Science.gov

Sample records for retinal remodeling triggered

  1. Retinal remodeling triggered by photoreceptor degenerations.

    PubMed

    Jones, Bryan W; Watt, Carl B; Frederick, Jeanne M; Baehr, Wolfgang; Chen, Ching-Kang; Levine, Edward M; Milam, Ann H; Lavail, Matthew M; Marc, Robert E

    2003-09-08

    Many photoreceptor degenerations initially affect rods, secondarily leading to cone death. It has long been assumed that the surviving neural retina is largely resistant to this sensory deafferentation. New evidence from fast retinal degenerations reveals that subtle plasticities in neuronal form and connectivity emerge early in disease. By screening mature natural, transgenic, and knockout retinal degeneration models with computational molecular phenotyping, we have found an extended late phase of negative remodeling that radically changes retinal structure. Three major transformations emerge: 1) Müller cell hypertrophy and elaboration of a distal glial seal between retina and the choroid/retinal pigmented epithelium; 2) apparent neuronal migration along glial surfaces to ectopic sites; and 3) rewiring through evolution of complex neurite fascicles, new synaptic foci in the remnant inner nuclear layer, and new connections throughout the retina. Although some neurons die, survivors express molecular signatures characteristic of normal bipolar, amacrine, and ganglion cells. Remodeling in human and rodent retinas is independent of the initial molecular targets of retinal degenerations, including defects in the retinal pigmented epithelium, rhodopsin, or downstream phototransduction elements. Although remodeling may constrain therapeutic intervals for molecular, cellular, or bionic rescue, it suggests that the neural retina may be more plastic than previously believed.

  2. Retinal remodeling.

    PubMed

    Jones, B W; Kondo, M; Terasaki, H; Lin, Y; McCall, M; Marc, R E

    2012-07-01

    Retinal photoreceptor degeneration takes many forms. Mutations in rhodopsin genes or disorders of the retinal pigment epithelium, defects in the adenosine triphosphate binding cassette transporter, ABCR gene defects, receptor tyrosine kinase defects, ciliopathies and transport defects, defects in both transducin and arrestin, defects in rod cyclic guanosine 3',5'-monophosphate phosphodiesterase, peripherin defects, defects in metabotropic glutamate receptors, synthetic enzymatic defects, defects in genes associated with signaling, and many more can all result in retinal degenerative disease like retinitis pigmentosa (RP) or RP-like disorders. Age-related macular degeneration (AMD) and AMD-like disorders are possibly due to a constellation of potential gene targets and gene/gene interactions, while other defects result in diabetic retinopathy or glaucoma. However, all of these insults as well as traumatic insults to the retina result in retinal remodeling. Retinal remodeling is a universal finding subsequent to retinal degenerative disease that results in deafferentation of the neural retina from photoreceptor input as downstream neuronal elements respond to loss of input with negative plasticity. This negative plasticity is not passive in the face of photoreceptor degeneration, with a phased revision of retinal structure and function found at the molecular, synaptic, cell, and tissue levels involving all cell classes in the retina, including neurons and glia. Retinal remodeling has direct implications for the rescue of vision loss through bionic or biological approaches, as circuit revision in the retina corrupts any potential surrogate photoreceptor input to a remnant neural retina. However, there are a number of potential opportunities for intervention that are revealed through the study of retinal remodeling, including therapies that are designed to slow down photoreceptor loss, interventions that are designed to limit or arrest remodeling events, and

  3. Neural remodeling in retinal degeneration.

    PubMed

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Strettoi, Enrica

    2003-09-01

    Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in

  4. Retinal Remodeling in Human Retinitis Pigmentosa

    PubMed Central

    Jones, B.W.; Pfeiffer, R.L.; Ferrell, W. D.; Watt, C.B.; Marmor, M.; Marc, R.E.

    2016-01-01

    Retinitis Pigmentosa (RP) in the human is a progressive, currently irreversible neural degenerative disease usually caused by gene defects that disrupt the function or architecture of the photoreceptors. While RP can initially be a disease of photoreceptors, there is increasing evidence that the inner retina becomes progressively disorganized as the outer retina degenerates. These alterations have been extensively described in animal models, but remodeling in humans has not been as well characterized. This study, using computational molecular phenotyping (CMP) seeks to advance our understanding of the retinal remodeling process in humans. We describe cone mediated preservation of overall topology, retinal reprogramming in the earliest stages of the disease in retinal bipolar cells, and alterations in both small molecule and protein signatures of neurons and glia. Furthermore, while Müller glia appear to be some of the last cells left in the degenerate retina, they are also one of the first cell classes in the neural retina to respond to stress which may reveal mechanisms related to remodeling and cell death in other retinal cell classes. Also fundamentally important is the finding that retinal network topologies are altered. Our results suggest interventions that presume substantial preservation of the neural retina will likely fail in late stages of the disease. Even early intervention offers no guarantee that the interventions will be immune to progressive remodeling. Fundamental work in the biology and mechanisms of disease progression are needed to support vision rescue strategies. PMID:27020758

  5. Retinal remodeling in human retinitis pigmentosa.

    PubMed

    Jones, B W; Pfeiffer, R L; Ferrell, W D; Watt, C B; Marmor, M; Marc, R E

    2016-09-01

    Retinitis Pigmentosa (RP) in the human is a progressive, currently irreversible neural degenerative disease usually caused by gene defects that disrupt the function or architecture of the photoreceptors. While RP can initially be a disease of photoreceptors, there is increasing evidence that the inner retina becomes progressively disorganized as the outer retina degenerates. These alterations have been extensively described in animal models, but remodeling in humans has not been as well characterized. This study, using computational molecular phenotyping (CMP) seeks to advance our understanding of the retinal remodeling process in humans. We describe cone mediated preservation of overall topology, retinal reprogramming in the earliest stages of the disease in retinal bipolar cells, and alterations in both small molecule and protein signatures of neurons and glia. Furthermore, while Müller glia appear to be some of the last cells left in the degenerate retina, they are also one of the first cell classes in the neural retina to respond to stress which may reveal mechanisms related to remodeling and cell death in other retinal cell classes. Also fundamentally important is the finding that retinal network topologies are altered. Our results suggest interventions that presume substantial preservation of the neural retina will likely fail in late stages of the disease. Even early intervention offers no guarantee that the interventions will be immune to progressive remodeling. Fundamental work in the biology and mechanisms of disease progression are needed to support vision rescue strategies.

  6. Retinal remodeling in inherited photoreceptor degenerations.

    PubMed

    Marc, Robert E; Jones, Bryan W

    2003-10-01

    Photoreceptor degenerations initiated in rods or the retinal pigmented epithelium usually evoke secondary cone death and sensory deafferentation of the surviving neural retina. In the mature central nervous system, deafferentation evokes atrophy and connective re-patterning. It has been assumed that the neural retina does not remodel, and that it is a passive survivor. Screening of advanced stages of human and rodent retinal degenerations with computational molecular phenotyping has exposed a prolonged period of aggressive negative remodeling in which neurons migrate along aberrant glial columns and seals, restructuring the adult neural retina (1). Many neurons die, but survivors rewire the remnant inner plexiform layer (IPL), forming thousands of novel ectopic microneuromas in the remnant inner nuclear layer (INL). Bipolar and amacrine cells engage in new circuits that are most likely corruptive. Remodeling in human and rodent retinas emerges regardless of the molecular defects that initially trigger retinal degenerations. Although remodeling may constrain therapeutic intervals for molecular, cellular, or bionic rescue, the exposure of intrinsic retinal remodeling by the removal of sensory control in retinal degenerations suggests that neuronal organization in the normal retina may be more plastic than previously believed.

  7. Retinoid receptors trigger neuritogenesis in retinal degenerations

    PubMed Central

    Lin, Yanhua; Jones, Bryan W.; Liu, Aihua; Tucker, James F.; Rapp, Kevin; Luo, Ling; Baehr, Wolfgang; Bernstein, Paul S.; Watt, Carl B.; Yang, Jia-Hui; Shaw, Marguerite V.; Marc, Robert E.

    2012-01-01

    Anomalous neuritogenesis is a hallmark of neurodegenerative disorders, including retinal degenerations, epilepsy, and Alzheimer's disease. The neuritogenesis processes result in a partial reinnervation, new circuitry, and functional changes within the deafferented retina and brain regions. Using the light-induced retinal degeneration (LIRD) mouse model, which provides a unique platform for exploring the mechanisms underlying neuritogenesis, we found that retinoid X receptors (RXRs) control neuritogenesis. LIRD rapidly triggered retinal neuron neuritogenesis and up-regulated several key elements of retinoic acid (RA) signaling, including retinoid X receptors (RXRs). Exogenous RA initiated neuritogenesis in normal adult retinas and primary retinal cultures and exacerbated it in LIRD retinas. However, LIRD-induced neuritogenesis was partly attenuated in retinol dehydrogenase knockout (Rdh12−/−) mice and by aldehyde dehydrogenase inhibitors. We further found that LIRD rapidly increased the expression of glutamate receptor 2 and β Ca2+/calmodulin-dependent protein kinase II (βCaMKII). Pulldown assays demonstrated interaction between βCaMKII and RXRs, suggesting that CaMKII pathway regulates the activities of RXRs. RXR antagonists completely prevented and RXR agonists were more effective than RA in inducing neuritogenesis. Thus, RXRs are in the final common path and may be therapeutic targets to attenuate retinal remodeling and facilitate global intervention methods in blinding diseases and other neurodegenerative disorders.—Lin, Y., Jones, B. W., Liu, A., Tucker, J. F., Rapp, K., Luo, L., Baehr, W., Bernstein, P. S., Watt, C. B., Yang, J.-H., Shaw, M. V., Marc, R. E. Retinoid receptors trigger neuritogenesis in retinal degenerations. PMID:21940995

  8. Aberrant protein trafficking in retinal degeneration: The initial phase of retinal remodelling

    PubMed Central

    Bales, Katie L.; Gross, Alecia K.

    2016-01-01

    Retinal trafficking proteins are involved in molecular assemblies that govern protein transport, orchestrate cellular events involved in cilia formation, regulate signal transduction, autophagy and endocytic trafficking, all of which if not properly controlled initiate retinal degeneration. Improper function and or trafficking of these proteins and molecular networks they are involved in cause a detrimental cascade of neural retinal remodeling due to cell death, resulting as devastating blinding diseases. A universal finding in retinal degenerative diseases is the profound detection of retinal remodeling, occurring as a phased modification of neural retinal function and structure, which begins at the molecular level. Retinal remodeling instigated by aberrant trafficking of proteins encompasses many forms of retinal degenerations, such as the diverse forms of retinitis pigmentosa (RP) and disorders that resemble RP through mutations in the rhodopsin gene, retinal ciliopathies, and some forms of glaucoma and age-related macular degeneration (AMD). As a large majority of genes associated with these different retinopathies are overlapping, it is imperative to understand their underlying molecular mechanisms. This review will discuss some of the most recent discoveries in vertebrate retinal remodeling and retinal degenerations caused by protein mistrafficking. PMID:26632497

  9. Retinal remodeling in the Tg P347L rabbit, a large-eye model of retinal degeneration.

    PubMed

    Jones, B W; Kondo, M; Terasaki, H; Watt, C B; Rapp, K; Anderson, J; Lin, Y; Shaw, M V; Yang, J-H; Marc, R E

    2011-10-01

    Retinitis pigmentosa (RP) is an inherited blinding disease characterized by progressive loss of retinal photoreceptors. There are numerous rodent models of retinal degeneration, but most are poor platforms for interventions that will translate into clinical practice. The rabbit possesses a number of desirable qualities for a model of retinal disease including a large eye and an existing and substantial knowledge base in retinal circuitry, anatomy, and ophthalmology. We have analyzed degeneration, remodeling, and reprogramming in a rabbit model of retinal degeneration, expressing a rhodopsin proline 347 to leucine transgene in a TgP347L rabbit as a powerful model to study the pathophysiology and treatment of retinal degeneration. We show that disease progression in the TgP347L rabbit closely tracks human cone-sparing RP, including the cone-associated preservation of bipolar cell signaling and triggering of reprogramming. The relatively fast disease progression makes the TgP347L rabbit an excellent model for gene therapy, cell biological intervention, progenitor cell transplantation, surgical interventions, and bionic prosthetic studies.

  10. Retinal Remodeling: Concerns, Emerging Remedies and Future Prospects

    PubMed Central

    Krishnamoorthy, Vidhyasankar; Cherukuri, Pitchaiah; Poria, Deepak; Goel, Manvi; Dagar, Sushma; Dhingra, Narender K.

    2016-01-01

    Deafferentation results not only in sensory loss, but also in a variety of alterations in the postsynaptic circuitry. These alterations may have detrimental impact on potential treatment strategies. Progressive loss of photoreceptors in retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration, leads to several changes in the remnant retinal circuitry. Müller glial cells undergo hypertrophy and form a glial seal. The second- and third-order retinal neurons undergo morphological, biochemical and physiological alterations. A result of these alterations is that retinal ganglion cells (RGCs), the output neurons of the retina, become hyperactive and exhibit spontaneous, oscillatory bursts of spikes. This aberrant electrical activity degrades the signal-to-noise ratio in RGC responses, and thus the quality of information they transmit to the brain. These changes in the remnant retina, collectively termed “retinal remodeling”, pose challenges for genetic, cellular and bionic approaches to restore vision. It is therefore crucial to understand the nature of retinal remodeling, how it affects the ability of remnant retina to respond to novel therapeutic strategies, and how to ameliorate its effects. In this article, we discuss these topics, and suggest that the pathological state of the retinal output following photoreceptor loss is reversible, and therefore, amenable to restorative strategies. PMID:26924962

  11. Retinal Remodeling and Metabolic Alterations in Human AMD.

    PubMed

    Jones, Bryan W; Pfeiffer, Rebecca L; Ferrell, William D; Watt, Carl B; Tucker, James; Marc, Robert E

    2016-01-01

    Age-related macular degeneration (AMD) is a progressive retinal degeneration resulting in central visual field loss, ultimately causing debilitating blindness. AMD affects 18% of Americans from 65 to 74, 30% older than 74 years of age and is the leading cause of severe vision loss and blindness in Western populations. While many genetic and environmental risk factors are known for AMD, we currently know less about the mechanisms mediating disease progression. The pathways and mechanisms through which genetic and non-genetic risk factors modulate development of AMD pathogenesis remain largely unexplored. Moreover, current treatment for AMD is palliative and limited to wet/exudative forms. Retina is a complex, heterocellular tissue and most retinal cell classes are impacted or altered in AMD. Defining disease and stage-specific cytoarchitectural and metabolic responses in AMD is critical for highlighting targets for intervention. The goal of this article is to illustrate cell types impacted in AMD and demonstrate the implications of those changes, likely beginning in the retinal pigment epithelium (RPE), for remodeling of the the neural retina. Tracking heterocellular responses in disease progression is best achieved with computational molecular phenotyping (CMP), a tool that enables acquisition of a small molecule fingerprint for every cell in the retina. CMP uncovered critical cellular and molecular pathologies (remodeling and reprogramming) in progressive retinal degenerations such as retinitis pigmentosa (RP). We now applied these approaches to normal human and AMD tissues mapping progression of cellular and molecular changes in AMD retinas, including late-stage forms of the disease.

  12. Retinal Redox Stress and Remodeling in Cardiometabolic Syndrome and Diabetes

    PubMed Central

    Yang, Ying; Hayden, Melvin R.; Sowers, Susan; Bagree, Sarika V.; Sowers, James R.

    2010-01-01

    Diabetic retinopathy (DR) is a significant cause of global blindness; a major cause of blindness in the United States in people aged between 20–74. There is emerging evidence that retinopathy is initiated and propagated by multiple metabolic toxicities associated with excess production of reactive oxygen species (ROS). The four traditional metabolic pathways involved in the development of DR include: increased polyol pathway flux, advanced glycation end-product formation, activation of protein kinase Cisoforms and hexosamine pathway flux. These pathways individually and synergisticallycontribute to redox stress with excess ROS resulting in retinal tissue injury resulting in significant microvascular blood retinal barrier remodeling. The toxicity of hyperinsulinemia, hyperglycemia, hypertension, dyslipidemia, increased cytokines and growth factors, in conjunction with redox stress, contribute to the development and progression of DR. Redox stress contributes to the development and progression of abnormalities of endothelial cells and pericytes in DR. This review focuses on the ultrastructural observations of the blood retinal barrier including the relationship between the endothelial cell and pericyte remodeling in young nine week old Zucker obese (fa/ fa) rat model of obesity; cardiometabolic syndrome, and the 20 week old alloxan induced diabetic porcine model. Preventing or delaying the blindness associated with these intersecting abnormal metabolic pathways may be approached through strategies targeted to reduction of tissue inflammation and oxidative—redox stress. Understanding these abnormal metabolic pathways and the accompanying redox stress and remodeling mayprovide both the clinician and researcher a new concept of approaching this complicated disease process PMID:21307645

  13. Retinal Remodeling and Metabolic Alterations in Human AMD

    PubMed Central

    Jones, Bryan W.; Pfeiffer, Rebecca L.; Ferrell, William D.; Watt, Carl B.; Tucker, James; Marc, Robert E.

    2016-01-01

    Age-related macular degeneration (AMD) is a progressive retinal degeneration resulting in central visual field loss, ultimately causing debilitating blindness. AMD affects 18% of Americans from 65 to 74, 30% older than 74 years of age and is the leading cause of severe vision loss and blindness in Western populations. While many genetic and environmental risk factors are known for AMD, we currently know less about the mechanisms mediating disease progression. The pathways and mechanisms through which genetic and non-genetic risk factors modulate development of AMD pathogenesis remain largely unexplored. Moreover, current treatment for AMD is palliative and limited to wet/exudative forms. Retina is a complex, heterocellular tissue and most retinal cell classes are impacted or altered in AMD. Defining disease and stage-specific cytoarchitectural and metabolic responses in AMD is critical for highlighting targets for intervention. The goal of this article is to illustrate cell types impacted in AMD and demonstrate the implications of those changes, likely beginning in the retinal pigment epithelium (RPE), for remodeling of the the neural retina. Tracking heterocellular responses in disease progression is best achieved with computational molecular phenotyping (CMP), a tool that enables acquisition of a small molecule fingerprint for every cell in the retina. CMP uncovered critical cellular and molecular pathologies (remodeling and reprogramming) in progressive retinal degenerations such as retinitis pigmentosa (RP). We now applied these approaches to normal human and AMD tissues mapping progression of cellular and molecular changes in AMD retinas, including late-stage forms of the disease. PMID:27199657

  14. Using the rd1 mouse to understand functional and anatomical retinal remodelling and treatment implications in retinitis pigmentosa: A review.

    PubMed

    Kalloniatis, M; Nivison-Smith, L; Chua, J; Acosta, M L; Fletcher, E L

    2016-09-01

    Retinitis Pigmentosa (RP) reflects a range of inherited retinal disorders which involve photoreceptor degeneration and retinal pigmented epithelium dysfunction. Despite the multitude of genetic mutations being associated with the RP phenotype, the clinical and functional manifestations of the disease remain the same: nyctalopia, visual field constriction (tunnel vision), photopsias and pigment proliferation. In this review, we describe the typical clinical phenotype of human RP and review the anatomical and functional remodelling which occurs in RP determined from studies in the rd/rd (rd1) mouse. We also review studies that report a slowing down or show an acceleration of retinal degeneration and finally we provide insights on the impact retinal remodelling may have in vision restoration strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Adenosine triphosphate-induced photoreceptor death and retinal remodeling in rats

    PubMed Central

    Vessey, Kirstan A; Greferath, Ursula; Aplin, Felix P; Jobling, Andrew I; Phipps, Joanna A; Ho, Tracy; De Iongh, Robbert U; Fletcher, Erica L

    2014-01-01

    Many common causes of blindness involve the death of retinal photoreceptors, followed by progressive inner retinal cell remodeling. For an inducible model of retinal degeneration to be useful, it must recapitulate these changes. Intravitreal administration of adenosine triphosphate (ATP) has recently been found to induce acute photoreceptor death. The aim of this study was to characterize the chronic effects of ATP on retinal integrity. Five-week-old, dark agouti rats were administered 50 mM ATP into the vitreous of one eye and saline into the other. Vision was assessed using the electroretinogram and optokinetic response and retinal morphology investigated via histology. ATP caused significant loss of visual function within 1 day and loss of 50% of the photoreceptors within 1 week. At 3 months, 80% of photoreceptor nuclei were lost, and total photoreceptor loss occurred by 6 months. The degeneration and remodeling were similar to those found in heritable retinal dystrophies and age-related macular degeneration and included inner retinal neuronal loss, migration, and formation of new synapses; Müller cell gliosis, migration, and scarring; blood vessel loss; and retinal pigment epithelium migration. In addition, extreme degeneration and remodeling events, such as neuronal and glial migration outside the neural retina and proliferative changes in glial cells, were observed. These extreme changes were also observed in the 2-year-old P23H rhodopsin transgenic rat model of retinitis pigmentosa. This ATP-induced model of retinal degeneration may provide a valuable tool for developing pharmaceutical therapies or for testing electronic implants aimed at restoring vision. J. Comp. Neurol. 522:2928–2950, 2014. © 2014 Wiley Periodicals, Inc. PMID:24639102

  16. Adenosine triphosphate-induced photoreceptor death and retinal remodeling in rats.

    PubMed

    Vessey, Kirstan A; Greferath, Ursula; Aplin, Felix P; Jobling, Andrew I; Phipps, Joanna A; Ho, Tracy; De Iongh, Robbert U; Fletcher, Erica L

    2014-09-01

    Many common causes of blindness involve the death of retinal photoreceptors, followed by progressive inner retinal cell remodeling. For an inducible model of retinal degeneration to be useful, it must recapitulate these changes. Intravitreal administration of adenosine triphosphate (ATP) has recently been found to induce acute photoreceptor death. The aim of this study was to characterize the chronic effects of ATP on retinal integrity. Five-week-old, dark agouti rats were administered 50 mM ATP into the vitreous of one eye and saline into the other. Vision was assessed using the electroretinogram and optokinetic response and retinal morphology investigated via histology. ATP caused significant loss of visual function within 1 day and loss of 50% of the photoreceptors within 1 week. At 3 months, 80% of photoreceptor nuclei were lost, and total photoreceptor loss occurred by 6 months. The degeneration and remodeling were similar to those found in heritable retinal dystrophies and age-related macular degeneration and included inner retinal neuronal loss, migration, and formation of new synapses; Müller cell gliosis, migration, and scarring; blood vessel loss; and retinal pigment epithelium migration. In addition, extreme degeneration and remodeling events, such as neuronal and glial migration outside the neural retina and proliferative changes in glial cells, were observed. These extreme changes were also observed in the 2-year-old P23H rhodopsin transgenic rat model of retinitis pigmentosa. This ATP-induced model of retinal degeneration may provide a valuable tool for developing pharmaceutical therapies or for testing electronic implants aimed at restoring vision.

  17. Long time remodeling during retinal degeneration evaluated by optical coherence tomography, immunocytochemistry and fundus autofluorescence.

    PubMed

    Pinilla, Isabel; Fernández-Sánchez, Laura; Segura, Francisco J; Sánchez-Cano, Ana Isabel; Tamarit, José Manuel; Fuentes-Broto, Lorena; Eells, Janis T; Lax, Pedro; Cuenca, Nicolás

    2016-09-01

    To characterize the relationship between fundus autofluorescence (FAF), Optical Coherence Tomography (OCT) and immunohistochemistry (IHC) over the course of chronic retinal degeneration in the P23H rat. Homozygous albino P23H rats, Sprague-Dawley (SD) rats as controls and pigmented Long Evans (LE) rats were used. A Spectralis HRA OCT system was used for scanning laser ophthalmoscopy (SLO) imaging OCT and angiography. To determine FAF, fluorescence was excited using diode laser at 488 nm. A fast retina map OCT was performed using the optic nerve as a landmark. IHC was performed to correlate with the findings of OCT and FAF changes. During the course of retinal degeneration, the FAF pattern evolved from some spotting at 2 months old to a mosaic of hyperfluorescent dots in rats 6 months and older. Retinal thicknesses progressively diminished over the course of the disease. At later stages of degeneration, OCT documented changes in the retinal layers, however, IHC better identified the cell loss and remodeling changes. Angiography revealed attenuation of the retinal vascular plexus with time. We provide for the first time a detailed long-term analysis of the course of retinal degeneration in P23H rats using a combination of SLO and OCT imaging, angiography, FAF and IHC. Although, the application of noninvasive methods enables longitudinal studies and will decrease the number of animals needed for a study, IHC is still an essential tool to identify retinal changes at the cellular level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. βA3/A1-crystallin in astroglial cells regulates retinal vascular remodeling during development

    PubMed Central

    Sinha, Debasish; Klise, Andrew; Sergeev, Yuri; Hose, Stacey; Bhutto, Imran A.; Hackler, Laszlo; Malpic-llanos, Tanya; Samtani, Sonia; Grebe, Rhonda; Goldberg, Morton F.; Hejtmancik, J. Fielding; Nath, Avindra; Zack, Donald J.; Fariss, Robert N.; McLeod, D. Scott; Sundin, Olof; Broman, Karl W.; Lutty, Gerard A.; Zigler, J. Samuel

    2016-01-01

    Vascular remodeling is a complex process critical to development of the mature vascular system. Astrocytes are known to be indispensable for initial formation of the retinal vasculature; our studies with the Nuc1 rat provide novel evidence that these cells are also essential in the retinal vascular remodeling process. Nuc1 is a spontaneous mutation in the Sprague–Dawley rat originally characterized by nuclear cataracts in the heterozygote and microphthalmia in the homozygote. We report here that the Nuc1 allele results from mutation of the βA3/A1-crystallin gene, which in the neural retina is expressed only in astrocytes. We demonstrate striking structural abnormalities in Nuc1 astrocytes with profound effects on the organization of intermediate filaments. While vessels form in the Nuc1 retina, the subsequent remodeling process required to provide a mature vascular network is deficient. Our data implicate βA3/A1-crystallin as an important regulatory factor mediating vascular patterning and remodeling in the retina. PMID:17931883

  19. LPS Remodeling Triggers Formation of Outer Membrane Vesicles in Salmonella.

    PubMed

    Elhenawy, Wael; Bording-Jorgensen, Michael; Valguarnera, Ezequiel; Haurat, M Florencia; Wine, Eytan; Feldman, Mario F

    2016-07-12

    Outer membrane vesicles (OMV) are proposed to mediate multiple functions during pathogenesis and symbiosis. However, the mechanisms responsible for OMV formation remain poorly understood. It has been shown in eukaryotic membranes that lipids with an inverted-cone shape favor the formation of positive membrane curvatures. Based on these studies, we formulated the hypothesis that lipid A deacylation might impose shape modifications that result in the curvature of the outer membrane (OM) and subsequent OMV formation. We tested the effect of lipid A remodeling on OMV biogenesis employing Salmonella enterica serovar Typhimurium as a model organism. Expression of the lipid A deacylase PagL resulted in increased vesiculation, without inducing an envelope stress response. Mass spectrometry analysis revealed profound differences in the patterns of lipid A in OM and OMV, with accumulation of deacylated lipid A forms exclusively in OMV. OMV biogenesis by intracellular bacteria upon macrophage infection was drastically reduced in a pagL mutant strain. We propose a novel mechanism for OMV biogenesis requiring lipid A deacylation in the context of a multifactorial process that involves the orchestrated remodeling of the outer membrane. The role of lipid remodeling in vesiculation is well documented in eukaryotes. Similarly, bacteria produce membrane-derived vesicles; however, the molecular mechanisms underlying their production are yet to be determined. In this work, we investigated the role of outer membrane remodeling in OMV biogenesis in S Typhimurium. We showed that the expression of the lipid A deacylase PagL results in overvesiculation with deacylated lipid A accumulation exclusively in OMV. An S Typhimurium ΔpagL strain showed a significant reduction in intracellular OMV secretion relative to the wild-type strain. Our results suggest a novel mechanism for OMV biogenesis that involves outer membrane remodeling through lipid A modification. Understanding how OMV are

  20. LPS Remodeling Triggers Formation of Outer Membrane Vesicles in Salmonella

    PubMed Central

    Elhenawy, Wael; Bording-Jorgensen, Michael; Valguarnera, Ezequiel; Haurat, M. Florencia; Wine, Eytan

    2016-01-01

    ABSTRACT Outer membrane vesicles (OMV) are proposed to mediate multiple functions during pathogenesis and symbiosis. However, the mechanisms responsible for OMV formation remain poorly understood. It has been shown in eukaryotic membranes that lipids with an inverted-cone shape favor the formation of positive membrane curvatures. Based on these studies, we formulated the hypothesis that lipid A deacylation might impose shape modifications that result in the curvature of the outer membrane (OM) and subsequent OMV formation. We tested the effect of lipid A remodeling on OMV biogenesis employing Salmonella enterica serovar Typhimurium as a model organism. Expression of the lipid A deacylase PagL resulted in increased vesiculation, without inducing an envelope stress response. Mass spectrometry analysis revealed profound differences in the patterns of lipid A in OM and OMV, with accumulation of deacylated lipid A forms exclusively in OMV. OMV biogenesis by intracellular bacteria upon macrophage infection was drastically reduced in a pagL mutant strain. We propose a novel mechanism for OMV biogenesis requiring lipid A deacylation in the context of a multifactorial process that involves the orchestrated remodeling of the outer membrane. PMID:27406567

  1. Krypton laser photocoagulation induces retinal vascular remodeling rather than choroidal neovascularization.

    PubMed

    Behar-Cohen, F; Benezra, D; Soubrane, G; Jonet, L; Jeanny, J C

    2006-08-01

    The purpose of this study is to analyze the retina and choroid response following krypton laser photocoagulation. Ninety-two C57BL6/Sev129 and 32 C57BL/6J, 5-6-week-old mice received one single krypton (630 nm) laser lesion: 50 microm, 0.05 s, 400 mW. On the following day, every day thereafter for 1 week and every 2-3 days for the following 3 weeks, serial sections throughout the lesion were systematically collected and studied. Immunohistology using specific markers or antibodies for glial fibrillary acidic protein (GFAP) (astrocytes, glia and Muller's cells), von Willebrand (vW) (vascular endothelial cells), TUNEL (cells undergoing caspase dependent apoptosis), PCNA (proliferating cell nuclear antigen) p36, CD4 and F4/80 (infiltrating inflammatory and T cells), DAPI (cell nuclei) and routine histology were carried out. Laser confocal microscopy was also performed on flat mounts. Temporal and spatial observations of the created photocoagulation lesions demonstrate that, after a few hours, activated glial cells within the retinal path of the laser beam express GFAP. After 48 h, GFAP-positive staining was also detected within the choroid lesion center. "Movement" of this GFAP-positive expression towards the lasered choroid was preceded by a well-demarcated and localized apoptosis of the retina outer nuclear layer cells within the laser beam path. Later, death of retinal outer nuclear cells and layer thinning at this site was followed by evagination of the inner nuclear retinal layer. Funneling of the entire inner nuclear and the thinned outer nuclear layers into the choroid lesion center was accompanied by "dragging" of the retinal capillaries. Thus, from days 10 to 14 after krypton laser photocoagulation onward, well-formed blood capillaries (of retinal origin) were observed within the lesion. Only a few of the vW-positive capillary endothelial cells stained also for PCNA p36. In the choroid, dilatation of the vascular bed occurred at the vicinity of the

  2. Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish

    PubMed Central

    Saade, Carole J.; Alvarez-Delfin, Karen; Fadool, James M.

    2013-01-01

    Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second order neurons, bipolar cells and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6cw59 larval retina but not rod degeneration in the Xops:mCFPq13 line. In adults, rods and cones are present in approximately equal numbers, and in pde6cw59 mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once-blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2bp22bbtl or six7 morpholino-injected larvae protect from pde6cw59-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease. PMID:23365220

  3. Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish.

    PubMed

    Saade, Carole J; Alvarez-Delfin, Karen; Fadool, James M

    2013-01-30

    Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry, and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second-order neurons, bipolar cells, and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6c(w59) larval retina but not rod degeneration in the Xops:mCFP(q13) line. In adults, rods and cones are present in approximately equal numbers, and in pde6c(w59) mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2b(p25bbtl) or six7 morpholino-injected larvae protect from pde6c(w59)-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes, provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease.

  4. Retinal Mueller glial cells trigger the hallmark inflammatory process in autoimmune uveitis.

    PubMed

    Hauck, Stefanie M; Schoeffmann, Stephanie; Amann, Barbara; Stangassinger, Manfred; Gerhards, Hartmut; Ueffing, Marius; Deeg, Cornelia A

    2007-06-01

    Spontaneous equine recurrent uveitis (ERU) is an incurable autoimmune disease affecting the eye. Although retinal-autoantigen specific T-helper 1 cells have been demonstrated to trigger disease progression and relapses, the molecular processes leading to retinal degeneration and consequent blindness remain unknown. To elucidate such processes, we studied changes in the total retinal proteome of ERU-diseased horses compared to healthy controls. Severe changes in the retinal proteome were found for several markers for blood-retinal barrier breakdown and whose emergence depended upon disease severity. Additionally, uveitic changes in the retina were accompanied by upregulation of aldose 1-epimerase, selenium-binding protein 1, alpha crystallin A chain, phosphatase 2A inhibitor (SET), and glial fibrillary acidic protein (GFAP), the latter indicating an involvement of retinal Mueller glial cells (RMG) in disease process. To confirm this, we screened for additional RMG-specific markers and could demonstrate that, in uveitic retinas, RMG concomitantly upregulate vimentin and GFAP and downregulate glutamine synthetase. These expression patterns suggest for an activated state of RMG, which further downregulate the expression of pigment epithelium-derived factor (PEDF) and begin expressing interferon-gamma, a pro-inflammatory cytokine typical for T-helper 1 cells. We thus propose that RMG may play a fatal role in uveitic disease progression by directly triggering inflammatory processes through the expression and secretion of interferon-gamma.

  5. Progression of Neuronal and Synaptic Remodeling in the rd10 Mouse Model of Retinitis Pigmentosa

    PubMed Central

    Phillips, M. Joseph; Otteson, Deborah C.; Sherry, David M.

    2010-01-01

    The Pde6brd10 (rd10) mouse has a moderate rate of photoreceptor degeneration and serves as a valuable model for human autosomal recessive retinitis pigmentosa (RP). We evaluated the progression of neuronal remodeling of second- and third-order retinal cells and their synaptic terminals in retinas from Pde6brd10 (rd10) mice at varying stages of degeneration ranging from postnatal day 30 (P30) to postnatal month 9.5 (PNM9.5) using immunolabeling for well known cell- and synapse-specific markers. Following photoreceptor loss, changes occurred progressively from outer to inner retina. Horizontal cells and rod and cone bipolar cells underwent morphological remodeling that included loss of dendrites, cell body migration, and the sprouting of ectopic processes. Gliosis, characterized by translocation of Müller cell bodies to the outer retina and thickening of their processes, was evident by P30 and became more pronounced as degeneration progressed. Following rod degeneration, continued expression of VGluT1 in the outer retina was associated with survival and expression of synaptic proteins by nearby second-order neurons. Rod bipolar cell terminals showed a progressive reduction in size and ectopic bipolar cell processes extended into the inner nuclear layer and ganglion cell layer by PNM3.5. Putative ectopic conventional synapses, likely arising from amacrine cells, were present in the inner nuclear layer by PNM9.5. Despite these changes, the laminar organization of bipolar and amacrine cells and the ON-OFF organization in the inner plexiform layer was largely preserved. Surviving cone and bipolar cell terminals continued to express the appropriate cell-specific presynaptic proteins needed for synaptic function up to PNM9.5. PMID:20394059

  6. Resveratrol improves vasoprotective effects of captopril on aortic remodeling and fibrosis triggered by renovascular hypertension.

    PubMed

    Natalin, Henrique Melo; Garcia, Arthur Feierabend Engracia; Ramalho, Leandra Naira Zambeli; Restini, Carolina Baraldi Araujo

    2016-01-01

    Renin-angiotensin system triggers vascular remodeling and fibrosis during the renovascular hypertensive two-kidney, one-clip (2K1C) model by oxidative-stress-mediated mechanisms. Thus, we hypothesized that the chronic treatment with the polyphenolic antioxidant resveratrol would improve the vasoprotective effects promoted by the chronic treatment with the angiotensin-converting enzyme inhibitor (ACEi) captopril in 2K1C hypertensive rats. Our main objective was to evaluate the effects of the combined treatment with resveratrol and captopril on vascular remodeling and fibrosis in 2K1C rats. Male Wistar rats underwent to unilateral renal stenosis by 2K1C Goldblatt model. Six weeks after surgery, rat systolic blood pressure (SBP) was measured by indirect tail-cuff plethysmography. 2K1C rats were considered hypertensive when presenting SBP higher than 160 mmHg and underwent resveratrol (20 mg/kg), captopril (6 or 12 mg/kg), or resveratrol (20 mg/kg) combined with captopril (6 or 12 mg/kg) treatment for 3 weeks. Nine weeks after surgery, rat SBP was measured, and rat thoracic aorta was isolated for histological assays with hematoxylin/eosin or Picrosirius Red to evaluate aortic remodeling and fibrosis, respectively. Oral treatment of 2K1C hypertensive rats with resveratrol (20 mg/kg) combined with the dose-dependent ACEi captopril (6 and 12 mg/kg) resulted in lesser aortic thickening and reduced aortic fibrosis. Resveratrol (20 mg/kg) promoted a more expressive hypotensive effect with captopril (12 mg/kg) in 2K1C rats than the treatment with isolated captopril (12 mg/kg). Resveratrol improves the vasoprotective effects promoted by captopril on aortic remodeling and fibrosis during renovascular hypertension probably by synergic mechanisms involving antioxidant actions and nitric oxide generation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Vitamin A dimers trigger the protracted death of retinal pigment epithelium cells

    PubMed Central

    Mihai, D M; Washington, I

    2014-01-01

    Cellular events responsible for the initiation of major neurodegenerative disorders of the eye leading to blindness, including age-related macular degeneration, Stargardt and Best diseases, are poorly understood. Accumulation of vitamin A dimers, such as N-retinylidene-N-retinylethanolamine (A2E) in the retinal pigment epithelium (RPE), is one of the earliest measurable events preceding retinal degeneration. However, the extent to which these dimers contribute to tissue degeneration is not clear. To determine if A2E could trigger morphological changes associated with the degenerating RPE and subsequent cell death, we evaluated its toxicity to cultured human RPE cells (ARPE-19). We show that A2E triggered the accumulation of debris followed by a protracted death. A2E was up to≈14-fold more toxic than its precursor, retinaldehyde. Measurements reveal that the concentration of A2E in the aged human eye could exceed the concentration of all other retinoids, opening the possibility of A2E-triggered cell death by several reported mechanisms. Findings suggest that accumulation of vitamin A dimers such as A2E in the human eye might be responsible for the formation of ubiquitous RPE debris, an early indication of retinal degeneration, and that preventing or reducing the accumulation of vitamin A dimers is a prudent strategy to prevent blindness. PMID:25058422

  8. Vitamin A dimers trigger the protracted death of retinal pigment epithelium cells.

    PubMed

    Mihai, D M; Washington, I

    2014-07-24

    Cellular events responsible for the initiation of major neurodegenerative disorders of the eye leading to blindness, including age-related macular degeneration, Stargardt and Best diseases, are poorly understood. Accumulation of vitamin A dimers, such as N-retinylidene-N-retinylethanolamine (A2E) in the retinal pigment epithelium (RPE), is one of the earliest measurable events preceding retinal degeneration. However, the extent to which these dimers contribute to tissue degeneration is not clear. To determine if A2E could trigger morphological changes associated with the degenerating RPE and subsequent cell death, we evaluated its toxicity to cultured human RPE cells (ARPE-19). We show that A2E triggered the accumulation of debris followed by a protracted death. A2E was up to ≈ 14-fold more toxic than its precursor, retinaldehyde. Measurements reveal that the concentration of A2E in the aged human eye could exceed the concentration of all other retinoids, opening the possibility of A2E-triggered cell death by several reported mechanisms. Findings suggest that accumulation of vitamin A dimers such as A2E in the human eye might be responsible for the formation of ubiquitous RPE debris, an early indication of retinal degeneration, and that preventing or reducing the accumulation of vitamin A dimers is a prudent strategy to prevent blindness.

  9. Functional ectopic neuritogenesis by retinal rod bipolar cells is regulated by miR-125b-5p during retinal remodeling in RCS rats.

    PubMed

    Fu, Yan; Hou, Baoke; Weng, Chuanhuang; Liu, Weiping; Dai, Jiaman; Zhao, Congjian; Yin, Zheng Qin

    2017-04-21

    Following retinal degeneration, retinal remodeling can cause neuronal microcircuits to undergo structural alterations, which particularly affect the dendrites of bipolar cells. However, the mechanisms and functional consequences of such changes remain unclear. Here, we used Royal College of Surgeon (RCS) rats as a model of retinal degeneration, to study structural changes in rod bipolar cells (RBCs) and the underlying mechanisms of these changes. We found that, with retinal degeneration, RBC dendrites extended into the outer nuclear layer (ONL) of the retina, and the ectopic dendrites formed synapses with the remaining photoreceptors. This ectopic neuritogenesis was associated with brain-derived neurotrophic factor (BDNF) - expression of which was negatively regulated by miR-125b-5p. Overexpression of miR-125b-5p in the retinae of RCS rats diminished RBC ectopic dendrites, and compromised the b-wave of the flash electroretinogram (ERG). In contrast, down-regulation of miR-125b-5p (or exogenous BDNF treatment) increased RBC ectopic dendrites, and improved b-wave. Furthermore, we showed that the regulation of ectopic neuritogenesis by BDNF occurred via the downstream modulation of the TrkB-CREB signaling pathway. Based on these findings, we conclude that ectopic dendrites are likely to be providing functional benefits and that, in RCS rats, miR-125b-5p regulates ectopic neuritogenesis by RBCs through modulation of the BDNF-TrkB-CREB pathway. This suggests that therapies that reduce miR-125b-5p expression could be beneficial in human retinal degenerative disease.

  10. Overexpression of Snail in retinal pigment epithelial triggered epithelial–mesenchymal transition

    SciTech Connect

    Li, Hui; Li, Min; Xu, Ding; Zhao, Chun; Liu, Guodong; Wang, Fang

    2014-03-28

    Highlights: • First reported overexpression of Snail in RPE cells could directly trigger EMT. • Further confirmed the regulator role of Snail in RPE cells EMT in vitro. • Snail may be a potential therapeutic target to prevent the fibrosis of PVR. - Abstract: Snail transcription factor has been implicated as an important regulator in epithelial–mesenchymal transition (EMT) during tumourigenesis and fibrogenesis. Our previous work showed that Snail transcription factor was activated in transforming growth factor β1 (TGF-β1) induced EMT in retinal pigment epithelial (RPE) cells and may contribute to the development of retinal fibrotic disease such as proliferative vitreoretinopathy (PVR). However, whether Snail alone has a direct role on retinal pigment epithelial–mesenchymal transition has not been investigated. Here, we analyzed the capacity of Snail to drive EMT in human RPE cells. A vector encoding Snail gene or an empty vector were transfected into human RPE cell lines ARPE-19 respectively. Snail overexpression in ARPE-19 cells resulted in EMT, which was characterized by the expected phenotypic transition from a typical epithelial morphology to mesenchymal spindle-shaped. The expression of epithelial markers E-cadherin and Zona occludin-1 (ZO-1) were down-regulated, whereas mesenchymal markers a-smooth muscle actin (a-SMA) and fibronectin were up-regulated in Snail expression vector transfected cells. In addition, ectopic expression of Snail significantly enhanced ARPE-19 cell motility and migration. The present data suggest that overexpression of Snail in ARPE-19 cells could directly trigger EMT. These results may provide novel insight into understanding the regulator role of Snail in the development of retinal pigment epithelial–mesenchymal transition.

  11. Age-dependent disease expression determines remodeling of the retinal mosaic in carriers of RPGR exon ORF15 mutations

    PubMed Central

    Beltran, William A.; Acland, Gregory M.; Aguirre, Gustavo D.

    2009-01-01

    Purpose To characterize the retinal histopathology in carriers of X-linked progressive retinal atrophy (XLPRA1 & XLPRA2), two canine models of X-linked retinitis pigmentosa caused, respectively, by a stop and a frameshift mutation in RPGRORF15. Methods Retinas of XLPRA2 and XLPRA1 carriers of different ages were processed for morphologic evaluation, TUNEL assay, and immunohistochemistry. Cell-specific markers were used to examine retinal remodeling events. Results A mosaic pattern composed of patches of diseased and normal retina was first detected in XLPRA2 carriers at 4.9 weeks of age. A peak of photoreceptor cell death led to focal rod loss; however, in these patches an increased density of cones was found to persist over time. Patches of disease gradually disappeared such that by 39 weeks of age the overall retinal morphology, albeit thinner, had improved lamination. In older XLPRA2 carriers (≥8.8 years), extended regions of severe degeneration occurred in the peripheral/mid-peripheral retina. In XLPRA1 carriers, opsin mislocalization and rare events of rod death were detected by TUNEL assay at 20 weeks of age, however patchy degeneration was only seen by 1.4 years, and was still apparent at 7.8 years. Conclusion The time of onset and the progression of the disease differed between the two models. In the early onset form (XLPRA2) the morphologic appearance of the retinal mosaic changed as a function of age, suggesting that structural plasticity persists in the early postnatal canine retina as mutant photoreceptors die. In the late onset form (XLPRA1), patches of disease persisted until later ages. PMID:19255154

  12. Neutrophil Attack Triggers Extracellular Trap-Dependent Candida Cell Wall Remodeling and Altered Immune Recognition

    PubMed Central

    Hopke, Alex; Nicke, Nadine; Hidu, Erica E.; Degani, Genny; Popolo, Laura

    2016-01-01

    Pathogens hide immunogenic epitopes from the host to evade immunity, persist and cause infection. The opportunistic human fungal pathogen Candida albicans, which can cause fatal disease in immunocompromised patient populations, offers a good example as it masks the inflammatory epitope β-glucan in its cell wall from host recognition. It has been demonstrated previously that β-glucan becomes exposed during infection in vivo but the mechanism behind this exposure was unknown. Here, we show that this unmasking involves neutrophil extracellular trap (NET) mediated attack, which triggers changes in fungal cell wall architecture that enhance immune recognition by the Dectin-1 β-glucan receptor in vitro. Furthermore, using a mouse model of disseminated candidiasis, we demonstrate the requirement for neutrophils in triggering these fungal cell wall changes in vivo. Importantly, we found that fungal epitope unmasking requires an active fungal response in addition to the stimulus provided by neutrophil attack. NET-mediated damage initiates fungal MAP kinase-driven responses, particularly by Hog1, that dynamically relocalize cell wall remodeling machinery including Chs3, Phr1 and Sur7. Neutrophil-initiated cell wall disruptions augment some macrophage cytokine responses to attacked fungi. This work provides insight into host-pathogen interactions during disseminated candidiasis, including valuable information about how the C. albicans cell wall responds to the biotic stress of immune attack. Our results highlight the important but underappreciated concept that pattern recognition during infection is dynamic and depends on the host-pathogen dialog. PMID:27223610

  13. Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation

    PubMed Central

    Kimata, Naoki; Pope, Andreyah; Eilers, Markus; Opefi, Chikwado A.; Ziliox, Martine; Hirshfeld, Amiram; Zaitseva, Ekaterina; Vogel, Reiner; Sheves, Mordechai; Reeves, Philip J.; Smith, Steven O.

    2016-01-01

    The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate. Here we show that isomerization of the 11-cis retinal chromophore generates strong steric interactions between its β-ionone ring and transmembrane helices H5 and H6, while deprotonation of its protonated Schiff's base triggers the rearrangement of the hydrogen-bonding network involving residues on H6 and within the second extracellular loop. We integrate these observations with previous structural and functional studies to propose a two-stage mechanism for rhodopsin activation. PMID:27585742

  14. Retinal arteriolar remodeling evaluated with adaptive optics camera: Relationship with blood pressure levels.

    PubMed

    Gallo, A; Mattina, A; Rosenbaum, D; Koch, E; Paques, M; Girerd, X

    2016-06-01

    To research a retinal arterioles wall-to-lumen ratio or lumen diameter cut-off that would discriminate hypertensive from normal subjects using adaptive optics camera. One thousand and five hundred subjects were consecutively recruited and Adaptive Optics Camera rtx1™ (Imagine-Eyes, Orsay, France) was used to measure wall thickness, internal diameter, to calculate wall-to-lumen ratio (WLR) and wall cross-sectional area of retinal arterioles. Sitting office blood pressure was measured once, just before retinal measurements and office blood pressure was defined as systolic blood pressure>=140mmHg and diastolic blood pressure>=90mmHg. ROC curves were constructed to determine cut-off values for retinal parameters to diagnose office hypertension. In another population of 276 subjects office BP, retinal arterioles evaluation and home blood pressure monitoring were obtained. The applicability of retinal WLR or diameter cut-off values were compared in patients with controlled, masked, white-coat and sustained hypertension. In 1500 patients, a WLR>0.31 discriminated office hypertensive subjects with a 0.57 sensitivity and 0.71 specificity. Lumen diameter<78.2μm discriminated office hypertension with a 0.73 sensitivity and a 0.52 specificity. In the other 276 patients, WLR was higher in sustained hypertension vs normotensive patients (0.330±0.06 vs 0.292±0.05; P<0.001) and diameter was narrower in masked hypertensive vs normotensive subjects (73.0±11.2 vs 78.5±11.6μm; P<0.005). A WLR higher than 0.31 is in favour of office arterial hypertension; a diameter under<78μm may indicate a masked hypertension. Retinal arterioles analysis through adaptive optics camera may help the diagnosis of arterial hypertension, in particular in case of masked hypertension. Copyright © 2016. Published by Elsevier SAS.

  15. Premature remodeling of fat body and fat mobilization triggered by platelet-derived growth factor/VEGF receptor in Drosophila.

    PubMed

    Zheng, Huimei; Wang, Xuexiang; Guo, Pengfei; Ge, Wanzhong; Yan, Qinfeng; Gao, Weiqiang; Xi, Yongmei; Yang, Xiaohang

    2017-01-26

    In Drosophila, fat body remodeling accompanied with fat mobilization is an ecdysone-induced dynamic process that only occurs during metamorphosis. Here, we show that the activated Drosophila platelet-derived growth factor/VEGF receptor (PVR) is sufficient to induce shape changes in the fat body, from thin layers of tightly conjugated polygonal cells to clusters of disaggregated round-shaped cells. These morphologic changes are reminiscent of those seen during early pupation upon initiation of fat body remodeling. Activation of PVR also triggers an early onset of lipolysis and mobilization of internal storage as revealed by the appearance of small lipid droplets and up-regulated lipolysis-related genes. We found that PVR displays a dynamic expression pattern in the fat body and peaks at the larval-prepupal transition under the control of ecdysone signaling. Removal of PVR, although it does not prevent ecdysone-induced fat body remodeling, causes ecdysone signaling to be up-regulated. Our data reveal that PVR is active in a dual-secured mechanism that involves an ecdysone-induced fat body remodeling pathway and a reinforced PVR pathway for effective lipid mobilization. Ectopic expression of activated c-kit-the mouse homolog of PVR in the Drosophila fat body-also results in a similar phenotype. This may suggest a novel function of c-kit as it relates to lipid metabolism in mammals.-Zheng, H., Wang, X., Guo, P., Ge, W., Yan, Q., Gao, W., Xi, Y., Yang, X. Premature remodeling of fat body and fat mobilization triggered by platelet-derived growth factor/VEGF receptor in Drosophila.

  16. Longitudinal visualization of vascular occlusion, reperfusion, and remodeling in a zebrafish model of retinal vascular leakage using OCT angiography

    NASA Astrophysics Data System (ADS)

    Spitz, Kathleen; Bozic, Ivan; Desai, Vineet; Rao, Gopikrishna M.; Pollock, Lana M.; Anand-Apte, Bela; Tao, Yuankai K.

    2017-02-01

    Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are two of the leading causes of blindness and visual impairment in the world. Neovascularization results in severe vision loss in DR and AMD and, thus, there is an unmet need to identify mechanisms of pathogenesis and novel anti-angiogenic therapies. Zebrafish is a leading model organism for studying human disease pathogenesis, and the highly conserved drug activity between zebrafish and humans and their ability to readily absorb small molecules dissolved in water has benefited pharmaceutical discovery. Here, we use optical coherence tomography (OCT) and OCT angiography (OCT-A) to perform noninvasive, in vivo retinal imaging in a zebrafish model of vascular leakage. Zebrafish were treated with diethylaminobenzaldehyde (DEAB) to induce vascular leakage and imaged with OCT and OCT-A at six time points over two weeks: baseline one day before treatment and one, three, six, eight, and ten days post treatment. Longitudinal functional imaging showed significant vascular response immediately after DEAB treatment. Observed vascular changes included partial or complete vascular occlusion immediately after treatment and reperfusion during a two-week period. Increased vascular tortuosity several days post treatment indicated remodeling, and bifurcations and collateral vessel formation were also observed. In addition, significant treatment response variabilities were observed in the contralateral eye of the same animal. Anatomical and functional normalization was observed in most animals by ten days post treatment. These preliminary results motivate potential applications of OCT-A as a tool for studying pathogenesis and therapeutic screening in zebrafish models of retinal vascular disease.

  17. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma

    PubMed Central

    Pitha, Ian F.; Nguyen, Cathy; Steinhart, Matthew R.; Nguyen, Thao D.; Pease, Mary Ellen; Oglesby, Ericka N.; Berlinicke, Cynthia A.; Mitchell, Katherine L.; Kim, Jessica; Jefferys, Joan J.

    2015-01-01

    Purpose To determine if oral losartan treatment decreases the retinal ganglion cell (RGC) death caused by experimental intraocular pressure (IOP) elevation in mice. Methods We produced IOP increase in CD1 mice and performed unilateral optic nerve crush. Mice received oral losartan, spironolactone, enalapril, or no drug to test effects of inhibiting angiotensin receptors. IOP was monitored by Tonolab, and blood pressure was monitored by tail cuff device. RGC loss was measured in masked axon counts and RGC bodies by β-tubulin labeling. Scleral changes that could modulate RGC injury were measured including axial length, scleral thickness, and retinal layer thicknesses, pressure-strain behavior in inflation testing, and study of angiotensin receptors and pathways by reverse transcription polymerase chain reaction, Western blot, and immunohistochemistry. Results Losartan treatment prevented significant RGC loss (median loss = 2.5%, p = 0.13), while median loss with water, spironolactone, and enalapril treatments were 26%, 28% and 43%; p < 0.0001). The lower RGC loss with losartan was significantly less than the loss with spironolactone or enalapril (regression model p = 0.001; drug treatment group term p = 0.01). Both losartan and enalapril significantly lowered blood pressure (p< 0.001), but losartan was protective, while enalapril led to worse than water-treated RGC loss. RGC loss after crush injury was unaffected by losartan treatment (difference from control p = 0.9). Survival of RGC in cell culture was not prolonged by sartan treatment. Axonal transport blockade after 3 day IOP elevations was less in losartan-treated than in control glaucoma eyes (p = 0.007). Losartan inhibited effects of glaucoma, including reduction in extracellular signal-related kinase activity and modification of glaucoma-related changes in scleral thickness and creep under controlled IOP. Conclusions The neuroprotective effect of losartan in mouse glaucoma is associated with adaptive changes

  18. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma.

    PubMed

    Quigley, Harry A; Pitha, Ian F; Welsbie, Derek S; Nguyen, Cathy; Steinhart, Matthew R; Nguyen, Thao D; Pease, Mary Ellen; Oglesby, Ericka N; Berlinicke, Cynthia A; Mitchell, Katherine L; Kim, Jessica; Jefferys, Joan J; Kimball, Elizabeth C

    2015-01-01

    To determine if oral losartan treatment decreases the retinal ganglion cell (RGC) death caused by experimental intraocular pressure (IOP) elevation in mice. We produced IOP increase in CD1 mice and performed unilateral optic nerve crush. Mice received oral losartan, spironolactone, enalapril, or no drug to test effects of inhibiting angiotensin receptors. IOP was monitored by Tonolab, and blood pressure was monitored by tail cuff device. RGC loss was measured in masked axon counts and RGC bodies by β-tubulin labeling. Scleral changes that could modulate RGC injury were measured including axial length, scleral thickness, and retinal layer thicknesses, pressure-strain behavior in inflation testing, and study of angiotensin receptors and pathways by reverse transcription polymerase chain reaction, Western blot, and immunohistochemistry. Losartan treatment prevented significant RGC loss (median loss = 2.5%, p = 0.13), while median loss with water, spironolactone, and enalapril treatments were 26%, 28% and 43%; p < 0.0001). The lower RGC loss with losartan was significantly less than the loss with spironolactone or enalapril (regression model p = 0.001; drug treatment group term p = 0.01). Both losartan and enalapril significantly lowered blood pressure (p< 0.001), but losartan was protective, while enalapril led to worse than water-treated RGC loss. RGC loss after crush injury was unaffected by losartan treatment (difference from control p = 0.9). Survival of RGC in cell culture was not prolonged by sartan treatment. Axonal transport blockade after 3 day IOP elevations was less in losartan-treated than in control glaucoma eyes (p = 0.007). Losartan inhibited effects of glaucoma, including reduction in extracellular signal-related kinase activity and modification of glaucoma-related changes in scleral thickness and creep under controlled IOP. The neuroprotective effect of losartan in mouse glaucoma is associated with adaptive changes in the sclera expressed at the

  19. Membrane fluidization triggers membrane remodeling which affects the thermotolerance in Escherichia coli.

    PubMed

    Shigapova, Natalia; Török, Zsolt; Balogh, Gábor; Goloubinoff, Pierre; Vígh, László; Horváth, Ibolya

    2005-03-25

    Treatment of Escherichia coli with non-lethal doses of heat or benzyl alcohol (BA) causes transient membrane fluidization and permeabilization, and induces the rapid transcription of heat-shock genes in a sigma32-dependent manner. This early response is followed by a rapid adaptation (priming) of the cells to otherwise lethal elevated temperature, in strong correlation with an observed remodeling of the composition and alkyl chain unsaturation of membrane lipids. The acquisition of cellular thermotolerance in BA-primed cells is unrelated to protein denaturation and is not accompanied by the formation of major heat-shock proteins, such as GroEL and DnaK. This suggests that the rapid remodeling of membrane composition is sufficient for the short-term bacterial thermotolerance.

  20. JNK Controls the Onset of Mitosis in Planarian Stem Cells and Triggers Apoptotic Cell Death Required for Regeneration and Remodeling

    PubMed Central

    Almuedo-Castillo, María; Crespo, Xenia; Seebeck, Florian; Bartscherer, Kerstin; Salò, Emili; Adell, Teresa

    2014-01-01

    Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun–NH2–kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal. PMID:24922054

  1. JNK controls the onset of mitosis in planarian stem cells and triggers apoptotic cell death required for regeneration and remodeling.

