous facet of eukaryotic life, there remains much to be understood about their general mechanisms.

  6. Chromatin remodelers: We are the drivers!!

    PubMed

    Tyagi, Monica; Imam, Nasir; Verma, Kirtika; Patel, Ashok K

    2016-07-01

    Chromatin is a highly dynamic structure that imparts structural organization to the genome and regulates the gene expression underneath. The decade long research in deciphering the significance of epigenetics in maintaining cellular integrity has embarked the focus on chromatin remodeling enzymes. These drivers have been categorized as readers, writers and erasers with each having significance of their own. Largely, on the basis of structure, ATP dependent chromatin remodelers have been grouped into 4 families; SWI/SNF, ISWI, IN080 and CHD. It is still unclear to what degree these enzymes are swayed by local DNA sequences when shifting a nucleosome to different positions. The ability of regulating active and repressive transcriptional state via open and close chromatin architecture has been well studied however, the significance of chromatin remodelers in regulating transcription at each step i.e. initiation, elongation and termination require further attention. The authors have highlighted the significance and role of different chromatin remodelers in transcription, DNA repair and histone variant deposition. PMID:27429206

  7. Challenging Modernization: Remodelling the Education Workforce

    ERIC Educational Resources Information Center

    Butt, Graham; Gunter, Helen

    2005-01-01

    This special edition enables an in-depth look at the process of modernization of education in England, in relation to other international developments. In particular we focus on the reform of teachers? work by examining the antecedence of the current policy of remodelling through three articles based on the Evaluation of the Department for…

  8. Arterial Remodeling Associates with CKD Progression

    PubMed Central

    Collin, Cédric; Karras, Alexandre; Laurent, Stéphane; Bozec, Erwan; Jacquot, Christian; Stengel, Bénédicte; Houillier, Pascal; Froissart, Marc; Boutouyrie, Pierre

    2011-01-01

    In CKD, large arteries remodel and become increasingly stiff. The greater pulsatile pressure reaching the glomerulus as a result of increased aortic stiffness could induce renal damage, suggesting that the stiffening and remodeling of large arteries could affect the progression of CKD. We measured carotid-femoral pulse wave velocity, aortic pressure and carotid remodeling and stiffness parameters in 180 patients with CKD (mean measured GFR, 32 ml/min per 1.73 m2) and followed them prospectively for a mean of 3.1 years. During follow-up, carotid stiffness significantly increased (+0.28 ± 0.05 m/s; P < 0.0001) but aortic stiffness did not. Carotid intima-media thickness decreased significantly during follow-up and the internal diameter of the carotid increased, producing increased circumferential wall stress (+2.08 ± 0.43 kPa/yr; P < 0.0001). In a linear mixed model, circumferential wall stress significantly associated with faster GFR decline after adjustment for risk factors of cardiovascular disease and progression of CKD. In a multivariable Cox model, carotid circumferential wall stress and pulse pressure independently associated with higher risk for ESRD. None of the arterial stiffness parameters associated with progression of CKD. In conclusion, maladaptive remodeling of the carotid artery and increased pulse pressure independently associate with faster decline of renal function and progression to ESRD. PMID:21493771

  9. Optically triggered infrared photodetector.

    PubMed

    Ramiro, Íñigo; Martí, Antonio; Antolín, Elisa; López, Esther; Datas, Alejandro; Luque, Antonio; Ripalda, José M; González, Yolanda

    2015-01-14

    We demonstrate a new class of semiconductor device: the optically triggered infrared photodetector (OTIP). This photodetector is based on a new physical principle that allows the detection of infrared light to be switched ON and OFF by means of an external light. Our experimental device, fabricated using InAs/AlGaAs quantum-dot technology, demonstrates normal incidence infrared detection in the 2-6 μm range. The detection is optically triggered by a 590 nm light-emitting diode. Furthermore, the detection gain is achieved in our device without an increase of the noise level. The novel characteristics of OTIPs open up new possibilities for third generation infrared imaging systems ( Rogalski, A.; Antoszewski, J.; Faraone, L. J. Appl. Phys. 2009, 105 (9), 091101). PMID:25490236

  10. Optically triggered infrared photodetector.

    PubMed

    Ramiro, Íñigo; Martí, Antonio; Antolín, Elisa; López, Esther; Datas, Alejandro; Luque, Antonio; Ripalda, José M; González, Yolanda

    2015-01-14

    We demonstrate a new class of semiconductor device: the optically triggered infrared photodetector (OTIP). This photodetector is based on a new physical principle that allows the detection of infrared light to be switched ON and OFF by means of an external light. Our experimental device, fabricated using InAs/AlGaAs quantum-dot technology, demonstrates normal incidence infrared detection in the 2-6 μm range. The detection is optically triggered by a 590 nm light-emitting diode. Furthermore, the detection gain is achieved in our device without an increase of the noise level. The novel characteristics of OTIPs open up new possibilities for third generation infrared imaging systems ( Rogalski, A.; Antoszewski, J.; Faraone, L. J. Appl. Phys. 2009, 105 (9), 091101).

  11. Neural networks for triggering

    SciTech Connect

    Denby, B. ); Campbell, M. ); Bedeschi, F. ); Chriss, N.; Bowers, C. ); Nesti, F. )

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  12. Dopamine triggers heterosynaptic plasticity.

    PubMed

    Ishikawa, Masago; Otaka, Mami; Huang, Yanhua H; Neumann, Peter A; Winters, Bradley D; Grace, Anthony A; Schlüter, Oliver M; Dong, Yan

    2013-04-17

    As a classic neuromodulator, dopamine has long been thought to modulate, rather than trigger, synaptic plasticity. In contrast, our present results demonstrate that within the parallel projections of dopaminergic and GABAergic terminals from the ventral tegmental area to the nucleus accumbens core (NAcCo), action-potential-activated release of dopamine heterosynaptically triggers LTD at GABAergic synapses, which is likely mediated by activating presynaptically located dopamine D1 class receptors and expressed by inhibiting presynaptic release of GABA. Moreover, this dopamine-mediated heterosynaptic LTD is abolished after withdrawal from cocaine exposure. These results suggest that action-potential-dependent dopamine release triggers very different cellular consequences from those induced by volume release or pharmacological manipulation. Activation of the ventral tegmental area to NAcCo projections is essential for emotional and motivational responses. This dopamine-mediated LTD allows a flexible output of NAcCo neurons, whereas disruption of this LTD may contribute to the rigid emotional and motivational state observed in addicts during cocaine withdrawal.

  13. Remodeling and vascular spaces in bone.

    PubMed

    Eriksen, Erik Fink; Eghbali-Fatourechi, Guiti Z; Khosla, Sundeep

    2007-01-01

    In recent years, we have come to appreciate that the close association between bone and vasculature plays a pivotal role in the regulation of bone remodeling and fracture repair. In 2001, Hauge et al. characterized a specialized vascular structure, the bone remodeling compartment (BRC), and showed that the outer lining of this compartment was made up of flattened cells, displaying all the characteristics of lining cells in bone. A decrease in bone turnover leads to a decrease in surfaces covered with remodeling compartments, whereas increased turnover causes an increase. Immunoreactivity for all major osteotropic growth factors and cytokines including osteoprotegerin (OPG) and RANKL has been shown in the cells lining the BRC, which makes the BRC the structure of choice for coupling between resorption and formation. The secretion of these factors inside a confined space separated from the bone marrow would facilitate local regulation of the remodeling process without interference from growth factors secreted by blood cells in the marrow space. The BRC creates an environment where cells inside the structure are exposed to denuded bone, which may enable direct cellular interactions with integrins and other matrix factors known to regulate osteoclast/osteoblast activity. However, the denuded bone surface inside the BRC also constitutes an ideal environment for the seeding of bone metastases, known to have high affinity for bone matrix. Reduction in BRC space brought about by antiresorptive therapies such as bisphosphonates reduce the number of skeletal events in advanced cancer, whereas an increase in BRC space induced by remodeling activators like PTH may increase the bone metastatic burden. The BRC has only been characterized in detail in trabecular bone; there is, however, evidence that a similar structure may exist in cortical bone, but further characterization is needed.

  14. Gene therapy for retinal degeneration.

    PubMed

    Reichel, M B; Ali, R R; Hunt, D M; Bhattacharya, S S

    1997-01-01

    Inherited retinal degenerations are a group of diseases leading to blindness through progressive loss of vision in many patients. Although with the cloning of more and more disease genes the knowledge on the molecular genetics of these conditions and on the apoptotic pathway as the common disease mechanism is steadily increasing, there is still no cure for those affected. In recent years, new experimental treatments have evolved through the efforts of many investigators and have been explored in animal models. The rationale of the different strategies for developing a treatment based on gene replacement or rescue of the diseased neuronal tissue with growth factors will be outlined and discussed in this paper. PMID:9323717

  15. Integration of retinal image sequences

    NASA Astrophysics Data System (ADS)

    Ballerini, Lucia

    1998-10-01

    In this paper a method for noise reduction in ocular fundus image sequences is described. The eye is the only part of the human body where the capillary network can be observed along with the arterial and venous circulation using a non invasive technique. The study of the retinal vessels is very important both for the study of the local pathology (retinal disease) and for the large amount of information it offers on systematic haemodynamics, such as hypertension, arteriosclerosis, and diabetes. In this paper a method for image integration of ocular fundus image sequences is described. The procedure can be divided in two step: registration and fusion. First we describe an automatic alignment algorithm for registration of ocular fundus images. In order to enhance vessel structures, we used a spatially oriented bank of filters designed to match the properties of the objects of interest. To evaluate interframe misalignment we adopted a fast cross-correlation algorithm. The performances of the alignment method have been estimated by simulating shifts between image pairs and by using a cross-validation approach. Then we propose a temporal integration technique of image sequences so as to compute enhanced pictures of the overall capillary network. Image registration is combined with image enhancement by fusing subsequent frames of a same region. To evaluate the attainable results, the signal-to-noise ratio was estimated before and after integration. Experimental results on synthetic images of vessel-like structures with different kind of Gaussian additive noise as well as on real fundus images are reported.

  16. Isolating Triggered Star Formation

    SciTech Connect

    Barton, Elizabeth J.; Arnold, Jacob A.; Zentner, Andrew R.; Bullock, James S.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2007-09-12

    Galaxy pairs provide a potentially powerful means of studying triggered star formation from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majority of galaxies in close pairs reside within cluster or group-size halos and therefore represent a biased population, poorly suited for direct comparison to 'field' galaxies. Thus, the frequent observation that some types of galaxies in pairs have redder colors than 'field' galaxies is primarily a selection effect. We use our simulations to devise a means to select galaxy pairs that are isolated in their dark matter halos with respect to other massive subhalos (N= 2 halos) and to select a control sample of isolated galaxies (N= 1 halos) for comparison. We then apply these selection criteria to a volume-limited subset of the 2dF Galaxy Redshift Survey with M{sub B,j} {le} -19 and obtain the first clean measure of the typical fraction of galaxies affected by triggered star formation and the average elevation in the star formation rate. We find that 24% (30.5 %) of these L* and sub-L* galaxies in isolated 50 (30) h{sup -1} kpc pairs exhibit star formation that is boosted by a factor of {approx}> 5 above their average past value, while only 10% of isolated galaxies in the control sample show this level of enhancement. Thus, 14% (20 %) of the galaxies in these close pairs show clear triggered star formation. Our orbit models suggest that 12% (16%) of 50 (30) h{sup -1} kpc close pairs that are isolated according to our definition have had a close ({le} 30 h{sup -1} kpc) pass within the last Gyr. Thus, the data are broadly consistent with a scenario in which most or all close passes of isolated pairs result in triggered star formation. The isolation criteria we develop provide a means to constrain star formation and feedback prescriptions in hydrodynamic simulations and a very general method of understanding the importance of

  17. Chemical remodeling of cell-surface sialic acids through a palladium-triggered bioorthogonal elimination reaction.

    PubMed

    Wang, Jie; Cheng, Bo; Li, Jie; Zhang, Zhaoyue; Hong, Weiyao; Chen, Xing; Chen, Peng R

    2015-04-27

    We herein report a chemical decaging strategy for the in situ generation of neuramic acid (Neu), a unique type of sialic acid, on live cells by the use of a palladium-mediated bioorthogonal elimination reaction. Palladium nanoparticles (Pd NPs) were found to be a highly efficient and biocompatible depropargylation catalyst for the direct conversion of metabolically incorporated N-(propargyloxycarbonyl)neuramic acid (Neu5Proc) into Neu on cell-surface glycans. This conversion chemically mimics the enzymatic de-N-acetylation of N-acetylneuramic acid (Neu5Ac), a proposed mechanism for the natural occurrence of Neu on cell-surface glycans. The bioorthogonal elimination was also exploited for the manipulation of cell-surface charge by unmasking the free amine at C5 to neutralize the negatively charged carboxyl group at C1 of sialic acids.

  18. Dynamic Remodeling of the Magnetosome Membrane Is Triggered by the Initiation of Biomineralization

    PubMed Central

    Cornejo, Elias; Subramanian, Poorna; Li, Zhuo; Jensen, Grant J.

    2016-01-01

    ABSTRACT Magnetotactic bacteria produce chains of membrane-bound organelles that direct the biomineralization of magnetic nanoparticles. These magnetosome compartments are a model for studying the biogenesis and subcellular organization of bacterial organelles. Previous studies have suggested that discrete gene products build and assemble magnetosomes in a stepwise fashion. Here, using an inducible system, we show that the stages of magnetosome formation are highly dynamic and interconnected. During de novo formation, magnetosomes first organize into discontinuous chain fragments that are subsequently connected by the bacterial actin-like protein MamK. We also find that magnetosome membranes are not uniform in size and can grow in a biomineralization-dependent manner. In the absence of biomineralization, magnetosome membranes stall at a diameter of ~50 nm. Those that have initiated biomineralization then expand to significantly larger sizes and accommodate mature magnetic particles. We speculate that such a biomineralization-dependent checkpoint for membrane growth establishes the appropriate conditions within the magnetosome to ensure successful nucleation and growth of magnetic particles. PMID:26884433

  19. Regulatory and Economic Considerations of Retinal Drugs.

    PubMed

    Shah, Ankoor R; Williams, George A

    2016-01-01

    The advent of anti-VEGF therapy for neovascular age-related macular degeneration and macular edema secondary to retinal vein occlusion and diabetes mellitus has prevented blindness in tens of thousands of people. However, the costs of these drugs are without precedent in ophthalmic drug therapeutics. An analysis of the financial implications of retinal drugs and the impact of the Food and Drug Administration on treatment of retinal disease must include not only an evaluation of the direct costs of the drugs and the costs associated with their administration, but also the cost savings which accrue from their clinical benefit. This chapter will discuss the financial and regulatory issues associated with retinal drugs.

  20. [Ocular hypertension after surgery for retinal detachment].

    PubMed

    Muşat, O; Cristescu, R; Coman, Corina; Asandi, R

    2012-01-01

    This papers presents a case of a patient with retinal detachement, 3 days ago operated (posterior vitrectomy internal tamponament with silicon oil 1000) who develop increased ocular pressure following silicon oil output in the anterior chamber.

  1. [Retinal vein occlusion in a young patient].

    PubMed

    Zemba, Mihail; Ochinciuc, Uliana; Sarbu, Laura; Avram, Corina; Camburu, Raluca; Stamate, Alina

    2013-01-01

    We present a case report of a 27 years old pacient with central retinal vein occlussion and macular edema. The pacient has a significant reduction of the macular aedema with complete recovery of vision after the treatment.

  2. Retinal fractals and acute lacunar stroke.

    PubMed

    Cheung, Ning; Liew, Gerald; Lindley, Richard I; Liu, Erica Y; Wang, Jie Jin; Hand, Peter; Baker, Michelle; Mitchell, Paul; Wong, Tien Y

    2010-07-01

    This study aimed to determine whether retinal fractal dimension, a quantitative measure of microvascular branching complexity and density, is associated with lacunar stroke. A total of 392 patients presenting with acute ischemic stroke had retinal fractal dimension measured from digital photographs, and lacunar infarct ascertained from brain imaging. After adjusting for age, gender, and vascular risk factors, higher retinal fractal dimension (highest vs lowest quartile and per standard deviation increase) was independently and positively associated with lacunar stroke (odds ratio [OR], 4.27; 95% confidence interval [CI], 1.49-12.17 and OR, 1.85; 95% CI, 1.20-2.84, respectively). Increased retinal microvascular complexity and density is associated with lacunar stroke.

  3. Imaging retinal mosaics in the living eye.

    PubMed

    Rossi, E A; Chung, M; Dubra, A; Hunter, J J; Merigan, W H; Williams, D R

    2011-03-01

    Adaptive optics imaging of cone photoreceptors has provided unique insight into the structure and function of the human visual system and has become an important tool for both basic scientists and clinicians. Recent advances in adaptive optics retinal imaging instrumentation and methodology have allowed us to expand beyond cone imaging. Multi-wavelength and fluorescence imaging methods with adaptive optics have allowed multiple retinal cell types to be imaged simultaneously. These new methods have recently revealed rod photoreceptors, retinal pigment epithelium (RPE) cells, and the smallest retinal blood vessels. Fluorescence imaging coupled with adaptive optics has been used to examine ganglion cells in living primates. Two-photon imaging combined with adaptive optics can evaluate photoreceptor function non-invasively in the living primate retina.

  4. Imaging retinal mosaics in the living eye

    PubMed Central

    Rossi, E A; Chung, M; Dubra, A; Hunter, J J; Merigan, W H; Williams, D R

    2011-01-01

    Adaptive optics imaging of cone photoreceptors has provided unique insight into the structure and function of the human visual system and has become an important tool for both basic scientists and clinicians. Recent advances in adaptive optics retinal imaging instrumentation and methodology have allowed us to expand beyond cone imaging. Multi-wavelength and fluorescence imaging methods with adaptive optics have allowed multiple retinal cell types to be imaged simultaneously. These new methods have recently revealed rod photoreceptors, retinal pigment epithelium (RPE) cells, and the smallest retinal blood vessels. Fluorescence imaging coupled with adaptive optics has been used to examine ganglion cells in living primates. Two-photon imaging combined with adaptive optics can evaluate photoreceptor function non-invasively in the living primate retina. PMID:21390064

  5. Stem Cells, Retinal Ganglion Cells, and Glaucoma

    PubMed Central

    Sluch, Valentin M.; Zack, Donald J.

    2015-01-01

    Retinal ganglion cells represent an essential neuronal cell type for vision. These cells receive inputs from light-sensing photoreceptors via retinal interneurons and then relay these signals to the brain for further processing. Retinal ganglion cell diseases that result in cell death, e.g. glaucoma, often lead to permanent damage since mammalian nerves do not regenerate. Stem cell differentiation can generate cells needed for replacement or can be used to generate cells capable of secreting protective factors to promote survival. In addition, stem cell-derived cells can be used in drug screening research. Here, we discuss the current state of stem cell research potential for interference in glaucoma and other optic nerve diseases with a focus on stem cell differentiation to retinal ganglion cells. PMID:24732765

  6. Retinal Detachment: Torn or Detached Retina Treatment

    MedlinePlus

    ... of these procedures create a scar that helps seal the retina to the back of the eye. ... around the retinal tear. The scarring that results seals the retina to the underlying tissue, helping to ...

  7. Regulatory and Economic Considerations of Retinal Drugs.

    PubMed

    Shah, Ankoor R; Williams, George A

    2016-01-01

    The advent of anti-VEGF therapy for neovascular age-related macular degeneration and macular edema secondary to retinal vein occlusion and diabetes mellitus has prevented blindness in tens of thousands of people. However, the costs of these drugs are without precedent in ophthalmic drug therapeutics. An analysis of the financial implications of retinal drugs and the impact of the Food and Drug Administration on treatment of retinal disease must include not only an evaluation of the direct costs of the drugs and the costs associated with their administration, but also the cost savings which accrue from their clinical benefit. This chapter will discuss the financial and regulatory issues associated with retinal drugs. PMID:26502165

  8. What Is Next for Retinal Gene Therapy?

    PubMed

    Vandenberghe, Luk H

    2015-10-01

    The field of gene therapy for retinal blinding disorders is experiencing incredible momentum, justified by hopeful results in early stage clinical trials for inherited retinal degenerations. The premise of the use of the gene as a drug has come a long way, and may have found its niche in the treatment of retinal disease. Indeed, with only limited treatment options available for retinal indications, gene therapy has been proven feasible, safe, and effective and may lead to durable effects following a single injection. Here, we aim at putting into context the promise and potential, the technical, clinical, and economic boundaries limiting its application and development, and speculate on a future in which gene therapy is an integral component of ophthalmic clinical care.

  9. What Is Next for Retinal Gene Therapy?

    PubMed Central

    Vandenberghe, Luk H.

    2015-01-01

    The field of gene therapy for retinal blinding disorders is experiencing incredible momentum, justified by hopeful results in early stage clinical trials for inherited retinal degenerations. The premise of the use of the gene as a drug has come a long way, and may have found its niche in the treatment of retinal disease. Indeed, with only limited treatment options available for retinal indications, gene therapy has been proven feasible, safe, and effective and may lead to durable effects following a single injection. Here, we aim at putting into context the promise and potential, the technical, clinical, and economic boundaries limiting its application and development, and speculate on a future in which gene therapy is an integral component of ophthalmic clinical care. PMID:25877395

  10. Aquaporin 4-specific T cells and NMO-IgG cause primary retinal damage in experimental NMO/SD.

    PubMed

    Zeka, Bleranda; Hastermann, Maria; Kaufmann, Nathalie; Schanda, Kathrin; Pende, Marko; Misu, Tatsuro; Rommer, Paulus; Fujihara, Kazuo; Nakashima, Ichiro; Dahle, Charlotte; Leutmezer, Fritz; Reindl, Markus; Lassmann, Hans; Bradl, Monika

    2016-01-01

    Neuromyelitis optica/spectrum disorder (NMO/SD) is a severe, inflammatory disease of the central nervous system (CNS). In the majority of patients, it is associated with the presence of pathogenic serum autoantibodies (the so-called NMO-IgGs) directed against the water channel aquaporin 4 (AQP4), and with the formation of large, astrocyte-destructive lesions in spinal cord and optic nerves. A large number of recent studies using optical coherence tomography (OCT) demonstrated that damage to optic nerves in NMO/SD is also associated with retinal injury, as evidenced by retinal nerve fiber layer (RNFL) thinning and microcystic inner nuclear layer abnormalities. These studies concluded that retinal injury in NMO/SD patients results from secondary neurodegeneration triggered by optic neuritis.However, the eye also contains cells expressing AQP4, i.e., Müller cells and astrocytes in the retina, epithelial cells of the ciliary body, and epithelial cells of the iris, which raised the question whether the eye can also be a primary target in NMO/SD. Here, we addressed this point in experimental NMO/SD (ENMO) induced in Lewis rat by transfer of AQP4268-285-specific T cells and NMO-IgG.We show that these animals show retinitis and subsequent dysfunction/damage of retinal axons and neurons, and that this pathology occurs independently of the action of NMO-IgG. We further show that in the retinae of ENMO animals Müller cell side branches lose AQP4 reactivity, while retinal astrocytes and Müller cell processes in the RNFL/ganglionic cell layers are spared. These changes only occur in the presence of both AQP4268-285-specific T cells and NMO-IgG.Cumulatively, our data show that damage to retinal cells can be a primary event in NMO/SD. PMID:27503347

  11. Modulation of radiation injury response in retinal endothelial cells by quinic acid derivative KZ-41 involves p38 MAPK.

    PubMed

    Toutounchian, Jordan J; Steinle, Jena J; Makena, Patrudu S; Waters, Christopher M; Wilson, Matthew W; Haik, Barrett G; Miller, Duane D; Yates, Charles R

    2014-01-01

    Radiation-induced damage to the retina triggers leukostasis, retinal endothelial cell (REC) death, and subsequent hypoxia. Resultant ischemia leads to visual loss and compensatory retinal neovascularization (RNV). Using human RECs, we demonstrated that radiation induced leukocyte adhesion through mechanisms involving p38MAPK, p53, and ICAM-1 activation. Additional phenotypic changes included p38MAPK-dependent tyrosine phosphorylation of the focal adhesion scaffolding protein, paxillin (Tyr118). The quinic acid derivative KZ-41 lessened leukocyte adhesion and paxillin-dependent proliferation via inhibition of p38MAPK-p53-ICAM-1 signaling. Using the murine oxygen-induced retinopathy (OIR) model, we examined the effect of KZ-41 on pathologic RNV. Daily ocular application of a KZ-41-loaded nanoemulsion significantly reduced both the avascular and neovascular areas in harvested retinal flat mounts when compared to the contralateral eye receiving vehicle alone. Our data highlight the potential benefit of KZ-41 in reducing both the retinal ischemia and neovascularization provoked by genotoxic insults. Further research into how quinic acid derivatives target and mitigate inflammation is needed to fully appreciate their therapeutic potential for the treatment of inflammatory retinal vasculopathies. PMID:24956278

  12. The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening.

    PubMed

    Musladin, Sanja; Krietenstein, Nils; Korber, Philipp; Barbaric, Slobodan

    2014-04-01

    Although yeast PHO5 promoter chromatin opening is a founding model for chromatin remodeling, the complete set of involved remodelers remained unknown for a long time. The SWI/SNF and INO80 remodelers cooperate here, but nonessentially, and none of the many tested single or combined remodeler gene mutations could prevent PHO5 promoter opening. RSC, the most abundant and only remodeler essential for viability, was a controversial candidate for the unrecognized remodeling activity but unassessed in vivo. Now we show that remodels the structure of chromatin (RSC) is crucially involved in PHO5 promoter opening. Further, the isw1 chd1 double deletion also delayed chromatin remodeling. Strikingly, combined absence of RSC and Isw1/Chd1 or Snf2 abolished for the first time promoter opening on otherwise sufficient induction in vivo. Together with previous findings, we recognize now a surprisingly complex network of five remodelers (RSC, SWI/SNF, INO80, Isw1 and Chd1) from four subfamilies (SWI/SNF, INO80, ISWI and CHD) as involved in PHO5 promoter chromatin remodeling. This is likely the first described complete remodeler set for a physiological chromatin transition. RSC was hardly involved at the coregulated PHO8 or PHO84 promoters despite cofactor recruitment by the same transactivator and RSC's presence at all three promoters. Therefore, promoter-specific chromatin rather than transactivators determine remodeler requirements.

  13. Photoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes

    PubMed Central

    Liu, Haitao; Tang, Jie; Du, Yunpeng; Saadane, Aicha; Tonade, Deoye; Samuels, Ivy; Veenstra, Alex; Palczewski, Krzysztof; Kern, Timothy S.

    2016-01-01

    Purpose Loss of photoreceptor cells is associated with retinal vascular degeneration in retinitis pigmentosa, whereas the presence of photoreceptor cells is implicated in vascular degeneration in diabetic retinopathy. To investigate how both the absence and presence of photoreceptors could damage the retinal vasculature, we compared two mouse models of photoreceptor degeneration (opsin−/− and RhoP23H/P23H ) and control C57Bl/5J mice, each with and without diabetes. Methods Retinal thickness, superoxide, expression of inflammatory proteins, ERG and optokinetic responses, leukocyte cytotoxicity, and capillary degeneration were evaluated at 1 to 10 months of age using published methods. Results Retinal photoreceptor cells degenerated completely in the opsin mutants by 2 to 4 months of age, and visual function subsided correspondingly. Retinal capillary degeneration was substantial while photoreceptors were still present, but slowed after the photoreceptors degenerated. Diabetes did not further exacerbate capillary degeneration in these models of photoreceptor degeneration, but did cause capillary degeneration in wild-type animals. Photoreceptor cells, however, did not degenerate in wild-type diabetic mice, presumably because the stress responses in these cells were less than in the opsin mutants. Retinal superoxide and leukocyte damage to retinal endothelium contributed to the degeneration of retinal capillaries in diabetes, and leukocyte-mediated damage was increased in both opsin mutants during photoreceptor cell degeneration. Conclusions Photoreceptor cells affect the integrity of the retinal microvasculature. Deterioration of retinal capillaries in opsin mutants was appreciable while photoreceptor cells were present and stressed, but was less after photoreceptors degenerated. This finding proves relevant to diabetes, where persistent stress in photoreceptors likewise contributes to capillary degeneration. PMID:27548901

  14. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling.