    PubMed

    Almuedo-Castillo, María; Crespo-Yanez, Xenia; Crespo, Xenia; Seebeck, Florian; Bartscherer, Kerstin; Salò, Emili; Adell, Teresa

    2014-06-01

    Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun-NH2-kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal.

  2. Cell-mediated remodeling of biomimetic encapsulating hydrogels triggered by adipogenic differentiation of adipose stem cells

    PubMed Central

    Clevenger, Tracy N; Luna, Gabriel; Boctor, Daniel; Fisher, Steven K; Clegg, Dennis O

    2016-01-01

    One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for attachment and biodegradation. Poly(ethylene)-glycol hydrogels containing an Arg–Gly–Asp attachment sequence and a matrix metalloprotease 3/10 cleavage site supported adipose stem cell survival and showed remodeling initiated by adipogenic differentiation. Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed an increased number and area of lacunae or holes after adipose stem cell differentiation. Image analysis of adipose stem cells in Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed larger Voronoi domains, while cell density remained unchanged. The differentiated adipocytes residing within these newly remodeled spaces express proteins and messenger RNAs indicative of adipocytic differentiation. These engineered scaffolds may provide niches for stem cell differentiation and could prove useful in soft tissue regeneration. PMID:27733898

  3. Metabolic remodeling triggered by salivation and diabetes in major salivary glands.

    PubMed

    Nogueira, Fernando N; Carvalho, Rui A

    2017-02-01

    The metabolic profile of major salivary glands was evaluated by (13) C nuclear magnetic resonance isotopomer analysis ((13) C NMR-IA) following the infusion of [U-(13) C]glucose in order to define the true metabolic character of submandibular (SM) and parotid (PA) glands at rest and during salivary stimulation, and to determine the metabolic remodeling driven by diabetes. In healthy conditions, the SM gland is characterized at rest by a glycolytic metabolic profile and extensive pyruvate cycling. On the contrary, the PA gland, although also dominated by glycolysis, also possesses significant Krebs' cycle activity and does not sustain extensive pyruvate cycling. Under stimulation, both glands increase their glycolytic and Krebs' cycle fluxes, but the metabolic coupling between the two pathways is further compromised to account for the much increased biosynthetic anaplerotic fluxes. In diabetes, the responsiveness of the PA gland to a salivary stimulus is seriously hindered, mostly as a result of the incapacity to burst glycolytic activity and also an inability to improve the Krebs' cycle flux to compensate. The Krebs' cycle activity in the SM gland is also consistently compromised, but the glycolytic flux in this gland is more resilient. This diabetes-induced metabolic remodeling in SM and PA salivary glands illustrates the metabolic need to sustain adequate saliva production, and identifies glycolytic and oxidative pathways as key players in the metabolic dynamism of salivary glands. Copyright © 2016 John Wiley & Sons, Ltd.

  4. [Neonatal gastroenteritis triggers long-term cardiomyocyte atrophy, remodeling and irreversible hyperpolyploidization].

    PubMed

    Anatskaia, O V; Sidorenko, N V; Beĭer, T V; Vinogradov, A E

    2010-01-01

    Growth retardation, inflammation and cardiac overload in early childhood are linked with hypertension and infarction in adults. This link was termed as developmental programming. Exact mechanisms and critical time frames for development of the heart are still unknown. To elucidate these questions, we developed a model of moderate cryptosporidial gastroenteritis triggering main programming factors. Sliding the time point of infection day by day (from day 4 to day 18), we tested complete rat neonatal period. Also, we repeated all experiments 30 days after infection. Using methods of cytometry, immunocytochemistry and confocal microscopy, we compared sensitivity of ventricular cardiomyocyte shape, protein content and ploidy. Our data indicated that gastroenteritis lasting four days triggered cardiomyocyte atrophy, almost doubling cell length to width ratio, and premature and excessive polyploidization. Surprisingly, nucleus and cytoplasm reacted to the disease differently. Cardiomyocytes accumulated genomes only when the disease covered the time period between 6 and 14 days after birth, when cells substitute proliferative growth with hypertrophy. Contractile proteins and cell shape on the contrary, showed high sensitivity in the course of complete neonatal period. After restoration, ploidy did not regress, whereas cell shape and protein content revealed moderate restoration. Taking into account that somatic polyploidy is irreversible and that it alters global gene expression pattern, we may suggest that genome duplication is one of the instruments of developmental programming and that gastroenteritis is one if the triggers of this programming.

  5. Extensive Intestinal Resection Triggers Behavioral Adaptation, Intestinal Remodeling and Microbiota Transition in Short Bowel Syndrome

    PubMed Central

    Mayeur, Camille; Gillard, Laura; Le Beyec, Johanne; Bado, André; Joly, Francisca; Thomas, Muriel

    2016-01-01

    Extensive resection of small bowel often leads to short bowel syndrome (SBS). SBS patients develop clinical mal-absorption and dehydration relative to the reduction of absorptive area, acceleration of gastrointestinal transit time and modifications of the gastrointestinal intra-luminal environment. As a consequence of severe mal-absorption, patients require parenteral nutrition (PN). In adults, the overall adaptation following intestinal resection includes spontaneous and complex compensatory processes such as hyperphagia, mucosal remodeling of the remaining part of the intestine and major modifications of the microbiota. SBS patients, with colon in continuity, harbor a specific fecal microbiota that we called “lactobiota” because it is enriched in the Lactobacillus/Leuconostoc group and depleted in anaerobic micro-organisms (especially Clostridium and Bacteroides). In some patients, the lactobiota-driven fermentative activities lead to an accumulation of fecal d/l-lactates and an increased risk of d-encephalopathy. Better knowledge of clinical parameters and lactobiota characteristics has made it possible to stratify patients and define group at risk for d-encephalopathy crises. PMID:27681910

  6. STATE TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and Its Absence Triggers Remodeling of Photosynthetic Protein Complexes.

    PubMed

    Bergner, Sonja Verena; Scholz, Martin; Trompelt, Kerstin; Barth, Johannes; Gäbelein, Philipp; Steinbeck, Janina; Xue, Huidan; Clowez, Sophie; Fucile, Geoffrey; Goldschmidt-Clermont, Michel; Fufezan, Christian; Hippler, Michael

    2015-06-01

    In plants and algae, the serine/threonine kinase STN7/STT7, orthologous protein kinases in Chlamydomonas reinhardtii and Arabidopsis (Arabidopsis thaliana), respectively, is an important regulator in acclimation to changing light environments. In this work, we assessed STT7-dependent protein phosphorylation under high light in C. reinhardtii, known to fully induce the expression of light-harvesting complex stress-related protein3 (LHCSR3) and a nonphotochemical quenching mechanism, in relationship to anoxia where the activity of cyclic electron flow is stimulated. Our quantitative proteomics data revealed numerous unique STT7 protein substrates and STT7-dependent protein phosphorylation variations that were reliant on the environmental condition. These results indicate that STT7-dependent phosphorylation is modulated by the environment and point to an intricate chloroplast phosphorylation network responding in a highly sensitive and dynamic manner to environmental cues and alterations in kinase function. Functionally, the absence of the STT7 kinase triggered changes in protein expression and photoinhibition of photosystem I (PSI) and resulted in the remodeling of photosynthetic complexes. This remodeling initiated a pronounced association of LHCSR3 with PSI-light harvesting complex I (LHCI)-ferredoxin-NADPH oxidoreductase supercomplexes. Lack of STT7 kinase strongly diminished PSII-LHCII supercomplexes, while PSII core complex phosphorylation and accumulation were significantly enhanced. In conclusion, our study provides strong evidence that the regulation of protein phosphorylation is critical for driving successful acclimation to high light and anoxic growth environments and gives new insights into acclimation strategies to these environmental conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum.

    PubMed

    Abida, Heni; Dolch, Lina-Juana; Meï, Coline; Villanova, Valeria; Conte, Melissa; Block, Maryse A; Finazzi, Giovanni; Bastien, Olivier; Tirichine, Leïla; Bowler, Chris; Rébeillé, Fabrice; Petroutsos, Dimitris; Jouhet, Juliette; Maréchal, Eric

    2015-01-01

    Diatoms constitute a major phylum of phytoplankton biodiversity in ocean water and freshwater ecosystems. They are known to respond to some chemical variations of the environment by the accumulation of triacylglycerol, but the relative changes occurring in membrane glycerolipids have not yet been studied. Our goal was first to define a reference for the glycerolipidome of the marine model diatom Phaeodactylum tricornutum, a necessary prerequisite to characterize and dissect the lipid metabolic routes that are orchestrated and regulated to build up each subcellular membrane compartment. By combining multiple analytical techniques, we determined the glycerolipid profile of P. tricornutum grown with various levels of nitrogen or phosphorus supplies. In different P. tricornutum accessions collected worldwide, a deprivation of either nutrient triggered an accumulation of triacylglycerol, but with different time scales and magnitudes. We investigated in depth the effect of nutrient starvation on the Pt1 strain (Culture Collection of Algae and Protozoa no. 1055/3). Nitrogen deprivation was the more severe stress, triggering thylakoid senescence and growth arrest. By contrast, phosphorus deprivation induced a stepwise adaptive response. The time scale of the glycerolipidome changes and the comparison with large-scale transcriptome studies were consistent with an exhaustion of unknown primary phosphorus-storage molecules (possibly polyphosphate) and a transcriptional control of some genes coding for specific lipid synthesis enzymes. We propose that phospholipids are secondary phosphorus-storage molecules broken down upon phosphorus deprivation, while nonphosphorus lipids are synthesized consistently with a phosphatidylglycerol-to-sulfolipid and a phosphatidycholine-to-betaine lipid replacement followed by a late accumulation of triacylglycerol.

  8. Membrane Glycerolipid Remodeling Triggered by Nitrogen and Phosphorus Starvation in Phaeodactylum tricornutum1

    PubMed Central

    Abida, Heni; Dolch, Lina-Juana; Meï, Coline; Villanova, Valeria; Conte, Melissa; Block, Maryse A.; Finazzi, Giovanni; Bastien, Olivier; Tirichine, Leïla; Bowler, Chris; Rébeillé, Fabrice; Petroutsos, Dimitris; Jouhet, Juliette; Maréchal, Eric

    2015-01-01

    Diatoms constitute a major phylum of phytoplankton biodiversity in ocean water and freshwater ecosystems. They are known to respond to some chemical variations of the environment by the accumulation of triacylglycerol, but the relative changes occurring in membrane glycerolipids have not yet been studied. Our goal was first to define a reference for the glycerolipidome of the marine model diatom Phaeodactylum tricornutum, a necessary prerequisite to characterize and dissect the lipid metabolic routes that are orchestrated and regulated to build up each subcellular membrane compartment. By combining multiple analytical techniques, we determined the glycerolipid profile of P. tricornutum grown with various levels of nitrogen or phosphorus supplies. In different P. tricornutum accessions collected worldwide, a deprivation of either nutrient triggered an accumulation of triacylglycerol, but with different time scales and magnitudes. We investigated in depth the effect of nutrient starvation on the Pt1 strain (Culture Collection of Algae and Protozoa no. 1055/3). Nitrogen deprivation was the more severe stress, triggering thylakoid senescence and growth arrest. By contrast, phosphorus deprivation induced a stepwise adaptive response. The time scale of the glycerolipidome changes and the comparison with large-scale transcriptome studies were consistent with an exhaustion of unknown primary phosphorus-storage molecules (possibly polyphosphate) and a transcriptional control of some genes coding for specific lipid synthesis enzymes. We propose that phospholipids are secondary phosphorus-storage molecules broken down upon phosphorus deprivation, while nonphosphorus lipids are synthesized consistently with a phosphatidylglycerol-to-sulfolipid and a phosphatidycholine-to-betaine lipid replacement followed by a late accumulation of triacylglycerol. PMID:25489020

  9. NO mediates nitrite-sensing and adaptation and triggers a remodeling of lipids.

    PubMed

    Dolch, Lina J; Lupette, Josselin; Tourcier, Guillaume; Bedhomme, Mariette; Collin, Séverine; Magneschi, Leonardo; Conte, Melissa; Seddiki, Khawla; Richard, Christelle; Corre, Erwan; Fourage, Laurent; Laeuffer, Frédéric; Richards, Robert; Reith, Michael; Rébeillé, Fabrice; Jouhet, Juliette; McGinn, Patrick; Marechal, Eric

    2017-09-18

    Nitric oxide (NO) is an intermediate of the nitrogen cycle, an industrial pollutant and a marker of climate change. NO also acts as a gaseous transmitter in a variety of biological processes. The impact of environmental NO needs to be addressed. In diatoms, a dominant phylum in phytoplankton, NO was reported to mediate programmed cell death (PCD) in response to diatom derived polyunsaturated aldehydes. Here, using the Phaeodactylum Pt1 strain, 2E,4E-decadienal supplied in the micromolar concentration range led to a non-specific cell toxicity. We re-examined NO biosynthesis and response in Phaeodactylum. NO inhibits cell growth and triggers triacylglycerol (TAG) accumulation. Feeding experiments indicate that NO is not produced from arginine but via conversion of nitrite by the nitrate reductase (NR). Genome-wide transcriptional analysis shows that NO upregulates the expression of the plastid nitrite reductase (NIR) and genes involved in the subsequent incorporation of ammonium into amino acids, via both glutamine synthesis and ornithine-urea pathway. The phosphoenolpyruvate dehydrogenase complex is also upregulated, leading to the production of acetyl-CoA, which can feed TAG accumulation upon exposure to NO. Transcriptional reprogramming leading to higher TAG content is balanced with a decrease of monogalactosyldiacylglycerol in the plastid, via post-translational inhibition of MGD enzymatic activity by NO. Intracellular and transient NO emission acts therefore at the basis of a nitrite-sensing and acclimating system, whereas a long exposure to NO can additionally induce a redirection of carbon to neutral lipids and a stress response. {copyright, serif} 2017 American Society of Plant Biologists. All rights reserved.

  10. Retinal Degeneration Triggers the Activation of YAP/TEAD in Reactive Müller Cells.

    PubMed

    Hamon, Annaïg; Masson, Christel; Bitard, Juliette; Gieser, Linn; Roger, Jérôme E; Perron, Muriel

    2017-04-01

    During retinal degeneration, Müller glia cells respond to photoreceptor loss by undergoing reactive gliosis, with both detrimental and beneficial effects. Increasing our knowledge of the complex molecular response of Müller cells to retinal degeneration is thus essential for the development of new therapeutic strategies. The purpose of this work was to identify new factors involved in Müller cell response to photoreceptor cell death. Whole transcriptome sequencing was performed from wild-type and degenerating rd10 mouse retinas at P30. The changes in mRNA abundance for several differentially expressed genes were assessed by quantitative RT-PCR (RT-qPCR). Protein expression level and retinal cellular localization were determined by western blot and immunohistochemistry, respectively. Pathway-level analysis from whole transcriptomic data revealed the Hippo/YAP pathway as one of the main signaling pathways altered in response to photoreceptor degeneration in rd10 retinas. We found that downstream effectors of this pathway, YAP and TEAD1, are specifically expressed in Müller cells and that their expression, at both the mRNA and protein levels, is increased in rd10 reactive Müller glia after the onset of photoreceptor degeneration. The expression of Ctgf and Cyr61, two target genes of the transcriptional YAP/TEAD complex, is also upregulated following photoreceptor loss. This work reveals for the first time that YAP and TEAD1, key downstream effectors of the Hippo pathway, are specifically expressed in Müller cells. We also uncovered a deregulation of the expression and activity of Hippo/YAP pathway components in reactive Müller cells under pathologic conditions.

  11. High Dose β-Blocker Therapy Triggers Additional Reverse Remodeling in Patients With Idiopathic Non-Ischemic Cardiomyopathy.

    PubMed

    Nitta, Daisuke; Kinugawa, Koichiro; Imamura, Teruhiko; Kato, Naoko P; Komuro, Issei

    2016-12-02

    Carvedilol has established its evidence to improve prognosis and facilitate left ventricular reverse remodeling (LVRR) in heart failure patients with reduced left ventricular ejection fraction (LVEF), and many studies have supported its dose-dependency. However, there are few studies demonstrating the effect of high dose carvedilol in Japan. We enrolled 23 patients with idiopathic non-ischemic cardiomyopathy, in whom LVEF remained 45% or less despite 20 mg/ day of carvedilol therapy for > 3 months. After high dose (40 mg/day) carvedilol therapy for > 3 months, LVEF improved (+9.1%, P = 0.002), and LV end-diastolic diameter (LVDd) and LV end-systolic diameter (LVDs) reduced (-4.6 and -6.9 mm, respectively, P < 0.05) compared with the baseline data. Finally, 17 patients achieved LVRR after the high dose, when LVRR was defined as 1) those with final EF > 45%, and 2) those with final EF < 45% but who attained increases in LVEF > 10%, or LVEF > 5% with a decrease in LV end-diastolic dimension index (LVDDI) > 5%. Baseline predictors for LVRR after high dose carvedilol were the change rates of log B-type natriuretic peptide (BNP), LVDd, and LVDs from the time of pre-carvedilol introduction to enrollment (P < 0.05, respectively). In conclusion, high dose carvedilol triggered additional LVRR in patients with idiopathic non-ischemic cardiomyopathy and the change rates of log BNP, LVDd, and LVDs at 20 mg carvedilol may be predictors for the additional LVRR at high dose.

  12. Laminin modification subretinal bio-scaffold remodels retinal pigment epithelium-driven microenvironment in vitro and in vivo

    PubMed Central

    Jhan, Yong-Yu; Chien, Ke-Hung; Chung, Yu-Chien; Hung, Kuo-Hsuan; Chang, Chia-Ching; Lee, Chao-Kuei; Tseng, Wei-Lien; Hwang, De-Kuang; Hsu, Chia-Hsien; Lin, Tai-Chi; Chiou, Shih-Hwa; Chen, Shih-Jen

    2016-01-01

    Advanced age-related macular degeneration (AMD) may lead to geographic atrophy or fibrovascular scar at macular, dysfunctional retinal microenvironment, and cause profound visual loss. Recent clinical trials have implied the potential application of pluripotent cell-differentiated retinal pigment epithelial cells (dRPEs) and membranous scaffolds implantation in repairing the degenerated retina in AMD. However, the efficacy of implanted membrane in immobilization and supporting the viability and functions of dRPEs, as well as maintaining the retinal microenvironment is still unclear. Herein we generated a biomimetic scaffold mimicking subretinal Bruch's basement from plasma modified polydimethylsiloxane (PDMS) sheet with laminin coating (PDMS-PmL), and investigated its potential functions to provide a subretinal environment for dRPE-monolayer grown on it. Firstly, compared to non-modified PDMS, PDMS-PmL enhanced the attachment, proliferation, polarization, and maturation of dRPEs. Second, PDMS-PmL increased the polarized tight junction, PEDF secretion, melanosome pigment deposit, and phagocytotic-ability of dRPEs. Third, PDMS-PmL was able to carry a dRPEs/photoreceptor-precursors multilayer retina tissue. Finally, the in vivo subretinal implantation of PDMS-PmL in porcine eyes showed well-biocompatibility up to 2-year follow-up. Notably, multifocal ERGs at 2-year follow-up revealed well preservation of macular function in PDMS-PmL, but not PDMS, transplanted porcine eyes. Trophic PEDF secretion of macular retina in PDMS-PmL group was also maintained to preserve retinal microenvironment in PDMS-PmL eyes at 2 year. Taken together, these data indicated that PDMS-PmL is able to sustain the physiological morphology and functions of polarized RPE monolayer, suggesting its potential of rescuing macular degeneration in vivo. PMID:27564261

  13. Osteopontin and fibronectin levels are decreased in vitreous of autoimmune uveitis and retinal expression of both proteins indicates ECM re-modeling.

    PubMed

    Deeg, Cornelia A; Eberhardt, Christina; Hofmaier, Florian; Amann, Barbara; Hauck, Stefanie M

    2011-01-01

    Autoimmune uveitis is an intraocular inflammation that arises through autoreactive T-cells attacking the inner eye, eventually leading to blindness. However, the contributing molecular pathomechanisms within the affected tissues remain as yet elusive. The extracellular matrix (ECM) is a highly dynamic structure that varies tremendously and influences the encompassing tissue. In order to assess ECM re-modeling in autoimmune uveitis, we investigated the expression of ECM molecules fibronectin and osteopontin in vitreous and retina samples. This was carried out in the only spontaneous animal model for human autoimmue uveitis, namely equine recurrent uveitis (ERU) that resembles the human disease in clinical as well as in immunopathological aspects. ERU is a naturally occurring autoimmune disease in horses that develops frequently and has already proved its value to study disease-related pathomechanisms. Western blot analysis of fibronectin and osteopontin in healthy and uveitic vitreous revealed significant reduction of both proteins in uveitis. Immunohistochemical expression of fibronectin in healthy retinas was restricted to the inner limiting membrane abutting vimentin positive Müller cell endfeet, while in uveitic sections, a disintegration of the ILM was observed changing the fibronectin expression to a dispersed pattern extending toward the vitreous. Retinal expression of osteopontin in control tissue was found in a characteristic Müller cell pattern illustrated by co-localization with vimentin. In uveitic retinas, the immunoreactivity of osteopontin in gliotic Müller cells was almost absent. The ability of Müller cells to express fibronectin and osteopontin was additionally shown by immunocytochemistry of primary cultured equine Müller cells and the equine Müller cell line eqMC-7. In conclusion, severe ECM re-modeling in autoimmune uveitis reported here, might affect the adhesive function of fibronectin and thus the anchoring of Müller cell endfeet to

  14. Osteopontin and Fibronectin Levels Are Decreased in Vitreous of Autoimmune Uveitis and Retinal Expression of Both Proteins Indicates ECM Re-Modeling

    PubMed Central

    Deeg, Cornelia A.; Eberhardt, Christina; Hofmaier, Florian; Amann, Barbara; Hauck, Stefanie M.

    2011-01-01

    Autoimmune uveitis is an intraocular inflammation that arises through autoreactive T-cells attacking the inner eye, eventually leading to blindness. However, the contributing molecular pathomechanisms within the affected tissues remain as yet elusive. The extracellular matrix (ECM) is a highly dynamic structure that varies tremendously and influences the encompassing tissue. In order to assess ECM re-modeling in autoimmune uveitis, we investigated the expression of ECM molecules fibronectin and osteopontin in vitreous and retina samples. This was carried out in the only spontaneous animal model for human autoimmue uveitis, namely equine recurrent uveitis (ERU) that resembles the human disease in clinical as well as in immunopathological aspects. ERU is a naturally occurring autoimmune disease in horses that develops frequently and has already proved its value to study disease-related pathomechanisms. Western blot analysis of fibronectin and osteopontin in healthy and uveitic vitreous revealed significant reduction of both proteins in uveitis. Immunohistochemical expression of fibronectin in healthy retinas was restricted to the inner limiting membrane abutting vimentin positive Müller cell endfeet, while in uveitic sections, a disintegration of the ILM was observed changing the fibronectin expression to a dispersed pattern extending toward the vitreous. Retinal expression of osteopontin in control tissue was found in a characteristic Müller cell pattern illustrated by co-localization with vimentin. In uveitic retinas, the immunoreactivity of osteopontin in gliotic Müller cells was almost absent. The ability of Müller cells to express fibronectin and osteopontin was additionally shown by immunocytochemistry of primary cultured equine Müller cells and the equine Müller cell line eqMC-7. In conclusion, severe ECM re-modeling in autoimmune uveitis reported here, might affect the adhesive function of fibronectin and thus the anchoring of Müller cell endfeet to

  15. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol.

    PubMed

    Malitsky, Sergey; Ziv, Carmit; Rosenwasser, Shilo; Zheng, Shuning; Schatz, Daniella; Porat, Ziv; Ben-Dor, Shifra; Aharoni, Asaph; Vardi, Assaf

    2016-04-01

    Viruses that infect marine photosynthetic microorganisms are major ecological and evolutionary drivers of microbial food webs, estimated to turn over more than a quarter of the total photosynthetically fixed carbon. Viral infection of the bloom-forming microalga Emiliania huxleyi induces the rapid remodeling of host primary metabolism, targeted towards fatty acid metabolism. We applied a liquid chromatography-mass spectrometry (LC-MS)-based lipidomics approach combined with imaging flow cytometry and gene expression profiling to explore the impact of viral-induced metabolic reprogramming on lipid composition. Lytic viral infection led to remodeling of the cellular lipidome, by predominantly inducing the biosynthesis of highly saturated triacylglycerols (TAGs), coupled with a significant accumulation of neutral lipids within lipid droplets. Furthermore, TAGs were found to be a major component (77%) of the lipidome of isolated virions. Interestingly, viral-induced TAGs were significantly more saturated than TAGs produced under nitrogen starvation. This study highlights TAGs as major products of the viral-induced metabolic reprogramming during the host-virus interaction and indicates a selective mode of membrane recruitment during viral assembly, possibly by budding of the virus from specialized subcellular compartments. These findings provide novel insights into the role of viruses infecting microalgae in regulating metabolism and energy transfer in the marine environment and suggest their possible biotechnological application in biofuel production.

  16. High fat diet dysregulates microRNA-17-5p and triggers retinal inflammation: Role of endoplasmic-reticulum-stress

    PubMed Central

    Coucha, Maha; Mohamed, Islam N; Elshaer, Sally L; Mbata, Osinakachuk; Bartasis, Megan L; El-Remessy, Azza B

    2017-01-01

    AIM To elucidate how high diet-induced endoplasmic reticulum-stress upregulates thioredoxin interacting protein expression in Müller cells leading to retinal inflammation. METHODS Male C57Bl/J mice were fed either normal diet or 60% high fat diet for 4-8 wk. During the 4 wk study, mice received phenyl-butyric acid (PBA); endoplasmic reticulum-stress inhibitor; for 2 wk. Insulin resistance was assessed by oral glucose tolerance. Effects of palmitate-bovine serum albumin (BSA) (400 μmol/L) were examined in retinal Müller glial cell line and primary Müller cells isolated from wild type and thioredoxin interacting protein knock-out mice. Expression of thioredoxin interacting protein, endoplasmic reticulum-stress markers, miR-17-5p mRNA, as well as nucleotide-binding oligomerization domain-like receptor protein (NLRP3) and IL1β protein was determined. RESULTS High fat diet for 8 wk induced obesity and insulin resistance evident by increases in body weight and impaired glucose tolerance. By performing quantitative real-time polymerase chain reaction, we found that high fat diet triggered the expression of retinal endoplasmic reticulum-stress markers (P < 0.05). These effects were associated with increased thioredoxin interacting protein and decreased miR-17-5p expression, which were restored by inhibiting endoplasmic reticulum-stress with PBA (P < 0.05). In vitro, palmitate-BSA triggered endoplasmic reticulum-stress markers, which was accompanied with reduced miR-17-5p and induced thioredoxin interacting protein mRNA in retinal Müller glial cell line (P < 0.05). Palmitate upregulated NLRP3 and IL1β expression in primary Müller cells isolated from wild type. However, using primary Müller cells isolated from thioredoxin interacting protein knock-out mice abolished palmitate-mediated increase in NLRP3 and IL1β. CONCLUSION Our work suggests that targeting endoplasmic reticulum-stress or thioredoxin interacting protein are potential therapeutic strategies for early

  17. STATE TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and Its Absence Triggers Remodeling of Photosynthetic Protein Complexes1

    PubMed Central

    Bergner, Sonja Verena; Scholz, Martin; Trompelt, Kerstin; Barth, Johannes; Gäbelein, Philipp; Steinbeck, Janina; Xue, Huidan; Clowez, Sophie; Fucile, Geoffrey; Goldschmidt-Clermont, Michel; Fufezan, Christian; Hippler, Michael

    2015-01-01

    In plants and algae, the serine/threonine kinase STN7/STT7, orthologous protein kinases in Chlamydomonas reinhardtii and Arabidopsis (Arabidopsis thaliana), respectively, is an important regulator in acclimation to changing light environments. In this work, we assessed STT7-dependent protein phosphorylation under high light in C. reinhardtii, known to fully induce the expression of LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEIN3 (LHCSR3) and a nonphotochemical quenching mechanism, in relationship to anoxia where the activity of cyclic electron flow is stimulated. Our quantitative proteomics data revealed numerous unique STT7 protein substrates and STT7-dependent protein phosphorylation variations that were reliant on the environmental condition. These results indicate that STT7-dependent phosphorylation is modulated by the environment and point to an intricate chloroplast phosphorylation network responding in a highly sensitive and dynamic manner to environmental cues and alterations in kinase function. Functionally, the absence of the STT7 kinase triggered changes in protein expression and photoinhibition of photosystem I (PSI) and resulted in the remodeling of photosynthetic complexes. This remodeling initiated a pronounced association of LHCSR3 with PSI-LIGHT HARVESTING COMPLEX I (LHCI)-ferredoxin-NADPH oxidoreductase supercomplexes. Lack of STT7 kinase strongly diminished PSII-LHCII supercomplexes, while PSII core complex phosphorylation and accumulation were significantly enhanced. In conclusion, our study provides strong evidence that the regulation of protein phosphorylation is critical for driving successful acclimation to high light and anoxic growth environments and gives new insights into acclimation strategies to these environmental conditions. PMID:25858915

  18. Thermal Stress Triggers Broad Pocillopora damicornis Transcriptomic Remodeling, while Vibrio coralliilyticus Infection Induces a More Targeted Immuno-Suppression Response

    PubMed Central

    Vidal-Dupiol, Jeremie; Dheilly, Nolwenn M.; Rondon, Rodolfo; Grunau, Christoph; Cosseau, Céline; Smith, Kristina M.; Freitag, Michael; Adjeroud, Mehdi; Mitta, Guillaume

    2014-01-01

    Global change and its associated temperature increase has directly or indirectly changed the distributions of hosts and pathogens, and has affected host immunity, pathogen virulence and growth rates. This has resulted in increased disease in natural plant and animal populations worldwide, including scleractinian corals. While the effects of temperature increase on immunity and pathogen virulence have been clearly identified, their interaction, synergy and relative weight during pathogenesis remain poorly documented. We investigated these phenomena in the interaction between the coral Pocillopora damicornis and the bacterium Vibrio coralliilyticus, for which the infection process is temperature-dependent. We developed an experimental model that enabled unraveling the effects of thermal stress, and virulence vs. non-virulence of the bacterium. The physiological impacts of various treatments were quantified at the transcriptome level using a combination of RNA sequencing and targeted approaches. The results showed that thermal stress triggered a general weakening of the coral, making it more prone to infection, non-virulent bacterium induced an ‘efficient’ immune response, whereas virulent bacterium caused immuno-suppression in its host. PMID:25259845

  19. Thermal stress triggers broad Pocillopora damicornis transcriptomic remodeling, while Vibrio coralliilyticus infection induces a more targeted immuno-suppression response.

    PubMed

    Vidal-Dupiol, Jeremie; Dheilly, Nolwenn M; Rondon, Rodolfo; Grunau, Christoph; Cosseau, Céline; Smith, Kristina M; Freitag, Michael; Adjeroud, Mehdi; Mitta, Guillaume

    2014-01-01

    Global change and its associated temperature increase has directly or indirectly changed the distributions of hosts and pathogens, and has affected host immunity, pathogen virulence and growth rates. This has resulted in increased disease in natural plant and animal populations worldwide, including scleractinian corals. While the effects of temperature increase on immunity and pathogen virulence have been clearly identified, their interaction, synergy and relative weight during pathogenesis remain poorly documented. We investigated these phenomena in the interaction between the coral Pocillopora damicornis and the bacterium Vibrio coralliilyticus, for which the infection process is temperature-dependent. We developed an experimental model that enabled unraveling the effects of thermal stress, and virulence vs. non-virulence of the bacterium. The physiological impacts of various treatments were quantified at the transcriptome level using a combination of RNA sequencing and targeted approaches. The results showed that thermal stress triggered a general weakening of the coral, making it more prone to infection, non-virulent bacterium induced an 'efficient' immune response, whereas virulent bacterium caused immuno-suppression in its host.

  20. (Pro)renin Receptor Triggers Distinct Angiotensin II-Independent Extracellular Matrix Remodeling and Deterioration of Cardiac Function

    PubMed Central

    Moilanen, Anne-Mari; Rysä, Jaana; Serpi, Raisa; Mustonen, Erja; Szabò, Zoltán; Aro, Jani; Näpänkangas, Juha; Tenhunen, Olli; Sutinen, Meeri; Salo, Tuula; Ruskoaho, Heikki

    2012-01-01

    Background Activation of the renin-angiotensin-system (RAS) plays a key pathophysiological role in heart failure in patients with hypertension and myocardial infarction. However, the function of (pro)renin receptor ((P)RR) is not yet solved. We determined here the direct functional and structural effects of (P)RR in the heart. Methodology/Principal Findings (P)RR was overexpressed by using adenovirus-mediated gene delivery in normal adult rat hearts up to 2 weeks. (P)RR gene delivery into the anterior wall of the left ventricle decreased ejection fraction (P<0.01), fractional shortening (P<0.01), and intraventricular septum diastolic and systolic thickness, associated with approximately 2–fold increase in left ventricular (P)RR protein levels at 2 weeks. To test whether the worsening of cardiac function and structure by (P)RR gene overexpression was mediated by angiotensin II (Ang II), we infused an AT1 receptor blocker losartan via osmotic minipumps. Remarkably, cardiac function deteriorated in losartan-treated (P)RR overexpressing animals as well. Intramyocardial (P)RR gene delivery also resulted in Ang II-independent activation of extracellular-signal-regulated kinase1/2 phosphorylation and myocardial fibrosis, and the expression of transforming growth factor-β1 and connective tissue growth factor genes. In contrast, activation of heat shock protein 27 phosphorylation and apoptotic cell death by (P)RR gene delivery was Ang II-dependent. Finally, (P)RR overexpression significantly increased direct protein–protein interaction between (P)RR and promyelocytic zinc-finger protein. Conclusions/Significance These results indicate for the first time that (P)RR triggers distinct Ang II-independent myocardial fibrosis and deterioration of cardiac function in normal adult heart and identify (P)RR as a novel therapeutic target to optimize RAS blockade in failing hearts. PMID:22911790

  1. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases.

    PubMed

    Cuenca, Nicolás; Fernández-Sánchez, Laura; Campello, Laura; Maneu, Victoria; De la Villa, Pedro; Lax, Pedro; Pinilla, Isabel

    2014-11-01

    Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Synaptotagmin-7 Is Essential for Ca2+-Triggered Delayed Asynchronous Release But Not for Ca2+-Dependent Vesicle Priming in Retinal Ribbon Synapses

    PubMed Central

    Bacaj, Taulant

    2015-01-01

    Most synapses release neurotransmitters in two phases: (1) a fast synchronous phase lasting a few milliseconds; and (2) a delayed “asynchronous” phase lasting hundreds of milliseconds. Ca2+ triggers fast synchronous neurotransmitter release by binding to synaptotagmin-1, synaptotagmin-2, or synaptotagmin-9, but how Ca2+ triggers delayed asynchronous release has long remained enigmatic. Recent results suggested that consistent with the Ca2+-sensor function of synaptotagmin-7 in neuroendocrine exocytosis, synaptotagmin-7 also functions as a Ca2+ sensor for synaptic vesicle exocytosis but operates during delayed asynchronous release. Puzzlingly, a subsequent study postulated that synaptotagmin-7 is not a Ca2+ sensor for release but mediates Ca2+-dependent vesicle repriming after intense stimulation. To address these issues, we here analyzed synaptic transmission at rod bipolar neuron–AII amacrine cell synapses in acute mouse retina slices as a model system. Using paired recordings, we show that knock-out of synaptotagmin-7 selectively impairs delayed asynchronous release but not fast synchronous release. Delayed asynchronous release was blocked in wild-type synapses by intracellular addition of high concentrations of the slow Ca2+-chelator EGTA, but EGTA had no effect in synaptotagmin-7 knock-out neurons because delayed asynchronous release was already impaired. Moreover, direct measurements of vesicle repriming failed to uncover an effect of the synaptotagmin-7 knock-out on vesicle repriming. Our data demonstrate that synaptotagmin-7 is selectively essential for Ca2+-dependent delayed asynchronous release in retinal rod bipolar cell synapses, that its function can be blocked by simply introducing a slow Ca2+ buffer into the cells, and that synaptotagmin-7 is not required for normal vesicle repriming. SIGNIFICANCE STATEMENT How Ca2+ triggers delayed asynchronous release has long remained enigmatic. Synaptotagmin-7 has been implicated recently as Ca2+ sensor in

  3. Synaptotagmin-7 Is Essential for Ca2+-Triggered Delayed Asynchronous Release But Not for Ca2+-Dependent Vesicle Priming in Retinal Ribbon Synapses.

    PubMed

    Luo, Fujun; Bacaj, Taulant; Südhof, Thomas C

    2015-08-05

    Most synapses release neurotransmitters in two phases: (1) a fast synchronous phase lasting a few milliseconds; and (2) a delayed "asynchronous" phase lasting hundreds of milliseconds. Ca(2+) triggers fast synchronous neurotransmitter release by binding to synaptotagmin-1, synaptotagmin-2, or synaptotagmin-9, but how Ca(2+) triggers delayed asynchronous release has long remained enigmatic. Recent results suggested that consistent with the Ca(2+)-sensor function of synaptotagmin-7 in neuroendocrine exocytosis, synaptotagmin-7 also functions as a Ca(2+) sensor for synaptic vesicle exocytosis but operates during delayed asynchronous release. Puzzlingly, a subsequent study postulated that synaptotagmin-7 is not a Ca(2+) sensor for release but mediates Ca(2+)-dependent vesicle repriming after intense stimulation. To address these issues, we here analyzed synaptic transmission at rod bipolar neuron-AII amacrine cell synapses in acute mouse retina slices as a model system. Using paired recordings, we show that knock-out of synaptotagmin-7 selectively impairs delayed asynchronous release but not fast synchronous release. Delayed asynchronous release was blocked in wild-type synapses by intracellular addition of high concentrations of the slow Ca(2+)-chelator EGTA, but EGTA had no effect in synaptotagmin-7 knock-out neurons because delayed asynchronous release was already impaired. Moreover, direct measurements of vesicle repriming failed to uncover an effect of the synaptotagmin-7 knock-out on vesicle repriming. Our data demonstrate that synaptotagmin-7 is selectively essential for Ca(2+)-dependent delayed asynchronous release in retinal rod bipolar cell synapses, that its function can be blocked by simply introducing a slow Ca(2+) buffer into the cells, and that synaptotagmin-7 is not required for normal vesicle repriming. How Ca(2+) triggers delayed asynchronous release has long remained enigmatic. Synaptotagmin-7 has been implicated recently as Ca(2+) sensor in

  4. Palmitic acid triggers cell apoptosis in RGC-5 retinal ganglion cells through the Akt/FoxO1 signaling pathway.

    PubMed

    Yan, Panshi; Tang, Shu; Zhang, Haifeng; Guo, Yuanyuan; Zeng, Zhiwen; Wen, Qiang

    2017-04-01

    Hallmarks of the pathophysiology of glaucoma are oxidative stress and apoptotic death of retinal ganglion cells (RGCs). Lipotoxicity, involving a series of pathological cellular responses after exposure to elevated levels of fatty acids, leads to oxidative stress and cell death in various cell types. The phosphatidylinositol-3-kinase/protein kinase B/Forkhead box O1 (PI3K/Akt/FoxO1) pathway is crucial for cell survival and apoptosis. More importantly, FoxO1 gene has been reported to confer relatively higher risks for eye diseases including glaucoma. However, little information is available regarding the interaction between FoxO1 and RGC apoptosis, much less a precise mechanism. In the present study, immortalized rat retinal ganglion cell line 5 (RGC-5) was used as a model to study the toxicity of palmitic acid (PA), as well as underlying mechanisms. We found that PA exposure significantly decreased cell viability by enhancing apoptosis in RGC-5 cells, as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. PA also induced a remarkable increase in reactive oxygen species and malondialdehyde. Moreover, PA significantly decreased the level of phospho-Akt and phospho-FoxO1 in cells. Finally, shRNA knockdown and plasmid overexpression studies displayed that downregulation of Akt protein or upregulation of FoxO1 protein augmented cell death, while knockdown of FoxO1 or overexpression of Akt1 abolished PA-induced cell death. Collectively, our results indicated that PA-induced cell death is mediated through modulation of Akt/FoxO1 pathway activity.

  5. Neural reprogramming in retinal degenerations

    PubMed Central

    Marc, Robert E.; Jones, Bryan W.; Anderson, James R.; Kinard, Krista; Marshak, David W.; Wilson, John H.; Wensel, Theodore; Lucas, Robert J.

    2008-01-01

    Purpose Early visual defects in degenerative diseases such as retinitis pigmentosa (RP) may arise from phased remodeling of the neural retina. We sought to explore the functional expression of ionotropic (iGluR) and group III, type 6 metabotropic (mGluR6) glutamate receptors in late-stage photoreceptor degenerations. Methods Excitation mapping with organic cations and computational molecular phenotyping were used to determine whether retinal neurons displayed functional glutamate receptor signaling in rodent models of retinal degenerations and a sample of human RP. Results After photoreceptor loss in rodent models of RP, bipolar cells lose mGluR6 and iGluR glutamate-activated currents, while amacrine and ganglion cells retain iGluR-mediated responsivity. Paradoxically, amacrine and ganglion cells show spontaneous iGluR signals in vivo even though bipolar cells lack glutamate-coupled depolarization mechanisms. Cone survival can rescue iGluR expression by OFF bipolar cells. In a case of human RP with cone sparing, iGluR signaling appeared intact, but the numbers of bipolar cells expressing functional iGluRs was double that of normal retina. Conclusions RP triggers permanent loss of bipolar cell glutamate receptor expression, though spontaneous iGluR-mediated signaling by amacrine and ganglion cells implies that such truncated bipolar cells still release glutamate in response to some non-glutamatergic depolarization. Focal cone-sparing can preserve iGluR display by nearby bipolar cells, which may facilitate late-RP photoreceptor transplant attempts. An instance of human RP provides evidence that rod bipolar cell dendrite switching likely triggers new gene expression patterns and may impair cone pathway function. PMID:17591910

  6. Retinitis Pigmentosa

    MedlinePlus

    ... Action You are here Home › Retinal Diseases Listen Retinitis Pigmentosa What is retinitis pigmentosa? What are the symptoms? ... is available? What treatment is available? What is retinitis pigmentosa? Retinitis pigmentosa, also known as RP, refers to ...

  7. The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells.

    PubMed

    Zhang, Mei; Hu, Huiling; Zhang, Xiulan; Lu, Wennan; Lim, Jason; Eysteinsson, Thor; Jacobson, Kenneth A; Laties, Alan M; Mitchell, Claire H

    2010-01-01

    The A(3) adenosine receptor is emerging as an important regulator of neuronal signaling, and in some situations receptor stimulation can limit excitability. As the NMDA receptor frequently contributes to neuronal excitability, this study examined whether A(3) receptor activation could alter the calcium rise accompanying NMDA receptor stimulation. Calcium levels were determined from fura-2 imaging of isolated rat retinal ganglion cells as these neurons possess both receptor types. Brief application of glutamate or NMDA led to repeatable and reversible elevations of intracellular calcium. The A(3) agonist Cl-IB-MECA reduced the response to both glutamate and NMDA. While adenosine mimicked the effect of Cl-IB-MECA, the A(3) receptor antagonist MRS 1191 impeded the block by adenosine, implicating a role for the A(3) receptor in response to the natural agonist. The A(1) receptor antagonist DPCPX provided additional inhibition, implying a contribution from both A(1) and A(3) adenosine receptors. The novel A(3) agonist MRS 3558 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(3-chlorobenzylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide and mixed A(1)/A(3) agonist MRS 3630 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(cyclopentylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide also inhibited the calcium rise induced by NMDA. Low levels of MRS 3558 were particularly effective, with an IC(50) of 400 pM. In all cases, A(3) receptor stimulation inhibited only 30-50% of the calcium rise. In summary, stimulation of the A(3) adenosine receptor by either endogenous or synthesized agonists can limit the calcium rise accompanying NMDA receptor activation. It remains to be determined if partial block of the calcium rise by A(3) agonists can modify downstream responses to NMDA receptor stimulation.

  8. Anti-angiogenic Nanotherapy Inhibits Airway Remodeling and Hyper-responsiveness of Dust Mite Triggered Asthma in the Brown Norway Rat

    PubMed Central

    Lanza, Gregory M.; Jenkins, John; Schmieder, Anne H.; Moldobaeva, Aigul; Cui, Grace; Zhang, Huiying; Yang, Xiaoxia; Zhong, Qiong; Keupp, Jochen; Sergin, Ismail; Paranandi, Krishna S.; Eldridge, Lindsey; Allen, John S.; Williams, Todd; Scott, Michael J.; Razani, Babak; Wagner, Elizabeth M.

    2017-01-01

    Although angiogenesis is a hallmark feature of asthmatic inflammatory responses, therapeutic anti-angiogenesis interventions have received little attention. Objective: Assess the effectiveness of anti-angiogenic Sn2 lipase-labile prodrugs delivered via αvβ3-micellar nanotherapy to suppress microvascular expansion, bronchial remodeling, and airway hyper-responsiveness in Brown Norway rats exposed to serial house dust mite (HDM) inhalation challenges. Results: Anti-neovascular effectiveness of αvβ3-mixed micelles incorporating docetaxel-prodrug (Dxtl-PD) or fumagillin-prodrug (Fum-PD) were shown to robustly suppress neovascular expansion (p<0.01) in the upper airways/bronchi of HDM rats using simultaneous 19F/1H MR neovascular imaging, which was corroborated by adjunctive fluorescent microscopy. Micelles without a drug payload (αvβ3-No-Drug) served as a carrier-only control. Morphometric measurements of HDM rat airway size (perimeter) and vessel number at 21d revealed classic vascular expansion in control rats but less vascularity (p<0.001) after the anti-angiogenic nanotherapies. CD31 RNA expression independently corroborated the decrease in airway microvasculature. Methacholine (MCh) induced respiratory system resistance (Rrs) was high in the HDM rats receiving αvβ3-No-Drug micelles while αvβ3-Dxtl-PD or αvβ3-Fum-PD micelles markedly and equivalently attenuated airway hyper-responsiveness and improved airway compliance. Total inflammatory BAL cells among HDM challenged rats did not differ with treatment, but αvβ3+ macrophages/monocytes were significantly reduced by both nanotherapies (p<0.001), most notably by the αvβ3-Dxtl-PD micelles. Additionally, αvβ3-Dxtl-PD decreased BAL eosinophil and αvβ3+ CD45+ leukocytes relative to αvβ3-No-Drug micelles, whereas αvβ3-Fum-PD micelles did not. Conclusion: These results demonstrate the potential of targeted anti-angiogenesis nanotherapy to ameliorate the inflammatory hallmarks of asthma in a

  9. Anti-angiogenic Nanotherapy Inhibits Airway Remodeling and Hyper-responsiveness of Dust Mite Triggered Asthma in the Brown Norway Rat.

    PubMed

    Lanza, Gregory M; Jenkins, John; Schmieder, Anne H; Moldobaeva, Aigul; Cui, Grace; Zhang, Huiying; Yang, Xiaoxia; Zhong, Qiong; Keupp, Jochen; Sergin, Ismail; Paranandi, Krishna S; Eldridge, Lindsey; Allen, John S; Williams, Todd; Scott, Michael J; Razani, Babak; Wagner, Elizabeth M

    2017-01-01

    Although angiogenesis is a hallmark feature of asthmatic inflammatory responses, therapeutic anti-angiogenesis interventions have received little attention. Objective: Assess the effectiveness of anti-angiogenic Sn2 lipase-labile prodrugs delivered via αvβ3-micellar nanotherapy to suppress microvascular expansion, bronchial remodeling, and airway hyper-responsiveness in Brown Norway rats exposed to serial house dust mite (HDM) inhalation challenges. Results: Anti-neovascular effectiveness of αvβ3-mixed micelles incorporating docetaxel-prodrug (Dxtl-PD) or fumagillin-prodrug (Fum-PD) were shown to robustly suppress neovascular expansion (p<0.01) in the upper airways/bronchi of HDM rats using simultaneous (19)F/(1)H MR neovascular imaging, which was corroborated by adjunctive fluorescent microscopy. Micelles without a drug payload (αvβ3-No-Drug) served as a carrier-only control. Morphometric measurements of HDM rat airway size (perimeter) and vessel number at 21d revealed classic vascular expansion in control rats but less vascularity (p<0.001) after the anti-angiogenic nanotherapies. CD31 RNA expression independently corroborated the decrease in airway microvasculature. Methacholine (MCh) induced respiratory system resistance (Rrs) was high in the HDM rats receiving αvβ3-No-Drug micelles while αvβ3-Dxtl-PD or αvβ3-Fum-PD micelles markedly and equivalently attenuated airway hyper-responsiveness and improved airway compliance. Total inflammatory BAL cells among HDM challenged rats did not differ with treatment, but αvβ3(+) macrophages/monocytes were significantly reduced by both nanotherapies (p<0.001), most notably by the αvβ3-Dxtl-PD micelles. Additionally, αvβ3-Dxtl-PD decreased BAL eosinophil and αvβ3(+) CD45(+) leukocytes relative to αvβ3-No-Drug micelles, whereas αvβ3-Fum-PD micelles did not. Conclusion: These results demonstrate the potential of targeted anti-angiogenesis nanotherapy to ameliorate the inflammatory hallmarks of asthma in

  10. Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion

    PubMed Central

    Martinez-Perez, Enrique; Schvarzstein, Mara; Barroso, Consuelo; Lightfoot, James; Dernburg, Abby F.; Villeneuve, Anne M.

    2008-01-01

    Segregation of homologous chromosomes during meiosis depends on linkages (chiasmata) created by crossovers and on selective release of a subset of sister chromatid cohesion at anaphase I. During Caenorhabditis elegans meiosis, each chromosome pair forms a single crossover, and the position of this event determines which chromosomal regions will undergo cohesion release at anaphase I. Here we provide insight into the basis of this coupling by uncovering a large-scale regional change in chromosome axis composition that is triggered by crossovers. We show that axial element components HTP-1 and HTP-2 are removed during late pachytene, in a crossover-dependent manner, from the regions that will later be targeted for anaphase I cohesion release. We demonstrate correspondence in position and number between chiasmata and HTP-1/2-depleted regions and provide evidence that HTP-1/2 depletion boundaries mark crossover sites. In htp-1 mutants, diakinesis bivalents lack normal asymmetrical features, and sister chromatid cohesion is prematurely lost during the meiotic divisions. We conclude that HTP-1 is central to the mechanism linking crossovers with late-prophase bivalent differentiation and defines the domains where cohesion will be protected until meiosis II. Further, we discuss parallels between the pattern of HTP-1/2 removal in response to crossovers and the phenomenon of crossover interference. PMID:18923085

  11. Retinitis pigmentosa

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001029.htm Retinitis pigmentosa To use the sharing features on this page, please enable JavaScript. Retinitis pigmentosa is an eye disease in which there is ...

  12. Retinitis Pigmentosa.

    ERIC Educational Resources Information Center

    Carr, Ronald E.

    1979-01-01

    The author describes the etiology of retinitis pigmentosa, a visual dysfunction which results from progressive loss of the retinal photoreceptors. Sections address signs and symptoms, ancillary findings, heredity, clinical diagnosis, therapy, and research. (SBH)

  13. Retinitis Pigmentosa.

    ERIC Educational Resources Information Center

    Carr, Ronald E.

    1979-01-01

    The author describes the etiology of retinitis pigmentosa, a visual dysfunction which results from progressive loss of the retinal photoreceptors. Sections address signs and symptoms, ancillary findings, heredity, clinical diagnosis, therapy, and research. (SBH)

  14. Retinal detachment.

    PubMed

    Cavallerano, A A

    1992-01-01

    Retinal detachment is a separation of the neurosensory retina from the retinal pigment epithelium. Most retinal detachments are rhegmatogenous, and identification of risk factors and predisposing lesions are important aspects of patient management. Retinal detachment is relatively rare, but can pose a significant threat to vision if there is macular involvement. Prompt diagnosis combined with patient education and appropriate intervention often can avert irrevocable visual impairment. This paper presents an overview of the categories of retinal detachment, discusses the pathogenesis of the various types of detachment, and provides recommendations for primary care of patients with predisposing factors and high-risk characteristics.

  15. Molecular Aspects of Exercise-induced Cardiac Remodeling.

    PubMed

    Bernardo, Bianca C; McMullen, Julie R

    2016-11-01

    Exercise-induced cardiac remodeling is typically an adaptive response associated with cardiac myocyte hypertrophy and renewal, increased cardiac myocyte contractility, sarcomeric remodeling, cell survival, metabolic and mitochondrial adaptations, electrical remodeling, and angiogenesis. Initiating stimuli/triggers of cardiac remodeling include increased hemodynamic load, increased sympathetic activity, and the release of hormones and growth factors. Prolonged and strenuous exercise may lead to maladaptive exercise-induced cardiac remodeling including cardiac dysfunction and arrhythmia. In addition, this article describes novel therapeutic approaches for the treatment of heart failure that target mechanisms responsible for adaptive exercise-induced cardiac remodeling, which are being developed and tested in preclinical models.

  16. Pulsatile Fluid Shear in Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Frangos, John A.

    1997-01-01

    The objective of this investigation was to elucidate the sensitivity to transients in fluid shear stress in bone remodeling. Bone remodeling is clearly a function of the local mechanical environment which includes interstitial fluid flow. Traditionally, load-induced remodeling has been associated with low frequency (1-2 Hz) signals attributed to normal locomotion. McLeod and Rubin, however, demonstrated in vivo remodeling events associated with high frequency (15-30 Hz) loading. Likewise, other in vivo studies demonstrated that slowly applied strains did not trigger remodeling events. We therefore hypothesized that the mechanosensitive pathways which control bone maintenance and remodeling are differentially sensitive to varying rates of applied fluid shear stress.

  17. Retinal Vasculitis

    PubMed Central

    Rosenbaum, James T.; Sibley, Cailin H.; Lin, Phoebe

    2016-01-01

    Purpose of review Ophthalmologists and rheumatologists frequently miscommunicate in consulting on patients with retinal vasculitis. This report seeks to establish a common understanding of the term, retinal vasculitis, and to review recent papers on this diagnosis. Recent findings 1) The genetic basis of some rare forms of retinal vascular disease have recently been described. Identified genes include CAPN5, TREX1, and TNFAIP3; 2) Behçet’s disease is a systemic illness that is very commonly associated with occlusive retinal vasculitis; 3) retinal imaging including fluorescein angiography and other newer imaging modalities has proven crucial to the identification and characterization of retinal vasculitis and its complications; 4) although monoclonal antibodies to IL-17A or IL-1 beta failed in trials for Behçet’s disease, antibodies to TNF alpha, either infliximab or adalimumab, have demonstrated consistent benefit in managing this disease. Interferon treatment and B cell depletion therapy via rituximab may be beneficial in certain types of retinal vasculitis. Summary Retinal vasculitis is an important entity for rheumatologists to understand. Retinal vasculitis associated with Behçet’s disease responds to monoclonal antibodies that neutralize TNF, but the many other forms of non-infectious retinal vasculitis may require alternate therapeutic management. PMID:26945335

  18. Age-Related Susceptibility to Apoptosis in Human Retinal Pigment Epithelial Cells Is Triggered by Disruption of p53–Mdm2 Association

    PubMed Central

    Bhattacharya, Sujoy; Chaum, Edward; Johnson, Dianna A.; Johnson, Leonard R.

    2012-01-01

    Purpose. Relatively little is known about the contribution of p53/Mdm2 pathway in apoptosis of retinal pigment epithelial (RPE) cells or its possible link to dysfunction of aging RPE or to related blinding disorders such as age-related macular degeneration (AMD). Methods. Age-associated changes in p53 activation were evaluated in primary RPE cultures from human donor eyes of various ages. Apoptosis was evaluated by activation of caspases and DNA fragmentation. Gene-specific small interfering RNA was used to knock down expression of p53. Results. We observed that the basal rate of p53-dependent apoptosis increased in an age-dependent manner in human RPE. The age-dependent increase in apoptosis was linked to alterations in several aspects of the p53 pathway. p53 phosphorylation Ser15 was increased through the stimulation of ATM-Ser1981. p53 acetylation Lys379 was increased through the inhibition of SIRT1/2. These two posttranslational modifications of p53 blocked the sequestration of p53 by Mdm2, thus resulting in an increase in free p53 and of p53 stimulation of apoptosis through increased expression of PUMA (p53 upregulated modulator of apoptosis) and activation of caspase-3. Aged RPE also had reduced expression of antiapoptotic Bcl-2, which contributed to the increase in apoptosis. Of particular interest in these studies was that pharmacologic treatments to block p53 phosphorylation, acetylation, or expression were able to protect RPE cells from apoptosis. Conclusions. Our studies suggest that aging in the RPE leads to alterations of specific checkpoints in the apoptotic pathway, which may represent important molecular targets for the treatment of RPE-related aging disorders such as AMD. PMID:23139272

  19. Retinal detachment

    PubMed Central

    2010-01-01

    Introduction Rhegmatogenous retinal detachment (RRD) is the most common form of retinal detachment, where a retinal "break" allows the ingress of fluid from the vitreous cavity to the subretinal space, resulting in retinal separation. It occurs in about 1 in 10,000 people a year. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of interventions to prevent progression from retinal breaks or lattice degeneration to retinal detachment? What are the effects of different surgical interventions in people with rhegmatogenous retinal detachment? What are the effects of interventions to treat proliferative vitreoretinopathy occurring as a complication of retinal detachment or previous treatment for retinal detachment? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2010 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 21 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: corticosteroids, cryotherapy, daunorubicin, fluorouracil plus low molecular weight heparin, laser photocoagulation, pneumatic retinopexy, scleral buckling, short-acting or long-acting gas tamponade, silicone oil tamponade, and vitrectomy. PMID:21406128

  20. Retinal detachment

    PubMed Central

    2009-01-01

    Introduction Rhegmatogenous retinal detachment (RRD) is the most common form of retinal detachment, where a retinal "break" allows the ingress of fluid from the vitreous cavity to the subretinal space, resulting in retinal separation. It occurs in about 1 in 10,000 people a year. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of interventions to prevent progression from retinal breaks or lattice degeneration to retinal detachment? What are the effects of different surgical interventions in people with rhegmatogenous retinal detachment? What are the effects of interventions to treat proliferative vitreoretinopathy occurring as a complication of retinal detachment or previous treatment for retinal detachment? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2009 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 20 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: corticosteroids; cryotherapy; daunorubicin; fluorouracil plus low-molecular-weight heparin; laser photocoagulation; pneumatic retinopexy; scleral buckling; short-acting or long-acting gas tamponade; silicone oil tamponade; and vitrectomy. PMID:19450333

  1. Retinal meteor.

    PubMed

    Venkatesh, Ramesh; Gurav, Prachi; Dave, Prachi Abhishek; Roy, Sankhadeep

    2017-09-01

    We describe a case of a 65-year old man diagnosed with retinal vasoproliferative tumour secondary to posterior uveitis. The fluorescein angiography shows an interesting meteor-like leak emanating from the tumour and rising towards the superior retina in the later frames of the angiogram. Pictorially, we call it the "Retinal Meteor" and also describe the possible mechanism for this pattern of leakage.

  2. Retinal Flip in Rhodopsin Activation?

    PubMed Central

    Feng, Jun; Brown, Michael F.; Mertz, Blake

    2015-01-01

    Rhodopsin is a well-characterized structural model of a G protein-coupled receptor. Photoisomerization of the covalently bound retinal triggers activation. Surprisingly, the x-ray crystal structure of the active Meta-II state has a 180° rotation about the long-axis of the retinal polyene chain. Unbiased microsecond-timescale all-atom molecular dynamics simulations show that the retinal cofactor can flip back to the orientation observed in the inactive state of rhodopsin under conditions favoring the Meta-I state. Our results provide, to our knowledge, the first evidence from molecular dynamics simulations showing how rotation of the retinal ligand within its binding pocket can occur in the activation mechanism of rhodopsin. PMID:26083914

  3. Retinal detachment

    PubMed Central

    2014-01-01

    Introduction Rhegmatogenous retinal detachment (RRD) is the most common form of retinal detachment, where a retinal 'break' allows the ingress of fluid from the vitreous cavity to the subretinal space, resulting in retinal separation. It occurs in about 1 in 10,000 people a year. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of different surgical interventions in people with rhegmatogenous retinal detachment? What are the effects of interventions to treat proliferative vitreoretinopathy occurring as a complication of retinal detachment or previous treatment for retinal detachment? We searched: Medline, Embase, The Cochrane Library, and other important databases up to September 2013 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 14 studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: corticosteroids, daunorubicin, fluorouracil plus low molecular weight heparin, pneumatic retinopexy, scleral buckling, short-acting or long-acting gas tamponade, silicone oil tamponade, and vitrectomy. PMID:24807890

  4. Retinal amino acid neurochemistry in health and disease.

    PubMed

    Kalloniatis, Michael; Loh, Chee Seang; Acosta, Monica L; Tomisich, Guido; Zhu, Yuan; Nivison-Smith, Lisa; Fletcher, Erica L; Chua, Jacqueline; Sun, Daniel; Arunthavasothy, Niru

    2013-05-01

    Advances in basic retinal anatomy, genetics, biochemical pathways and neurochemistry have not only provided a better understanding of retinal function but have also allowed us to link basic science to retinal disease. The link with disease allowed measures to be developed that now provide an opportunity to intervene and slow down or even restore sight in previously 'untreatable' retinal diseases. One of the critical advances has been the understanding of the retinal amino acid neurotransmitters, related amino acids, their metabolites and functional receptors. This review provides an overview of amino acid localisation in the retina and examples of how retinal anatomy and amino acid neurochemistry directly links to understanding retinal disease. Also, the implications of retinal remodelling involving amino acid (glutamate) receptors are outlined in this review and insights are presented on how understanding of detrimental and beneficial retinal remodelling will provide better outcomes for patients using strategies for the preservation or restoration of vision. An internet-based database of retinal images of amino acid labelling patterns and other amino acid-related images in health and disease is located at http://www.aminoacidimmunoreactivity.com.

  5. Retinal Prosthesis

    PubMed Central

    Weiland, James D.; Humayun, Mark S.

    2015-01-01

    Retinal prosthesis have been translated from the laboratory to the clinical over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa. These devices provide partial sight restoration and patients use this improved vision in their everyday lives. Improved mobility and object detection are some of the more notable findings from the clinical trials. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. This paper reviews the recent clinical trials, highlights technology breakthroughs that will contribute to next generation of retinal prostheses. PMID:24710817

  6. Foveomacular retinitis.

    PubMed

    Kuming, B S

    1986-11-01

    A group of patients is described who developed the clinical features of foveomacular retinitis. No causative factors were isolated, and all patients strongly denied any type of sun gazing. It is possible that there is a group of patients who have the features of foveomacular retinitis but have not had any direct exposure to the sun. These patients would then constitute a primary type of foveomacular retinitis, as opposed to a secondary type which has a known cause and is synonymous with solar retinopathy.

  7. Foveomacular retinitis.

    PubMed Central

    Kuming, B S

    1986-01-01

    A group of patients is described who developed the clinical features of foveomacular retinitis. No causative factors were isolated, and all patients strongly denied any type of sun gazing. It is possible that there is a group of patients who have the features of foveomacular retinitis but have not had any direct exposure to the sun. These patients would then constitute a primary type of foveomacular retinitis, as opposed to a secondary type which has a known cause and is synonymous with solar retinopathy. Images PMID:3790482

  8. Mechanism by which untwisting of retinal leads to productive bacteriorhodopsin photocycle states.

    PubMed

    Wolter, Tino; Elstner, Marcus; Fischer, Stefan; Smith, Jeremy C; Bondar, Ana-Nicoleta

    2015-02-12

    Relaxation of the twisted-retinal photoproduct state triggers proton-coupled reaction cycle in retinal proteins. Given the crowded protein environments in which the retinal resides, a key open question is whether the retinal relaxation path is governed by the intrinsic torsional properties of the retinal or rather by the interactions of the retinal with protein and water groups. Here we address this question by performing systematic quantum mechanical/molecular mechanical molecular dynamics computations of retinal dynamics in bacteriorhodopsin at different temperatures, reaction path computations, and assessment of the vibrational fingerprints of the retinal molecule. The results demonstrate a complex dependence of the retinal dynamics and preferred geometry on temperature. As the temperature increases, the retinal dihedral angle samples values largely determined by its internal conformational energy. The protein environment shapes the energetics of retinal relaxation and provides hydrogen-bonding partners that stabilize the retinal geometry.

  9. Mechanism by which Untwisting of Retinal Leads to Productive Bacteriorhodopsin Photocycle States

    SciTech Connect

    Wolter, Tino; Elstner, Marcus; Fischer, Stefan; Smith, Jeremy C.; Bondar, Ana-Nicoleta

    2014-01-01

    Relaxation of the twisted-retinal photoproduct state triggers proton-coupled reaction cycle in retinal proteins. A key open question is whether the retinal relaxation path is governed by the intrinsic torsional properties of the retinal or rather by the interactions of the retinal with protein and water groups, given the crowded protein environments in which the retinal resides. We address this question by performing systematic quantum mechanical/molecular mechanical molecular dynamics computations of retinal dynamics in bacteriorhodopsin at different temperatures, reaction path computations, and assessment of the vibrational fingerprints of the retinal molecule. Our results demonstrate a complex dependence of the retinal dynamics and preferred geometry on temperature. As the temperature increases, the retinal dihedral angle samples values largely determined by its internal conformational energy. The protein environment shapes the energetics of retinal relaxation and provides hydrogen-bonding partners that stabilize the retinal geometry.

  10. Selective impairment of a subset of Ran-GTP-binding domains of ran-binding protein 2 (Ranbp2) suffices to recapitulate the degeneration of the retinal pigment epithelium (RPE) triggered by Ranbp2 ablation.

    PubMed

    Patil, Hemangi; Saha, Arjun; Senda, Eugene; Cho, Kyoung-in; Haque, MdEmdadul; Yu, Minzhong; Qiu, Sunny; Yoon, Dosuk; Hao, Ying; Peachey, Neal S; Ferreira, Paulo A

    2014-10-24

    Retinal pigment epithelium (RPE) degeneration underpins diseases triggered by disparate genetic lesions, noxious insults, or both. The pleiotropic Ranbp2 controls the expression of intrinsic and extrinsic pathological stressors impinging on cellular viability. However, the physiological targets and mechanisms controlled by Ranbp2 in tissue homeostasis, such as RPE, are ill defined. We show that mice, RPE-cre::Ranbp2(-/-), with selective Ranbp2 ablation in RPE develop pigmentary changes, syncytia, hypoplasia, age-dependent centrifugal and non-apoptotic degeneration of the RPE, and secondary leakage of choriocapillaris. These manifestations are accompanied by the development of F-actin clouds, metalloproteinase-11 activation, deregulation of expression or subcellular localization of critical RPE proteins, atrophic cell extrusions into the subretinal space, and compensatory proliferation of peripheral RPE. To gain mechanistic insights into what Ranbp2 activities are vital to the RPE, we performed genetic complementation analyses of transgenic lines of bacterial artificial chromosomes of Ranbp2 harboring loss of function of selective Ranbp2 domains expressed in a Ranbp2(-/-) background. Among the transgenic lines produced, only Tg(RBD2/3*-HA)::RPE-cre::Ranbp2(-/-)-expressing mutations, which selectively impair binding of RBD2/3 (Ran-binding domains 2 and 3) of Ranbp2 to Ran-GTP, recapitulate RPE degeneration, as observed with RPE-cre::Ranbp2(-/-). By contrast, Tg(RBD2/3*-HA) expression rescues the degeneration of cone photoreceptors lacking Ranbp2. The RPE of RPE-cre::Ranbp2(-/-) and Tg(RBD2/3*-HA)::RPE-cre::Ranbp2(-/-) share proteostatic deregulation of Ran GTPase, serotransferrin, and γ-tubulin and suppression of light-evoked electrophysiological responses. These studies unravel selective roles of Ranbp2 and its RBD2 and RBD3 in RPE survival and functions. We posit that the control of Ran GTPase by Ranbp2 emerges as a novel therapeutic target in diseases promoting

  11. Retinal Detachment

    MedlinePlus

    ... immediately. Treatment How is retinal detachment treated? Small holes and tears are treated with laser surgery or ... laser surgery tiny burns are made around the hole to “weld” the retina back into place. Cryopexy ...

  12. Retinal Detachment

    MedlinePlus

    The retina is a layer of tissue in the back of your eye that senses light and sends images ... for reading, driving, and seeing fine detail. A retinal detachment lifts or pulls the retina from its ...

  13. Retinal Disorders

    MedlinePlus

    ... be serious enough to cause blindness. Examples are Macular degeneration - a disease that destroys your sharp, central vision Diabetic eye disease Retinal detachment - a medical emergency, when the retina is ... children. Macular pucker - scar tissue on the macula Macular hole - ...

  14. Retinal Changes in an ATP-Induced Model of Retinal Degeneration

    PubMed Central

    Aplin, Felix P.; Vessey, Kirstan A.; Luu, Chi D.; Guymer, Robyn H.; Shepherd, Robert K.; Fletcher, Erica L.

    2016-01-01

    In rodents and felines, intravitreal administration of adenosine triphosphate (ATP) has been shown to induce photoreceptor death providing a tractable model of retinal degeneration in these species. This study investigated the long term effects of photoreceptor loss in an ATP induced feline model of retinal degeneration. Six normal sighted felines were unilaterally blinded using intravitreal ATP injections and assessed using electroretinography (ERG) and optical coherence tomography (OCT). At 30 h (n = 3) or 12 weeks (n = 3) post-injection, the animals were euthanized and the eyes enucleated. Retinae were sectioned and labeled using immunohistochemistry for markers of cell death, neural remodeling and gliosis. Ongoing cell death and retinal degeneration was observed in the outer retina at both 30 h and 12 weeks following unilateral ATP injection. Markers of mid to late-stage retinal remodeling such as cell displacement and aberrant neurite growth were observed in the inner retina at 12 weeks post-injection. Ganglion cells appeared to remain intact in ATP injected eyes. Müller cell gliosis was observed throughout the inner and outer retina, in some parts completely enveloping and/or displacing the surviving neural tissue. Our data suggests that the ATP injected feline retina continues to undergo progressive retinal degeneration and exhibits abnormalities consistent with a description of retinal remodeling commonly seen in other models of retinal degeneration. These findings validate the use of intravitreal ATP injection in feline as a large animal model of retinal degeneration which may aid in development of therapies aiming to restore visual function after photoreceptor degeneration. PMID:27199678

  15. Retinal Changes in an ATP-Induced Model of Retinal Degeneration.

    PubMed

    Aplin, Felix P; Vessey, Kirstan A; Luu, Chi D; Guymer, Robyn H; Shepherd, Robert K; Fletcher, Erica L

    2016-01-01

    In rodents and felines, intravitreal administration of adenosine triphosphate (ATP) has been shown to induce photoreceptor death providing a tractable model of retinal degeneration in these species. This study investigated the long term effects of photoreceptor loss in an ATP induced feline model of retinal degeneration. Six normal sighted felines were unilaterally blinded using intravitreal ATP injections and assessed using electroretinography (ERG) and optical coherence tomography (OCT). At 30 h (n = 3) or 12 weeks (n = 3) post-injection, the animals were euthanized and the eyes enucleated. Retinae were sectioned and labeled using immunohistochemistry for markers of cell death, neural remodeling and gliosis. Ongoing cell death and retinal degeneration was observed in the outer retina at both 30 h and 12 weeks following unilateral ATP injection. Markers of mid to late-stage retinal remodeling such as cell displacement and aberrant neurite growth were observed in the inner retina at 12 weeks post-injection. Ganglion cells appeared to remain intact in ATP injected eyes. Müller cell gliosis was observed throughout the inner and outer retina, in some parts completely enveloping and/or displacing the surviving neural tissue. Our data suggests that the ATP injected feline retina continues to undergo progressive retinal degeneration and exhibits abnormalities consistent with a description of retinal remodeling commonly seen in other models of retinal degeneration. These findings validate the use of intravitreal ATP injection in feline as a large animal model of retinal degeneration which may aid in development of therapies aiming to restore visual function after photoreceptor degeneration.

  16. Solar retinitis.

    PubMed

    SHIRLEY, S Y

    1963-07-20

    Retinal burns can be produced by direct gazing at the sun. This lesion is caused by the thermal effects of the visible and near infrared rays focused on the pigment structure behind the retina. It is rarely seen, as the normal eye will tolerate only fleeting glances at the sun, but is fairly common during a solar eclipse. A case of solar retinitis is presented in which treatment with corticosteroids lessened the retinal edema but the patient suffered a bilateral central scotoma and vision reduced to the 20/40 level. In viewing a solar eclipse a No. 4 density filter is recommended; as a rough test this filter will abolish the readability of print on a 60-watt incandescent frosted electric light bulb.

  17. Solar Retinitis

    PubMed Central

    Shirley, S. Y.

    1963-01-01

    Retinal burns can be produced by direct gazing at the sun. This lesion is caused by the thermal effects of the visible and near infrared rays focused on the pigment structure behind the retina. It is rarely seen, as the normal eye will tolerate only fleeting glances at the sun, but is fairly common during a solar eclipse. A case of solar retinitis is presented in which treatment with corticosteroids lessened the retinal edema but the patient suffered a bilateral central scotoma and vision reduced to the 20/40 level. In viewing a solar eclipse a No. 4 density filter is recommended; as a rough test this filter will abolish the readability of print on a 60-watt incandescent frosted electric light bulb. ImagesFig. 1Fig. 2 PMID:13977409

  18. Microscopic mammalian retinal pigment epithelium lesions induce widespread proliferation with differences in magnitude between center and periphery

    PubMed Central

    Lundh von Leithner, Peter; Ciurtin, Coziana

    2010-01-01

    Purpose The vertebrate retina develops from the center to the periphery. In amphibians and fish the retinal margin continues to proliferate throughout life, resulting in retinal expansion. This does not happen in mammals. However, some mammalian peripheral retinal pigment epithelial (RPE) cells continue to divide, perhaps as a vestige of this mechanism. The RPE cells are adjacent to the ciliary margin, a known stem cell source. Here we test the hypothesis that peripheral RPE is fundamentally different from central RPE by challenging different regions with microscopic laser burns and charting differential responses in terms of levels of proliferation and the regions over which this proliferation occurs. Methods Microscopic RPE lesions were undertaken in rats at different eccentricities and the tissue stained for proliferative markers Ki67 and bromodeoxyuridine (BrdU) and the remodeling metalloproteinase marker 2 (MMP2). Results All lesions produced local RPE proliferation and tissue remodeling. Significantly more mitosis resulted from peripheral than central lesions. Unexpectedly, single lesions also resulted in RPE cells proliferating across the entire retina. Their number did not increase linearly with lesion number, indicating that they may be a specific population. All lesions repaired and formed apparently normal relations with the neural retina. Repaired RPE was albino. Conclusions These results highlight regional RPE differences, revealing an enhanced peripheral repair capacity. Further, all lesions have a marked impact on both local and distant RPE cells, demonstrating a pan retinal signaling mechanism triggering proliferation across the tissue plane. The RPE cells may represent a distinct population as their number did not increase with multiple lesions. The fact that repairing cells were hypopigmented is of interest because reduced pigment is associated with enhanced proliferative capacities in the developing neural retina. PMID:20360994

  19. Selective Impairment of a Subset of Ran-GTP-binding Domains of Ran-binding Protein 2 (Ranbp2) Suffices to Recapitulate the Degeneration of the Retinal Pigment Epithelium (RPE) Triggered by Ranbp2 Ablation*

    PubMed Central

    Patil, Hemangi; Saha, Arjun; Senda, Eugene; Cho, Kyoung-in; Haque, MdEmdadul; Yu, Minzhong; Qiu, Sunny; Yoon, Dosuk; Hao, Ying; Peachey, Neal S.; Ferreira, Paulo A.

    2014-01-01

    Retinal pigment epithelium (RPE) degeneration underpins diseases triggered by disparate genetic lesions, noxious insults, or both. The pleiotropic Ranbp2 controls the expression of intrinsic and extrinsic pathological stressors impinging on cellular viability. However, the physiological targets and mechanisms controlled by Ranbp2 in tissue homeostasis, such as RPE, are ill defined. We show that mice, RPE-cre::Ranbp2−/−, with selective Ranbp2 ablation in RPE develop pigmentary changes, syncytia, hypoplasia, age-dependent centrifugal and non-apoptotic degeneration of the RPE, and secondary leakage of choriocapillaris. These manifestations are accompanied by the development of F-actin clouds, metalloproteinase-11 activation, deregulation of expression or subcellular localization of critical RPE proteins, atrophic cell extrusions into the subretinal space, and compensatory proliferation of peripheral RPE. To gain mechanistic insights into what Ranbp2 activities are vital to the RPE, we performed genetic complementation analyses of transgenic lines of bacterial artificial chromosomes of Ranbp2 harboring loss of function of selective Ranbp2 domains expressed in a Ranbp2−/− background. Among the transgenic lines produced, only TgRBD2/3*-HA::RPE-cre::Ranbp2−/−-expressing mutations, which selectively impair binding of RBD2/3 (Ran-binding domains 2 and 3) of Ranbp2 to Ran-GTP, recapitulate RPE degeneration, as observed with RPE-cre::Ranbp2−/−. By contrast, TgRBD2/3*-HA expression rescues the degeneration of cone photoreceptors lacking Ranbp2. The RPE of RPE-cre::Ranbp2−/− and TgRBD2/3*-HA::RPE-cre::Ranbp2−/− share proteostatic deregulation of Ran GTPase, serotransferrin, and γ-tubulin and suppression of light-evoked electrophysiological responses. These studies unravel selective roles of Ranbp2 and its RBD2 and RBD3 in RPE survival and functions. We posit that the control of Ran GTPase by Ranbp2 emerges as a novel therapeutic target in diseases

  20. Retine revisited.

    PubMed

    Douglas, D E

    2002-10-01

    Retine, so named by Albert Szent-Györgyi, an inhibitor of the growth of transplanted malignant tumours in animals, is present in all mammalian tissues and in urine. Its inhibitory activity was extensively investigated by Szent-Györgyi, but its exact chemical identity was not determined. Details of the reported physical and chemical properties of retine and its ubiquitous occurrence identify it as being identical to a complex mixture of lipid 2,4-diketones of similar ubiquitous occurrence. This lipid mixture has been extensively studied, and individual members have been synthesized.

  1. [Aging and retinal vascular diseases].

    PubMed

    Takagi, Hitoshi

    2007-03-01

    Ocular vascular diseases such as diabetic retinopathy, retinal vein occlusion, and age-related macular degeneration, whose population increases along with aging, have become leading causes of severe visual disturbance. Macular edema and serous retinal detachment are associated with abnormal vascular leakage and tractional retinal detachment, and neovascular glaucoma is caused by retinal neovascularization. Such ocular vascular diseases are caused by vascular cell aging and vascular damage associated with lifestyle-related diseases including diabetes mellitus, hypertension, hyperlipidemia, and obesity. In the present study, we investigated molecular mechanisms in such vascular deficiencies using vascular cell biology methodology, and we propose novel strategies for the treatment of such vascular diseases. Along with aging, oxidative stress and physical stress, such as mechanical stretch, continuously and directly insult vascular cells. Such stress induces apoptosis by intracellular signaling through stress kinases in cultured retinal vascular cells. Inhibition of such stress kinases could be an effective treatment to protect the vascular cells against age-related damage. In a retinal vascular developmental model, pericyte loss causes pathology mimicking macular edema and proliferative diabetic retinopathy. Angiopoietin 1 (Ang 1) secreted by pericytes suppresses oxidative stress-induced intracellular signaling through stress kinases linked to cell apoptosis and normalizes such retinal pathology. This suggests that the paracrine action of Ang 1 in the pericytes is necessary to sustain normal retinal vasculature, and that Ang 1-triggered intracellular signaling is useful for the treatment of vascular cell pathology associated with pericyte loss. In diabetic retinopathy and retinal vein occlusion, retinal vessels regress along with retinal vascular cell apoptosis, and the retina becomes ischemic followed by pathological retinal neovascularization. VEGF has been

  2. Teaching resources. Chromatin remodeling.

    PubMed

    Lue, Neal F

    2005-07-26

    This Teaching Resource provides lecture notes and slides for a class covering chromatin remodeling mechanisms and is part of the course "Cell Signaling Systems: a Course for Graduate Students." The lecture begins with a discussion of chromatin organization and then proceeds to describe the process of chromatin remodeling through a review of chromatin remodeling complexes and methods used to study their function.

  3. Retinitis pigmentosa

    PubMed Central

    Hamel, Christian

    2006-01-01

    Retinitis pigmentosa (RP) is an inherited retinal dystrophy caused by the loss of photoreceptors and characterized by retinal pigment deposits visible on fundus examination. Prevalence of non syndromic RP is approximately 1/4,000. The most common form of RP is a rod-cone dystrophy, in which the first symptom is night blindness, followed by the progressive loss in the peripheral visual field in daylight, and eventually leading to blindness after several decades. Some extreme cases may have a rapid evolution over two decades or a slow progression that never leads to blindness. In some cases, the clinical presentation is a cone-rod dystrophy, in which the decrease in visual acuity predominates over the visual field loss. RP is usually non syndromic but there are also many syndromic forms, the most frequent being Usher syndrome. To date, 45 causative genes/loci have been identified in non syndromic RP (for the autosomal dominant, autosomal recessive, X-linked, and digenic forms). Clinical diagnosis is based on the presence of night blindness and peripheral visual field defects, lesions in the fundus, hypovolted electroretinogram traces, and progressive worsening of these signs. Molecular diagnosis can be made for some genes, but is not usually performed due to the tremendous genetic heterogeneity of the disease. Genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, so the visual prognosis is poor. The therapeutic approach is restricted to slowing down the degenerative process by sunlight protection and vitaminotherapy, treating the complications (cataract and macular edema), and helping patients to cope with the social and psychological impact of blindness. However, new therapeutic strategies are emerging from intensive research (gene therapy, neuroprotection, retinal prosthesis). PMID:17032466

  4. Retinal ganglion cell axonal compression by retinal vessels in light-induced retinal degeneration

    PubMed Central

    García-Ayuso, Diego; Salinas-Navarro, Manuel; Agudo-Barriuso, Marta; Alarcón-Martínez, Luis; Vidal-Sanz, Manuel

    2011-01-01

    throughout the retina. Conclusions Light damage to photoreceptors depends on pupil dilation and light source, but affects all retinal layers with time. These deteriorative events are also observed in light-induced and inherited retinal degenerations in pigmented animals, but occur differently. Thus, the role of ocular pigmentation and the etiology of photoreceptor degeneration on retinal remodelling deserve further investigation. PMID:21738401

  5. Annual review of retinal research.

    PubMed

    Cohen, J

    1976-09-01

    This paper reviews recent ophthalmological manuscripts pertaining to wasting retinal nerve fibers, retinopathy related to systemic lymphomas, hypertensive retinopathy, diabetic retinopathy, retinal oxalosis, macular and foveal anomalies, retinal pigment epithelium, retinitis pigmentosa, retinoblastoma, histoplasmosis, toxoplasmosis, and retinal tears and detachments.

  6. Dynamic triggering

    USGS Publications Warehouse

    Hill, David P.; Prejean, Stephanie; Schubert, Gerald

    2015-01-01

    Dynamic stresses propagating as seismic waves from large earthquakes trigger a spectrum of responses at global distances. In addition to locally triggered earthquakes in a variety of tectonic environments, dynamic stresses trigger tectonic (nonvolcanic) tremor in the brittle–plastic transition zone along major plate-boundary faults, activity changes in hydrothermal and volcanic systems, and, in hydrologic domains, changes in spring discharge, water well levels, soil liquefaction, and the eruption of mud volcanoes. Surface waves with periods of 15–200 s are the most effective triggering agents; body-wave trigger is less frequent. Triggering dynamic stresses can be < 1 kPa.

  7. Apelin Is Required for Non-Neovascular Remodeling in the Retina

    PubMed Central

    McKenzie, Jenny A.G.; Fruttiger, Marcus; Abraham, Sabu; Lange, Clemens A.K.; Stone, Jay; Gandhi, Pranita; Wang, Xiaomeng; Bainbridge, James; Moss, Stephen E.; Greenwood, John

    2012-01-01

    Retinal pathologies are frequently accompanied by retinal vascular responses, including the formation of new vessels by angiogenesis (neovascularization). Pathological vascular changes may also include less well characterized traits of vascular remodeling that are non-neovascular, such as vessel pruning and the emergence of dilated and tortuous vessel phenotypes (telangiectasis). The molecular mechanisms underlying neovascular growth versus non-neovascular remodeling are poorly understood. We therefore undertook to identify novel regulators of non-neovascular remodeling in the retina by using the dystrophic Royal College of Surgeons (RCS) rat and the retinal dystrophy 1 (RD1) mouse, both of which display pronounced non-neovascular remodeling. Gene expression profiling of isolated retinal vessels from these mutant rodent models and wild-type controls revealed 60 differentially expressed genes. These included the genes for apelin (Apln) and for its receptor (Aplnr), both of which were strongly up-regulated in the mutants. Crossing RD1 mice into an Apln-null background substantially reduced vascular telangiectasia. In contrast, Apln gene deletion had no effect in two models of neovascular pathology [laser-induced choroidal neovascularization and the very low density lipoprotein receptor (Vldlr)-knockout mouse]. These findings suggest that in these models apelin has minimal effect on sprouting retinal angiogenesis, but contributes significantly to pathogenic non-neovascular remodeling. PMID:22067912

  8. Stimulation of a Suprachoroidal Retinal Prosthesis Drives Cortical Responses in a Feline Model of Retinal Degeneration.

    PubMed

    Aplin, Felix P; Fletcher, Erica L; Luu, Chi D; Vessey, Kirstan A; Allen, Penelope J; Guymer, Robyn H; Shepherd, Robert K; Shivdasani, Mohit N

    2016-10-01

    Retinal prostheses have emerged as a promising technology to restore vision in patients with severe photoreceptor degeneration. To better understand how neural degeneration affects the efficacy of electronic implants, we investigated the function of a suprachoroidal retinal implant in a feline model. Unilateral retinal degeneration was induced in four adult felines by intravitreal injection of adenosine triphosphate (ATP). Twelve weeks post injection, animals received suprachoroidal electrode array implants in each eye, and responses to electrical stimulation were obtained using multiunit recordings from the visual cortex. Histologic measurements of neural and glial changes in the retina at the implant site were correlated with cortical thresholds from individual stimulating electrodes. Adenosine triphosphate-injected eyes displayed changes consistent with mid-to-late stage retinal degeneration and remodeling. A significant increase in electrical charge was required to induce a cortical response from stimulation of the degenerated retina compared to that in the fellow control eye. Spatial and temporal characteristics of the electrically evoked cortical responses were no different between eyes. Individual electrode thresholds varied in both the control and the ATP-injected eyes and were correlated with ganglion cell density. In ATP-injected eyes, cortical threshold was also independently correlated with an increase in the extent of retinal gliosis. These data suggest that even when ganglion cell density remains unaffected, glial changes in the retina following degeneration can influence the efficacy of suprachoroidal electrical stimulation. A better understanding of how glial change impacts retinal prosthesis function may help to further the optimization of retinal implants.

  9. Endothelial cell dynamics in vascular remodelling.

    PubMed

    Barbacena, Pedro; Carvalho, Joana R; Franco, Claudio A

    2016-01-01

    In this ESCHM 2016 conference talk report, we summarise two recently published original articles Franco et al. PLoS Biology 2015 and Franco et al. eLIFE 2016. The vascular network undergoes extensive vessel remodelling to become fully functional. Is it well established that blood flow is a main driver for vascular remodelling. It has also been proposed that vessel pruning is a central process within physiological vessel remodelling. However, despite its central function, the cellular and molecular mechanisms regulating vessel regression, and their interaction with blood flow patterns, remain largely unexplained. We investigated the cellular process governing developmental vascular remodelling in mouse and zebrafish. We established that polarised reorganization of endothelial cells is at the core of vessel regression, representing vessel anastomosis in reverse. Moreover, we established for the first time an axial polarity map for all endothelial cells together with an in silico method for the computation of the haemodynamic forces in the murine retinal vasculature. Using network-level analysis and microfluidics, we showed that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/11 renders endothelial cells more sensitive to shear, resulting in axial polarisation at lower shear stress levels. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus.

  10. A novel rat model with obesity-associated retinal degeneration.

    PubMed

    Reddy, Geereddy Bhanuprakash; Vasireddy, Vidyullatha; Mandal, Md Nawajes A; Tiruvalluru, Mrudula; Wang, Xiaofei F; Jablonski, Monica M; Nappanveettil, Giridharan; Ayyagari, Radha

    2009-07-01

    A strong association between retinal degeneration and obesity has been shown in humans. However, the molecular basis of increased risk for retinal degeneration in obesity is unknown. Thus, an animal model with obesity and retinal degeneration would greatly aid the understanding of obesity-associated retinal degeneration. The retinal abnormalities in a novel rat model (WNIN-Ob) with spontaneously developed obesity are described. Histologic and immunohistochemical examination were performed on retinal sections of 2- to 12-month-old WNIN-Ob rats, and findings were compared with those of lean littermate controls. RNA from retinas of 12-month-old WNIN-Ob and lean littermate rats was used for microarray and qRT-PCR analysis. The WNIN-Ob rats developed severe obesity, with an onset at approximately 35 days. Evaluation of retinal morphology in 2- to 12-month-old WNIN-Ob and age-matched lean littermate controls revealed progressive retinal degeneration, with an onset between 4 to 6 months of age. Immunohistochemical analysis with anti-rhodopsin, anti-cone opsin, and PSD-95 antibodies further confirmed retinal degeneration, particularly rod cell loss and thinner outer plexiform layer, in the obese rat retina. Gene expression by microarray analysis and qRT-PCR established activation of stress response, tissue remodeling, impaired phototransduction, and photoreceptor degeneration in WNIN-Ob rat retina. WNIN-Ob rats develop increased stress in retinal tissue and progressive retinal degeneration after the onset of severe obesity. The WNIN-Ob rat is the first rat model to develop retinal degeneration after the onset of obesity. This novel rat model may be a valuable tool for investigating retinal degeneration associated with obesity in humans.

  11. Astrocyte Structural Reactivity and Plasticity in Models of Retinal Detachment

    PubMed Central

    Luna, Gabriel; Keeley, Patrick W.; Reese, Benjamin E.; Linberg, Kenneth A.; Lewis, Geoffrey P.; Fisher, Steven K.

    2016-01-01

    Although retinal neurodegenerative conditions such as age-related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and retinal detachment have different etiologies and pathological characteristics, they also have many responses in common at the cellular level, including neural and glial remodeling. Structural changes in Müller cells, the large radial glia of the retina in retinal disease and injury have been well described, that of the retinal astrocytes remains less so. Using modern imaging technology to describe the structural remodeling of retinal astrocytes after retinal detachment is the focus of this paper. We present both a review of critical literature as well as novel work focusing on the responses of astrocytes following rhegmatogenous and serous retinal detachment. The mouse presents a convenient model system in which to study astrocyte reactivity since the Müller cell response is muted in comparison to other species thereby allowing better visualization of the astrocytes. We also show data from rat, cat, squirrel, and human retina demonstrating similarities and differences across species. Our data from immunolabeling and dye-filling experiments demonstrate previously undescribed morphological characteristics of normal astrocytes and changes induced by detachment. Astrocytes not only upregulate GFAP, but structurally remodel, becoming increasingly irregular in appearance, and often penetrating deep into neural retina. Understanding these responses, their consequences, and what drives them may prove to be an important component in improving visual outcome in a variety of therapeutic situations. Our data further supports the concept that astrocytes are important players in the retina’s overall response to injury and disease. PMID:27060374

  12. Astrocyte structural reactivity and plasticity in models of retinal detachment.

    PubMed

    Luna, Gabriel; Keeley, Patrick W; Reese, Benjamin E; Linberg, Kenneth A; Lewis, Geoffrey P; Fisher, Steven K

    2016-09-01

    Although retinal neurodegenerative conditions such as age-related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and retinal detachment have different etiologies and pathological characteristics, they also have many responses in common at the cellular level, including neural and glial remodeling. Structural changes in Müller cells, the large radial glia of the retina in retinal disease and injury have been well described, that of the retinal astrocytes remains less so. Using modern imaging technology to describe the structural remodeling of retinal astrocytes after retinal detachment is the focus of this paper. We present both a review of critical literature as well as novel work focusing on the responses of astrocytes following rhegmatogenous and serous retinal detachment. The mouse presents a convenient model system in which to study astrocyte reactivity since the Mϋller cell response is muted in comparison to other species thereby allowing better visualization of the astrocytes. We also show data from rat, cat, squirrel, and human retina demonstrating similarities and differences across species. Our data from immunolabeling and dye-filling experiments demonstrate previously undescribed morphological characteristics of normal astrocytes and changes induced by detachment. Astrocytes not only upregulate GFAP, but structurally remodel, becoming increasingly irregular in appearance, and often penetrating deep into neural retina. Understanding these responses, their consequences, and what drives them may prove to be an important component in improving visual outcome in a variety of therapeutic situations. Our data further supports the concept that astrocytes are important players in the retina's overall response to injury and disease. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Crude Saponins of Panax notoginseng Have Neuroprotective Effects To Inhibit Palmitate-Triggered Endoplasmic Reticulum Stress-Associated Apoptosis and Loss of Postsynaptic Proteins in Staurosporine Differentiated RGC-5 Retinal Ganglion Cells.

    PubMed

    Wang, Dan-dan; Zhu, Hua-zhang; Li, Shi-wei; Yang, Jia-ming; Xiao, Yang; Kang, Qiang-rong; Li, Chen-yang; Zhao, Yun-shi; Zeng, Yong; Li, Yan; Zhang, Jian; He, Zhen-dan; Ying, Ying

    2016-02-24

    Increased apoptosis of retinal ganglion cells (RGCs) contributes to the gradual loss of retinal neurons at the early phase of diabetic retinopathy (DR). There is an urgent need to search for drugs with neuroprotective effects against apoptosis of RGCs for the early treatment of DR. This study aimed to investigate the neuroprotective effects of saponins extracted from Panax notoginseng, a traditional Chinese medicine, on apoptosis of RGCs stimulated by palmitate, a metabolic factor for the development of diabetes and its complications, and to explore the potential molecular mechanism. We showed that crude saponins of P. notoginseng (CSPN) inhibited the increased apoptosis and loss of postsynaptic protein PSD-95 by palmitate in staurosporine-differentiated RGC-5 cells. Moreover, CSPN suppressed palmitate-induced reactive oxygen species generation and endoplasmic reticulum stress-associated eIF2α/ATF4/CHOP and caspase 12 pathways. Thus, our findings address the potential therapeutic significance of CSPN for the early stage of DR.

  14. Repetitive magnetic stimulation improves retinal function in a rat model of retinal dystrophy

    NASA Astrophysics Data System (ADS)

    Rotenstreich, Ygal; Tzameret, Adi; Levi, Nir; Kalish, Sapir; Sher, Ifat; Zangen, Avraham; Belkin, Michael

    2014-02-01

    Vision incapacitation and blindness associated with retinal dystrophies affect millions of people worldwide. Retinal degeneration is characterized by photoreceptor cell death and concomitant remodeling of remaining retinal cells. Repetitive Magnetic Stimulation (RMS) is a non-invasive technique that creates alternating magnetic fields by brief electric currents transmitted through an insulated coil. These magnetic field generate action potentials in neurons, and modulate the expression of neurotransmitter receptors, growth factors and transcription factors which mediate plasticity. This technology has been proven effective and safe in various psychiatric disorders. Here we determined the effect of RMS on retinal function in Royal College of Surgeons (RCS) rats, a model for retinal dystrophy. Four week-old RCS and control Spargue Dawley (SD) rats received sham or RMS treatment over the right eye (12 sessions on 4 weeks). RMS treatment at intensity of at 40% of the maximal output of a Rapid2 stimulator significantly increased the electroretinogram (ERG) b-wave responses by up to 6- or 10-fold in the left and right eye respectively, 3-5 weeks following end of treatment. RMS treatment at intensity of 25% of the maximal output did not significant effect b-wave responses following end of treatment with no adverse effect on ERG response or retinal structure of SD rats. Our findings suggest that RMS treatment induces delayed improvement of retinal functions and may induce plasticity in the retinal tissue. Furthermore, this non-invasive treatment may possibly be used in the future as a primary or adjuvant treatment for retinal dystrophy.

  15. Missed retinal breaks in rhegmatogenous retinal detachment.

    PubMed

    Takkar, Brijesh; Azad, Shorya; Shashni, Adarsh; Pujari, Amar; Bhatia, Indrish; Azad, Rajvardhan

    2016-01-01

    To evaluate the causes and associations of missed retinal breaks (MRBs) and posterior vitreous detachment (PVD) in patients with rhegmatogenous retinal detachment (RRD). Case sheets of patients undergoing vitreo retinal surgery for RRD at a tertiary eye care centre were evaluated retrospectively. Out of the 378 records screened, 253 were included for analysis of MRBs and 191 patients were included for analysis of PVD, depending on the inclusion criteria. Features of RRD and retinal breaks noted on examination were compared to the status of MRBs and PVD detected during surgery for possible associations. Overall, 27% patients had MRBs. Retinal holes were commonly missed in patients with lattice degeneration while missed retinal tears were associated with presence of complete PVD. Patients operated for cataract surgery were significantly associated with MRBs (P=0.033) with the odds of missing a retinal break being 1.91 as compared to patients with natural lens. Advanced proliferative vitreo retinopathy (PVR) and retinal bullae were the most common reasons for missing a retinal break during examination. PVD was present in 52% of the cases and was wrongly assessed in 16%. Retinal bullae, pseudophakia/aphakia, myopia, and horse shoe retinal tears were strongly associated with presence of PVD. Traumatic RRDs were rarely associated with PVD. Pseudophakic patients, and patients with retinal bullae or advanced PVR should be carefully screened for MRBs. Though Weiss ring is a good indicator of PVD, it may still be over diagnosed in some cases. PVD is associated with retinal bullae and pseudophakia, and inversely with traumatic RRD.

  16. Missed retinal breaks in rhegmatogenous retinal detachment

    PubMed Central

    Takkar, Brijesh; Azad, Shorya; Shashni, Adarsh; Pujari, Amar; Bhatia, Indrish; Azad, Rajvardhan

    2016-01-01

    AIM To evaluate the causes and associations of missed retinal breaks (MRBs) and posterior vitreous detachment (PVD) in patients with rhegmatogenous retinal detachment (RRD). METHODS Case sheets of patients undergoing vitreo retinal surgery for RRD at a tertiary eye care centre were evaluated retrospectively. Out of the 378 records screened, 253 were included for analysis of MRBs and 191 patients were included for analysis of PVD, depending on the inclusion criteria. Features of RRD and retinal breaks noted on examination were compared to the status of MRBs and PVD detected during surgery for possible associations. RESULTS Overall, 27% patients had MRBs. Retinal holes were commonly missed in patients with lattice degeneration while missed retinal tears were associated with presence of complete PVD. Patients operated for cataract surgery were significantly associated with MRBs (P=0.033) with the odds of missing a retinal break being 1.91 as compared to patients with natural lens. Advanced proliferative vitreo retinopathy (PVR) and retinal bullae were the most common reasons for missing a retinal break during examination. PVD was present in 52% of the cases and was wrongly assessed in 16%. Retinal bullae, pseudophakia/aphakia, myopia, and horse shoe retinal tears were strongly associated with presence of PVD. Traumatic RRDs were rarely associated with PVD. CONCLUSION Pseudophakic patients, and patients with retinal bullae or advanced PVR should be carefully screened for MRBs. Though Weiss ring is a good indicator of PVD, it may still be over diagnosed in some cases. PVD is associated with retinal bullae and pseudophakia, and inversely with traumatic RRD. PMID:27990367

  17. Remodeling A School Shop?

    ERIC Educational Resources Information Center

    Baker, G. E.

    1970-01-01

    Presents guidelines for remodeling a school shop combining major considerations of funds, program changes, class management, and flexibility, with the needs of wiring, painting, and placement of equipment. (Author)

  18. Disorders of Bone Remodeling

    PubMed Central

    Feng, Xu; McDonald, Jay M.

    2013-01-01

    The skeleton provides mechanical support for stature and locomotion, protects vital organs, and controls mineral homeostasis. A healthy skeleton must be maintained by constant bone modeling to carry out these crucial functions throughout life. Bone remodeling involves the removal of old or damaged bone by osteoclasts (bone resorption) and the subsequent replacement of new bone formed by osteoblasts (bone formation). Normal bone remodeling requires a tight coupling of bone resorption to bone formation to guarantee no alteration in bone mass or quality after each remodeling cycle. However, this important physiological process can be derailed by a variety of factors, including menopause-associated hormonal changes, age-related factors, changes in physical activity, drugs, and secondary diseases, which lead to the development of various bone disorders in both women and men. We review the major diseases of bone remodeling, emphasizing our current understanding of the underlying pathophysiological mechanisms. PMID:20936937

  19. Inner and Outer Retinal Changes in Retinal Degenerations Associated With ABCA4 Mutations

    PubMed Central

    Huang, Wei Chieh; Cideciyan, Artur V.; Roman, Alejandro J.; Sumaroka, Alexander; Sheplock, Rebecca; Schwartz, Sharon B.; Stone, Edwin M.; Jacobson, Samuel G.

    2014-01-01

    Purpose. To investigate in vivo inner and outer retinal microstructure and effects of structural abnormalities on visual function in patients with retinal degeneration caused by ABCA4 mutations (ABCA4-RD). Methods. Patients with ABCA4-RD (n = 45; age range, 9–71 years) were studied by spectral-domain optical coherence tomography (OCT) scans extending from the fovea to 30° eccentricity along horizontal and vertical meridians. Thicknesses of outer and inner retinal laminae were analyzed. Serial OCT measurements available over a mean period of 4 years (range, 2–8 years) allowed examination of the progression of outer and inner retinal changes. A subset of patients had dark-adapted chromatic static threshold perimetry. Results. There was a spectrum of photoreceptor layer thickness changes from localized central retinal abnormalities to extensive thinning across central and near midperipheral retina. The inner retina also showed changes. There was thickening of the inner nuclear layer (INL) that was mainly associated with regions of photoreceptor loss. Serial data documented only limited change in some patients while others showed an increase in outer nuclear layer (ONL) thinning accompanied by increased INL thickening in some regions imaged. Visual function in regions both with and without INL thickening was describable with a previously defined model based on photoreceptor quantum catch. Conclusions. Inner retinal laminar abnormalities, as in other human photoreceptor diseases, can be a feature of ABCA4-RD. These changes are likely due to the retinal remodeling that accompanies photoreceptor loss. Rod photoreceptor-mediated visual loss in retinal regionswith inner laminopathy at the stages studied did not exceed the prediction from photoreceptor loss alone. PMID:24550365

  20. ED 04-4 RETINAL ARTERIOLAR STRUCTURE AS A MAKER OF VASCULAR HEALTH.

    PubMed

    Wong, Tien

    2016-09-01

    The vasculature in the retina can be viewed directly and non-invasively in vivo, offers a unique perspective of the human microvasculature, and therefore the ability to understand early changes, processes, pathways and consequences of hypertension. In the past 15 years, advances in high resolution digital retinal photography and automated or semi-automated computer image software have been applied to measure and quantify a variety of retinal microvascular parameter, including retinal arteriolar and venular caliber, tortuosity, branching patterns and fractal dimensions. Clinical and epidemiological studies show that hypertension is strongly associated with many of these retinal microvascular changes. Concurrently, these retinal parameters are associated with a range of systemic conditions, including subclinical target organ damage (e.g., silent cerebral infarctions, myocardial perfusion, vascular remodelling, left ventricular hypertrophy and microalbuminuria) as well as clinical outcomes (e.g., clinical stroke, myocardial infarction, congestive heart failure, chronic kidney disease, cardiovascular mortality). Furthermore, some of the retinal measures are seen in children at risk of hypertension (e.g., higher BMI or low birth weight) and normotensive patients before they subsequently develop hypertension, suggesting that retinal microvascular changes may reflect the vascular remodelling processes in early hypertension. There are increasing data from genome-wide association studies that indicate genetic influence on retinal vascular caliber, possibly providing new genetic markers of systemic vascular diseases. Retinal vascular imaging provides the opportunity to interrogate early, subclinical microcirculatory effects associated with elevated blood pressure, and thus new insights into the pathogenesis and vascular consequences of hypertension.

  1. Bim is Responsible for the Inherent Sensitivity of the Developing Retinal Vasculature to Hyperoxia

    PubMed Central

    Wang, Shoujian; Park, SunYoung; Fei, Ping; Sorenson, Christine M.

    2010-01-01

    Apoptosis plays an important role in development and remodeling of vasculature during organogenesis. Coordinated branching and remodeling of the retinal vascular tree is essential for normal retinal function. Bcl-2 family members, such as bim can not only influence apoptosis, but also cell adhesive and migratory properties essential during vascular development. Here we examined the impact of bim deficiency on postnatal retinal vascularization, as well as retinal neovascularization during oxygen-induced ischemic retinopathy (OIR) and laser-induced choroidal neovascularization. Loss of bim expression was associated with increased retinal vascular density in mature animals. This was mainly attributed to increased numbers of pericytes and endothelial cells. However, the initial spread of the superficial layer of retinal vasculature and, the appearance and density of the tip cells were similar in bim +/+ and bim -/- mice. In addition, hyaloid vessel regression was attenuated in the absence of bim. Furthermore, in the absence of bim retinal vessel obliteration and neovascularization did not occur during OIR. Instead, normal inner retinal vascularization proceeded independent of changes in oxygen levels. In contrast, choroidal neovascularization occurred equally well in bim +/+ and bim -/- mice. Together our data suggest bim expression may be responsible for the inherent sensitivity of the developing retinal vasculature to changes in oxygen levels, and promotes vessel obliteration in response to hyperoxia. PMID:21047504

  2. Allosteric remodelling of the histone H3 binding pocket in the Pygo2 PHD finger triggered by its binding to the B9L/BCL9 co-factor.

    PubMed

    Miller, Thomas C R; Rutherford, Trevor J; Johnson, Christopher M; Fiedler, Marc; Bienz, Mariann

    2010-09-03

    The Zn-coordinated PHD fingers of Pygopus (Pygo) proteins are critical for beta-catenin-dependent transcriptional switches in normal and malignant tissues. They bind to methylated histone H3 tails, assisted by their BCL9 co-factors whose homology domain 1 (HD1) binds to the rear PHD surface. Although histone-binding residues are identical between the two human Pygo paralogs, we show here that Pygo2 complexes exhibit slightly higher binding affinities for methylated histone H3 tail peptides than Pygo1 complexes. We solved the crystal structure of the Pygo2 PHD-BCL9-2 HD1 complex, which revealed paralog-specific interactions in its PHD-HD1 interface that could contribute indirectly to its elevated affinity for the methylated histone H3 tail. Interestingly, using NMR spectroscopy, we discovered that HD1 binding to PHD triggers an allosteric communication with a conserved isoleucine residue that lines the binding channel for histone H3 threonine 3 (T3), the link between the two adjacent binding pockets accommodating histone H3 alanine 1 and methylated lysine 4, respectively. This modulates the surface of the T3 channel, providing a plausible explanation as to how BCL9 co-factors binding to Pygo PHD fingers impact indirectly on their histone binding affinity. Intriguingly, this allosteric modulation of the T3 channel is propagated through the PHD structural core by a highly conserved tryptophan, the signature residue defining the PHD subclass of Zn fingers, which suggests that other PHD proteins may also be assisted by co-factors in their decoding of modified histone H3 tails.

  3. Trigger finger

    MedlinePlus

    ... Redness in your cut or hand Swelling or warmth in your cut or hand Yellow or green drainage from the cut Hand pain or discomfort Fever If your trigger finger returns, call your surgeon. You may need another surgery.

  4. A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling

    PubMed Central

    Schirone, Leonardo; Forte, Maurizio; Palmerio, Silvia; Yee, Derek; Nocella, Cristina; Angelini, Francesco; Pagano, Francesca; Schiavon, Sonia; Bordin, Antonella; Vecchione, Carmine; Valenti, Valentina; Sciarretta, Sebastiano

    2017-01-01

    Pathological molecular mechanisms involved in myocardial remodeling contribute to alter the existing structure of the heart, leading to cardiac dysfunction. Among the complex signaling network that characterizes myocardial remodeling, the distinct processes are myocyte loss, cardiac hypertrophy, alteration of extracellular matrix homeostasis, fibrosis, defective autophagy, metabolic abnormalities, and mitochondrial dysfunction. Several pathophysiological stimuli, such as pressure and volume overload, trigger the remodeling cascade, a process that initially confers protection to the heart as a compensatory mechanism. Yet chronic inflammation after myocardial infarction also leads to cardiac remodeling that, when prolonged, leads to heart failure progression. Here, we review the molecular pathways involved in cardiac remodeling, with particular emphasis on those associated with myocardial infarction. A better understanding of cell signaling involved in cardiac remodeling may support the development of new therapeutic strategies towards the treatment of heart failure and reduction of cardiac complications. We will also discuss data derived from gene therapy approaches for modulating key mediators of cardiac remodeling. PMID:28751931

  5. Triggering Klystrons

    SciTech Connect

    Stefan, Kelton D.; /Purdue U. /SLAC

    2010-08-25

    To determine if klystrons will perform to the specifications of the LCLS (Linac Coherent Light Source) project, a new digital trigger controller is needed for the Klystron/Microwave Department Test Laboratory. The controller needed to be programmed and Windows based user interface software needed to be written to interface with the device over a USB (Universal Serial Bus). Programming the device consisted of writing logic in VHDL (VHSIC (Very High Speed Integrated Circuits) hardware description language), and the Windows interface software was written in C++. Xilinx ISE (Integrated Software Environment) was used to compile the VHDL code and program the device, and Microsoft Visual Studio 2005 was used to compile the C++ based Windows software. The device was programmed in such a way as to easily allow read/write operations to it using a simple addressing model, and Windows software was developed to interface with the device over a USB connection. A method of setting configuration registers in the trigger device is absolutely necessary to the development of a new triggering system, and the method developed will fulfill this need adequately. More work is needed before the new trigger system is ready for use. The configuration registers in the device need to be fully integrated with the logic that will generate the RF signals, and this system will need to be tested extensively to determine if it meets the requirements for low noise trigger outputs.

  6. Retinal prosthetics, optogenetics, and chemical photoswitches.

    PubMed

    Marc, Robert; Pfeiffer, Rebecca; Jones, Bryan

    2014-10-15

    Three technologies have emerged as therapies to restore light sensing to profoundly blind patients suffering from late-stage retinal degenerations: (1) retinal prosthetics, (2) optogenetics, and (3) chemical photoswitches. Prosthetics are the most mature and the only approach in clinical practice. Prosthetic implants require complex surgical intervention and provide only limited visual resolution but can potentially restore navigational ability to many blind patients. Optogenetics uses viral delivery of type 1 opsin genes from prokaryotes or eukaryote algae to restore light responses in survivor neurons. Targeting and expression remain major problems, but are potentially soluble. Importantly, optogenetics could provide the ultimate in high-resolution vision due to the long persistence of gene expression achieved in animal models. Nevertheless, optogenetics remains challenging to implement in human eyes with large volumes, complex disease progression, and physical barriers to viral penetration. Now, a new generation of photochromic ligands or chemical photoswitches (azobenzene-quaternary ammonium derivatives) can be injected into a degenerated mouse eye and, in minutes to hours, activate light responses in neurons. These photoswitches offer the potential for rapidly and reversibly screening the vision restoration expected in an individual patient. Chemical photoswitch variants that persist in the cell membrane could make them a simple therapy of choice, with resolution and sensitivity equivalent to optogenetics approaches. A major complexity in treating retinal degenerations is retinal remodeling: pathologic network rewiring, molecular reprogramming, and cell death that compromise signaling in the surviving retina. Remodeling forces a choice between upstream and downstream targeting, each engaging different benefits and defects. Prosthetics and optogenetics can be implemented in either mode, but the use of chemical photoswitches is currently limited to downstream

  7. Tissue remodelling in pulmonary fibrosis.

    PubMed

    Knudsen, Lars; Ruppert, Clemens; Ochs, Matthias

    2017-03-01

    Many lung diseases result in fibrotic remodelling. Fibrotic lung disorders can be divided into diseases with known and unknown aetiology. Among those with unknown aetiology, idiopathic pulmonary fibrosis (IPF) is a common diagnosis. Because of its progressive character leading to a rapid decline in lung function, it is a fatal disease with poor prognosis and limited therapeutic options. Thus, IPF has motivated many studies in the last few decades in order to increase our mechanistic understanding of the pathogenesis of the disease. The current concept suggests an ongoing injury of the alveolar epithelium, an impaired regeneration capacity, alveolar collapse and, finally, a fibroproliferative response. The origin of lung injury remains elusive but a diversity of factors, which will be discussed in this article, has been shown to be associated with IPF. Alveolar epithelial type II (AE2) cells play a key role in lung fibrosis and their crucial role for epithelial regeneration, stabilisation of alveoli and interaction with fibroblasts, all known to be responsible for collagen deposition, will be illustrated. Whereas mechanisms of collagen deposition and fibroproliferation are the focus of many studies in the field, the awareness of other mechanisms in this disease is currently limited to biochemical and imaging studies including quantitative assessments of lung structure in IPF and animal models assigning alveolar collapse and collapse induration crucial roles for the degradation of the lung resulting in de-aeration and loss of surface area. Dysfunctional AE2 cells, instable alveoli and mechanical stress trigger remodelling that consists of collapsed alveoli absorbed by fibrotic tissue (i.e., collapse induration).

  8. Nonenzymatic biomimetic remodeling of phospholipids in synthetic liposomes.

    PubMed

    Brea, Roberto J; Rudd, Andrew K; Devaraj, Neal K

    2016-08-02

    Cell membranes have a vast repertoire of phospholipid species whose structures can be dynamically modified by enzymatic remodeling of acyl chains and polar head groups. Lipid remodeling plays important roles in membrane biology and dysregulation can lead to disease. Although there have been tremendous advances in creating artificial membranes to model the properties of native membranes, a major obstacle has been developing straightforward methods to mimic lipid membrane remodeling. Stable liposomes are typically kinetically trapped and are not prone to exchanging diacylphospholipids. Here, we show that reversible chemoselective reactions can be harnessed to achieve nonenzymatic spontaneous remodeling of phospholipids in synthetic membranes. Our approach relies on transthioesterification/acyl shift reactions that occur spontaneously and reversibly between tertiary amides and thioesters. We demonstrate exchange and remodeling of both lipid acyl chains and head groups. Using our synthetic model system we demonstrate the ability of spontaneous phospholipid remodeling to trigger changes in vesicle spatial organization, composition, and morphology as well as recruit proteins that can affect vesicle curvature. Membranes capable of chemically exchanging lipid fragments could be used to help further understand the specific roles of lipid structure remodeling in biological membranes.

  9. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells.

    PubMed

    Liu, Yuan; Zhang, Yueling; Gu, Zhaohui; Hao, Lina; Du, Juan; Yang, Qian; Li, Suping; Wang, Liying; Gong, Shilei

    2014-07-15

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite.

  10. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells

    PubMed Central

    Liu, Yuan; Zhang, Yueling; Gu, Zhaohui; Hao, Lina; Du, Juan; Yang, Qian; Li, Suping; Wang, Liying; Gong, Shilei

    2014-01-01

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite. PMID:25221599

  11. Remodeling of the fovea in Parkinson disease.

    PubMed

    Spund, B; Ding, Y; Liu, T; Selesnick, I; Glazman, S; Shrier, E M; Bodis-Wollner, I

    2013-05-01

    To quantify the thickness of the inner retinal layers in the foveal pit where the nerve fiber layer (NFL) is absent, and quantify changes in the ganglion cells and inner plexiform layer. Pixel-by-pixel volumetric measurements were obtained via Spectral-Domain optical coherence tomography (SD-OCT) from 50 eyes of Parkinson disease (PD) (n = 30) and 50 eyes of healthy control subjects (n = 27). Receiver operating characteristics (ROC) were used to classify individual subjects with respect to sensitivity and specificity calculations at each perifoveolar distance. Three-dimensional topographic maps of the healthy and PD foveal pit were created. The foveal pit is thinner and broader in PD. The difference becomes evident in an annular zone between 0.5 and 2 mm from the foveola and the optimal (ROC-defined) zone is from 0.75 to 1.5 mm. This zone is nearly devoid of NFL and partially overlaps the foveal avascular zone. About 78 % of PD eyes can be discriminated from HC eyes based on this zone. ROC applied to OCT pixel-by-pixel analysis helps to discriminate PD from HC retinae. Remodeling of the foveal architecture is significant because it may provide a visible and quantifiable signature of PD. The specific location of remodeling in the fovea raises a novel concept for exploring the mechanism of oxidative stress on retinal neurons in PD. OCT is a promising quantitative tool in PD research. However, larger scale studies are needed before the method can be applied to clinical follow-ups.

  12. Remodeling the Media Center.

    ERIC Educational Resources Information Center

    Baule, Steven M.