  15. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling. PMID:17386182

  16. Retinal Vascular Fractals and Cognitive Impairment

    PubMed Central

    Ong, Yi-Ting; Hilal, Saima; Cheung, Carol Yim-lui; Xu, Xin; Chen, Christopher; Venketasubramanian, Narayanaswamy; Wong, Tien Yin; Ikram, Mohammad Kamran

    2014-01-01

    Background Retinal microvascular network changes have been found in patients with age-related brain diseases such as stroke and dementia including Alzheimer's disease. We examine whether retinal microvascular network changes are also present in preclinical stages of dementia. Methods This is a cross-sectional study of 300 Chinese participants (age: ≥60 years) from the ongoing Epidemiology of Dementia in Singapore study who underwent detailed clinical examinations including retinal photography, brain imaging and neuropsychological testing. Retinal vascular parameters were assessed from optic disc-centered photographs using a semiautomated program. A comprehensive neuropsychological battery was administered, and cognitive function was summarized as composite and domain-specific Z-scores. Cognitive impairment no dementia (CIND) and dementia were diagnosed according to standard diagnostic criteria. Results Among 268 eligible nondemented participants, 78 subjects were categorized as CIND-mild and 69 as CIND-moderate. In multivariable adjusted models, reduced retinal arteriolar and venular fractal dimensions were associated with an increased risk of CIND-mild and CIND-moderate. Reduced fractal dimensions were associated with poorer cognitive performance globally and in the specific domains of verbal memory, visuoconstruction and visuomotor speed. Conclusion A sparser retinal microvascular network, represented by reduced arteriolar and venular fractal dimensions, was associated with cognitive impairment, suggesting that early microvascular damage may be present in preclinical stages of dementia. PMID:25298774

  17. Robotic Assisted Cannulation of Occluded Retinal Veins

    PubMed Central

    Meenink, Thijs C. M.; Janssens, Tom; Vanheukelom, Valerie; Naus, Gerrit J. L.; Beelen, Maarten J.; Meers, Caroline; Jonckx, Bart; Stassen, Jean-Marie

    2016-01-01

    Purpose To develop a methodology for cannulating porcine retinal venules using a robotic assistive arm after inducing a retinal vein occlusion using the photosensitizer rose bengal. Methodology Retinal vein occlusions proximal to the first vascular branch point were induced following intravenous injection of rose bengal by exposure to 532nm laser light delivered by slit-lamp or endolaser probe. Retinal veins were cannulated by positioning a glass catheter tip using a robotically controlled micromanipulator above venules with an outer diameter of 80μm or more and performing a preset piercing maneuver, controlled robotically. The ability of a balanced salt (BSS) solution to remove an occlusion by repeat distention of the retinal vein was also assessed. Results Cannulation using the preset piercing program was successful in 9 of 9 eyes. Piercing using the micromanipulator under manual control was successful in only 24 of 52 attempts, with several attempts leading to double piercing. The best location for cannulation was directly proximal to the occlusion. Infusion of BSS did not result in the resolution of the occlusion. Conclusion Cannulation of venules using a robotic microassistive arm can be achieved with consistency, provided the piercing is robotically driven. The model appears robust enough to allow testing of therapeutic strategies aimed at eliminating a retinal vein thrombus and its evolution over time. PMID:27676261

  18. Retinal synaptic regeneration via microfluidic guiding channels.

    PubMed

    Su, Ping-Jung; Liu, Zongbin; Zhang, Kai; Han, Xin; Saito, Yuki; Xia, Xiaojun; Yokoi, Kenji; Shen, Haifa; Qin, Lidong

    2015-08-28

    In vitro culture of dissociated retinal neurons is an important model for investigating retinal synaptic regeneration (RSR) and exploring potentials in artificial retina. Here, retinal precursor cells were cultured in a microfluidic chip with multiple arrays of microchannels in order to reconstruct the retinal neuronal synapse. The cultured retinal cells were physically connected through microchannels. Activation of electric signal transduction by the cells through the microchannels was demonstrated by administration of glycinergic factors. In addition, an image-based analytical method was used to quantify the synaptic connections and to assess the kinetics of synaptic regeneration. The rate of RSR decreased significantly below 100 μM of inhibitor glycine and then approached to a relatively constant level at higher concentrations. Furthermore, RSR was enhanced by chemical stimulation with potassium chloride. Collectively, the microfluidic synaptic regeneration chip provides a novel tool for high-throughput investigation of RSR at the cellular level and may be useful in quality control of retinal precursor cell transplantation.

  19. Digital imaging-based retinal photocoagulation system

    NASA Astrophysics Data System (ADS)

    Barrett, Steven F.; Wright, Cameron H. G.; Oberg, Erik D.; Rockwell, Benjamin A.; Cain, Clarence P.; Rylander, Henry G., III; Welch, Ashley J.

    1997-05-01

    Researchers at the USAF Academy and the University of Texas are developing a computer-assisted retinal photocoagulation system for the treatment of retinal disorders (i.e. diabetic retinopathy, retinal tears). Currently, ophthalmologists manually place therapeutic retinal lesions, an acquired technique that is tiring for both the patient and physician. The computer-assisted system under development can rapidly and safely place multiple therapeutic lesions at desired locations on the retina in a matter of seconds. Separate prototype subsystems have been developed to control lesion depth during irradiation and lesion placement to compensate for retinal movement. Both subsystems have been successfully demonstrated in vivo on pigmented rabbits using an argon continuous wave laser. Two different design approaches are being pursued to combine the capabilities of both subsystems: a digital imaging-based system and a hybrid analog-digital system. This paper will focus on progress with the digital imaging-based prototype system. A separate paper on the hybrid analog-digital system, `Hybrid Retinal Photocoagulation System', is also presented in this session.

  20. Retinal imaging using adaptive optics technology☆

    PubMed Central

    Kozak, Igor

    2014-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started. PMID:24843304

  1. Retinal synaptic regeneration via microfluidic guiding channels

    PubMed Central

    Su, Ping-Jung; Liu, Zongbin; Zhang, Kai; Han, Xin; Saito, Yuki; Xia, Xiaojun; Yokoi, Kenji; Shen, Haifa; Qin, Lidong

    2015-01-01

    In vitro culture of dissociated retinal neurons is an important model for investigating retinal synaptic regeneration (RSR) and exploring potentials in artificial retina. Here, retinal precursor cells were cultured in a microfluidic chip with multiple arrays of microchannels in order to reconstruct the retinal neuronal synapse. The cultured retinal cells were physically connected through microchannels. Activation of electric signal transduction by the cells through the microchannels was demonstrated by administration of glycinergic factors. In addition, an image-based analytical method was used to quantify the synaptic connections and to assess the kinetics of synaptic regeneration. The rate of RSR decreased significantly below 100 μM of inhibitor glycine and then approached to a relatively constant level at higher concentrations. Furthermore, RSR was enhanced by chemical stimulation with potassium chloride. Collectively, the microfluidic synaptic regeneration chip provides a novel tool for high-throughput investigation of RSR at the cellular level and may be useful in quality control of retinal precursor cell transplantation. PMID:26314276

  2. Retinal imaging using adaptive optics technology.

    PubMed

    Kozak, Igor

    2014-04-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started. PMID:24843304

  3. Retinal synaptic regeneration via microfluidic guiding channels.

    PubMed

    Su, Ping-Jung; Liu, Zongbin; Zhang, Kai; Han, Xin; Saito, Yuki; Xia, Xiaojun; Yokoi, Kenji; Shen, Haifa; Qin, Lidong

    2015-01-01

    In vitro culture of dissociated retinal neurons is an important model for investigating retinal synaptic regeneration (RSR) and exploring potentials in artificial retina. Here, retinal precursor cells were cultured in a microfluidic chip with multiple arrays of microchannels in order to reconstruct the retinal neuronal synapse. The cultured retinal cells were physically connected through microchannels. Activation of electric signal transduction by the cells through the microchannels was demonstrated by administration of glycinergic factors. In addition, an image-based analytical method was used to quantify the synaptic connections and to assess the kinetics of synaptic regeneration. The rate of RSR decreased significantly below 100 μM of inhibitor glycine and then approached to a relatively constant level at higher concentrations. Furthermore, RSR was enhanced by chemical stimulation with potassium chloride. Collectively, the microfluidic synaptic regeneration chip provides a novel tool for high-throughput investigation of RSR at the cellular level and may be useful in quality control of retinal precursor cell transplantation. PMID:26314276

  4. Epigalloccatechin-3-gallate inhibits ocular neovascularization and vascular permeability in human retinal pigment epithelial and human retinal microvascular endothelial cells via suppression of MMP-9 and VEGF activation.

    PubMed

    Lee, Hak Sung; Jun, Jae-Hyun; Jung, Eun-Ha; Koo, Bon Am; Kim, Yeong Shik

    2014-08-13

    Epigalloccatechin-3-gallate (EGCG) is the main polyphenol component of green tea (leaves of Camellia sinensis). EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play a key role in the processes of extracellular matrix (ECM) remodeling and microvascular permeability during angiogenesis. We investigated the inhibitory effects of EGCG on ocular neovascularization and vascular permeability using the retina oriented cells and animal models induced by VEGF and alkaline burn. EGCG treatment significantly decreased mRNA and protein expression levels of MMP-9 in the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA) and tumor necrosis factor alpha (TNF-α) in human retinal pigment epithelial cells (HRPECs). EGCG also effectively protected ARPE-19 cells from cell death and attenuated mRNA expressions of key angiogenic factors (MMP-9, VEGF, VEGF Receptor-2) by inhibiting generation of reactive oxygen species (ROS). EGCG significantly inhibited proliferation, vascular permeability, and tube formation in VEGF-induced human retinal microvascular endothelial cells (HRMECs). Furthermore, EGCG significantly reduced vascular leakage and permeability by blood-retinal barrier breakdown in VEGF-induced animal models. In addition, EGCG effectively limited upregulation of MMP-9 and platelet endothelial cell adhesion molecule (PECAM/CD31) on corneal neovascularization (CNV) induced by alkaline burn. Our data suggest that MMP-9 and VEGF are key therapeutic targets of EGCG for treatment and prevention of ocular angiogenic diseases such as age-related macular degeneration, diabetic retinopathy, and corneal neovascularization.

  5. Triggering filamentation using turbulence

    NASA Astrophysics Data System (ADS)

    Eeltink, D.; Berti, N.; Marchiando, N.; Hermelin, S.; Gateau, J.; Brunetti, M.; Wolf, J. P.; Kasparian, J.

    2016-09-01

    We study the triggering of single filaments due to turbulence in the beam path for a laser of power below the filamenting threshold. Turbulence can act as a switch between the beam not filamenting and producing single filaments. This positive effect of turbulence on the filament probability, combined with our observation of off-axis filaments, suggests the underlying mechanism is modulation instability caused by transverse perturbations. We hereby experimentally explore the interaction of modulation instability and turbulence, commonly associated with multiple filaments, in the single-filament regime.

  6. Cell Death and Tissue Remodeling in Planarian Regeneration

    PubMed Central

    Pellettieri, Jason; Fitzgerald, Patrick; Watanabe, Shigeki; Mancuso, Joel; Green, Douglas R.; Alvarado, Alejandro Sánchez

    2010-01-01

    Many long-lived organisms, including humans, can regenerate some adult tissues lost to physical injury or disease. Much of the previous research on mechanisms of regeneration has focused on adult stem cells, which give rise to new tissue necessary for the replacement of missing body parts. Here we report that apoptosis of differentiated cells complements stem cell division during regeneration in the planarian Schmidtea mediterranea. Specifically, we developed a whole-mount TUNEL assay that allowed us to document two dramatic increases in the rate of apoptosis following amputation – an intial localized response near the wound site and a subsequent systemic response that varies in magnitude depending on the type of fragment examined. The latter cell death response can be induced in uninjured organs, occurs in the absence of planarian stem cells, and can also be triggered by prolonged starvation. Taken together, our results implicate apoptosis in the restoration of proper anatomical scale and proportion through remodeling of existing tissues. We also report results from initial mechanistic studies of apoptosis in planarians, which revealed that a S. mediterranea homolog of the antiapoptotic gene BCL2 is required for cell survival in adult animals. We propose that apoptosis is a central mechanism working in concert with stem cell division to restore anatomical form and function during metazoan regeneration. PMID:19766622

  7. Extracellular matrix remodelling after coxsackievirus B3-induced murine myocarditis.

    PubMed Central

    Gómez, R. M.; Castagnino, C. G.; Berría, M. I.

    1992-01-01

    Weanling inbred Balb/c mice were intraperitoneally inoculated with a myocarditic variant of coxsackievirus B3. At days 1, 2, 4, 6, 8, 10, 14, 24 and 30 post-infection (p.i.), myocardial tissue was harvested for viral infectivity titrations and histological studies, including routine techniques (haematoxylin-eosin, Masson trichrome and von Kossa) and specialized procedures (silver impregnation for reticulin, picrosirius red stain for collagen and immunoperoxidase labelling for laminin). Virus was isolated as from day 2, reached maximal infectivity at days 6-8 and decreased gradually to become undetectable by day 14. Early histological findings during the 1st week consisted mainly of scattered foci of necrotic myocytes showing calcium deposits; slight mononuclear cell infiltration and fragmentation of both reticulin fibres and pericellular laminin were also present. From the 2nd up to 4th week p.i., inflammatory reaction abated concomitantly with the gradual development of fibrosis, as evidenced by reticulin fibre thickening, irregular laminin distribution and collagen fibre increase. Our results suggest that viral-induced necrosis is able to trigger marked extracellular matrix remodelling even in the case of minimal inflammation. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1329915

  8. Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials

    PubMed Central

    Liu, Jialing; Wang, Yongting; Akamatsu, Yosuke; Lee, Chih Cheng; Stetler, R Anne; Lawton, Michael T.; Yang, Guo-Yuan

    2014-01-01

    The brain vasculature has been increasingly recognized as a key player that directs brain development, regulates homeostasis, and contributes to pathological processes. Following ischemic stroke, the reduction of blood flow elicits a cascade of changes and leads to vascular remodeling. However, the temporal profile of vascular changes after stroke is not well understood. Growing evidence suggests that the early phase of cerebral blood volume (CBV) increase is likely due to the improvement in collateral flow, also known as arteriogenesis, whereas the late phase of CBV increase is attributed to the surge of angiogenesis. Arteriogenesis is triggered by shear fluid stress followed by activation of endothelium and inflammatory processes, while angiogenesis induces a number of pro-angiogenic factors and circulating endothelial progenitor cells (EPCs). The status of collaterals in acute stroke has been shown to have several prognostic implications, while the causal relationship between angiogenesis and improved functional recovery has yet to be established in patients. A number of interventions aimed at enhancing cerebral blood flow including increasing collateral recruitment are under clinical investigation. Transplantation of EPCs to improve angiogenesis is also underway. Knowledge in the underlying physiological mechanisms for improved arteriogenesis and angiogenesis shall lead to more effective therapies for ischemic stroke. PMID:24291532

  9. Electroretinographic effects of retinal dragging and retinal folds in eyes with familial exudative vitreoretinopathy

    PubMed Central

    Yaguchi, Yukari; Katagiri, Satoshi; Fukushima, Yoko; Yokoi, Tadashi; Nishina, Sachiko; Kondo, Mineo; Azuma, Noriyuki

    2016-01-01

    We evaluated the retinal function of retinal dragging (Rdrag) and radial retinal folds (Rfolds) in eyes with familial exudative vitreoretinopathy (FEVR) using full-field electroretinography (ERG). Seventeen eyes of nine patients with FEVR who had Rdrag or Rfolds were retrospectively studied. Eyes were classified into four groups according to the severity of the retinal alterations: Group 1, without Rdrag or Rfolds (5 eyes); Group 2, with Rdrag (4 eyes); Group 3, with Rfolds (6 eyes); and Group 4, with Rfolds in which all major retinal vessels were involved (2 eyes). The amplitudes of all ERG components and the implicit times of the photopic a- and b-waves and 30-Hz flicker responses were decreased or prolonged as the severity of the retinal alterations increased (P < 0.01). The photopic negative response was most severely affected and nearly undetectable in all eyes in Groups 3 and 4, although the other ERG components were detectable in all eyes in Group 3 and one eye in Group 4. These results suggest the decrease of retinal functions was correlated with the degree of severity of Rdrag and Rfolds in eyes with FEVR. In addition, the function of the retinal ganglion cells appears to be more severely affected compared with the others. PMID:27456314

  10. Increased aqueous flare is associated with thickening of inner retinal layers in eyes with retinitis pigmentosa

    PubMed Central

    Nagasaka, Yosuke; Ito, Yasuki; Ueno, Shinji; Terasaki, Hiroko

    2016-01-01

    Retinitis pigmentosa(RP) is a hereditary retinal disease that causes photoreceptor, outer retinal, degeneration. Although the pathogenesis is still unclear, there have been numerous reports regarding inner retinal changes in RP eyes. The aim of this study is to retrospectively evaluate the changes in the thicknesses of different retinal layers of RP eyes, and its association with aqueous flare, which is used for measuring the intensity of intraocular inflammation. A total of 125 eyes of 64 patients with RP and 13 normal eyes were studied. The thicknesses of total neural retina,nerve fiber layer(NFL),ganglion cell layer(GCL),inner plexiform layer(IPL),inner nuclear layer(INL),outer layers and foveal thickness were measured in the optical coherence tomographic images. Aqueous flare was measured with a laser flare-cell meter. The associations between those parameters, visual acuity and visual field were determined in RP eyes using multivariate analysis. The results of this study showed the significant thickening of NFL, GCL and INL, the significant thinning of outer layers and the association of them with increased aqueous flare, whereas NFL and INL thickening associated with outer retinal thinning. These results can suggest the involvement of intraocular inflammation in the pathogenesis of inner retinal thickening as a secondary change following outer retinal degeneration. PMID:27653207

  11. Subnanosecond trigger system for ETA

    SciTech Connect

    Cook, E.G.; Lauer, E.J.; Reginato, L.L.; Rogers D.; Schmidt, J.A.

    1980-05-30

    A high-voltage trigger system capable of triggering 30, 250 kV spark gaps; each with less than +- 1 ns jitter has been constructed. In addition to low jitter rates, the trigger system must be capable of delivering the high voltage pulses to the spark gaps either simultaneously or sequentially as determined by other system requirements. The trigger system consists of several stages of pulse amplification culminating in 160 kV pulses having 30 ns risetime. The trigger system is described and test data provided.

  12. Buckling Reduces eNOS Production and Stimulates Extracellular Matrix Remodeling in Arteries in Organ Culture.

    PubMed

    Xiao, Yangming; Liu, Qin; Han, Hai-Chao

    2016-09-01

    Artery buckling alters the fluid shear stress and wall stress in the artery but its temporal effect on vascular wall remodeling is poorly understood. The purpose of this study was to investigate the early effect of artery buckling on endothelial nitric oxide synthase (eNOS) expression and extracellular matrix remodeling. Bilateral porcine carotid arteries were maintained in an ex vivo organ culture system with and without buckling while under the same physiological pressure and flow rate for 3-7 days. Matrix metalloproteinase-2 (MMP-2), MMP-9, fibronectin, elastin, collagen I, III and IV, tissue inhibitor of metalloproteinase-2 (TIMP-2), and eNOS were determined using Western blotting and immunohistochemistry. Our results showed that MMP-2 expression level was significantly higher in buckled arteries than in the controls and higher at the inner curve than at the outer curve of buckled arteries, while collagen IV content showed an opposite trend, suggesting that artery buckling increased MMP-2 expression and collagen IV degradation in a site-specific fashion. However, no differences for MMP-9, fibronectin, elastin, collagen I, III, and TIMP-2 were observed among the outer and inner curve sides of buckled arteries and straight controls. Additionally, eNOS expression was significantly decreased in buckled arteries. These results suggest that artery buckling triggers uneven wall remodeling that could lead to development of tortuous arteries. PMID:26913855

  13. Rapid Remodeling of Invadosomes by Gi-coupled Receptors: DISSECTING THE ROLE OF Rho GTPases.

    PubMed

    Kedziora, Katarzyna M; Leyton-Puig, Daniela; Argenzio, Elisabetta; Boumeester, Anja J; van Butselaar, Bram; Yin, Taofei; Wu, Yi I; van Leeuwen, Frank N; Innocenti, Metello; Jalink, Kees; Moolenaar, Wouter H

    2016-02-26

    Invadosomes are actin-rich membrane protrusions that degrade the extracellular matrix to drive tumor cell invasion. Key players in invadosome formation are c-Src and Rho family GTPases. Invadosomes can reassemble into circular rosette-like superstructures, but the underlying signaling mechanisms remain obscure. Here we show that Src-induced invadosomes in human melanoma cells (A375M and MDA-MB-435) undergo rapid remodeling into dynamic extracellular matrix-degrading rosettes by distinct G protein-coupled receptor agonists, notably lysophosphatidic acid (LPA; acting through the LPA1 receptor) and endothelin. Agonist-induced rosette formation is blocked by pertussis toxin, dependent on PI3K activity and accompanied by localized production of phosphatidylinositol 3,4,5-trisphosphate, whereas MAPK and Ca(2+) signaling are dispensable. Using FRET-based biosensors, we show that LPA and endothelin transiently activate Cdc42 through Gi, concurrent with a biphasic decrease in Rac activity and differential effects on RhoA. Cdc42 activity is essential for rosette formation, whereas G12/13-mediated RhoA-ROCK signaling suppresses the remodeling process. Our results reveal a Gi-mediated Cdc42 signaling axis by which G protein-coupled receptors trigger invadosome remodeling, the degree of which is dictated by the Cdc42-RhoA activity balance. PMID:26740622

  14. [Remodeling of Cardiovascular System: Causes and Consequences].

    PubMed

    Lopatina, E V; Kipenko, A V; Penniyaynen, V A; Pasatetckaia, N A; Tsyrline, V A

    2016-01-01

    Literature and our data suggest the regulatory action of a number of biologically active substances (catecholamines, cardiac glycosides, β-blockers, angiotensin-converting-enzyme inhibitor) on the growth and proliferation of heart cells. By using of organotypic tissue culture has proved that the basis of this regulation is the ability of test substances, receptor- or transducer-mediated signaling to modulate the function of Na⁺, K⁺-ATPase. There is a delay in the development of vascular smooth muscle in the late postnatal period in rats with the blockade of the sympathetic nervous system in the prenatal period. The relationship between vascular remodeling and contractile activity is described. It seems that one of the causes of high blood pressure is a remodeling of the cardiovascular system, which precedes the development of hypertension. PMID:27530043

  15. Chromatin Remodeling, DNA Damage Repair and Aging

    PubMed Central

    Liu, Baohua; Yip, Raymond KH; Zhou, Zhongjun

    2012-01-01

    Cells are constantly exposed to a variety of environmental and endogenous conditions causing DNA damage, which is detected and repaired by conserved DNA repair pathways to maintain genomic integrity. Chromatin remodeling is critical in this process, as the organization of eukaryotic DNA into compact chromatin presents a natural barrier to all DNA-related events. Studies on human premature aging syndromes together with normal aging have suggested that accumulated damages might lead to exhaustion of resources that are required for physiological functions and thus accelerate aging. In this manuscript, combining the present understandings and latest findings, we focus mainly on discussing the role of chromatin remodeling in the repair of DNA double-strand breaks (DSBs) and regulation of aging. PMID:23633913

  16. Metabolic remodeling in chronic heart failure.

    PubMed

    Wang, Jing; Guo, Tao

    2013-08-01

    Although the management of chronic heart failure (CHF) has made enormous progress over the past decades, CHF is still a tremendous medical and societal burden. Metabolic remodeling might play a crucial role in the pathophysiology of CHF. The characteristics and mechanisms of metabolic remodeling remained unclear, and the main hypothesis might include the changes in the availability of metabolic substrate and the decline of metabolic capability. In the early phases of the disease, metabolism shifts toward carbohydrate utilization from fatty acids (FAs) oxidation. Along with the progress of the disease, the increasing level of the hyperadrenergic state and insulin resistance cause the changes that shift back to a greater FA uptake and oxidation. In addition, a growing body of experimental and clinical evidence suggests that the improvement in the metabolic capability is likely to be more significant than the selection of the substrate.

  17. [Remodeling of Cardiovascular System: Causes and Consequences].

    PubMed

    Lopatina, E V; Kipenko, A V; Penniyaynen, V A; Pasatetckaia, N A; Tsyrline, V A

    2016-01-01

    Literature and our data suggest the regulatory action of a number of biologically active substances (catecholamines, cardiac glycosides, β-blockers, angiotensin-converting-enzyme inhibitor) on the growth and proliferation of heart cells. By using of organotypic tissue culture has proved that the basis of this regulation is the ability of test substances, receptor- or transducer-mediated signaling to modulate the function of Na⁺, K⁺-ATPase. There is a delay in the development of vascular smooth muscle in the late postnatal period in rats with the blockade of the sympathetic nervous system in the prenatal period. The relationship between vascular remodeling and contractile activity is described. It seems that one of the causes of high blood pressure is a remodeling of the cardiovascular system, which precedes the development of hypertension.

  18. Remodeling of Calcium Entry Pathways in Cancer.

    PubMed

    Villalobos, Carlos; Sobradillo, Diego; Hernández-Morales, Miriam; Núñez, Lucía

    2016-01-01

    Ca(2+) entry pathways play important roles in control of many cellular functions, including long-term proliferation, migration and cell death. In recent years, it is becoming increasingly clear that, in some types of tumors, remodeling of Ca(2+) entry pathways could contribute to cancer hallmarks such as excessive proliferation, cell migration and invasion as well as resistance to cell death or survival. In this chapter we briefly review findings related to remodeling of Ca(2+) entry pathways in cancer with emphasis on the mechanisms that contribute to increased store-operated Ca(2+) entry (SOCE) and store-operated currents (SOCs) in colorectal cancer cells. Finally, since SOCE appears critically involved in colon tumorogenesis, the inhibition of SOCE by aspirin and other NSAIDs and its possible contribution to colon cancer chemoprevention is reviewed.

  19. Remodeling of Calcium Entry Pathways in Cancer.

    PubMed

    Villalobos, Carlos; Sobradillo, Diego; Hernández-Morales, Miriam; Núñez, Lucía

    2016-01-01

    Ca(2+) entry pathways play important roles in control of many cellular functions, including long-term proliferation, migration and cell death. In recent years, it is becoming increasingly clear that, in some types of tumors, remodeling of Ca(2+) entry pathways could contribute to cancer hallmarks such as excessive proliferation, cell migration and invasion as well as resistance to cell death or survival. In this chapter we briefly review findings related to remodeling of Ca(2+) entry pathways in cancer with emphasis on the mechanisms that contribute to increased store-operated Ca(2+) entry (SOCE) and store-operated currents (SOCs) in colorectal cancer cells. Finally, since SOCE appears critically involved in colon tumorogenesis, the inhibition of SOCE by aspirin and other NSAIDs and its possible contribution to colon cancer chemoprevention is reviewed. PMID:27161240

  20. Trigger point therapy.

    PubMed

    Janssens, L A

    1992-03-01

    Trigger points (TP) are objectively demonstrable foci in muscles. They are painful on compression and trigger pain in a referred area. This area may be the only locus of complaint in humans. In dogs we cannot prove the existence of referred zones of pain. Therefore, we can only diagnose a TP-induced claudication if we cannot find bone, joint, or neurologic abnormalities, and we do find TP that disappear after treatment together with the original lameness. Several methods have been developed to demonstrate TP existence objectively. These are pressure algometry, pressure threshold measurements, magnetic resonance thermography, and histology. In humans, 71% of the TP described are acupuncture points. TP treatment consists of TP stimulation with non-invasive or invasive methods such as dry needling or injections. In the dog, ten TP are described in two categories of clinical patients. First, those with one or few TP reacting favorably on treatment (+/- 80% success in +/- 2-3 weeks). Second, those with many TPs reacting badly on treatment. Most probably the latter group are fibromyalgia patients.

  1. REACTIVE OXYGEN SPECIES IN PULMONARY VASCULAR REMODELING

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Sharma, Shruti; Fineman, Jeffrey R.; Black, Stephen M.

    2014-01-01

    The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell (SMC) hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the anti-oxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting co-factor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension. PMID:23897679

  2. Perspectives on biological growth and remodeling

    PubMed Central

    Ambrosi, D.; Ateshian, G. A.; Arruda, E. M.; Cowin, S. C.; Dumais, J.; Goriely, A.; Holzapfel, G. A.; Humphrey, J. D.; Kemkemer, R.; Kuhl, E.; Olberding, J. E.; Taber, L. A.; Garikipati, K.

    2011-01-01

    The continuum mechanical treatment of biological growth and remodeling has attracted considerable attention over the past fifteen years. Many aspects of these problems are now well-understood, yet there remain areas in need of significant development from the standpoint of experiments, theory, and computation. In this perspective paper we review the state of the field and highlight open questions, challenges, and avenues for further development. PMID:21532929

  3. Application of Petri Nets in Bone Remodeling

    PubMed Central

    Li, Lingxi; Yokota, Hiroki

    2009-01-01

    Understanding a mechanism of bone remodeling is a challenging task for both life scientists and model builders, since this highly interactive and nonlinear process can seldom be grasped by simple intuition. A set of ordinary differential equations (ODEs) have been built for simulating bone formation as well as bone resorption. Although solving ODEs numerically can provide useful predictions for dynamical behaviors in a continuous time frame, an actual bone remodeling process in living tissues is driven by discrete events of molecular and cellular interactions. Thus, an event-driven tool such as Petri nets (PNs), which may dynamically and graphically mimic individual molecular collisions or cellular interactions, seems to augment the existing ODE-based systems analysis. Here, we applied PNs to expand the ODE-based approach and examined discrete, dynamical behaviors of key regulatory molecules and bone cells. PNs have been used in many engineering areas, but their application to biological systems needs to be explored. Our PN model was based on 8 ODEs that described an osteoprotegerin linked molecular pathway consisting of 4 types of bone cells. The models allowed us to conduct both qualitative and quantitative evaluations and evaluate homeostatic equilibrium states. The results support that application of PN models assists understanding of an event-driven bone remodeling mechanism using PN-specific procedures such as places, transitions, and firings. PMID:19838338

  4. Stepwise nucleosome translocation by RSC remodeling complexes

    PubMed Central

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-01-01

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1–2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome. DOI: http://dx.doi.org/10.7554/eLife.10051.001 PMID:26895087

  5. Stepwise nucleosome translocation by RSC remodeling complexes.

    PubMed

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-02-19

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1-2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome.