    1998-01-01

    Discusses items that need to be considered when remodeling a school media center. Highlights include space and location for various functions, including projections of print versus electronic media; electrical and data wiring needs; lighting; security and supervision; and reuse of existing furniture and equipment. (LRW)

  13. Retinal vascular fractal and blood pressure in a multiethnic population.

    PubMed

    Sng, Chelvin C A; Wong, Wan L; Cheung, Carol Y; Lee, Jeannette; Tai, E Shyong; Wong, Tien Y

    2013-10-01

    To examine the effect of blood pressure (BP) on retinal vascular fractal dimension (Df), a measure of microvascular network complexity and density in a multiethnic cohort. A population-based study of 3876 Chinese, Malay and Indian participants in Singapore. Retinal Df was measured using a computer-based program from digital retinal photographs. Associations between retinal Df and mean arterial BP (MABP) in the whole cohort and in each racial group were analysed using linear regression analysis. Logistic regression was used to examine the association between retinal Df and hypertension status. The mean retinal Df of the study population was 1.45 (standard deviation 0.03). After adjustment for age, sex, race, diabetes, BMI, cholesterol and creatinine levels, persons with smaller Df had higher MABP (mean difference MABP was 6.18 mmHg comparing lowest to highest Df quartiles, P<0.001). This was similar in Chinese, Malay and Indian persons [mean difference 6.40 (P<0.001), 4.72 (P=0.011) and 6.62 (P<0.001)mmHg, respectively]. Persons with smaller retinal Df were more likely to have uncontrolled treated or untreated hypertension [odds ratio 1.79 (P=0.003) and 2.60 (P=0.003), respectively, comparing lowest to highest Df quartiles] than those with no hypertension; this relationship was not seen comparing persons with controlled treated hypertension with no hypertension (odds ratio 1.01, P=0.972). Hypertension was associated with a sparser retinal vascular network, which was similar across different racial/ethnic groups and most apparent in those with uncontrolled or untreated hypertension. These data suggest that microvascular remodelling can be quantified by measuring retinal vasculature.

  14. Retinal functional development is sensitive to environmental enrichment: a role for BDNF.

    PubMed

    Landi, S; Sale, A; Berardi, N; Viegi, A; Maffei, L; Cenni, M C

    2007-01-01

    Retina has long been considered less plastic than cortex or hippocampus, the very sites of experience-dependent plasticity. Now, we show that retinal development is responsive to the experience provided by an enriched environment (EE): the maturation of retinal acuity, which is a sensitive index of retinal circuitry development, is strongly accelerated in EE rats. This effect is present also in rats exposed to EE up to P10, that is before eye opening, suggesting that factors sufficient to trigger retinal acuity development are affected by EE during the first days of life. Brain derived neurotrophic factor (BDNF) is precociously expressed in the ganglion cell layer of EE with respect to non-EE rats and reduction of BDNF expression in EE animals counteracts EE effects on retinal acuity. Thus, EE controls the development of retinal circuitry, and this action depends on retinal BDNF expression.

  15. Genetics Home Reference: retinitis pigmentosa

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions retinitis pigmentosa retinitis pigmentosa Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Retinitis pigmentosa is a group of related eye disorders that ...

  16. Retinal detachment repair

    MedlinePlus

    Scleral buckling; Vitrectomy; Pneumatic retinopexy; Laser retinopexy; Rhegmatogenous retinal detachment repair ... it meets the hole in the retina. Scleral buckling can be done using numbing medicine while you ...

  17. Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina

    PubMed Central

    Merriman, Dana K.; Sajdak, Benjamin S.; Li, Wei; Jones, Bryan W.

    2016-01-01

    With a photoreceptor mosaic containing ~85% cones, the ground squirrel is one of the richest known mammalian sources of these important retinal cells. It also has a visual ecology much like the human’s. While the ground squirrel retina is understandably prominent in the cone biochemistry, physiology, and circuitry literature, far less is known about the remodeling potential of its retinal pigment epithelium, neurons, macroglia, or microglia. This review aims to summarize the data from ground squirrel retina to this point in time, and to relate them to data from other brain areas where appropriate. We begin with a survey of the ground squirrel visual system, making comparisons with traditional rodent models and with human. Because this animal’s status as a hibernator often goes unnoticed in the vision literature, we then present a brief primer on hibernation biology. Next we review what is known about ground squirrel retinal remodeling concurrent with deep torpor and with rapid recovery upon re-warming. Notable here is rapidly-reversible, temperature-dependent structural plasticity of cone ribbon synapses, as well as pre- and post-synaptic plasticity throughout diverse brain regions. It is not yet clear if retinal cell types other than cones engage in torpor-associated synaptic remodeling. We end with the small but intriguing literature on the ground squirrel retina’s remodeling responses to insult by retinal detachment. Notable for widespread loss of (cone) photoreceptors, there is surprisingly little remodeling of the RPE or Müller cells. Microglial activation appears minimal, and remodeling of surviving second- and third-order neurons seems absent, but both require further study. In contrast, traumatic brain injury in the ground squirrel elicits typical macroglial and microglial responses. Overall, the data to date strongly suggest a heretofore unrecognized, natural checkpoint between retinal deafferentiation and RPE and Müller cell remodeling events. As

  18. Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina.

    PubMed

    Merriman, Dana K; Sajdak, Benjamin S; Li, Wei; Jones, Bryan W

    2016-09-01

    With a photoreceptor mosaic containing ∼85% cones, the ground squirrel is one of the richest known mammalian sources of these important retinal cells. It also has a visual ecology much like the human's. While the ground squirrel retina is understandably prominent in the cone biochemistry, physiology, and circuitry literature, far less is known about the remodeling potential of its retinal pigment epithelium, neurons, macroglia, or microglia. This review aims to summarize the data from ground squirrel retina to this point in time, and to relate them to data from other brain areas where appropriate. We begin with a survey of the ground squirrel visual system, making comparisons with traditional rodent models and with human. Because this animal's status as a hibernator often goes unnoticed in the vision literature, we then present a brief primer on hibernation biology. Next we review what is known about ground squirrel retinal remodeling concurrent with deep torpor and with rapid recovery upon re-warming. Notable here is rapidly-reversible, temperature-dependent structural plasticity of cone ribbon synapses, as well as pre- and post-synaptic plasticity throughout diverse brain regions. It is not yet clear if retinal cell types other than cones engage in torpor-associated synaptic remodeling. We end with the small but intriguing literature on the ground squirrel retina's remodeling responses to insult by retinal detachment. Notable for widespread loss of (cone) photoreceptors, there is surprisingly little remodeling of the RPE or Müller cells. Microglial activation appears minimal, and remodeling of surviving second- and third-order neurons seems absent, but both require further study. In contrast, traumatic brain injury in the ground squirrel elicits typical macroglial and microglial responses. Overall, the data to date strongly suggest a heretofore unrecognized, natural checkpoint between retinal deafferentiation and RPE and Müller cell remodeling events. As we

  19. Specific inhibition of TRPV4 enhances retinal ganglion cell survival in adult porcine retinal explants.

    PubMed

    Taylor, Linnéa; Arnér, Karin; Ghosh, Fredrik

    2017-01-01

    Signaling through the polymodal cation channel Transient Receptor Potential Vanilloid 4 (TRPV4) has been implicated in retinal neuronal degeneration. To further outline the involvement of this channel in this process, we here explore modulation of Transient Receptor Potential Vanilloid 4 (TRPV4) activity on neuronal health and glial activation in an in vitro model of retinal degeneration. For this purpose, adult porcine retinal explants were cultured using a previously established standard protocol for up to 5 days with specific TRPV4 agonist GSK1016790A (GSK), or specific antagonist RN-1734, or culture medium only. Glial and neuronal cell health were evaluated by a battery of immunohistochemical markers, as well as morphological staining. Specific inhibition of TRPV4 by RN-1734 significantly enhanced ganglion cell survival, improved the maintenance of the retinal laminar architecture, reduced apoptotic cell death and attenuated the gliotic response as well as preserved the expression of TRPV4 in the plexiform layers and ganglion cells. In contrast, culture controls, as well as specimens treated with GSK, displayed rapid remodeling and neurodegeneration as well as a downregulation of TRPV4 and the Müller cell homeostatic mediator glutamine synthetase. Our results indicate that TRPV4 signaling is an important contributor to the retinal degeneration in this model, affecting neuronal cell health and glial homeostasis. The finding that pharmacological inhibition of the receptor significantly attenuates neuronal degeneration and gliosis in vitro, suggests that TRPV4 signaling may be an interesting pharmaceutical target to explore for treatment of retinal degenerative disease.

  20. Nucleosome Remodeling and Epigenetics

    PubMed Central

    Becker, Peter B.; Workman, Jerry L.

    2013-01-01

    Eukaryotic chromatin is kept flexible and dynamic to respond to environmental, metabolic, and developmental cues through the action of a family of so-called “nucleosome remodeling” ATPases. Consistent with their helicase ancestry, these enzymes experience conformation changes as they bind and hydrolyze ATP. At the same time they interact with DNA and histones, which alters histone–DNA interactions in target nucleosomes. Their action may lead to complete or partial disassembly of nucleosomes, the exchange of histones for variants, the assembly of nucleosomes, or the movement of histone octamers on DNA. “Remodeling” may render DNA sequences accessible to interacting proteins or, conversely, promote packing into tightly folded structures. Remodeling processes participate in every aspect of genome function. Remodeling activities are commonly integrated with other mechanisms such as histone modifications or RNA metabolism to assemble stable, epigenetic states. PMID:24003213

  1. Pharmacotherapies for Retinal Detachment.

    PubMed

    Wubben, Thomas J; Besirli, Cagri G; Zacks, David N

    2016-07-01

    Retinal detachment is an important cause of visual loss. Currently, surgical techniques, including vitrectomy, scleral buckle, and pneumatic retinopexy, are the only means to repair retinal detachment and restore vision. However, surgical failure rates may be as high as 20%, and visual outcomes continue to vary secondary to multiple processes, including postoperative cystoid macular edema, epiretinal membrane formation, macular folds, and, ultimately, photoreceptor death. Therefore, pharmacotherapies are being sought to aid the success rates of modern surgical techniques and reduce or slow the degeneration of photoreceptors during retinal detachment. This review discusses potential therapeutic avenues that aid in retinal reattachment, reduce the rate of retinal redetachment by limiting proliferative vitreoretinopathy, and protect against photoreceptor cell death.

  2. Modern retinal laser therapy

    PubMed Central

    Kozak, Igor; Luttrull, Jeffrey K.

    2014-01-01

    Medicinal lasers are a standard source of light to produce retinal tissue photocoagulation to treat retinovascular disease. The Diabetic Retinopathy Study and the Early Treatment Diabetic Retinopathy Study were large randomized clinical trials that have shown beneficial effect of retinal laser photocoagulation in diabetic retinopathy and have dictated the standard of care for decades. However, current treatment protocols undergo modifications. Types of lasers used in treatment of retinal diseases include argon, diode, dye and multicolor lasers, micropulse lasers and lasers for photodynamic therapy. Delivery systems include contact lens slit-lamp laser delivery, indirect ophthalmocope based laser photocoagulation and camera based navigated retinal photocoagulation with retinal eye-tracking. Selective targeted photocoagulation could be a future alternative to panretinal photocoagulation. PMID:25892934

  3. Chromatin Remodeling and Plant Immunity.

    PubMed

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    2017-01-01

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance?

  4. Mechanisms of Retinal Damage after Ocular Alkali Burns.

    PubMed

    Paschalis, Eleftherios I; Zhou, Chengxin; Lei, Fengyang; Scott, Nathan; Kapoulea, Vassiliki; Robert, Marie-Claude; Vavvas, Demetrios; Dana, Reza; Chodosh, James; Dohlman, Claes H

    2017-06-01

    Alkali burns to the eye constitute a leading cause of worldwide blindness. In recent case series, corneal transplantation revealed unexpected damage to the retina and optic nerve in chemically burned eyes. We investigated the physical, biochemical, and immunological components of retinal injury after alkali burn and explored a novel neuroprotective regimen suitable for prompt administration in emergency departments. Thus, in vivo pH, oxygen, and oxidation reduction measurements were performed in the anterior and posterior segment of mouse and rabbit eyes using implantable microsensors. Tissue inflammation was assessed by immunohistochemistry and flow cytometry. The experiments confirmed that the retinal damage is not mediated by direct effect of the alkali, which is effectively buffered by the anterior segment. Rather, pH, oxygen, and oxidation reduction changes were restricted to the cornea and the anterior chamber, where they caused profound uveal inflammation and release of proinflammatory cytokines. The latter rapidly diffuse to the posterior segment, triggering retinal damage. Tumor necrosis factor-α was identified as a key proinflammatory mediator of retinal ganglion cell death. Blockade, by either monoclonal antibody or tumor necrosis factor receptor gene knockout, reduced inflammation and retinal ganglion cell loss. Intraocular pressure elevation was not observed in experimental alkali burns. These findings illuminate the mechanism by which alkali burns cause retinal damage and may have importance in designing therapies for retinal protection. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Retinal Oximetry Discovers Novel Biomarkers in Retinal and Brain Diseases.

    PubMed

    Stefánsson, Einar; Olafsdottir, Olof Birna; Einarsdottir, Anna Bryndis; Eliasdottir, Thorunn Scheving; Eysteinsson, Thor; Vehmeijer, Wouter; Vandewalle, Evelien; Bek, Toke; Hardarson, Sveinn Hakon

    2017-05-01

    Biomarkers for several eye and brain diseases are reviewed, where retinal oximetry may help confirm diagnosis or measure severity of disease. These include diabetic retinopathy, central retinal vein occlusion (CRVO), retinitis pigmentosa, glaucoma, and Alzheimer's disease. Retinal oximetry is based on spectrophotometric fundus imaging and measures oxygen saturation in retinal arterioles and venules in a noninvasive, quick, safe manner. Retinal oximetry detects changes in oxygen metabolism, including those that result from ischemia or atrophy. In diabetic retinopathy, venous oxygen saturation increases and arteriovenous difference decreases. Both correlate with diabetic retinopathy severity as conventionally classified on fundus photographs. In CRVO, vein occlusion causes hypoxia, which is measured directly by retinal oximetry to confirm the diagnosis and measure severity. In both diseases, the change in oxygen levels is a consequence of disturbed blood flow with resulting tissue hypoxia and vascular endothelial growth factor (VEGF) production. In atrophic diseases, such as retinitis pigmentosa and glaucoma, retinal oxygen consumption is reduced and this is detected by retinal oximetry. Retinal oximetry correlates with visual field damage and retinal atrophy. It is an objective metabolic measure of the degree of retinal atrophy. Finally, the retina is part of the central nervous system tissue and reflects central nervous system diseases. In Alzheimer's disease, a change in retinal oxygen metabolism has been discovered. Retinal oximetry is a novel, noninvasive technology that opens the field of metabolic imaging of the retina. Biomarkers in metabolic, ischemic, and atrophic diseases of the retina and central nervous system have been discovered.

  6. Master regulators in development: Views from the Drosophila retinal determination and mammalian pluripotency gene networks.

    PubMed

    Davis, Trevor L; Rebay, Ilaria

    2017-01-15

    Among the mechanisms that steer cells to their correct fate during development, master regulatory networks are unique in their sufficiency to trigger a developmental program outside of its normal context. In this review we discuss the key features that underlie master regulatory potency during normal and ectopic development, focusing on two examples, the retinal determination gene network (RDGN) that directs eye development in the fruit fly and the pluripotency gene network (PGN) that maintains cell fate competency in the early mammalian embryo. In addition to the hierarchical transcriptional activation, extensive positive transcriptional feedback, and cooperative protein-protein interactions that enable master regulators to override competing cellular programs, recent evidence suggests that network topology must also be dynamic, with extensive rewiring of the interactions and feedback loops required to navigate the correct sequence of developmental transitions to reach a final fate. By synthesizing the in vivo evidence provided by the RDGN with the extensive mechanistic insight gleaned from the PGN, we highlight the unique regulatory capabilities that continual reorganization into new hierarchies confers on master control networks. We suggest that deeper understanding of such dynamics should be a priority, as accurate spatiotemporal remodeling of network topology will undoubtedly be essential for successful stem cell based therapeutic efforts.

  7. Remodeling with the sun

    SciTech Connect

    Bodzin, S.

    1997-05-01

    Remodeling is the perfect time to improve daylighting, direct gain heating and shading with passive solar techniques. It can also provide the best opportunity to add solar water heating or even photoboltaics to a home. This article describes addition of such energy efficient plans to a home in terms of what is needed and what the benefits are: adding windows, North glass, east and west glass, south glass, daylighting, the roof, shingles and roofing tiles, walls and floors, solar hot water, photovoltaics. Two side bars discuss the sunplace: a passive solar room and angles and overhangs.

  8. Firearm trigger assembly

    SciTech Connect

    Crandall, David L.; Watson, Richard W.

    2010-02-16

    A firearm trigger assembly for use with a firearm includes a trigger mounted to a forestock of the firearm so that the trigger is movable between a rest position and a triggering position by a forwardly placed support hand of a user. An elongated trigger member operatively associated with the trigger operates a sear assembly of the firearm when the trigger is moved to the triggering position. An action release assembly operatively associated with the firearm trigger assembly and a movable assembly of the firearm prevents the trigger from being moved to the triggering position when the movable assembly is not in the locked position.

  9. Adverse Remodeling and Reverse Remodeling After Myocardial Infarction.

    PubMed

    Bhatt, Ankeet S; Ambrosy, Andrew P; Velazquez, Eric J

    2017-08-01

    The purpose of this review it to summarize the current literature on remodeling after myocardial infarction, inclusive of pathophysiological considerations, imaging modalities, treatment strategies, and future directions. As patients continue to live longer after myocardial infarction (MI), the prevalence of post-MI heart failure continues to rise. Changes in the left ventricle (LV) after MI involve complex interactions between cellular and extracellular components, under neurohormonal regulation. Treatments to prevent adverse LV remodeling and promote reverse remodeling in the post-MI setting include early revascularization, pharmacotherapy aimed at neurohormonal blockade, and device-based therapies that address ventricular dyssynchrony. Despite varying definitions of adverse LV remodeling examined across multiple imaging modalities, the presence of an enlarged LV cavity and/or reduced ejection fraction is consistently associated with poor clinical outcomes. Advances in our knowledge of the neurohormonal regulation of adverse cardiac remodeling have been instrumental in generating therapies aimed at arresting adverse remodeling and promoting reserve remodeling. Further investigation into other specific mechanisms of adverse LV remodeling and pathways to disrupt these mechanisms is ongoing and may provide incremental benefit to current evidence-based therapies.

  10. Retinal vascular regeneration.

    PubMed

    Otani, Atsushi; Friedlander, Martin

    2005-01-01

    We discuss the potential use of stem cells for therapeutic angiogenesis in the treatment of retinal diseases. We demonstrate that the clinical utility of these EPC may be not limited in the treatment of ischemic retinal diseases but may also have application for the treatment of retinal degenerative disorders and for a form of cell-based gene therapy. One of the greatest potential benefits of bone marrow derived EPC therapy is the possible use of autologous grafts. Nonetheless, potential toxicities and unregulated cell growth will need to be carefully evaluated before this approach is brought to the clinics.

  11. Cardiac Remodeling in Obesity

    PubMed Central

    ABEL, E. DALE; LITWIN, SHELDON E.; SWEENEY, GARY

    2010-01-01

    The dramatic increase in the prevalence of obesity and its strong association with cardiovascular disease have resulted in unprecedented interest in understanding the effects of obesity on the cardiovascular system. A consistent, but puzzling clinical observation is that obesity confers an increased susceptibility to the development of cardiac disease, while at the same time affording protection against subsequent mortality (termed the obesity paradox). In this review we focus on evidence available from human and animal model studies and summarize the ways in which obesity can influence structure and function of the heart. We also review current hypotheses regarding mechanisms linking obesity and various aspects of cardiac remodeling. There is currently great interest in the role of adipokines, factors secreted from adipose tissue, and their role in the numerous cardiovascular complications of obesity. Here we focus on the role of leptin and the emerging promise of adiponectin as a cardioprotective agent. The challenge of understanding the association between obesity and heart failure is complicated by the multifaceted interplay between various hemodynamic, metabolic, and other physiological factors that ultimately impact the myocardium. Furthermore, the end result of obesity-associated changes in the myocardial structure and function may vary at distinct stages in the progression of remodeling, may depend on the individual pathophysiology of heart failure, and may even remain undetected for decades before clinical manifestation. Here we summarize our current knowledge of this complex yet intriguing topic. PMID:18391168

  12. [Structural and Functional Studies on Photoactive Retinal Proteins: Light Becomes Drugs with Proteins].

    PubMed

    Sudo, Yuki

    2016-01-01

    Retinal proteins possess vitamin A aldehyde (retinal) as a chromophore within seven transmembrane α-helices. Visible light absorption of them triggers trans-cis photoisomerization of the retinal chromophore and induces structural changes in the protein moiety, resulting in a variety of biological functions such as vision, ion transportation, and photosensing. Environmental genomics revealed that retinal proteins are widely distributed through all three biological kingdoms, eukarya, bacteria, and archaea, indicating the biological significance of their light energy conversion. In addition to their biological aspect, retinal proteins have become a focus of interest in part because of applications for optogenetics. On the basis of our results and other findings, we highlight the recent progress in structural and functional studies on retinal proteins.

  13. Retinal oximetry in patients with ischaemic retinal diseases.

    PubMed

    Rilvén, Sandra; Torp, Thomas Lee; Grauslund, Jakob

    2017-03-01

    The retinal oximeter is a new tool for non-invasive measurement of retinal oxygen saturation in humans. Several studies have investigated the associations between retinal oxygen saturation and retinal diseases. In the present systematic review, we examine whether there are associations between retinal oxygen saturation and retinal ischaemic diseases. We used PubMed and Embase to search for retinal oxygen saturation and retinal ischaemic diseases. Three separate searches identified a total of 79 publications. After two levels of manual screening, 10 studies were included: six about diabetic retinopathy (DR) and four about retinal vein occlusion. No studies about retinal artery occlusion were included. In diabetes, all studies found that increases in retinal venous oxygen saturation (rvSatO2 ) were associated with present as well as increasing levels of DR. Four of six studies also found increased retinal arterial oxygen saturation (raSatO2 ) in patients with DR. In patients with central retinal vein occlusion (CRVO), all studies found that rvSatO2 was reduced, but raSatO2 remained unchanged. Branch retinal vein occlusion was not associated with changes in retinal oxygen saturation, but this was based on a single study. In conclusion, DR is associated with increased rvSatO2 and might also be related to increased raSatO2 . Central retinal vein occlusion (CRVO) is correlated with increased rvSatO2 but unrelated to raSatO2 . Prospective studies are needed to expand these findings. These would tell whether retinal oximetry could be a potential tool for screening or a biomarker of treatment outcome in patients with ischaemic retinal diseases.

  14. Retinal compensatory changes after light damage in albino mice

    PubMed Central

    Montalbán-Soler, Luis; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Salinas-Navarro, Manuel; Galindo-Romero, Caridad; Bezerra de Sá, Fabrízio; García-Ayuso, Diego; Avilés-Trigueros, Marcelino; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta

    2012-01-01

    Purpose To investigate the anatomic and functional changes triggered by light exposure in the albino mouse retina and compare them with those observed in the albino rat. Methods BALB/c albino mice were exposed to 3,000 lx of white light during 24 h and their retinas analyzed from 1 to 180 days after light exposure (ALE). Left pupil mydriasis was induced with topical atropine. Retinal function was analyzed by electroretinographic (ERG) recording. To assess retinal degeneration, hematoxylin and eosin staining, the TdT-mediated dUTP nick-end labeling (TUNEL) technique, and quantitative immunohistofluorescence for synaptophysin and protein kinase Cα (PKCα) were used in cross sections. Intravenous injection of horseradish peroxidase and Fluoro-Gold™ tracing were used in whole-mounted retinas to study the retinal vasculature and the retinal ganglion cell (RGC) population, respectively. Results Light exposure caused apoptotic photoreceptor death in the central retina. This death was more severe in the dorsal than in the ventral retina, sparing the periphery. Neither retinal vascular leakage nor retinal ganglion cell death was observed ALE. The electroretinographic a-wave was permanently impaired, while the b-wave decreased but recovered gradually by 180 days ALE. The scotopic threshold responses, associated with the inner retinal function, diminished at first but recovered completely by 14 days ALE. This functional recovery was concomitant with the upregulation of protein kinase Cα and synaptophysin. Similar results were obtained in both eyes, irrespective of mydriasis. Conclusions In albino mice, light exposure induces substantial retinal damage, but the surviving photoreceptors, together with compensatory morphological/molecular changes, allow an important restoration of the retinal function. PMID:22509098

  15. Retinal compensatory changes after light damage in albino mice.

    PubMed

    Montalbán-Soler, Luis; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Salinas-Navarro, Manuel; Galindo-Romero, Caridad; Bezerra de Sá, Fabrízio; García-Ayuso, Diego; Avilés-Trigueros, Marcelino; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta; Villegas-Pérez, Maria P

    2012-01-01

    To investigate the anatomic and functional changes triggered by light exposure in the albino mouse retina and compare them with those observed in the albino rat. BALB/c albino mice were exposed to 3,000 lx of white light during 24 h and their retinas analyzed from 1 to 180 days after light exposure (ALE). Left pupil mydriasis was induced with topical atropine. Retinal function was analyzed by electroretinographic (ERG) recording. To assess retinal degeneration, hematoxylin and eosin staining, the TdT-mediated dUTP nick-end labeling (TUNEL) technique, and quantitative immunohistofluorescence for synaptophysin and protein kinase Cα (PKCα) were used in cross sections. Intravenous injection of horseradish peroxidase and Fluoro-Gold™ tracing were used in whole-mounted retinas to study the retinal vasculature and the retinal ganglion cell (RGC) population, respectively. Light exposure caused apoptotic photoreceptor death in the central retina. This death was more severe in the dorsal than in the ventral retina, sparing the periphery. Neither retinal vascular leakage nor retinal ganglion cell death was observed ALE. The electroretinographic a-wave was permanently impaired, while the b-wave decreased but recovered gradually by 180 days ALE. The scotopic threshold responses, associated with the inner retinal function, diminished at first but recovered completely by 14 days ALE. This functional recovery was concomitant with the upregulation of protein kinase Cα and synaptophysin. Similar results were obtained in both eyes, irrespective of mydriasis. In albino mice, light exposure induces substantial retinal damage, but the surviving photoreceptors, together with compensatory morphological/molecular changes, allow an important restoration of the retinal function.

  16. To Remodel or To Build?

    ERIC Educational Resources Information Center

    Rosenblum, Todd

    2009-01-01

    The question of remodeling an existing house to make it wheelchair accessible or building a new barrier-free house is a difficult decision. This article presents some initial questions and considerations followed by a list of pros and cons for remodeling an existing house vs. building a new house.

  17. To Remodel or To Build?

    ERIC Educational Resources Information Center

    Rosenblum, Todd

    2009-01-01

    The question of remodeling an existing house to make it wheelchair accessible or building a new barrier-free house is a difficult decision. This article presents some initial questions and considerations followed by a list of pros and cons for remodeling an existing house vs. building a new house.

  18. Retinal detachment repair - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100132.htm Retinal detachment repair - series—Normal anatomy To use the ... to slide 6 out of 6 Overview The retina is the internal layer of the eye that ...

  19. Unilateral retinitis pigmentosa.

    PubMed

    Bhattarai, D; Paudel, N; Adhikari, P; Gnyawali, S; Joshi, S N

    2015-01-01

    To report a rare case of unilateral retinitis pigmentosa and to present the clinical features, and findings of multifocal ERG and visual field of this case. A 70-year-old-female diagnosed as Retinitis Pigmentosa in right eye 7 years back, presented with further gradual painless diminution of vision in the very eye and without any similar symptoms in left eye. On examination, the findings (including multifocal ERG and visual field) suggested the features of retinitis pigmentosa in her right eye, while the other eye being unaffected. In this rare case, the distinct features of retinitis pigmentosa are seen only in one eye, and this can be further confirmed from multifocal ERG and visual field. © NEPjOPH.

  20. Subtype-specific neuronal remodeling during Drosophila metamorphosis.

    PubMed

    Veverytsa, Lyubov; Allan, Douglas W

    2013-01-01

    During metamorphosis in holometabolous insects, the nervous system undergoes dramatic remodeling as it transitions from its larval to its adult form. Many neurons are generated through post-embryonic neurogenesis to have adult-specific roles, but perhaps more striking is the dramatic remodeling that occurs to transition neurons from functioning in the larval to the adult nervous system. These neurons exhibit a remarkable degree of plasticity during this transition; many subsets undergo programmed cell death, others remodel their axonal and dendritic arbors extensively, whereas others undergo trans-differentiation to alter their terminal differentiation gene expression profiles. Yet other neurons appear to be developmentally frozen in an immature state throughout larval life, to be awakened at metamorphosis by a process we term temporally-tuned differentiation. These multiple forms of remodeling arise from subtype-specific responses to a single metamorphic trigger, ecdysone. Here, we discuss recent progress in Drosophila melanogaster that is shedding light on how subtype-specific programs of neuronal remodeling are generated during metamorphosis.

  1. No-Regrets Remodeling, 2nd Edition

    SciTech Connect

    2013-12-01

    No-Regrets Remodeling, sponsored by Oak Ridge National Laboratory, is an informative publication that walks homeowners and/or remodelers through various home remodeling projects. In addition to remodeling information, the publication provides instruction on how to incorporate energy efficiency into the remodeling process. The goal of the publication is to improve homeowner satisfaction after completing a remodeling project and to provide the homeowner with a home that saves energy and is comfortable and healthy.

  2. Retinal dysplasia of holoprosencephaly.

    PubMed

    Gorovoy, Ian R; Layer, Noelle; de Alba Campomanes, Alejandra G

    2014-03-04

    Retinal dysplasia occurs in the setting of sporadic and syndromic holoprosencephaly, which often has associated ocular malformations. The pathology of this dysplasia, which includes rosettes, has been previously described. However, its funduscopic findings have not been well documented. The authors present the fundus images of a patient with severe holoprosencephaly with retinal dysplasia and bilateral optic nerve colobomas that resulted in death 2 weeks after birth.

  3. Retinal detachment in pseudophakia.

    PubMed

    Galin, M A; Poole, T A; Obstbaum, S A

    1979-07-01

    In a series of cataract patients excluding myopic individuals, under age 60 years, and cases in which vitreous loss occurred, retinal detachment was no less frequent after intracapsular cataract extraction and Sputnik iris supported lenses than in controls. Both groups were followed up for a minimum of two years. The detachments predominantly occurred from retinal breaks in areas of the retina that looked normal preoperatively.

  4. Purine receptor mediated actin cytoskeleton remodeling of human fibroblasts

    PubMed Central

    Goldman, Nanna; Chandler-Militello, Devin; Langevin, Helene; Nedergaard, Maiken; Takano, Takahiro

    2013-01-01

    Earlier studies have shown that activation of adenosine A1 receptors on peripheral pain fibers contributes to acupuncture-induced suppression of painful input. In addition to adenosine, acupuncture triggers the release of other purines, including ATP and ADP that may bind to purine receptors on nearby fibroblasts. We here show that purine agonists trigger increase in cytosolic Ca 2+ signaling in a cultured human fibroblasts cell line. The profile of agonist-induced Ca2+ increases indicates that the cells express functional P2yR2 and P2yR4 receptors, as well as P2yR1 and P2xR7 receptors. Unexpectedly, purine-induced Ca2+ signaling was associated with a remodeling of the actin cytoskeleton. ATP induced a transient loss in F-actin stress fiber. The changes of actin cytoskeleton occurred slowly and peaked at 10 min after agonist exposure. Inhibition of ATP-induced increases in Ca2+ by cyclopiazonic acid blocked receptor-mediated cytoskeleton remodeling. The Ca2+ ionophore failed to induce cytoskeletal remodeling despite triggering robust increases in cytosolic Ca2+. These observations indicate that purine signaling induces transient changes in fibroblast cytoarchitecture that could be related to the beneficial effects of acupuncture. PMID:23462235

  5. Therapy for acute retinal necrosis.

    PubMed

    Kawaguchi, Tatsushi; Spencer, Doran B; Mochizuki, Manabu

    2008-01-01

    Acute retinal necrosis is a progressive necrotizing retinopathy caused by herpes simplex virus (HSV) or varicella zoster virus (VZV). The mainstay of its treatment is antiviral therapy against these pathogenic organisms, such as intravenous acyclovir or oral valacyclovir. Systemic and topical corticosteroids together with antiviral therapy are used as an anti-inflammatory treatment to minimize damages to the optic nerve and retinal blood vessels. Because the majority of severe cases of the disease show occlusive retinal vasculitis, a low dosage of aspirin is used as anti-thrombotic treatment. Vitreo-retinal surgery is useful to repair rhegmatogenous retinal detachment, one of the main late-stage complications. Moreover, recent articles have reported some encouraging results of prophylactic vitrectomy before rhegmatogenous retinal detachment occurs. The efficacy of laser photocoagulation to prevent the development or extension of rhegmatogenous retinal detachment is controversial. Despite these treatments, the visual prognosis of acute retinal necrosis is still poor, in particular VZV-induced acute retinal necrosis.

  6. Defective ATM-Kap-1-mediated chromatin remodeling impairs DNA repair and accelerates senescence in progeria mouse model.

    PubMed

    Liu, Baohua; Wang, Zimei; Ghosh, Shrestha; Zhou, Zhongjun

    2013-04-01

    ATM-mediated phosphorylation of KAP-1 triggers chromatin remodeling and facilitates the loading and retention of repair proteins at DNA lesions. Mouse embryonic fibroblasts (MEFs) derived from Zmpste24(-/-) mice undergo early senescence, attributable to delayed recruitment of DNA repair proteins. Here, we show that ATM-Kap-1 signaling is compromised in Zmpste24(-/-) MEFs, leading to defective DNA damage-induced chromatin remodeling. Knocking down Kap-1 rescues impaired chromatin remodeling, defective DNA repair and early senescence in Zmpste24(-/-) MEFs. Thus, ATM-Kap-1-mediated chromatin remodeling plays a critical role in premature aging, carrying significant implications for progeria therapy.

  7. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa.

    PubMed

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.

  8. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa

    PubMed Central

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina. PMID:26733810

  9. Ablation of sarcolipin results in atrial remodeling

    PubMed Central

    Xie, Lai-Hua; Shanmugam, Mayilvahanan; Park, Ji Yeon; Zhao, Zhenghang; Wen, Hairuo; Tian, Bin; Periasamy, Muthu

    2012-01-01

    Sarcolipin (SLN) is a key regulator of sarco(endo)plasmic reticulum (SR) Ca2+-ATPase (SERCA), and its expression is altered in diseased atrial myocardium. To determine the precise role of SLN in atrial Ca2+ homeostasis, we developed a SLN knockout (sln−/−) mouse model and demonstrated that ablation of SLN enhances atrial SERCA pump activity. The present study is designed to determine the long-term effects of enhanced SERCA activity on atrial remodeling in the sln−/− mice. Calcium transient measurements show an increase in atrial SR Ca2+ load and twitch Ca2+ transients. Patch-clamping experiments demonstrate activation of the forward mode of sodium/calcium exchanger, increased L-type Ca2+ channel activity, and prolongation of action potential duration at 90% repolarization in the atrial myocytes of sln−/− mice. Spontaneous Ca2+ waves, delayed afterdepolarization, and triggered activities are frequent in the atrial myocytes of sln−/− mice. Furthermore, loss of SLN in atria is associated with increased interstitial fibrosis and altered expression of genes encoding collagen and other extracellular matrix proteins. Our results also show that the sln−/− mice are susceptible to atrial arrhythmias upon aging. Together, these findings indicate that ablation of SLN results in increased SERCA activity and SR Ca2+ load, which, in turn, could cause abnormal intracellular Ca2+ handling and atrial remodeling. PMID:22496245

  10. Progressive outer retinal necrosis-like retinitis in immunocompetent hosts.

    PubMed

    Chawla, Rohan; Tripathy, Koushik; Gogia, Varun; Venkatesh, Pradeep

    2016-08-10

    We describe two young immunocompetent women presenting with bilateral retinitis with outer retinal necrosis involving posterior pole with centrifugal spread and multifocal lesions simulating progressive outer retinal necrosis (PORN) like retinitis. Serology was negative for HIV and CD4 counts were normal; however, both women were on oral steroids at presentation for suspected autoimmune chorioretinitis. The retinitis in both eyes responded well to oral valaciclovir therapy. However, the eye with the more fulminant involvement developed retinal detachment with a loss of vision. Retinal atrophy was seen in the less involved eye with preservation of vision. Through these cases, we aim to describe a unique evolution of PORN-like retinitis in immunocompetent women, which was probably aggravated by a short-term immunosuppression secondary to oral steroids.

  11. Retinal vessel oxygen saturation and vessel diameter in high myopia.

    PubMed

    Zheng, Qishan; Zong, Yao; Li, Li; Huang, Xia; Lin, Leilei; Yang, Wei; Yuan, Yongguang; Li, Yujie; He, Huining; Gao, Qianying

    2015-09-01

    To investigate changes in retinal vessel oxygen saturation and diameter in high myopia. Relative oxygen saturation was measured in the retinal blood vessels of 54 participants with high myopia and compared to a control group of 54 individuals with emmetropia with the Oxymap T1 retinal oximeter. The participants with high myopia were further divided into two groups according to the grade of myopic retinopathy: Group A (grade < M2 ) and Group B (grade ≥ M2 ). One-way anova was used to analyse the mean saturation and diameter of retinal arterioles and venules and the mean difference in arterio-venous saturation among the four groups. Further analysis of multiple comparisons was performed with the Bonferroni test. Linear regression was used to analyse the correlation of ocular perfusion pressure or best corrected visual acuity with other variables. For all of the high myopia patients, retinal arteriole saturation (92.3 ± 5.6%) and the difference in arterio-venous saturation (30.8 ± 5.0%) were significantly lower than in normal individuals (96.0 ± 5.8%, 35.4 ± 6.2%; p = 0.006, p < 0.001, respectively). In Group A, only the difference in arterio-venous saturation (31.0 ± 4.7%) was significantly lower than in the control group (p = 0.011). In Group B, retinal arteriole saturation (92.2 ± 5.3%) and the difference in arterio-venous saturation (30.7 ± 5.3%) were also lower than the control group (p = 0.02, p = 0.001, respectively). Both retinal arteriole diameter and retinal venule diameter were narrower than in participants with high myopia than the control group (p < 0.001). No statistically significant correlations were found between ocular perfusion pressure or best corrected visual acuity with any other variables. The study demonstrated decreased retinal arteriole saturation and decreased difference in arterio-venous saturation as well as narrowing retinal vessel diameter in highly myopic eyes. Further studies are needed to determine if such changes play a role

  12. Photovoltaic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, James; Mathieson, Keith; Kamins, Ted; Wang, Lele; Galambos, Ludwig; Huie, Philip; Sher, Alexander; Harris, James; Palanker, Daniel

    2011-03-01

    Electronic retinal prostheses seek to restore sight to patients suffering from retinal degenerative disorders. Implanted electrode arrays apply patterned electrical stimulation to surviving retinal neurons, producing visual sensations. All current designs employ inductively coupled coils to transmit power and/or data to the implant. We present here the design and initial testing of a photovoltaic retinal prosthesis fabricated with a pixel density of up to 177 pixels/mm2. Photodiodes within each pixel of the subretinal array directly convert light to stimulation current, avoiding the use of bulky coil implants, decoding electronics, and wiring, and thereby reducing surgical complexity. A goggles-mounted camera captures the visual scene and transmits the data stream to a pocket processor. The resulting images are projected into the eyes by video goggles using pulsed, near infrared (~900 nm) light. Prostheses with three pixel densities (15, 55, and 177 pix/mm2) are being fabricated, and tests indicate a charge injection limit of 1.62 mC/cm2 at 25Hz. In vitro tests of the photovoltaic retinal stimulation using a 512-element microelectrode array have recorded stimulated spikes from the ganglion cells, with latencies in the 1-100ms range, and with peak irradiance stimulation thresholds varying from 0.1 to 1 mW/mm2. With 1ms pulses at 25Hz the average irradiance is more than 100 times below the IR retinal safety limit. Elicited retinal response disappeared upon the addition of synaptic blockers, indicating that the inner retina is stimulated rather than the ganglion cells directly, and raising hopes that the prosthesis will preserve some of the retina's natural signal processing.

  13. Targeting inflammation in emerging therapies for genetic retinal disease.

    PubMed

    Viringipurampeer, Ishaq A; Bashar, Abu E; Gregory-Evans, Cheryl Y; Moritz, Orson L; Gregory-Evans, Kevin

    2013-01-01

    Genetic retinal diseases such as age-related macular degeneration and monogenic diseases such as retinitis pigmentosa account for some of the commonest causes of blindness in the developed world. Diverse genetic abnormalities and environmental causes have been implicated in triggering multiple pathological mechanisms such as oxidative stress, lipofuscin deposits, neovascularisation, and programmed cell death. In recent years, inflammation has also been highlighted although whether inflammatory mediators play a central role in pathogenesis or a more minor secondary role has yet to be established. Despite this, numerous interventional studies, particularly targeting the complement system, are underway with the promise of novel therapeutic strategies for these important blinding conditions.

  14. Targeting Inflammation in Emerging Therapies for Genetic Retinal Disease

    PubMed Central

    Viringipurampeer, Ishaq A.; Bashar, Abu E.; Gregory-Evans, Cheryl Y.; Moritz, Orson L.; Gregory-Evans, Kevin

    2013-01-01

    Genetic retinal diseases such as age-related macular degeneration and monogenic diseases such as retinitis pigmentosa account for some of the commonest causes of blindness in the developed world. Diverse genetic abnormalities and environmental causes have been implicated in triggering multiple pathological mechanisms such as oxidative stress, lipofuscin deposits, neovascularisation, and programmed cell death. In recent years, inflammation has also been highlighted although whether inflammatory mediators play a central role in pathogenesis or a more minor secondary role has yet to be established. Despite this, numerous interventional studies, particularly targeting the complement system, are underway with the promise of novel therapeutic strategies for these important blinding conditions. PMID:23509666

  15. Age-Dependent Retinal Iron Accumulation and Degeneration in Hepcidin Knockout Mice

    PubMed Central

    Hadziahmetovic, Majda; Song, Ying; Ponnuru, Padmavathi; Iacovelli, Jared; Hunter, Allan; Haddad, Nadine; Beard, John; Connor, James R.; Vaulont, Sophie

    2011-01-01

    Purpose. Iron dysregulation can cause retinal disease, yet retinal iron regulatory mechanisms are incompletely understood. The peptide hormone hepcidin (Hepc) limits iron uptake from the intestine by triggering degradation of the iron transporter ferroportin (Fpn). Given that Hepc is expressed in the retina and Fpn is expressed in cells constituting the blood-retinal barrier, the authors tested whether the retina may produce Hepc to limit retinal iron import. Methods. Retinas of Hepc−/− mice were analyzed by histology, autofluorescence spectral analysis, atomic absorption spectrophotometry, Perls' iron stain, and immunofluorescence to assess iron-handling proteins. Retinal Hepc mRNA was evaluated through qPCR after intravitreal iron injection. Mechanisms of retinal Hepc upregulation were tested by Western blot analysis. A retinal capillary endothelial cell culture system was used to assess the effect of exogenous Hepc on Fpn. Results. Hepc−/− mice experienced age-dependent increases in retinal iron followed by retinal degeneration with autofluorescent RPE, photoreceptor death, and subretinal neovascularization. Hepc−/− mice had increased Fpn immunoreactivity in vascular endothelial cells. Conversely, in cultured retinal capillary endothelial cells, exogenous Hepc decreased both Fpn levels and iron transport. The retina can sense increased iron levels, upregulating Hepc after phosphorylation of extracellular signal regulated kinases. Conclusions. These findings indicate that Hepc is essential for retinal iron regulation. In the absence of Hepc, retinal degeneration occurs. Increases in Hepc mRNA levels after intravitreal iron injection combined with Hepc-mediated decreases in iron export from cultured retinal capillary endothelial cells suggest that the retina may use Hepc for its tissue-specific iron regulation. PMID:20811044

  16. Retinal vessel oxygen saturation and vessel diameter in retinitis pigmentosa.

    PubMed

    Eysteinsson, Thor; Hardarson, Sveinn H; Bragason, David; Stefánsson, Einar

    2014-08-01

    To assess retinal vessel oxygen saturation and retinal vessel diameter in retinitis pigmentosa. A retinal oximeter (Oxymap ehf., Reykjavik, Iceland) was used to measure retinal vessel oxygen saturation and vessel diameter in ten patients with retinitis pigmentosa (RP) (mean age 49 years, range 23-71 years). Results were compared with age- and gender-matched healthy individuals. All patients had advanced stage of the disease with visual fields restricted to the macular region. Oxygen saturation in retinal venules was 58.0 ± 6.2% in patients with RP and 53.4 ± 4.8% in healthy subjects (p = 0.017). Oxygen saturation in retinal arterioles was not significantly different between groups (p = 0.65). The mean diameter of retinal arterioles was 8.9 ± 1.6 pixels in patients with RP and 11.4 ± 1.2 in healthy controls (p < 0.0001). The corresponding diameters for venules were 10.1 ± 1.2 (RP) and 15.3 ± 1.7 (healthy, p < 0.0001). Increased venous saturation and decreased retinal vessel diameter suggest decreased oxygen delivery from the retinal circulation in retinitis pigmentosa. This is probably secondary to tissue atrophy and reduced oxygen consumption. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  17. 7,8-dihydro retinals outperform the native retinals in conferring photosensitivity to visual opsin.

    PubMed

    DeGrip, Willem J; Bovee-Geurts, Petra H M; van der Hoef, Ineke; Lugtenburg, Johan

    2007-10-31

    The visual pigment rhodopsin presents an astonishing photochemical performance. It exhibits an unprecedented quantum yield (0.67) in a highly defined and ultrafast photoisomerization process. This triggers the conformational changes leading to the active state Meta II of this G protein-coupled receptor. The responsible ligand, retinal, is covalently bound to Lys-296 of the protein in a protonated Schiff base. The resulting positive charge delocalization over the terminal part of the polyene chain of retinal creates a conjugation defect that upon photoexcitation moves to the opposite end of the polyene. Shortening the polyene as in 5,6-dihydro- or 7,8-dihydro analogues might facilitate photoisomerization of a 9-Z and an 11-Z bond. Here we describe pigment analogues generated with bovine opsin and 11-Z 7,8-dihydro retinal or 9-Z 7,8-dihydro retinal. Both isomers readily generate photosensitive pigments that differ remarkably in spectral properties from the native pigments. In addition, in spite of the more flexible 7,8 single bond, both analogue pigments exhibit strikingly efficient photoisomerization while largely maintaining the activity toward the G-protein. These results bear upon the activation of ligand-gated signal transducers such as G protein-coupled receptors.

  18. Quantitative analysis of retinal OCT.

    PubMed

    Sonka, Milan; Abràmoff, Michael D

    2016-10-01

    Clinical acceptance of 3-D OCT retinal imaging brought rapid development of quantitative 3-D analysis of retinal layers, vasculature, retinal lesions as well as facilitated new research in retinal diseases. One of the cornerstones of many such analyses is segmentation and thickness quantification of retinal layers and the choroid, with an inherently 3-D simultaneous multi-layer LOGISMOS (Layered Optimal Graph Image Segmentation for Multiple Objects and Surfaces) segmentation approach being extremely well suited for the task. Once retinal layers are segmented, regional thickness, brightness, or texture-based indices of individual layers can be easily determined and thus contribute to our understanding of retinal or optic nerve head (ONH) disease processes and can be employed for determination of disease status, treatment responses, visual function, etc. Out of many applications, examples provided in this paper focus on image-guided therapy and outcome prediction in age-related macular degeneration and on assessing visual function from retinal layer structure in glaucoma.

  19. Electronic retinal implant surgery.

    PubMed

    MacLaren, R E

    2017-02-01

    Blindness due to outer retinal degeneration still remains largely untreatable. Photoreceptor loss removes light sensitivity, but the remaining inner retinal layers, the optic nerve, and indeed the physical structure of the eye itself may be unaffected by the degenerative processes. This provides the opportunity to restore some degree of vision with an electronic device in the subretinal space. In this lecture I will provide an overview of our experiences with the first-generation retinal implant Alpha IMS, developed by Retina Implant AG and based on the technology developed by Eberhart Zrenner as part of a multicentre clinical trial (NCT01024803). We are currently in the process of running a second NIHR-funded clinical trial to assess the next-generation device. The positive results from both studies to date indicate that the retinal implant should be included as a potential treatment for patients who are completely blind from retinitis pigmentosa. Evolution of the technology in future may provide further opportunities for earlier intervention or for other diseases.

  20. Intracellular Signalling in Retinal Ischemia

    DTIC Science & Technology

    1990-07-01

    36) However, vascularization of the RPE is not known to occur in human diseases of photoreceptor degeneration, such as retinitis pigmentosa ...A.C. (1986) Retinitis pigmentosa and retinal neovascularization. Ophthalmology 91, 1599- 1603. Figure la: Control rat retina, 8 weeks of age, central...TITLE (Include Security Classification) Intracellular Signalling in Retinal Ischemia 12. PERSONAL AUTHOR(S) Burns, Margaret Sue; Bellhorn, Roy William

  1. Understanding the chromatin remodeling code.

    PubMed

    Ha, Misook

    2013-10-01

    Remodeling a chromatin structure enables the genetic elements stored in a genome to function in a condition-specific manner and predisposes the interactions between cis-regulatory elements and trans-acting factors. A chromatin signature can be an indicator of the activity of the underlying genetic elements. This paper reviews recent studies showing that the combination and arrangements of chromatin remodeling marks play roles as chromatin code affecting the activity of genetic elements. This paper also reviews recent studies inferring the primary DNA sequence contexts associated with chromatin remodeling that suggest interactions between genetic and epigenetic factors. We conclude that chromatin remodeling, which provides accurate models of gene expression and morphological variations, may help to find the biological marks that cannot be detected by genome-wide association study or genetic study. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Remodeling and Repair in Rhinosinusitis.

    PubMed

    Watelet, Jean-Baptiste; Dogne, Jean-Michel; Mullier, François

    2015-06-01

    Remodeling refers to the development of specific but potentially irreversible structural changes in tissue. Caucasian eosinophilic chronic rhinosinusitis (CRS) with polyps associated or not with cystic fibrosis was discriminated by edema from CRS without nasal polyps, characterized by extensive fibrotic fields. However, changes in epithelial and extracellular matrix structures are common findings in all types of chronic inflammatory diseases of upper airways, but rarely specific and highly variable in extend. Recent studies have shown that remodeling in CRS appears to occur in parallel, rather than purely subsequent to inflammation. Furthermore, some preferential remodeling associations can be recognized. Tremendous efforts have been put in research on coagulation factors, cytokines, growth factors, and proteases supporting all phases of upper airway remodeling. The current exploration of other CRS sub-groups and of the particular link with concomitant asthma aims to optimize the classification of CRS and its staging modes and to develop novel therapies.

  3. Building and Remodeling Synapses

    PubMed Central

    Benson, Deanna L.; Huntley, George W.

    2011-01-01

    Synaptic junctions are generated by adhesion proteins that bridge the synaptic cleft to firmly anchor pre- and postsynaptic membranes. Several cell adhesion molecule (CAM) families localize to synapses, but it is not yet completely understood how each synaptic CAM family contributes to synapse formation and/or structure, and whether or how smaller groups of CAMs serve as minimal, functionally cooperative adhesive units upon which structure is based. Synapse structure and function evolve over the course of development, and in mature animals, synapses are composed of a greater number of proteins, surrounded by a stabilizing extracellular matrix, and often contacted by astrocytic processes. Thus, in mature networks undergoing plasticity, persistent changes in synapse strength, morphology or number must be accompanied by selective and regulated remodeling of the neuropil. Recent work indicates that regulated, extracellular proteolysis may be essential for this, and rather than simply acting permissively to enable synapse plasticity, is more likely playing a proactive role in driving coordinated synaptic structural and functional modifications that underlie persistent changes in network activity. PMID:20882551

  4. Gene replacement therapy for retinal CNG channelopathies.

    PubMed

    Schön, Christian; Biel, Martin; Michalakis, Stylianos

    2013-10-01

    Visual phototransduction relies on the function of cyclic nucleotide-gated channels in the rod and cone photoreceptor outer segment plasma membranes. The role of these ion channels is to translate light-triggered changes in the second messenger cyclic guanosine 3'-5'-monophosphate levels into an electrical signal that is further processed within the retinal network and then sent to higher visual centers. Rod and cone photoreceptors express distinct CNG channels. The rod photoreceptor CNG channel is composed of one CNGB1 and three CNGA1 subunits, whereas the cone channel is formed by one CNGB3 and three CNGA3 subunits. Mutations in any of these channel subunits result in severe and currently untreatable retinal degenerative diseases like retinitis pigmentosa or achromatopsia. In this review, we provide an overview of the human diseases and relevant animal models of CNG channelopathies. Furthermore, we summarize recent results from preclinical gene therapy studies using adeno-associated viral vectors and discuss the efficacy and translational potential of these gene therapeutic approaches.

  5. Retinoids and Retinal Diseases

    PubMed Central

    Kiser, Philip D.; Palczewski, Krzysztof

    2016-01-01

    Recent progress in molecular understanding of the retinoid cycle in mammalian retina stems from painstaking biochemical reconstitution studies supported by natural or engineered animal models with known genetic lesions and studies of humans with specific genetic blinding diseases. Structural and membrane biology have been used to detect critical retinal enzymes and proteins and their substrates and ligands, placing them in a cellular context. These studies have been supplemented by analytical chemistry methods that have identified small molecules by their spectral characteristics, often in conjunction with the evaluation of models of animal retinal disease. It is from this background that rational therapeutic interventions to correct genetic defects or environmental insults are identified. Thus, most presently accepted modulators of the retinoid cycle already have demonstrated promising results in animal models of retinal degeneration. These encouraging signs indicate that some human blinding diseases can be alleviated by pharmacological interventions. PMID:27917399

  6. Probabilistic retinal vessel segmentation

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  7. Bioelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Weiland, James D.

    2016-05-01

    Retinal prosthesis have been translated to clinical use over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa and one device is in clinical trials for treatment of age-related macular degeneration. These devices provide partial sight restoration and patients use this improved vision in their everyday lives to navigate and to detect large objects. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. In particular, current retinal prostheses do not provide peripheral visions due to technical and surgical limitations, thus limiting the effectiveness of the treatment. This paper reviews recent results from human implant patients and presents technical approaches for peripheral vision.

  8. Automatic Retinal Oximetry

    NASA Astrophysics Data System (ADS)

    Halldorsson, G. H.; Karlsson, R. A.; Hardarson, S. H.; Mura, M. Dalla; Eysteinsson, T.; Beach, J. M.; Stefansson, E.; Benediktsson, J. A.

    2007-10-01

    This paper presents a method for automating the evaluation of hemoglobin oxygen saturation in the retina. This method should prove useful for monitoring ischemic retinal diseases and the effect of treatment. In order to obtain saturation values automatically, spectral images must be registered in pairs, the vessels of the retina located and measurement points must be selected. The registration algorithm is based on a data driven approach that circumvents many of the problems that have plagued previous methods. The vessels are extracted using an algorithm based on morphological profiles and supervised classifiers. Measurement points on retinal arterioles and venules as well as reference points on the adjacent fundus are automatically selected. Oxygen saturation values along vessels are averaged to arrive at a more accurate estimate of the retinal vessel oxygen saturation. The system yields reproducible results as well as being sensitive to changes in oxygen saturation.

  9. Retinal Failure in Diabetes: a Feature of Retinal Sensory Neuropathy.

    PubMed

    Gray, Ellyn J; Gardner, Thomas W

    2015-12-01

    Physiologic adaptations mediate normal responses to short-term and long-term stresses to ensure organ function. Organ failure results if adaptive responses fail to resolve persistent stresses or maladaptive reactions develop. The retinal neurovascular unit likewise undergoes adaptive responses to diabetes resulting in a retinal sensory neuropathy analogous to other sensory neuropathies. Vision-threatening diabetic retinal neuropathy results from unremitting metabolic and inflammatory stresses, leading to macular edema and proliferative diabetic retinopathy, states of "retinal failure." Current regulatory strategies focus primarily on the retinal failure stages, but new diagnostic modalities and understanding of the pathophysiology of diabetic retinopathy may facilitate earlier treatment to maintain vision in persons with diabetes.

  10. Tickling the retina: integration of subthreshold electrical pulses can activate retinal neurons

    NASA Astrophysics Data System (ADS)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2016-08-01

    Objective. The field of retinal prosthetics has made major progress over the last decade, restoring visual percepts to people suffering from retinitis pigmentosa. The stimulation pulses used by present implants are suprathreshold, meaning individual pulses are designed to activate the retina. In this paper we explore subthreshold pulse sequences as an alternate stimulation paradigm. Subthreshold pulses have the potential to address important open problems such as fading of visual percepts when patients are stimulated at moderate pulse repetition rates and the difficulty in preferentially stimulating different retinal pathways. Approach. As a first step in addressing these issues we used Gaussian white noise electrical stimulation combined with spike-triggered averaging to interrogate whether a subthreshold sequence of pulses can be used to activate the mouse retina. Main results. We demonstrate that the retinal network can integrate multiple subthreshold electrical stimuli under an experimental paradigm immediately relevant to retinal prostheses. Furthermore, these characteristic stimulus sequences varied in their shape and integration window length across the population of retinal ganglion cells. Significance. Because the subthreshold sequences activate the retina at stimulation rates that would typically induce strong fading (25 Hz), such retinal ‘tickling’ has the potential to minimize the fading problem. Furthermore, the diversity found across the cell population in characteristic pulse sequences suggests that these sequences could be used to selectively address the different retinal pathways (e.g. ON versus OFF). Both of these outcomes may significantly improve visual perception in retinal implant patients.