  6. Toward high-resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  7. Membrane-bound and soluble Fas ligands have opposite functions in photoreceptor cell death following separation from the retinal pigment epithelium

    PubMed Central

    Matsumoto, H; Murakami, Y; Kataoka, K; Notomi, S; Mantopoulos, D; Trichonas, G; Miller, J W; Gregory, M S; Ksander, B R; Marshak-Rothstein, A; Vavvas, D G

    2015-01-01

    Fas ligand (FasL) triggers apoptosis of Fas-positive cells, and previous reports described FasL-induced cell death of Fas-positive photoreceptors following a retinal detachment. However, as FasL exists in membrane-bound (mFasL) and soluble (sFasL) forms, and is expressed on resident microglia and infiltrating monocyte/macrophages, the current study examined the relative contribution of mFasL and sFasL to photoreceptor cell death after induction of experimental retinal detachment in wild-type, knockout (FasL−/−), and mFasL-only knock-in (ΔCS) mice. Retinal detachment in FasL−/− mice resulted in a significant reduction of photoreceptor cell death. In contrast, ΔCS mice displayed significantly more apoptotic photoreceptor cell death. Photoreceptor loss in ΔCS mice was inhibited by a subretinal injection of recombinant sFasL. Thus, Fas/FasL-triggered cell death accounts for a significant amount of photoreceptor cell loss following the retinal detachment. The function of FasL was dependent upon the form of FasL expressed: mFasL triggered photoreceptor cell death, whereas sFasL protected the retina, indicating that enzyme-mediated cleavage of FasL determines, in part, the extent of vision loss following the retinal detachment. Moreover, it also indicates that treatment with sFasL could significantly reduce photoreceptor cell loss in patients with retinal detachment. PMID:26583327

  8. Interventions for asymptomatic retinal breaks and lattice degeneration for preventing retinal detachment

    PubMed Central

    Wilkinson, Charles P

    2015-01-01

    Background Asymptomatic retinal breaks and lattice degeneration are visible lesions that are risk factors for later retinal detachment. Retinal detachments occur when fluid in the vitreous cavity passes through tears or holes in the retina and separates the retina from the underlying retinal pigment epithelium. Creation of an adhesion surrounding retinal breaks and lattice degeneration, with laser photocoagulation or cryotherapy, has been recommended as an effective means of preventing retinal detachment. This therapy is of value in the management of retinal tears associated with the symptoms of flashes and floaters and persistent vitreous traction upon the retina in the region of the retinal break, because such symptomatic retinal tears are associated with a high rate of progression to retinal detachment. Retinal tears and holes unassociated with acute symptoms and lattice degeneration are significantly less likely to be the sites of retinal breaks that are responsible for later retinal detachment. Nevertheless, treatment of these lesions frequently is recommended, in spite of the fact that the effectiveness of this therapy is unproven. Objectives The objective of this review was to assess the effectiveness and safety of techniques used to treat asymptomatic retinal breaks and lattice degeneration for the prevention of retinal detachment. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 2), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to February 2014), EMBASE (January 1980 to February 2014), PubMed (January 1948 to February 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in

  9. Amyloidosis in Retinal Neurodegenerative Diseases.

    PubMed

    Masuzzo, Ambra; Dinet, Virginie; Cavanagh, Chelsea; Mascarelli, Frederic; Krantic, Slavica

    2016-01-01

    As a part of the central nervous system, the retina may reflect both physiological processes and abnormalities related to pathologies that affect the brain. Amyloidosis due to the accumulation of amyloid-beta (Aβ) was initially regarded as a specific and exclusive characteristic of neurodegenerative alterations seen in the brain of Alzheimer's disease (AD) patients. More recently, it was discovered that amyloidosis-related alterations, similar to those seen in the brain of Alzheimer's patients, also occur in the retina. Remarkably, these alterations were identified not only in primary retinal pathologies, such as age-related macular degeneration (AMD) and glaucoma, but also in the retinas of Alzheimer's patients. In this review, we first briefly discuss the biogenesis of Aβ, a peptide involved in amyloidosis. We then discuss some pathological aspects (synaptic dysfunction, mitochondrial failure, glial activation, and vascular abnormalities) related to the neurotoxic effects of Aβ. We finally highlight common features shared by AD, AMD, and glaucoma in the context of Aβ amyloidosis and further discuss why the retina, due to the transparency of the eye, can be considered as a "window" to the brain. PMID:27551275

  10. Amyloidosis in Retinal Neurodegenerative Diseases

    PubMed Central

    Masuzzo, Ambra; Dinet, Virginie; Cavanagh, Chelsea; Mascarelli, Frederic; Krantic, Slavica

    2016-01-01

    As a part of the central nervous system, the retina may reflect both physiological processes and abnormalities related to pathologies that affect the brain. Amyloidosis due to the accumulation of amyloid-beta (Aβ) was initially regarded as a specific and exclusive characteristic of neurodegenerative alterations seen in the brain of Alzheimer’s disease (AD) patients. More recently, it was discovered that amyloidosis-related alterations, similar to those seen in the brain of Alzheimer’s patients, also occur in the retina. Remarkably, these alterations were identified not only in primary retinal pathologies, such as age-related macular degeneration (AMD) and glaucoma, but also in the retinas of Alzheimer’s patients. In this review, we first briefly discuss the biogenesis of Aβ, a peptide involved in amyloidosis. We then discuss some pathological aspects (synaptic dysfunction, mitochondrial failure, glial activation, and vascular abnormalities) related to the neurotoxic effects of Aβ. We finally highlight common features shared by AD, AMD, and glaucoma in the context of Aβ amyloidosis and further discuss why the retina, due to the transparency of the eye, can be considered as a “window” to the brain. PMID:27551275

  11. Multi-MHz retinal OCT

    PubMed Central

    Klein, Thomas; Wieser, Wolfgang; Reznicek, Lukas; Neubauer, Aljoscha; Kampik, Anselm; Huber, Robert

    2013-01-01

    We analyze the benefits and problems of in vivo optical coherence tomography (OCT) imaging of the human retina at A-scan rates in excess of 1 MHz, using a 1050 nm Fourier-domain mode-locked (FDML) laser. Different scanning strategies enabled by MHz OCT line rates are investigated, and a simple multi-volume data processing approach is presented. In-vivo OCT of the human ocular fundus is performed at different axial scan rates of up to 6.7 MHz. High quality non-mydriatic retinal imaging over an ultra-wide field is achieved by a combination of several key improvements compared to previous setups. For the FDML laser, long coherence lengths and 72 nm wavelength tuning range are achieved using a chirped fiber Bragg grating in a laser cavity at 419.1 kHz fundamental tuning rate. Very large data sets can be acquired with sustained data transfer from the data acquisition card to host computer memory, enabling high-quality averaging of many frames and of multiple aligned data sets. Three imaging modes are investigated: Alignment and averaging of 24 data sets at 1.68 MHz axial line rate, ultra-dense transverse sampling at 3.35 MHz line rate, and dual-beam imaging with two laser spots on the retina at an effective line rate of 6.7 MHz. PMID:24156052

  12. Intrinsically photosensitive retinal ganglion cells.

    PubMed

    Do, Michael Tri Hoang; Yau, King-Wai

    2010-10-01

    Life on earth is subject to alternating cycles of day and night imposed by the rotation of the earth. Consequently, living things have evolved photodetective systems to synchronize their physiology and behavior with the external light-dark cycle. This form of photodetection is unlike the familiar "image vision," in that the basic information is light or darkness over time, independent of spatial patterns. "Nonimage" vision is probably far more ancient than image vision and is widespread in living species. For mammals, it has long been assumed that the photoreceptors for nonimage vision are also the textbook rods and cones. However, recent years have witnessed the discovery of a small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. These ganglion cells are intrinsically photosensitive and drive a variety of nonimage visual functions. In addition to being photoreceptors themselves, they also constitute the major conduit for rod and cone signals to the brain for nonimage visual functions such as circadian photoentrainment and the pupillary light reflex. Here we review what is known about these novel mammalian photoreceptors. PMID:20959623

  13. Latent myofascial trigger points.

    PubMed

    Ge, Hong-You; Arendt-Nielsen, Lars

    2011-10-01

    A latent myofascial trigger point (MTP) is defined as a focus of hyperirritability in a muscle taut band that is clinically associated with local twitch response and tenderness and/or referred pain upon manual examination. Current evidence suggests that the temporal profile of the spontaneous electrical activity at an MTP is similar to focal muscle fiber contraction and/or muscle cramp potentials, which contribute significantly to the induction of local tenderness and pain and motor dysfunctions. This review highlights the potential mechanisms underlying the sensory-motor dysfunctions associated with latent MTPs and discusses the contribution of central sensitization associated with latent MTPs and the MTP network to the spatial propagation of pain and motor dysfunctions. Treating latent MTPs in patients with musculoskeletal pain may not only decrease pain sensitivity and improve motor functions, but also prevent latent MTPs from transforming into active MTPs, and hence, prevent the development of myofascial pain syndrome.

  14. Gravity triggered neutrino condensates

    SciTech Connect

    Barenboim, Gabriela

    2010-11-01

    In this work we use the Schwinger-Dyson equations to study the possibility that an enhanced gravitational attraction triggers the formation of a right-handed neutrino condensate, inducing dynamical symmetry breaking and generating a Majorana mass for the right-handed neutrino at a scale appropriate for the seesaw mechanism. The composite field formed by the condensate phase could drive an early epoch of inflation. We find that to the lowest order, the theory does not allow dynamical symmetry breaking. Nevertheless, thanks to the large number of matter fields in the model, the suppression by additional powers in G of higher order terms can be compensated, boosting them up to their lowest order counterparts. This way chiral symmetry can be broken dynamically and the infrared mass generated turns out to be in the expected range for a successful seesaw scenario.

  15. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling.

    PubMed

    Hambli, Ridha

    2014-01-01

    Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone

  16. Electrotonic remodeling following myocardial infarction in dogs susceptible and resistant to sudden cardiac death.

    PubMed

    Del Rio, Carlos L; McConnell, Patrick I; Kukielka, Monica; Dzwonczyk, Roger; Clymer, Bradley D; Howie, Michael B; Billman, George E

    2008-02-01

    Passive electrical remodeling following myocardial infarction (MI) is well established. These changes can alter electrotonic loading and trigger the remodeling of repolarization currents, a potential mechanism for ventricular fibrillation (VF). However, little is known about the role of passive electrical markers as tools to identify VF susceptibility post-MI. This study investigated electrotonic remodeling in the post-MI ventricle, as measured by myocardial electrical impedance (MEI), in animals prone to and resistant to VF. MI was induced in dogs by a two-stage left anterior descending (LAD) coronary artery ligation. Before infarction, MEI electrodes were placed in remote (left circumflex, LCX) and infarcted (LAD) myocardium. MEI was measured in awake animals 1, 2, 7, and 21 days post-MI. Subsequently, VF susceptibility was tested by a 2-min LCX occlusion during exercise; 12 animals developed VF (susceptible, S) and 12 did not (resistant, R). The healing infarct had lower MEI than the normal myocardium. This difference was stable by day 2 post-MI (287 +/- 32 Omega vs. 425 +/- 62 Omega, P < 0.05). Significant differences were observed between resistant and susceptible animals 7 days post-MI; susceptible dogs had a wider electrotonic gradient between remote and infarcted myocardium (R: 89 +/- 60 Omega vs. S: 180 +/- 37 Omega). This difference increased over time in susceptible animals (252 +/- 53 Omega at 21 days) due to post-MI impedance changes on the remote myocardium. These data suggest that early electrotonic changes post-MI could be used to assess later arrhythmia susceptibility. In addition, passive-electrical changes could be a mechanism driving active-electrical remodeling post-MI, thereby facilitating the induction of arrhythmias.

  17. Evaluation and management of pediatric rhegmatogenous retinal detachment

    PubMed Central

    Wenick, Adam S.; Barañano, David E.

    2012-01-01

    Pediatric rhegmatogenous retinal detachments are rare, accounting for less than ten percent of all rhegmatogenous retinal detachments. While most retinal detachments in the adult population are related to posterior vitreous detachment, pediatric retinal detachment are often related to trauma or an underlying congenital abnormalities or genetic syndrome. The anatomy of pediatric eyes, the often late presentation of the disease, and the high incidence of bilateral pathology in children all pose significant challenges in the management of these patients. We discuss the epidemiology of pediatric rhegmatogenous retinal detachment, review the genetic syndromes associated with a high incidence of retinal detachment, and examine other common causes of retinal detachment in this age group. We then outline an approach to evaluation and management and describe the expected outcomes of repair of retinal detachment in the pediatric population. PMID:23961003

  18. Retinal imaging with virtual reality stimulus for studying Salticidae retinas

    NASA Astrophysics Data System (ADS)

    Schiesser, Eric; Canavesi, Cristina; Long, Skye; Jakob, Elizabeth; Rolland, Jannick P.

    2014-12-01

    We present a 3-path optical system for studying the retinal movement of jumping spiders: a visible OLED virtual reality system presents stimulus, while NIR illumination and imaging systems observe retinal movement.

  19. Preclinical Models to Investigate Retinal Ischemia: Advances and Drawbacks

    PubMed Central

    Minhas, Gillipsie; Morishita, Ryuichi; Anand, Akshay

    2012-01-01

    Retinal ischemia is a major cause of blindness worldwide. It is associated with various disorders such as diabetic retinopathy, glaucoma, optic neuropathies, stroke, and other retinopathies. Retinal ischemia is a clinical condition that occurs due to lack of appropriate supply of blood to the retina. As the retina has a higher metabolic demand, any hindrance in the blood supply to it can lead to decreased supply of oxygen, thus causing retinal ischemia. The pathology of retinal ischemia is still not clearly known. To get a better insight into the pathophysiology of retinal ischemia, the role of animal models is indispensable. The standard treatment care for retinal ischemia has limited potential. Transplantation of stem cells provide neuroprotection and to replenish damaged cells is an emerging therapeutic approach to treat retinal ischemia. In this review we provide an overview of major animal models of retinal ischemia along with the current and preclinical treatments in use. PMID:22593752

  20. Retinal Conformation Changes Rhodopsin's Dynamic Ensemble.

    PubMed

    Leioatts, Nicholas; Romo, Tod D; Danial, Shairy Azmy; Grossfield, Alan

    2015-08-01

    G protein-coupled receptors are vital membrane proteins that allosterically transduce biomolecular signals across the cell membrane. However, the process by which ligand binding induces protein conformation changes is not well understood biophysically. Rhodopsin, the mammalian dim-light receptor, is a unique test case for understanding these processes because of its switch-like activity; the ligand, retinal, is bound throughout the activation cycle, switching from inverse agonist to agonist after absorbing a photon. By contrast, the ligand-free opsin is outside the activation cycle and may behave differently. We find that retinal influences rhodopsin dynamics using an ensemble of all-atom molecular dynamics simulations that in aggregate contain 100 μs of sampling. Active retinal destabilizes the inactive state of the receptor, whereas the active ensemble was more structurally homogenous. By contrast, simulations of an active-like receptor without retinal present were much more heterogeneous than those containing retinal. These results suggest allosteric processes are more complicated than a ligand inducing protein conformational changes or simply capturing a shifted ensemble as outlined in classic models of allostery.

  1. Dynamics of retinal photocoagulation and rupture

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis; Nomoto, Hiroyuki; Huie, Phil; Brown, Jefferson; Palanker, Daniel

    2009-05-01

    In laser retinal photocoagulation, short (<20 ms) pulses have been found to reduce thermal damage to the inner retina, decrease treatment time, and minimize pain. However, the safe therapeutic window (defined as the ratio of power for producing a rupture to that of mild coagulation) decreases with shorter exposures. To quantify the extent of retinal heating and maximize the therapeutic window, a computational model of millisecond retinal photocoagulation and rupture was developed. Optical attenuation of 532-nm laser light in ocular tissues was measured, including retinal pigment epithelial (RPE) pigmentation and cell-size variability. Threshold powers for vaporization and RPE damage were measured with pulse durations ranging from 1 to 200 ms. A finite element model of retinal heating inferred that vaporization (rupture) takes place at 180-190°C. RPE damage was accurately described by the Arrhenius model with activation energy of 340 kJ/mol. Computed photocoagulation lesion width increased logarithmically with pulse duration, in agreement with histological findings. The model will allow for the optimization of beam parameters to increase the width of the therapeutic window for short exposures.

  2. Advances in retinal ganglion cell imaging

    PubMed Central

    Balendra, S I; Normando, E M; Bloom, P A; Cordeiro, M F

    2015-01-01

    Glaucoma is one of the leading causes of blindness worldwide and will affect 79.6 million people worldwide by 2020. It is caused by the progressive loss of retinal ganglion cells (RGCs), predominantly via apoptosis, within the retinal nerve fibre layer and the corresponding loss of axons of the optic nerve head. One of its most devastating features is its late diagnosis and the resulting irreversible visual loss that is often predictable. Current diagnostic tools require significant RGC or functional visual field loss before the threshold for detection of glaucoma may be reached. To propel the efficacy of therapeutics in glaucoma, an earlier diagnostic tool is required. Recent advances in retinal imaging, including optical coherence tomography, confocal scanning laser ophthalmoscopy, and adaptive optics, have propelled both glaucoma research and clinical diagnostics and therapeutics. However, an ideal imaging technique to diagnose and monitor glaucoma would image RGCs non-invasively with high specificity and sensitivity in vivo. It may confirm the presence of healthy RGCs, such as in transgenic models or retrograde labelling, or detect subtle changes in the number of unhealthy or apoptotic RGCs, such as detection of apoptosing retinal cells (DARC). Although many of these advances have not yet been introduced to the clinical arena, their successes in animal studies are enthralling. This review will illustrate the challenges of imaging RGCs, the main retinal imaging modalities, the in vivo techniques to augment these as specific RGC-imaging tools and their potential for translation to the glaucoma clinic. PMID:26293138

  3. Protocadherin-17 Function in Zebrafish Retinal Development

    PubMed Central

    Chen, Yun; Londraville, Richard; Brickner, Sarah; El-Shaar, Lana; Fankhauser, Kelsee; Dearth, Cassandra; Fulton, Leah; Sochacka, Alicja; Bhattarai, Sunil; Marrs, James A.; Liu, Qin

    2012-01-01

    Cadherin cell adhesion molecules play crucial roles in vertebrate development including the development of the retina. Most studies have focused on examining functions of classic cadherins (e.g. N-cadherin) in retinal development. There is little information on the function of protocadherins in the development of the vertebrate visual system. We previously showed that protocadherin-17 mRNA was expressed in developing zebrafish retina during critical stages of the retinal development. To gain insight into protocadherin-17 function in the formation of the retina, we analyzed eye development and differentiation of retinal cells in zebrafish embryos injected with protocadherin-17 specific antisense morpholino oligonucleotides (MOs). Protocadherin-17 knockdown embryos (pcdh17 morphants) had significantly reduced eyes due mainly to decreased cell proliferation. Differentiation of several retinal cell types (e.g. retinal ganglion cells) was also disrupted in the pcdh17 morphants. Phenotypic rescue was achieved by injection of protocadherin-17 mRNA. Injection of a vivo-protocadherin-17 MO into one eye of embryonic zebrafish resulted in similar eye defects. Our results suggest that protocadherin-17 plays an important role in the normal formation of the zebrafish retina. PMID:22927092

  4. [Genetic diagnostic testing in inherited retinal dystrophies].

    PubMed

    Kohl, S; Biskup, S

    2013-03-01

    Inherited retinal dystrophies are clinically and genetically highly heterogeneous. They can be divided according to the clinical phenotype and course of the disease, as well as the underlying mode of inheritance. Isolated retinal dystrophies (i.e., retinitis pigmentosa, Leber's congenital amaurosis, cone and cone-rod dystrophy, macular dystrophy, achromatopsia, congenital stationary nightblindness) and syndromal forms (i.e., Usher syndrome, Bardet-Biedl syndrome) can be differentiated. To date almost 180 genes and thousands of distinct mutations have been identified that are responsible for the different forms of these blinding illnesses. Until recently, there was no adequate diagnostic genetic testing available. With the development of the next generation sequencing technologies, a comprehensive genetic screening analysis for all known genes for inherited retinal dystrophies has been established at reasonable costs and in appropriate turn-around times. Depending on the primary clinical diagnosis and the presumed mode of inheritance, different diagnostic panels can be chosen for genetic testing. Statistics show that in 55-80 % of the cases the genetic defect of the inherited retinal dystrophy can be identified with this approach, depending on the initial clinical diagnosis. The aim of any genetic diagnostics is to define the genetic cause of a given illness within the affected patient and family and thereby i) confirm the clinical diagnosis, ii) provide targeted genetic testing in family members, iii) enable therapeutic intervention, iv) give a prognosis on disease course and progression and v) in the long run provide the basis for novel therapeutic approaches and personalised medicine.

  5. The CMS high level trigger

    NASA Astrophysics Data System (ADS)

    Gori, Valentina

    2014-05-01

    The CMS experiment has been designed with a 2-level trigger system: the Level 1 Trigger, implemented on custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a tradeoff between the complexity of the algorithms running on the available computing power, the sustainable output rate, and the selection efficiency. Here we will present the performance of the main triggers used during the 2012 data taking, ranging from simpler single-object selections to more complex algorithms combining different objects, and applying analysis-level reconstruction and selection. We will discuss the optimisation of the triggers and the specific techniques to cope with the increasing LHC pile-up, reducing its impact on the physics performance.

  6. The CMS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Trocino, Daniele

    2014-06-01

    The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger, implemented in custom-designed electronics, and the High-Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a tradeoff between the complexity of the algorithms running with the available computing power, the sustainable output rate, and the selection efficiency. We present the performance of the main triggers used during the 2012 data taking, ranging from simple single-object selections to more complex algorithms combining different objects, and applying analysis-level reconstruction and selection. We discuss the optimisation of the trigger and the specific techniques to cope with the increasing LHC pile-up, reducing its impact on the physics performance.

  7. Inferior retinal light exposure is more effective than superior retinal exposure in suppressing melatonin in humans

    NASA Technical Reports Server (NTRS)

    Glickman, Gena; Hanifin, John P.; Rollag, Mark D.; Wang, Jenny; Cooper, Howard; Brainard, George C.

    2003-01-01

    Illumination of different areas of the human retina elicits differences in acute light-induced suppression of melatonin. The aim of this study was to compare changes in plasma melatonin levels when light exposures of equal illuminance and equal photon dose were administered to superior, inferior, and full retinal fields. Nine healthy subjects participated in the study. Plexiglass eye shields were modified to permit selective exposure of the superior and inferior halves of the retinas of each subject. The Humphrey Visual Field Analyzer was used both to confirm intact full visual fields and to quantify exposure of upper and lower visual fields. On study nights, eyes were dilated, and subjects were exposed to patternless white light for 90 min between 0200 and 0330 under five conditions: (1) full retinal exposure at 200 lux, (2) full retinal exposure at 100 lux, (3) inferior retinal exposure at 200 lux, (4) superior retinal exposure at 200 lux, and (5) a dark-exposed control. Plasma melatonin levels were determined by radioimmunoassay. ANOVA demonstrated a significant effect of exposure condition (F = 5.91, p < 0.005). Post hoc Fisher PLSD tests showed significant (p < 0.05) melatonin suppression of both full retinal exposures as well as the inferior retinal exposure; however, superior retinal exposure was significantly less effective in suppressing melatonin. Furthermore, suppression with superior retinal exposure was not significantly different from that of the dark control condition. The results indicate that the inferior retina contributes more to the light-induced suppression of melatonin than the superior retina at the photon dosages tested in this study. Findings suggest a greater sensitivity or denser distribution of photoreceptors in the inferior retina are involved in light detection for the retinohypothalamic tract of humans.

  8. Low Vision Rehabilitation of Retinitis Pigmentosa. Practice Report

    ERIC Educational Resources Information Center

    Rundquist, John

    2004-01-01

    Retinitis pigmentosa is a rod-cone dystrophy, commonly genetic in nature. Approximately 60-80% of those with retinitis pigmentosa inherit it by an autosomal recessive transmission (Brilliant, 1999). There have been some reported cases with no known family history. The symptoms of retinitis pigmentosa are decreased acuity, photophobia, night…

  9. Retinas in a Dish Peek into Inherited Retinal Degeneration.

    PubMed

    Duong, Thu T; Vasireddy, Vidyullatha; Mills, Jason A; Bennett, Jean

    2016-06-01

    Human retinal degeneration can cause blindness, and the lack of relevant model systems has made identifying underlying mechanisms challenging. Parfitt et al. (2016) generate three-dimensional retinal tissue from patient-derived induced pluripotent stem cells to identify how CEP290 mutations cause retinal degeneration, and show an antisense approach can correct disease-associated phenotypes. PMID:27257755

  10. Shedding new light on retinal protein photochemistry.

    PubMed

    Wand, Amir; Gdor, Itay; Zhu, Jingyi; Sheves, Mordechai; Ruhman, Sanford

    2013-01-01

    The ultrafast spectroscopic investigation of novel retinal proteins challenges existing notions concerning the course of primary events in these natural photoreceptors. We review two illustrations here. The first demonstrates that changes in the initial retinal configuration can alter the duration of photochemistry by nearly an order of magnitude in Anabaena sensory rhodopsin, making it as rapid as the ballistic photoisomerization in visual pigments. This prompted a reinvestigation of the much studied bacteriorhodopsin, leading to a similar trend as well, contrary to earlier reports. The second involves the study of xanthorhodopsin, an archaeal proton pump that includes an attached light-harvesting carotenoid. Pump-probe experiments demonstrate the efficient transfer of energy from carotenoid to retinal, providing a first glimpse at a cooperative multichromophore function, which is probably characteristic of many other proteins as well. Finally, we discuss measures required to advance our knowledge from kinetics to mode-specific dynamics concerning this expanding family of biological photoreceptors.

  11. Automated retinal layer segmentation and characterization

    NASA Astrophysics Data System (ADS)

    Luisi, Jonathan; Briley, David; Boretsky, Adam; Motamedi, Massoud

    2014-05-01

    Spectral Domain Optical Coherence Tomography (SD-OCT) is a valuable diagnostic tool in both clinical and research settings. The depth-resolved intensity profiles generated by light backscattered from discrete layers of the retina provide a non-invasive method of investigating progressive diseases and injury within the eye. This study demonstrates the application of steerable convolution filters capable of automatically separating gradient orientations to identify edges and delineate tissue boundaries. The edge maps were recombined to measure thickness of individual retinal layers. This technique was successfully applied to longitudinally monitor changes in retinal morphology in a mouse model of laser-induced choroidal neovascularization (CNV) and human data from age-related macular degeneration patients. The steerable filters allow for direct segmentation of noisy images, while novel recombination of weaker segmentations allow for denoising post-segmentation. The segmentation before denoising strategy allows the rapid detection of thin retinal layers even under suboptimal imaging conditions.

  12. [Muscular Dystrophies Involving the Retinal Function].

    PubMed

    Jägle, H

    2016-03-01

    Muscular dystrophies are rare disorders, with an incidence of approx. 20 in 100 000. Some dystrophies also affect retinal or optic nerve function. In such cases, the ophthalmological findings may be critical for differential diagnosis or patient counseling. For example in Duchenne muscular dystrophy, where the alteration in retinal function seems to reflect cerebral involvement. Other important forms are mitochondrial and metabolic disorders, such as the Kearns-Sayre syndrome and the Refsum syndrome. Molecular genetic analysis has become a major tool for differential diagnosis, but may be complex and demanding. This article gives an overview of major muscular dystrophies involving retinal function and their genetic origin, in order to guide differential diagnosis.

  13. Shedding New Light on Retinal Protein Photochemistry

    NASA Astrophysics Data System (ADS)

    Wand, Amir; Gdor, Itay; Zhu, Jingyi; Sheves, Mordechai; Ruhman, Sanford

    2013-04-01

    The ultrafast spectroscopic investigation of novel retinal proteins challenges existing notions concerning the course of primary events in these natural photoreceptors. We review two illustrations here. The first demonstrates that changes in the initial retinal configuration can alter the duration of photochemistry by nearly an order of magnitude in Anabaena sensory rhodopsin, making it as rapid as the ballistic photoisomerization in visual pigments. This prompted a reinvestigation of the much studied bacteriorhodopsin, leading to a similar trend as well, contrary to earlier reports. The second involves the study of xanthorhodopsin, an archaeal proton pump that includes an attached light-harvesting carotenoid. Pump-probe experiments demonstrate the efficient transfer of energy from carotenoid to retinal, providing a first glimpse at a cooperative multichromophore function, which is probably characteristic of many other proteins as well. Finally, we discuss measures required to advance our knowledge from kinetics to mode-specific dynamics concerning this expanding family of biological photoreceptors.

  14. Integrated computer-aided retinal photocoagulation system

    NASA Astrophysics Data System (ADS)

    Barrett, Steven F.; Wright, Cameron H. G.; Oberg, Erik D.; Rockwell, Benjamin A.; Cain, Clarence P.; Jerath, Maya R.; Rylander, Henry G., III; Welch, Ashley J.

    1996-05-01

    Successful retinal tracking subsystem testing results in vivo on rhesus monkeys using an argon continuous wave laser and an ultra-short pulse laser are presented. Progress on developing an integrated robotic retinal laser surgery system is also presented. Several interesting areas of study have developed: (1) 'doughnut' shaped lesions that occur under certain combinations of laser power, spot size, and irradiation time complicating measurements of central lesion reflectance, (2) the optimal retinal field of view to achieve simultaneous tracking and lesion parameter control, and (3) a fully digital versus a hybrid analog/digital tracker using confocal reflectometry integrated system implementation. These areas are investigated in detail in this paper. The hybrid system warrants a separate presentation and appears in another paper at this conference.

  15. Molecular biology of retinal ganglion cells.

    PubMed Central

    Xiang, M; Zhou, H; Nathans, J

    1996-01-01

    Retinal ganglion cells are the output neurons that encode and transmit information from the eye to the brain. Their diverse physiologic and anatomic properties have been intensively studied and appear to account well for a number of psychophysical phenomena such as lateral inhibition and chromatic opponency. In this paper, we summarize our current view of retinal ganglion cell properties and pose a number of questions regarding underlying molecular mechanisms. As an example of one approach to understanding molecular mechanisms, we describe recent work on several POU domain transcription factors that are expressed in subsets of retinal ganglion cells and that appear to be involved in ganglion cell development. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8570601

  16. [Severe hereditary retinal diseases in childhood].