  11. Pathway to Retinal Oximetry

    PubMed Central

    Beach, James

    2014-01-01

    Events and discoveries in oxygen monitoring over the past two centuries are presented as the background from which oximetry of the human retina evolved. Achievements and the people behind them are discussed, showing parallels between the work in tissue measurements and later in the eye. Developments in the two-wavelength technique for oxygen saturation measurements in retinal vessels are shown to exploit the forms of imaging technology available over time. The last section provides a short summary of the recent research in retinal diseases using vessel oximetry. PMID:25237591

  12. Hereditary Retinal Dystrophy.

    PubMed

    Hohman, Thomas C

    2016-12-30

    As our understanding of the genetic basis for inherited retinal disease has expanded, gene therapy has advanced into clinical development. When the gene mutations associated with inherited retinal dystrophies were identified, it became possible to create animal models in which individual gene were altered to match the human mutations. The retina of these animals were then characterized to assess whether the mutated genes produced retinal phenotypes characteristic of disease-affected patients. Following the identification of a subpopulation of patients with the affected gene and the development of techniques for the viral gene transduction of retinal cells, it has become possible to deliver a copy of the normal gene into the retinal sites of the mutated genes. When this was performed in animal models of monogenic diseases, at an early stage of retinal degeneration when the affected cells remained viable, successful gene augmentation corrected the structural and functional lesions characteristic of the specific diseases in the areas of the retina that were successfully transduced. These studies provided the essential proof-of-concept needed to advance monogenic gene therapies into clinic development; these therapies include treatments for: Leber's congenital amaurosis type 2, caused by mutations to RPE65, retinoid isomerohydrolase; choroideremia, caused by mutations to REP1, Rab escort protein 1; autosomal recessive Stargardt disease, caused by mutations to ABCA4, the photoreceptor-specific ATP-binding transporter; Usher 1B disease caused by mutations to MYO7A, myosin heavy chain 7; X-linked juvenile retinoschisis caused by mutations to RS1, retinoschisin; autosomal recessive retinitis pigmentosa caused by mutations to MERTK, the proto-oncogene tyrosine-protein kinase MER; Leber's hereditary optic neuropathy caused by mutations to ND4, mitochondrial nicotinamide adenine dinucleotide ubiquinone oxidoreductase (complex I) subunit 4 and achromatopsia, caused by

  13. Pathway to Retinal Oximetry.

    PubMed

    Beach, James

    2014-09-01

    Events and discoveries in oxygen monitoring over the past two centuries are presented as the background from which oximetry of the human retina evolved. Achievements and the people behind them are discussed, showing parallels between the work in tissue measurements and later in the eye. Developments in the two-wavelength technique for oxygen saturation measurements in retinal vessels are shown to exploit the forms of imaging technology available over time. The last section provides a short summary of the recent research in retinal diseases using vessel oximetry.

  14. Retinal profile and structural differences between myopes and emmetropes

    NASA Astrophysics Data System (ADS)

    Clark, Christopher Anderson

    Refractive development has been shown to be influenced by optical defocus in the eye and the interpretation of this signal appears to be localized in the retina. Optical defocus is not uniform across the retina and has been suggested as a potential cause of myopia development. Specifically hyperopic focus, i.e. focusing light behind the retina, may signal the eye to elongate, causing myopia. This non-uniform hyperopic signal appears to be due to the retinal shape. Ultimately, these signals are detected by the retina in an as yet undetermined manner. The purpose of this thesis is to examine the retinal profile using a novel method developed at Indiana University and then to examine retinal structural changes across the retina associated with myopia. Myopes exhibited more prolate retinas than hyperopes/emmetropes using the SD OCT. Using the SD OCT, this profile difference was detectable starting at 5 degrees from the fovea, which was closer than previously reported in the literature. These results agreed significantly with results found from peripheral refraction and peripheral axial length at 10 degrees. Overall, the total retina was thinner for myopes than hyperopes/emmetropes. It was also statistically significantly thinner for the Outer Nuclear Layer (ONL), Inner Nuclear Layer (INL) and Outer Plexiform Layer (OPL) but not for other retinal layers such as the Ganglion Layer. Thinning generally occurred outside of 5 degrees. The SD OCT method provided a nearly 10 fold increase in sensitivity which allowed for detection of profile changes closer to the fovea. The location of the retinal changes may be interesting as the layers that showed significant differences in thickness are also layers that contain cells believed to be associated with refractive development (amacrine, bipolar, and photoreceptor cells.) The reason for the retinal changes cannot be determined with this study, but possible theories include stretch due to axial elongation, neural remodeling due to

  15. Cilio-retinal arterial circulation in central retinal vein occlusion.

    PubMed Central

    McLeod, D

    1975-01-01

    The hypothesis that an occlusion of the central retinal artery is an essential prerequisite for haemorrhage formation after central retinal vein obstruction has been investigated by examining the fundus changes in patients with a cilio-retinal arterial circulation; the findings are at variance with the 'combined occlusion hypothesis'. Comparisons were made between the pathological features in two retinal capillary beds with independent sources of arterial supply--namely, the central retinal and cilio-retinal arteries--but with an obstructed venous drainage channel common to both--namely, the central retinal vein. The importance of intraluminal pressure changes (as distinct from perfusion changes) in the causation of haemorrhages and oedema after venous occlusion is stressed, and the role of arterial disease in the pathogenesis of venous occlusions is distinguished from its role in determining the sequelae of such occlusions. Images PMID:1203235

  16. [Retinal pneumopexy in the treatment of rhegmatogenous retinal detachment].

    PubMed

    Levai, L; Gavriş, Monica; Gábor, Radó; Bagosi, P

    2014-01-01

    To evaluate the efficiency of retinal pneumopexy in patients with rhegmatogenous retinal detachment. This clinical prospective study unrolled between november 2010-june 2012 in the Ophthalmology Department of the Military Hospital in Cluj-Napoca and Satu Mare Emergency Hospital included 20 patients (20 eyes) with rhegmatogenous retinal detachment. Patients were treated with retinal pneumopexy followed by laser photocoagulation. Anatomical and functional results were evaluated 1, 3, 6, 12 and 19 months after treatment. In 17 eyes out of 20, we achieved retinal reattachment and visual recovery. Three cases yelded no success, these being further treated with posterior vitrectomy. Retinal pneumopexy is a minimally invasive treatment method of rhegmatogenous retinal detachment with very good results in well selected cases.

  17. Autosomal Recessive Retinitis Pigmentosa Due To ABCA4 Mutations: Clinical, Pathologic, and Molecular Characterization

    PubMed Central

    Mullins, Robert F.; Kuehn, Markus H.; Radu, Roxana A.; Enriquez, G. Stephanie; East, Jade S.; Schindler, Emily I.; Travis, Gabriel H.; Stone, Edwin M.

    2012-01-01

    Purpose. Autosomal recessive retinitis pigmentosa (ARRP) is a genetically heterogeneous condition characterized by progressive loss of retinal photoreceptor cells. In order to gain new insights into the pathogenesis of ARRP, we evaluated the morphological, biochemical, and gene expression changes in eyes from a human donor with ARRP due to mutations in the ABCA4 gene. Methods. Eyes were obtained postmortem from a donor with end-stage retinitis pigmentosa. The coding sequences of the RDS, RHO, and ABCA4 genes were screened for disease-causing mutations. Morphological changes in different regions of the retina were examined histologically, and levels of lipofuscin-associated bisretinoids were measured. Gene expression was examined in retinal/choroidal tissue using microarray analysis, and all parameters were compared to those in unaffected control donors. Results. Genetic analysis of the donor's DNA identified two mutations in the ABCA4 gene, IVS14+1G > C and Phe1440del1 cT, each on a separate allele. Morphological evaluation revealed complete loss of the outer nuclear layer, remodeling of the inner retina, loss of retinal vasculature, and regional neovascularization. The retinal pigment epithelium and choriocapillaris exhibited regional preservation. Microarray analysis revealed loss of photoreceptor cell-associated transcripts, with preservation of multiple genes expressed specifically in inner retinal neurons. Conclusions. The persistence of transcripts expressed by inner retinal neurons suggests that despite significant plasticity that occurs during retinal degeneration, bipolar cells and ganglion cells remain at least partially differentiated. Findings from this study suggest that some forms of therapy currently under investigation may have benefit even in advanced retinal degeneration. PMID:22395892

  18. Constitutive opsin signaling: night blindness or retinal degeneration?

    PubMed

    Lem, Janis; Fain, Gordon L

    2004-04-01

    A subset of genetic mutations in photoreceptor-specific genes results in abnormally prolonged activation of transducin-mediated photosignaling in rod cells. In humans and animal models, these mutations cause visual dysfunctions ranging from a mild stationary night blindness to severe, early-onset retinal degeneration. There are mechanistic differences between mutations causing night blindness and those causing retinal degeneration. Here, we hypothesize that mutations causing continuous activation of the visual cascade as the result, for example, of the inability of the photoreceptor to regenerate rhodopsin, lead to retinal degeneration; those mutations that can terminate signaling, even if only partially and intermittently, slow the rate of degeneration sufficiently to give rise to stationary night blindness. Furthermore, we hypothesize that a prolonged decrease in intracellular calcium concentration resulting from persistent activation is responsible for triggering apoptotic rod-cell death.

  19. Retinal locus for scanning text.

    PubMed

    Timberlake, George T; Sharma, Manoj K; Grose, Susan A; Maino, Joseph H

    2006-01-01

    A method of mapping the retinal location of text during reading is described in which text position is plotted cumulatively on scanning laser ophthalmoscope retinal images. Retinal locations that contain text most often are the brightest in the cumulative plot, and locations that contain text least often are the darkest. In this way, the retinal area that most often contains text is determined. Text maps were plotted for eight control subjects without vision loss and eight subjects with central scotomas from macular degeneration. Control subjects' text maps showed that the fovea contained text most often. Text maps of five of the subjects with scotomas showed that they used the same peripheral retinal area to scan text and fixate. Text maps of the other three subjects with scotomas showed that they used separate areas to scan text and fixate. Retinal text maps may help evaluate rehabilitative strategies for training individuals with central scotomas to use a particular retinal area to scan text.

  20. Defining the critical hypoxic threshold that promotes vascular remodeling in the brain.

    PubMed

    Boroujerdi, Amin; Milner, Richard

    2015-01-01

    In animal models, hypoxic pre-conditioning confers protection against subsequent neurological insults, mediated in part through an extensive vascular remodeling response. In light of the therapeutic potential of this effect, the goal of this study was to establish the dose-response relationship between level of hypoxia and the extent of cerebrovascular modeling, and to define the mildest level of hypoxia that promotes remodeling. Mice were exposed to different levels of continuous hypoxia (8-21% O2) for seven days before several aspects of vascular remodeling were evaluated, including endothelial proliferation, total vascular area, arteriogenesis, and fibronectin/α5β1 integrin expression. For most events, the threshold level of hypoxia that stimulated remodeling was 12-13% O2. Interestingly, many parameters displayed a biphasic dose-response curve, with peak levels attained at 10% O2, but declined thereafter. Further analysis in the 12-13% O2 range revealed that vascular remodeling occurs by two separate mechanisms: (i) endothelial hyperplasia, triggered by a hypoxic threshold of 13% O2, which leads to increased capillary growth, and (ii) endothelial hypertrophy, triggered by a more severe hypoxic threshold of 12% O2, which leads to expansion of large vessels and arteriogenesis. Taken together, these results define the hypoxic thresholds for vascular remodeling in the brain, and point to two separate mechanisms mediating this process.

  1. Nanomaterials and Retinal Toxicity

    EPA Science Inventory

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  2. Nanomaterials and Retinal Toxicity

    EPA Science Inventory

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  3. Retinal imaging with smartphone.

    PubMed

    Ademola-Popoola, D S; Olatunji, V A

    2017-03-01

    The use of smartphones for various purposes among health professionals is increasing, especially with the availability of different applications. On account of cost, fundus cameras are not readily available in ophthalmic practice in developing countries. Since smartphones are readily available, easy to use and portable, they may present a cheap alternative in a resource-limited economy. to explore the use of smartphone (Blackberry Z-10) for retinal imaging in a resource-limited economy. A smartphone (Blackberry Z-10) was used to acquire retinal images with the use of +20D lens in patients with dilated pupils by activating the video mode of the camera. Clear retinal images were obtained in different clinical conditions in adults and children including branch retinal vein occlusion with fibrovascular proliferation, chorioretinal scarring from laser photocoagulation, presumed ocular toxoplasmosis, diabetic retinopathy, retinoblastoma, ocular albinism with fundus hypopigmentation. The ability to have low cost fundus imaging from readily available smartphones in an eye clinic in Nigeria presents a major boost to patient care and also offers an innovative role in research, education, and information sharing.

  4. Protection of retinal function by sulforaphane following retinal ischemic injury.

    PubMed

    Ambrecht, Lindsay A; Perlman, Jay I; McDonnell, James F; Zhai, Yougang; Qiao, Liang; Bu, Ping

    2015-09-01

    Sulforaphane, a precursor of glucosinolate in cruciferous vegetables such as broccoli and cauliflower, has been shown to protect brain ischemic injury. In this study, we examined the effect of systemic administration of sulforaphane on retinal ischemic reperfusion injury. Intraocular pressure was elevated in two groups of C57BL/6 mice (n = 8 per group) for 45 min to induce retinal ischemic reperfusion injury. Following retinal ischemic reperfusion injury, vehicle (1% DMSO saline) or sulforaphane (25 mg/kg/day) was administered intraperitoneally daily for 5 days. Scotopic electroretinography (ERG) was used to quantify retinal function prior to and one-week after retinal ischemic insult. Retinal morphology was examined one week after ischemic insult. Following ischemic reperfusion injury, ERG a- and b-wave amplitudes were significantly reduced in the control mice. Sulforaphane treatment significantly attenuated ischemic-induced loss of retinal function as compared to vehicle treated mice. In vehicle treated mice, ischemic reperfusion injury produced marked thinning of the inner retinal layers, but the thinning of the inner retinal layers appeared significantly less with sulforaphane treatment. Thus, sulforaphane may be beneficial in the treatment of retinal disorders with ischemic reperfusion injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. [The characteristics of retinitis pigmentosa with retinal vascular occlusion].

    PubMed

    Wang, Guang-lu; Lu, Ning; Zhang, Feng; Peng, Xiao-yan; Li, Yang; Wang, Ming-yang

    2005-05-01

    To observe clinical features of Retinitis pigmentosa with retinal vascular occlusion and its prognosis. To analyze the clinical Data in 18 cases retrospectively using fundus examination, fundus fluorescein angiography, indocyanine green angiography, electroretinogram, visually evoked potential etc. Gene screening was performed in 3 cases. the major clinical manifestations of the disease were optic atrophy, vascular attenuation to obliteration, widespread retinal pigment epithelium atrophy with depigmentation and/or fine pigment spots, total or nearly total a and b wave were extinct in the examination of electroretinogram. All this manifestations were compatible with that of typical Retinitis Pigmentosa (tapeto-retinal dystrophy). It also had its unique features, such as total or nearly total vascular obliteration, marked optic atrophy in later stage, and choroidal vessels abnormal. Gene mutation was not found in gene encoding area of RHO gene of No: 3 chromosome and of RLBPI gene of No: 15 chromosome. vision loss in this kind retinitis pigmentosa is much faster than that of typical retinitis pigmentosa. Retinitis pigmentosa with retinal vascular occlusion may belonged to a kind of tapeto-retinal dystrophy, vascular progressive obliteration was probably its associated disease.

  6. Progressive retinal nonperfusion in ischemic central retinal vein occlusion.

    PubMed

    Wykoff, Charles C; Brown, David M; Croft, Daniel E; Major, James C; Wong, Tien P

    2015-01-01

    Serial wide-field fluorescein angiography was performed on eyes with preproliferative (ischemic) central retinal vein occlusion to evaluate retinal perfusion. Serial wide-field fluorescein angiography was performed on 12 preproliferative central retinal vein occlusion eyes in the 3-year Rubeosis Anti-VEGF (RAVE) trial using the Staurenghi lens (Ocular Staurenghi 230SLO Retina Lens) with a scanning laser ophthalmoscope (Heidelberg HRA Spectralis). "Disk area" was defined anatomically for each eye. Mean total field of gradable retina was 290 disk areas (range, 178-452). All eyes demonstrated extensive areas of retinal nonperfusion; at baseline, mean area of retinal perfusion was 106 disk areas (range, 37-129), correlating with a mean of 46.5% perfused retinal area (range, 19.1-56.4%). The area of retinal nonperfusion increased in all eyes with a mean loss of approximately 8.1% of perfused retinal area per year (range, 4.3-12.4%), which corresponded to a mean 15-disk areas (range, 12-35) of retina evolving from perfused to nonperfused annually. The extent of baseline and final nonperfusion was not significantly different between eyes that developed neovascularization and eyes that did not. In this population of severe central retinal vein occlusion eyes, profound retinal nonperfusion was observed with wide-field fluorescein angiography at baseline and the extent of nonperfusion progressed while undergoing anti-vascular endothelial growth factor therapy.

  7. Dynamics of lung defense in pneumonia: resistance, resilience, and remodeling.

    PubMed

    Quinton, Lee J; Mizgerd, Joseph P

    2015-01-01

    Pneumonia is initiated by microbes in the lung, but physiological processes integrating responses across diverse cell types and organ systems dictate the outcome of respiratory infection. Resistance, or actions of the host to eradicate living microbes, in the lungs involves a combination of innate and adaptive immune responses triggered by air-space infection. Resilience, or the ability of the host tissues to withstand the physiologically damaging effects of microbial and immune activities, is equally complex, precisely regulated, and determinative. Both immune resistance and tissue resilience are dynamic and change throughout the lifetime, but we are only beginning to understand such remodeling and how it contributes to the incidence of severe pneumonias, which diminishes as childhood progresses and then increases again among the elderly. Here, we review the concepts of resistance, resilience, and remodeling as they apply to pneumonia, highlighting recent advances and current significant knowledge gaps.

  8. Dynamics of Lung Defense in Pneumonia: Resistance, Resilience, and Remodeling

    PubMed Central

    Quinton, Lee J.; Mizgerd, Joseph P.

    2015-01-01

    Pneumonia is initiated by microbes in the lung, but physiological processes integrating responses across diverse cell types and organ systems dictate the outcome of respiratory infection. Resistance, or actions of the host to eradicate living microbes, in the lungs involves a combination of innate and adaptive immune responses triggered by air-space infection. Resilience, or the ability of the host tissues to withstand the physiologically damaging effects of microbial and immune activities, is equally complex, precisely regulated, and determinative. Both immune resistance and tissue resilience are dynamic and change throughout the lifetime, but we are only beginning to understand such remodeling and how it contributes to the incidence of severe pneumonias, which diminishes as childhood progresses and then increases again among the elderly. Here, we review the concepts of resistance, resilience, and remodeling as they apply to pneumonia, highlighting recent advances and current significant knowledge gaps. PMID:25148693

  9. A secreted bacterial protease tailors the Staphylococcus aureus virulence repertoire to modulate bone remodeling during osteomyelitis

    PubMed Central

    Cassat, James E.; Hammer, Neal D.; Campbell, J. Preston; Benson, Meredith A.; Perrien, Daniel S.; Mrak, Lara N.; Smeltzer, Mark S.; Torres, Victor J.; Skaar, Eric P.

    2013-01-01

    Summary Osteomyelitis is a common manifestation of invasive Staphylococcus aureus infection. Pathogen-induced bone destruction limits antimicrobial penetration to the infectious focus and compromises treatment of osteomyelitis. To investigate mechanisms of S. aureus-induced bone destruction, we developed a murine model of osteomyelitis. Micro-computed tomography of infected femurs revealed that S. aureus triggers profound alterations in bone turnover. The bacterial regulatory locus sae was found to be critical for osteomyelitis pathogenesis, as Sae-regulated factors promote pathologic bone remodeling and intraosseous bacterial survival. Exoproteome analyses revealed the Sae-regulated protease aureolysin as a major determinant of the S. aureus secretome and identified the phenol soluble modulins as aureolysin-degraded, osteolytic peptides that trigger osteoblast cell death and bone destruction. These studies establish a murine model for pathogen-induced bone remodeling, define Sae as critical for osteomyelitis pathogenesis, and identify protease-dependent exoproteome remodeling as a major determinant of the staphylococcal virulence repertoire. PMID:23768499

  10. Plastic roles of pericytes in the blood–retinal barrier

    PubMed Central

    Park, Do Young; Lee, Junyeop; Kim, Jaeryung; Kim, Kangsan; Hong, Seonpyo; Han, Sangyeul; Kubota, Yoshiaki; Augustin, Hellmut G.; Ding, Lei; Kim, Jin Woo; Kim, Hail; He, Yulong; Adams, Ralf H.; Koh, Gou Young

    2017-01-01

    The blood–retinal barrier (BRB) consists of tightly interconnected capillary endothelial cells covered with pericytes and glia, but the role of the pericytes in BRB regulation is not fully understood. Here, we show that platelet-derived growth factor (PDGF)-B/PDGF receptor beta (PDGFRβ) signalling is critical in formation and maturation of BRB through active recruitment of pericytes onto growing retinal vessels. Impaired pericyte recruitment to the vessels shows multiple vascular hallmarks of diabetic retinopathy (DR) due to BRB disruption. However, PDGF-B/PDGFRβ signalling is expendable for maintaining BRB integrity in adult mice. Although selective pericyte loss in stable adult retinal vessels surprisingly does not cause BRB disintegration, it sensitizes retinal vascular endothelial cells (ECs) to VEGF-A, leading to upregulation of angiopoietin-2 (Ang2) in ECs through FOXO1 activation and triggering a positive feedback that resembles the pathogenesis of DR. Accordingly, either blocking Ang2 or activating Tie2 greatly attenuates BRB breakdown, suggesting potential therapeutic approaches to reduce retinal damages upon DR progression. PMID:28508859

  11. Air pollution and adverse cardiac remodeling: clinical effects and basic mechanisms

    PubMed Central

    Liu, Yonggang; Goodson, Jamie M.; Zhang, Bo; Chin, Michael T.

    2015-01-01

    Exposure to air pollution has long been known to trigger cardiovascular events, primarily through activation of local and systemic inflammatory pathways that affect the vasculature. Detrimental effects of air pollution exposure on heart failure and cardiac remodeling have also been described in human populations. Recent studies in both human subjects and animal models have provided insights into the basic physiological, cellular and molecular mechanisms that play a role in adverse cardiac remodeling. This review will give a brief overview of the relationship between air pollution and cardiovascular disease, describe the clinical effects of air pollution exposure on cardiac remodeling, describe the basic mechanisms that affect remodeling as described in human and animal systems and will discuss future areas of investigation. PMID:26042051

  12. [Weightlessness or weightlessness simulation and vascular remodeling].

    PubMed

    Yue, Yong; Yao, Yong-jie; Sun, Xi-qing; Wu, Xing-yu

    2003-04-01

    Weightlessness is inavoidable during spaceflight. It brings profound physiological effects on human body. Vascular remodeling is one of the important changes of cardiovascular system caused by weightlessness or simulated weightlessness. The paper summarized the studies on the effects of weightlessness or weightlessness simulation on vascular remodeling in recent years. The emergence and development of the concept of vascular remodeling were briefly reviewed. The advances of study on vascular remodeling in recent years was briefly discussed with the points focused on the effects of weightlessness or weightlessness simulation on cardiovascular remodeling and its mechanism. It is proposed that cardiovascular remodeling might be important in studying the causes of orthostatic intolerance after spaceflight.

  13. Myofascial trigger point pain.

    PubMed

    Jaeger, Bernadette

    2013-01-01

    Myofascial trigger point pain is an extremely prevalent cause of persistent pain disorders in all parts of the body, not just the head, neck, and face. Features include deep aching pain in any structure, referred from focally tender points in taut bands of skeletal muscle (the trigger points). Diagnosis depends on accurate palpation with 2-4 kg/cm2 of pressure for 10 to 20 seconds over the suspected trigger point to allow the referred pain pattern to develop. In the head and neck region, cervical muscle trigger points (key trigger points) often incite and perpetuate trigger points (satellite trigger points) and referred pain from masticatory muscles. Management requires identification and control of as many perpetuating factors as possible (posture, body mechanics, psychological stress or depression, poor sleep or nutrition). Trigger point therapies such as spray and stretch or trigger point injections are best used as adjunctive therapy.

  14. Advanced glycation end products induce moesin phosphorylation in murine retinal endothelium.

    PubMed

    Wang, Lingjun; Li, Qiaoqin; Du, Jing; Chen, Bo; Li, Qiang; Huang, Xuliang; Guo, Xiaohua; Huang, Qiaobing

    2012-02-01

    Increase in vascular permeability is the most important pathological event during the development of diabetic retinopathy. Deposition of advanced glycation end products (AGEs) plays a crucial role in the process of diabetes. This study was to investigate the role of moesin and its underlying signal transduction in retinal vascular hyper-permeability induced by AGE-modified mouse serum albumin (AGE-MSA). Female C57BL/6 mice were used to produce an AGE-treated model by intraperitoneal administration of AGE-MSA for seven consecutive days. The inner blood-retinal barrier was quantified by Evans blue leakage assay. Endothelial F-actin cytoskeleton in retinal vasculature was visualized by fluorescence probe staining. The expression and phosphorylation of moesin in retinal vessels were detected by RT-PCR and western blotting. Further studies were performed to explore the effects of Rho kinase (ROCK) and p38 MAPK pathway on the involvement of moesin in AGE-induced retinal vascular hyper-permeability response. Treatment with AGE-MSA significantly increased the permeability of the retinal microvessels and induced the disorganization of F-actin in retinal vascular endothelial cells. The threonine (T558) phosphorylation of moesin in retinal vessels was enhanced remarkably after AGE administration. The phosphorylation of moesin was attenuated by inhibitions of ROCK and p38 MAPK, while this treatment also prevented the dysfunction of inner blood-retinal barrier and the reorganization of F-actin in retinal vascular endothelial cells. These results demonstrate that moesin is involved in AGE-induced retinal vascular endothelial dysfunction and the phosphorylation of moesin is triggered via ROCK and p38 MAPK activation.

  15. Retinal angiomatous proliferation.

    PubMed

    Marticorena, J; Di Leva, V; Cennamo, G L; de Crecchio, G

    2011-02-01

    Retinal angiomatous proliferation (RAP) is a distinct form of choroidal neovascularization which may complicate a wet age related macular degeneration (AMD). This exudative-AMD has a peculiar clinical history and prognosis. RAP accounts from 8% to 22% of newly diagnosed cases among patients previously diagnosed as exudative AMD, and up to 25% of the occult or minimally classic CNV. The disease is more prevalent in women (90% of cases) and in elderly patients (around 75 years), and is characterized by a very poor prognosis. The neovascular process, whose retinal or choroidal origin is still object of discussion, often hesitates in the formation of a disciform scar, that evolves into a severe loss of central vision. Treatment for RAP is not yet well established; herein are described the most used therapeutic strategies, starting from laser photocoagulation until the nearest anti VEGF. The opportunity of combination among various treatments to obtain a better effectiveness and a lower frequency of recurrence is also discussed.

  16. Small Animal Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Choi, WooJhon; Drexler, Wolfgang; Fujimoto, James G.

    Developing and validating new techniques and methods for small animal imaging is an important research area because there are many small animal models of retinal diseases such as diabetic retinopathy, age-related macular degeneration, and glaucoma [1-6]. Because the retina is a multilayered structure with distinct abnormalities occurring in different intraretinal layers at different stages of disease progression, there is a need for imaging techniques that enable visualization of these layers individually at different time points. Although postmortem histology and ultrastructural analysis can be performed for investigating microscopic changes in the retina in small animal models, this requires sacrificing animals, which makes repeated assessment of the same animal at different time points impossible and increases the number of animals required. Furthermore, some retinal processes such as neurovascular coupling cannot be fully characterized postmortem.

  17. The peripheral retinal 'map'.

    PubMed Central

    Williams, D. H.

    1975-01-01

    The condition of the periphery of the retinal field of the human eye is of considerable significance, it is suggested, to those participating in various sporting activities. Its boundaries shrink and expand depending upon the physiological conditions imposed both upon the eye and upon the organism as a whole. Consequently its message to the brain may be impaired under stress with resulting danger owing to delayed response. Images Fig. 3 Fig. 4 Fig. 5 PMID:1148574

  18. Inherited Retinal Degenerative Disease Registry

    ClinicalTrials.gov

    2016-03-21

    Eye Diseases Hereditary; Retinal Disease; Achromatopsia; Bardet-Biedl Syndrome; Bassen-Kornzweig Syndrome; Batten Disease; Best Disease; Choroidal Dystrophy; Choroideremia; Cone Dystrophy; Cone-Rod Dystrophy; Congenital Stationary Night Blindness; Enhanced S-Cone Syndrome; Fundus Albipunctatus; Goldmann-Favre Syndrome; Gyrate Atrophy; Juvenile Macular Degeneration; Kearns-Sayre Syndrome; Leber Congenital Amaurosis; Refsum Syndrome; Retinitis Pigmentosa; Retinitis Punctata Albescens; Retinoschisis; Rod-Cone Dystrophy; Rod Dystrophy; Rod Monochromacy; Stargardt Disease; Usher Syndrome

  19. A Review: Proteomics in Retinal Artery Occlusion, Retinal Vein Occlusion, Diabetic Retinopathy and Acquired Macular Disorders

    PubMed Central

    Cehofski, Lasse Jørgensen; Honoré, Bent; Vorum, Henrik

    2017-01-01

    Retinal artery occlusion (RAO), retinal vein occlusion (RVO), diabetic retinopathy (DR) and age-related macular degeneration (AMD) are frequent ocular diseases with potentially sight-threatening outcomes. In the present review we discuss major findings of proteomic studies of RAO, RVO, DR and AMD, including an overview of ocular proteome changes associated with anti-vascular endothelial growth factor (VEGF) treatments. Despite the severe outcomes of RAO, the proteome of the disease remains largely unstudied. There is also limited knowledge about the proteome of RVO, but proteomic studies suggest that RVO is associated with remodeling of the extracellular matrix and adhesion processes. Proteomic studies of DR have resulted in the identification of potential therapeutic targets such as carbonic anhydrase-I. Proliferative diabetic retinopathy is the most intensively studied stage of DR. Proteomic studies have established VEGF, pigment epithelium-derived factor (PEDF) and complement components as key factors associated with AMD. The aim of this review is to highlight the major milestones in proteomics in RAO, RVO, DR and AMD. Through large-scale protein analyses, proteomics is bringing new important insights into these complex pathological conditions. PMID:28452939

  20. Capping Protein Modulates Actin Remodeling in Response to Reactive Oxygen Species during Plant Innate Immunity1[OPEN

    PubMed Central

    Cao, Lingyan

    2017-01-01

    Plants perceive microbe-associated molecular patterns and damage-associated molecular patterns to activate innate immune signaling events, such as bursts of reactive oxygen species (ROS). The actin cytoskeleton remodels during the first 5 min of innate immune signaling in Arabidopsis (Arabidopsis thaliana) epidermal cells; however, the immune signals that impinge on actin cytoskeleton and its response regulators remain largely unknown. Here, we demonstrate that rapid actin remodeling upon elicitation with diverse microbe-associated molecular patterns and damage-associated molecular patterns represent a conserved plant immune response. Actin remodeling requires ROS generated by the defense-associated NADPH oxidase, RBOHD. Moreover, perception of flg22 by its cognate receptor complex triggers actin remodeling through the activation of RBOHD-dependent ROS production. Our genetic studies reveal that the ubiquitous heterodimeric capping protein transduces ROS signaling to the actin cytoskeleton during innate immunity. Additionally, we uncover a negative feedback loop between actin remodeling and flg22-induced ROS production. PMID:27909046

  1. RHGF-1/PDZ-RhoGEF and retrograde DLK-1 signaling drive neuronal remodeling on microtubule disassembly.

    PubMed

    Chen, Chun-Hao; Lee, Albert; Liao, Chien-Po; Liu, Ya-Wen; Pan, Chun-Liang

    2014-11-18

    Neurons remodel their connectivity in response to various insults, including microtubule disruption. How neurons sense microtubule disassembly and mount remodeling responses by altering genetic programs in the soma are not well defined. Here we show that in response to microtubule disassembly, the Caenorhabditis elegans PLM neuron remodels by retracting its synaptic branch and overextending the primary neurite. This remodeling required RHGF-1, a PDZ-Rho guanine nucleotide exchange factor (PDZ-RhoGEF) that was associated with and inhibited by microtubules. Independent of the myosin light chain activation, RHGF-1 acted through Rho-dependent kinase LET-502/ROCK and activated a conserved, retrograde DLK-1 MAPK (DLK-1/dual leucine zipper kinase) pathway, which triggered synaptic branch retraction and overgrowth of the PLM neurite in a dose-dependent manner. Our data represent a neuronal remodeling paradigm during development that reshapes the neural circuit by the coordinated removal of the dysfunctional synaptic branch compartment and compensatory extension of the primary neurite.

  2. Glutamatergic Retinal Waves

    PubMed Central

    Kerschensteiner, Daniel

    2016-01-01

    Spontaneous activity patterns propagate through many parts of the developing nervous system and shape the wiring of emerging circuits. Prior to vision, waves of activity originating in the retina propagate through the lateral geniculate nucleus (LGN) of the thalamus to primary visual cortex (V1). Retinal waves have been shown to instruct the wiring of ganglion cell axons in LGN and of thalamocortical axons in V1 via correlation-based plasticity rules. Across species, retinal waves mature in three stereotypic stages (I–III), in which distinct circuit mechanisms give rise to unique activity patterns that serve specific functions in visual system refinement. Here, I review insights into the patterns, mechanisms, and functions of stage III retinal waves, which rely on glutamatergic signaling. As glutamatergic waves spread across the retina, neighboring ganglion cells with opposite light responses (ON vs. OFF) are activated sequentially. Recent studies identified lateral excitatory networks in the inner retina that generate and propagate glutamatergic waves, and vertical inhibitory networks that desynchronize the activity of ON and OFF cells in the wavefront. Stage III wave activity patterns may help segregate axons of ON and OFF ganglion cells in the LGN, and could contribute to the emergence of orientation selectivity in V1. PMID:27242446

  3. Dealing with Asthma Triggers

    MedlinePlus

    ... dientes Video: Getting an X-ray Dealing With Asthma Triggers KidsHealth > For Kids > Dealing With Asthma Triggers ... or the flu weather conditions exercise continue Managing Asthma Asthma can't be cured but it can ...

  4. Asthma triggers (image)

    MedlinePlus

    ... asthma triggers are mold, pets, dust, grasses, pollen, cockroaches, odors from chemicals, and smoke from cigarettes. ... asthma triggers are mold, pets, dust, grasses, pollen, cockroaches, odors from chemicals, and smoke from cigarettes.

  5. Retinal Thickening and Photoreceptor Loss in HIV Eyes without Retinitis

    PubMed Central

    Arcinue, Cheryl A.; Bartsch, Dirk-Uwe; El-Emam, Sharif Y.; Ma, Feiyan; Doede, Aubrey; Sharpsten, Lucie; Gomez, Maria Laura; Freeman, William R.

    2015-01-01

    Purpose To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula) compared with age-matched HIV-negative controls. Methods Cohort of patients with known HIV under CART (combination Antiretroviral Therapy) treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT) to assess retinal layers and retinal thickness. Results Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative) were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior), the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308–6,872 cones/mm2). A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative) was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea). We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer) was also significantly thickened in all the different locations scanned compared with HIV-negative controls. Conclusion Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis. PMID:26244973

  6. [Application of retinal oximeter in ophthalmology].

    PubMed

    Li, Jing; Ma, Jianmin; Wang, Ningli

    2015-11-01

    Retinal oximeter is a new machine which has been used in the diagnose, treatment and research of several ophthalmic diseases for recent years. It allows ophthalmologists to gain retinal oxygen saturation directly. Therefore, retinal oximeter might be useful for ophthalmologists to understand ophthalmic diseases more deeper and clarify the impact of ischemia on retinal function. It has been reported in the literatures that retinal oximeter has potentially useful diagnostic and therapeutic indications in various eye diseases such as diabetic retinopathy, central retinal vein and artery occlusion, retinitis pigmentosa, glaucomatous optic neuropathy, et al. In this thesis, the application of retinal oximeter in ophthalmology is reviewed.

  7. Intraocular retinal prosthesis.

    PubMed Central

    Humayun, M S

    2001-01-01

    PURPOSE: An electronic implant that can bypass the damaged photoreceptors and electrically stimulate the remaining retinal neurons to restore useful vision has been proposed. A number of key questions remain to make this approach feasible. The goal of this thesis is to address the following 2 specific null hypotheses: (1) Stimulus parameters make no difference in the electrically elicited retinal responses. (2) Just as we have millions of photoreceptors, so it will take a device that can generate millions of pixels/light points to create useful vision. METHODS: For electrophysiologic experiments, 2 different setups were used. In the first setup, charge-balanced pulses were delivered to the retinal surface via electrodes inserted through an open sky approach in normal or blind retinal degenerate (rd) mice. In the second setup, the rabbit retina was removed under red light conditions from an enucleated eye and then maintained in a chamber while being superfused with oxygenated, heated Ames media. In both setups, stimulating electrodes and recording electrodes were positioned on the retinal surface to evaluate the effect of varying stimulation parameters on the orthodromic retinal responses (i.e., recording electrode placed between stimulating electrodes and optic nerve head). For psychophysical experiments, visual images were divided into pixels of light that could be projected in a pattern on the retina in up to 8 sighted volunteers. Subjects were asked to perform various tasks ranging from reading and face recognition to various activities of daily living. RESULTS: Electrophysiologic experiments: In a normal mouse, a single cycle of a 1-kHz sine wave was significantly more efficient than a 1-kHz square wave (P < .05), but no such difference was noted in either of the 8- or 16-week-old rd mouse groups (8-week-old, P = .426; 16-week-old, P = .078). Charge threshold was significantly higher in 16-week-old rd mouse versus both 8-week-old rd and normal mouse for every

  8. Retinal photodamage mediated by all-trans-retinal.

    PubMed

    Maeda, Tadao; Golczak, Marcin; Maeda, Akiko

    2012-01-01

    Accumulation of all-trans-retinal (all-trans-RAL), reactive vitamin A aldehyde, is one of the key factors in initiating retinal photodamage. This photodamage is characterized by progressive retinal cell death evoked by light exposure in both an acute and chronic fashion. Photoactivated rhodopsin releases all-trans-RAL, which is subsequently transported by ATP-binding cassette transporter 4 and reduced to all-trans-retinol by all-trans-retinol dehydrogenases located in photoreceptor cells. Any interruptions in the clearing of all-trans-RAL in the photoreceptors can cause an accumulation of this reactive aldehyde and its toxic condensation products. This accumulation may result in the manifestation of retinal dystrophy including human retinal degenerative diseases such as Stargardt's disease and age-related macular degeneration. Herein, we discuss the mechanisms of all-trans-RAL clearance in photoreceptor cells by sequential enzymatic reactions, the visual (retinoid) cycle, and potential molecular pathways of retinal photodamage. We also review recent imaging technologies to monitor retinal health status as well as novel therapeutic strategies preventing all-trans-RAL-associated retinal photodamage. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  9. LKB1 and AMPK regulate synaptic remodeling in old age

    PubMed Central

    Samuel, Melanie A; Voinescu, P Emanuela; Lilley, Brendan N; de Cabo, Rafa; Foretz, Marc; Viollet, Benoit; Pawlyk, Basil; Sandberg, Michael A; Vavvas, Demetrios G; Sanes, Joshua R

    2015-01-01

    Age-related decreases in neural function result in part from alterations in synapses. To identify molecular defects that lead to such changes, we focused on the outer retina, in which synapses are markedly altered in old rodents and humans. We found that the serine/threonine kinase LKB1 and one of its substrates, AMPK, regulate this process. In old mice, synaptic remodeling was accompanied by specific decreases in the levels of total LKB1 and active (phosphorylated) AMPK. In the absence of either kinase, young adult mice developed retinal defects similar to those that occurred in old wild-type animals. LKB1 and AMPK function in rod photoreceptors where their loss leads to aberrant axonal retraction, the extension of postsynaptic dendrites and the formation of ectopic synapses. Conversely, increasing AMPK activity genetically or pharmacologically attenuates and may reverse age-related synaptic alterations. Together, these results identify molecular determinants of age-related synaptic remodeling and suggest strategies for attenuating these changes. PMID:25086610

  10. All-trans-retinal induces Bax activation via DNA damage to mediate retinal cell apoptosis.

    PubMed

    Sawada, Osamu; Perusek, Lindsay; Kohno, Hideo; Howell, Scott J; Maeda, Akiko; Matsuyama, Shigemi; Maeda, Tadao

    2014-06-01

    The current study investigates the cellular events which trigger activation of proapoptotic Bcl-2-associated × protein (Bax) in retinal cell death induced by all-trans-retinal (atRAL). Cellular events which activate Bax, such as DNA damage by oxidative stress and phosphorylation of p53, were evaluated by immunochemical and biochemical methods using ARPE-19 cells, 661 W cells, cultured neural retinas and a retinal degeneration model, Abca4(-/-)Rdh8(-/-) mice. atRAL-induced Bax activation in cultured neural retinas was examined by pharmacological and genetic methods. Other Bax-related cellular events were also evaluated by pharmacological and biochemical methods. Production of 8-OHdG, a DNA damage indicator, and the phosphorylation of p53 at Ser46 were detected prior to Bax activation in ARPE-19 cells incubated with atRAL. Light exposure to Abca4(-/-)Rdh8(-/-) mice also caused the above mentioned events in conditions of short term intense light exposure and regular room lighting conditions. Incubation with Bax inhibiting peptide and deletion of the Bax gene partially protected retinal cells from atRAL toxicity in cultured neural retina. Necrosis was demonstrated not to be the main pathway in atRAL mediated cell death. Bcl-2-interacting mediator and Bcl-2 expression levels were not altered by atRAL in vitro. atRAL-induced oxidative stress results in DNA damage leading to the activation of Bax by phosphorylated p53. This cascade is closely associated with an apoptotic cell death mechanism rather than necrosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. All-trans-retinal induces Bax activation via DNA damage to mediate retinal cell apoptosis

    PubMed Central

    Sawada, Osamu; Perusek, Lindsay; Kohno, Hideo; Howell, Scott J.; Maeda, Akiko; Matsuyama, Shigemi; Maeda, Tadao

    2014-01-01

    The current study investigates the cellular events which trigger activation of proapoptotic Bcl-2-associated X protein (Bax) in retinal cell death induced by all-trans-retinal (atRAL). Cellular events which activate Bax, such as DNA damage by oxidative stress and phosphorylation of p53, were evaluated by immunochemical and biochemical methods using ARPE-19 cells, 661W cells, cultured neural retinas and a retinal degeneration model, Abca4−/−Rdh8−/− mice. atRAL-induced Bax activation in cultured neural retinas was examined by pharmacological and genetic methods. Other Bax-related cellular events were also evaluated by pharmacological and biochemical methods. Production of 8-OHdG, a DNA damage indicator, and the phosphorylation of p53 at Ser 46 were detected prior to Bax activation in ARPE-19 cells incubated with atRAL. Light exposure to Abca4−/−Rdh8−/− mice also caused the above mentioned events in conditions of short term intense light exposure and regular room lighting conditions. Incubation with Bax inhibiting peptide and deletion of the Bax gene partially protected retinal cells from atRAL toxicity in cultured neural retina. Necrosis was demonstrated not to be the main pathway in atRAL mediated cell death. Bcl-2-interacting mediator and Bcl-2 expression levels were not altered by atRAL in vitro. atRAL-induced oxidative stress results in DNA damage leading to the activation of Bax by phosphorylated p53. This cascade is closely associated with an apoptotic cell death mechanism rather than necrosis. PMID:24726920

  12. Retinal changes in visceral leishmaniasis by retinal photography.

    PubMed

    Maude, Richard James; Ahmed, B U M Wahid; Rahman, Abu Hayat Md Waliur; Rahman, Ridwanur; Majumder, Mohammed Ishaque; Menezes, Darryl Braganza; Abu Sayeed, Abdullah; Hughes, Laura; MacGillivray, Thomas J; Borooah, Shyamanga; Dhillon, Baljean; Dondorp, Arjen M; Faiz, Mohammad Abul

    2014-09-30

    In visceral leishmaniasis (VL), retinal changes have previously been noted but not described in detail and their clinical and pathological significance are unknown. A prospective observational study was undertaken in Mymensingh, Bangladesh aiming to describe in detail visible changes in the retina in unselected patients with VL. Patients underwent assessment of visual function, indirect and direct ophthalmoscopy and portable retinal photography. The photographs were assessed by masked observers including assessment for vessel tortuosity using a semi-automated system. 30 patients with VL were enrolled, of whom 6 (20%) had abnormalities. These included 5 with focal retinal whitening, 2 with cotton wool spots, 2 with haemorrhages, as well as increased vessel tortuosity. Visual function was preserved. These changes suggest a previously unrecognized retinal vasculopathy. An inflammatory aetiology is plausible such as a subclinical retinal vasculitis, possibly with altered local microvascular autoregulation, and warrants further investigation.

  13. Retinal Image Quality Assessment for Spaceflight-Induced Vision Impairment Study

    NASA Technical Reports Server (NTRS)

    Vu, Amanda Cadao; Raghunandan, Sneha; Vyas, Ruchi; Radhakrishnan, Krishnan; Taibbi, Giovanni; Vizzeri, Gianmarco; Grant, Maria; Chalam, Kakarla; Parsons-Wingerter, Patricia

    2015-01-01

    Long-term exposure to space microgravity poses significant risks for visual impairment. Evidence suggests such vision changes are linked to cephalad fluid shifts, prompting a need to directly quantify microgravity-induced retinal vascular changes. The quality of retinal images used for such vascular remodeling analysis, however, is dependent on imaging methodology. For our exploratory study, we hypothesized that retinal images captured using fluorescein imaging methodologies would be of higher quality in comparison to images captured without fluorescein. A semi-automated image quality assessment was developed using Vessel Generation Analysis (VESGEN) software and MATLAB® image analysis toolboxes. An analysis of ten images found that the fluorescein imaging modality provided a 36% increase in overall image quality (two-tailed p=0.089) in comparison to nonfluorescein imaging techniques.

  14. Cardiovascular remodeling and the peripheral serotonergic system.

    PubMed

    Ayme-Dietrich, Estelle; Aubertin-Kirch, Gaëlle; Maroteaux, Luc; Monassier, Laurent

    2017-01-01

    Plasma 5-hydroxytryptamine (5-HT; serotonin), released from blood platelets, plays a major role in the human cardiovascular system. Besides the effect of endogenous serotonin, many drugs targeting serotonergic receptors are widely used in the general population (antiobesity agents, antidepressants, antipsychotics, antimigraine agents), and may enhance the cardiovascular risk. Depending on the type of serotonin receptor activated and its location, the use of these compounds triggers acute and chronic effects. The acute cardiovascular response to 5-HT, named the Bezold-Jarish reflex, leads to intense bradycardia associated with atrioventricular block, and involves 5-HT3, 5-HT1B/1D, 5-HT7 and 5-HT2A/2B receptors. The chronic contribution of 5-HT and its receptors (5-HT4 and 5-HT2A/2B) in cardiovascular tissue remodeling, with a particular emphasis on cardiac hypertrophy, fibrosis and valve degeneration, will be explored in this review. Finally, through the analysis of the effects of sarpogrelate, some new aspects of 5-HT2A receptor pharmacology in vasomotor tone regulation and the interaction between endothelial and smooth muscle cells will also be discussed. The aim of this review is to emphasize the cardiac side effects caused by serotonin receptor activation, and to highlight their possible prevention by the development of new drugs targeting this system. Copyright © 2016. Published by Elsevier Masson SAS.

  15. Low Level Laser Retinal Damage

    DTIC Science & Technology

    1990-03-01

    18 Related Projects ........................ . . ....... 20 References . . . . .......................... 22 2 INTRODUCTION The objectives of...fluorescein is a potent phototoxic agent in the retina.26 The damage threshold for blue light retinal damage is lowered by a factor of ten after an... Related to the Probiem of Retinal Light Damage 1. Corneal Holography 2. Hematoporphyrin Studies 3. Fluorescein Fluorescence Measurements 7 EQUIPMENT

  16. Retinal Imaging and Image Analysis

    PubMed Central

    Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2011-01-01

    Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships. PMID:21743764

  17. Perceptual Fading without Retinal Adaptation

    ERIC Educational Resources Information Center

    Hsieh, Po-Jang; Colas, Jaron T.

    2012-01-01

    A retinally stabilized object readily undergoes perceptual fading and disappears from consciousness. This startling phenomenon is commonly believed to arise from local bottom-up sensory adaptation to edge information that occurs early in the visual pathway, such as in the lateral geniculate nucleus of the thalamus or retinal ganglion cells. Here…

  18. Will Retinal Implants Restore Vision?

    NASA Astrophysics Data System (ADS)

    Zrenner, Eberhart

    2002-02-01

    A number of research groups are developing electrical implants that can be attached directly to the retina in an attempt to restore vision to patients suffering from retinal degeneration. However, despite promising results in animal experiments, there are still several major obstacles to overcome before retinal prostheses can be used clinically.

  19. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  20. Perceptual Fading without Retinal Adaptation

    ERIC Educational Resources Information Center

    Hsieh, Po-Jang; Colas, Jaron T.

    2012-01-01

    A retinally stabilized object readily undergoes perceptual fading and disappears from consciousness. This startling phenomenon is commonly believed to arise from local bottom-up sensory adaptation to edge information that occurs early in the visual pathway, such as in the lateral geniculate nucleus of the thalamus or retinal ganglion cells. Here…

  1. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling

    PubMed Central

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA–DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx−/− pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration. PMID:27462424

  2. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling.

    PubMed

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA-DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx (-/-) pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration.

  3. Bilateral retinitis following typhoid fever.

    PubMed

    Prabhushanker, M; Topiwalla, Tasneem T; Ganesan, Geetha; Appandaraj, Sripal

    2017-01-01

    Post typhoid fever immune related reactions affecting the eye is a rare finding which can have various presentations in which typhoid retinopathy is not a well recognized sequelae. Here we present a case of 59 year old male who presented with right eye sudden painless loss of vision 4 weeks after typhoid fever which was diagnosed and treated successfully. His BCVA was 2/60 in right eye and 6/6 in left eye. Fundus examination showed retinitis along with macular serous detachment in right eye and retinitis in left eye. Significant improvement in BCVA in right eye was observed after treatment with oral steroid with resolving retinitis lesions. Diagnosis of post typhoid immune mediated retinitis was made with good resolution following treatment. Immune mediated retinitis is a rare sequelae to typhoid infection which can be successfully treated with systemic steroids with good resolution of the lesions.

  4. Retinal vascular changes in hypertensive patients in Ibadan, Sub-Saharan Africa.

    PubMed

    Oluleye, Sunday Tunji; Olusanya, Bolutife Ayokunu; Adeoye, Abiodun Moshood

    2016-01-01

    Earlier studies in Nigeria reported the rarity of retinal vascular changes in hypertensives. The aim of this study was to describe the various retinal vascular changes in the hypertensive patients of Nigeria. Nine hundred and three hypertensive patients were studied. This study was approved by the ethical and research committee of the University of Ibadan and University College Hospital, Ibadan, Nigeria. Blood pressure and anthropometric measurements were measured. Cardiac echocardiography was performed on 156 patients. All patients had dilated fundoscopy and fundus photography using the Kowa portable fundus camera and an Apple iPhone with 20 D lens. Statistical analysis was done with Statistical Packages for the Social Sciences (Version 21). The mean age of patients was 57 years with a male:female ratio of 1. No retinopathy was found in 556 (61.5%) patients. In all, 175 (19.4%) patients had features of hypertensive retinopathy. Retinal vascular occlusion was a significant finding in 121 patients (13.4%), of which branch retinal vein occlusion, 43 (4.7%), and central retinal vein occlusion, 30 (3.3%), were the most prominent ones in cases. Hemicentral retinal vein occlusion, 26 (2.9%), and central retinal artery occlusion, 17 (1.9%), were significant presentations. Other findings included nonarteritic anterior ischemic optic neuropathy in five (0.6%) patients, hypertensive choroidopathy in seven (0.8%) patients, and hemorrhagic choroidal detachment in five (0.6%) patients. Left ventricular (LV) geometry was abnormal in 85 (55.5%) patients. Concentric remodeling, eccentric hypertrophy, and concentric hypertrophy were observed in 43 (27.6%), 26 (17.2%), and 15 (9.7%) patients, respectively. LV hypertrophy was found in 42 (27%) patients, while 60 (39%) patients had increased relative wall thickness. In this study, bivariate analysis showed a correlation between LV relative wall thickness and severity of retinopathy in both eyes (Spearman's coefficient 0.6; P=0

  5. Triggering trigeminal neuralgia.

    PubMed

    Di Stefano, Giulia; Maarbjerg, Stine; Nurmikko, Turo; Truini, Andrea; Cruccu, Giorgio

    2017-01-01

    Introduction Although it is widely accepted that facial pain paroxysms triggered by innocuous stimuli constitute a hallmark sign of trigeminal neuralgia, very few studies to date have systematically investigated the role of the triggers involved. In the recently published diagnostic classification, triggered pain is an essential criterion for the diagnosis of trigeminal neuralgia but no study to date has been designed to address this issue directly. In this study, we set out to determine, in patients with trigeminal neuralgia, how frequently triggers are present, which manoeuvres activate them and where cutaneous and mucosal trigger zones are located. Methods Clinical characteristics focusing on trigger factors were collected from 140 patients with trigeminal neuralgia, in a cross-sectional study design. Results Provocation of paroxysmal pain by various trigger manoeuvres was reported by 136 of the 140 patients. The most frequent manoeuvres were gentle touching of the face (79%) and talking (54%). Trigger zones were predominantly reported in the perioral and nasal region. Conclusion This study confirms that in trigeminal neuralgia, paroxysmal pain is associated with triggers in virtually all patients and supports the use of triggers as an essential diagnostic feature of trigeminal neuralgia.

  6. Matrix remodeling during endochondral ossification.

    PubMed

    Ortega, Nathalie; Behonick, Danielle J; Werb, Zena

    2004-02-01

    Endochondral ossification, the process by which most of the skeleton is formed, is a powerful system for studying various aspects of the biological response to degraded extracellular matrix (ECM). In addition, the dependence of endochondral ossification upon neovascularization and continuous ECM remodeling provides a good model for studying the role of the matrix metalloproteases (MMPs) not only as simple effectors of ECM degradation but also as regulators of active signal-inducers for the initiation of endochondral ossification. The daunting task of elucidating their specific role during endochondral ossification has been facilitated by the development of mice deficient for various members of this family. Here, we discuss the ECM and its remodeling as one level of molecular regulation for the process of endochondral ossification, with special attention to the MMPs.

  7. Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response

    PubMed Central

    Vandersmissen, Ine; Craps, Sander; Depypere, Maarten; Coppiello, Giulia; van Gastel, Nick; Maes, Frederik; Carmeliet, Geert; Schrooten, Jan; Jones, Elizabeth A.V.; Umans, Lieve; Devlieger, Roland; Koole, Michel; Gheysens, Olivier; Zwijsen, An; Aranguren, Xabier L.

    2015-01-01

    Collateral remodeling is critical for blood flow restoration in peripheral arterial disease and is triggered by increasing fluid shear stress in preexisting collateral arteries. So far, no arterial-specific mediators of this mechanotransduction response have been identified. We show that muscle segment homeobox 1 (MSX1) acts exclusively in collateral arterial endothelium to transduce the extrinsic shear stimulus into an arteriogenic remodeling response. MSX1 was specifically up-regulated in remodeling collateral arteries. MSX1 induction in collateral endothelial cells (ECs) was shear stress driven and downstream of canonical bone morphogenetic protein–SMAD signaling. Flow recovery and collateral remodeling were significantly blunted in EC-specific Msx1/2 knockout mice. Mechanistically, MSX1 linked the arterial shear stimulus to arteriogenic remodeling by activating the endothelial but not medial layer to a proinflammatory state because EC but not smooth muscle cellMsx1/2 knockout mice had reduced leukocyte recruitment to remodeling collateral arteries. This reduced leukocyte infiltration in EC Msx1/2 knockout mice originated from decreased levels of intercellular adhesion molecule 1 (ICAM1)/vascular cell adhesion molecule 1 (VCAM1), whose expression was also in vitro driven by promoter binding of MSX1. PMID:26391659

  8. Regeneration and Remodeling of Materials

    DTIC Science & Technology

    2012-08-01

    Turchyn (Chem) Brett Krull (MatSE) Concepts and Motivation Regeneration and Remodeling in biology: Tree skink lizard Linckia starfish Human Bone...Damage Fill Pumping Regime Microchannels in Specimen Overhead Camera Damage Regeneration Setup 45mm 2mm Pressurized Delivery 5.0 mm gap with bi...phase resin 4.0 mm gap (PDMS healing system) 3.5 mm gap (PDMS healing system) Damage Filling Results Maximum Fill Size PDMS Pre-mixed Epoxy 3mm

  9. Stereotyped initiation of retinal waves by bipolar cells via presynaptic NMDA autoreceptors

    PubMed Central

    Zhang, Rong-wei; Li, Xiao-quan; Kawakami, Koichi; Du, Jiu-lin

    2016-01-01

    Glutamatergic retinal waves, the spontaneous patterned neural activities propagating among developing retinal ganglion cells (RGCs), instruct the activity-dependent refinement of visuotopic maps. However, its initiation and underlying mechanism remain largely elusive. Here using larval zebrafish and multiple in vivo approaches, we discover that bipolar cells (BCs) are responsible for the generation of glutamatergic retinal waves. The wave originates from BC axon terminals (ATs) and propagates laterally to nearby BCs and vertically to downstream RGCs and the optic tectum. Its initiation is triggered by the activation of and consequent glutamate release from BC ATs, and is mediated by the N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) expressed at these ATs. Intercellular asymmetry of NMDAR expression at BC ATs enables the preferential initiation of waves at the temporal retina, where BC ATs express more NMDARs. Thus, our findings indicate that glutamatergic retinal waves are initiated by BCs through a presynaptic NMDA autoreceptor-dependent process. PMID:27586999

  10. Frontiers in growth and remodeling

    PubMed Central

    Menzel, Andreas; Kuhl, Ellen

    2012-01-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  11. Vascular Remodeling in Pulmonary Hypertension

    PubMed Central

    Shimoda, Larissa A; Laurie, Steven S.

    2013-01-01

    Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions and the appearance of cells expressing smooth muscle specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular trans-differentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting. PMID:23334338

  12. Stay away from asthma triggers

    MedlinePlus

    Asthma triggers - stay away from; Asthma triggers - avoiding; Reactive airway disease - triggers; Bronchial asthma - triggers ... to them. Have someone who does not have asthma cut the grass, or wear a facemask if ...

  13. The protective effect of prophylactic ozone administration against retinal ischemia-reperfusion injury.

    PubMed

    Kal, Ali; Kal, Oznur; Akillioglu, Ishak; Celik, Esin; Yilmaz, Mustafa; Gonul, Saban; Solmaz, Merve; Onal, Ozkan

    2017-03-01

    Retinal ischemia-reperfusion (IR) injury is associated with many ocular diseases. Retinal IR injury leads to the death of retinal ganglion cells (RGCs), loss of retinal function and ultimately vision loss. The aim of this study was to show the protective effects of prophylactic ozone administration against retinal IR injury. A sham group (S) (n = 7) was administered physiological saline (PS) intraperitoneally (i.p.) for 7 d. An ischemia reperfusion (IR) group (n = 7) was subjected to retinal ischemia followed by reperfusion for 2 h. An ozone group (O) (n = 7) was administered 1 mg/kg of ozone i.p. for 7 d. In the ozone + IR (O + IR) group (n = 7), 1 mg/kg of ozone was administered i.p. for 7 d before the IR procedure and at 8 d, the IR injury was created (as in IR group). The rats were anesthetized after second hour of reperfusion and their intracardiac blood was drawn completely and they were sacrificed. Blood samples were sent to a laboratory for analysis of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), total oxidant score (TOS) and total antioxidant capacity (TAC). The degree of retinal injury was evaluated according to changes in retinal cells and necrotic and apoptotic cells using the TUNEL method. Data were evaluated statistically with the Kruskal-Wallis test. The number of RGCs and the inner retinal thickness were significantly decreased after ischemia, and treatment with ozone significantly inhibited retinal ischemic injury. In the IR group, the degree of retinal injury was found to be the highest. In the O + IR group, retinal injury was found to be decreased in comparison to the IR group. In the ozone group without retinal IR injury, the retinal injury score was the lowest. The differences in the antioxidant parameters SOD, GSH-Px and TAC were increased in the ozone group and the lowest in the IR group. The oxidant parameters MDA and TOS were found to be the highest in the IR group and

  14. Dynamic rewiring of the Drosophila retinal determination network switches its function from selector to differentiation.