    PubMed

    Lorenz, B

    1996-01-01

    In dependence on the various statistics, hereditary causes are identified in up to 50% of the visually handicapped and blind school children. Most common are retinal disorders, which account for 15 to 55%. The most important diseases are briefly reviewed: Leber's congenital amaurosis, rod monochromacy, blue cone monochromacy, congenital stationary night blindness (CSNB), X-linked retinitis pigmentosa, Usher syndromes, Bardet-Biedl syndrome, juvenile neuronal ceroid lipofuscinosis Spielmeyer-Vogt, the various forms of albinism, exsudative vitreoretinopathies including Norrie's disease, as well as Stargardt's macular dystrophy, vitelliform macular dystrophy, and hereditary retinoblastoma. In addition to the clinical symptoms, general genetic principles are stressed, such as mode of inheritance, heterogeneity, expressivity, penetrance, age at manifestation, X-chromosomal gene inactivation, and variability. They all have to be taken into account to correctly establish the diagnosis, to identify family members at risk, and to provide adequate genetic counselling. An overview of the actual molecular genetics of the various retinal disorders is also given.

  17. Retinal Fiber Tracing by In Ovo Electroporation

    NASA Astrophysics Data System (ADS)

    Harada, Hidekiyo; Nakamura, Harukazu

    Axonal tracing techniques are the fundamentals for the investigation of neural circuit formation. In ovo electroporation system allows us to transfect a gene of interest to the desired place in chick embryos (Odani et al., 2008). Recently, Tol2 transposase element, which was originally found in medaka fish (Koga et al., 1996), has been adapted to an in ovo electroporation system (Niwa et al., 1991; Kawakami et al., 1998, 2000, 2004a, 2004b; Kawakami & Noda, 2004; Kawakami, 2005, 2007; Sato et al., 2007). This system assures the integration of the transgene into the genome by electroporation (Niwa et al., 1991; Sato et al., 2007). We applied this system for tracing retinal fibers (Harada et al., 2008). In this chapter, we demonstrate the method of tracing retinal fibers from both small and large groups of the retinal ganglion cell (RGC) with transposon-mediated gene transfer by in ovo electroporation to chick embryos.

  18. Autophagy in light-induced retinal damage.

    PubMed

    Chen, Yu; Perusek, Lindsay; Maeda, Akiko

    2016-03-01

    Vision is reliant upon converting photon signals to electrical information which is interpreted by the brain and therefore allowing us to receive information about our surroundings. However, when exposed to excessive light, photoreceptors and other types of cells in the retina can undergo light-induced cell death, termed light-induced retinal damage. In this review, we summarize our current knowledge regarding molecular events in the retina after excessive light exposure and mechanisms of light-induced retinal damage. We also introduce works which investigate potential roles of autophagy, an essential cellular mechanism required for maintaining homeostasis under stress conditions, in the illuminated retina and animal models of light-induced retinal damage.

  19. Retinoschisis transposition following a retinal detachment repair

    PubMed Central

    McVeigh, Katherine; Keller, Johannes; Haynes, Richard J.

    2015-01-01

    Objective: The authors have observed this phenomenon of translocation of the schisis cavity in a few previous cases and aim to report this unusual finding. Method: A patient with known superotemporal retinoschisis developed a distinctly separate inferotemporal retinal detachment in his left eye. This was repaired with a vitrectomy, cryotherapy and C2F6 tamponade under local anaesthetic. Following surgery, the retinoschisis was found in the inferonasal quadrant of the eye and remained stable as the gas dispersed. Result: We hypothesise that the tamponading agent compressed the viscous fluid within the area of schisis, displacing the area of schisis circumferentially. Conclusion: This case emphasises that as long as the retinal breaks are properly sealed, no intervention is required with the schisis during rhegmatogenous retinal detachment surgery.

  20. Transplantation of Embryonic and Induced Pluripotent Stem Cell-Derived 3D Retinal Sheets into Retinal Degenerative Mice

    PubMed Central

    Assawachananont, Juthaporn; Mandai, Michiko; Okamoto, Satoshi; Yamada, Chikako; Eiraku, Mototsugu; Yonemura, Shigenobu; Sasai, Yoshiki; Takahashi, Masayo

    2014-01-01

    Summary In this article, we show that mouse embryonic stem cell- or induced pluripotent stem cell-derived 3D retinal tissue developed a structured outer nuclear layer (ONL) with complete inner and outer segments even in an advanced retinal degeneration model (rd1) that lacked ONL. We also observed host-graft synaptic connections by immunohistochemistry. This study provides a “proof of concept” for retinal sheet transplantation therapy for advanced retinal degenerative diseases. PMID:24936453

  1. Control of bone remodelling by applied dynamic loads

    NASA Technical Reports Server (NTRS)

    Lanyon, L. E.; Rubin, C. T.

    1984-01-01

    The data showing the relationship between bone mass and peak strain magnitude prepared and submitted for publication. The data from experiments relating remodelling activity with static or dynamic loads were prepared and submitted for publication. Development of programs to relate the location of remodelling activity with he natural and artificial dynamic strain distributions continued. Experiments on the effect of different strain rates on the remodelling response continued.

  2. Reading visual braille with a retinal prosthesis.

    PubMed

    Lauritzen, Thomas Z; Harris, Jordan; Mohand-Said, Saddek; Sahel, Jose A; Dorn, Jessy D; McClure, Kelly; Greenberg, Robert J

    2012-01-01

    Retinal prostheses, which restore partial vision to patients blinded by outer retinal degeneration, are currently in clinical trial. The Argus II retinal prosthesis system was recently awarded CE approval for commercial use in Europe. While retinal prosthesis users have achieved remarkable visual improvement to the point of reading letters and short sentences, the reading process is still fairly cumbersome. This study investigates the possibility of using an epiretinal prosthesis to stimulate visual braille as a sensory substitution for reading written letters and words. The Argus II retinal prosthesis system, used in this study, includes a 10 × 6 electrode array implanted epiretinally, a tiny video camera mounted on a pair of glasses, and a wearable computer that processes the video and determines the stimulation current of each electrode in real time. In the braille reading system, individual letters are created by a subset of dots from a 3 by 2 array of six dots. For the visual braille experiment, a grid of six electrodes was chosen out of the 10 × 6 Argus II array. Groups of these electrodes were then directly stimulated (bypassing the camera) to create visual percepts of individual braille letters. Experiments were performed in a single subject. Single letters were stimulated in an alternative forced choice (AFC) paradigm, and short 2-4-letter words were stimulated (one letter at a time) in an open-choice reading paradigm. The subject correctly identified 89% of single letters, 80% of 2-letter, 60% of 3-letter, and 70% of 4-letter words. This work suggests that text can successfully be stimulated and read as visual braille in retinal prosthesis patients.

  3. Protease nexin-1 regulates retinal vascular development.

    PubMed

    Selbonne, Sonia; Francois, Deborah; Raoul, William; Boulaftali, Yacine; Sennlaub, Florian; Jandrot-Perrus, Martine; Bouton, Marie-Christine; Arocas, Véronique

    2015-10-01

    We recently identified protease nexin-1 (PN-1) or serpinE2, as a possibly underestimated player in maintaining angiogenic balance. Here, we used the well-characterized postnatal vascular development of newborn mouse retina to further investigate the role and the mechanism of action of PN-1 in physiological angiogenesis. The development of retinal vasculature was analysed by endothelial cell staining with isolectin B4. PN-1-deficient (PN-1(-/-)) retina displayed increased vascularization in the postnatal period, with elevated capillary thickness and density, compared to their wild-type littermate (WT). Moreover, PN-1(-/-) retina presented more veins/arteries than WT retina. The kinetics of retinal vasculature development, retinal VEGF expression and overall retinal structure were similar in WT and PN-1(-/-) mice, but we observed a hyperproliferation of vascular cells in PN-1(-/-) retina. Expression of PN-1 was analysed by immunoblotting and X-Gal staining of retinas from mice expressing beta-galactosidase under a PN-1 promoter. PN-1 was highly expressed in the first week following birth and then progressively decreased to a low level in adult retina where it localized on the retinal arteries. PCR arrays performed on mouse retinal RNA identified two angiogenesis-related factors, midkine and Smad5, that were overexpressed in PN-1(-/-) newborn mice and this was confirmed by RT-PCR. Both the higher vascularization and the overexpression of midkine and Smad5 mRNA were also observed in gastrocnemius muscle of PN-1(-/-) mice, suggesting that PN-1 interferes with these pathways. Together, our results demonstrate that PN-1 strongly limits physiological angiogenesis and suggest that modulation of PN-1 expression could represent a new way to regulate angiogenesis.

  4. Retinal Oximetry in a Healthy Japanese Population

    PubMed Central

    Nakano, Yuki; Shimazaki, Takeru; Kobayashi, Nobuko; Miyoshi, Yukiko; Ono, Aoi; Kobayashi, Mamoru; Shiragami, Chieko; Hirooka, Kazuyuki; Tsujikawa, Akitaka

    2016-01-01

    Purpose To establish the normative database of retinal oximetry using Oxymap T1 in a healthy Japanese population, and study the reproducibility of the measurements in Japanese. Methods We measured oxygen saturation in the major retinal vessels with Oxymap T1 in 252 eyes of 252 healthy Japanese subjects. Fundus images acquired using Oxymap T1 were processed using built-in Oxymap Analyzer software. Reproducibility of retinal oximetry was investigated using 20 eyes of 20 healthy subjects. Results The mean retinal oxygen saturation of 4 quadrants in healthy Japanese was 97.0 ± 6.9% in arteries and 52.8 ± 8.3% in veins. The mean arteriovenous difference in oxygen saturation was 44.2 ± 9.2%. Both arterial and venous oxygen saturation were significantly lower in the temporal side of the retina, especially in the temporal-inferior vessels. However, the arteriovenous difference in oxygen saturation was limited in the 4 quadrants. Interphotograph, intervisit, and interevaluator intraclass correlation coefficients were 0.936–0.979, 0.809–0.837, and 0.732–0.947, respectively. In the major retinal arteries, oxygen saturation increased with age (r = 0.18, p<0.01), at a rate of 0.67% per 10 years. However, venous oxygen saturation showed no correlation with age. Conclusions This study provides the normative database for the Japanese population. The arterial saturation value appears to be higher than other previous studies. Mean retinal oximetry in 4 quadrants with Oxymap T1 has high reproducibility. PMID:27434373

  5. Proteomic Profiling of Cigarette Smoke Induced Changes in Retinal Pigment Epithelium Cells.

    PubMed

    Merl-Pham, Juliane; Gruhn, Fabian; Hauck, Stefanie M

    2016-01-01

    Age-related macular degeneration (AMD) is a medical condition usually affecting older adults and resulting in a loss of vision in the macula, the center of the visual field. The dry form of this disease presents with atrophy of the retinal pigment epithelium, resulting in the detachment of the retina and loss of photoreceptors. Cigarette smoke is one main risk factor for dry AMD and increases the risk of developing the disease by three times. In order to understand the influence of cigarette smoke on retinal pigment epithelial cells, cultured human ARPE-19 cells were treated with cigarette smoke extract for 24 h. Using quantitative mass spectrometry more than 3000 proteins were identified and their respective abundances were compared between cigarette smoke-treated and untreated cells. Altogether 1932 proteins were quantified with at least two unique peptides, with 686 proteins found to be significantly differentially abundant with p > 0.05. Of these proteins the abundance of 64 proteins was at least 2-fold down-regulated after cigarette smoke treatment while 120 proteins were 2-fold up-regulated. The analysis of associated biological processes revealed an alteration of proteins involved in RNA processing and transport as well as extracellular matrix remodelling in response to cigarette smoke treatment.

  6. Proteomic Profiling of Cigarette Smoke Induced Changes in Retinal Pigment Epithelium Cells.

    PubMed

    Merl-Pham, Juliane; Gruhn, Fabian; Hauck, Stefanie M

    2016-01-01

    Age-related macular degeneration (AMD) is a medical condition usually affecting older adults and resulting in a loss of vision in the macula, the center of the visual field. The dry form of this disease presents with atrophy of the retinal pigment epithelium, resulting in the detachment of the retina and loss of photoreceptors. Cigarette smoke is one main risk factor for dry AMD and increases the risk of developing the disease by three times. In order to understand the influence of cigarette smoke on retinal pigment epithelial cells, cultured human ARPE-19 cells were treated with cigarette smoke extract for 24 h. Using quantitative mass spectrometry more than 3000 proteins were identified and their respective abundances were compared between cigarette smoke-treated and untreated cells. Altogether 1932 proteins were quantified with at least two unique peptides, with 686 proteins found to be significantly differentially abundant with p > 0.05. Of these proteins the abundance of 64 proteins was at least 2-fold down-regulated after cigarette smoke treatment while 120 proteins were 2-fold up-regulated. The analysis of associated biological processes revealed an alteration of proteins involved in RNA processing and transport as well as extracellular matrix remodelling in response to cigarette smoke treatment. PMID:26427490

  7. Pregnancy-induced remodeling of heart valves.

    PubMed

    Pierlot, Caitlin M; Moeller, Andrew D; Lee, J Michael; Wells, Sarah M

    2015-11-01

    Recent studies have demonstrated remodeling of aortic and mitral valves leaflets under the volume loading and cardiac expansion of pregnancy. Those valves' leaflets enlarge with altered collagen fiber architecture, content, and cross-linking and biphasic changes (decreases, then increases) in extensibility during gestation. This study extends our analyses to right-sided valves, with additional compositional measurements for all valves. Valve leaflets were harvested from nonpregnant heifers and pregnant cows. Leaflet structure was characterized by leaflet dimensions, and ECM composition was determined using standard biochemical assays. Histological studies assessed changes in cellular and ECM components. Leaflet mechanical properties were assessed using equibiaxial mechanical testing. Collagen thermal stability and cross-linking were assessed using denaturation and hydrothermal isometric tension tests. Pulmonary and tricuspid leaflet areas increased during pregnancy by 35 and 55%, respectively. Leaflet thickness increased by 20% only in the pulmonary valve and largely in the fibrosa (30% thickening). Collagen crimp length was reduced in both the tricuspid (61%) and pulmonary (42%) valves, with loss of crimped area in the pulmonary valve. Thermomechanics showed decreased collagen thermal stability with surprisingly maintained cross-link maturity. The pulmonary leaflet exhibited the biphasic change in extensibility seen in left side valves, whereas the tricuspid leaflet mechanics remained largely unchanged throughout pregnancy. The tricuspid valve exhibits a remodeling response during pregnancy that is significantly diminished from the other three valves. All valves of the heart remodel in pregnancy in a manner distinct from cardiac pathology, with much similarity valve to valve, but with interesting valve-specific responses in the aortic and tricuspid valves.

  8. Chromatin remodelling: the industrial revolution of DNA around histones.

    PubMed

    Saha, Anjanabha; Wittmeyer, Jacqueline; Cairns, Bradley R

    2006-06-01

    Chromatin remodellers are specialized multi-protein machines that enable access to nucleosomal DNA by altering the structure, composition and positioning of nucleosomes. All remodellers have a catalytic ATPase subunit that is similar to known DNA-translocating motor proteins, suggesting DNA translocation as a unifying aspect of their mechanism. Here, we explore the diversity and specialization of chromatin remodellers, discuss how nucleosome modifications regulate remodeller activity and consider a model for the exposure of nucleosomal DNA that involves the use of directional DNA translocation to pump 'DNA waves' around the nucleosome.

  9. [Retinal vein occlusion: an interdisciplinary approach].

    PubMed

    Hatz, Katja; Martinez, Maria

    2016-01-01

    Retinal vein occlusion provide a common cause of significant visual reduction but also late ocular complications. The medical care of these patients pursue two goals: On the one hand vision threatening complications need to be identified and treated, and on the other hand treatable risk factors are need to be identified and treated. This paper summarizes the common ophthalmological therapeutic approaches as well as recommended medical evaluations carried out by the general practitioner. This supports the interdisciplinary approach in evaluating and treating retinal vein occlusions by ophthalmologists and the general practitioners/specialist in internal medicine. PMID:26982647

  10. Retinal manifestations of ophthalmic artery hypoperfusion.

    PubMed

    Ong, Terrence J; Paine, Mark; O'Day, Justin

    2002-08-01

    Ophthalmic artery hypoperfusion is a relatively uncommon clinical entity. This study illustrates the posterior segment findings of ophthalmic artery hypoperfusion in a series of nine patients. Colour photographs and relevant fluorescein angiograms highlighting the findings are shown. The retinal manifestations of ophthalmic artery hypoperfusion in this series of patients include midperipheral haemorrhages, dilated retinal veins, optic disk collaterals, optic disk neo-vascularization, cotton wool spots, grey intraretinal lesions, fundus pallor, optic disk swelling and choroidal infarcts. Recognition of the ophthalmic changes in this condition may lead to detection of carotid artery disease, the surgical and medical treatment of which has important bearing on patient management.

  11. Proliferative diabetic retinopathy in typical retinitis pigmentosa.

    PubMed

    Preethi, Srinivasaraghavan; Rajalakshmi, Adithyapuram Ramachandran

    2015-01-01

    A 39-year-old woman with typical retinitis pigmentosa (RP) for 9 years and a positive family history of night blindness was diagnosed with diabetes mellitus (DM). She developed proliferative diabetic retinopathy (PDR) during the course of disease. She was promptly managed with pan retinal photocoagulation (PRP). PDR developing in a case of typical RP is extremely rare and has not been reported in the literature to date. Recognition of this rare, vision threatening complication, points out a definite need to further look deep into the pathogenesis of diabetic retinopathy. PMID:26021380

  12. Aged complement factor H knockout mice kept in a clean barriered environment have reduced retinal pathology.

    PubMed

    Hoh Kam, Jaimie; Morgan, James E; Jeffery, Glen

    2016-08-01

    Age-related macular degeneration (AMD) is the largest cause of visual loss in those over 60 years in the West and is a condition increasing in prevalence. Many diseases result from genetic/environmental interactions and 50% of AMD cases have an association with polymorphisms of the complement system including complement factor H. Here we explore interactions between genetic predisposition and environmental conditions in triggering retinal pathology in two groups of aged complement factor H knock out (Cfh(-/-)) mice. Mice were maintained over 9 months in either a conventional open environment or a barriered pathogen free environment. Open environment Cfh(-/-) mice had significant increases in subretinal macrophage numbers, inflammatory and stress responses and reduced photoreceptor numbers over mice kept in a pathogen free environment. Hence, environmental factors can drive retinal disease in these mice when linked to complement deficits impairing immune function. Both groups of mice had similar levels of retinal amyloid beta accumulation. Consequently there is no direct link between this and inflammation in Cfh(-/-) mice.

  13. CHD chromatin remodelers and the transcription cycle.

    PubMed

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  14. Bacterial genome remodeling through bacteriophage recombination.

    PubMed

    Menouni, Rachid; Hutinet, Geoffrey; Petit, Marie-Agnès; Ansaldi, Mireille

    2015-01-01

    Bacteriophages co-exist and co-evolve with their hosts in natural environments. Virulent phages lyse infected cells through lytic cycles, whereas temperate phages often remain dormant and can undergo lysogenic or lytic cycles. In their lysogenic state, prophages are actually part of the host genome and replicate passively in rhythm with host division. However, prophages are far from being passive residents: they can modify or bring new properties to their host. In this review, we focus on two important phage-encoded recombination mechanisms, i.e. site-specific recombination and homologous recombination, and how they remodel bacterial genomes. PMID:25790500

  15. Bacterial genome remodeling through bacteriophage recombination.

    PubMed

    Menouni, Rachid; Hutinet, Geoffrey; Petit, Marie-Agnès; Ansaldi, Mireille

    2015-01-01

    Bacteriophages co-exist and co-evolve with their hosts in natural environments. Virulent phages lyse infected cells through lytic cycles, whereas temperate phages often remain dormant and can undergo lysogenic or lytic cycles. In their lysogenic state, prophages are actually part of the host genome and replicate passively in rhythm with host division. However, prophages are far from being passive residents: they can modify or bring new properties to their host. In this review, we focus on two important phage-encoded recombination mechanisms, i.e. site-specific recombination and homologous recombination, and how they remodel bacterial genomes.

  16. The NA62 trigger system

    NASA Astrophysics Data System (ADS)

    Krivda, M.; NA62 Collaboration

    2013-08-01

    The main aim of the NA62 experiment (NA62 Technical Design Report, [1]) is to study ultra-rare Kaon decays. In order to select rare events over the overwhelming background, central systems with high-performance, high bandwidth, flexibility and configurability are necessary, that minimize dead time while maximizing data collection reliability. The NA62 experiment consists of 12 sub-detector systems and several trigger and control systems, for a total channel count of less than 100,000. The GigaTracKer (GTK) has the largest number of channels (54,000), and the Liquid Krypton (LKr) calorimeter shares with it the largest raw data rate (19 GB/s). The NA62 trigger system works with 3 trigger levels. The first trigger level is based on a hardware central trigger unit, so-called L0 Trigger Processor (L0TP), and Local Trigger Units (LTU), which are all located in the experimental cavern. Other two trigger levels are based on software, and done with a computer farm located on surface. The L0TP receives information from triggering sub-detectors asynchronously via Ethernet; it processes the information, and then transmits a final trigger decision synchronously to each sub-detector through the Trigger and Timing Control (TTC) system. The interface between L0TP and the TTC system, which is used for trigger and clock distribution, is provided by the Local Trigger Unit board (LTU). The LTU can work in two modes: global and stand-alone. In the global mode, the LTU provides an interface between L0TP and TTC system. In the stand-alone mode, the LTU can fully emulate L0TP and so provides an independent way for each sub-detector for testing or calibration purposes. In addition to the emulation functionality, a further functionality is implemented that allows to synchronize the clock of the LTU with the L0TP and the TTC system. For testing and debugging purposes, a Snap Shot Memory (SSM) interface is implemented, that can work

  17. Developing Extracellular Matrix Technology to Treat Retinal or Optic Nerve Injury

    PubMed Central

    van der Merwe, Yolandi

    2015-01-01

    Abstract Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to tissue-destructive inflammation and scarring. Extracellular matrix (ECM) technology can reduce inflammation, while increasing functional tissue remodeling, over scarring, in various tissues and organs, including the peripheral nervous system. However, applying ECM technology to CNS injuries has been limited and virtually unstudied in the visual system. Here we discuss advances in deriving fetal CNS-specific ECMs, like fetal porcine brain, retina, and optic nerve, and fetal non-CNS-specific ECMs, like fetal urinary bladder, and the potential for using tissue-specific ECMs to treat retinal or optic nerve injuries in two platforms. The first platform is an ECM hydrogel that can be administered as a retrobulbar, periocular, or even intraocular injection. The second platform is an ECM hydrogel and polymer “biohybrid” sheet that can be readily shaped and wrapped around a nerve. Both platforms can be tuned mechanically and biochemically to deliver factors like neurotrophins, immunotherapeutics, or stem cells. Since clinical CNS therapies often use general anti-inflammatory agents, which can reduce tissue-destructive inflammation but also suppress tissue-reparative immune system functions, tissue-specific, ECM-based devices may fill an important need by providing naturally derived, biocompatible, and highly translatable platforms that can modulate the innate immune response to promote a positive functional outcome. PMID:26478910

  18. Developing Extracellular Matrix Technology to Treat Retinal or Optic Nerve Injury(1,2,3).

    PubMed

    Ren, Tanchen; van der Merwe, Yolandi; Steketee, Michael B

    2015-09-01

    Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to tissue-destructive inflammation and scarring. Extracellular matrix (ECM) technology can reduce inflammation, while increasing functional tissue remodeling, over scarring, in various tissues and organs, including the peripheral nervous system. However, applying ECM technology to CNS injuries has been limited and virtually unstudied in the visual system. Here we discuss advances in deriving fetal CNS-specific ECMs, like fetal porcine brain, retina, and optic nerve, and fetal non-CNS-specific ECMs, like fetal urinary bladder, and the potential for using tissue-specific ECMs to treat retinal or optic nerve injuries in two platforms. The first platform is an ECM hydrogel that can be administered as a retrobulbar, periocular, or even intraocular injection. The second platform is an ECM hydrogel and polymer "biohybrid" sheet that can be readily shaped and wrapped around a nerve. Both platforms can be tuned mechanically and biochemically to deliver factors like neurotrophins, immunotherapeutics, or stem cells. Since clinical CNS therapies often use general anti-inflammatory agents, which can reduce tissue-destructive inflammation but also suppress tissue-reparative immune system functions, tissue-specific, ECM-based devices may fill an important need by providing naturally derived, biocompatible, and highly translatable platforms that can modulate the innate immune response to promote a positive functional outcome. PMID:26478910

  19. Quantitative Autofluorescence and Cell Density Maps of the Human Retinal Pigment Epithelium

    PubMed Central

    Ach, Thomas; Huisingh, Carrie; McGwin, Gerald; Messinger, Jeffrey D.; Zhang, Tianjiao; Bentley, Mark J.; Gutierrez, Danielle B.; Ablonczy, Zsolt; Smith, R. Theodore; Sloan, Kenneth R.; Curcio, Christine A.

    2014-01-01

    Purpose. Lipofuscin (LF) accumulation within RPE cells is considered pathogenic in AMD. To test whether LF contributes to RPE cell loss in aging and to provide a cellular basis for fundus autofluorescence (AF) we created maps of human RPE cell number and histologic AF. Methods. Retinal pigment epithelium–Bruch's membrane flat mounts were prepared from 20 donor eyes (10 ≤ 51 and 10 > 80 years; postmortem: ≤4.2 hours; no retinal pathologies), preserving foveal position. Phalloidin-binding RPE cytoskeleton and LF-AF (488-nm excitation) were imaged at up to 90 predefined positions. Maps were assembled from 83,330 cells in 1470 locations. From Voronoi regions representing each cell, the number of neighbors, cell area, and total AF intensity normalized to an AF standard was determined. Results. Highly variable between individuals, RPE-AF increases significantly with age. A perifoveal ring of high AF mirrors rod photoreceptor topography and fundus-AF. Retinal pigment epithelium cell density peaks at the fovea, independent of age, yet no net RPE cell loss is detectable. The RPE monolayer undergoes considerable lifelong re-modeling. The relationship of cell size and AF, a surrogate for LF concentration, is orderly and linear in both groups. Autofluorescence topography differs distinctly from the topography of age-related rod loss. Conclusions. Digital maps of quantitative AF, cell density, and packing geometry provide metrics for cellular-resolution clinical imaging and model systems. The uncoupling of RPE LF content, cell number, and photoreceptor topography in aging challenges LF's role in AMD. PMID:25034602

  20. Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization

    PubMed Central

    Dominguez, Elisa; Raoul, William; Calippe, Bertrand; Sahel, José-Alain; Guillonneau, Xavier; Paques, Michel; Sennlaub, Florian

    2015-01-01

    Aims Branch retinal vein occlusion (BRVO) leads to extensive vascular remodeling and is important cause of visual impairment. Although the vascular morphological changes following experimental vein occlusion have been described in a variety of models using angiography, the underlying cellular events are ill defined. Methods and Results We here show that laser-induced experimental BRVO in mice leads to a wave of TUNEL-positive endothelial cell (EC) apoptosis in the upstream vascular network associated with a transient edema and hemorrhages. Subsequently, we observe an induction of EC proliferation within the dilated vein and capillaries, detected by EdU incorporation, and the edema resolves. However, the pericytes of the upstream capillaries are severely reduced, which was associated with continuing EC apoptosis and proliferation. The vascular remodeling was associated with increased expression of TGFβ, TSP-1, but also FGF2 expression. Exposure of the experimental animals to hypoxia, when pericyte (PC) dropout had occurred, led to a dramatic increase in endothelial cell proliferation, confirming the vascular instability induced by the experimental BRVO. Conclusion Experimental BRVO leads to acute endothelial cells apoptosis and increased permeability. Subsequently the upstream vascular network remains destabilized, characterized by pericyte dropout, un-physiologically high endothelial cells turnover and sensitivity to hypoxia. These early changes might pave the way for capillary loss and subsequent chronic ischemia and edema that characterize the late stage disease. PMID:26208283

  1. Specialized proresolving lipid mediators in patients with coronary artery disease and their potential for clot remodeling.