    PubMed

    Atkins, Mardelle; Jiang, Yuwei; Sansores-Garcia, Leticia; Jusiak, Barbara; Halder, Georg; Mardon, Graeme

    2013-08-01

    Organ development is directed by selector gene networks. Eye development in the fruit fly Drosophila melanogaster is driven by the highly conserved selector gene network referred to as the "retinal determination gene network," composed of approximately 20 factors, whose core comprises twin of eyeless (toy), eyeless (ey), sine oculis (so), dachshund (dac), and eyes absent (eya). These genes encode transcriptional regulators that are each necessary for normal eye development, and sufficient to direct ectopic eye development when misexpressed. While it is well documented that the downstream genes so, eya, and dac are necessary not only during early growth and determination stages but also during the differentiation phase of retinal development, it remains unknown how the retinal determination gene network terminates its functions in determination and begins to promote differentiation. Here, we identify a switch in the regulation of ey by the downstream retinal determination genes, which is essential for the transition from determination to differentiation. We found that central to the transition is a switch from positive regulation of ey transcription to negative regulation and that both types of regulation require so. Our results suggest a model in which the retinal determination gene network is rewired to end the growth and determination stage of eye development and trigger terminal differentiation. We conclude that changes in the regulatory relationships among members of the retinal determination gene network are a driving force for key transitions in retinal development.

  15. Ih without Kir in Adult Rat Retinal Ganglion Cells

    PubMed Central

    Lee, Sherwin C.; Ishida, Andrew T.

    2011-01-01

    Antisera directed against hyperpolarization-activated mixed-cation (“Ih”) and K+ (“Kir”) channels bind to some somata in the ganglion cell layer of rat and rabbit retina. Additionally, the termination of hyperpolarizing current injections can trigger spikes in some cat retinal ganglion cells, suggesting a rebound depolarization due to activation of Ih. However, patch-clamp studies have reported that rat ganglion cells lack inward rectification, or present an inwardly rectifying K+ current. We therefore tested whether hyperpolarization activates Ih in dissociated, adult rat retinal ganglion cell somata. We report here that while we found no inward rectification in some cells, and a Kir-like current in a few cells, hyperpolarization activated Ih in roughly 75% of the cells we recorded from in voltage clamp. We show that this current is blocked by Cs+ or ZD7288 and only slightly reduced by Ba2+, that the current amplitude and reversal potential are sensitive to extracellular Na+ and K+, and that we found no evidence of Kir in cells presenting Ih. In current clamp, injecting hyperpolarizing current induced a slowly relaxing membrane hyperpolarization that rebounded to a few action potentials when the hyperpolarizing current was stopped; both the membrane potential relaxation and rebound spikes were blocked by ZD7288. These results provide the first measurement of Ih in mammalian retinal ganglion cells, and indicate that the ion channels of rat retinal ganglion cells may vary in ways not expected from previous voltage and current recordings. PMID:17488978

  16. Synapse Loss and Dendrite Remodeling in a Mouse Model of Glaucoma.

    PubMed

    Berry, Ryan H; Qu, Juan; John, Simon W M; Howell, Gareth R; Jakobs, Tatjana C

    2015-01-01

    It has been hypothesized that synaptic pruning precedes retinal ganglion cell degeneration in glaucoma, causing early dysfunction to retinal ganglion cells. To begin to assess this, we studied the excitatory synaptic inputs to individual ganglion cells in normal mouse retinas and in retinas with ganglion cell degeneration from glaucoma (DBA/2J), or following an optic nerve crush. Excitatory synapses were labeled by AAV2-mediated transfection of ganglion cells with PSD-95-GFP. After both insults the linear density of synaptic inputs to ganglion cells decreased. In parallel, the dendritic arbors lost complexity. We did not observe any cells that had lost dendritic synaptic input while preserving a normal or near-normal morphology. Within the temporal limits of these observations, dendritic remodeling and synapse pruning thus appear to occur near-simultaneously.

  17. Bone remodeling in psoriasis and psoriatic arthritis: an update.

    PubMed

    Paine, Ananta; Ritchlin, Christopher

    2016-01-01

    This article reviews and outlines recent advances in the field of bone remodeling in psoriatic disease and identify avenues for further research. High-resolution imaging revealed that new bone formation, observed in psoriatic arthritis (PsA) is centered at enthesial sites in contrast to hand osteoarthritis, and new bone formation is also present in psoriasis patients without arthritis. Accumulating evidence strongly suggests that the IL-23/IL-17 pathway is directly involved in altered bone phenotypes in PsA. Apart from Th17 and Th22 cells, CD8IL-17 T cells, γδT cells, and type 3 innate lymphoid cells also secrete IL-17 and IL-22. Further studies will be needed to clarify the role of these cells in bone remodeling in the context of psoriatic disease. Recent research also strengthened the earlier viewpoint that mechanical stress can serve as a trigger for joint inflammation and arthritis development. Recent findings suggest that inflammation beginning in the skin may become more generalized and involve musculoskeletal structures. Other reports suggest that gut microbiota might have a role in joint inflammatory responses and bone remodeling in psoriatic disease. Successful application of omics approaches and advance imaging studies also revealed many novel aspects of psoriatic diseases and joint-related pathologies which will likely help pinpoint causal genes, pathways, and novel biomarkers in the near future. Imaging studies have provided new insights into new bone formation phenotypes in PsA. The IL-23/IL-17 pathway is of central importance in psoriatic bone remodeling where, apart from CD4 T helper cells, other IL-17 and IL-22-secreting innate and adaptive cells may also be involved. Insights from study of the microbiome and from omics technologies will set the stage for new advances in our understanding of bone disorders in psoriatic diseases.

  18. Calcium remodeling in colorectal cancer.

    PubMed

    Villalobos, Carlos; Sobradillo, Diego; Hernández-Morales, Miriam; Núñez, Lucía

    2017-06-01

    Colorectal cancer (CRC) is the third most frequent form of cancer and the fourth leading cause of cancer-related death in the world. Basic and clinical data indicate that aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) may prevent colon cancer but mechanisms remain unknown. Aspirin metabolite salicylate and other NSAIDs may inhibit tumor cell growth acting on store-operated Ca(2+) entry (SOCE), suggesting an important role for this pathway in CRC. Consistently, SOCE is emerging as a novel player in different forms of cancer, including CRC. SOCE and store-operated currents (SOCs) are dramatically enhanced in CRC while Ca(2+) stores are partially empty in CRC cells. These features may contribute to CRC hallmarks including enhanced cell proliferation, migration, invasion and survival. At the molecular level, enhanced SOCE and depleted stores are mediated by overexpression of Orai1, Stromal interaction protein 1 (STIM1) and Transient receptor protein channel 1 (TRPC1) and downregulation of STIM2. In normal colonic cells, SOCE is mediated by Ca(2+)-release activated Ca(2+) channels made of STIM1, STIM2 and Orai1. In CRC cells, SOCE is mediated by different store-operated currents (SOCs) driven by STIM1, Orai1 and TRPC1. Loss of STIM2 contributes to depletion of Ca(2+) stores and enhanced resistance to cell death in CRC cells. Thus, SOCE is a novel key player in CRC and inhibition by salicylate and other NSAIDs may contribute to explain chemoprevention activity. Colorectal cancer (CRC) is the third most frequent form of cancer worldwide. Recent evidence suggests that intracellular Ca(2+) remodeling may contribute to cancer hallmarks. In addition, aspirin and other NSAIDs might prevent CRC acting on remodeled Ca(2+) entry pathways. In this review, we will briefly describe 1) the players involved in intracellular Ca(2+) homeostasis with a particular emphasis on the mechanisms involved in SOCE activation and inactivation, 2) the evidence that aspirin

  19. Apoptosis in human retinal degenerations.

    PubMed

    Xu, G Z; Li, W W; Tso, M O

    1996-01-01

    This paper examined the role of apoptosis in human retinal degenerations including pathologic myopia, age-related macular degeneration, serous retinal detachment, retinal lattice, and paving stone degenerations. Thirty-seven enucleated human eyes with 1 of the above-mentioned retinal degenerations were studied by histopathology and by TdT-mediated biotin-dUTP nicked-end labelling (TUNEL) technique. Tunnel labelling characteristic DNA fragmentation of apoptosis was observed in photoreceptor cells in 2 of the 4 eyes with pathologic myopia and in 4 of 16 eyes with age-related macular degeneration, 2 of which were exudative and 2 of which were atrophic. However, only a few scattered photoreceptor cells were labelled in 4 of 8 eyes with serous retinal detachment secondary to malignant melanoma of the choroid. Moreover, none of the photoreceptors cells in the 4 eyes with retinal lattice degeneration and 6 eyes with retinal paving stone degeneration were labelled. Apoptosis is 1 of the important pathways of photoreceptor cell degeneration in pathologic myopia and age-related macular degeneration.

  20. The avascular zone and neuronal remodeling of the fovea in Parkinson disease

    PubMed Central

    Miri, Shahnaz; Shrier, Eric M; Glazman, Sofya; Ding, Yin; Selesnick, Ivan; Kozlowski, Piotr B; Bodis-Wollner, Ivan

    2015-01-01

    Inner foveal thinning and intracellular alpha-synuclein were demonstrated in the retina in Parkinson disease. While pathognomonic alpha-synuclein is associated with embryonic dopaminergic (DA) neurons, postmortem studies in the nervous system and retina show prominent effect also in non-DA neurons. We evaluated foveal capillaries and foveal thickness in 23 Parkinson disease subjects and 13 healthy controls using retinal fluorescein angiography and optical coherence tomography. The size of the foveal avascular zone inversely correlates with foveal thinning. Foveal thinning highly correlates with motor impairment and also disease duration. Quantifying capillary and neuronal remodeling could serve as biological markers. PMID:25750923

  1. The avascular zone and neuronal remodeling of the fovea in Parkinson disease.

    PubMed

    Miri, Shahnaz; Shrier, Eric M; Glazman, Sofya; Ding, Yin; Selesnick, Ivan; Kozlowski, Piotr B; Bodis-Wollner, Ivan

    2015-02-01

    Inner foveal thinning and intracellular alpha-synuclein were demonstrated in the retina in Parkinson disease. While pathognomonic alpha-synuclein is associated with embryonic dopaminergic (DA) neurons, postmortem studies in the nervous system and retina show prominent effect also in non-DA neurons. We evaluated foveal capillaries and foveal thickness in 23 Parkinson disease subjects and 13 healthy controls using retinal fluorescein angiography and optical coherence tomography. The size of the foveal avascular zone inversely correlates with foveal thinning. Foveal thinning highly correlates with motor impairment and also disease duration. Quantifying capillary and neuronal remodeling could serve as biological markers.

  2. LIM Kinase, a Newly Identified Regulator of Presynaptic Remodeling by Rod Photoreceptors After Injury

    PubMed Central

    Wang, Weiwei; Townes-Anderson, Ellen

    2015-01-01

    Purpose Rod photoreceptors retract their axon terminals and develop neuritic sprouts in response to retinal detachment and reattachment, respectively. This study examines the role of LIM kinase (LIMK), a component of RhoA and Rac pathways, in the presynaptic structural remodeling of rod photoreceptors. Methods Phosphorylated LIMK (p-LIMK), the active form of LIMK, was examined in salamander retina with Western blot and confocal microscopy. Axon length within the first 7 hours and process growth after 3 days of culture were assessed in isolated rod photoreceptors treated with inhibitors of upstream regulators ROCK and p21-activated kinase (Pak) (Y27632 and IPA-3) and a direct LIMK inhibitor (BMS-5). Porcine retinal explants were also treated with BMS-5 and analyzed 24 hours after detachment. Because Ca2+ influx contributes to axonal retraction, L-type channels were blocked in some experiments with nicardipine. Results Phosphorylated LIMK is present in rod terminals during retraction and in newly formed processes. Axonal retraction over 7 hours was significantly reduced by inhibition of LIMK or its regulators, ROCK and Pak. Process growth was reduced by LIMK or Pak inhibition especially at the basal (axon-bearing) region of the rod cells. Combining Ca2+ channel and LIMK inhibition had no additional effect on retraction but did further inhibit sprouting after 3 days. In detached porcine retina, LIMK inhibition reduced rod axonal retraction and improved retinal morphology. Conclusions Thus structural remodeling, in the form of either axonal retraction or neuritic growth, requires LIMK activity. LIM kinase inhibition may have therapeutic potential for reducing pathologic rod terminal plasticity after retinal injury. PMID:26658506

  3. Retinal Structure in Cobalamin C Disease: Mechanistic and Therapeutic Implications.

    PubMed

    Aleman, Tomas S; Brodie, Frank; Garvin, Christopher; Gewaily, Dina Y; Ficicioglu, Can H; Mills, Monte D; Forbes, Brian J; Maguire, Albert M; Davidson, Stefanie L

    2015-01-01

    To describe the retinal structure in a patient with cobalamin C (cblC) disease. A 13-year-old male patient diagnosed with cblC disease during a perinatal metabolic screening prompted by jaundice and hypotony underwent ophthalmic examinations, electroretinography (ERG) and spectral domain optical coherence tomography (SD-OCT). The patient carried a homozygous (c.271dupA) mutation in the methylmalonic aciduria and homocystinuria type C (MMACHC) gene. At age 3 months he had a normal eye exam. A pigmentary maculopathy progressed to chorioretinal atrophy from 5-10 months. ERG at 7 months was normal. A nystagmus remained stable since the age of 2 years. At age 13, visual acuity was 20/250 (right eye) and 20/400 (left eye), with a +5.00 D correction, a level of vision maintained since first measurable at age 5 years. SD-OCT showed bilateral macular coloboma-like lesions; there was also a thickened surface layer with ganglion cell layer thinning. Photoreceptor outer segment loss and thinning of the outer nuclear layer (ONL) transitioned to regions with no discernible ONL with a delaminated, thickened, inner retina. A thick surface layer near the optic nerve resembling an immature retina and an initially normal macula that rapidly developed coloboma-like lesions suggest there may be an interference with retinal/foveal development in cblC, a mechanism of maculopathy that may be shared by other early onset retinal degenerations. Photoreceptor loss and inner retinal remodeling confirm associated photoreceptor degeneration.

  4. Lessons from (triggered) tremor

    USGS Publications Warehouse

    Gomberg, Joan

    2010-01-01

    I test a “clock-advance” model that implies triggered tremor is ambient tremor that occurs at a sped-up rate as a result of loading from passing seismic waves. This proposed model predicts that triggering probability is proportional to the product of the ambient tremor rate and a function describing the efficacy of the triggering wave to initiate a tremor event. Using data mostly from Cascadia, I have compared qualitatively a suite of teleseismic waves that did and did not trigger tremor with ambient tremor rates. Many of the observations are consistent with the model if the efficacy of the triggering wave depends on wave amplitude. One triggered tremor observation clearly violates the clock-advance model. The model prediction that larger triggering waves result in larger triggered tremor signals also appears inconsistent with the measurements. I conclude that the tremor source process is a more complex system than that described by the clock-advance model predictions tested. Results of this and previous studies also demonstrate that (1) conditions suitable for tremor generation exist in many tectonic environments, but, within each, only occur at particular spots whose locations change with time; (2) any fluid flow must be restricted to less than a meter; (3) the degree to which delayed failure and secondary triggering occurs is likely insignificant; and 4) both shear and dilatational deformations may trigger tremor. Triggered and ambient tremor rates correlate more strongly with stress than stressing rate, suggesting tremor sources result from time-dependent weakening processes rather than simple Coulomb failure.

  5. Long Noncoding RNA-GAS5: A Novel Regulator of Hypertension-Induced Vascular Remodeling.

    PubMed

    Wang, Yang-Ning-Zhi; Shan, Kun; Yao, Mu-Di; Yao, Jin; Wang, Jia-Jian; Li, Xiang; Liu, Ban; Zhang, Yang-Yang; Ji, Yong; Jiang, Qin; Yan, Biao

    2016-09-01

    Vascular remodeling is an important pathological feature of hypertension, leading to increased vascular resistance and reduced compliance. Endothelial cell (EC) and vascular smooth muscle cell (VSMC) dysfunction is involved in vascular remodeling. Long noncoding RNAs are potential regulators of EC and VSMC function. Herein, we determined whether long noncoding RNA-growth arrest-specific 5 (GAS5) is involved in hypertension-related vascular remodeling. We revealed that GAS5 knockdown aggravated hypertension-induced microvascular dysfunction as shown by increased retinal neovascularization and capillary leakage. GAS5 regulated the remodeling of arteries, including caudal arteries, carotid arteries, renal arteries, and thoracic arteries. GAS5 was mainly expressed in ECs and VSMCs, and its expression was significantly downregulated in hypertension. GAS5 knockdown affected endothelial activation, endothelial proliferation, VSMC phenotypic conversion, and EC-VSMC communication in vivo and in vitro. Mechanistically, GAS5 regulated EC and VSMC function through β-catenin signaling. This study identified GAS5 as a critical regulator in hypertension and demonstrated the potential of gene therapy and drug development for treating hypertension. © 2016 American Heart Association, Inc.

  6. Factors regulating capillary remodeling in a reversible model of inflammatory corneal angiogenesis

    PubMed Central

    Mukwaya, Anthony; Peebo, Beatrice; Xeroudaki, Maria; Ali, Zaheer; Lennikov, Anton; Jensen, Lasse; Lagali, Neil

    2016-01-01

    Newly formed microcapillary networks arising in adult organisms by angiogenic and inflammatory stimuli contribute to pathologies such as corneal and retinal blindness, tumor growth, and metastasis. Therapeutic inhibition of pathologic angiogenesis has focused on targeting the VEGF pathway, while comparatively little attention has been given to remodeling of the new microcapillaries into a stabilized, functional, and persistent vascular network. Here, we used a novel reversible model of inflammatory angiogenesis in the rat cornea to investigate endogenous factors rapidly invoked to remodel, normalize and regress microcapillaries as part of the natural response to regain corneal avascularity. Rapid reversal of an inflammatory angiogenic stimulus suppressed granulocytic activity, enhanced recruitment of remodelling macrophages, induced capillary intussusception, and enriched pathways and processes involving immune cells, chemokines, morphogenesis, axonal guidance, and cell motility, adhesion, and cytoskeletal functions. Whole transcriptome gene expression analysis revealed suppression of numerous inflammatory and angiogenic factors and enhancement of endogenous inhibitors. Many of the identified genes function independently of VEGF and represent potentially new targets for molecular control of the critical process of microvascular remodeling and regression in the cornea. PMID:27561355

  7. PIMASERTIB AND SEROUS RETINAL DETACHMENTS

    PubMed Central

    AlAli, Alaa; Bushehri, Ahmad; Park, Jonathan C.; Krema, Hatem

    2016-01-01

    Purpose: To report a case of multifocal serous retinal detachments associated with pimasertib. Methods: The authors report a 26-year-old patient who developed bilateral multifocal serous retinal detachments appearing 2 days after starting pimasertib (as part of a clinical trial investigating its use in low-grade metastatic ovarian cancer) and rapidly resolving 3 days after stopping it. Conclusion: The mechanism of MEK inhibitor induced visual toxicity remains unclear. The pathophysiology of multifocal serous retinal detachments as a complication of pimasertib is still poorly understood. PMID:26444523

  8. Misfolded Proteins and Retinal Dystrophies

    PubMed Central

    Lin, Jonathan H.; LaVail, Matthew M.

    2010-01-01

    Many mutations associated with retinal degeneration lead to the production of misfolded proteins by cells of the retina. Emerging evidence suggests that these abnormal proteins cause cell death by activating the Unfolded Protein Response, a set of conserved intracellular signaling pathways that detect protein misfolding within the endoplasmic reticulum and control protective and proapoptotic signal transduction pathways. Here, we review the misfolded proteins associated with select types of retinitis pigmentosa, Stargadt-like macular degeneration, and Doyne Honeycomb Retinal Dystrophy and discuss the role that endoplasmic reticulum stress and UPR signaling play in their pathogenesis. Last, we review new therapies for these diseases based on preventing protein misfolding in the retina. PMID:20238009

  9. Retinal pseudoangiitis after intravitreal triamcinolone

    PubMed Central

    García-Campos, Jose Manuel; García-Basterra, Ignacio; Kamal-Salah, Radua; Baquero-Aranda, Isabel

    2015-01-01

    We present a case of a 40-year-old woman with a fundus image similar to frosted retinal angiitis after undergoing pars plana vitrectomy and intravitreal triamcinolone injection. The patient with diabetic retinopathy was referred to our hospital with vision loss in her right eye secondary to vitreous haemorrhage. After pars plana vitrectomy and injection of triamcinolone acetonide a funduscopy examination revealed deposits of triamcinolone along the retinal vessels simulating a frosted retinal angiitis. Triamcinolone deposits along blood vessels could be the result of the reabsorption process of these crystals by the perivascular macrophages. Further studies are needed. PMID:25678611

  10. Clinically undetected retinal breaks causing retinal detachment: options for management.

    PubMed

    Gupta, Deepak; Ching, Jared; Tornambe, Paul E

    2017-08-11

    The successful detection of retinal breaks is a critical step in rhegmatogenous retinal detachment (RRD) surgery in order to prevent persistent/recurrent RRDs. Not all retinal breaks causing retinal detachments are obvious. Retinal breaks may be obscured due to opacities that are either anterior-segment related, lens related or posterior-segment related. Rules to identify breaks based on sub-retinal fluid (SRF) configuration are more difficult to apply in pseudophakic, aphakic, encircled eyes, and eyes with repeat detachments and those with proliferative vitreoretinopathy (PVR). Exudative detachments exhibit characteristic features and must be ruled out. A thorough clinical examination pre-operatively is important even if a vitrectomy is planned. This paper reviews the incidence and causes of undetected breaks along with pre-operative/clinical issues that may hinder break detection. We review the literature with respect to investigative approaches and techniques that are available to the vitreo-retinal surgeon when primary breaks remains clinically undetected during the pre-operative examination. We broadly divide the surgical approaches into ones where the surgeon utilises techniques to actively pursue a search for breaks versus adopting a purely speculative approach. Advantages and disadvantages of various techniques are appraised. Intuitively one might argue that an encircling scleral buckle combined with vitrectomy would give higher single operation success than PPV alone because 'undetected' retinal breaks would be addressed by a 360° plombage. We could not confirm this concept. Newer techniques, such as PPV augmented with dye extrusion or endoscopic-assisted PPV show encouraging results. Technological advances such as intraoperative OCT will also help to broaden the VR surgeon's armamentarium. At this time there is no gold standard in terms of the recommended approach and this is reflected in the many options that are available for management in this

  11. Progress in artificial vision through suprachoroidal retinal implants.

    PubMed

    Bareket, Lilach; Barriga-Rivera, Alejandro; Zapf, Marc Patrick; Lovell, Nigel H; Suaning, Gregg J

    2017-05-25

    Retinal implants have proven their ability to restore visual sensation to people with degenerative retinopathy, characterized by photoreceptor cell death and the retina's inability to sense light. Retinal bionics operate by electrically stimulating the surviving neurons in the retina, thus triggering the transfer of visual sensory information to the brain. Suprachoroidal implants were first investigated in Australia in the 1950s. In this approach, the neuromodulation hardware is positioned between the sclera and the choroid, thus providing significant surgical and safety benefits for patients, with the potential to maintain residual vision combined with the artificial input from the device. Here we review the latest advances and state of the art devices for suprachoroidal prostheses, highlight future technologies and discuss challenges and perspectives towards improved rehabilitation of vision.

  12. Progress in artificial vision through suprachoroidal retinal implants

    NASA Astrophysics Data System (ADS)

    Bareket, Lilach; Barriga-Rivera, Alejandro; Zapf, Marc Patrick; Lovell, Nigel H.; Suaning, Gregg J.

    2017-08-01

    Retinal implants have proven their ability to restore visual sensation to people with degenerative retinopathy, characterized by photoreceptor cell death and the retina’s inability to sense light. Retinal bionics operate by electrically stimulating the surviving neurons in the retina, thus triggering the transfer of visual sensory information to the brain. Suprachoroidal implants were first investigated in Australia in the 1950s. In this approach, the neuromodulation hardware is positioned between the sclera and the choroid, thus providing significant surgical and safety benefits for patients, with the potential to maintain residual vision combined with the artificial input from the device. Here we review the latest advances and state of the art devices for suprachoroidal prostheses, highlight future technologies and discuss challenges and perspectives towards improved rehabilitation of vision.

  13. Schmitt trigger multivibrator

    NASA Technical Reports Server (NTRS)

    Zrubek, W. E.

    1969-01-01

    Schmitt trigger multivibrator circuit, capable of astable, monostable or bistable operation, incorporates an input circuit in conjunction with a Schmitt trigger circuit. The circuits form two output signal levels, are useful in switching circuit applications, initiates oscillations, and forms highly unsymmetrical wave forms.

  14. Causality and headache triggers

    PubMed Central

    Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.

    2013-01-01

    Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872

  15. AMY trigger system

    SciTech Connect

    Sakai, Yoshihide

    1989-04-01

    A trigger system of the AMY detector at TRISTAN e{sup +}e{sup -} collider is described briefly. The system uses simple track segment and shower cluster counting scheme to classify events to be triggered. It has been operating successfully since 1987.

  16. Energy Remodeling, Mitochondrial Disorder and Heart Failure.

    PubMed

    Wang, Peng; Xu, Lei; Sun, Aijun

    2016-01-01

    Heart failure (HF) is a major global problem in public health with no curative treatment currently available. Energy remodeling is one of the features in HF, preceding cardiac structure remodeling. As an important energy organelle, mitochondrion plays critical roles in the progress of HF. This review focuses on the potential mechanisms linking mitochondrial functions and energy remodeling in HF including the energy starvation theory and energy substrate metabolism. It also highlights the potentials of novel drugs targeting HF energy metabolism.

  17. Regeneration and Remodeling of Composite Materials

    DTIC Science & Technology

    2015-08-27

    AFRL-AFOSR-VA-TR-2015-0263 REGENERATION AND REMODELING OF COMPOSITE MATERIALS Scott White UNIVERSITY OF ILLINOIS Final Report 08/27/2015 DISTRIBUTION...Remodeling of Composite Materials 5a. CONTRACT NUMBER FA9550-10-1-0255 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) White, Scott R., Sottos...distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Regeneration and Remodeling of Composite Materials (Regeneration) Program was

  18. Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis

    PubMed Central

    Castaldi, E.; Cicchini, G. M.; Cinelli, L.; Rizzo, S.; Morrone, M. C.

    2016-01-01

    Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI). After surgery, six out of seven retinitis pigmentosa (RP) blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD) activity in V1 and the lateral geniculate nucleus (LGN) was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation. PMID:27780207

  19. Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis.

    PubMed

    Castaldi, E; Cicchini, G M; Cinelli, L; Biagi, L; Rizzo, S; Morrone, M C

    2016-10-01

    Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI). After surgery, six out of seven retinitis pigmentosa (RP) blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD) activity in V1 and the lateral geniculate nucleus (LGN) was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation.

  20. Bilateral patching in retinal detachment: fluid mechanics and retinal "settling".

    PubMed

    Foster, William J

    2011-07-20

    When a patient suffers a retinal detachment and surgery is delayed, it is known clinically that bilaterally patching the patient may allow the retina to partially reattach or "settle." Although this procedure has been performed since the 1860s, there is still debate as to how such a maneuver facilitates the reattachment of the retina. Finite element calculations using commercially available analysis software are used to elucidate the influence of reduction in eye movement caused by bilateral patching on the flow of subretinal fluid in a physical model of retinal detachment. It was found that by coupling fluid mechanics with structural mechanics, a physically consistent explanation of increased retinal detachment with eye movements can be found in the case of traction on the retinal hole. Large eye movements increase vitreous traction and detachment forces on the edge of the retinal hole, creating a subretinal vacuum and facilitating increased subretinal fluid. Alternative models, in which intraocular fluid flow is redirected into the subretinal space, are not consistent with these simulations. The results of these simulations explain the physical principles behind bilateral patching and provide insight that can be used clinically. In particular, as is known clinically, bilateral patching may facilitate a decrease in the height of a retinal detachment. The results described here provide a description of a physical mechanism underlying this technique. The findings of this study may aid in deciding whether to bilaterally patch patients and in counseling patients on pre- and postoperative care.

  1. Development of retinal layers.

    PubMed

    Nguyen-Ba-Charvet, Kim Tuyen; Chédotal, Alain

    2014-03-01

    A noticeable characteristic of nervous systems is the arrangement of synapses into distinct layers. Such laminae are fundamental for the spatial organisation of synaptic connections transmitting different kinds of information. A major example of this is the inner plexiform layer (IPL) of the vertebrate retina, which is subdivided into at least ten sublayers. Another noticeable characteristic of these retina layers is that neurons are displayed in the horizontal plane in a non-random array termed as mosaic patterning. Recent studies of vertebrate and invertebrate systems have identified molecules that mediate these interactions. Here, we review the last mechanisms and molecules mediating retinal layering. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  2. Flexible retinal electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.; Christenson, Todd R.

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  3. The remodeling transient and the calcium economy.

    PubMed

    Aloia, J F; Arunabh-Talwar, S; Pollack, S; Yeh, J K

    2008-07-01

    The remodeling transient describes a change in bone mass that lasts one remodeling cycle following an intervention that disturbs the calcium economy. We demonstrated the transient in a study of the response of bone density to calcium/vitamin D3 supplementation and show the hazards of misinterpretation if the transient is not considered. The remodeling transient describes a change in bone mass that lasts for one remodeling cycle following an intervention that disturbs the calcium economy. We report an intervention with calcium and vitamin D supplementation in 208 postmenopausal African-American women where the remodeling transient was considered a priori in the study design. Both groups (calcium alone vs. calcium + 20 microg (800 IU) vitamin D3) were ensured a calcium intake in excess of 1200 mg/day. There were no differences between the two groups in changes in BMD over time. These BMD changes were therefore interpreted to reflect increased calcium intake in both groups but not any influence of vitamin D. A transient increase in bone mineral density was observed during the first year of study, followed by a decline. The remodeling period was estimated at about 9 months, which is similar to histomorphometric estimates. It is problematic to draw conclusions concerning interventions that influence the calcium economy without considering the remodeling transient in study design. Studies of agents that effect bone remodeling must be carried out for at least two remodeling cycles and appropriate techniques must be used in data analysis.

  4. RAMCO Remodel America Corp.Information Sheet

    EPA Pesticide Factsheets

    RAMCO Remodel America Corp. (the Company) is located in Memphis, Tennessee. The settlement involves renovation activities conducted at a property constructed prior to 1978, located in Memphis, Tennessee.

  5. Protein Misfolding and Retinal Degeneration

    PubMed Central

    Tzekov, Radouil; Stein, Linda; Kaushal, Shalesh

    2011-01-01

    The retina is a highly complex and specialized organ that performs preliminary analysis of visual information. Composed of highly metabolically active tissue, the retina requires a precise and well-balanced means of maintaining its functional activity during extended periods of time. Maintenance and regulation of a vast array of different structural and functional proteins is required for normal function of the retina. This process is referred to as protein homeostasis and involves a variety of activities, including protein synthesis, folding, transport, degradation, elimination, and recycling. Deregulation of any of these activities can lead to malfunctioning of the retina, from subtle subclinical signs to severe retinal degenerative diseases leading to blindness. Examples of retinal degenerative diseases caused by disruption of protein homeostasis include retinitis pigmentosa and Stargardt’s disease. A detailed discussion of the role of disruption in protein homeostasis in these and other retinal diseases is presented, followed by examples of some existing and potential treatments. PMID:21825021

  6. Microsystems Technology for Retinal Implants

    NASA Astrophysics Data System (ADS)

    Weiland, James

    2005-03-01

    The retinal prosthesis is targeted to treat age-related macular degeneration, retinitis pigmentosa, and other outer retinal degenerations. Simulations of artificial vision have predicted that 600-1000 individual pixels will be needed if a retinal prosthesis is to restore function such as reading large print and face recognition. An implantable device with this many electrode contacts will require microsystems technology as part of its design. An implantable retinal prosthesis will consist of several subsystems including an electrode array and hermetic packaging. Microsystems and microtechnology approaches are being investigated as possible solutions for these design problems. Flexible polydimethylsiloxane (PDMS) substrate electrode arrays and silicon micromachined electrode arrays are under development. Inactive PDMS electrodes have been implanted in 3 dogs to assess mechanical biocompatibility. 3 dogs were followed for 6 months. The implanted was securely fastened to the retina with a single retinal tack. No post-operative complications were evident. The array remained within 100 microns of the retinal surface. Histological evaluation showed a well preserved retina underneath the electrode array. A silicon device with electrodes suspended on micromachined springs has been implanted in 4 dogs (2 acute implants, 2 chronic implants). The device, though large, could be inserted into the eye and positioned on the retina. Histological analysis of the retina from the spring electrode implants showed that spring mounted posts penetrated the retina, thus the device will be redesigned to reduce the strength of the springs. These initial implants will provide information for the designers to make the next generation silicon device. We conclude that microsystems technology has the potential to make possible a retinal prosthesis with 1000 individual contacts in close proximity to the retina.

  7. All-trans-retinal shuts down rod cyclic nucleotide-gated ion channels: A novel role for photoreceptor retinoids in the response to bright light?

    PubMed Central

    Dean, Dylan M.; Nguitragool, Wang; Miri, Andrew; McCabe, Sarah L.; Zimmerman, Anita L.

    2002-01-01

    In retinal rods, light-induced isomerization of 11-cis-retinal to all-trans-retinal within rhodopsin triggers an enzyme cascade that lowers the concentration of cGMP. Consequently, cyclic nucleotide-gated (CNG) ion channels close, generating the first electrical response to light. After isomerization, all-trans-retinal dissociates from rhodopsin. We now show that all-trans-retinal directly and markedly inhibits cloned rod CNG channels in excised patches. 11-cis-retinal and all-trans-retinol also inhibited the channels, but at somewhat higher concentrations. Single-channel analysis suggests that all-trans-retinal reduces average open probability of rod CNG channels by inactivating channels for seconds at a time. At physiological cGMP levels, all-trans-retinal inhibited in the nanomolar range. Our results suggest that all-trans-retinal may be a potent regulator of the channel in rods during the response to bright light, when there is a large surge in the concentration of all-trans-retinal. PMID:12034887

  8. βA3/A1-crystallin is required for proper astrocyte template formation and vascular remodeling in the retina

    PubMed Central

    Sinha, Debasish; Valapala, Mallika; Bhutto, Imran; Patek, Bonnie; Zhang, Cheng; Hose, Stacey; Yang, Fang; Cano, Marisol; Stark, Walter J.; Lutty, Gerard A.; Zigler, J. Samuel; Wawrousek, Eric F.

    2013-01-01

    Nuc1 is a spontaneous rat mutant resulting from a mutation in the Cryba1 gene, coding for βA3/A1-crystallin. Our earlier studies with Nuc1 provided novel evidence that astrocytes, which express βA3/A1-crystallin, have a pivotal role in retinal remodeling. The role of astrocytes in the retina is only beginning to be explored. One of the limitations in the field is the lack of appropriate animal models to better investigate the function of astrocytes in retinal health and disease. We have now established transgenic mice that overexpress the Nuc1 mutant form of Cryba1, specifically in astrocytes. Astrocytes in wild type mice show normal compact stellate structure, producing a honeycomb-like network. In contrast, in transgenics over-expressing the mutant (Nuc1) Cryba1 in astrocytes, bundle-like structures with abnormal patterns and morphology were observed. In the nerve fiber layer of the transgenic mice, an additional layer of astrocytes adjacent to the vitreous is evident. This abnormal organization of astrocytes affects both the superficial and deep retinal vascular density and remodeling. Fluorescein angiography showed increased venous dilation and tortuosity of branches in the transgenic retina, as compared to wild type. Moreover, there appear to be fewer interactions between astrocytes and endothelial cells in the transgenic retina than in normal mouse retina. Further, astrocytes overexpressing the mutant βA3/A1-crystallin migrate into the vitreous, and ensheath the hyaloid artery, in a manner similar to that seen in the Nuc1 rat. Together, these data demonstrate that developmental abnormalities of astrocytes can affect the normal remodeling process of both fetal and retinal vessels of the eye and that βA3/A1-crystallin is essential for normal astrocyte function in the retina. PMID:22427112

  9. Retinal manifestations in fibromuscular dysplasia.

    PubMed

    Meire, F M; De Laey, J J; Van Thienen, M N; Schuddinck, L

    1991-01-01

    Fibromuscular dysplasia of the arteries (FMD) is a segmental angiopathy which may produce obstruction of the carotid, cerebral, renal, mesenteric, coronary or iliac arteries. Except for lesions related to arterial hypertension, retinal manifestations have not yet been reported. This paper describes the case of a 10-year-old boy with progressive deafness, a history of an unexplained stroke and progressive occlusions of the retinal arterioles in the fundus periphery. This resulted in retinal neovascularization and recurrent retinal and vitreous hemorrhages. Despite repeated photo- and cryocoagulation the eyes progressed to a tractional retinal detachment which was successfully treated by vitrectomy and scleral buckling. The diagnosis of FMD was made on the basis of a histopathological examination of a temporal artery biopsy. The child also presented an asymptomatic but severe aneurysmal dilatation of the aorta and CT scan and MRI showed dilated cerebral arteries. The father of our patient had died at the age of 27 years either from myocardial infarction or rupture of a dissecting aortic aneurysm. He was highly myopic and had lost one eye from retinal detachment. The younger brother of our patient also presents aneurysmal dilatation of the aorta and tortuous cerebral vessels. Ocular examination is still normal. The findings in this family are compatible with an autosomal dominant inheritance with variable expression.

  10. The mechanics of retinal detachment

    NASA Astrophysics Data System (ADS)

    Chou, Tom; Siegel, Michael

    2013-03-01

    We present a model of the mechanical and fluid forces associated with exudative retinal detachments where the retinal photoreceptor cells separate typically from the underlying retinal pigment epithelium (RPE). By computing the total fluid volume flow arising from transretinal, vascular, and retinal pigment epithelium (RPE) pump currents, we determine the conditions under which the subretinal fluid pressure exceeds the maximum yield stress holding the retina and RPE together, giving rise to an irreversible, extended retinal delamination. We also investigate localized, blister-like retinal detachments by balancing mechanical tension in the retina with both the retina-RPE adhesion energy and the hydraulic pressure jump across the retina. For detachments induced by traction forces, we find a critical radius beyond which the blister is unstable to growth. Growth of a detached blister can also be driven by inflamed tissue within which e.g., the hydraulic conductivities of the retina or choroid increase, the RPE pumps fail, or the adhesion properties change. We determine the parameter regimes in which the blister either becomes unstable to growth, remains stable and finite-sized, or shrinks, allowing possible healing. This work supported by the Army Research Office through grant 58386MA

  11. Retinal implants: a systematic review.

    PubMed

    Chuang, Alice T; Margo, Curtis E; Greenberg, Paul B

    2014-07-01

    Retinal implants present an innovative way of restoring sight in degenerative retinal diseases. Previous reviews of research progress were written by groups developing their own devices. This systematic review objectively compares selected models by examining publications describing five representative retinal prostheses: Argus II, Boston Retinal Implant Project, Epi-Ret 3, Intelligent Medical Implants (IMI) and Alpha-IMS (Retina Implant AG). Publications were analysed using three criteria for interim success: clinical availability, vision restoration potential and long-term biocompatibility. Clinical availability: Argus II is the only device with FDA approval. Argus II and Alpha-IMS have both received the European CE Marking. All others are in clinical trials, except the Boston Retinal Implant, which is in animal studies. Vision restoration: resolution theoretically correlates with electrode number. Among devices with external cameras, the Boston Retinal Implant leads with 100 electrodes, followed by Argus II with 60 electrodes and visual acuity of 20/1262. Instead of an external camera, Alpha-IMS uses a photodiode system dependent on natural eye movements and can deliver visual acuity up to 20/546. Long-term compatibility: IMI offers iterative learning; Epi-Ret 3 is a fully intraocular device; Alpha-IMS uses intraocular photosensitive elements. Merging the results of these three criteria, Alpha-IMS is the most likely to achieve long-term success decades later, beyond current clinical availability.

  12. General Pathophysiology in Retinal Degeneration

    PubMed Central

    Wert, Katherine J.; Lin, Jonathan H.; Tsang, Stephen H.

    2015-01-01

    Retinal degeneration, including that seen in age-related macular degeneration and retinitis pigmentosa (RP), is the most common form of neural degenerative disease in the world. There is great genetic and allelic heterogeneity of the various retinal dystrophies. Classifications of these diseases can be ambiguous, as there are similar clinical presentations in retinal degenerations arising from different genetic mechanisms. As would be expected, alterations in the activity of the phototransduction cascade, such as changes affecting the renewal and shedding of the photoreceptor OS, visual transduction, and/ or retinol metabolism have a great impact on the health of the retina. Mutations within any of the molecules responsible for these visual processes cause several types of retinal and retinal pigment epithelium degenerative diseases. Apoptosis has been implicated in the rod cell loss seen in a mouse model of RP, but the precise mechanisms that connect the activation of these pathways to the loss of phosphodiesterase (PDE6β) function has yet to be defined. Additionally, the activation of apoptosis by CCAAT/-enhancer-binding protein homologous protein (CHOP), after activation of the unfolded protein response pathway, may be responsible for cell death, although the mechanism remains unknown. However, the mechanisms of cell death after loss of function of PDE6, which is a commonly studied mammalian model in research, may be generalizable to loss of function of different key proteins involved in the phototransduction cascade. PMID:24732759

  13. Filling in the retinal image

    NASA Technical Reports Server (NTRS)

    Larimer, James; Piantanida, Thomas

    1990-01-01

    The optics of the eye form an image on a surface at the back of the eyeball called the retina. The retina contains the photoreceptors that sample the image and convert it into a neural signal. The spacing of the photoreceptors in the retina is not uniform and varies with retinal locus. The central retinal field, called the macula, is densely packed with photoreceptors. The packing density falls off rapidly as a function of retinal eccentricity with respect to the macular region and there are regions in which there are no photoreceptors at all. The retinal regions without photoreceptors are called blind spots or scotomas. The neural transformations which convert retinal image signals into percepts fills in the gaps and regularizes the inhomogeneities of the retinal photoreceptor sampling mosaic. The filling-in mechamism plays an important role in understanding visual performance. The filling-in mechanism is not well understood. A systematic collaborative research program at the Ames Research Center and SRI in Menlo Park, California, was designed to explore this mechanism. It was shown that the perceived fields which are in fact different from the image on the retina due to filling-in, control some aspects of performance and not others. Researchers have linked these mechanisms to putative mechanisms of color coding and color constancy.

  14. Retinal prosthesis for the blind.

    PubMed

    Margalit, Eyal; Maia, Mauricio; Weiland, James D; Greenberg, Robert J; Fujii, Gildo Y; Torres, Gustavo; Piyathaisere, Duke V; O'Hearn, Thomas M; Liu, Wentai; Lazzi, Gianluca; Dagnelie, Gislin; Scribner, Dean A; de Juan, Eugene; Humayun, Mark S

    2002-01-01

    Most of current concepts for a visual prosthesis are based on neuronal electrical stimulation at different locations along the visual pathways within the central nervous system. The different designs of visual prostheses are named according to their locations (i.e., cortical, optic nerve, subretinal, and epiretinal). Visual loss caused by outer retinal degeneration in diseases such as retinitis pigmentosa or age-related macular degeneration can be reversed by electrical stimulation of the retina or the optic nerve (retinal or optic nerve prostheses, respectively). On the other hand, visual loss caused by inner or whole thickness retinal diseases, eye loss, optic nerve diseases (tumors, ischemia, inflammatory processes etc.), or diseases of the central nervous system (not including diseases of the primary and secondary visual cortices) can be reversed by a cortical visual prosthesis. The intent of this article is to provide an overview of current and future concepts of retinal and optic nerve prostheses. This article will begin with general considerations that are related to all or most of visual prostheses and then concentrate on the retinal and optic nerve designs. The authors believe that the field has grown beyond the scope of a single article so cortical prostheses will be described only because of their direct effect on the concept and technical development of the other prostheses, and this will be done in a more general and historic perspective.

  15. Retinal oxygen extraction in humans

    PubMed Central

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-01-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy. PMID:26503332

  16. Retinal oxygen extraction in humans

    NASA Astrophysics Data System (ADS)

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-10-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy.

  17. LHCb Topological Trigger Reoptimization

    NASA Astrophysics Data System (ADS)

    Likhomanenko, Tatiana; Ilten, Philip; Khairullin, Egor; Rogozhnikov, Alex; Ustyuzhanin, Andrey; Williams, Michael

    2015-12-01

    The main b-physics trigger algorithm used by the LHCb experiment is the so- called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger, which utilized a custom boosted decision tree algorithm, selected a nearly 100% pure sample of b-hadrons with a typical efficiency of 60-70%; its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and neural networks. The topological trigger algorithm is designed to select all ’interesting” decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. Methods studied include cascading, ensembling and blending techniques. Furthermore, novel boosting techniques have been implemented that will help reduce systematic uncertainties in Run 2 measurements. We demonstrate that the reoptimized topological trigger is expected to significantly improve on the Run 1 performance for a wide range of b-hadron decays.

  18. Calcium influx through TRPV4 channels modulates the adherens contacts between retinal microvascular endothelial cells.

    PubMed

    Phuong, Tam T T; Redmon, Sarah N; Yarishkin, Oleg; Winter, Jacob M; Li, Dean Y; Križaj, David

    2017-09-26

    The identity of microvascular endothelial (MVE) mechanosensors that sense blood flow in response to mechanical and chemical stimuli and regulate vascular permeability in the retina is unknown. Taking advantage of immunohistochemistry, calcium imaging, electrophysiology, impedance measurements and vascular permeability assays, we show that the transient receptor potential isoform 4 (TRPV4) plays a major role in Ca(2+) /cation signalling, cytoskeletal remodelling and barrier function in retinal microvasculature in vitro and in vivo. Human retinal MVECs (HrMVECs) predominantly expressed Trpv1 and Trpv4 transcripts, and TRPV4 was broadly localized to the plasma membrane of cultured cells and intact blood vessels in the inner retina. Treatment with the selective TRPV4 agonist GSK1016790A (GSK101) activated a nonselective cation current, robustly elevated [Ca(2+) ]i and reversibly increased the permeability of MVEC monolayers. This was associated with disrupted organization of endothelial F-actin, downregulated expression of occludin and remodelling of adherens contacts consisting of vascular endothelial cadherin (VE-cadherin) and β-catenin. In vivo, GSK101 increased the permeability of retinal blood vessels in wild type, but not in TRPV4 knockout mice. Agonist-evoked effects on barrier permeability and cytoskeletal reorganization were antagonized by the selective TRPV4 blocker HC 067047. Human choroidal endothelial cells (CECs) showed lower TRPV4 mRNA/protein levels and less pronounced agonist-evoked calcium signals compared to MVECs. These findings demonstrate a major role for TRPV4 in Ca(2+) homeostasis and barrier function in the human retinal microvascular endothelial barrier and suggest TRPV4 may differentially contribute to the inner vis à vis outer blood-retinal barrier function. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Bone remodeling after renal transplantation.

    PubMed

    Bellorin-Font, Ezequiel; Rojas, Eudocia; Carlini, Raul G; Suniaga, Orlando; Weisinger, José R

    2003-06-01

    Several studies have indicated that bone alterations after transplantation are heterogeneous. Short-term studies after transplantation have shown that many patients exhibit a pattern consistent with adynamic bone disease. In contrast, patients with long-term renal transplantation show a more heterogeneous picture. Thus, while adynamic bone disease has also been described in these patients, most studies show decreased bone formation and prolonged mineralization lag-time faced with persisting bone resorption, and even clear evidence of generalized or focal osteomalacia in many patients. Thus, the main alterations in bone remodeling are a decrease in bone formation and mineralization up against persistent bone resorption, suggesting defective osteoblast function, decreased osteoblastogenesis, or increased osteoblast death rates. Indeed, recent studies from our laboratory have demonstrated that there is an early decrease in osteoblast number and surfaces, as well as in reduced bone formation rate and delayed mineralization after transplantation. These alterations are associated with an early increase in osteoblast apoptosis that correlates with low levels of serum phosphorus. These changes were more frequently observed in patients with low turnover bone disease. In contrast, PTH seemed to preserve osteoblast survival. The mechanisms of hypophosphatemia in these patients appear to be independent of PTH, suggesting that other phosphaturic factors may play a role. However, further studies are needed to determine the nature of a phosphaturic factor and its relationship to the alterations of bone remodeling after transplantation.

  20. Adrenocortical Zonation, Renewal, and Remodeling

    PubMed Central

    Pihlajoki, Marjut; Dörner, Julia; Cochran, Rebecca S.; Heikinheimo, Markku; Wilson, David B.

    2015-01-01

    The adrenal cortex is divided into concentric zones. In humans the major cortical zones are the zona glomerulosa, zona fasciculata, and zona reticularis. The adrenal cortex is a dynamic organ in which senescent cells are replaced by newly differentiated ones. This constant renewal facilitates organ remodeling in response to physiological demand for steroids. Cortical zones can reversibly expand, contract, or alter their biochemical profiles to accommodate needs. Pools of stem/progenitor cells in the adrenal capsule, subcapsular region, and juxtamedullary region can differentiate to repopulate or expand zones. Some of these pools appear to be activated only during specific developmental windows or in response to extreme physiological demand. Senescent cells can also be replenished through direct lineage conversion; for example, cells in the zona glomerulosa can transform into cells of the zona fasciculata. Adrenocortical cell differentiation, renewal, and function are regulated by a variety of endocrine/paracrine factors including adrenocorticotropin, angiotensin II, insulin-related growth hormones, luteinizing hormone, activin, and inhibin. Additionally, zonation and regeneration of the adrenal cortex are controlled by developmental signaling pathways, such as the sonic hedgehog, delta-like homolog 1, fibroblast growth factor, and WNT/β-catenin pathways. The mechanisms involved in adrenocortical remodeling are complex and redundant so as to fulfill the offsetting goals of organ homeostasis and stress adaptation. PMID:25798129

  1. Small artery remodelling in diabetes.

    PubMed

    Rosei, Enrico Agabiti; Rizzoni, Damiano

    2010-05-01

    The aim of this article is to briefly review available data regarding changes in the structure of microvessels observed in patients with diabetes mellitus, and possible correction by effective treatment. The development of structural changes in the systemic vasculature is the end result of established hypertension. In essential hypertension, small arteries of smooth muscle cells are restructured around a smaller lumen and there is no net growth of the vascular wall, although in some secondary forms of hypertension, a hypertrophic remodelling may be detected. Moreover, in non-insulin-dependent diabetes mellitus a hypertrophic remodelling of subcutaneous small arteries is present. Indices of small resistance artery structure, such as the tunica media to internal lumen ratio, may have a strong prognostic significance in hypertensive and diabetic patients, over and above all other known cardiovascular risk factors. Therefore, regression of vascular alterations is an appealing goal of antihypertensive treatment. Different antihypertensive drugs seem to have different effect on vascular structure. In diabetic hypertensive patients, a significant regression of structural alterations of small resistance arteries with drugs blocking the renin-angiotensin system (angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers) was demonstrated. Alterations in the microcirculation represent a common pathological finding, and microangiopathy is one of the most important mechanisms involved in the development of organ damage as well as of clinical events in patients with diabetes mellitus. Renin-angiotensin system blockade seems to be effective in preventing/regressing alterations in microvascular structure.

  2. Small artery remodelling in diabetes

    PubMed Central

    Rosei, Enrico Agabiti; Rizzoni, Damiano

    2010-01-01

    Abstract The aim of this article is to briefly review available data regarding changes in the structure of microvessels observed in patients with diabetes mellitus, and possible correction by effective treatment. The development of structural changes in the systemic vasculature is the end result of established hypertension. In essential hypertension, small arteries of smooth muscle cells are restructured around a smaller lumen and there is no net growth of the vascular wall, although in some secondary forms of hypertension, a hypertrophic remodelling may be detected. Moreover, in non-insulin-dependent diabetes mellitus a hypertrophic remodelling of subcutaneous small arteries is present. Indices of small resistance artery structure, such as the tunica media to internal lumen ratio, may have a strong prognostic significance in hypertensive and diabetic patients, over and above all other known cardiovascular risk factors. Therefore, regression of vascular alterations is an appealing goal of antihypertensive treatment. Different antihypertensive drugs seem to have different effect on vascular structure. In diabetic hypertensive patients, a significant regression of structural alterations of small resistance arteries with drugs blocking the renin–angiotensin system (angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers) was demonstrated. Alterations in the microcirculation represent a common pathological finding, and microangiopathy is one of the most important mechanisms involved in the development of organ damage as well as of clinical events in patients with diabetes mellitus. Renin–angiotensin system blockade seems to be effective in preventing/regressing alterations in microvascular structure. PMID:20646125

  3. [Remodeling of the aging heart : Sinus node dysfunction and atrial fibrillation].

    PubMed

    Weirich, Jörg

    2017-03-01

    The incidence of both sinus node dysfunction (SND) and atrial fibrillation (AF) increases with age. SND and AF frequently coexist. Likewise, they are often associated with cardiovascular diseases. Both arrhythmias share similar pathomechanisms such as structural and functional remodeling, i. e., degenerative fibrosis and altered Ca(2+) handling, respectively. A growing body of evidence suggests an important role for the CamKII (Ca(2+)/calmodulin-dependent protein kinase II) in structural as well as in functional remodeling. In the sinus node, remodeling leads to degenerative fibrosis and as a consequence to sinus node arrest or to reentry (brady/tachycardia). In the atrium, remodeling sets the conditions for reentry and its triggering mechanisms, especially the conditions for triggered activity on the basis of delayed afterdepolarizations (DAD). Thus, SND and AF seem to be different phenotypes of related pathophysiological mechanisms. On the other hand, it remains controversial as to whether SND causes AF or vice versa.

  4. Ruptured retinal arterial macroaneurysm: diagnosis and management.

    PubMed

    Speilburg, Ashley M; Klemencic, Stephanie A

    2014-01-01

    Retinal arterial macroaneurysm is an acquired, focal dilation of a retinal artery, typically occurring within the first three bifurcations of the central retinal artery. The clinical presentation of a retinal arterial macroaneurysm is highly variable, making initial diagnosis difficult and differentials many. Identification of retinal arterial macroaneurysms is crucial to appropriately co-manage with the primary care physician for hypertension control. Prognosis is generally good and observation is often an adequate treatment. However, in cases of macular threat or involvement, some treatment options are available and referral to a retinal specialist is indicated.

  5. dMyc is required in retinal progenitors to prevent JNK-mediated retinal glial activation.

    PubMed

    Tavares, Lígia; Correia, Andreia; Santos, Marília A; Relvas, João B; Pereira, Paulo S

    2017-03-01

    In the nervous system, glial cells provide crucial insulation and trophic support to neurons and are important for neuronal survival. In reaction to a wide variety of insults, glial cells respond with changes in cell morphology and metabolism to allow repair. Additionally, these cells can acquire migratory and proliferative potential. In particular, after axonal damage or pruning the clearance of axonal debris by glial cells is key for a healthy nervous system. Thus, bidirectional neuron-glial interactions are crucial in development, but little is known about the cellular sensors and signalling pathways involved. In here, we show that decreased cellular fitness in retinal progenitors caused by reduced Drosophila Myc expression triggers non cell-autonomous activation of retinal glia proliferation and overmigration. Glia migration occurs beyond its normal limit near the boundary between differentiated photoreceptors and precursor cells, extending into the progenitor domain. This overmigration is stimulated by JNK activation (and the function of its target Mmp1), while proliferative responses are mediated by Dpp/TGF-β signalling activation.

  6. dMyc is required in retinal progenitors to prevent JNK-mediated retinal glial activation

    PubMed Central

    Correia, Andreia; Santos, Marília A.; Relvas, João B.; Pereira, Paulo S.

    2017-01-01

    In the nervous system, glial cells provide crucial insulation and trophic support to neurons and are important for neuronal survival. In reaction to a wide variety of insults, glial cells respond with changes in cell morphology and metabolism to allow repair. Additionally, these cells can acquire migratory and proliferative potential. In particular, after axonal damage or pruning the clearance of axonal debris by glial cells is key for a healthy nervous system. Thus, bidirectional neuron-glial interactions are crucial in development, but little is known about the cellular sensors and signalling pathways involved. In here, we show that decreased cellular fitness in retinal progenitors caused by reduced Drosophila Myc expression triggers non cell-autonomous activation of retinal glia proliferation and overmigration. Glia migration occurs beyond its normal limit near the boundary between differentiated photoreceptors and precursor cells, extending into the progenitor domain. This overmigration is stimulated by JNK activation (and the function of its target Mmp1), while proliferative responses are mediated by Dpp/TGF-β signalling activation. PMID:28267791

  7. Chromatin remodeling: nucleosomes bulging at the seams.

    PubMed

    Peterson, Craig L

    2002-04-02

    ATP-dependent chromatin remodeling enzymes, such as SWI/SNF, hydrolyze thousands of ATPs to regulate gene expression on chromatin fibers. Recent mechanistic studies suggest that these enzymes generate localized changes in DNA topology that drive formation of multiple, remodeled nucleosomal states.

  8. Remodeling, Renovation, & Conversion of Educational Facilities.

    ERIC Educational Resources Information Center

    Association of Physical Plant Administrators of Universities and Colleges, Washington, DC.

    Based on a series of workshops, this collection of papers provides a framework for thought--emphasizing planning within time, flexibility, and maintenance constraints--as well as a practical guide for actual engineering of remodeling/renovation/conversion projects. Is remodeling always less expensive than new construction? Should high initial…

  9. An Analysis of the Residential Remodeling Occupation.

    ERIC Educational Resources Information Center

    Scruggs, Kenneth

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the residential remodeling occupation. The analysis only briefly covers the many areas of residential remodeling. The document opens with a brief introduction followed by a job description. The bulk of the…

  10. Calorimetry Triggering in ATLAS

    SciTech Connect

    Igonkina, O.; Achenbach, R.; Adragna, P.; Aharrouche, M.; Alexandre, G.; Andrei, V.; Anduaga, X.; Aracena, I.; Backlund, S.; Baines, J.; Barnett, B.M.; Bauss, B.; Bee, C.; Behera, P.; Bell, P.; Bendel, M.; Benslama, K.; Berry, T.; Bogaerts, A.; Bohm, C.; Bold, T.; /UC, Irvine /AGH-UST, Cracow /Birmingham U. /Barcelona, IFAE /CERN /Birmingham U. /Rutherford /Montreal U. /Santa Maria U., Valparaiso /DESY /DESY, Zeuthen /Geneva U. /City Coll., N.Y. /Barcelona, IFAE /CERN /Birmingham U. /Kirchhoff Inst. Phys. /Birmingham U. /Lisbon, LIFEP /Rio de Janeiro Federal U. /City Coll., N.Y. /Birmingham U. /Copenhagen U. /Copenhagen U. /Brookhaven /Rutherford /Royal Holloway, U. of London /Pennsylvania U. /Montreal U. /SLAC /CERN /Michigan State U. /Chile U., Catolica /City Coll., N.Y. /Oxford U. /La Plata U. /McGill U. /Mainz U., Inst. Phys. /Hamburg U. /DESY /DESY, Zeuthen /Geneva U. /Queen Mary, U. of London /CERN /Rutherford /Rio de Janeiro Federal U. /Birmingham U. /Montreal U. /CERN /Kirchhoff Inst. Phys. /Liverpool U. /Royal Holloway, U. of London /Pennsylvania U. /Kirchhoff Inst. Phys. /Geneva U. /Birmingham U. /NIKHEF, Amsterdam /Rutherford /Royal Holloway, U. of London /Rutherford /Royal Holloway, U. of London /AGH-UST, Cracow /Mainz U., Inst. Phys. /Mainz U., Inst. Phys. /Birmingham U. /Hamburg U. /DESY /DESY, Zeuthen /Geneva U. /Kirchhoff Inst. Phys. /Michigan State U. /Stockholm U. /Stockholm U. /Birmingham U. /CERN /Montreal U. /Stockholm U. /Arizona U. /Regina U. /Regina U. /Rutherford /NIKHEF, Amsterdam /Kirchhoff Inst. Phys. /DESY /DESY, Zeuthen /City Coll., N.Y. /University Coll. London /Humboldt U., Berlin /Queen Mary, U. of London /Argonne /LPSC, Grenoble /Arizona U. /Kirchhoff Inst. Phys. /Birmingham U. /Antonio Narino U. /Hamburg U. /DESY /DESY, Zeuthen /Kirchhoff Inst. Phys. /Birmingham U. /Chile U., Catolica /Indiana U. /Manchester U. /Kirchhoff Inst. Phys. /Rutherford /City Coll., N.Y. /Stockholm U. /La Plata U. /Antonio Narino U. /Queen Mary, U. of London /Kirchhoff Inst. Phys. /Antonio Narino U. /Pavia U. /City Coll., N.Y. /Mainz U., Inst. Phys. /Mainz U., Inst. Phys. /Pennsylvania U. /Barcelona, IFAE /Barcelona, IFAE /Chile U., Catolica /Genoa U. /INFN, Genoa /Rutherford /Barcelona, IFAE /Nevis Labs, Columbia U. /CERN /Antonio Narino U. /McGill U. /Rutherford /Santa Maria U., Valparaiso /Rutherford /Chile U., Catolica /Brookhaven /Oregon U. /Mainz U., Inst. Phys. /Barcelona, IFAE /McGill U. /Antonio Narino U. /Antonio Narino U. /Kirchhoff Inst. Phys. /Sydney U. /Rutherford /McGill U. /McGill U. /Pavia U. /Genoa U. /INFN, Genoa /Kirchhoff Inst. Phys. /Kirchhoff Inst. Phys. /Mainz U., Inst. Phys. /Barcelona, IFAE /SLAC /Stockholm U. /Moscow State U. /Stockholm U. /Birmingham U. /Kirchhoff Inst. Phys. /DESY /DESY, Zeuthen /Birmingham U. /Geneva U. /Oregon U. /Barcelona, IFAE /University Coll. London /Royal Holloway, U. of London /Birmingham U. /Mainz U., Inst. Phys. /Birmingham U. /Birmingham U. /Oregon U. /La Plata U. /Geneva U. /Chile U., Catolica /McGill U. /Pavia U. /Barcelona, IFAE /Regina U. /Birmingham U. /Birmingham U. /Kirchhoff Inst. Phys. /Oxford U. /CERN /Kirchhoff Inst. Phys. /UC, Irvine /UC, Irvine /Wisconsin U., Madison /Rutherford /Mainz U., Inst. Phys. /CERN /Geneva U. /Copenhagen U. /City Coll., N.Y. /Wisconsin U., Madison /Rio de Janeiro Federal U. /Wisconsin U., Madison /Stockholm U. /University Coll. London

    2011-12-08

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2/10{sup 5} to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  11. ELECTRONIC TRIGGER CIRCUIT

    DOEpatents

    Russell, J.A.G.

    1958-01-01

    An electronic trigger circuit is described of the type where an output pulse is obtained only after an input voltage has cqualed or exceeded a selected reference voltage. In general, the invention comprises a source of direct current reference voltage in series with an impedance and a diode rectifying element. An input pulse of preselected amplitude causes the diode to conduct and develop a signal across the impedance. The signal is delivered to an amplifier where an output pulse is produced and part of the output is fed back in a positive manner to the diode so that the amplifier produces a steep wave front trigger pulsc at the output. The trigger point of the described circuit is not subject to variation due to the aging, etc., of multi-electrode tabes, since the diode circuit essentially determines the trigger point.

  12. Dealing with Asthma Triggers

    MedlinePlus

    ... smell given off by paint or gas, and air pollution. If you notice that an irritant triggers your ... or other tobacco products around you. If outdoor air pollution is a problem, running the air conditioner or ...

  13. Quantitative Imaging of Enzymatic Vitreolysis-Induced Fiber Remodeling

    PubMed Central

    Filas, Benjamen A.; Shah, Nihar S.; Zhang, Qianru; Shui, Ying-Bo; Lake, Spencer P.; Beebe, David C.

    2014-01-01

    Purpose. Collagen fiber remodeling in the vitreous body has been implicated in cases of vitreomacular traction, macular hole, and retinal detachment, and also may occur during pharmacologic vitreolysis. The purpose of this study was to evaluate quantitative polarized light imaging (QPLI) as a tool for studying fiber organization in the vitreous and near the vitreoretinal interface in control and enzymatically perturbed conditions. Methods. Fiber alignment was measured in anterior-posterior sections of bovine and porcine vitreous. Additional tests were performed on bovine lenses and nasal-temporal vitreous sections. Effects of proteoglycan degradation on collagen fiber alignment using trypsin and plasmin were assessed at the microstructural level using electron microscopy and at the global level using QPLI. Results. Control vitreous showed fiber organization patterns consistent with the literature across multiple-length scales, including the global anterior-posterior coursing of vitreous fibers, as well as local fibers parallel to the equatorial vitreoretinal interface and transverse to the posterior interface. Proteoglycan digestion with trypsin or plasmin significantly increased fiber alignment throughout the vitreous (P < 0.01). The largest changes (3×) occurred in the posterior vitreous where fibers are aligned transverse to the posterior vitreoretinal interface (P < 0.01). Conclusions. Proteoglycan loss due to enzymatic vitreolysis differentially increases fiber alignment at locations where tractions are most common. We hypothesize that a similar mechanism leads to retinal complications during age-related vitreous degeneration. Structural changes to the entire vitreous body (as opposed to the vitreoretinal interface alone) should be evaluated during preclinical testing of pharmacological vitreolysis candidates. PMID:25468895

  14. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders

    PubMed Central

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  15. Interstitial Growth and Remodeling of Biological Tissues: Tissue Composition as State Variables

    PubMed Central

    Myers, Kristin; Ateshian, Gerard A.

    2013-01-01

    Growth and remodeling of biological tissues involves mass exchanges between soluble building blocks in the tissue’s interstitial fluid and the various constituents of cells and the extracellular matrix. As the content of these various constituents evolves with growth, associated material properties, such as the elastic modulus of the extracellular matrix, may similarly evolve. Therefore, growth theories may be formulated by accounting for the evolution of tissue composition over time in response to various biological and mechanical triggers. This approach has been the foundation of classical bone remodeling theories that successfully describe Wolff’s law by establishing a dependence between Young’s modulus and bone apparent density and by formulating a constitutive relation between bone mass supply and the state of strain. The goal of this study is to demonstrate that adding tissue composition as state variables in the constitutive relations governing the stress-strain response and the mass supply represents a very general and straightforward method to model interstitial growth and remodeling in a wide variety of biological tissues. The foundation for this approach is rooted in the framework of mixture theory, which models the tissue as a mixture of multiple solid and fluid constituents. A further generalization is to allow each solid constituent in a constrained solid mixture to have its own reference (stress-free) configuration. Several illustrations are provided, ranging from bone remodeling to cartilage tissue engineering and cervical remodeling during pregnancy. PMID:23562499

  16. New aspects of vascular remodelling: the involvement of all vascular cell types.

    PubMed

    McGrath, John C; Deighan, Clare; Briones, Ana M; Shafaroudi, Majid Malekzadeh; McBride, Melissa; Adler, Jeremy; Arribas, Silvia M; Vila, Elisabet; Daly, Craig J

    2005-07-01

    Conventionally, the architecture of arteries is based around the close-packed smooth muscle cells and extracellular matrix. However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. A new dynamic picture has emerged of blood vessels in a constant state of self-maintenance. Recent work raises fundamental questions about the cellular heterogeneity of arteries and the time course and triggering of normal and pathological remodelling. A common denominator emerging in hypertensive remodelling is an early increase in adventitial cell density suggesting that adventitial cells drive remodelling and may initiate subsequent changes such as re-arrangement of smooth muscle cells and extracellular matrix. The organization of vascular smooth muscle cells follows regular arrangements that can be modelled mathematically. In hypertension, new patterns can be quantified in these terms and give insights to how structure affects function. As with smooth muscle, little is known about the organization of the vascular endothelium, or its role in vascular remodelling. Current observations suggest that there may be a close relationship between the helical organization of smooth muscle cells and the underlying pattern of endothelial cells. The function of myoendothelial connections is a topic of great current interest and may relate to the structure of the internal elastic lamina through which the connections must pass. In hypertensive remodelling this must present an organizational challenge. The objective of this paper is to show how the functions of blood vessels depend on their architecture and a continuous interaction of different cell types and extracellular proteins.

  17. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa.

    PubMed

    Beltran, William A; Cideciyan, Artur V; Lewin, Alfred S; Iwabe, Simone; Khanna, Hemant; Sumaroka, Alexander; Chiodo, Vince A; Fajardo, Diego S; Román, Alejandro J; Deng, Wen-Tao; Swider, Malgorzata; Alemán, Tomas S; Boye, Sanford L; Genini, Sem; Swaroop, Anand; Hauswirth, William W; Jacobson, Samuel G; Aguirre, Gustavo D

    2012-02-07

    Hereditary retinal blindness is caused by mutations in genes expressed in photoreceptors or retinal pigment epithelium. Gene therapy in mouse and dog models of a primary retinal pigment epithelium disease has already been translated to human clinical trials with encouraging results. Treatment for common primary photoreceptor blindness, however, has not yet moved from proof of concept to the clinic. We evaluated gene augmentation therapy in two blinding canine photoreceptor diseases that model the common X-linked form of retinitis pigmentosa caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, which encodes a photoreceptor ciliary protein, and provide evidence that the therapy is effective. After subretinal injections of adeno-associated virus-2/5-vectored human RPGR with human IRBP or GRK1 promoters, in vivo imaging showed preserved photoreceptor nuclei and inner/outer segments that were limited to treated areas. Both rod and cone photoreceptor function were greater in treated (three of four) than in control eyes. Histopathology indicated normal photoreceptor structure and reversal of opsin mislocalization in treated areas expressing human RPGR protein in rods and cones. Postreceptoral remodeling was also corrected: there was reversal of bipolar cell dendrite retraction evident with bipolar cell markers and preservation of outer plexiform layer thickness. Efficacy of gene therapy in these large animal models of X-linked retinitis pigmentosa provides a path for translation to human treatment.

  18. Cervical Remodeling during Pregnancy and Parturition

    PubMed Central

    Timmons, Brenda; Akins, Meredith; Mahendroo, Mala

    2010-01-01

    Appropriate and timely cervical remodeling is key for successful birth. Premature cervical opening can result in preterm birth which occurs in 12.5% of pregnancies. Research focused on the mechanisms of term and preterm cervical remodeling is essential to prevent prematurity. This review highlights recent findings that better define molecular processes driving progressive disorganization of the cervical extracellular matrix. This includes studies that redefine the role of immune cells and identify diverse functions of the cervical epithelia and hyaluronan in remodeling. New investigations proposing that infection-induced premature cervical remodeling is distinct from the normal process are presented. Recent advances in our understanding of term and preterm cervical remodeling provide new directions for investigation and compel investigators to reevaluate currently accepted models. PMID:20172738

  19. Role of thyroid hormones in ventricular remodeling.

    PubMed

    Rajagopalan, Viswanathan; Gerdes, A Martin

    2015-04-01

    Cardiac remodeling includes alterations in molecular, cellular, and interstitial systems contributing to changes in size, shape, and function of the heart. This may be the result of injury, alterations in hemodynamic load, neurohormonal effects, electrical abnormalities, metabolic changes, etc. Thyroid hormones (THs) serve as master regulators for diverse remodeling processes of the cardiovascular system-from the prenatal period to death. THs promote a beneficial cardiomyocyte shape and improve contractility, relaxation, and survival via reversal of molecular remodeling. THs reduce fibrosis by decreasing interstitial collagen and reduce the incidence and duration of arrhythmias via remodeling ion channel expression and function. THs restore metabolic function and also improve blood flow both by direct effects on the vessel architecture and decreasing atherosclerosis. Optimal levels of THs both in the circulation and in cardiac tissues are critical for normal homeostasis. This review highlights TH-based remodeling and clinically translatable strategies for diverse cardiovascular disorders.

  20. Nucleosome dynamics during chromatin remodeling in vivo.

    PubMed

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation.

  1. The Retinal Pigment Epithelium Is a Notch Signaling Niche in the Mouse Retina.

    PubMed

    Ha, Taejeong; Moon, Kyeong Hwan; Dai, Le; Hatakeyama, Jun; Yoon, Keejung; Park, Hee-Sae; Kong, Young-Yoon; Shimamura, Kenji; Kim, Jin Woo

    2017-04-11

    Notch signaling in neural progenitor cell is triggered by ligands expressed in adjacent cells. To identify the sources of active Notch ligands in the mouse retina, we negatively regulated Notch ligand activity in various neighbors of retinal progenitor cells (RPCs) by eliminating mindbomb E3 ubiquitin protein ligase 1 (Mib1). Mib1-deficient retinal cells failed to induce Notch activation in intra-lineage RPCs, which prematurely differentiated into neurons; however, Mib1 in post-mitotic retinal ganglion cells was not important. Interestingly, Mib1 in the retinal pigment epithelium (RPE) also contributed to Notch activation in adjacent RPCs by supporting the localization of active Notch ligands at RPE-RPC contacts. Combining this RPE-driven Notch signaling and intra-retinal Notch signaling, we propose a model in which one RPC daughter receives extra Notch signals from the RPE to become an RPC, whereas its sister cell receives only a subthreshold level of intra-retinal Notch signal and differentiates into a neuron. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Fellow eyes of giant retinal breaks.

    PubMed Central

    Freeman, H M

    1978-01-01

    INCIDENCE OF RETINAL BREAKS AND DETACHMENT IN FELLOW EYES. The fellow eyes of 226 giant retinal breaks were followed in order to determine the incidence and natural course of chorioretinal and vitreous pathology. During the period of observation which ranged from 18 months to 16 years, the incidence of retinal breaks and retinal detachment increased from 36.1 percent to 51.3 percent. By the end of the follow-up period, the incidence of bilateral giant retinal breaks was 12.8 percent; retinal tears 11.9 percent, retinal holes 10.2 percent, retinal dialysis 0.4 percent, and retinal detachment 15.9 percent. The average duration of follow-up was 3.7 years, therefore, the incidence of retinal breaks in fellow eyes is probably significantly higher. VITREORETINAL CHANGES PRECEDING THE DEVELOPMENT OF RETINAL BREAKS. Syneresis, liquefaction, and condensation of the vitreous base were observed in the majority fellow eyes that developed retinal tears or giant retinal breaks. Follow-up of fellow eyes revealed that the development of a giant retinal break is often preceded by increasing white with pressure associated with increasing condensation of the vitreous base. MANAGEMENT OF FELLOW EYES. Bcause of the high incidence of retinal breaks developing in the fellow eye, regular and thorough examination of the vitreous and retinal breaks even though the fundus may appear normal at the initial examination. PROPHYLACTIC TREATMENT. This study suggests that prophylactic treatment is beneficial in the management of fellow eyes of giant retinal breaks. During this study, retinal breaks developed in 27.3 percent of untreated eyes and in 2.4 percent of eyes treated prophylactically. PROPHYLACTIC TREATMENT OF FELLOW EYES OF GIANT RETINAL BREAKS. Its seems prudent to prophylactically treat retinal holes or dialyses in eyes without retinal detachment with cryotherapy. Scleral bucking seems justified in the prophylactic treatment of eyes with retinal tears of lattice-like degeneration with

  3. Temperature controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Schlott, Kerstin; Koinzer, Stefan; Baade, Alexander; Birngruber, Reginald; Roider, Johann; Brinkmann, Ralf

    2013-06-01

    Retinal photocoagulation lacks objective dosage in clinical use, thus the commonly applied lesions are too deep and strong, associated with pain reception and the risk of visual field defects and induction of choroidal neovascularisations. Optoacoustics allows real-time non-invasive temperature measurement in the fundus during photocoagulation by applying short probe laser pulses additionally to the treatment radiation, which excite the emission of ultrasonic waves. Due to the temperature dependence of the Grüneisen parameter, the amplitudes of the ultrasonic waves can be used to derive the temperature of the absorbing tissue. By measuring the temperatures in real-time and automatically controlling the irradiation by feedback to the treatment laser, the strength of the lesions can be defined. Different characteristic functions for the time and temperature dependent lesion sizes were used as rating curves for the treatment laser, stopping the irradiation automatically after a desired lesion size is achieved. The automatically produced lesion sizes are widely independent of the adjusted treatment laser power and individual absorption. This study was performed on anaesthetized rabbits and is a step towards a clinical trial with automatically controlled photocoagulation.

  4. Retinal AO OCT

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Miller, Donald T.

    The last two decades have witnessed extraordinary advances in optical technology to image noninvasively and at high resolution the posterior segment of the eye. Two of the most impactful technological advancements over this period have arguably been optical coherence tomography (OCT) and adaptive optics (AO). The strengths of these technologies complement each other and when combined have been shown to provide unprecedented, micron-scale resolution (<3 μm) in all three dimensions and sensitivity to image the cellular retina in the living eye. This powerful extension of OCT, that is AO-OCT, is the focus of this chapter. It presents key aspects of designing and implementing AO-OCT systems. Particular attention is devoted to the relevant optical properties of the eye that ultimately define these systems, AO componentry and operation tailored for ophthalmic use, and of course use of the latest technologies and methods in OCT for ocular imaging. It surveys the wide range of AO-OCT designs that have been developed for retinal imaging, with AO integrated into every major OCT design configuration. Finally, it reviews the scientific and clinical studies reported to date that show the exciting potential of AO-OCT to image the microscopic retina and fundus in ways not previously possible with other noninvasive methods and a look to future developments in this rapidly growing field.

  5. Calcium signalling remodelling and disease.

    PubMed

    Berridge, Michael J

    2012-04-01

    A wide range of Ca2+ signalling systems deliver the spatial and temporal Ca2+ signals necessary to control the specific functions of different cell types. Release of Ca2+ by InsP3 (inositol 1,4,5-trisphosphate) plays a central role in many of these signalling systems. Ongoing transcriptional processes maintain the integrity and stability of these cell-specific signalling systems. However, these homoeostatic systems are highly plastic and can undergo a process of phenotypic remodelling, resulting in the Ca2+ signals being set either too high or too low. Such subtle dysregulation of Ca2+ signals have been linked to some of the major diseases in humans such as cardiac disease, schizophrenia, bipolar disorder and Alzheimer's disease.

  6. Exercise-induced cardiac remodeling.

    PubMed

    Weiner, Rory B; Baggish, Aaron L

    2012-01-01

    Early investigations in the late 1890s and early 1900s documented cardiac enlargement in athletes with above-normal exercise capacity and no evidence of cardiovascular disease. Such findings have been reported for more than a century and continue to intrigue scientists and clinicians. It is well recognized that repetitive participation in vigorous physical exercise results in significant changes in myocardial structure and function. This process, termed exercise-induced cardiac remodeling (EICR), is characterized by structural cardiac changes including left ventricular hypertrophy with sport-specific geometry (eccentric vs concentric). Associated alterations in both systolic and diastolic functions are emerging as recognized components of EICR. The increasing popularity of recreational exercise and competitive athletics has led to a growing number of individuals exhibiting these findings in routine clinical practice. This review will provide an overview of EICR in athletes.

  7. Zika Virus Induced Cellular Remodeling.

    PubMed

    Rossignol, Evan D; Peters, Kristen N; Connor, John H; Bullitt, Esther

    2017-03-20

    Zika virus (ZIKV) has been associated with morbidities such as Guillain-Barré, infant microcephaly, and ocular disease. The spread of this positive-sense, single-stranded RNA virus and its growing public health threat underscore gaps in our understanding of basic ZIKV virology. To advance knowledge of the virus replication cycle within mammalian cells, we use serial section three-dimensional electron tomography to demonstrate the widespread remodeling of intracellular membranes upon infection with ZIKV. We report extensive structural rearrangements of the endoplasmic reticulum and reveal stages of the ZIKV viral replication cycle. Structures associated with RNA genome replication and virus assembly are observed integrated within the endoplasmic reticulum, and we show viruses in transit through the Golgi apparatus for viral maturation, and subsequent cellular egress. This study characterizes in detail the three-dimensional ultrastructural organization of the ZIKV replication cycle stages. Our results show close adherence of the ZIKV replication cycle to the existing flavivirus replication paradigm.

  8. [Ventricular "remodeling" after myocardial infarction].

    PubMed

    Cohen-Solal, A; Himbert, D; Guéret, P; Gourgon, R

    1991-06-01

    Cardiac failure is the principal medium-term complication of myocardial infarction. Changes in left ventricular geometry are observed after infarction, called ventricular remodeling, which, though compensatory initially, cause ventricular failure in the long-term. Experimental and clinical studies suggest that early treatment by coronary recanalisation, trinitrin and angiotensin converting enzyme inhibitors may prevent or limit the expansion and left ventricular dilatation after infarction, so improving ventricular function, and, at least in the animal, reduce mortality. Large scale trials with converting enzyme inhibitors are currently under way to determine the effects of this new therapeutic option. It would seem possible at present, independently of any reduction in the size of the infarction, to reduce or delay left ventricular dysfunction by interfering with the natural process of dilatation and ventricular modeling after infarction.

  9. Analysis by NASA's VESGEN Software of Retinal Blood Vessels Before and After 70-Day Bed Rest: A Retrospective Study

    NASA Technical Reports Server (NTRS)

    Raghunandan, Sneha; Vyas, Ruchi J.; Vizzeri, Gianmarco; Taibbi, Giovanni; Zanello, Susana B.; Ploutz-Snyder, Robert; Parsons-Wingerter, Patricia A.

    2016-01-01

    Significant risks for visual impairment associated with increased intracranial pressure (VIIP) are incurred by microgravity spaceflight, especially long-duration missions. Impairments include decreased near visual acuity, posterior globe flattening, choroidal folds, optic disc edema and cotton wool spots. We hypothesize that microgravity-induced fluid shifts result in pathological changes within the retinal blood vessels that precede development of visual and other ocular impairments. Potential contributions of retinal vascular remodeling to VIIP etiology are therefore being investigated by NASAs innovative VESsel GENeration Analysis (VESGEN) software for two studies: (1) head-down tilt in human subjects before and after 70 days of bed rest, and (2) U.S. crew members before and after ISS missions. VESGEN analysis in previous research supported by the US National Institutes of Health identified surprising new opportunities to regenerate retinal vessels during early-stage, potentially reversible progression of the visually impairing and blinding disease, diabetic retinopathy.

  10. Retinal toxicity of indocyanine green.

    PubMed

    Querques, Giuseppe; Prascina, Francesco; Iaculli, Cristiana; Noci, Nicola Delle

    2008-04-01

    To describe a case of scattered toxicity of indocyanine green on the outer retina and retinal pigment epithelium (RPE) after indocyanine green (ICG) assisted membrane peeling for macular pucker. A 61-year-old woman was examined by slit-lamp biomicroscopy, fluorescein angiography (FA), indocyanine green angiography (ICGA) and optical coherence tomography (OCT), 1 month and 1 year after ICG assisted membrane peeling for macular pucker. In the absence of significant fundoscopic changes, we have noted on FA and ICGA an occurrence of scattered unusual outer retinal and pigment epithelial changes at the 1- and the 12-month follow-up, probably due to the enhanced phototoxicity associated with the use of ICG at a high concentration (0.5%). Retinal toxicity of ICG in macular surgery depends on many factors. In our patient, the retinal changes seem to have been caused by a combination of all the toxic factors. This is the first reported case describing both the angiographic and OCT patterns of diffuse scattered toxicity of ICG on outer retinal layers and pigment epithelium after ICG assisted membrane peeling for macular pucker.

  11. Rhegmatogenous retinal detachment treatment guidelines.

    PubMed

    García-Arumí, J; Martínez-Castillo, V; Boixadera, A; Blasco, H; Marticorena, J; Zapata, M Á; Macià, C; Badal, J; Distéfano, L; Rafart, J M; Berrocal, M; Zambrano, A; Ruíz-Moreno, J M; Figueroa, M S

    2013-01-01

    This paper outlines general guidelines following the initial diagnosis of rhegmatogenous retinal detachment. These include preoperative evaluation, treatment, possible intra- and post-operative complications, retinal re-detachment, and all therapeutic options available for each case. Treatment of the traumatic retinal detachment is also described, due to its importance and peculiarities. Treatment or prophylactic guidelines are suggested for the different types of retinal detachment described. These are based on both the experience of the ophthalmologists that have participated in preparing the guidelines, and also on evidence-based grading linked to bibliographical sources. However, these guidelines should not be interpreted as being mandatory. Given that there is a wide spectrum of options for treatment of retinal detachment, the surgeons' experience with one or other surgical technique will be of utmost importance in obtaining the best surgical result. As guidelines, they are intended as an additional aid to the surgeon during the decision-making process, with the expectation that the final choice will still be left to the surgeon's judgment and past experience.

  12. Triggered Earthquakes Following Parkfield?

    NASA Astrophysics Data System (ADS)

    Hough, S. E.

    2004-12-01

    When the M5.0 Arvin earthquake struck approximately 30 hours after the 28 September 2004 M6.0 Parkfield earthquake, it seemed likely if not obvious that the latter had triggered the former. The odds of a M5.0 or greater event occurring by random chance in a given 2-day window is low, on the order of 2%. However, previously published results suggest that remotely triggered earthquakes are observed only following much larger mainshocks, typically M7 or above. Moreover, using a standard beta-statistic approach, one finds no pervasive regional increase of seismicity in the weeks following the Parkfield mainshock. (Neither were any moderate events observed at regional distances following the 1934 and 1966 Parkfield earthquakes.) Was Arvin a remotely triggered earthquake? To address this issue further I compare the seismicity rate changes following the Parkfield mainshock with those following 14 previous M5.3-7.1 earthquakes in central and southern California. I show that, on average, seismicity increased to a distance of at least 120 km following these events. For all but the M7.1 Hector Mine mainshock, this is well beyond the radius of what would be considered a traditional aftershock zone. Average seismicity rates also increase, albeit more weakly, to a distance of about 220 km. These results suggest that even moderate mainshocks in central and southern California do trigger seismicity at distances up to 220 km, supporting the inference that Arvin was indeed a remotely triggered earthquake. In general, only weak triggering is expected following moderate (M5.5-6.5) mainshocks. However, as illustrated by Arvin and, in retrospect, the 1986 M5.5 Oceanside earthquake, which struck just 5 days after the M5.9 North Palm Springs earthquake, triggered events can sometimes be large enough to generate public interest, and anxiety.

  13. Inherited Retinal Degenerative Disease Clinical Trial Network

    DTIC Science & Technology

    2012-10-01

    the total number of individuals affected by retinitis pigmentosa (RP) and other forms of rare inherited retinal degenerative diseases is estimated at...for autosomal dominant retinitis pigmentosa ). As new interventions become available for clinical evaluation, the creation of such a network will...dominant retinitis pigmentosa at six sites- the CTEC site at University of Utah and five recruitment sites- the Retina Foundation of the Southwest

  14. [Congenital retinal folds in different clinical cases].

    PubMed

    Munteanu, M

    2005-01-01

    We present 12 clinical cases of congenital retinal folds with different etiologies: posterior primitive vitreous persistency and hyperplasia (7 cases),retinocytoma (1 case). retinopathy of prematurity (1 case), astrocytoma of the retina (1 case), retinal vasculitis (1 case), Goldmann-Favre syndrome (1 case). Etiopathogenic and nosological aspects are discussed; the congenital retinal folds are interpreted as a symptom in a context of a congenital or acquired vitreo-retinal pathology.

  15. [Unusual retinal abnormality: retinal hemorrhages related to scurvy].

    PubMed

    Errera, M-H; Dupas, B; Man, H; Gualino, V; Gaudric, A; Massin, P

    2011-03-01

    A diet restricted to rice and boiled fruit and vegetables leads to vitamin C deficiency. We describe the third case, to our knowledge, of retinal hemorrhages related to scurvy. Reduced bilateral visual acuity in a 50-year-old patient was associated with macrocytic anemia, denutrition, and cutaneous ecchymoses. Oral vitamin C treatment provided subjective clinical improvement and regression of the retinal hemorrhages on fundus examination, with no side effects. Vitamin C plays an important role in collagen stability in vascular and bone walls. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  16. Chromatin remodeling inactivates activity genes and regulates neural coding.

    PubMed

    Yang, Yue; Yamada, Tomoko; Hill, Kelly K; Hemberg, Martin; Reddy, Naveen C; Cho, Ha Y; Guthrie, Arden N; Oldenborg, Anna; Heiney, Shane A; Ohmae, Shogo; Medina, Javier F; Holy, Timothy E; Bonni, Azad

    2016-07-15

    Activity-dependent transcription influences neuronal connectivity, but the roles and mechanisms of inactivation of activity-dependent genes have remained poorly understood. Genome-wide analyses in the mouse cerebellum revealed that the nucleosome remodeling and deacetylase (NuRD) complex deposits the histone variant H2A.z at promoters of activity-dependent genes, thereby triggering their inactivation. Purification of translating messenger RNAs from synchronously developing granule neurons (Sync-TRAP) showed that conditional knockout of the core NuRD subunit Chd4 impairs inactivation of activity-dependent genes when neurons undergo dendrite pruning. Chd4 knockout or expression of NuRD-regulated activity genes impairs dendrite pruning. Imaging of behaving mice revealed hyperresponsivity of granule neurons to sensorimotor stimuli upon Chd4 knockout. Our findings define an epigenetic mechanism that inactivates activity-dependent transcription and regulates dendrite patterning and sensorimotor encoding in the brain. Copyright © 2016, American Association for the Advancement of Science.

  17. Remodeling of chromatin under low intensity diffuse ultrasound.

    PubMed

    Noriega, Sandra; Budhiraja, Gaurav; Subramanian, Anuradha

    2012-08-01

    A variety of mechanotransduction pathways mediate the response of fibroblasts or chondrocytes to ultrasound stimulation. In addition, regulatory pathways that co-ordinate stimulus-specific cellular responses are likely to exist. In this study, analysis was confined to the hypothesis that ultrasound stimulation (US) influences the chromatin structure, and that these changes may reflect a regulatory pathway that connects nuclear architecture, chromatin structure and gene expression. Murine fibroblasts seeded on tissue culture plates were stimulated with US (5.0 MHz (14 kPa), 51-s per application) and the thermal denaturation profiles of nuclei isolated from fibroblasts were assessed by dynamic scanning calorimetry (DSC). When compared to the thermal profiles obtained from the nuclei of non-stimulated cells, the nuclei obtained from stimulated cells showed a change in peak profiles and peak areas, which is indicative of chromatin remodeling. Independently, US was also observed to impact the histone (H1):chromatin association as measured indirectly by DAPI staining. Based on our work, it appears plausible that US can produce a remodeling of chromatin, thus triggering signal cascade and other intracellular mechanisms.

  18. Photovoltaic Retinal Prosthesis for Restoring Sight to Patients Blinded by Retinal Injury or Degeneration

    DTIC Science & Technology

    2016-02-01

    and various motor prostheses [6][7][8] are constantly improving. Degenerative retinal diseases, such as retinitis pigmentosa and age related macular...AD_______________ Award Number: W81XWH-15-1-0009 TITLE: Photovoltaic Retinal Prosthesis for Restoring Sight to Patients Blinded by Retinal ...DATES COVERED 1 Feb 2015 - 31 Jan 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Photovoltaic Retinal Prosthesis for Restoring Sight to Patients

  19. Immunocytochemical analysis of retinal neurons under electrical stimulation

    PubMed Central

    Ray, Aditi; Colodetti, Leonardo; Weiland, James D.; Hinton, David R.; Humayun, Mark S.; Lee, Eun-Jin

    2009-01-01

    To function successfully, a retinal prosthesis needs to provide effective stimulation in a safe manner. To date, most studies have been dedicated to assessing proper stimulation parameters, for example, determining stimulus threshold. Few studies have looked at the effects of prolonged stimulation on retinal morphology. One previous study did show gross morphological changes in the rat retina due to mechanical pressure, with and without electrical stimulation (Colodetti et al., 2007). Here, we used immunocytochemistry to investigate the effects of the same experimental conditions on neuronal structure in finer detail. For this purpose, we first defined four experimental groups. In Group 1, the stimulating electrode was near but did not contact the retina, and we did not apply current pulses. In Group 2, the electrode also did not contact the retina, but we applied current pulses of 0.09 μC/phase. In Group 3, the stimulating electrode directly contacted the retina, but we did not apply current pulses. In Group 4, the stimulating electrode directly contacted the retina, and we applied current pulses of 0.09 μC/phase. We found neural damage only in the outer retina, including a disturbance of synaptic vesicle proteins in the photoreceptor terminals and a remodeling of horizontal and rod bipolar cells’ processes. These results show that, although gross morphological changes are mainly concentrated around the area of electrode contact, immunocytochemistry can reveal changes in adjacent areas as well. PMID:19103179

  20. The CMS trigger system

    DOE PAGES

    Khachatryan, Vardan

    2017-01-24

    This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, tau lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during datamore » taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.« less

  1. Cygnus Trigger System

    SciTech Connect

    G. Corrow, M. Hansen, D. Henderson, C. Mitton

    2008-02-01

    The Cygnus Dual Beam Radiographic Facility consists of two radiographic sources (Cygnus 1, Cygnus 2) each with a dose rating of 4 rads at 1 m, and a 1-mm diameter spot size. The electrical specifications are: 2.25 MV, 60 kA, 60 ns. This facility is located in an underground environment at the Nevada Test Site (NTS). These sources were developed as a primary diagnostic for subcritical tests, which are single-shot, high-value events. In such an application there is an emphasis on reliability and reproducibility. A robust, low-jitter trigger system is a key element for meeting these goals. The trigger system was developed with both commercial and project-specific equipment. In addition to the traditional functions of a trigger system there are novel features added to protect the investment of a high-value shot. Details of the trigger system, including elements designed specifically for a subcritical test application, will be presented. The individual electronic components have their nominal throughput, and when assembled have a system throughput with a measured range of jitter. The shot-to-shot jitter will be assessed both individually and in combination. Trigger reliability and reproducibility results will be presented for a substantial number of shots executed at the NTS.

  2. The CMS trigger system

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Damiao, D. De Jesus; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M., Jr.; Assran, Y.; El Sawy, M.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Bacchetta, N.; Bellato, M.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Mohamad Idris, F.; Abdullah, W. A. T. Wan; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Kierzkowski, K.; Konecki, M.; Krolikowski, J.; Misiura, M.; Oklinski, W.; Olszewski, M.; Pozniak, K.; Walczak, M.; Zabolotny, W.; Bargassa, P.; Silva, C. Beirão Da Cruz E.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; De Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova PANEVA, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-01-01

    This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, τ lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during data taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.

  3. Trigger mechanism for engines

    SciTech Connect

    Clark, L.R.

    1989-02-28

    A trigger mechanism is described for a blower-vacuum apparatus having a trigger mounted within a handle and a small engine comprising: a throttle; a ''L'' shaped lever having first and second legs mounted for rotation about an intermediate pivot within the handle when the trigger is depressed, interconnecting the trigger and the throttle, the second leg having first teeth defined therein, the lever further having idle, full throttle and stop positions; a normally raised latch means adapted to be rotated and axially depressed, the latch means having second teeth situated on a cam to engage the first teeth for holding the lever in an intermediate position between the idle and full throttle positions when the latch means is rotated. The latch means further are cam teeth into potential engagement with the lever teeth when the trigger is depressed, lever is biased to the stop position; and idle adjusting means means for intercepting the second leg for preventing the second leg from reaching the stop position when the latch means is raised.

  4. Inherited Retinal Degenerative Clinical Trial Network

    DTIC Science & Technology

    2009-10-01

    ending in blindness. In the United States, the total number of individuals affected by retinitis pigmentosa (RP) and other forms of rare inherited...AD_________________ AWARD NUMBER: W81XWH-07-1-0720 TITLE: Inherited Retinal Degenerative...Final 3. DATES COVERED 27 Sep 2007 – 29 Sep 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Inherited Retinal Degenerative Clinical Trial Network

  5. Choroidal melanoma clinically simulating a retinal angioma.

    PubMed

    Shields, J A; Joffe, L; Guibor, P

    1978-01-01

    An amelanotic fundus lesion in a 35-year-old man was associated with a dilated retinal vessel, thus suggesting the diagnosis of retinal angioma. Fluorescein angiography and B-scan ultrasonography were not diagnostic, but a radioactive phosphorus uptake test suggested the lesion was malignant. The enucleated globe showed a malignant choroidal melanoma drained by a large retinal vein.

  6. Transcorneal Electrical Stimulation Therapy for Retinal Disease

    ClinicalTrials.gov

    2012-05-03

    Retinitis Pigmentosa; Macula Off; Primary Open Angle Glaucoma; Hereditary Macular Degeneration; Treated Retina Detachment; Retinal Artery Occlusion; Retinal Vein Occlusion; Non-Arthritic-Anterior-Ischemic Optic-Neuropathy; Hereditary Autosomal Dominant Optic Atrophy; Dry Age Related Macular Degeneration; Ischemic Macula Edema

  7. Exploring the retinal connectome

    PubMed Central

    Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Shaw, Margaret V.; Yang, Jia-Hui; DeMill, David; Lauritzen, James S.; Lin, Yanhua; Rapp, Kevin D.; Mastronarde, David; Koshevoy, Pavel; Grimm, Bradley; Tasdizen, Tolga; Whitaker, Ross

    2011-01-01

    Purpose A connectome is a comprehensive description of synaptic connectivity for a neural domain. Our goal was to produce a connectome data set for the inner plexiform layer of the mammalian retina. This paper describes our first retinal connectome, validates the method, and provides key initial findings. Methods We acquired and assembled a 16.5 terabyte connectome data set RC1 for the rabbit retina at ≈2 nm resolution using automated transmission electron microscope imaging, automated mosaicking, and automated volume registration. RC1 represents a column of tissue 0.25 mm in diameter, spanning the inner nuclear, inner plexiform, and ganglion cell layers. To enhance ultrastructural tracing, we included molecular markers for 4-aminobutyrate (GABA), glutamate, glycine, taurine, glutamine, and the in vivo activity marker, 1-amino-4-guanidobutane. This enabled us to distinguish GABAergic and glycinergic amacrine cells; to identify ON bipolar cells coupled to glycinergic cells; and to discriminate different kinds of bipolar, amacrine, and ganglion cells based on their molecular signatures and activity. The data set was explored and annotated with Viking, our multiuser navigation tool. Annotations were exported to additional applications to render cells, visualize network graphs, and query the database. Results Exploration of RC1 showed that the 2 nm resolution readily recapitulated well known connections and revealed several new features of retinal organization: (1) The well known AII amacrine cell pathway displayed more complexity than previously reported, with no less than 17 distinct signaling modes, including ribbon synapse inputs from OFF bipolar cells, wide-field ON cone bipolar cells and rod bipolar cells, and extensive input from cone-pathway amacrine cells. (2) The axons of most cone bipolar cells formed a distinct signal integration compartment, with ON cone bipolar cell axonal synapses targeting diverse cell types. Both ON and OFF bipolar cells receive

  8. Retinal changes in Himalayan climbers.

    PubMed

    Rennie, D; Morrissey, J

    1975-06-01

    Changes in the fundus of the eye were studied in 15 members of a mountaineering expedition to Dhaulagiri, Nepal (elevation, 8,167 meters [26,795 ft]). Retinal photographs were taken at sea level and at 5,883 meters (19,300) after each climber had descended from his highest point. Five Nepali Sherpas and an additional American climber who came to the base camp late in the climb were also studied. Vascular engorgement with tortuosity, a 24% increase in arterial diameter, and a 23% increase in venous diameter were observed. Retinal hemorrhages were seen in five American climbers (33%), but in none of the Sherpas. The high incidence is striking, but the cause is unknown. We suggest that the hypoxic vasodilatation makes retinal vessels more vulnerable to sudden rises in intravascular pressure.

  9. Clinical Trials in Retinal Dystrophies

    PubMed Central

    Grob, Seanna R.; Finn, Avni; Papakostas, Thanos D.; Eliott, Dean

    2016-01-01

    Research development is burgeoning for genetic and cellular therapy for retinal dystrophies. These dystrophies are the focus of many research efforts due to the unique biology and accessibility of the eye, the transformative advances in ocular imaging technology that allows for in vivo monitoring, and the potential benefit people would gain from success in the field – the gift of renewed sight. Progress in the field has revealed the immense complexity of retinal dystrophies and the challenges faced by researchers in the development of this technology. This study reviews the current trials and advancements in genetic and cellular therapy in the treatment of retinal dystrophies and also discusses the current and potential future challenges. PMID:26957839

  10. Rat retinal transcriptome

    PubMed Central

    Kozhevnikova, Oyuna S.; Korbolina, Elena E.; Ershov, Nikita I.; Kolosova, Natalia G.

    2013-01-01

    Pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, remains poorly understood due to the paucity of animal models that fully replicate the human disease. Recently, we showed that senescence-accelerated OXYS rats develop a retinopathy similar to human AMD. To identify alterations in response to normal aging and progression of AMD-like retinopathy, we compared gene expression profiles of retina from 3- and 18-mo-old OXYS and control Wistar rats by means of high-throughput RNA sequencing (RNA-Seq). We identified 160 and 146 age-regulated genes in Wistar and OXYS retinas, respectively. The majority of them are related to the immune system and extracellular matrix turnover. Only 24 age-regulated genes were common for the two strains, suggestive of different rates and mechanisms of aging. Over 600 genes showed significant differences in expression between the two strains. These genes are involved in disease-associated pathways such as immune response, inflammation, apoptosis, Ca2+ homeostasis and oxidative stress. The altered expression for selected genes was confirmed by qRT-PCR analysis. To our knowledge, this study represents the first analysis of retinal transcriptome from young and old rats with biologic replicates generated by RNA-Seq technology. We can conclude that the development of AMD-like retinopathy in OXYS rats is associated with an imbalance in immune and inflammatory responses. Aging alters the expression profile of numerous genes in the retina, and the genetic background of OXYS rats has a profound impact on the development of AMD-like retinopathy. PMID:23656783

  11. Airway remodeling in asthma: what really matters.

    PubMed

    Fehrenbach, Heinz; Wagner, Christina; Wegmann, Michael

    2017-03-01

    Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and "endotyped" human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.

  12. Transcriptome analysis and molecular signature of human retinal pigment epithelium

    PubMed Central

    Strunnikova, N.V.; Maminishkis, A.; Barb, J.J.; Wang, F.; Zhi, C.; Sergeev, Y.; Chen, W.; Edwards, A.O.; Stambolian, D.; Abecasis, G.; Swaroop, A.; Munson, P.J.; Miller, S.S.

    2010-01-01

    Retinal pigment epithelium (RPE) is a polarized cell layer critical for photoreceptor function and survival. The unique physiology and relationship to the photoreceptors make the RPE a critical determinant of human vision. Therefore, we performed a global expression profiling of native and cultured human fetal and adult RPE and determined a set of highly expressed ‘signature’ genes by comparing the observed RPE gene profiles to the Novartis expression database (SymAtlas: http://wombat.gnf.org/index.html) of 78 tissues. Using stringent selection criteria of at least 10-fold higher expression in three distinct preparations, we identified 154 RPE signature genes, which were validated by qRT-PCR analysis in RPE and in an independent set of 11 tissues. Several of the highly expressed signature genes encode proteins involved in visual cycle, melanogenesis and cell adhesion and Gene ontology analysis enabled the assignment of RPE signature genes to epithelial channels and transporters (ClCN4, BEST1, SLCA20) or matrix remodeling (TIMP3, COL8A2). Fifteen RPE signature genes were associated with known ophthalmic diseases, and 25 others were mapped to regions of disease loci. An evaluation of the RPE signature genes in a recently completed AMD genomewide association (GWA) data set revealed that TIMP3, GRAMD3, PITPNA and CHRNA3 signature genes may have potential roles in AMD pathogenesis and deserve further examination. We propose that RPE signature genes are excellent candidates for retinal diseases and for physiological investigations (e.g. dopachrome tautomerase in melanogenesis). The RPE signature gene set should allow the validation of RPE-like cells derived from human embryonic or induced pluripotent stem cells for cell-based therapies of degenerative retinal diseases. PMID:20360305

  13. Retinal Optical Coherence Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Fujimoto, James G.

    The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in

  14. Retinal Image Quality During Accommodation

    PubMed Central

    López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.

    2013-01-01

    Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced

  15. CDF - Secondary vertex trigger

    SciTech Connect

    D. Lucchesi

    2002-10-25

    At the beginning of 2002 a new data taking with an upgraded trigger system started for the CDF collaboration. One of the major improvements is the track trigger. A fast processor reconstructs tracks in the central drift chamber and the Silicon Vertex Tracker combines these tracks with the silicon vertex detector information to have track parameters with a precision as good as the offine reconstruction. This system allows CDF to trigger on tracks significantly displaced from the primary vertex with high efficiency for signal events like charm and beauty and to keep low background rates. The performances, in terms of resolution and efficiency, of both the processors are illustrated and the firsts physics results are discussed.

  16. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W.; Schare, Joshua M.; Bunch, Kyle

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  17. Maternal Uterine Vascular Remodeling During Pregnancy

    PubMed Central

    Osol, George; Mandala, Maurizio

    2009-01-01

    Sufficient uteroplacental blood flow is essential for normal pregnancy outcome and is accomplished by the coordinated growth and remodeling of the entire uterine circulation, as well as the creation of a new fetal vascular organ: the placenta. The process of remodeling involves a number of cellular processes, including hyperplasia and hypertrophy, rearrangement of existing elements, and changes in extracellular matrix. In this review, we provide information on uterine blood flow increases during pregnancy, the influence of placentation type on the distribution of uterine vascular resistance, consideration of the patterns, nature, and extent of maternal uterine vascular remodeling during pregnancy, and what is known about the underlying cellular mechanisms. PMID:19196652

  18. Retinitis pigmentosa in southern Africa.

    PubMed

    Greenberg, J; Bartmann, L; Ramesar, R; Beighton, P

    1993-11-01

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal disorders which are a common cause of genetic blindness. The relative frequencies of the different forms of RP in South Africa, as determined from the register at the DNA banking centre for RP at the Department of Human Genetics, University of Cape Town, are presented and discussed. Of the 125 families analysed, 29 (23%) showed autosomal dominant, 33 (27%) autosomal recessive and 3 (3%) X-linked inheritance. In 10 families the pedigree data were insufficient to allow accurate genetic subtyping and a further 50 patients were sporadic without a family history of RP or other syndromic features which would allow categorization.

  19. [Study on preferred retinal locus].

    PubMed

    Dai, Bing-Fa; Hu, Jian-Min; Xu, Duan-Lian

    2012-03-01

    Preferred retinal locus (PRL) is always found in the age-related macular degeneration and other macular damages in patients with low vision, and it is a very important anatomic position in patients with central vision impairment to achieve the rehabilitation. In recent years, the training of preferred retinal locus (PRL) has become a research hotspot of low vision rehabilitation, it can clearly improve functional vision and quality of life. The authors reviewed relevant literatures, and summarized the definition, position, characteristics, training and clinical implications of the PRL.

  20. Expression Profiling after Retinal Detachment and Reattachment: A Possible Role for Aquaporin-0

    PubMed Central

    Farjo, Rafal; Peterson, Ward M.; Naash, Muna I.

    2009-01-01

    Purpose Retinal detachment (RD) is associated with acute visual loss caused by anatomic displacement of the photoreceptors and with chronic visual loss/disturbance caused by retinal remodeling and photoreceptor cell death, which may occur even after successful reattachment. The P2Y2 receptor agonist INS37217 improves the rate of retinal reattachment in animal models of induced RD, and has been shown to also significantly enhance the rate of ERG recovery in a mouse model of RD. The identification of genes modulated by INS37217 may allow further drug discovery for treating RD and edema. Methods To identify genes involved in RD and subsequent reattachment, a retinal microarray screen was performed using a mouse model of RD in the presence or absence of INS37217. Results Ninety-two genes were identified as differentially expressed across three time points, most of which were upregulated in the presence of this agonist. Furthermore, it was shown that RD alters the expression of aquaporin-0 (AQP-0), and this modulation is prevented by treatment with INS37217. The presence of AQP-0 in retinal bipolar cells was also demonstrated, whereas it was previously thought to be specific to the lens. Mice lacking functional alleles of AQP-0 had a photo-transduction deficit as assessed by electroretinography; however, their photoreceptor structure was normal, indicative of a problem with signal transmission between neurons. Conclusions This study establishes the genes involved in RD and reattachment, and also demonstrates for the first time a physiologically significant role for AQP-0 in retinal function. PMID:18234993

  1. Video Event Trigger

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.; Lichter, Michael J.

    1994-01-01

    Video event trigger (VET) processes video image data to generate trigger signal when image shows significant change like motion or appearance, disappearance, change in color, change in brightness, or dilation of object. System aids in efficient utilization of image-data-storage and image-data-processing equipment in applications in which many video frames show no changes and are wasteful to record and analyze all frames when only relatively few frames show changes of interest. Applications include video recording of automobile crash tests, automated video monitoring of entrances, exits, parking lots, and secure areas.

  2. Triggered Nanoparticles as Therapeutics

    PubMed Central

    Kim, Chang Soo; Duncan, Bradley; Creran, Brian; Rotello, Vincent M.

    2013-01-01

    Summary Drug delivery systems (DDSs) face several challenges including site-specific delivery, stability, and the programmed release of drugs. Engineered nanoparticle (NP) surfaces with responsive moieties can enhance the efficacy of DDSs for in vitro and in vivo systems. This triggering process can be achieved through both endogenous (biologically controlled release) and exogenous (external stimuli controlled release) activation. In this review, we will highlight recent examples of the use of triggered release strategies of engineered nanomaterials for in vitro and in vivo applications. PMID:24159362

  3. Trigger Circuit for Marx Generators

    DTIC Science & Technology

    2001-02-08

    A trigger circuit is provided for a trigger system for a Marx generator column. The column includes a plurality of metal electrode pairs wherein the...electrode (trigatron) spark gap switch forming the first spark gap of the Marx generator column. The triggering circuit includes a trigger

  4. Simulations of trabecular remodeling and fatigue: is remodeling helpful or harmful?

    PubMed

    van Oers, René F M; van Rietbergen, Bert; Ito, Keita; Huiskes, Rik; Hilbers, Peter A J

    2011-05-01

    Microdamage-targeted resorption is paradoxal, because it entails the removal of bone from a region that was already overloaded. Under continued intense loading, resorption spaces could potentially cause more damage than they remove. To investigate this problem, we incorporated damage algorithms in a computer-simulation model for trabecular remodeling. We simulated damage accumulation and bone remodeling in a trabecular architecture, for two fatigue regimens, a 'moderate' regimen, and an 'intense' regimen with a higher number of loading cycles per day. Both simulations were also performed without bone remodeling to investigate if remodeling removed or exacerbated the damage. We found that remodeling tends to remove damage under the 'moderate' fatigue regimen, but it exacerbates damage under the 'intense' regimen. This harmful effect of remodeling may play a role in the development of stress fractures.

  5. bcl-2 Overexpression Reduces Apoptotic Photoreceptor Cell Death in Three Different Retinal Degenerations

    NASA Astrophysics Data System (ADS)

    Chen, Jeannie; Flannery, John G.; Lavail, Matthew M.; Steinberg, Roy H.; Xu, Jun; Simon, Melvin I.

    1996-07-01

    Apoptosis of photoreceptors occurs infrequently in adult retina but can be triggered in inherited and environmentally induced retinal degenerations. The protooncogene bcl-2 is known to be a potent regulator of cell survival in neurons. We created lines of transgenic mice overexpressing bcl-2 to test for its ability to increase photoreceptor survival. Bcl-2 increased photoreceptor survival in mice with retinal degeneration caused by a defective opsin or cGMP phosphodiesterase. Overexpression of Bcl-2 in normal photoreceptors also decreased the damaging effects of constant light exposure. Apoptosis was induced in normal photoreceptors by very high levels of bcl-2. We conclude that bcl-2 is an important regulator of photoreceptor cell death in retinal degenerations.

  6. Determination of retinal surface area.

    PubMed

    Nagra, Manbir; Gilmartin, Bernard; Thai, Ngoc Jade; Logan, Nicola S

    2017-09-01

    Previous attempts at determining retinal surface area and surface area of the whole eye have been based upon mathematical calculations derived from retinal photographs, schematic eyes and retinal biopsies of donor eyes. 3-dimensional (3-D) ocular magnetic resonance imaging (MRI) allows a more direct measurement, it can be used to image the eye in vivo, and there is no risk of tissue shrinkage. The primary purpose of this study is to compare, using T2-weighted 3D MRI, retinal surface areas for superior-temporal (ST), inferior-temporal (IT), superior-nasal (SN) and inferior-nasal (IN) retinal quadrants. An ancillary aim is to examine whether inter-quadrant variations in area are concordant with reported inter-quadrant patterns of susceptibility to retinal breaks associated with posterior vitreous detachment (PVD). Seventy-three adult participants presenting without retinal pathology (mean age 26.25 ± 6.06 years) were scanned using a Siemens 3-Tesla MRI scanner to provide T2-weighted MR images that demarcate fluid-filled internal structures for the whole eye and provide high-contrast delineation of the vitreous-retina interface. Integrated MRI software generated total internal ocular surface area (TSA). The second nodal point was used to demarcate the origin of the peripheral retina in order to calculate total retinal surface area (RSA) and quadrant retinal surface areas (QRSA) for ST, IT, SN, and IN quadrants. Mean spherical error (MSE) was -2.50 ± 4.03D and mean axial length (AL) 24.51 ± 1.57 mm. Mean TSA and RSA for the RE were 2058 ± 189 and 1363 ± 160 mm(2) , respectively. Repeated measures anova for QRSA data indicated a significant difference within-quadrants (P < 0.01) which, contrasted with ST (365 ± 43 mm(2) ), was significant for IT (340 ± 40 mm(2) P < 0.01), SN (337 ± 40 mm(2) P < 0.01) and IN (321 ± 39 mm(2) P < 0.01) quadrants. For all quadrants, QRSA was significantly correlated with AL (P < 0.01) and

  7. ACUTE RETINAL ARTERIAL OCCLUSIVE DISORDERS

    PubMed Central

    Hayreh, Sohan Singh

    2011-01-01

    The initial section deals with basic sciences; among the various topics briefly discussed are the anatomical features of ophthalmic, central retinal and cilioretinal arteries which may play a role in acute retinal arterial ischemic disorders. Crucial information required in the management of central retinal artery occlusion (CRAO) is the length of time the retina can survive following that. An experimental study shows that CRAO for 97 minutes produces no detectable permanent retinal damage but there is a progressive ischemic damage thereafter, and by 4 hours the retina has suffered irreversible damage. In the clinical section, I discuss at length various controversies on acute retinal arterial ischemic disorders. Classification of acute retinal arterial ischemic disorders These are of 4 types: CRAO, branch retinal artery occlusion (BRAO), cotton wools spots and amaurosis fugax. Both CRAO and BRAO further comprise multiple clinical entities. Contrary to the universal belief, pathogenetically, clinically and for management, CRAO is not one clinical entity but 4 distinct clinical entities – non-arteritic CRAO, non-arteritic CRAO with cilioretinal artery sparing, arteritic CRAO associated with giant cell arteritis (GCA) and transient non-arteritic CRAO. Similarly, BRAO comprises permanent BRAO, transient BRAO and cilioretinal artery occlusion (CLRAO), and the latter further consists of 3 distinct clinical entities - non-arteritic CLRAO alone, non-arteritic CLRAO associated with central retinal vein occlusion and arteritic CLRAO associated with GCA. Understanding these classifications is essential to comprehend fully various aspects of these disorders. Central retinal artery occlusion The pathogeneses, clinical features and management of the various types of CRAO are discussed in detail. Contrary to the prevalent belief, spontaneous improvement in both visual acuity and visual fields does occur, mainly during the first 7 days. The incidence of spontaneous visual

  8. ASCL1 reprograms mouse Müller glia into neurogenic retinal progenitors

    PubMed Central

    Pollak, Julia; Wilken, Matthew S.; Ueki, Yumi; Cox, Kristen E.; Sullivan, Jane M.; Taylor, Russell J.; Levine, Edward M.; Reh, Thomas A.