    PubMed

    Elajami, Tarec K; Colas, Romain A; Dalli, Jesmond; Chiang, Nan; Serhan, Charles N; Welty, Francine K

    2016-08-01

    Inflammation in arterial walls leads to coronary artery disease (CAD). Because specialized proresolving lipid mediators (SPMs; lipoxins, resolvins, and protectins) stimulate resolution of inflammation in animal models, we tested whether n-3 fatty acids impact SPM profiles in patients with CAD and promote clot remodeling. Six patients with stable CAD were randomly assigned to either treatment with daily 3.36 g Lovaza for 1 yr or without. Targeted lipid mediator-metabololipidomics showed that both groups had absence of resolvin D1 (RvD1), RvD2, RvD3, RvD5 and resolvin E1-all of which are present in healthy patients. Those not taking Lovaza had an absence of aspirin-triggered resolvin D3 (AT-RvD3) and aspirin-triggered lipoxin B4 (AT-LXB4). Lovaza treatment restored AT-RvD3 and AT-LXB4 and gave levels of RvD6 and aspirin-triggered protectin D1 (AT-PD1) twice as high (resolvin E2 ∼5 fold) as well as lower prostaglandins. Principal component analysis indicated positive relationships for patients with CAD who were receiving Lovaza with increased AT-RvD3, RvD6, AT-PD1, and AT-LXB4 SPMs identified in Lovaza-treated patients with CAD enhanced ∼50% at 1 nM macrophage uptake of blood clots. These results indicate that patients with CAD have lower levels and/or absence of specific SPMs that were restored with Lovaza; these SPMs promote macrophage phagocytosis of blood clots. Together, they suggest that low vascular SPMs may enable progression of chronic vascular inflammation predisposing to coronary atherosclerosis and to thrombosis.-Elajami, T. K., Colas, R. A., Dalli, J., Chiang, N., Serhan, C. N., Welty, F. K. Specialized proresolving lipid mediators in patients with coronary artery disease and their potential for clot remodeling. PMID:27121596

  2. Review: R28 retinal precursor cells: The first 20 years

    PubMed Central

    2014-01-01

    The R28 retinal precursor cell line was established 20 years ago, originating from a postnatal day 6 rat retinal culture immortalized with the 12S E1A (NP-040507) gene of the adenovirus in a replication-incompetent viral vector. Since that time, R28 cells have been characterized and used for a variety of in vitro and in vivo studies of retinal cell behavior, including differentiation, neuroprotection, cytotoxicity, and light stimulation, as well as retinal gene expression and neuronal function. While no cell culture is equivalent to the intact eye, R28 cells continue to provide an important experimental system for the study of many retinal processes. PMID:24644404

  3. Probing how initial retinal configuration controls photochemical dynamics in retinal proteins

    NASA Astrophysics Data System (ADS)

    Wand, A.; Rozin, R.; Eliash, T.; Friedman, N.; Jung, K. H.; Sheves, M.; Ruhman, S.

    2013-03-01

    The effects of the initial retinal configuration and the active isomerization coordinate on the photochemistry of retinal proteins (RPs) are assessed by comparing photochemical dynamics of two stable retinal ground state configurations (all-trans,15-anti vs. 13-cis,15-syn), within two RPs: Bacteriorhodopsin (BR) and Anabaena Sensory Rhodopsin (ASR). Hyperspectral pump-probe spectroscopy shows that photochemistry starting from 13-cis retinal in both proteins is 3-10 times faster than when started in the all-trans state, suggesting that the hastening is ubiquitous to microbial RPs, regardless of their different biological functions and origin. This may also relate to the known disparity of photochemical rates between microbial RPs and visual pigments. Importance and possible underlying mechanisms are discussed as well.

  4. Management of inferior retinal breaks during pars plana vitrectomy for retinal detachment

    PubMed Central

    Tanner, V; Minihan, M; Williamson, T

    2001-01-01

    AIMS—To determine whether it is necessary to support inferior retinal breaks with a scleral explant during pars plana vitrectomy (PPV) for rhegmatogenous retinal detachment (RD).
METHODS—A prospective study was carried out on nine eyes of nine consecutive patients undergoing PPV for primary RD with associated inferior retinal breaks and no significant proliferative vitreoretinopathy.
RESULTS—Eight eyes were successfully reattached with a single operation. No cases presented with redetachment because of failed closure of the original inferior breaks.
CONCLUSIONS—It is not necessary to support inferior retinal breaks with a scleral explant during PPV for primary RD repair in selected cases.

 PMID:11264142

  5. Triggering requirements for SSC physics

    SciTech Connect

    Gilchriese, M.G.D.

    1989-04-01

    Some aspects of triggering requirements for high P{sub T} physics processes at the Superconducting Super Collider (SSC) are described. A very wide range of trigger types will be required to enable detection of the large number of potential physics signatures possible at the SSC. Although in many cases trigger rates are not now well understood, it is possible to conclude that the ability to trigger on transverse energy, number and energy of jets, number and energy of leptons (electrons and muons), missing energy and combinations of these will be required. An SSC trigger system must be both highly flexible and redundant to ensure reliable detection of many new physics processes at the SSC.

  6. ECG manifestations of left ventricular electrical remodeling.

    PubMed

    Estes, E Harvey

    2012-01-01

    Research and thinking about the electrocardiographic manifestations of left ventricular hypertrophy has been constrained by a limited conceptual model of the process: heart disease produces chamber enlargement (increased mass), which in turn produces an altered electrocardiogram. The process is much more complex than can be represented in this simple model. A more robust and intricate model is proposed, in which heart (and vascular) disease causes structural changes, electrical changes, biochemical changes, and others, all of which interact to produce electrical remodeling of ventricular myocardium. This electrical remodeling results in a variety of ECG changes. All of these changes interact, leading to an altered clinical course, and to premature death. It is suggested that research, based on this model, can provide new clues to the processes involved, and improve the prediction of clinical outcomes. New directions in research, in recording equipment, and in organizational activities are suggested to test this new model, and to improve the usefulness of the electrocardiogram as a research and diagnostic tool.

  7. Remodeling of cardiolipin by phospholipid transacylation.

    PubMed

    Xu, Yang; Kelley, Richard I; Blanck, Thomas J J; Schlame, Michael

    2003-12-19

    Mitochondrial cardiolipin (CL) contains unique fatty acid patterns, but it is not known how the characteristic molecular species of CL are formed. We found a novel reaction that transfers acyl groups from phosphatidylcholine or phosphatidylethanolamine to CL in mitochondria of rat liver and human lymphoblasts. Acyl transfer was stimulated by ADP, ATP, and ATP gamma S, but not by other nucleotides. Coenzyme A stimulated the reaction only in the absence of adenine nucleotides. Free fatty acids were not incorporated into CL under the same incubation condition. The transacylation required addition of exogenous CL or monolyso-CL, whereas dilyso-CL was not a substrate. Transacylase activity was decreased in lymphoblasts from patients with Barth syndrome (tafazzin deletion), and this was accompanied by drastic changes in the molecular composition of CL. In rat liver, where linoleic acid was the most abundant residue of CL, only linoleoyl groups were transferred into CL, but not oleoyl or arachidonoyl groups. We demonstrated complete remodeling of tetraoleoyl-CL to tetralinoleoyl-CL in rat liver mitochondria and identified the intermediates linoleoyl-trioleoyl-CL, dilinoleoyl-dioleoyl-CL, and trilinoleoyl-oleoyl-CL by high-performance liquid chromatography. The data suggest that CL is remodeled by acyl specific phospholipid transacylation and that tafazzin is an acyltransferase involved in this mechanism.

  8. PARP inhibition and postinfarction myocardial remodeling.

    PubMed

    Halmosi, Robert; Deres, Laszlo; Gal, Roland; Eros, Krisztian; Sumegi, Balazs; Toth, Kalman

    2016-08-01

    Coronary artery disease accounts for the greatest proportion of cardiovascular diseases therefore it is the major cause of death worldwide. Its therapeutic importance is indicated by still high mortality of myocardial infarction, which is one of the most severe forms of CVDs. Moreover, the risk of developing heart failure is very high among survivors. Heart failure is accompanied by high morbidity and mortality rate, therefore this topic is in the focus of researchers' interest. After a myocardial infarct, at first ventricular hypertrophy develops as a compensatory mechanism to decrease wall stress but finally leads to left ventricular dilation. This phenomenon is termed as myocardial remodeling. The main characteristics of underlying mechanisms involve cardiomyocyte growth, vessel changes and increased collagen production, in all of which several mechanical stress induced neurohumoral agents, oxidative stress and signal transduction pathways are involved. The long term activation of these processes ultimately leads to left ventricular dilation and heart failure with decreased systolic function. Oxidative stress causes DNA breaks producing the activation of nuclear poly(ADP-ribose) polymerase-1 (PARP-1) enzyme that leads to energy depletion and unfavorable modulation of different kinase cascades (Akt-1/GSK-3β, MAPKs, various PKC isoforms) and thus it promotes the development of heart failure. Therefore inhibition of PARP enzyme could offer a promising new therapeutical approach to prevent the onset of heart failure among postinfarction patients. The purpose of this review is to give a comprehensive summary about the most significant experimental results and mechanisms in postinfarction remodeling. PMID:27392900

  9. Densitometric evaluation of periprosthetic bone remodeling

    PubMed Central

    Parchi, Paolo Domenico; Cervi, Valentina; Piolanti, Nicola; Ciapini, Gianluca; Andreani, Lorenzo; Castellini, Iacopo; Poggetti, Andrea; Lisanti, Michele

    2014-01-01

    Summary The application of Dual-energy X-ray absorptiometry (DEXA) in orthopaedic surgery gradually has been extended from the study of osteoporosis to different areas of interest like the study of the relation between bone and prosthetic implants. Aim of this review is to analyze changes that occur in periprosthetic bone after the implantation of a total hip arthroplasty (THA) or a total knee arthroplasty (TKA). In THA the pattern of adaptive bone remodeling with different cementless femoral stems varies and it appears to be strictly related to the design and more specifically to where the femoral stem is fixed on bone. Short stems with metaphyseal fixation allow the maintenance of a more physiologic load transfer to the proximal femur decreasing the entity of bone loss. Femoral bone loss after TKA seems to be related to the stress shielding induced by the implants while tibial bone remodeling seems to be related to postoperative changes in knee alignment (varus/valgus) and consequently in tibial load transfer. After both THA and TKA stress shielding seems to be an inevitable phenomenon that occurs mainly in the first year after surgery. PMID:25568658

  10. Microscopic Inner Retinal Hyper-Reflective Phenotypes in Retinal and Neurologic Disease

    PubMed Central

    Scoles, Drew; Higgins, Brian P.; Cooper, Robert F.; Dubis, Adam M.; Summerfelt, Phyllis; Weinberg, David V.; Kim, Judy E.; Stepien, Kimberly E.; Carroll, Joseph; Dubra, Alfredo

    2014-01-01

    Purpose. We surveyed inner retinal microscopic features in retinal and neurologic disease using a reflectance confocal adaptive optics scanning light ophthalmoscope (AOSLO). Methods. Inner retinal images from 101 subjects affected by one of 38 retinal or neurologic conditions and 11 subjects with no known eye disease were examined for the presence of hyper-reflective features other than vasculature, retinal nerve fiber layer, and foveal pit reflex. The hyper-reflective features in the AOSLO images were grouped based on size, location, and subjective texture. Clinical imaging, including optical coherence tomography (OCT), scanning laser ophthalmoscopy, and fundus photography was analyzed for comparison. Results. Seven categories of hyper-reflective inner retinal structures were identified, namely punctate reflectivity, nummular (disc-shaped) reflectivity, granular membrane, waxy membrane, vessel-associated membrane, microcysts, and striate reflectivity. Punctate and nummular reflectivity also was found commonly in normal volunteers, but the features in the remaining five categories were found only in subjects with retinal or neurologic disease. Some of the features were found to change substantially between follow up imaging months apart. Conclusions. Confocal reflectance AOSLO imaging revealed a diverse spectrum of normal and pathologic hyper-reflective inner and epiretinal features, some of which were previously unreported. Notably, these features were not disease-specific, suggesting that they might correspond to common mechanisms of degeneration or repair in pathologic states. Although prospective studies with larger and better characterized populations, along with imaging of more extensive retinal areas are needed, the hyper-reflective structures reported here could be used as disease biomarkers, provided their specificity is studied further. PMID:24894394

  11. Inner retinal preservation in rat models of retinal degeneration implanted with subretinal photovoltaic arrays.

    PubMed

    Light, Jacob G; Fransen, James W; Adekunle, Adewumi N; Adkins, Alice; Pangeni, Gobinda; Loudin, James; Mathieson, Keith; Palanker, Daniel V; McCall, Maureen A; Pardue, Machelle T

    2014-11-01

    Photovoltaic arrays (PVA) implanted into the subretinal space of patients with retinitis pigmentosa (RP) are designed to electrically stimulate the remaining inner retinal circuitry in response to incident light, thereby recreating a visual signal when photoreceptor function declines or is lost. Preservation of inner retinal circuitry is critical to the fidelity of this transmitted signal to ganglion cells and beyond to higher visual targets. Post-implantation loss of retinal interneurons or excessive glial scarring could diminish and/or eliminate PVA-evoked signal transmission. As such, assessing the morphology of the inner retina in RP animal models with subretinal PVAs is an important step in defining biocompatibility and predicting success of signal transmission. In this study, we used immunohistochemical methods to qualitatively and quantitatively compare inner retinal morphology after the implantation of a PVA in two RP models: the Royal College of Surgeons (RCS) or transgenic S334ter-line 3 (S334ter-3) rhodopsin mutant rat. Two PVA designs were compared. In the RCS rat, we implanted devices in the subretinal space at 4 weeks of age and histologically examined them at 8 weeks of age and found inner retinal morphology preservation with both PVA devices. In the S334ter-3 rat, we implanted devices at 6-12 weeks of age and again, inner retinal morphology was generally preserved with either PVA design 16-26 weeks post-implantation. Specifically, the length of rod bipolar cells and numbers of cholinergic amacrine cells were maintained along with their characteristic inner plexiform lamination patterns. Throughout the implanted retinas we found nonspecific glial reaction, but none showed additional glial scarring at the implant site. Our results indicate that subretinally implanted PVAs are well-tolerated in rodent RP models and that the inner retinal circuitry is preserved, consistent with our published results showing implant-evoked signal transmission. PMID

  12. Inner retinal preservation in rat models of retinal degeneration implanted with subretinal photovoltaic arrays

    PubMed Central

    Light, Jacob G.; Fransen, James W.; Adekunle, Adewumi N.; Adkins, Alice; Pangeni, Gobinda; Loudin, James; Mathieson, Keith; Palanker, Daniel V.; McCall, Maureen A.; Pardue, Machelle T.

    2015-01-01

    Photovoltaic arrays (PVA) implanted into the subretinal space of patients with retinitis pigmentosa (RP) are designed to electrically stimulate the remaining inner retinal circuitry in response to incident light, thereby recreating a visual signal when photoreceptor function declines or is lost. Preservation of inner retinal circuitry is critical to the fidelity of this transmitted signal to ganglion cells and beyond to higher visual targets. Post-implantation loss of retinal interneurons or excessive glial scarring could diminish and/or eliminate PVA-evoked signal transmission. As such, assessing the morphology of the inner retina in RP animal models with subretinal PVAs is an important step in defining biocompatibility and predicting success of signal transmission. In this study, we used immunohistochemical methods to qualitatively and quantitatively compare inner retinal morphology after the implantation of a PVA in two RP models: the Royal College of Surgeons (RCS) or transgenic S334ter-line 3 (S334ter-3) rhodopsin mutant rat. Two PVA designs were compared. In the RCS rat, we implanted devices in the subretinal space at 4 weeks of age and histologically examined them at 8 weeks of age and found inner retinal morphology preservation with both PVA devices. In the S334ter-3 rat, we implanted devices at 6 to 12 weeks of age and again, inner retinal morphology was generally preserved with either PVA design 16 to 26 weeks post implantation. Specifically, the length of rod bipolar cells and numbers of cholinergic amacrine cells were maintained along with their characteristic inner plexiform lamination patterns. Throughout the implanted retinas we found nonspecific glial reaction, but none showed additional glial scarring at the implant site. Our results indicate that subretinally implanted PVAs are well-tolerated in rodent RP models and that the inner retinal circuitry is preserved, consistent with our published results showing implant-evoked signal transmission. PMID

  13. Tau Mislocation in Glucocorticoid-Triggered Hippocampal Pathology.

    PubMed

    Pinheiro, Sara; Silva, Joana; Mota, Cristina; Vaz-Silva, João; Veloso, Ana; Pinto, Vítor; Sousa, Nuno; Cerqueira, João; Sotiropoulos, Ioannis

    2016-09-01

    The exposure to high glucocorticoids (GC) triggers neuronal atrophy and cognitive deficits, but the exact cellular mechanisms underlying the GC-associated dendritic remodeling and spine loss are still poorly understood. Previous studies have implicated sustained GC elevations in neurodegenerative mechanisms through GC-evoked hyperphosphorylation of the cytoskeletal protein Tau while Tau mislocation has recently been proposed as relevant in Alzheimer's disease (AD) pathology. In light of the dual cytoplasmic and synaptic role of Tau, this study monitored the impact of prolonged GC treatment on Tau intracellular localization and its phosphorylation status in different cellular compartments. We demonstrate, both by biochemical and ultrastructural analysis, that GC administration led to cytosolic and dendritic Tau accumulation in rat hippocampus, and triggered Tau hyperphosphorylation in epitopes related to its malfunction (Ser396/404) and cytoskeletal pathology (e.g., Thr231 and Ser262). In addition, we show, for the first time, that chronic GC administration also increased Tau levels in synaptic compartment; however, at the synapse, there was an increase in phosphorylation of Ser396/404, but a decrease of Thr231. These GC-triggered Tau changes were paralleled by reduced levels of synaptic scaffolding proteins such as PSD-95 and Shank proteins as well as reduced dendritic branching and spine loss. These in vivo findings add to our limited knowledge about the underlying mechanisms of GC-evoked synaptic atrophy and neuronal disconnection implicating Tau missorting in mechanism(s) of synaptic damage, beyond AD pathology.

  14. Fluorosilicone oil in the treatment of retinal detachment.

    PubMed Central

    Gremillion, C M; Peyman, G A; Liu, K R; Naguib, K S

    1990-01-01

    We evaluated the use of a heavier-than-water fluorinated silicone oil in the treatment of 30 selected cases of complicated retinal detachment from January 1988 to July 1989. Proliferative vitreoretinopathy grade C-2 or greater accounted for 19 cases, proliferative diabetic retinopathy with traction detachment for two cases, giant retinal tears five, ruptured globe with retinal detachment two, massive choroidal effusion with retinal detachment one, and acute retinal necrosis with retinal detachment one. Initial retinal reattachment was achieved in all cases. Complications included redetachment seven (23%), cataract six (75% of phakic patients), raised intraocular pressure four (13%), hypotony four (13%), keratopathy three (10%), uveitis-synechia formation three (10%), phthisis two (3%), choroidal haemorrhage one (3%), and vitreous haemorrhage one (3%). Postoperative visual acuities with at least six months' follow-up range from no light perception to 20/50, with seven patients (23%) 20/400 or better. Images PMID:2223698

  15. Fluorosilicone oil in the treatment of retinal detachment.

    PubMed

    Gremillion, C M; Peyman, G A; Liu, K R; Naguib, K S

    1990-11-01

    We evaluated the use of a heavier-than-water fluorinated silicone oil in the treatment of 30 selected cases of complicated retinal detachment from January 1988 to July 1989. Proliferative vitreoretinopathy grade C-2 or greater accounted for 19 cases, proliferative diabetic retinopathy with traction detachment for two cases, giant retinal tears five, ruptured globe with retinal detachment two, massive choroidal effusion with retinal detachment one, and acute retinal necrosis with retinal detachment one. Initial retinal reattachment was achieved in all cases. Complications included redetachment seven (23%), cataract six (75% of phakic patients), raised intraocular pressure four (13%), hypotony four (13%), keratopathy three (10%), uveitis-synechia formation three (10%), phthisis two (3%), choroidal haemorrhage one (3%), and vitreous haemorrhage one (3%). Postoperative visual acuities with at least six months' follow-up range from no light perception to 20/50, with seven patients (23%) 20/400 or better.

  16. Noggin 1 overexpression in retinal progenitors affects bipolar cell generation.

    PubMed

    Messina, Andrea; Bridi, Simone; Bozza, Angela; Bozzi, Yuri; Baudet, Marie-Laure; Casarosa, Simona

    2016-01-01

    Waves of Bone Morphogenetic Proteins (BMPs) and their antagonists are present during initial eye development, but their possible roles in retinogenesis are still unknown. We have recently shown that noggin 1, a BMP antagonist, renders pluripotent cells able to differentiate into retinal precursors, and might be involved in the maintenance of retinal structures in the adult vertebrate eye. Here, we report that noggin 1, differently from noggin 2 and noggin 4, is expressed during all phases of Xenopus laevis retinal development. Gain-of-function experiments by electroporation in the optic vesicle show that overexpression of noggin 1 significantly decreases the number of bipolar cells in the inner nuclear layer of the retina, without significantly affecting the generation of the other retinal cell types. Our data suggest that BMP signaling could be involved in the differentiation of retinal progenitors into specific retinal subtypes during late phases of vertebrate retinal development. PMID:27389985

  17. An Unusual Case of Extensive Lattice Degeneration and Retinal Detachment

    PubMed Central

    Sarma, Saurabh Kumar; Basaiawmoit, Jennifer V.

    2016-01-01

    Lattice degeneration of the retina is not infrequently encountered on a dilated retinal examination and many of them do not need any intervention. We report a case of atypical lattice degeneration variant with peripheral retinal detachment. An asymptomatic 35-year-old lady with minimal refractive error was found to have extensive lattice degeneration, peripheral retinal detachment and fibrotic changes peripherally with elevation of retinal vessels on dilated retinal examination. There were also areas of white without pressure, chorioretinal scarring and retinal breaks. All the changes were limited to beyond the equator but were found to span 360 degrees. She was treated with barrage laser all around to prevent extension of the retinal detachment posteriorly. She remained stable till her latest follow-up two years after the barrage laser. This case is reported for its rarity with a discussion of the probable differential diagnoses. To the best of our knowledge, this is the first report of such findings in lattice degeneration.

  18. Retinal vascular changes are a marker for cerebral vascular diseases

    PubMed Central

    Moss, Heather E.

    2016-01-01

    The retinal circulation is a potential marker of cerebral vascular disease because it shares origin and drainage with the intracranial circulation and because it can be directly visualized using ophthalmoscopy. Cross sectional and cohort studies have demonstrated associations between chronic retinal and cerebral vascular disease, acute retinal and cerebral vascular disease and chronic retinal vascular disease and acute cerebral vascular disease. In particular, certain qualitative features of retinopathy, retinal artery occlusion and increased retinal vein caliber are associated with concurrent and future cerebrovascular events. These associations persist after accounting for confounding variables known to be disease-causing in both circulations, which supports the potential use of retinal vasculature findings to stratify individuals with regards to cerebral vascular disease risk. PMID:26008809

  19. Targeting tubulointerstitial remodeling in proteinuric nephropathy in rats

    PubMed Central

    Yazdani, Saleh; Hijmans, Ryanne S.; Poosti, Fariba; Dam, Wendy; Navis, Gerjan; van Goor, Harry; van den Born, Jacob

    2015-01-01

    ABSTRACT Proteinuria is an important cause of tubulointerstitial damage. Anti-proteinuric interventions are not always successful, and residual proteinuria often leads to renal failure. This indicates the need for additional treatment modalities by targeting the harmful downstream consequences of proteinuria. We previously showed that proteinuria triggers renal lymphangiogenesis before the onset of interstitial inflammation and fibrosis. However, the interrelationship of these interstitial events in proteinuria is not yet clear. To this end, we specifically blocked lymphangiogenesis (anti-VEGFR3 antibody), monocyte/macrophage influx (clodronate liposomes) or lymphocyte and myofibroblast influx (S1P agonist FTY720) separately in a rat model to investigate the role and the possible interaction of each of these phenomena in tubulointerstitial remodeling in proteinuric nephropathy. Proteinuria was induced in 3-month old male Wistar rats by adriamycin injection. After 6 weeks, when proteinuria has developed, rats were treated for another 6 weeks by anti-VEGFR3 antibody, clodronate liposomes or FTY720 up to week 12. In proteinuric rats, lymphangiogenesis, influx of macrophages, T cells and myofibroblasts, and collagen III deposition and interstitial fibrosis significantly increased at week 12 vs week 6. Anti-VEGFR3 antibody prevented lymphangiogenesis in proteinuric rats, however, without significant effects on inflammatory and fibrotic markers or proteinuria. Clodronate liposomes inhibited macrophage influx and partly reduced myofibroblast expression; however, neither significantly prevented the development of lymphangiogenesis, nor fibrotic markers and proteinuria. FTY720 prevented myofibroblast accumulation, T-cell influx and interstitial fibrosis, and partially reduced macrophage number and proteinuria; however, it did not significantly influence lymphangiogenesis and collagen III deposition. This study showed that proteinuria-induced interstitial fibrosis cannot

  20. Alteration of proteoglycan sulfation affects bone growth and remodeling

    PubMed Central

    Gualeni, Benedetta; de Vernejoul, Marie-Christine; Marty-Morieux, Caroline; De Leonardis, Fabio; Franchi, Marco; Monti, Luca; Forlino, Antonella; Houillier, Pascal; Rossi, Antonio; Geoffroy, Valerie

    2013-01-01

    Diastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans. X-rays, bone densitometry, static and dynamic histomorphometry, and in vitro studies revealed a primary bone defect in the dtd mouse model. We showed in vivo that this primary bone defect in dtd mice is due to decreased bone accrual associated with a decreased trabecular and periosteal appositional rate at the cell level in one month-old mice. Although the osteoclast number evaluated by histomorphometry was not different in dtd compared to wild-type mice, urine analysis of deoxypyridinoline cross-links and serum levels of type I collagen C-terminal telopeptides showed a higher resorption rate in dtd mice compared to wild-type littermates. Electron microscopy studies showed that collagen fibrils in bone were thinner and less organized in dtd compared to wild-type mice. These data suggest that the low bone mass observed in mutant mice could possibly be linked to the different bone matrix compositions/organizations in dtd mice triggering changes in osteoblast and osteoclast activities. Overall, these results suggest that proteoglycan undersulfation not only affects the properties of hyaline cartilage, but can also lead to unbalanced bone modeling and remodeling activities, demonstrating the importance of proteoglycan sulfation in bone homeostasis. PMID:23369989

  1. Relation of retinal blood flow and retinal oxygen extraction during stimulation with diffuse luminance flicker

    PubMed Central

    Palkovits, Stefan; Lasta, Michael; Told, Reinhard; Schmidl, Doreen; Werkmeister, René; Cherecheanu, Alina Popa; Garhöfer, Gerhard; Schmetterer, Leopold

    2015-01-01

    Cerebral and retinal blood flow are dependent on local neuronal activity. Several studies quantified the increase in cerebral blood flow and oxygen consumption during activity. In the present study we investigated the relation between changes in retinal blood flow and oxygen extraction during stimulation with diffuse luminance flicker and the influence of breathing gas mixtures with different fractions of O2 (FiO2; 100% 15% and 12%). Twenty-four healthy subjects were included. Retinal blood flow was studied by combining measurement of vessel diameters using the Dynamic Vessel Analyser with measurements of blood velocity using laser Doppler velocimetry. Oxygen saturation was measured using spectroscopic reflectometry and oxygen extraction was calculated. Flicker stimulation increased retinal blood flow (57.7 ± 17.8%) and oxygen extraction (34.6 ± 24.1%; p < 0.001 each). During 100% oxygen breathing the response of retinal blood flow and oxygen extraction was increased (p < 0.01 each). By contrast, breathing gas mixtures with 12% and 15% FiO2 did not alter flicker–induced retinal haemodynamic changes. The present study indicates that at a comparable increase in blood flow the increase in oxygen extraction in the retina is larger than in the brain. During systemic hyperoxia the blood flow and oxygen extraction responses to neural stimulation are augmented. The underlying mechanism is unknown. PMID:26672758

  2. Progressive outer retinal necrosis (PORN) in AIDS patients: a different appearance of varicella-zoster retinitis.

    PubMed

    Pavesio, C E; Mitchell, S M; Barton, K; Schwartz, S D; Towler, H M; Lightman, S

    1995-01-01

    Retinal infections caused by the varicella-zoster virus (VZV) have been reported in immunocompetent and immunocompromised individuals. Two cases of a VZV-related retinitis are described with the characteristic features of the recently described progressive outer retinal necrosis (PORN) syndrome. Both patients suffered from the acquired immunodeficiency syndrome (AIDS) with greatly reduced peripheral blood CD4+ T lymphocyte counts, and presented with macular retinitis without vitritis. The disease was bilateral in one case and unilateral in the other. The clinical course was rapidly progressive with widespread retinal involvement and the development of rhegmatogenous retinal detachment with complete loss of vision in the affected eyes despite intensive intravenous antiviral therapy. VZV DNA was identified in vitreous biopsies, by molecular techniques based on the polymerase chain reaction (PCR), in both patients. At present, the use of very high-dose intravenous acyclovir may be the best therapeutic option in these patients for whom the visual prognosis is poor. Intravitreal antiviral drugs could also contribute to the management of these cases.

  3. Retinal topography maps in R: New tools for the analysis and visualization of spatial retinal data

    PubMed Central

    Cohn, Brian A.; Collin, Shaun P.; Wainwright, Peter C.; Schmitz, Lars

    2015-01-01

    Retinal topography maps are a widely used tool in vision science, neuroscience, and visual ecology, providing an informative visualization of the spatial distribution of cell densities across the retinal hemisphere. Here, we introduce Retina, an R package for computational mapping, inspection of topographic model fits, and generation of average maps. Functions in Retina take cell count data obtained from retinal wholemounts using stereology software. Accurate visualizations and comparisons between different eyes have been difficult in the past, because of deformation and incisions of retinal wholemounts. We account for these issues by incorporation of the R package Retistruct, which results in a retrodeformation of the wholemount into a hemispherical shape, similar to the original eyecup. The maps are generated by thin plate splines, after the data were transformed into a two-dimensional space with an azimuthal equidistant plot projection. Retina users can compute retinal topography maps independent of stereology software choice and assess model fits with a variety of diagnostic plots. Functionality of Retina also includes species average maps, an essential feature for interspecific analyses. The Retina package will facilitate rigorous comparative studies in visual ecology by providing a robust quantitative approach to generate retinal topography maps. PMID:26230981

  4. Relation of retinal blood flow and retinal oxygen extraction during stimulation with diffuse luminance flicker.

    PubMed

    Palkovits, Stefan; Lasta, Michael; Told, Reinhard; Schmidl, Doreen; Werkmeister, René; Cherecheanu, Alina Popa; Garhöfer, Gerhard; Schmetterer, Leopold

    2015-01-01

    Cerebral and retinal blood flow are dependent on local neuronal activity. Several studies quantified the increase in cerebral blood flow and oxygen consumption during activity. In the present study we investigated the relation between changes in retinal blood flow and oxygen extraction during stimulation with diffuse luminance flicker and the influence of breathing gas mixtures with different fractions of O2 (FiO2; 100% 15% and 12%). Twenty-four healthy subjects were included. Retinal blood flow was studied by combining measurement of vessel diameters using the Dynamic Vessel Analyser with measurements of blood velocity using laser Doppler velocimetry. Oxygen saturation was measured using spectroscopic reflectometry and oxygen extraction was calculated. Flicker stimulation increased retinal blood flow (57.7 ± 17.8%) and oxygen extraction (34.6 ± 24.1%; p < 0.001 each). During 100% oxygen breathing the response of retinal blood flow and oxygen extraction was increased (p < 0.01 each). By contrast, breathing gas mixtures with 12% and 15% FiO2 did not alter flicker-induced retinal haemodynamic changes. The present study indicates that at a comparable increase in blood flow the increase in oxygen extraction in the retina is larger than in the brain. During systemic hyperoxia the blood flow and oxygen extraction responses to neural stimulation are augmented. The underlying mechanism is unknown. PMID:26672758

  5. Ground-state properties of the retinal molecule: from quantum mechanical to classical mechanical computations of retinal proteins

    SciTech Connect

    Suhai, Sandor

    2011-01-01

    Retinal proteins are excellent systems for understanding essential physiological processes such as signal transduction and ion pumping. Although the conjugated polyene system of the retinal chromophore is best described with quantum mechanics, simulations of the long-timescale dynamics of a retinal protein in its physiological, flexible, lipid-membrane environment can only be performed at the classical mechanical level. Torsional energy barriers are a critical ingredient of the classical force-field parameters. Here we review briefly current retinal force fields and discuss new quantum mechanical computations to assess how the retinal Schiff base model and the approach used to derive the force-field parameters may influence the torsional potentials.

  6. Deficiency in the metabolite receptor SUCNR1 (GPR91) leads to outer retinal lesions

    PubMed Central

    Lapalme, Eric; Leboeuf, Dominique; Carbadillo, Jose; Rubic, Tina; Picard, Emilie; Mawambo, Gaelle; Tetreault, Nicolas; Joyal, Jean-Sebastien; Chemtob, Sylvain; Sennlaub, Florian; SanGiovanni, John Paul; Guimond, Martin; Sapieha, Przemyslaw

    2013-01-01

    Age-related macular degeneration (AMD) is a prominent cause of blindness in the Western world. To date, its molecular pathogenesis as well as the sequence of events leading to retinal degeneration remain largely ill-defined. While the invasion of choroidal neovasculature in the retina is the primary mechanism that precipitates loss of sight, an earlier dry form may accompany it. Here we provide the first evidence for the protective role of the Retinal Pigment Epithelium (RPE)-resident metabolite receptor, succinate receptor 1 (SUCNR1; G-Protein coupled Receptor-91 (GPR91), in preventing dry AMD-like lesions of the outer retina. Genetic analysis of 925 patients with geographic atrophy and 1199 AMD-free peers revealed an increased risk of developing geographic atrophy associated with intronic variants in the SUCNR1 gene. In mice, outer retinal expression of SUCNR1 is observed in the RPE as well as microglial cells and decreases progressively with age. Accordingly, Sucnr1−/− mice show signs of premature sub-retinal dystrophy with accumulation of oxidized-LDL, abnormal thickening of Bruch's membrane and a buildup of subretinal microglia. The accumulation of microglia in Sucnr1-deficient mice is likely triggered by the inefficient clearance of oxidized lipids by the RPE as bone marrow transfer of wild-type microglia into Sucnr1−/− mice did not salvage the patho-phenotype and systemic lipolysis was equivalent between wild-type and control mice. Our findings suggest that deficiency in SUCNR1 is a possible contributing factor to the pathogenesis of dry AMD and thus broaden our understanding of this clinically unmet need. PMID:23833031

  7. Red blood cells in retinal vascular disorders.

    PubMed

    Agrawal, Rupesh; Sherwood, Joseph; Chhablani, Jay; Ricchariya, Ashutosh; Kim, Sangho; Jones, Philip H; Balabani, Stavroula; Shima, David

    2016-01-01

    Microvascular circulation plays a vital role in regulating physiological functions, such as vascular resistance, and maintaining organ health. Pathologies such as hypertension, diabetes, or hematologic diseases affect the microcirculation posing a significant risk to human health. The retinal vasculature provides a unique window for non-invasive visualisation of the human circulation in vivo and retinal vascular image analysis has been established to predict the development of both clinical and subclinical cardiovascular, metabolic, renal and retinal disease in epidemiologic studies. Blood viscosity which was otherwise thought to play a negligible role in determining blood flow based on Poiseuille's law up to the 1970s has now been shown to play an equally if not a more important role in controlling microcirculation and quantifying blood flow. Understanding the hemodynamics/rheology of the microcirculation and its changes in diseased states remains a challenging task; this is due to the particulate nature of blood, the mechanical properties of the cells (such as deformability and aggregability) and the complex architecture of the microvasculature. In our review, we have tried to postulate a possible role of red blood cell (RBC) biomechanical properties and laid down future framework for research related to hemorrheological aspects of blood in patients with retinal vascular disorders.

  8. Dynamic eye phantom for retinal oximetry measurements

    PubMed Central

    Lemaillet, Paul; Ramella-Roman, Jessica C.

    2009-01-01

    Measurements of oxygen saturation and flow in the retina can yield information about eye health and the onset of eye pathologies such as diabetic retinopathy. Recently, we developed a multiaperture camera that uses the division of the retinal image into several wavelength-sensitive subimages to compute retinal oxygen saturation. The calibration of such instruments is particularly difficult due to the layered structure of the eye and the lack of alternative measurement techniques. For this purpose, we realize an in vitro model of the human eye composed of a lens, the retina vessel, and three layers: the choroid, the retinal pigmented epithelium, and the sclera. The retinal vessel is modeled with a microtube connected to a micropump and a hemoglobin reservoir in a closed circulatory system. Hemoglobin oxygenation in the vessel could be altered using a reversible fuel cell. The sclera is represented by a Spectralon slab. The optical properties of the other layers are mimicked using titanium dioxide as a scatterer, ink as an absorber, and epoxy as a supporting structure. The optical thickness of each layer of the eye phantom is matched to each respective eye layer. PMID:20059246

  9. Unsupervised Retinal Vessel Segmentation Using Combined Filters

    PubMed Central

    Oliveira, Wendeson S.; Teixeira, Joyce Vitor; Ren, Tsang Ing; Cavalcanti, George D. C.; Sijbers, Jan

    2016-01-01

    Image segmentation of retinal blood vessels is a process that can help to predict and diagnose cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels’ appearance. This work proposes an unsupervised method for the segmentation of retinal vessels images using a combined matched filter, Frangi’s filter and Gabor Wavelet filter to enhance the images. The combination of these three filters in order to improve the segmentation is the main motivation of this work. We investigate two approaches to perform the filter combination: weighted mean and median ranking. Segmentation methods are tested after the vessel enhancement. Enhanced images with median ranking are segmented using a simple threshold criterion. Two segmentation procedures are applied when considering enhanced retinal images using the weighted mean approach. The first method is based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The experimental results demonstrate that the proposed methods perform well for vessel segmentation in comparison with state-of-the-art methods. PMID:26919587

  10. Genetic loci for retinal arteriolar microcirculation.

    PubMed

    Sim, Xueling; Jensen, Richard A; Ikram, M Kamran; Cotch, Mary Frances; Li, Xiaohui; MacGregor, Stuart; Xie, Jing; Smith, Albert Vernon; Boerwinkle, Eric; Mitchell, Paul; Klein, Ronald; Klein, Barbara E K; Glazer, Nicole L; Lumley, Thomas; McKnight, Barbara; Psaty, Bruce M; de Jong, Paulus T V M; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, Andre G; van Duijn, Cornelia M; Aspelund, Thor; Eiriksdottir, Gudny; Harris, Tamara B; Jonasson, Fridbert; Launer, Lenore J; Attia, John; Baird, Paul N; Harrap, Stephen; Holliday, Elizabeth G; Inouye, Michael; Rochtchina, Elena; Scott, Rodney J; Viswanathan, Ananth; Li, Guo; Smith, Nicholas L; Wiggins, Kerri L; Kuo, Jane Z; Taylor, Kent D; Hewitt, Alex W; Martin, Nicholas G; Montgomery, Grant W; Sun, Cong; Young, Terri L; Mackey, David A; van Zuydam, Natalie R; Doney, Alex S F; Palmer, Colin N A; Morris, Andrew D; Rotter, Jerome I; Tai, E Shyong; Gudnason, Vilmundur; Vingerling, Johannes R; Siscovick, David S; Wang, Jie Jin; Wong, Tien Y

    2013-01-01

    Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10(-8). This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10(-12) in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.

  11. [Retinal detachment with retinoschisis--case report].

    PubMed

    Cristescu, R; Muşat, O; Toma, Oana; Coma, Corina; Gabej, Ioana; Burcea, M

    2013-01-01

    We present the case of a 43 year old patient diagnosed with rhegmatogenous retinal detachment and retinoschizis, a rare case of disease association. Surgery is recommended and we practice 23 gauge vitrectomy, laser retinopexy, criopexy in the periphery and internal heavy oil tamponade. Postoperatory evolution was favorable.

  12. a Review of Retinal Prosthesis Approaches

    NASA Astrophysics Data System (ADS)

    Kien, Tran Trung; Maul, Tomas; Bargiela, Andrzej

    Age-related macular degeneration and retinitis pigmentosa are two of the most common diseases that cause degeneration in the outer retina, which can lead to several visual impairments up to blindness. Vision restoration is an important goal for which several different research approaches are currently being pursued. We are concerned with restoration via retinal prosthetic devices. Prostheses can be implemented intraocularly and extraocularly, which leads to different categories of devices. Cortical Prostheses and Optic Nerve Prostheses are examples of extraocular solutions while Epiretinal Prostheses and Subretinal Prostheses are examples of intraocular solutions. Some of the prostheses that are successfully implanted and tested in animals as well as humans can restore basic visual functions but still have limitations. This paper will give an overview of the current state of art of Retinal Prostheses and compare the advantages and limitations of each type. The purpose of this review is thus to summarize the current technologies and approaches used in developing Retinal Prostheses and therefore to lay a foundation for future designs and research directions.

  13. Unsupervised Retinal Vessel Segmentation Using Combined Filters.

    PubMed

    Oliveira, Wendeson S; Teixeira, Joyce Vitor; Ren, Tsang Ing; Cavalcanti, George D C; Sijbers, Jan

    2016-01-01

    Image segmentation of retinal blood vessels is a process that can help to predict and diagnose cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels' appearance. This work proposes an unsupervised method for the segmentation of retinal vessels images using a combined matched filter, Frangi's filter and Gabor Wavelet filter to enhance the images. The combination of these three filters in order to improve the segmentation is the main motivation of this work. We investigate two approaches to perform the filter combination: weighted mean and median ranking. Segmentation methods are tested after the vessel enhancement. Enhanced images with median ranking are segmented using a simple threshold criterion. Two segmentation procedures are applied when considering enhanced retinal images using the weighted mean approach. The first method is based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The experimental results demonstrate that the proposed methods perform well for vessel segmentation in comparison with state-of-the-art methods.

  14. Changes in ganglion cells during retinal degeneration.

    PubMed

    Saha, Susmita; Greferath, Ursula; Vessey, Kirstan A; Grayden, David B; Burkitt, Anthony N; Fletcher, Erica L

    2016-08-01

    Inherited retinal degeneration such as retinitis pigmentosa (RP) is associated with photoreceptor loss and concomitant morphological and functional changes in the inner retina. It is not known whether these changes are associated with changes in the density and distribution of synaptic inputs to retinal ganglion cells (RGCs). We quantified changes in ganglion cell density in rd1 and age-matched C57BL/6J-(wildtype, WT) mice using the immunocytochemical marker, RBPMS. Our data revealed that following complete loss of photoreceptors, (∼3months of age), there was a reduction in ganglion cell density in the peripheral retina. We next examined changes in synaptic inputs to A type ganglion cells by performing double labeling experiments in mice with the ganglion cell reporter lines, rd1-Thy1 and age-matched wildtype-Thy1. Ribbon synapses were identified by co-labelling with CtBP2 (RIBEYE) and conventional synapses with the clustering molecule, gephyrin. ON RGCs showed a significant reduction in RIBEYE-immunoreactive synapse density while OFF RGCs showed a significant reduction in the gephyrin-immmunoreactive synapse density. Distribution patterns of both synaptic markers across the dendritic trees of RGCs were unchanged. The change in synaptic inputs to RGCs was associated with a reduction in the number of immunolabeled rod bipolar and ON cone bipolar cells. These results suggest that functional changes reported in ganglion cells during retinal degeneration could be attributed to loss of synaptic inputs. PMID:27132232

  15. Retinal Biochemistry, Physiology and Cell Biology.

    PubMed

    Smith, Ricardo Luiz; Sivaprasad, Sobha; Chong, Victor

    2016-01-01

    The vitreous, the vasculature of the retina, macular pigments, phototransduction, retinal pigment epithelium, Bruch's membrane and the extracellular matrix, all play an important role in the normal function of the retina as well as in diseases. Understanding the pathophysiology allows us to target treatment. As ocular angiogenesis, immunity and inflammation are covered elsewhere, those subjects will not be discussed in this chapter.

  16. A continuum model of retinal electrical stimulation

    NASA Astrophysics Data System (ADS)

    Joarder, Saiful A.; Abramian, Miganoosh; Suaning, Gregg J.; Lovell, Nigel H.; Dokos, Socrates

    2011-10-01

    A continuum mathematical model of retinal electrical stimulation is described. The model is represented by a passive vitreous domain, a thin layer of active retinal ganglion cell (RGC) tissue adjacent to deeper passive neural layers of the retina, the retinal pigmented epithelium (RPE) and choroid thus ending at the sclera. To validate the model, in vitro epiretinal responses to stimuli from 50 µm disk electrodes, arranged in a hexagonal mosaic, were recorded from rabbit retinas. 100 µs/phase anodic-first biphasic current pulses were delivered to the retinal surface in both the mathematical model and experiments. RGC responses were simulated and recorded using extracellular microelectrodes. The model's epiretinal thresholds compared favorably with the in vitro data. In addition, simulations showed that single-return bipolar electrodes recruited a larger area of the retina than twin-return or six-return electrodes arranged in a hexagonal layout in which a central stimulating electrode is surrounded by six, eqi-spaced returns. Simulations were also undertaken to investigate the patterns of RGC activation in an anatomically-accurate model of the retina, as well as RGC activation patterns for subretinal and suprachoroidal bipolar stimulation. This paper was originally submitted for the special issue containing contributions from the Sixth Biennial Research Congress of The Eye and the Chip.

  17. The Retinitis Pigmentosa Student: Selected Aspects.

    ERIC Educational Resources Information Center

    Sullivan, Franklin N.

    1984-01-01

    The characteristic features of RP (retinitis pigmentosa-an untreatable conditions usually resulting in night blindness) are discussed and functioning considerations in the classroom (including the use of protective devices and mobility aids) are noted. Classroom modifications such as darklined paper and black pens are suggested. (CL)

  18. A Psychophysical Test for Retinitis Pigmentosa.

    ERIC Educational Resources Information Center

    Corwin, Thomas R; Mancini, Michael

    A new test designed to detect an hereditary eye disease called retinitis pigmentosa (RP) is described. This condition is revealed by pigmentation in the retina, but early diagnosis is difficult because the symptoms are subtle, and since it is genetically recessive it frequently occurs in families with no history of early blindness. In many cases…

  19. CERKL Knockdown Causes Retinal Degeneration in Zebrafish

    PubMed Central

    Riera, Marina; Burguera, Demian; Garcia-Fernàndez, Jordi; Gonzàlez-Duarte, Roser

    2013-01-01

    The human CERKL gene is responsible for common and severe forms of retinal dystrophies. Despite intense in vitro studies at the molecular and cellular level and in vivo analyses of the retina of murine knockout models, CERKL function remains unknown. In this study, we aimed to approach the developmental and functional features of cerkl in Danio rerio within an Evo-Devo framework. We show that gene expression increases from early developmental stages until the formation of the retina in the optic cup. Unlike the high mRNA-CERKL isoform multiplicity shown in mammals, the moderate transcriptional complexity in fish facilitates phenotypic studies derived from gene silencing. Moreover, of relevance to pathogenicity, teleost CERKL shares the two main human protein isoforms. Morpholino injection has been used to generate a cerkl knockdown zebrafish model. The morphant phenotype results in abnormal eye development with lamination defects, failure to develop photoreceptor outer segments, increased apoptosis of retinal cells and small eyes. Our data support that zebrafish Cerkl does not interfere with proliferation and neural differentiation during early developmental stages but is relevant for survival and protection of the retinal tissue. Overall, we propose that this zebrafish model is a powerful tool to unveil CERKL contribution to human retinal degeneration. PMID:23671706

  20. Dynamic eye phantom for retinal oximetry measurements

    NASA Astrophysics Data System (ADS)

    Lemaillet, Paul; Ramella-Roman, Jessica C.

    2009-11-01

    Measurements of oxygen saturation and flow in the retina can yield information about eye health and the onset of eye pathologies such as diabetic retinopathy. Recently, we developed a multiaperture camera that uses the division of the retinal image into several wavelength-sensitive subimages to compute retinal oxygen saturation. The calibration of such instruments is particularly difficult due to the layered structure of the eye and the lack of alternative measurement techniques. For this purpose, we realize an in vitro model of the human eye composed of a lens, the retina vessel, and three layers: the choroid, the retinal pigmented epithelium, and the sclera. The retinal vessel is modeled with a microtube connected to a micropump and a hemoglobin reservoir in a closed circulatory system. Hemoglobin oxygenation in the vessel could be altered using a reversible fuel cell. The sclera is represented by a Spectralon slab. The optical properties of the other layers are mimicked using titanium dioxide as a scatterer, ink as an absorber, and epoxy as a supporting structure. The optical thickness of each layer of the eye phantom is matched to each respective eye layer.

  1. Photovoltaic retinal prosthesis with high pixel density

    NASA Astrophysics Data System (ADS)

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I.; Galambos, Ludwig; Smith, Richard; Harris, James S.; Sher, Alexander; Palanker, Daniel

    2012-06-01

    Retinal degenerative diseases lead to blindness due to loss of the `image capturing' photoreceptors, while neurons in the `image-processing' inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating the surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems that deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation is produced in normal and degenerate rat retinas, with pulse durations of 0.5-4 ms, and threshold peak irradiances of 0.2-10 mW mm-2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 µm bipolar pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high pixel density.

  2. Genetic loci for retinal arteriolar microcirculation.

    PubMed

    Sim, Xueling; Jensen, Richard A; Ikram, M Kamran; Cotch, Mary Frances; Li, Xiaohui; MacGregor, Stuart; Xie, Jing; Smith, Albert Vernon; Boerwinkle, Eric; Mitchell, Paul; Klein, Ronald; Klein, Barbara E K; Glazer, Nicole L; Lumley, Thomas; McKnight, Barbara; Psaty, Bruce M; de Jong, Paulus T V M; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, Andre G; van Duijn, Cornelia M; Aspelund, Thor; Eiriksdottir, Gudny; Harris, Tamara B; Jonasson, Fridbert; Launer, Lenore J; Attia, John; Baird, Paul N; Harrap, Stephen; Holliday, Elizabeth G; Inouye, Michael; Rochtchina, Elena; Scott, Rodney J; Viswanathan, Ananth; Li, Guo; Smith, Nicholas L; Wiggins, Kerri L; Kuo, Jane Z; Taylor, Kent D; Hewitt, Alex W; Martin, Nicholas G; Montgomery, Grant W; Sun, Cong; Young, Terri L; Mackey, David A; van Zuydam, Natalie R; Doney, Alex S F; Palmer, Colin N A; Morris, Andrew D; Rotter, Jerome I; Tai, E Shyong; Gudnason, Vilmundur; Vingerling, Johannes R; Siscovick, David S; Wang, Jie Jin; Wong, Tien Y

    2013-01-01

    Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10(-8). This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10(-12) in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined. PMID:23776548

  3. Photovoltaic Retinal Prosthesis with High Pixel Density.

    PubMed

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I; Galambos, Ludwig; Smith, Richard; Harris, James S; Sher, Alexander; Palanker, Daniel

    2012-06-01

    Retinal degenerative diseases lead to blindness due to loss of the "image capturing" photoreceptors, while neurons in the "image processing" inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems, which deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation was produced in normal and degenerate rat retinas, with pulse durations from 0.5 to 4 ms, and threshold peak irradiances from 0.2 to 10 mW/mm(2), two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 μm bipolar pixel, demonstrating the possibility of a fully-integrated photovoltaic retinal prosthesis with high pixel density.

  4. Hybrid retinal tracking and coagulation system

    NASA Astrophysics Data System (ADS)

    Wright, Cameron H. G.; Oberg, Erik D.; Barrett, Steven F.

    1998-06-01

    Laser photocoagulation is used extensively by ophthalmologists to treat retinal disorders such as diabetic retinopathy and retinal breaks and tears. Currently, the procedure is performed manually and suffers from several drawbacks: it often requires many clinical visits, it is very tedious for both patient and physician, the laser pointing accuracy and safety margin are limited by a combination of the physician's manual dexterity and the patient's ability to hold their eye still, and there is a wide variability in retinal tissue absorption parameters. A computer-assisted hybrid system is under development that will rapidly and safely place multiple therapeutic lesions at desired locations on the retina in a matter of seconds. In the past, one of the main obstacles to such a system has been the ability to track the retina and compensate for any movement with sufficient speed during photocoagulation. Two different tracking modalities (digital image-based tracking and analog confocal tracking) were designed and tested in vivo on pigmented rabbits. These two systems are being seamlessly combined into a hybrid system which provides real-time, motion stabilized lesion placement for typical irradiation times (100 ms). This paper will detail the operation of the hybrid system and efforts toward controlling the depth of coagulation on the retinal surface.

  5. Nanoengineering of therapeutics for retinal vascular disease.

    PubMed

    Gahlaut, Nivriti; Suarez, Sandra; Uddin, Md Imam; Gordon, Andrew Y; Evans, Stephanie M; Jayagopal, Ashwath

    2015-09-01

    Retinal vascular diseases, including diabetic retinopathy, neovascular age related macular degeneration, and retinal vein occlusion, are leading causes of blindness in the Western world. These diseases share several common disease mechanisms, including vascular endothelial growth factor (VEGF) signaling, hypoxia, and inflammation, which provide opportunities for common therapeutic strategies. Treatment of these diseases using laser therapy, anti-VEGF injections, and/or steroids has significantly improved clinical outcomes. However, these strategies do not address the underlying root causes of pathology, and may have deleterious side effects. Furthermore, many patients continue to progress toward legal blindness despite receiving regular therapy. Nanomedicine, the engineering of therapeutics at the 1-100 nm scale, is a promising approach for improving clinical management of retinal vascular diseases. Nanomedicine-based technologies have the potential to revolutionize the treatment of ophthalmology, through enabling sustained release of drugs over several months, reducing side effects due to specific targeting of dysfunctional cells, and interfacing with currently "undruggable" targets. We will discuss emerging nanomedicine-based applications for the treatment of complications associated with retinal vascular diseases, including angiogenesis and inflammation.

  6. Photovoltaic Retinal Prosthesis with High Pixel Density

    PubMed Central

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I.; Galambos, Ludwig; Smith, Richard; Harris, James S.; Sher, Alexander; Palanker, Daniel

    2012-01-01

    Retinal degenerative diseases lead to blindness due to loss of the “image capturing” photoreceptors, while neurons in the “image processing” inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems, which deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation was produced in normal and degenerate rat retinas, with pulse durations from 0.5 to 4 ms, and threshold peak irradiances from 0.2 to 10 mW/mm2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 μm bipolar pixel, demonstrating the possibility of a fully-integrated photovoltaic retinal prosthesis with high pixel density. PMID:23049619

  7. Retinal pigment epithelial hamartoma--unusual manifestations.

    PubMed Central

    Rosenberg, P. R.; Walsh, J. B.

    1984-01-01

    Hamartoma of the retinal pigment epithelium is an uncommon tumour of young adults. We have seen 2 patients with this clinical diagnosis, both with unusual manifestations. In one patient growth of the tumour was observed over a 5-year period. In the second patient arterial-arterial anastomoses were detected at a site distal to the tumour. Images PMID:6722077

  8. Prospectives for Gene Therapy of Retinal Degenerations

    PubMed Central

    Thumann, Gabriele

    2012-01-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  9. Effect of cadmium chloride on the distal retinal pigment cells of the fiddler crab, Uca pugilator

    SciTech Connect

    Reddy, P.S.; Fingerman, M.; Nguyen, L.K.; Obih, P.

    1997-03-01

    Crustaceans have two sets of pigmentary effectors, chromatophores and retinal pigment cells. Retinal pigments control the amount of light striking the rhabdom, the photosensitive portion of each ommatidium, screening the rhabdom in bright light and uncovering it in darkness or dim light. Migration of the distal pigment in the fiddler crab, Uca pugilalor, is regulated by a light-adapting hormone and a dark-adapting hormone. The black chromatophores of this crab are also controlled by a pair of hormones. Both pigmentary effectors exhibit circadian rhythms. The effects of some organic and inorganic pollutants on the ability of Uca pugilator to change color have been described. Exposure of this crab to naphthalene or cadmium results in decreased ability to disperse the pigment in their black chromatophores, the exposed crabs becoming paler than the unexposed crabs. Norepinephrine triggers release of both the black pigment-dispersing hormone and the light-adapting hormone. In view of the facts that (a) these hormones which regulate the black chromatophores and distal pigment are synthesized in and released from the eyestalk neuroendocrine complex, (b) the black pigment-dispersing hormone and the light-adapting hormone may actually be the same hormone. having two different activities and (c) release of both the black pigment-dispersing hormone and the light-adapting hormone is triggered by norepinephrine, the present investigation was carried out to determine the effect of cadmium on distal pigment migration in Uca pugilator. More specifically, for comparison with the previously reported effect of cadmium on pigment migration in the black chromatophores, we wished to determine whether the distal pigment of fiddler crabs exposed to cadmium chloride is capable of as wide a range of movement as in unexposed crabs, and if not what might be the explanation. This is the first report of the effect of a pollutant on a retinal pigment of any crustacean. 12 refs., 3 tabs.

  10. Photovoltaic retinal prosthesis: implant fabrication and performance

    NASA Astrophysics Data System (ADS)

    Wang, Lele; Mathieson, K.; Kamins, T. I.; Loudin, J. D.; Galambos, L.; Goetz, G.; Sher, A.; Mandel, Y.; Huie, P.; Lavinsky, D.; Harris, J. S.; Palanker, D. V.

    2012-08-01

    The objective of this work is to develop and test a photovoltaic retinal prosthesis for restoring sight to patients blinded by degenerative retinal diseases. A silicon photodiode array for subretinal stimulation has been fabricated by a silicon-integrated-circuit/MEMS process. Each pixel in the two-dimensional array contains three series-connected photodiodes, which photovoltaically convert pulsed near-infrared light into bi-phasic current to stimulate nearby retinal neurons without wired power connections. The device thickness is chosen to be 30 µm to absorb a significant portion of light while still being thin enough for subretinal implantation. Active and return electrodes confine current near each pixel and are sputter coated with iridium oxide to enhance charge injection levels and provide a stable neural interface. Pixels are separated by 5 µm wide trenches to electrically isolate them and to allow nutrient diffusion through the device. Three sizes of pixels (280, 140 and 70 µm) with active electrodes of 80, 40 and 20 µm diameter were fabricated. The turn-on voltages of the one-diode, two-series-connected diode and three-series-connected diode structures are approximately 0.6, 1.2 and 1.8 V, respectively. The measured photo-responsivity per diode at 880 nm wavelength is ˜0.36 A W-1, at zero voltage bias and scales with the exposed silicon area. For all three pixel sizes, the reverse-bias dark current is sufficiently low (<100 pA) for our application. Pixels of all three sizes reliably elicit retinal responses at safe near-infrared light irradiances, with good acceptance of the photodiode array in the subretinal space. The fabricated device delivers efficient retinal stimulation at safe near-infrared light irradiances without any wired power connections, which greatly simplifies the implantation procedure. Presence of the return electrodes in each pixel helps to localize the current, and thereby improves resolution.

  11. Vitreal Oxygenation in Retinal Ischemia Reperfusion

    PubMed Central

    Abdallah, Walid; Ameri, Hossein; Barron, Ernesto; Chader, Gerald J.; Greenbaum, Elias; Hinton, David R.

    2011-01-01

    Purpose. To study the feasibility of anterior vitreal oxygenation for the treatment of acute retinal ischemia. Methods. Twenty rabbits were randomized into an oxygenation group, a sham treatment group, and a no treatment group. Baseline electroretinography (ERG) and preretinal oxygen (Po2) measurements were obtained 3 to 5 days before surgery. Intraocular pressure was raised to 100 mm Hg for 90 minutes and then normalized. The oxygenation group underwent vitreal oxygenation for 30 minutes using intravitreal electrodes. The sham treatment group received inactive electrodes for 30 minutes while there was no intervention for the no treatment group. Preretinal Po2 in the posterior vitreous was measured 30 minutes after intervention or 30 minutes after reperfusion (no treatment group) and on postoperative days (d) 3, 6, 9, and 12. On d14, rabbits underwent ERG and were euthanatized. Results. Mean final (d12) Po2 was 10.64 ± 0.77 mm Hg for the oxygenation group, 2.14 ± 0.61 mm Hg for the sham group, and 1.98 ± 0.63 mm Hg for the no treatment group. On ERG, scotopic b-wave amplitude was significantly preserved in the oxygenation group compared with the other two groups. Superoxide dismutase assay showed higher activity in the operated eyes than in the nonoperated control eyes in the sham treatment group and no treatment group only. Histopathology showed preservation of retinal architecture and choroidal vasculature in the oxygenation group, whereas the sham-treated and nontreated groups showed retinal thinning and choroidal atrophy. Conclusions. In severe total ocular ischemia, anterior vitreal oxygenation supplies enough oxygen to penetrate the retinal thickness, resulting in rescue of the RPE/choriocapillaris that continues to perfuse, hence sparing the retinal tissue from damage. PMID:21051734

  12. Interphotoreceptor matrix components in retinal cell transplants.

    PubMed

    Juliusson, B; Mieziewska, K; Bergström, A; Wilke, K; Van Veen, T; Ehinger, B

    1994-05-01

    To further investigate the functional potential of retinal transplants we have used immunocytochemistry to study the distribution of four different interphotoreceptor matrix (IPM)-specific components in rabbit retinal transplants. The different components were: interphotoreceptor retinoid-binding protein (IRBP), chondroitin-6-sulfate, F22 antigen and peanut agglutinin (PNA) binding structures. IRBP acts as a retinoid-transport protein between the neural retina and the retinal pigment epithelium. Chondroitin-6-sulfate is a glycosaminoglycan and a part of the insoluble IPM skeleton. The identity and role of the F22 antigen is not known. However, it is a 250 kDa protein localized to specific extracellular compartments such as teh IPM. PNA is a lectin with a high binding affinity for D-galactose-beta (1-3) N-acetyl-D-galactosamine disaccharide linkages and binds to IPM domains surrounding cones, but not rods. The transplants (15-day-old embryonic rabbit retina) were placed between the neural retina and retinal pigment epithelium in adult hosts. The transplants developed the typical rosette formations with photoreceptors toward the center. IRBP labeling was distinct in the IPM in the host retina. However, no IRBP labeling could be detected in the transplants. The chondroitin-6-sulfate and F22 antibodies strongly labeled the IPM in the host retina and corresponding structures in the center of rosettes. A cone-specific labeling with PNA could be seen in the host retina. In the transplants, however, PNA labeling appeared in association with many more photoreceptors than in the host retina. There is no previous study available on the IPM in retinal cell transplants.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Retinal and Choroidal Folds in Papilledema

    PubMed Central

    Sibony, Patrick A.; Kupersmith, Mark J.; Feldon, Steven E.; Wang, Jui-Kai; Garvin, Mona

    2015-01-01

    Purpose To determine the frequency, patterns, associations, and biomechanical implications of retinal and choroidal folds in papilledema due to idiopathic intracranial hypertension (IIH). Methods Retinal and choroidal folds were studied in patients enrolled in the IIH Treatment Trial using fundus photography (n = 165 study eyes) and spectral-domain optical coherence tomography (SD-OCT; n = 125). We examined the association between folds and peripapillary shape, retinal nerve fiber layer (RNFL) thickness, disc volume, Frisén grade, acuity, perimetric mean deviation, intraocular pressure, intracranial pressure, and refractive error. Results We identified three types of folds in IIH patients with papilledema: peripapillary wrinkles (PPW), retinal folds (RF), and choroidal folds (CF). Frequency, with photos, was 26%, 19%, and 1%, respectively; SD-OCT frequency was 46%, 47%, and 10%. At least one type of fold was present in 41% of patients with photos and 73% with SD-OCT. Spectral-domain OCT was more sensitive. Structural parameters related to the severity of papilledema were associated with PPW and RF, whereas anterior deformation of the peripapillary RPE/basement membrane layer was associated with CF and RF. Folds were not associated with vision loss at baseline. Conclusions Folds in papilledema are biomechanical signs of stress/strain on the optic nerve head and load-bearing structures induced by intracranial hypertension. Folds are best imaged with SD-OCT. The patterns of retinal and choroidal folds are the products of a complex interplay between the degree of papilledema and anterior deformation of the load-bearing structures (sclera and possibly the lamina cribrosa), both modulated by structural geometry and material properties of the optic nerve head. (ClinicalTrials.gov number, NCT01003639.) PMID:26335066

  14. Photovoltaic retinal prosthesis: implant fabrication and performance.

    PubMed

    Wang, Lele; Mathieson, K; Kamins, T I; Loudin, J D; Galambos, L; Goetz, G; Sher, A; Mandel, Y; Huie, P; Lavinsky, D; Harris, J S; Palanker, D V

    2012-08-01

    The objective of this work is to develop and test a photovoltaic retinal prosthesis for restoring sight to patients blinded by degenerative retinal diseases. A silicon photodiode array for subretinal stimulation has been fabricated by a silicon-integrated-circuit/MEMS process. Each pixel in the two-dimensional array contains three series-connected photodiodes, which photovoltaically convert pulsed near-infrared light into bi-phasic current to stimulate nearby retinal neurons without wired power connections. The device thickness is chosen to be 30 µm to absorb a significant portion of light while still being thin enough for subretinal implantation. Active and return electrodes confine current near each pixel and are sputter coated with iridium oxide to enhance charge injection levels and provide a stable neural interface. Pixels are separated by 5 µm wide trenches to electrically isolate them and to allow nutrient diffusion through the device. Three sizes of pixels (280, 140 and 70 µm) with active electrodes of 80, 40 and 20 µm diameter were fabricated. The turn-on voltages of the one-diode, two-series-connected diode and three-series-connected diode structures are approximately 0.6, 1.2 and 1.8 V, respectively. The measured photo-responsivity per diode at 880 nm wavelength is ∼0.36 A W(-1), at zero voltage bias and scales with the exposed silicon area. For all three pixel sizes, the reverse-bias dark current is sufficiently low (<100 pA) for our application. Pixels of all three sizes reliably elicit retinal responses at safe near-infrared light irradiances, with good acceptance of the photodiode array in the subretinal space. The fabricated device delivers efficient retinal stimulation at safe near-infrared light irradiances without any wired power connections, which greatly simplifies the implantation procedure. Presence of the return electrodes in each pixel helps to localize the current, and thereby improves resolution.

  15. Retinal Prosthesis System for Advanced Retinitis Pigmentosa: A Health Technology Assessment

    PubMed Central

    2016-01-01

    Background Retinitis pigmentosa is a group of genetic disorders that involves the breakdown and loss of photoreceptors in the retina, resulting in progressive retinal degeneration and eventual blindness. The Argus II Retinal Prosthesis System is the only currently available surgical implantable device approved by Health Canada. It has been shown to improve visual function in patients with severe visual loss from advanced retinitis pigmentosa. The objective of this analysis was to examine the clinical effectiveness, cost-effectiveness, budget impact, and safety of the Argus II system in improving visual function, as well as exploring patient experiences with the system. Methods We performed a systematic search of the literature for studies examining the effects of the Argus II retinal prosthesis system in patients with advanced retinitis pigmentosa, and appraised the evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria, focusing on visual function, functional outcomes, quality of life, and adverse events. We developed a Markov decision-analytic model to assess the cost-effectiveness of the Argus II system compared with standard care over a 10-year time horizon. We also conducted a 5-year budget impact analysis. We used a qualitative design and an interview methodology to examine patients’ lived experience, and we used a modified grounded theory methodology to analyze information from interviews. Transcripts were coded, and themes were compared against one another. Results One multicentre international study and one single-centre study were included in the clinical review. In both studies, patients showed improved visual function with the Argus II system. However, the sight-threatening surgical complication rate was substantial. In the base-case analysis, the Argus II system was cost-effective compared with standard care only if willingness-to-pay was more than $207,616 per quality-adjusted life

  16. The effect of stress concentration on bone remodeling: theoretical predictions.

    PubMed

    Firoozbakhsh, K; Aleyaasin, M

    1989-11-01

    Theoretical predictions of internal bone remodeling around an elliptical hole are studied. The internal remodeling theory due to Cowin and Hegedus is employed. The bone is modeled as an initially homogeneous adaptive elastic plate with an elliptical hole under a superposed steady compressive load. It is shown that there will exist a final inhomogeneous remodeling distribution around the hole that will disappear away from the hole. The remodeling is such that the compressive stress concentration causes the bone structure to evolve to one of greater density and stiffer elastic coefficients. The speed of remodeling around the hole and its variation with respect to distance is investigated and discussed. It is shown that the rate of bone reinforcement in the area of compressive stress concentration is much higher than the rate of bone resorption in the area of existing tensile stress. Special cases of a circular hole and vertical and horizontal slots are studied and discussed.

  17. Seismology: dynamic triggering of earthquakes.

    PubMed

    Gomberg, Joan; Johnson, Paul

    2005-10-01

    After an earthquake, numerous smaller shocks are triggered over distances comparable to the dimensions of the mainshock fault rupture, although they are rare at larger distances. Here we analyse the scaling of dynamic deformations (the stresses and strains associated with seismic waves) with distance from, and magnitude of, their triggering earthquake, and show that they can cause further earthquakes at any distance if their amplitude exceeds several microstrain, regardless of their frequency content. These triggering requirements are remarkably similar to those measured in the laboratory for inducing dynamic elastic nonlinear behaviour, which suggests that the underlying physics is similar.

  18. Pulsed thyristor trigger control circuit

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A trigger control circuit is provided for producing firing pulses for the thyristor of a thyristor control system such as a power factor controller. The control circuit overcomes thyristor triggering problems involved with the current lag associated with controlling inductive loads and utilizes a phase difference signal, already present in the power factor controller, in deriving a signal for inhibiting generation of a firing pulse until no load current is flowing from the preceding half cycle and thereby ensuring that the thyristor is triggered on during each half cycle.

  19. Triggered Release from Polymer Capsules

    SciTech Connect

    Esser-Kahn, Aaron P.; Odom, Susan A.; Sottos, Nancy R.; White, Scott R.; Moore, Jeffrey S.

    2011-07-06

    Stimuli-responsive capsules are of interest in drug delivery, fragrance release, food preservation, and self-healing materials. Many methods are used to trigger the release of encapsulated contents. Here we highlight mechanisms for the controlled release of encapsulated cargo that utilize chemical reactions occurring in solid polymeric shell walls. Triggering mechanisms responsible for covalent bond cleavage that result in the release of capsule contents include chemical, biological, light, thermal, magnetic, and electrical stimuli. We present methods for encapsulation and release, triggering methods, and mechanisms and conclude with our opinions on interesting obstacles for chemically induced activation with relevance for controlled release.

  20. Hindlimb Suspension as a Model to Study Ophthalmic Complications in Microgravity Status Report: Optimization of Rat Retina Flat Mounts Staining to Study Vascular Remodeling

    NASA Technical Reports Server (NTRS)

    Theriot, Corey A.; Zanello, Susana B.

    2014-01-01

    Preliminary data from a prior tissue-sharing experiment has suggested that early growth response protein-1 (Egr1), a transcription factor involved in various stress responses in the vasculature, is induced in the rat retina after 14 days of hindlimb suspension (HS) and may be evidence that mechanical stress is occurring secondary to the cephalad fluid shift. This mechanical stress could cause changes in oxygenation of the retina, and the subsequent ischemia- or inflammation-driven hypoxia may lead to microvascular remodeling. This microvascular remodeling process can be studied using image analysis of retinal vessels and can be then be quantified by the VESsel GENeration Analysis (VESGEN) software, a computational tool that quantifies remodeling patterns of branching vascular trees and capillary or vasculogenic networks. Our project investigates whether rodent HS is a valid model to study the effects of simulated-weightlessness on ocular structures and their relationship with intracranial pressure (ICP). One of the hypotheses to be tested is that HS-induced cephalad fluid shift is accompanied by vascular engorgement that produces changes in retinal oxygenation, leading to oxidative stress, hypoxia, microvascular remodeling, and cellular degeneration. We have optimized the procedure to obtain flat mounts of rat retina, staining of the endothelial lining in vasculature and acquisition of high quality images suitable for VESGEN analysis. Briefly, eyes were fixed in 4% paraformaldehyde for 24 hours and retinas were detached and then mounted flat on microscope slides. The microvascular staining was done with endothelial cell-specific isolectin binding, coupled to Alexa-488 fluorophore. Image acquisition at low magnification and high resolution was performed using a new Leica SP8 confocal microscope in a tile pattern across the X,Y plane and multiple sections along the Z-axis. This new confocal microscope has the added capability of dye separation using the Linear

  1. Multimodality Imaging of Myocardial Injury and Remodeling

    PubMed Central

    Kramer, Christopher M.; Sinusas, Albert J.; Sosnovik, David E.; French, Brent A.; Bengel, Frank M.

    2011-01-01

    Advances in cardiovascular molecular imaging have come at a rapid pace over the last several years. Multiple approaches have been taken to better understand the structural, molecular, and cellular events that underlie the progression from myocardial injury to myocardial infarction (MI) and, ultimately, to congestive heart failure. Multimodality molecular imaging including SPECT, PET, cardiac MRI, and optical approaches is offering new insights into the pathophysiology of MI and left ventricular remodeling in small-animal models. Targets that are being probed include, among others, angiotensin receptors, matrix metalloproteinases, integrins, apoptosis, macrophages, and sympathetic innervation. It is only a matter of time before these advances are applied in the clinical setting to improve post-MI prognostication and identify appropriate therapies in patients to prevent the onset of congestive heart failure. PMID:20395347

  2. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  3. Organelle remodeling at membrane contact sites.

    PubMed

    Henne, W Mike

    2016-10-01

    Cellular organelles must execute sophisticated biological processes to persist, and often communicate with one another to exchange metabolites and information. Recent studies suggest inter-organelle membrane contact sites (MCSs) are hubs for this cellular cross-talk. MCSs also govern membrane remodeling, thus controlling aspects of organelle shape, identity, and function. Here, we summarize three emerging phenomena that MCSs appear to govern: 1) organelle identity via the non-vesicular exchange of lipids, 2) mitochondrial shape and division, and 3) endosomal migration in response to sterol trafficking. We also discuss the role for ER-endolysosomal contact sites in cholesterol metabolism, and the potential biomedical importance this holds. Indeed, the emerging field inter-organellar cross-talk promises substantial advances in the fields of lipid metabolism and cell signaling.

  4. Molecular mechanisms of synaptic remodeling in alcoholism.

    PubMed

    Kyzar, Evan J; Pandey, Subhash C

    2015-08-01

    Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism.

  5. Examination of postmortem retinal folds: A non-invasive study.

    PubMed

    Oshima, Toru; Yoshikawa, Hiroshi; Ohtani, Maki; Mimasaka, Sohtaro

    2015-02-01

    The postmortem retinal fold has been previously documented, but its mechanism of formation is not known. All previous studies of the fold involved invasive techniques and the postmortem ocular fundus has yet to be non-invasively examined. Our study used the non-invasive techniques of monocular indirect ophthalmoscopy and ocular echography to examine 79 postmortem eyes of 42 bodies. We examined whether the postmortem retinal fold was associated with postmortem time, position, and/or age. Age was significantly associated with postmortem retinal fold formation (Mann-Whitney U test, P = 0.013), which led us to examine the effect of posterior vitreous detachment (PVD) on retinal folds. The absence of a PVD was statistically associated with the presence of a retinal fold (Fisher's exact test, P < 0.0001). Interestingly, the presence of a PVD was also significantly correlated with retinal fold height (Mann-Whitney U test, P < 0.0001). Therefore, we hypothesized that retinal folds result from postmortem vitreoretinal traction caused by eyeball flaccidity. We also believe that the loss of retinochoroidal hydrostatic pressure plays a role. It is important that forensic pathologists not confuse a postmortem retinal fold with traumatic retinal detachment or perimacular retinal folds caused by child abuse. When child abuse is suspected, forensic pathologists should perform enucleation and a subsequent histological examination for confirmation. PMID:25623189

  6. Prophylactic treatment of retinal breaks--a systematic review.

    PubMed

    Blindbaek, Søren; Grauslund, Jakob

    2015-02-01

    Prophylactic treatment of retinal breaks has been examined in several studies and reviews, but so far, no studies have successfully applied a systematic approach. In the present systematic review, we examined the need of follow-up after posterior vitreous detachment (PVD) - diagnosed by slit-lamp biomicroscopy or Goldmann 3-mirror examination - with regard to retinal breaks as well as the indication of prophylactic treatment in asymptomatic and symptomatic breaks. A total of 2941 publications were identified with PubMed and Medline searches. Two manual search strategies were used for papers in English published before 2012. Four levels of screening identified 13 studies suitable for inclusion in this systematic review. No meta-analysis was conducted as no data suitable for statistical analysis were identified. In total, the initial examination after symptomatic PVD identified 85-95% of subsequent retinal breaks. Additional retinal breaks were only revealed at follow-up in patients where a full retinal examination was compromised at presentation by, for example, vitreous haemorrhage. Asymptomatic and symptomatic retinal breaks progressed to rhegmatogenous retinal detachment (RRD) in 0-13.8% and 35-47% of cases, respectively. The cumulated incidence of RRD despite prophylactic treatment was 2.1-8.8%. The findings in this review suggest that follow-up after symptomatic PVD is only necessary in cases of incomplete retinal examination at presentation. Prophylactic treatment of symptomatic retinal breaks must be considered, whereas no unequivocal conclusion could be reached with regard to prophylactic treatment of asymptomatic retinal breaks.

  7. Triggers and Anatomical Substrates in the Genesis and Perpetuation of Atrial Fibrillation

    PubMed Central

    Sánchez-Quintana, Damián; López-Mínguez, José Ramón; Pizarro, Gonzalo; Murillo, Margarita; Cabrera, José Angel

    2012-01-01

    The definition of atrial fibrillation (AF) as a functional electrical disorder does not reflect the significant underlying structural abnormalities. Atrial and Pulmonary Vein (PV) muscle sleeve microstructural remodeling is present, and establishes a vulnerable substrate for AF maintenance. In spite of an incomplete understanding of the anatomo-functional basis for AF, current evidence demonstrates that this arrhythmia usually requires a trigger for initiation and a vulnerable electrophysiological and/or anatomical substrate for maintenance. It is still unclear whether the trigger mechanisms include focal enhanced automaticity, triggered activity and/or micro re-entry from myocardial tissue. Initiation of AF can be favored by both parasympathetic and sympathetic stimulation, which also seem to play a role in maintaining AF. Finally, evolving clinical evidence demonstrates that inflammation is associated with new-onset and recurrent AF through a mechanism that possibly involves cellular degeneration, apoptosis, and subsequent atrial fibrosis. PMID:22920484

  8. Inner retinal change in a novel rd1-FTL mouse model of retinal degeneration.

    PubMed

    Greferath, Ursula; Anderson, Emily E; Jobling, Andrew I; Vessey, Kirstan A; Martinez, Gemma; de Iongh, Robb U; Kalloniatis, Michael; Fletcher, Erica L

    2015-01-01

    While photoreceptor loss is the most devastating result of inherited retinal degenerations such as retinitis pigmentosa, inner retinal neurons also undergo significant alteration. Detailing these changes has become important as many vision restorative therapies target the remaining neurons. In this study, the rd1-Fos-Tau-LacZ (rd1-FTL) mouse model was used to explore inner retinal change at a late stage of retinal degeneration, after the loss of photoreceptor nuclei. The rd1-FTL model carries a mutation in the phosphodiesterase gene, Pde6b, and an axonally targeted transgenic beta galactosidase reporter system under the control of the c-fos promoter. Retinae of transgenic rd1-FTL mice and control FTL animals aged 2-12 months were processed for indirect fluorescence immunocytochemistry. At 2 months of age, a time when the majority of photoreceptor nuclei are lost, there was negligible c-fos reporter (FTL) expression, however, from 4 months, reporter expression was observed to increase within subpopulations of amacrine and ganglion cells within the central retina. These areas of inner retinal FTL expression coincided with regions that contained aberrant Müller cells. Specifically, these cells exhibited reduced glutamine synthetase and Kir4.1 immunolabelling, whilst showing evidence of proliferative gliosis (increased cyclinD1 and glial fibrillary acidic protein expression). These changes were limited to distinct regions where cone photoreceptor terminals were absent. Overall, these results highlight that distinct areas of the rd1-FTL central retina undergo significant glial alterations after cone photoreceptor loss. These areas coincide with up-regulation of the c-fos reporter in the inner retina, which may represent a change in neuronal function/plasticity. The rd1-FTL mouse is a useful model system to probe changes that occur in the inner retina at later stages of retinal degeneration. PMID:26283925

  9. Myocardial Tissue Remodeling in Adolescent Obesity

    PubMed Central

    Shah, Ravi V.; Abbasi, Siddique A.; Neilan, Tomas G.; Hulten, Edward; Coelho‐Filho, Otavio; Hoppin, Alison; Levitsky, Lynne; de Ferranti, Sarah; Rhodes, Erinn T.; Traum, Avram; Goodman, Elizabeth; Feng, Henry; Heydari, Bobak; Harris, William S.; Hoefner, Daniel M.; McConnell, Joseph P.; Seethamraju, Ravi; Rickers, Carsten; Kwong, Raymond Y.; Jerosch‐Herold, Michael

    2013-01-01

    Background Childhood obesity is a significant risk factor for cardiovascular disease in adulthood. Although ventricular remodeling has been reported in obese youth, early tissue‐level markers within the myocardium that precede organ‐level alterations have not been described. Methods and Results We studied 21 obese adolescents (mean age, 17.7±2.6 years; mean body mass index [BMI], 41.9±9.5 kg/m2, including 11 patients with type 2 diabetes [T2D]) and 12 healthy volunteers (age, 15.1±4.5 years; BMI, 20.1±3.5 kg/m2) using biomarkers of cardiometabolic risk and cardiac magnetic resonance imaging (CMR) to phenotype cardiac structure, function, and interstitial matrix remodeling by standard techniques. Although left ventricular ejection fraction and left atrial volumes were similar in healthy volunteers and obese patients (and within normal body size‐adjusted limits), interstitial matrix expansion by CMR extracellular volume fraction (ECV) was significantly different between healthy volunteers (median, 0.264; interquartile range [IQR], 0.253 to 0.271), obese adolescents without T2D (median, 0.328; IQR, 0.278 to 0.345), and obese adolescents with T2D (median, 0.376; IQR, 0.336 to 0.407; P=0.0001). ECV was associated with BMI for the entire population (r=0.58, P<0.001) and with high‐sensitivity C‐reactive protein (r=0.47, P<0.05), serum triglycerides (r=0.51, P<0.05), and hemoglobin A1c (r=0.76, P<0.0001) in the obese stratum. Conclusions Obese adolescents (particularly those with T2D) have subclinical alterations in myocardial tissue architecture associated with inflammation and insulin resistance. These alterations precede significant left ventricular hypertrophy or decreased cardiac function. PMID:23963758

  10. Progenitor cells in pulmonary vascular remodeling.

    PubMed

    Yeager, Michael E; Frid, Maria G; Stenmark, Kurt R

    2011-01-01

    Pulmonary hypertension is characterized by cellular and structural changes in the walls of pulmonary arteries. Intimal thickening and fibrosis, medial hypertrophy and fibroproliferative changes in the adventitia are commonly observed, as is the extension of smooth muscle into the previously non-muscularized vessels. A majority of these changes are associated with the enhanced presence of α-SM-actin+ cells and inflammatory cells. Atypical abundances of functionally distinct endothelial cells, particularly in the intima (plexiform lesions), and also in the perivascular regions, are also described. At present, neither the origin(s) of these cells nor the molecular mechanisms responsible for their accumulation, in any of the three compartments of the vessel wall, have been fully elucidated. The possibility that they arise from either resident vascular progenitors or bone marrow-derived progenitor cells is now well established. Resident vascular progenitor cells have been demonstrated to exist within the vessel wall, and in response to certain stimuli, to expand and express myofibroblastic, endothelial or even hematopoietic markers. Bone marrow-derived or circulating progenitor cells have also been shown to be recruited to sites of vascular injury and to assume both endothelial and SM-like phenotypes. Here, we review the data supporting the contributory role of vascular progenitors (including endothelial progenitor cells, smooth muscle progenitor cells, pericytes, and fibrocytes) in vascular remodeling. A more complete understanding of the processes by which progenitor cells modulate pulmonary vascular remodeling will undoubtedly herald a renaissance of therapies extending beyond the control of vascular tonicity and reduction of pulmonary artery pressure. PMID:22034593

  11. Landslide triggering modeling in Switzerland

    NASA Astrophysics Data System (ADS)

    Jafari Manesh, Ahoura; Mignan, Arnaud; Giardini, Domenico

    2016-04-01

    Switzerland is prone to hazard interactions due to its mountainous landscape. Historical earthquakes are known to have triggered aftershocks, landslides, rock falls and avalanches, as well as lake tsunamis. Here we present a simple cellular automaton to simulate landslide footprints triggered by both rain and earthquakes. The method is based on the Sandpile model, which dynamics is controlled by the ground slope. Rain levels are approximated by ground water saturation and earthquake-landslide triggering is evaluated using the concept of Newmark displacement. That concept is then modified to estimate stable slopes during shaking at which locations the landslide stops. The cellular automaton is first tested in a virtual region where a parameter sensitivity analysis is made. Then it is tested in a region of Switzerland, where historic landslides triggered by earthquakes are known to have occurred.

  12. Nonautonomous Apoptosis Is Triggered by Local Cell Cycle Progression during Epithelial Replacement in Drosophila ▿ †

    PubMed Central

    Nakajima, Yu-ichiro; Kuranaga, Erina; Sugimura, Kaoru; Miyawaki, Atsushi; Miura, Masayuki

    2011-01-01

    Tissue remodeling involves collective cell movement, and cell proliferation and apoptosis are observed in both development and disease. Apoptosis and proliferation are considered to be closely correlated, but little is known about their coordinated regulation in physiological tissue remodeling in vivo. The replacement of larval abdominal epidermis with adult epithelium in Drosophila pupae is a simple model of tissue remodeling. During this process, larval epidermal cells (LECs) undergo apoptosis and are replaced by histoblasts, which are adult precursor cells. By analyzing caspase activation at the single-cell level in living pupae, we found that caspase activation in LECs is induced at the LEC/histoblast boundary, which expands as the LECs die. Manipulating histoblast proliferation at the LEC/histoblast boundary, either genetically or by UV illumination, indicated that local interactions with proliferating histoblasts triggered caspase activation in the boundary LECs. Finally, by monitoring the spatiotemporal dynamics of the S/G2/M phase in histoblasts in vivo, we found that the transition from S/G2 phases is necessary to induce nonautonomous LEC apoptosis at the LEC/histoblast boundary. The replacement boundary, formed as caspase activation is regulated locally by cell-cell communication, may drive the dynamic orchestration of cell replacement during tissue remodeling. PMID:21482673

  13. Stimuli triggering violence in psychoses.

    PubMed

    Pontius, A A

    1981-01-01

    Various behavioral and neurophysiological models are suggested to objectify and quantify the defense of insanity and to assess dangerousness in someone who is being considered for release from custody. Two cases are presented that show a pattern of specific relationships between traumatic experiences in youth and a later trigger stimulus that releases homicidal action. Until a refined classification system and neurophysiological understanding of sudden aggression can be achieved, forensic psychiatrists should be aware of the psychotic trigger reaction within a clinical psychiatric model.

  14. Limited ATF4 Expression in Degenerating Retinas with Ongoing ER Stress Promotes Photoreceptor Survival in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Bhootada, Yogesh; Kotla, Pravallika; Zolotukhin, Sergei; Gorbatyuk, Oleg; Bebok, Zsuzsanna; Athar, Mohammad; Gorbatyuk, Marina

    2016-01-01

    T17M rhodopsin expression in rod photoreceptors leads to severe retinal degeneration and is associated with the activation of ER stress related Unfolded Protein Response (UPR) signaling. Here, we show a novel role of a UPR transcription factor, ATF4, in photoreceptor cellular pathology. We demonstrated a pro-death role for ATF4 overexpression during autosomal dominant retinitis pigmentosa (ADRP). Based on our results in ATF4 knockout mice and adeno-associated viral (AAV) delivery of ATF4 to the retina, we validated a novel therapeutic approach targeting ATF4 over the course of retinal degeneration. In T17M rhodopsin retinas, we observed ATF4 overexpression concomitantly with reduction of p62 and elevation of p53 levels. These molecular alterations, together with increased CHOP and caspase-3/7 activity, possibly contributed to the mechanism of photoreceptor cell loss. Conversely, ATF4 knockdown retarded retinal degeneration in 1-month-old T17M Rhodopsin mice and promoted photoreceptor survival, as measured by scotopic and photopic ERGs and photoreceptor nuclei row counts. Similarly, ATF4 knockdown also markedly delayed retinal degeneration in 3-month-old ADRP animals. This delay was accompanied by a dramatic decrease in UPR signaling, the launching of anti-oxidant defense, initiation of autophagy, and improvement of rhodopsin biosynthesis which together perhaps combat the cellular stress associated with T17M rhodopsin. Our data indicate that augmented ATF4 signals during retinal degeneration plays a cytotoxic role by triggering photoreceptor cell death. Future ADRP therapy regulating ATF4 expression can be developed to treat retinal degenerative disorders associated with activated UPR. PMID:27144303

  15. Peripheral retinal non-perfusion and treatment response in branch retinal vein occlusion

    PubMed Central

    Abri Aghdam, Kaveh; Reznicek, Lukas; Soltan Sanjari, Mostafa; Framme, Carsten; Bajor, Anna; Klingenstein, Annemarie; Kernt, Marcus; Seidensticker, Florian

    2016-01-01

    AIM To evaluate the association between the size of peripheral retinal non-perfusion and the number of intravitreal ranibizumab injections in patients with treatment-naive branch retinal vein occlusion (BRVO) and macular edema. METHODS A total of 53 patients with treatment-naive BRVO and macular edema were included. Each patient underwent a full ophthalmologic examination including optical coherence tomography (OCT) imaging and ultra wide-field fluorescein angiography (UWFA). Monthly intravitreal ranibizumab injections were applied according to the recommendations of the German Ophthalmological Society. Two independent, masked graders quantified the areas of peripheral retinal non-perfusion. RESULTS Intravitreal injections improved best-corrected visual acuity (BCVA) significantly from 22.23±16.33 Early Treatment of Diabetic Retinopathy Study (ETDRS) letters to 36.23±15.19 letters (P<0.001), and mean central subfield thickness significantly reduced from 387±115 µm to 321±115 µm (P=0.01). Mean number of intravitreal ranibizumab injections was 3.61±1.56. The size of retinal non-perfusion correlated significantly with the number of intravitreal ranibizumab injections (R=0.724, P<0.001). CONCLUSION Peripheral retinal non-perfusion in patients with BRVO associates significantly with intravitreal ranibizumab injections in patients with BRVO and macular edema. PMID:27366688

  16. Transition of differential histone H3 methylation in photoreceptors and other retinal cells during retinal differentiation

    PubMed Central

    Ueno, Kazuko; Iwagawa, Toshiro; Kuribayashi, Hiroshi; Baba, Yukihiro; Nakauchi, Hiromitsu; Murakami, Akira; Nagasaki, Masao; Suzuki, Yutaka; Watanabe, Sumiko

    2016-01-01

    To analyze cell lineage-specific transitions in global transcriptional and epigenetic changes during retinogenesis, we purified retinal cells from normal mice during postnatal development into two fractions, namely, photoreceptors and other retinal cells, based on Cd73 expression, and performed RNA sequencing and ChIP sequencing of H3K27me3 and H3K4me3. Genes expressed in the photoreceptor lineage were marked with H3K4me3 in the Cd73-positive cell fraction; however, the level of H3K27me3 was very low in both Cd73-positive and -negative populations. H3K27me3 may be involved in spatio-temporal onset of a subset of bipolar-related genes. Subsets of genes expressed in amacrine and retinal ganglion cells, which are early-born retinal cell types, were suggested to be maintained in a silent state by H3K27me3 during late-stage retinogenesis. In the outer nuclear layer, upregulation of Rho and rod-related genes were observed in Ezh2-ablated retina, suggesting a role for H3K27me3 in the maintenance of proper expression levels. Taken together, our data on the transition of lineage-specific molecular signatures during development suggest that histone methylation is involved in retinal differentiation and maintenance through cell lineage-specific mechanisms. PMID:27377164

  17. TRPV4 regulates calcium homeostasis, cytoskeletal remodeling, conventional outflow and intraocular pressure in the mammalian eye

    PubMed Central

    Ryskamp, Daniel A.; Frye, Amber M.; Phuong, Tam T. T.; Yarishkin, Oleg; Jo, Andrew O.; Xu, Yong; Lakk, Monika; Iuso, Anthony; Redmon, Sarah N.; Ambati, Balamurali; Hageman, Gregory; Prestwich, Glenn D.; Torrejon, Karen Y.; Križaj, David

    2016-01-01

    An intractable challenge in glaucoma treatment has been to identify druggable targets within the conventional aqueous humor outflow pathway, which is thought to be regulated/dysregulated by elusive mechanosensitive protein(s). Here, biochemical and functional analyses localized the putative mechanosensitive cation channel TRPV4 to the plasma membrane of primary and immortalized human TM (hTM) cells, and to human and mouse TM tissue. Selective TRPV4 agonists and substrate stretch evoked TRPV4-dependent cation/Ca2+ influx, thickening of F-actin stress fibers and reinforcement of focal adhesion contacts. TRPV4 inhibition enhanced the outflow facility and lowered perfusate pressure in biomimetic TM scaffolds populated with primary hTM cells. Systemic delivery, intraocular injection or topical application of putative TRPV4 antagonist prodrug analogs lowered IOP in glaucomatous mouse eyes and protected retinal neurons from IOP-induced death. Together, these findings indicate that TRPV4 channels function as a critical component of mechanosensitive, Ca2+-signaling machinery within the TM, and that TRPV4-dependent cytoskeletal remodeling regulates TM stiffness and outflow. Thus, TRPV4 is a potential IOP sensor within the conventional outflow pathway and a novel target for treating ocular hypertension. PMID:27510430

  18. Adaptive optics technology for high-resolution retinal imaging.

    PubMed

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2012-12-27

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  19. The effect of dendritic cells on the retinal cell transplantation

    SciTech Connect

    Oishi, Akio; Nagai, Takayuki; Mandai, Michiko Takahashi, Masayo; Yoshimura, Nagahisa

    2007-11-16

    The potential of bone marrow cell-derived immature dendritic cells (myeloid iDCs) in modulating the efficacy of retinal cell transplantation therapy was investigated. (1) In vitro, myeloid iDCs but not BMCs enhanced the survival and proliferation of embryonic retinal cells, and the expression of various neurotrophic factors by myeloid iDCs was confirmed with RT-PCR. (2) In subretinal transplantation, neonatal retinal cells co-transplanted with myeloid iDCs showed higher survival rate compared to those transplanted without myeloid iDCs. (3) CD8 T-cells reactive against donor retinal cells were significantly increased in the mice with transplantation of retinal cells alone. These results suggested the beneficial effects of the use of myeloid iDCs in retinal cell transplantation therapy.

  20. Contribution of Microglia-Mediated Neuroinflammation to Retinal Degenerative Diseases

    PubMed Central

    Madeira, Maria H.; Boia, Raquel; Santos, Paulo F.; Ambrósio, António F.; Santiago, Ana R.

    2015-01-01

    Retinal degenerative diseases are major causes of vision loss and blindness worldwide and are characterized by chronic and progressive neuronal loss. One common feature of retinal degenerative diseases and brain neurodegenerative diseases is chronic neuroinflammation. There is growing evidence that retinal microglia, as in the brain, become activated in the course of retinal degenerative diseases, having a pivotal role in the initiation and propagation of the neurodegenerative process. A better understanding of the events elicited and mediated by retinal microglia will contribute to the clarification of disease etiology and might open new avenues for potential therapeutic interventions. This review aims at giving an overview of the roles of microglia-mediated neuroinflammation in major retinal degenerative diseases like glaucoma, age-related macular degeneration, and diabetic retinopathy. PMID:25873768

  1. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  2. Detection and measurement of retinal blood vessel pulsatile motion

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Frost, Shaun; Vignarajan, Janardhan; An, Dong; Tay-Kearney, Mei-Ling; Kanagasingam, Yogi

    2016-03-01

    Retinal photography is a non-invasive and well-accepted clinical diagnosis of ocular diseases. Qualitative and quantitative assessment of retinal images is crucial in ocular diseases related clinical application. Pulsatile properties caused by cardiac rhythm, such as spontaneous venous pulsation (SVP) and pulsatile motion of small arterioles, can be visualized by dynamic retinal imaging techniques and provide clinical significance. In this paper, we aim at vessel pulsatile motion detection and measurement. We proposed a novel approach for pulsatile motion measurement of retinal blood vessels by applying retinal image registration, blood vessel detection and blood vessel motion detection and measurement on infrared retinal image sequences. The performance of the proposed methods was evaluated on 8 image sequences with 240 images. A preliminary result has demonstrated the good performance of the method for blood vessel pulsatile motion observation and measurement.

  3. Combined branch retinal vein and artery occlusion in toxoplasmosis.

    PubMed

    Aggio, Fabio Bom; Novelli, Fernando José de; Rosa, Evandro Luis; Nobrega, Mário Junqueira

    2016-01-01

    A 22-year-old man complained of low visual acuity and pain in his left eye for five days. His ophthalmological examination revealed 2+ anterior chamber reaction and a white, poorly defined retinal lesion at the proximal portion of the inferotemporal vascular arcade. There were retinal hemorrhages in the inferotemporal region extending to the retinal periphery. In addition, venous dilation, increased tortuosity, and ischemic retinal whitening along the inferotemporal vascular arcade were also observed. A proper systemic work-up was performed, and the patient was diagnosed with ocular toxoplasmosis. He was treated with an anti-toxoplasma medication, and his condition slowly improved. Inferior macular inner and middle retinal atrophy could be observed on optical coherence tomography as a sequela of ischemic injury. To our knowledge, this is the first report of combined retinal branch vein and artery occlusion in toxoplasmosis resulting in a striking and unusual macular appearance. PMID:27463632

  4. Structural remodeling of bacteriophage T4 and host membranes during infection initiation

    PubMed Central

    Hu, Bo; Margolin, William; Molineux, Ian J.; Liu, Jun

    2015-01-01

    The first stages of productive bacteriophage infections of bacterial host cells require efficient adsorption to the cell surface followed by ejection of phage DNA into the host cytoplasm. To achieve this goal, a phage virion must undergo significant structural remodeling. For phage T4, the most obvious change is the contraction of its tail. Here, we use skinny E. coli minicells as a host, along with cryo-electron tomography and mutant phage virions, to visualize key structural intermediates during initiation of T4 infection. We show for the first time that most long tail fibers are folded back against the tail sheath until irreversible adsorption, a feature compatible with the virion randomly walking across the cell surface to find an optimal site for infection. Our data confirm that tail contraction is triggered by structural changes in the baseplate, as intermediates were found with remodeled baseplates and extended tails. After contraction, the tail tube penetrates the host cell periplasm, pausing while it degrades the peptidoglycan layer. Penetration into the host cytoplasm is accompanied by a dramatic local outward curvature of the cytoplasmic membrane as it fuses with the phage tail tip. The baseplate hub protein gp27 and/or the ejected tape measure protein gp29 likely form the transmembrane channel for viral DNA passage into the cell cytoplasm. Building on the wealth of prior biochemical and structural information, this work provides new molecular insights into the mechanistic pathway of T4 phage infection. PMID:26283379

  5. Structural remodeling of bacteriophage T4 and host membranes during infection initiation.

    PubMed

    Hu, Bo; Margolin, William; Molineux, Ian J; Liu, Jun

    2015-09-01

    The first stages of productive bacteriophage infections of bacterial host cells require efficient adsorption to the cell surface followed by ejection of phage DNA into the host cytoplasm. To achieve this goal, a phage virion must undergo significant structural remodeling. For phage T4, the most obvious change is the contraction of its tail. Here, we use skinny E. coli minicells as a host, along with cryo-electron tomography and mutant phage virions, to visualize key structural intermediates during initiation of T4 infection. We show for the first time that most long tail fibers are folded back against the tail sheath until irreversible adsorption, a feature compatible with the virion randomly walking across the cell surface to find an optimal site for infection. Our data confirm that tail contraction is triggered by structural changes in the baseplate, as intermediates were found with remodeled baseplates and extended tails. After contraction, the tail tube penetrates the host cell periplasm, pausing while it degrades the peptidoglycan layer. Penetration into the host cytoplasm is accompanied by a dramatic local outward curvature of the cytoplasmic membrane as it fuses with the phage tail tip. The baseplate hub protein gp27 and/or the ejected tape measure protein gp29 likely form the transmembrane channel for viral DNA passage into the cell cytoplasm. Building on the wealth of prior biochemical and structural information, this work provides new molecular insights into the mechanistic pathway of T4 phage infection.

  6. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress

    PubMed Central

    Levitan, Orly; Dinamarca, Jorge; Zelzion, Ehud; Lun, Desmond S.; Guerra, L. Tiago; Kim, Min Kyung; Kim, Joomi; Van Mooy, Benjamin A. S.; Bhattacharya, Debashish; Falkowski, Paul G.

    2015-01-01

    Diatoms are unicellular algae that accumulate significant amounts of triacylglycerols as storage lipids when their growth is limited by nutrients. Using biochemical, physiological, bioinformatics, and reverse genetic approaches, we analyzed how the flux of carbon into lipids is influenced by nitrogen stress in a model diatom, Phaeodactylum tricornutum. Our results reveal that the accumulation of lipids is a consequence of remodeling of intermediate metabolism, especially reactions in the tricarboxylic acid and the urea cycles. Specifically, approximately one-half of the cellular proteins are cannibalized; whereas the nitrogen is scavenged by the urea and glutamine synthetase/glutamine 2-oxoglutarate aminotransferase pathways and redirected to the de novo synthesis of nitrogen assimilation machinery, simultaneously, the photobiological flux of carbon and reductants is used to synthesize lipids. To further examine how nitrogen stress triggers the remodeling process, we knocked down the gene encoding for nitrate reductase, a key enzyme required for the assimilation of nitrate. The strain exhibits 40–50% of the mRNA copy numbers, protein content, and enzymatic activity of the wild type, concomitant with a 43% increase in cellular lipid content. We suggest a negative feedback sensor that couples photosynthetic carbon fixation to lipid biosynthesis and is regulated by the nitrogen assimilation pathway. This metabolic feedback enables diatoms to rapidly respond to fluctuations in environmental nitrogen availability. PMID:25548193

  7. Chromatin remodeling system, cancer stem-like attractors, and cellular reprogramming.

    PubMed

    Zhang, Yue; Moriguchi, Hisashi

    2011-11-01

    The cancer cell attractors theory provides a next-generation understanding of carcinogenesis and natural explanation of punctuated clonal expansions of tumor progression. The impressive notion of atavism of cancer is now updated but more evidence is awaited. Besides, the mechanisms that the ectopic expression of some germline genes result in somatic tumors such as melanoma and brain tumors are emerging but are not well understood. Cancer could be triggered by cells undergoing abnormal cell attractor transitions, and may be reversible with "cyto-education". From mammals to model organisms like Caenorhabditis elegans and Drosophila melanogaster, the versatile Mi-2β/nucleosome remodeling and histone deacetylation complexes along with their functionally related chromatin remodeling complexes (CRCs), i.e., the dREAM/Myb-MuvB complex and Polycomb group complex are likely master regulators of cell attractors. The trajectory that benign cells switch to cancerous could be the reverse of navigation of embryonic cells converging from a series of intermediate transcriptional states to a final adult state, which is supported by gene expression dynamics inspector assays and some cross-species genetic evidence. The involvement of CRCs in locking cancer attractors may help find the recipes of perturbing genes to achieve successful reprogramming such that the reprogrammed cancer cell function in the same way as the normal cells.

  8. Pigment Epithelium-Derived Factor Inhibits Retinal Microvascular Dysfunction Induced By 12/15-Lipoxygenase-Derived Eicosanoids

    PubMed Central

    Ibrahim, Ahmed S.; Tawfik, Amany M.; Hussein, Khaled A; Elshafey, Sally; Markand, Shanu; Rizk, Nasser; Duh, Elia J.; Smith, Sylvia B.; Al-Shabrawey, Mohamed

    2015-01-01

    We recently demonstrated that 12/15-lipoxygenase (LOX) derived metabolites, hydroxyeicosatetraenoic acids (HETEs), contribute to diabetic retinopathy (DR) via NADPH oxidase (NOX) and disruption of the balance in retinal levels of the vascular endothelial growth factor (VEGF) and Pigment Epithelium-Derived Factor (PEDF). Here, we test whether PEDF ameliorates retinal vascular injury induced by HETEs and the underlying mechanisms. Furthermore, we pursue the causal relationship between LOX-NOX system and regulation of PEDF expression during DR. For these purposes, we used an experimental eye model in which normal mice were injected intravitreally with 12/15HETE with/without PEDF. Thereafter, Fluorescein Angiography (FA) was used to evaluate the vascular leakage, followed by Optical coherence tomography (OCT) to assess the presence of angiogenesis. FA and OCT reported an increased vascular leakage and pre-retinal neovascularization, respectively, in response to 12-HETE that were not observed in PEDF-treated group. Moreover, PEDF significantly attenuated the increased levels of vascular cell and intercellular adhesion molecules, VCAM-1 and ICAM-1, elicited by 12-HETE injection. Accordingly, the direct relationship between HETE and PEDF has been explored through in-vitro studies using Müller cells (rMCs) and human retinal endothelial cells (HRECs). The results showed that HETEs triggered the secretion of TNF-α and IL-6, as well as activation of NFκB in rMCs and significantly increased permeability and reduced zonula occludens protein-1 (ZO-1) immunoreactivity in HRECs. All these effects were prevented in PEDF-treated cells. Furthermore, interest in PEDF regulation during DR has been expanded to include NOX system. Retinal PEDF was significantly restored in diabetic mice treated with NOX inhibitor, apocynin, or lacking NOX2 up to 80% of the control level. Collectively, our findings suggest that interfering with LOX-NOX signaling opens up a new direction for treating DR

  9. Mitochondrial complex I deficiency leads to inflammation and retinal ganglion cell death in the Ndufs4 mouse

    PubMed Central

    Yu, Alfred K.; Song, Lanying; Murray, Karl D.; van der List, Deborah; Sun, Chao; Shen, Yan; Xia, Zhengui; Cortopassi, Gino A.

    2015-01-01

    Mitochondrial complex I (NADH dehydrogenase) is a major contributor to neuronal energetics, and mutations in complex I lead to vision loss. Functional, neuroanatomical and transcriptional consequences of complex I deficiency were investigated in retinas of the Ndufs4 knockout mouse. Whole-eye ERGs and multielectrode arrays confirmed a major retinal ganglion cell functional loss at P32, and retinal ganglion cell loss at P42. RNAseq demonstrated a mild and then sharp increase in innate immune and inflammatory retinal transcripts at P22 and P33, respectively, which were confirmed with QRT-PCR. Intraperitoneal injection of the inflammogen lipopolysaccharide further reduced retinal ganglion cell function in Ndufs4 KO, supporting the connection between inflammatory activation and functional loss. Complex I deficiency in the retina clearly caused innate immune and inflammatory markers to increase coincident with loss of vision, and RGC functional loss. How complex I incites inflammation and functional loss is not clear, but could be the result of misfolded complex I generating a ‘non-self’ response, and induction of innate immune response transcripts was observed before functional loss at P22, including β-2 microglobulin and Cx3cr1, and during vision loss at P31 (B2m, Tlr 2, 3, 4, C1qa, Cx3cr1 and Fas). These data support the hypothesis that mitochondrial complex I dysfunction in the retina triggers an innate immune and inflammatory response that results in loss of retinal ganglion cell function and death, as in Leber's hereditary Optic Neuropathy and suggests novel therapeutic routes to counter mitochondrial defects that contribute to vision loss. PMID:25652399

  10. The Chromatin Remodeling Complex Chd4/NuRD Controls Striated Muscle Identity and Metabolic Homeostasis.

    PubMed

    Gómez-Del Arco, Pablo; Perdiguero, Eusebio; Yunes-Leites, Paula Sofia; Acín-Pérez, Rebeca; Zeini, Miriam; Garcia-Gomez, Antonio; Sreenivasan, Krishnamoorthy; Jiménez-Alcázar, Miguel; Segalés, Jessica; López-Maderuelo, Dolores; Ornés, Beatriz; Jiménez-Borreguero, Luis Jesús; D'Amato, Gaetano; Enshell-Seijffers, David; Morgan, Bruce; Georgopoulos, Katia; Islam, Abul B M M K; Braun, Thomas; de la Pompa, José Luis; Kim, Johnny; Enriquez, José A; Ballestar, Esteban; Muñoz-Cánoves, Pura; Redondo, Juan Miguel

    2016-05-10

    Heart muscle maintains blood circulation, while skeletal muscle powers skeletal movement. Despite having similar myofibrilar sarcomeric structures, these striated muscles differentially express specific sarcomere components to meet their distinct contractile requirements. The mechanism responsible is still unclear. We show here that preservation of the identity of the two striated muscle types depends on epigenetic repression of the alternate lineage gene program by the chromatin remodeling complex Chd4/NuRD. Loss of Chd4 in the heart triggers aberrant expression of the skeletal muscle program, causing severe cardiomyopathy and sudden death. Conversely, genetic depletion of Chd4 in skeletal muscle causes inappropriate expression of cardiac genes and myopathy. In both striated tissues, mitochondrial function was also dependent on the Chd4/NuRD complex. We conclude that an epigenetic mechanism controls cardiac and skeletal muscle structural and metabolic identities and that loss of this regulation leads to hybrid striated muscle tissues incompatible with life.

  11. CYFIP1 Coordinates mRNA Translation and Cytoskeleton Remodeling to Ensure Proper Dendritic Spine Formation

    PubMed Central

    De Rubeis, Silvia; Pasciuto, Emanuela; Li, Ka Wan; Fernández, Esperanza; Di Marino, Daniele; Buzzi, Andrea; Ostroff, Linnaea E.; Klann, Eric; Zwartkruis, Fried J.T.; Komiyama, Noboru H.; Grant, Seth G.N.; Poujol, Christel; Choquet, Daniel; Achsel, Tilmann; Posthuma, Danielle; Smit, August B.; Bagni, Claudia

    2013-01-01

    Summary The CYFIP1/SRA1 gene is located in a chromosomal region linked to various neurological disorders, including intellectual disability, autism, and schizophrenia. CYFIP1 plays a dual role in two apparently unrelated processes, inhibiting local protein synthesis and favoring actin remodeling. Here, we show that brain-derived neurotrophic factor (BDNF)-driven synaptic signaling releases CYFIP1 from the translational inhibitory complex, triggering translation of target mRNAs and shifting CYFIP1 into the WAVE regulatory complex. Active Rac1 alters the CYFIP1 conformation, as demonstrated by intramolecular FRET, and is key in changing the equilibrium of the two complexes. CYFIP1 thus orchestrates the two molecular cascades, protein translation and actin polymerization, each of which is necessary for correct spine morphology in neurons. The CYFIP1 interactome reveals many interactors associated with brain disorders, opening new perspectives to define regulatory pathways shared by neurological disabilities characterized by spine dysmorphogenesis. PMID:24050404

  12. Remodeling of Endogenous Mammary Epithelium by Breast Cancer Stem Cells

    PubMed Central

    Parashurama, Natesh; Lobo, Neethan A.; Ito, Ken; Mosley, Adriane R.; Habte, Frezghi G.; Zabala, Maider; Smith, Bryan R.; Lam, Jessica; Weissman, Irving L.; Clarke, Michael F.; Gambhir, Sanjiv S.

    2014-01-01

    Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC. PMID:22899386

  13. Remodeling of endogenous mammary epithelium by breast cancer stem cells.

    PubMed

    Parashurama, Natesh; Lobo, Neethan A; Ito, Ken; Mosley, Adriane R; Habte, Frezghi G; Zabala, Maider; Smith, Bryan R; Lam, Jessica; Weissman, Irving L; Clarke, Michael F; Gambhir, Sanjiv S

    2012-10-01

    Poorly regulated tissue remodeling results in increased breast cancer risk, yet how breast cancer stem cells (CSC) participate in remodeling is unknown. We performed in vivo imaging of changes in fluorescent, endogenous duct architecture as a metric for remodeling. First, we quantitatively imaged physiologic remodeling of primary branches of the developing and regenerating mammary tree. To assess CSC-specific remodeling events, we isolated CSC from MMTV-Wnt1 (mouse mammary tumor virus long-term repeat enhancer driving Wnt1 oncogene) breast tumors, a well studied model in which tissue remodeling affects tumorigenesis. We confirm that CSC drive tumorigenesis, suggesting a link between CSC and remodeling. We find that normal, regenerating, and developing gland maintain a specific branching pattern. In contrast, transplantation of CSC results in changes in the branching patterns of endogenous ducts while non-CSC do not. Specifically, in the presence of CSC, we identified an increased number of branches, branch points, ducts which have greater than 40 branches (5/33 for CSC and 0/39 for non-CSC), and histological evidence of increased branching. Moreover, we demonstrate that only CSC implants invade into surrounding stroma with structures similar to developing mammary ducts (nine for CSC and one for non-CSC). Overall, we demonstrate a novel approach for imaging physiologic and pathological remodeling. Furthermore, we identify unique, CSC-specific, remodeling events. Our data suggest that CSC interact with the microenvironment differently than non-CSC, and that this could eventually be a therapeutic approach for targeting CSC. PMID:22899386

  14. Retinal pigment epithelial change and partial lipodystrophy.

    PubMed Central

    Davis, T. M.; Holdright, D. R.; Schulenberg, W. E.; Turner, R. C.; Joplin, G. F.

    1988-01-01

    Cuticular drusen and retinal pigment epithelial changes were found incidentally in a 27 year old Lebanese woman during assessment of partial lipodystrophy. Her vision was normal despite involvement of both maculae. The patient had hypocomplementaemia, but serum C3 nephritic factor was absent and renal function was normal. She had impaired glucose tolerance and a continuous infusion of glucose with model assessment (CIGMA) test revealed low normal tissue insulin sensitivity and high normal pancreatic beta cell function. Mild fasting hypertriglyceridaemia (2.0 mmol/l) may have been secondary to impaired insulin sensitivity. Endocrine function was otherwise normal apart from a completely absent growth hormone response to adequate hypoglycaemia. The simultaneous occurrence of partial lipodystrophy and retinal pigmentary epithelial and basement membrane changes appears to be a newly recognized syndrome. Images Figure 1 Figure 2 PMID:3255937

  15. Supervised retinal biometrics in different lighting conditions.

    PubMed

    Azemin, Mohd Zulfaezal Che; Kumar, Dinesh K; Sugavaneswaran, Lakshmi; Krishnan, Sridhar

    2011-01-01

    Retinal image has been considered for number of health and biometrics applications. However, the reliability of these has not been investigated thoroughly. The variation observed in retina scans taken at different times is attributable to differences in illumination and positioning of the camera. It causes some missing bifurcations and crossovers from the retinal vessels. Exhaustive selection of optimal parameters is needed to construct the best similarity metrics equation to overcome the incomplete landmarks. In this paper, we extracted multiple features from the retina scans and employs supervised classification to overcome the shortcomings of the current techniques. The experimental results of 60 retina scans with different lightning conditions demonstrate the efficacy of this technique. The results were compared with the existing methods.

  16. Computational model of retinal photocoagulation and rupture

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis M.; Nomoto, Hiroyuki; Huie, Phil; Palanker, Daniel

    2009-02-01

    In patterned scanning laser photocoagulation, shorter duration (< 20 ms) pulses help reduce thermal damage beyond the photoreceptor layer, decrease treatment time and minimize pain. However, safe therapeutic window (defined as the ratio of rupture threshold power to that of light coagulation) decreases for shorter exposures. To quantify the extent of thermal damage in the retina, and maximize the therapeutic window, we developed a computational model of retinal photocoagulation and rupture. Model parameters were adjusted to match measured thresholds of vaporization, coagulation, and retinal pigment epithelial (RPE) damage. Computed lesion width agreed with histological measurements in a wide range of pulse durations and power. Application of ring-shaped beam profile was predicted to double the therapeutic window width for exposures in the range of 1 - 10 ms.

  17. Biophotons Contribute to Retinal Dark Noise.

    PubMed

    Li, Zehua; Dai, Jiapei

    2016-06-01

    The discovery of dark noise in retinal photoreceptors resulted in a long-lasting controversy over its origin and the underlying mechanisms. Here, we used a novel ultra-weak biophoton imaging system (UBIS) to detect biophotonic activity (emission) under dark conditions in rat and bullfrog (Rana catesbeiana) retinas in vitro. We found a significant temperature-dependent increase in biophotonic activity that was completely blocked either by removing intracellular and extracellular Ca(2+) together or inhibiting phosphodiesterase 6. These findings suggest that the photon-like component of discrete dark noise may not be caused by a direct contribution of the thermal activation of rhodopsin, but rather by an indirect thermal induction of biophotonic activity, which then activates the retinal chromophore of rhodopsin. Therefore, this study suggests a possible solution regarding the thermal activation energy barrier for discrete dark noise, which has been debated for almost half a century. PMID:27059222

  18. Retinal Light Processing Using Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Loftus, David J. (Inventor); Leng, Theodore (Inventor); Fishman, Harvey (Inventor)

    2004-01-01

    Method and system for processing light signals received by the eye of a human or other animal, where the eye may be compromised or non-functioning. Incident light is received at first and second pixels in a photodetector array and provides a pixel electrical signal representing the received light. Each of an array of carbon nanotube (CNT) towers is connected to a pixel, has a first tower end penetrating a retinal active layer of the animal and has a second tower end positioned to receive to receive and transport the pixel electrical signal to the retinal active layer. The CNT tower may be coated with a biologically active substance or chemically modified to promote neurite connections with the tower. The photoreceptor array can be provide with a signal altering mechanism that alters at least one of light intensity and wavelength intensity sensed by a first pixel relative to a second pixel, to correct for one or more selected eye problems.

  19. Retinal Image Simulation of Subjective Refraction Techniques.

    PubMed

    Perches, Sara; Collados, M Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient's response-guided refraction) is the most commonly used approach. In this context, this paper's main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques--including Jackson's Cross-Cylinder test (JCC)--relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software's usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training.

  20. Retinal Image Simulation of Subjective Refraction Techniques

    PubMed Central

    Perches, Sara; Collados, M. Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient’s response-guided refraction) is the most commonly used approach. In this context, this paper’s main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques—including Jackson’s Cross-Cylinder test (JCC)—relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software’s usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training. PMID:26938648