    2013-01-01

    Non-mammalian vertebrates have a robust ability to regenerate injured retinal neurons from Müller glia (MG) that activate the gene encoding the proneural factor Achaete-scute homolog 1 (Ascl1; also known as Mash1 in mammals) and de-differentiate into progenitor cells. By contrast, mammalian MG have a limited regenerative response and fail to upregulate Ascl1 after injury. To test whether ASCL1 could restore neurogenic potential to mammalian MG, we overexpressed ASCL1 in dissociated mouse MG cultures and intact retinal explants. ASCL1-infected MG upregulated retinal progenitor-specific genes and downregulated glial genes. Furthermore, ASCL1 remodeled the chromatin at its targets from a repressive to an active configuration. MG-derived progenitors differentiated into cells that exhibited neuronal morphologies, expressed retinal subtype-specific neuronal markers and displayed neuron-like physiological responses. These results indicate that a single transcription factor, ASCL1, can induce a neurogenic state in mature MG. PMID:23637330

  9. Lead Poisoning in Remodeling of Old Homes

    ERIC Educational Resources Information Center

    Barnes, Bart

    1973-01-01

    An article based on Dr. Muriel D. Wolf's study of elevated blood lead levels in children and adults present during the remodeling of old homes. Lead poisoning examples, symptoms, and precautions are given. (ST)

  10. Raise the Floor When Remodeling Science Labs

    ERIC Educational Resources Information Center

    Nation's Schools, 1972

    1972-01-01

    A new remodeling idea adopts the concept of raised floor covering gas, water, electrical, and drain lines. The accessible floor has removable panels set into an adjustable support frame 24 inches above a concrete subfloor. (Author)

  11. B.B. Contracting & Remodeling Information Sheet

    EPA Pesticide Factsheets

    B.B. Contracting & Remodeling (the Company) is located in St. Louis, Missouri. The settlement involves renovation activities conducted at property constructed prior to 1978, located in St. Louis, Missouri.

  12. Disambiguating Syntactic Triggers

    ERIC Educational Resources Information Center

    Sakas, William Gregory; Fodor, Janet Dean

    2012-01-01

    We present data from an artificial language domain that suggest new contributions to the theory of syntactic triggers. Whether a learning algorithm is capable of matching the achievements of child learners depends in part on how much parametric ambiguity there is in the input. For practical reasons this cannot be established for the domain of all…

  13. Common Asthma Triggers

    MedlinePlus

    ... your bedroom. Wash your bedding on the hottest water setting. Outdoor Air Pollution Outdoor air pollution can trigger an asthma attack. ... newspaper to plan your activities for when air pollution levels will be ... home by removing as many water and food sources as you can. Cockroaches are ...

  14. AIDS radio triggers.

    PubMed

    Elias, A M

    1991-07-01

    In April 1991, the Ethnic Communities' Council of NSW was granted funding under the Community AIDS Prevention and Education Program through the Department of Community Services and Health, to produce a series of 6x50 second AIDS radio triggers with a 10-second tag line for further information. The triggers are designed to disseminate culturally-sensitive information about HIV/AIDS in English, Italian, Greek, Spanish, Khmer, Turkish, Macedonian, Serbo-Croatian, Arabic, Cantonese, and Vietnamese, with the goal of increasing awareness and decreasing the degree of misinformation about HIV/AIDS among people of non-English-speaking backgrounds through radio and sound. The 6 triggers cover the denial that AIDS exists in the community, beliefs that words and feelings do not protect one from catching HIV, encouraging friends to be compassionate, compassion within the family, AIDS information for a young audience, and the provision of accurate and honest information on HIV/AIDS. The triggers are slated to be completed by the end of July 1991 and will be broadcast on all possible community, ethnic, and commercial radio networks across Australia. They will be available upon request in composite form with an information kit for use by health care professionals and community workers.

  15. Triggered plasma opening switch

    DOEpatents

    Mendel, Clifford W.

    1988-01-01

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  16. Ventricular remodeling in global ischemia.

    PubMed

    Anversa, P; Zhang, X; Li, P; Olivetti, G; Cheng, W; Reiss, K; Sonnenblick, E H; Kajstura, J

    1995-06-01

    To determine the effects of chronic constriction of the left coronary artery on the function and structure of the heart, coronary artery narrowing was surgically induced in rats and ventricular pump performance, extent and distribution of myocardial damage, and the hypertrophic and hyperplastic response of myocytes were examined. Alterations in cardiac hemodynamics were found in all rats, but the characteristics of the physiological properties of the heart allowed a separation of the animals into two groups which exhibited left ventricular dysfunction and failure, respectively. Left ventricular hypertrophy occurred in both groups and was characterized by ventricular dilatation and wall thinning which were more severe in the failing animals. Multiple foci of myocardial damage across the wall were seen in all animals but tissue injury was more prominent in the endomyocardium and in failing rats. The anatomical and hemodynamic changes resulted in a significant increase in diastolic wall stress which paralleled the depression in ventricular performance. Myocyte cell loss and myocyte cellular hypertrophy were more severe with ventricular failure than with dysfunction. Finally, diastolic overload appeared to be coupled with activation of the DNA synthetic machinery of myocytes and nuclear mitotic division. In conclusion, a fixed lesion of the left coronary artery leads to abnormalities in cardiac dynamics with marked increases in diastolic wall stress and extensive ventricular remodeling in spite of compensatory myocyte cellular hypertrophy and hyperplasia in the remaining viable tissue.

  17. Digital tracking and control of retinal images

    NASA Astrophysics Data System (ADS)

    Barrett, Steven F.; Jerath, Maya R.; Rylander, Henry G.; Welch, Ashley J.

    1994-01-01

    Laser-induced retinal lesions are used to treat a variety of eye disorders such as diabetic retinopathy and retinal tears. An instrumentation system has been developed to track a specific lesion coordinate on the retinal surface and provide corrective signals to maintain laser position on the coordinate. High-resolution retinal images are acquired via a CCD camera coupled to a fundus camera and video frame grabber. Optical filtering and histogram modification are used to enhance the retinal vessel network against the lighter retinal background. Six distinct retinal landmarks are tracked on the high contrast image obtained from the frame grabber using 2D blood vessel templates. An overview of the robotic laser system design is followed by implementation and testing of a development system for proof of concept and, finally, specifications for a real-time system are provided.

  18. Remodeling kitchens: A smorgasbord of energy savings

    SciTech Connect

    Sullivan, B.

    1995-09-01

    The kitchen is often the busiest room in the house and is most likely to remodeled repeatedly over the life of a house. The kitchen also represents a concentration of household energy use. Remodeling a kitchen can mean introducing a host of new energy-saving features or making major energy blunders. This article discusses ways to utilized the best features: layout and design; appliances; lighting; windows and skylights; ventilation; insulation and air sealing; water; household recycling; green building materials.

  19. Annexin II-dependent actin remodelling evoked by hydrogen peroxide requires the metalloproteinase/sphingolipid pathway.

    PubMed

    Cinq-Frais, Christel; Coatrieux, Christelle; Savary, Aude; D'Angelo, Romina; Bernis, Corinne; Salvayre, Robert; Nègre-Salvayre, Anne; Augé, Nathalie

    2015-01-01

    Actin remodeling is a dynamic process associated with cell shape modification occurring during cell cycle and proliferation. Oxidative stress plays a role in actin reorganization via various systems including p38MAPK. Beside, the mitogenic response evoked by hydrogen peroxide (H2O2) in fibroblasts and smooth muscle cells (SMC) involves the metalloproteinase (MMPs)/sphingomyelinase 2 (nSMase2) signaling pathway. The aim of this work was to investigate whether this system plays a role in actin remodeling induced by H2O2. Low H2O2 dose (5µM) rapidly triggered a signaling cascade leading to nSMase2 activation, src and annexin 2 (AnxA2) phosphorylation, and actin remodeling, in fibroblasts and SMC. These events were blocked by pharmacological inhibitors of MMPs (Ro28-2653) and p38MAPK (SB203580), and were lacking in MMP2(-/-) and in nSMase2-mutant (fro) fibroblasts. Likewise, H2O2 was unable to induce actin remodeling in fro and MMP2(-/-) fibroblasts or in cells pretreated with p38MAPK, or MMP inhibitors. Finally we show that nSMase2 activation by H2O2, depends on MMP2 and p38MAPK, and is required for the src-dependent phosphorylation of AnxA2, and actin remodeling. Taken together, these findings indicate for the first time that AnxA2 phosphorylation and actin remodeling evoked by oxidative stress depend on the sphingolipid pathway, via MMP2 and p38MAPK.

  20. Annexin II-dependent actin remodelling evoked by hydrogen peroxide requires the metalloproteinase/sphingolipid pathway

    PubMed Central

    Cinq-Frais, Christel; Coatrieux, Christelle; Savary, Aude; D’Angelo, Romina; Bernis, Corinne; Salvayre, Robert; Nègre-Salvayre, Anne; Augé, Nathalie

    2014-01-01

    Actin remodeling is a dynamic process associated with cell shape modification occurring during cell cycle and proliferation. Oxidative stress plays a role in actin reorganization via various systems including p38MAPK. Beside, the mitogenic response evoked by hydrogen peroxide (H2O2) in fibroblasts and smooth muscle cells (SMC) involves the metalloproteinase (MMPs)/sphingomyelinase 2 (nSMase2) signaling pathway. The aim of this work was to investigate whether this system plays a role in actin remodeling induced by H2O2. Low H2O2 dose (5 µM) rapidly triggered a signaling cascade leading to nSMase2 activation, src and annexin 2 (AnxA2) phosphorylation, and actin remodeling, in fibroblasts and SMC. These events were blocked by pharmacological inhibitors of MMPs (Ro28-2653) and p38MAPK (SB203580), and were lacking in MMP2−/− and in nSMase2-mutant (fro) fibroblasts. Likewise, H2O2 was unable to induce actin remodeling in fro and MMP2−/− fibroblasts or in cells pretreated with p38MAPK, or MMP inhibitors. Finally we show that nSMase2 activation by H2O2, depends on MMP2 and p38MAPK, and is required for the src-dependent phosphorylation of AnxA2, and actin remodeling. Taken together, these findings indicate for the first time that AnxA2 phosphorylation and actin remodeling evoked by oxidative stress depend on the sphingolipid pathway, via MMP2 and p38MAPK. PMID:25574848

  1. A Bioreactor to Identify the Driving Mechanical Stimuli of Tissue Growth and Remodeling.

    PubMed

    van Kelle, Mathieu A J; Oomen, Pim J A; Bulsink, Jurgen A; Janssen-van den Broek, Marloes W J T; Lopata, Richard G P; Rutten, Marcel C M; Loerakker, Sandra; Bouten, Carlijn V C

    2017-06-01

    Tissue growth and remodeling are essential processes that should ensure long-term functionality of tissue-engineered (TE) constructs. Even though it is widely recognized that these processes strongly depend on mechanical stimuli, the underlying mechanisms of mechanically induced growth and remodeling are only partially understood. It is generally accepted that cells sense mechanical changes and respond by altering their surroundings, by means of extracellular matrix growth and remodeling, in an attempt to return to a certain preferred mechanical homeostatic state. However, the exact mechanical cues that trigger cells to synthesize and remodel their environment remain unclear. To identify the driving mechanical stimuli of these processes, it is critical to be able to temporarily follow the mechanical state of developing tissues under physiological loading conditions. Therefore, a novel "versatile tissue growth and remodeling" (Vertigro) bioreactor was developed that is capable of tissue culture and mechanical stimulation for a prolonged time period, while simultaneously performing mechanical testing. The Vertigro's unique two-chamber design allows easy, sterile handling of circular 3D TE constructs in a dedicated culture chamber, while a separate pressure chamber facilitates a pressure-driven dynamic loading regime during culture. As a proof-of-concept, temporal changes in the mechanical state of cultured tissues were quantified using nondestructive mechanical testing by means of a classical bulge test, in which the tissue displacement was tracked using ultrasound imaging. To demonstrate the successful development of the bioreactor system, compositional, structural, and geometrical changes were qualitatively and quantitatively assessed using a series of standard analysis techniques. With this bioreactor and associated mechanical analysis technique, a powerful toolbox has been developed to quantitatively study and identify the driving mechanical stimuli of engineered

  2. Retinitis Pigmentosa and Education Issues

    ERIC Educational Resources Information Center

    Brown, Thomas J.

    2005-01-01

    Retinitis Pigmentosa includes a number of inherited diseases which usually result in blindness. The disease is progressive in nature and begins with the deterioration of cells in the eye responsible for peripheral vision. As the condition worsens there is a gradual loss of peripheral vision and night blindness. Proper educational planning requires…

  3. [Surgical managment of retinal detachment].

    PubMed

    Haritoglou, C; Wolf, A

    2015-05-01

    The detachment of the neurosensory retina from the underlying retinal pigment epithelium can be related to breaks of the retina allowing vitreous fluid to gain access to the subretinal space, to exudative changes of the choroid such as tumours or inflammatory diseases or to excessive tractional forces exerted by interactions of the collagenous vitreous and the retina. Tractional retinal detachment is usually treated by vitrectomy and exudative detachment can be addressed by treatment of the underlying condition in many cases. In rhegmatogenous retinal detachment two different surgical procedures, vitrectomy and scleral buckling, can be applied for functional and anatomic rehabilitation of our patients. The choice of the surgical procedure is not really standardised and often depends on the experience of the surgeon and other more ocular factors including lens status, the number of retinal breaks, the extent of the detachment and the amount of preexisting PVR. Using both techniques, anatomic success rates of over 90 % can be achieved. Especially in young phakic patients scleral buckling offers the true advantage to prevent the progression of cataract formation requiring cataract extraction and intraocular lens implantation. Therefore, scleral buckling should be considered in selected cases as an alternative surgical option in spite of the very important technical refinements in modern vitrectomy techniques. Georg Thieme Verlag KG Stuttgart · New York.

  4. Automatic temperature controlled retinal photocoagulation.

    PubMed

    Schlott, Kerstin; Koinzer, Stefan; Ptaszynski, Lars; Bever, Marco; Baade, Alex; Roider, Johann; Birngruber, Reginald; Brinkmann, Ralf

    2012-06-01

    Laser coagulation is a treatment method for many retinal diseases. Due to variations in fundus pigmentation and light scattering inside the eye globe, different lesion strengths are often achieved. The aim of this work is to realize an automatic feedback algorithm to generate desired lesion strengths by controlling the retinal temperature increase with the irradiation time. Optoacoustics afford non-invasive retinal temperature monitoring during laser treatment. A 75 ns/523 nm Q-switched Nd:YLF laser was used to excite the temperature-dependent pressure amplitudes, which were detected at the cornea by an ultrasonic transducer embedded in a contact lens. A 532 nm continuous wave Nd:YAG laser served for photocoagulation. The ED50 temperatures, for which the probability of ophthalmoscopically visible lesions after one hour in vivo in rabbits was 50%, varied from 63°C for 20 ms to 49°C for 400 ms. Arrhenius parameters were extracted as ΔE=273 J mol(-1) and A=3 x 10(44) s(-1). Control algorithms for mild and strong lesions were developed, which led to average lesion diameters of 162 ± 34 μm and 189 ± 34 μm, respectively. It could be demonstrated that the sizes of the automatically controlled lesions were widely independent of the treatment laser power and the retinal pigmentation.

  5. Automatic temperature controlled retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Schlott, Kerstin; Koinzer, Stefan; Ptaszynski, Lars; Bever, Marco; Baade, Alex; Roider, Johann; Birngruber, Reginald; Brinkmann, Ralf

    2012-06-01

    Laser coagulation is a treatment method for many retinal diseases. Due to variations in fundus pigmentation and light scattering inside the eye globe, different lesion strengths are often achieved. The aim of this work is to realize an automatic feedback algorithm to generate desired lesion strengths by controlling the retinal temperature increase with the irradiation time. Optoacoustics afford non-invasive retinal temperature monitoring during laser treatment. A 75 ns/523 nm Q-switched Nd:YLF laser was used to excite the temperature-dependent pressure amplitudes, which were detected at the cornea by an ultrasonic transducer embedded in a contact lens. A 532 nm continuous wave Nd:YAG laser served for photocoagulation. The ED50 temperatures, for which the probability of ophthalmoscopically visible lesions after one hour in vivo in rabbits was 50%, varied from 63°C for 20 ms to 49°C for 400 ms. Arrhenius parameters were extracted as ΔE=273 J mol-1 and A=3.1044 s-1. Control algorithms for mild and strong lesions were developed, which led to average lesion diameters of 162+/-34 μm and 189+/-34 μm, respectively. It could be demonstrated that the sizes of the automatically controlled lesions were widely independent of the treatment laser power and the retinal pigmentation.

  6. Diagnostic tools assessing airway remodelling in asthma.

    PubMed

    Manso, L; Reche, M; Padial, M A; Valbuena, T; Pascual, C

    2012-01-01

    Asthma is an inflammatory disease of the lower airways characterised by the presence of airway inflammation, reversible airflow obstruction and airway hyperresponsiveness and alterations on the normal structure of the airways, known as remodelling. Remodelling is characterised by the presence of metaplasia of mucous glands, thickening of the lamina reticularis, increased angiogenesis, subepithelial fibrosis and smooth muscle hypertrophy/hyperplasia. Several techniques are being optimised at present to achieve a suitable diagnosis for remodelling. Diagnostic tools could be divided into two groups, namely invasive and non-invasive methods. Invasive techniques bring us information about bronchial structural alterations, obtaining this information directly from pathological tissue, and permit measure histological modification placed in bronchi layers as well as inflammatory and fibrotic cell infiltration. Non-invasive techniques were developed to reduce invasive methods disadvantages and measure airway remodelling-related markers such as cytokines, inflammatory mediators and others. An exhaustive review of diagnostic tools used to analyse airway remodelling in asthma, including the most useful and usually employed methods, as well as the principal advantages and disadvantages of each of them, bring us concrete and summarised information about all techniques used to evaluate alterations on the structure of the airways. A deep knowledge of these diagnostic tools will make an early diagnosis of airway remodelling possible and, probably, early diagnosis will play an important role in the near future of asthma. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.

  7. Mitochondria, myocardial remodeling, and cardiovascular disease.

    PubMed

    Verdejo, Hugo E; del Campo, Andrea; Troncoso, Rodrigo; Gutierrez, Tomás; Toro, Barbra; Quiroga, Clara; Pedrozo, Zully; Munoz, Juan Pablo; Garcia, Lorena; Castro, Pablo F; Lavandero, Sergio

    2012-12-01

    The process of muscle remodeling lies at the core of most cardiovascular diseases. Cardiac adaptation to pressure or volume overload is associated with a complex molecular change in cardiomyocytes which leads to anatomic remodeling of the heart muscle. Although adaptive at its beginnings, the sustained cardiac hypertrophic remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure and ultimately death. One of the features of cardiac remodeling is a progressive impairment in mitochondrial function. The heart has the highest oxygen uptake in the human body and accordingly it has a large number of mitochondria, which form a complex network under constant remodeling in order to sustain the high metabolic rate of cardiac cells and serve as Ca(2+) buffers acting together with the endoplasmic reticulum (ER). However, this high dependence on mitochondrial metabolism has its costs: when oxygen supply is threatened, high leak of electrons from the electron transport chain leads to oxidative stress and mitochondrial failure. These three aspects of mitochondrial function (Reactive oxygen species signaling, Ca(2+) handling and mitochondrial dynamics) are critical for normal muscle homeostasis. In this article, we will review the latest evidence linking mitochondrial morphology and function with the process of myocardial remodeling and cardiovascular disease.

  8. Bone remodeling as a spatial evolutionary game.

    PubMed

    Ryser, Marc D; Murgas, Kevin A

    2017-04-07

    Bone remodeling is a complex process involving cell-cell interactions, biochemical signaling and mechanical stimuli. Early models of the biological aspects of remodeling were non-spatial and focused on the local dynamics at a fixed location in the bone. Several spatial extensions of these models have been proposed, but they generally suffer from two limitations: first, they are not amenable to analysis and are computationally expensive, and second, they neglect the role played by bone-embedded osteocytes. To address these issues, we developed a novel model of spatial remodeling based on the principles of evolutionary game theory. The analytically tractable framework describes the spatial interactions between zones of bone resorption, bone formation and quiescent bone, and explicitly accounts for regulation of remodeling by bone-embedded, mechanotransducing osteocytes. Using tools from the theory of interacting particle systems we systematically classified the different dynamic regimes of the spatial model and identified regions of parameter space that allow for global coexistence of resorption, formation and quiescence, as observed in physiological remodeling. In coexistence scenarios, three-dimensional simulations revealed the emergence of sponge-like bone clusters. Comparison between spatial and non-spatial dynamics revealed substantial differences and suggested a stabilizing role of space. Our findings emphasize the importance of accounting for spatial structure and bone-embedded osteocytes when modeling the process of bone remodeling. Thanks to the lattice-based framework, the proposed model can easily be coupled to a mechanical model of bone loading.

  9. Remodelling chromatin to shape development of plants.

    PubMed

    Gentry, Matthew; Hennig, Lars

    2014-02-01

    Establishment and dynamic regulation of a higher order chromatin structure is an essential component of development. Chromatin remodelling complexes such as the SWI2/SNF2 family of ATP-dependent chromatin remodellers can alter chromatin architecture by changing nucleosome positioning or substituting histones with histone variants. These remodellers often act in concert with chromatin modifiers such as the polycomb group proteins which confer repressive states through modification of histone tails. These mechanisms are highly conserved across the eukaryotic kingdom although in plants, owing to the maintenance of dedifferentiated cell states that allow for post-embyronic changes in development, strict control of chromatin remodelling is even more paramount. Recent and ongoing studies in the model plant Arabidopsis thaliana have found that while the major families of the SWI2/SNF2 ATPase chromatin remodellers are represented, a number of redundancies and divergent functions have emerged that show a break from the roles of their metazoan counterparts. This review focusses on the SNF2 and CHD families of ATP-dependent remodellers and their roles in plant development. © 2013 Published by Elsevier Inc.

  10. Unfolded protein response-induced dysregulation of calcium homeostasis promotes retinal degeneration in rat models of autosomal dominant retinitis pigmentosa

    PubMed Central

    Shinde, V; Kotla, P; Strang, C; Gorbatyuk, M

    2016-01-01

    The molecular mechanism of autosomal dominant retinitis pigmentosa (ADRP) in rats is closely associated with a persistently activated unfolded protein response (UPR). If unchecked, the UPR might trigger apoptosis, leading to photoreceptor death. One of the UPR-activated cellular signaling culminating in apoptotic photoreceptor cell death is linked to an increase in intracellular Ca2+. Therefore, we validated whether ADRP retinas experience a cytosolic Ca2+ overload, and whether sustained UPR in the wild-type retina could promote retinal degeneration through Ca2+-mediated calpain activation. We performed an ex vivo experiment to measure intracellular Ca2+ in ADRP retinas as well as to detect the expression levels of proteins that act as Ca2+ sensors. In separate experiments with the subretinal injection of tunicamycin (UPR inducer) and a mixture of calcium ionophore (A231278) and thapsigargin (SERCA2b inhibitor) we assessed the consequences of a sustained UPR activation and increased intracellular Ca2+ in the wild-type retina, respectively, by performing scotopic ERG, histological, and western blot analyses. Results of the study revealed that induced UPR in the retina activates calpain-mediated signaling, and increased intracellular Ca2+ is capable of promoting retinal degeneration. A significant decline in ERG amplitudes at 6 weeks post treatment was associated with photoreceptor cell loss that occurred through calpain-activated CDK5-pJNK-Csp3/7 pathway. Similar calpain activation was found in ADRP rat retinas. A twofold increase in intracellular Ca2+ and up- and downregulations of ER membrane-associated Ca2+-regulated IP3R channels and SERCA2b transporters were detected. Therefore, sustained UPR activation in the ADRP rat retinas could promote retinal degeneration through increased intracellular Ca2+ and calpain-mediated apoptosis. PMID:26844699

  11. Short-interfering RNAs Induce Retinal Degeneration via TLR3 and IRF3

    PubMed Central

    Kleinman, Mark E; Kaneko, Hiroki; Cho, Won Gil; Dridi, Sami; Fowler, Benjamin J; Blandford, Alexander D; Albuquerque, Romulo JC; Hirano, Yoshio; Terasaki, Hiroko; Kondo, Mineo; Fujita, Takashi; Ambati, Balamurali K; Tarallo, Valeria; Gelfand, Bradley D; Bogdanovich, Sasha; Baffi, Judit Z; Ambati, Jayakrishna

    2012-01-01

    The discovery of sequence-specific gene silencing by endogenous double-stranded RNAs (dsRNA) has propelled synthetic short-interfering RNAs (siRNAs) to the forefront of targeted pharmaceutical engineering. The first clinical trials utilized 21-nucleotide (nt) siRNAs for the treatment of neovascular age-related macular degeneration (AMD). Surprisingly, these compounds were not formulated for cell permeation, which is required for bona fide RNA interference (RNAi). We showed that these “naked” siRNAs suppress neovascularization in mice not via RNAi but via sequence-independent activation of cell surface Toll-like receptor-3 (TLR3). Here, we demonstrate that noninternalized siRNAs induce retinal degeneration in mice by activating surface TLR3 on retinal pigmented epithelial cells. Cholesterol conjugated siRNAs capable of cell permeation and triggering RNAi also induce the same phenotype. Retinal degeneration was not observed after treatment with siRNAs shorter than 21-nts. Other cytosolic dsRNA sensors are not critical to this response. TLR3 activation triggers caspase-3-mediated apoptotic death of the retinal pigment epithelium (RPE) via nuclear translocation of interferon regulatory factor-3. While this unexpected adverse effect of siRNAs has implications for future clinical trials, these findings also introduce a new preclinical model of geographic atrophy (GA), a late stage of dry AMD that causes blindness in millions worldwide. PMID:21988875

  12. Relationship of retinal configuration and internal proton transfer at the end of the bacteriorhodopsin photocycle

    SciTech Connect

    Richter, H.T.; Lanyi, J.K.; Needleman, R.

    1996-12-03

    In the last step of the bacteriorhodopsin photocycle the initial state is regenerated from the O intermediate in an essentially unidirectional reaction. Comparison of the rate of this photocycle step and the rate of deprotonation of Asp-85 in pH jump experiments with various site-specific mutants indicates that recovery of the initial state is influenced by (1) residues such as Glu-204 that affect deprotonation of Asp-85 and (2) residues such as Leu-93 that contact the retinal and therefore must affect its thermal reisomerization from 13-cis to all-trans as suggested by Delaney, Schweiger, and Subramaniam. These results, together with FTIR spectra of the last intermediate in the photocycles of representatives of the two kinds of mutants, E204Q and L93M, suggest the following sequence of events: reisomerization of the retinal from 13-cis to an all-trans configuration that contains a twisted chain (with high amplitude hydrogen out-of-plane vibrational bands) triggers proton transfer from Asp-85 to Glu-204 or directly to the extracellular surface, and the proton transfer in turn triggers relaxation of the twist in the retinal. The involvement of the proton transfer in the kinetics of this sequence suggests the reason for the unidirectionality of the overall reaction: upon reisomerization of the retinal the very low pK{sub a} of Asp-85 in the unphotolyzed protein is reestablished and this residue thereby becomes a good proton donor. 56 refs., 5 figs.

  13. Retinal detachment in a patient with extensive myelinated retinal nerve fibers.

    PubMed

    Chen, Muh-Shy; Ho, Tzyy-Chang; Chang, Ching-Chung; Hou, Ping-Kang

    2007-01-01

    We report extensive myelinated retinal nerve fibers in a 42-year-old patient with retinal detachment. Fundus examination revealed a horseshoe-shaped tear near the temporal edge. Pars plana vitrectomy was performed and firm vitreo-retinal adhesion was noticed in the area of extensive myelinated retinal nerve fibers. Following vitrectomy with silicone oil tamponade, the retina was reattached successfully. In conclusion, retinal detachment may develop in patients with extensive myelinated retinal nerve fibers. Vitrectomy may be performed to treat this condition.

  14. Cardiac remodelling and RAS inhibition

    PubMed Central

    Ferrario, Carlos M.

    2016-01-01

    Risk factors such as hypertension and diabetes are known to augment the activity and tissue expression of angiotensin II (Ang II), the major effector peptide of the renin–angiotensin system (RAS). Overstimulation of the RAS has been implicated in a chain of events that contribute to the pathogenesis of cardiovascular (CV) disease, including the development of cardiac remodelling. This chain of events has been termed the CV continuum. The concept of CV disease existing as a continuum was first proposed in 1991 and it is believed that intervention at any point within the continuum can modify disease progression. Treatment with antihypertensive agents may result in regression of left ventricular hypertrophy, with different drug classes exhibiting different degrees of efficacy. The greatest decrease in left ventricular mass is observed following treatment with angiotensin converting enzyme inhibitors (ACE-Is), which inhibit Ang II formation. Although ACE-Is and angiotensin receptor blockers (ARBs) provide significant benefits in terms of CV events and stroke, mortality remains high. This is partly due to a failure to completely suppress the RAS, and, as our knowledge has increased, an escape phenomenon has been proposed whereby the human sequence of the 12 amino acid substrate angiotensin-(1-12) is converted to Ang II by the mast cell protease, chymase. Angiotensin-(1-12) is abundant in a wide range of organs and has been shown to increase blood pressure in animal models, an effect abolished by the presence of ACE-Is or ARBs. This review explores the CV continuum, in addition to examining the influence of the RAS. We also consider novel pathways within the RAS and how new therapeutic approaches that target this are required to further reduce Ang II formation, and so provide patients with additional benefits from a more complete blockade of the RAS. PMID:27105891

  15. Vascular remodeling in transplant vasculopathy.

    PubMed

    Mitchell, Richard N; Libby, Peter

    2007-04-13

    As therapeutic strategies to prevent acute rejection progressively improve, transplant vasculopathy (TV) constitutes the single most important limitation for long-term functioning of solid organ allografts. In TV, allograft arteries characteristically develop severe, diffuse intimal hyperplastic lesions that eventually compromise luminal flow and cause ischemic graft failure. Traditional immunosuppressive strategies that check acute allograft rejection do not prevent TV; indeed 50% of transplant recipients will have significant disease within five years of organ transplantation, and 90% will have significant TV a decade after their surgery. TV can involve the entire length of the transplanted arterial bed, including penetrating intraorgan arterioles. Indeed, the luminal narrowing of such penetrating vessels may be the most functionally significant because arterioles represent the major contributors to tissue vascular resistance. Because of the diffuseness of TV involvement in the allograft vascular bed, the only currently definitive therapy requires re-transplantation. Nevertheless, as we better understand the pathogenesis and critical mediators of these lesions, pharmacological advances can be anticipated. Other articles in this thematic review series focus on the specifics of the inciting injury, the cytokines and chemokines that drive TV development, and the nature of the recruited cells in TV lesions, as well as the pathogenic similarities between TV and other vascular lesions such as atherosclerosis. This review focuses on the mechanisms of vascular wall remodeling in TV, including the intimal accumulation of smooth muscle-like cells and associated extracellular matrix, medial smooth muscle cell degeneration, and adventitial fibrosis. A brief overview highlights the aneurysmal changes that can accrue when vessel wall inflammation has a cytokine profile distinct from the typical proinflammatory interferon-gamma-dominated milieu.

  16. Hypoxic-Preconditioned Bone Marrow Stem Cell Medium Significantly Improves Outcome After Retinal Ischemia in Rats.

    PubMed

    Roth, Steven; Dreixler, John C; Mathew, Biji; Balyasnikova, Irina; Mann, Jacob R; Boddapoti, Venkat; Xue, Lai; Lesniak, Maciej S

    2016-06-01

    We have previously demonstrated the protective effect of bone marrow stem cell (BMSC)-conditioned medium in retinal ischemic injury. We hypothesized here that hypoxic preconditioning of stem cells significantly enhances the neuroprotective effect of the conditioned medium and thereby augments the protective effect in ischemic retina. Rats were subjected to retinal ischemia by increasing intraocular pressure to 130 to 135 mm Hg for 55 minutes. Hypoxic-preconditioned, hypoxic unconditioned, or normoxic medium was injected into the vitreous 24 hours after ischemia ended. Recovery was assessed 7 days after injections by comparing electroretinography measurements, histologic examination, and apoptosis (TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay). To compare proteins secreted into the medium in the groups and the effect of hypoxic exposure, we used rat cytokine arrays. Eyes injected with hypoxic BMSC-conditioned medium 24 hours after ischemia demonstrated significantly enhanced return of retinal function, decreased retinal ganglion cell layer loss, and attenuated apoptosis compared to those administered normoxic or hypoxic unconditioned medium. Hypoxic-preconditioned medium had 21 significantly increased protein levels compared to normoxic medium. The medium from hypoxic-preconditioned BMSCs robustly restored retinal function and prevented cell loss after ischemia when injected 24 hours after ischemia. The protective effect was even more pronounced than in our previous studies of normoxic conditioned medium. Prosurvival signals triggered by the secretome may play a role in this neuroprotective effect.

  17. Hypoxic-Preconditioned Bone Marrow Stem Cell Medium Significantly Improves Outcome After Retinal Ischemia in Rats

    PubMed Central

    Roth, Steven; Dreixler, John C.; Mathew, Biji; Balyasnikova, Irina; Mann, Jacob R.; Boddapati, Venkat; Xue, Lai; Lesniak, Maciej S.

    2016-01-01

    Purpose We have previously demonstrated the protective effect of bone marrow stem cell (BMSC)-conditioned medium in retinal ischemic injury. We hypothesized here that hypoxic preconditioning of stem cells significantly enhances the neuroprotective effect of the conditioned medium and thereby augments the protective effect in ischemic retina. Methods Rats were subjected to retinal ischemia by increasing intraocular pressure to 130 to 135 mm Hg for 55 minutes. Hypoxic-preconditioned, hypoxic unconditioned, or normoxic medium was injected into the vitreous 24 hours after ischemia ended. Recovery was assessed 7 days after injections by comparing electroretinography measurements, histologic examination, and apoptosis (TUNEL, terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling assay). To compare proteins secreted into the medium in the groups and the effect of hypoxic exposure, we used rat cytokine arrays. Results Eyes injected with hypoxic BMSC–conditioned medium 24 hours after ischemia demonstrated significantly enhanced return of retinal function, decreased retinal ganglion cell layer loss, and attenuated apoptosis compared to those administered normoxic or hypoxic unconditioned medium. Hypoxic-preconditioned medium had 21 significantly increased protein levels compared to normoxic medium. Conclusions The medium from hypoxic-preconditioned BMSCs robustly restored retinal function and prevented cell loss after ischemia when injected 24 hours after ischemia. The protective effect was even more pronounced than in our previous studies of normoxic conditioned medium. Prosurvival signals triggered by the secretome may play a role in this neuroprotective effect. PMID:27367588

  18. Effects of interleukin-1 on cardiac fibroblast function: relevance to post-myocardial infarction remodelling.

    PubMed

    Turner, Neil A

    2014-01-01

    The cardiac fibroblast (CF) is a multifunctional and heterogeneous cell type that plays an essential role in regulating cardiac development, structure and function. Following myocardial infarction (MI), the myocardium undergoes complex structural remodelling in an attempt to repair the damaged tissue and overcome the loss of function induced by ischemia/reperfusion injury. Evidence is emerging that CF play critical roles in all stages of post-MI remodelling, including the initial inflammatory phase that is triggered in response to myocardial damage. CF are particularly responsive to the proinflammatory cytokine interleukin-1 (IL-1) whose levels are rapidly induced in the myocardium after MI. Studies from our laboratory in recent years have sought to evaluate the functional effects of IL-1 on human CF function and to determine the underlying molecular mechanisms. This review summarises these data and sets it in the context of post-MI cardiac remodelling, identifying the fibroblast as a potential therapeutic target for reducing adverse cardiac remodelling and its devastating consequences. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Endothelial and Smooth Muscle Cell Ion Channels in Pulmonary Vasoconstriction and Vascular Remodeling

    PubMed Central

    Makino, Ayako; Firth, Amy L.; Yuan, Jason X.-J.

    2017-01-01

    The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease. PMID:23733654

  20. Optically triggered infrared photodetector.

    PubMed

    Ramiro, Íñigo; Martí, Antonio; Antolín, Elisa; López, Esther; Datas, Alejandro; Luque, Antonio; Ripalda, José M; González, Yolanda

    2015-01-14

    We demonstrate a new class of semiconductor device: the optically triggered infrared photodetector (OTIP). This photodetector is based on a new physical principle that allows the detection of infrared light to be switched ON and OFF by means of an external light. Our experimental device, fabricated using InAs/AlGaAs quantum-dot technology, demonstrates normal incidence infrared detection in the 2-6 μm range. The detection is optically triggered by a 590 nm light-emitting diode. Furthermore, the detection gain is achieved in our device without an increase of the noise level. The novel characteristics of OTIPs open up new possibilities for third generation infrared imaging systems ( Rogalski, A.; Antoszewski, J.; Faraone, L. J. Appl. Phys. 2009, 105 (9), 091101).

  1. Trigger developments for ARA

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Yuan

    2013-04-01

    The Askaryan Radio Array (ARA) is a planned large-scale neutrino detector at the South Pole aiming at observing ultra-high-energy cosmogenic neutrinos via detecting radio Cherenkov radiation from neutrinos' interaction with Antarctic ice. By the end of the austral summer of 2012/13 three detector stations have been deployed at depths of up to 200 m. A prototype detector station has been taking data for two years. The final array is planned to consist of 37 stations with a 200 km^2 coverage, and provide high sensitivity in the range of 10 PeV to 10 EeV. In order to increase the discover potential of the stations, advanced triggering schemes are in development which take into account the topology of signal events. Here a brief status and the triggering schemes in development will be presented, and based on simulations their improvements to ARA neutrino sensitivity will be discussed.

  2. Retinal vasculature classification using novel multifractal features

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Ward, W. O. C.; Duan, Jinming; Auer, D. P.; Gowland, Penny; Bai, L.

    2015-11-01

    Retinal blood vessels have been implicated in a large number of diseases including diabetic retinopathy and cardiovascular diseases, which cause damages to retinal blood vessels. The availability of retinal vessel imaging provides an excellent opportunity for monitoring and diagnosis of retinal diseases, and automatic analysis of retinal vessels will help with the processes. However, state of the art vascular analysis methods such as counting the number of branches or measuring the curvature and diameter of individual vessels are unsuitable for the microvasculature. There has been published research using fractal analysis to calculate fractal dimensions of retinal blood vessels, but so far there has been no systematic research extracting discriminant features from retinal vessels for classifications. This paper introduces new methods for feature extraction from multifractal spectra of retinal vessels for classification. Two publicly available retinal vascular image databases are used for the experiments, and the proposed methods have produced accuracies of 85.5% and 77% for classification of healthy and diabetic retinal vasculatures. Experiments show that classification with multiple fractal features produces better rates compared with methods using a single fractal dimension value. In addition to this, experiments also show that classification accuracy can be affected by the accuracy of vessel segmentation algorithms.

  3. GLAST's GBM Burst Trigger

    NASA Technical Reports Server (NTRS)

    Band, D.; Briggs, M.; Connaughton, V.; Kippen, M.; Preece, R.

    2003-01-01

    The GLAST Burst Monitor (GBM) will detect and localize bursts for the GLAST mission, and provide the spectral and temporal context in the traditional 10 keV to 25 MeV band for the high energy observations by the Large Area Telescope (LAT). The GBM will use traditional rate triggers in up to three energy bands, and on a variety of timescales between 16 ms and 16 s.

  4. GLAST's GBM Burst Trigger

    NASA Technical Reports Server (NTRS)

    Band, D.; Briggs, M.; Connaughton, V.; Kippen, M.; Preece, R.

    2003-01-01

    The GLAST Burst Monitor (GBM) will detect and localize bursts for the GLAST mission, and provide the spectral and temporal context in the traditional 10 keV to 25 MeV band for the high energy observations by the Large Area Telescope (LAT). The GBM will use traditional rate triggers in up to three energy bands, and on a variety of timescales between 16 ms and 16 s.

  5. Neural networks for triggering

    SciTech Connect

    Denby, B. ); Campbell, M. ); Bedeschi, F. ); Chriss, N.; Bowers, C. ); Nesti, F. )

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  6. GLAST's GBM Burst Trigger

    SciTech Connect

    Band, D.; Kippen, M.

    2004-09-28

    The GLAST Burst Monitor (GBM) will detect and localize bursts for the GLAST mission, and provide the spectral and temporal context in the traditional 10 keV to 25 MeV band for the high energy observations by the Large Area Telescope (LAT). The GBM will use traditional rate triggers in up to three energy bands, and on a variety of timescales between 16 ms and 16 s.

  7. Diabetes downregulates large-conductance Ca2+-activated potassium beta 1 channel subunit in retinal arteriolar smooth muscle.

    PubMed

    McGahon, Mary K; Dash, Durga P; Arora, Aruna; Wall, Noreen; Dawicki, Jennine; Simpson, David A; Scholfield, C Norman; McGeown, J Graham; Curtis, Tim M

    2007-03-16

    Retinal vasoconstriction and reduced retinal blood flow precede the onset of diabetic retinopathy. The pathophysiological mechanisms that underlie increased retinal arteriolar tone during diabetes remain unclear. Normally, local Ca(2+) release events (Ca(2+)-sparks), trigger the activation of large-conductance Ca(2+)-activated K(+)(BK)-channels which hyperpolarize and relax vascular smooth muscle cells, thereby causing vasodilatation. In the present study, we examined BK channel function in retinal vascular smooth muscle cells from streptozotocin-induced diabetic rats. The BK channel inhibitor, Penitrem A, constricted nondiabetic retinal arterioles (pressurized to 70mmHg) by 28%. The BK current evoked by caffeine was dramatically reduced in retinal arterioles from diabetic animals even though caffeine-evoked [Ca(2+)](i) release was unaffected. Spontaneous BK currents were smaller in diabetic cells, but the amplitude of Ca(2+)-sparks was larger. The amplitudes of BK currents elicited by depolarizing voltage steps were similar in control and diabetic arterioles and mRNA expression of the pore-forming BKalpha subunit was unchanged. The Ca(2+)-sensitivity of single BK channels from diabetic retinal vascular smooth muscle cells was markedly reduced. The BKbeta1 subunit confers Ca(2+)-sensitivity to BK channel complexes and both transcript and protein levels for BKbeta1 were appreciably lower in diabetic retinal arterioles. The mean open times and the sensitivity of BK channels to tamoxifen were decreased in diabetic cells, consistent with a downregulation of BKbeta1 subunits. The potency of blockade by Pen A was lower for BK channels from diabetic animals. Thus, changes in the molecular composition of BK channels could account for retinal hypoperfusion in early diabetes, an idea having wider implications for the pathogenesis of diabetic hypertension.

  8. Cytomegalovirus retinitis associated with acquired immunodeficiency syndrome.

    PubMed

    Geng, Shuang; Ye, Jun-jie; Zhao, Jia-liang; Li, Tai-sheng; Han, Yang

    2011-04-01

    Cytomegalovirus (CMV) retinitis is the most severe intraocular complication that results in total retinal destruction and loss of visual acuity in patients with acquired immunodeficiency syndrome (AIDS). This study aimed to investigate the fundus characteristics, systemic manifestations and therapeutic outcomes of CMV retinitis associated with AIDS. It was a retrospective case series. CMV retinitis was present in 39 eyes (25 patients). Best corrected visual acuities, anterior segment, fundus features, fundus fluorescence angiography (FFA) and CD4(+) T-lymphocyte counts of the patients with CMV retinitis associated with AIDS were analyzed. Intravitreal injections of ganciclovir (400 µg) were performed in 4 eyes (2 patients). Retinal vasculitis, dense, full-thickness, yellow-white lesions along vascular distribution with irregular granules at the border, and hemorrhage on the retinal surface were present in 28 eyes. The vitreous was clear or mildly opaque. Late stage of the retinopathy was demonstrated in 8 eyes characterized as atrophic retina, sclerotic and attenuated vessels, retinal pigment epithelium (RPE) atrophy, and optic nerve atrophy. Retinal detachment was found in 3 eyes. The average CD4(+) T-lymphocyte count in peripheral blood of the patients with CMV retinitis was (30.6 ± 25.3) × 10(6)/L (range, (0 - 85) × 10(6)/L). After intravitreal injections of ganciclovir, visual acuity was improved and fundus lesions regressed. CMV retinitis is the most severe and the most common intraocular complication in patients with AIDS. For the patients with yellow-white retinal lesions, hemorrhage and retinal vasculitis without clear cause, human immunodeficiency virus (HIV) serology should be performed. Routine eye examination is also indicated in HIV positive patients.

  9. Retinal degeneration mutants in the mouse.

    PubMed

    Chang, B; Hawes, N L; Hurd, R E; Davisson, M T; Nusinowitz, S; Heckenlively, J R

    2002-02-01

    The Jackson Laboratory, having the world's largest collection of mouse mutant stocks and genetically diverse inbred strains, is an ideal place to look for genetically determined eye variations and disorders. Through ophthalmoscopy, electroretinography and histology, we have discovered disorders affecting all aspects of the eye including the lid, cornea, iris, lens and retina, resulting in corneal disorders, cataracts, glaucoma and retinal degenerations. Mouse models of retinal degeneration have been investigated for many years in the hope of understanding the causes of photoreceptor cell death. Sixteen naturally occurring mouse mutants that manifest degeneration of photoreceptors in the retina with preservation of all other retinal cell types have been found: retinal degeneration (formerly rd, identical with rodless retina, r, now Pde6b(rd1)); Purkinje cell degeneration (pcd); nervous (nr); retinal degeneration slow (rds, now Prph(Rd2)); retinal degeneration 3 (rd3); motor neuron degeneration (mnd); retinal degeneration 4 (Rd4); retinal degeneration 5 (rd5, now tub); vitiligo (vit, now Mitf(mi-vit)); retinal degeneration 6 (rd6); retinal degeneration 7 (rd7, now Nr2e3(rd7)); neuronal ceroid lipofuscinosis (nclf); retinal degeneration 8 (rd8); retinal degeneration 9 (Rd9); retinal degeneration 10 (rd10, now Pde6b(rd10)); and cone photoreceptor function loss (cpfl1). In this report, we first review the genotypes and phenotypes of these mutants and second, list the mouse strains that carry each mutation. We will also provide detailed information about the cpfl1 mutation. The phenotypic characteristics of cpfl1 mice are similar to those observed in patients with complete achromatopsia (ACHM2, OMIM 216900) and the cpfl1 mutation is the first naturally-arising mutation in mice to cause cone-specific photoreceptor function loss. cpfl1 mice may provide a model for congenital achromatopsia in humans.

  10. Periprosthetic Bone Remodelling in Total Knee Arthroplasty

    PubMed Central

    GEORGEANU, Vlad; ATASIEI, Tudor; GRUIONU, Lucian

    2014-01-01

    Introduction: The clinical studies have shown that the displacement of the prosthesis components, especially of the tibial one is higher during the first year, after which it reaches an equilibrum position compatible with a good long term functioning. This displacement takes place due to bone remodelling close to the implant secondary to different loading concentrations over different areas of bone. Material and Method: Our study implies a simulation on a computational model using the finite element analysis. The simulation started taking into account arbitrary points because of non-linear conditions of bone-prosthesis interface and it was iterative.. A hundred consecutive situations corresponding to intermediate bone remodelling phases have been calculated according to given loadings. Bone remodelling was appreciated as a function of time and bone density for each constitutive element of the computational model created by finite element method. For each constitutive element a medium value of stress during the walking cycle was applied. Results: Analyse of proximal epiphysis-prosthesis complex slices showed that bone density increase is maintained all over the stem in the immediately post-operative period. At 10 months, the moment considered to be the end of bone remodelling, areas with increased bone density are fewer and smaller. Meanwhile, their distribution with a concentration toward the internal compartment in the distal metaphysis is preserved. Conclusions: After the total knee arthroplasty the tibial bone suffered a process of remodelling adapted to the new stress conditions. This bone remodelling can influence, sometimes negatively, especially in the cases with tibial component varus malposition, the fixation, respectively the survival of the prosthesis. This process has been demonstrated both by clinical trials and by simulation, using the finite elements method of periprosthetic bone remodelling. PMID:25553127

  11. Dopamine triggers Heterosynaptic Plasticity

    PubMed Central

    Ishikawa, Masago; Otaka, Mami; Huang, Yanhua; Neumann, Peter A.; Winters, Bradley D.; Grace, Anthony A.; Schlüter, Oliver M.; Dong, Yan

    2013-01-01

    As a classic neuromodulator, dopamine has long been thought to modulate, rather than trigger, synaptic plasticity. In contrast, our present results demonstrate that within the parallel projections of dopaminergic and GABAergic terminals from the ventral tegmental area (VTA) to nucleus accumbens core (NAcCo), action potential-activated release of dopamine heterosynaptically triggers LTD at GABAergic synapses, which is likely mediated by activating presynaptically-located dopamine D1 class receptors and expressed by inhibiting presynaptic release of GABA. Moreover, this dopamine-mediated heterosynaptic LTD is abolished after withdrawal from cocaine exposure. These results suggest that action potential-dependent dopamine release triggers very different cellular consequences from those induced by volume release or pharmacological manipulation. Activation of the VTA-to-NAcCo projections is essential for emotional and motivational responses. This dopamine-mediated LTD allows a flexible output of NAcCo neurons, whereas disruption of this LTD may contribute to the rigid emotional and motivational state observed in addicts during cocaine withdrawal. PMID:23595734

  12. Laser Induced Retinal Damage Thresholds for Annular Retinal Beam Profiles

    DTIC Science & Technology

    2004-01-01

    Thompson-Gerstman granular model of laser-induced thermal damage to the retina ."°20 The study documented in this paper is a continuation of our earlier...Retinal Beam Profiles DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Laser Interaction...mrad of visual field; which correspond to outer beam diameters of roughly 70, 160, and 300 tin, respectively, on the primate retina . Annular beam

  13. Retinitis Pigmentosa and Other Dystrophies.

    PubMed

    Mrejen, Sarah; Audo, Isabelle; Bonnel, Sébastien; Sahel, José-Alain

    2017-01-01

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degenerations characterized by progressive degeneration of rod and cone cells that affects predominantly peripheral visual fields. Macular edema may cause additional central visual acuity decrease. Cystoid macular edema (CME) is one of the few treatable causes of visual loss in RP. The prevalence of CME in RP has been found to be between 10 and 20% on fluorescein angiography-based studies, and as high as 49% on reports based on optical coherence tomography. Macular edema can manifest at any stage of the disease and may be unilateral or bilateral. It can be found in any genetic form, but is more often associated with RP caused by CRB1 mutations. The origin of macular edema in RP patients still remains poorly understood. Some mechanisms have been suggested, including antiretinal antibodies (retinal, carbonic anhydrase, and enolase antibodies), vitreous traction, retinal pigment epithelium dysfunction, and Müller cell edema. There is no gold standard therapeutic strategy. Drug therapy is the primary treatment. Systemic carbonic anhydrase inhibitors, such as oral acetazolamide or topical dorzolamide, are still the mainstays of initial therapy. If CME is refractory to acetazolamide, intravitreal corticosteroid injections may be a therapeutic option. However, antivascular endothelium growth factor injections have limited effect and should be avoided. Vitrectomy has also been evaluated, but its exact role remains to be determined. The benefits of these therapies are variable among patients. The establishment of therapeutic approaches is limited by our poor understanding of the pathophysiology of CME in patients with RP. Autoimmune retinopathies (AIRs) are a group of rare diseases characterized by acute or subacute progressive vision loss and are thought to be mediated by autoantibodies specific to retinal antigens. The AIRs encompass paraneoplastic syndromes, such as cancer-associated retinopathy and

  14. [Vitreo-retinal surgery for complicated retinal detachment].

    PubMed

    Wang, J Z

    1993-07-01

    93 eyes (93 patients) of complicated retinal detachment were treated with vitreo-retinal surgery. Among the series, 75 eyes were rhegmatogenous with PVR C3-D3 in 66 eyes (88.0%), while the remaining 18 eyes were traction induced. None of the cases had giant tears or complicating diabetes. On discharge from the hospital, the operation was effective in 62 cases (66.7%), in whom the retina was totally reattached or only a small amount of subretinal fluid remained. In a group of 40 eyes where the inert gas SF6 was used, the operation was effective in 30 cases (75.0%). 41 cases were followed up postoperatively for over 3 months, averaging 13.7 months, to find the operative results stable in 33 eyes (80.5%), with the visual acuity improved in 22 cases (66.7%), unchanged in 9 cases (27.3%), and decreased in 2 cases (6.0%). The operative procedures, the peeling of pre-retinal membrane, the effect of PVR severity on the operative results, and the promotion of operative efficacy by application of wide encircling buckle and inert gas tamponade were discussed.

  15. Role of retinal metabolism in methanol-induced retinal toxicity

    SciTech Connect

    Garner, C.D. |; Lee, E.W.; Terzo, T.S.; Louis-Ferdinand, R.T.

    1995-08-01

    Methanol is a toxicant that causes systemic and ocular toxicity after acute exposure. The folate-reduced (FR) rat is an excellent animal model that mimics characteristic human methanol toxic responses. The present study examines the role of the methanol metabolites formaldehyde and formate in the initiation of methanol-induced retinal toxicity. After a single oral dose of 3.0 g/kg methanol, blood methanol concentrations were not significantly different in FR rats compared with folate-sufficient (FS) (control) rats. However, FR rats treated with 3.0 g/kg methanol displayed elevated blood (14.6 mM) and vitreous humor (19.5 mM) formate levels and abnormal electroretinograms (loss of b-wave) 48 h postdose. FR rats pretreated with disulfiram (DSF) prior to 3.0 g/kg methanol treatment failed to display these symptoms. Formaldehyde was not detected in blood or vitreous humor with or without DSF treatment, suggesting that formate is the toxic metabolite in methanol-induced retinal toxicity. Additionally, creating a blood formate profile (14.2 mM at 48 h) similar to that observed in methanol-treated rats by iv infusion of pH-buffered formate does not alter the electroretinogram as is observed with methanol treatment. These data suggest that intraretinal metabolism of methanol is necessary for the formate-mediated initiation of methanol-induced retinal toxicity. 31 refs., 5 figs., 2 tabs.

  16. Dynamic structural remodelling of microglia in health and disease: a review of the models, the signals and the mechanisms.

    PubMed

    Walker, F Rohan; Beynon, Sarah B; Jones, Kimberley A; Zhao, Zidan; Kongsui, Ratchaniporn; Cairns, Murray; Nilsson, Michael

    2014-03-01

    Microglia are unique cells within the central nervous system because of their biophysical independence. As a result of this unusual property the cells must undergo significant structural remodelling in order to engage and connect with other elements within the central nervous system. Efficient remodelling is required for all activities that microglia are involved in ranging from monitoring synaptic information flow through to phagocytosis of tissue debris. Despite the fact that morphological remodelling is a pre-requisite to all microglial activities, relatively little research has been undertaken on the topic. This review examines what is known about how microglia transform themselves during development, under physiological conditions in response to changes in neuronal activity, and under pathological circumstances. Specific attention is given to exploring a variety of models that have been proposed to account for microglial transformation as well as the signals that are known to trigger these transformations.

  17. Obesity and carotid artery remodeling

    PubMed Central

    Kozakova, M; Palombo, C; Morizzo, C; Højlund, K; Hatunic, M; Balkau, B; Nilsson, P M; Ferrannini, E

    2015-01-01

    Background/Objective: The present study tested the hypothesis that obesity-related changes in carotid intima-media thickness (IMT) might represent not only preclinical atherosclerosis but an adaptive remodeling meant to preserve circumferential wall stress (CWS) in altered hemodynamic conditions characterized by body size-dependent increase in stroke volume (SV) and blood pressure (BP). Subjects/Methods: Common carotid artery (CCA) luminal diameter (LD), IMT and CWS were measured in three different populations in order to study: (A) cross-sectional associations between SV, BP, anthropometric parameters and CCA LD (266 healthy subjects with wide range of body weight (24–159 kg)); (B) longitudinal associations between CCA LD and 3-year IMT progression rate (ΔIMT; 571 healthy non-obese subjects without increased cardiovascular (CV) risk); (C) the impact of obesity on CCA geometry and CWS (88 obese subjects without CV complications and 88 non-obese subjects matched for gender and age). Results: CCA LD was independently associated with SV that was determined by body size. In the longitudinal study, baseline LD was an independent determinant of ΔIMT, and ΔIMT of subjects in the highest LD quartile was significantly higher (28±3 μm) as compared with those in the lower quartiles (8±3, 16±4 and 16±3 μm, P=0.001, P<0.05 and P=0.01, respectively). In addition, CCA CWS decreased during the observational period in the highest LD quartile (from 54.2±8.6 to 51.6±7.4 kPa, P<0.0001). As compared with gender- and age-matched lean individuals, obese subjects had highly increased CCA LD and BP (P<0.0001 for both), but only slightly higher CWS (P=0.05) due to a significant increase in IMT (P=0.005 after adjustment for confounders). Conclusions: Our findings suggest that in obese subjects, the CCA wall thickens to compensate the luminal enlargement caused by body size-induced increase in SV, and therefore, to normalize the wall stress. CCA diameter in obesity could

  18. Temperature-induced cardiac remodelling in fish

    PubMed Central

    Keen, Adam N.; Klaiman, Jordan M.; Shiels, Holly A.

    2017-01-01

    ABSTRACT Thermal acclimation causes the heart of some fish species to undergo significant remodelling. This includes changes in electrical activity, energy utilization and structural properties at the gross and molecular level of organization. The purpose of this Review is to summarize the current state of knowledge of temperature-induced structural remodelling in the fish ventricle across different levels of biological organization, and to examine how such changes result in the modification of the functional properties of the heart. The structural remodelling response is thought to be responsible for changes in cardiac stiffness, the Ca2+ sensitivity of force generation and the rate of force generation by the heart. Such changes to both active and passive properties help to compensate for the loss of cardiac function caused by a decrease in physiological temperature. Hence, temperature-induced cardiac remodelling is common in fish that remain active following seasonal decreases in temperature. This Review is organized around the ventricular phases of the cardiac cycle – specifically diastolic filling, isovolumic pressure generation and ejection – so that the consequences of remodelling can be fully described. We also compare the thermal acclimation-associated modifications of the fish ventricle with those seen in the mammalian ventricle in response to cardiac pathologies and exercise. Finally, we consider how the plasticity of the fish heart may be relevant to survival in a climate change context, where seasonal temperature changes could become more extreme and variable. PMID:27852752

  19. Retinal abnormalities in β-thalassemia major.

    PubMed

    Bhoiwala, Devang L; Dunaief, Joshua L

    2016-01-01

    Patients with beta (β)-thalassemia (β-TM: β-thalassemia major, β-TI: β-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Retinal abnormalities in β-thalassemia major

    PubMed Central

    Bhoiwala, Devang L.; Dunaief, Joshua L.

    2015-01-01

    Patients with beta (β)-thalassemia (β-TM: thalassemia major, β-TI: thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelium degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-TM are transfusion dependent and require iron chelation therapy (ICT) in order to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by ICT. Some who were never treated with ICT exhibited retinopathy, and others receiving ICT had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-TM viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202

  1. Primitive retinal vascular abnormalities: tumors and telangiectasias.

    PubMed

    Knutsson, Karl Anders; De Benedetto, Umberto; Querques, Giuseppe; Del Turco, Claudia; Bandello, Francesco; Lattanzio, Rosangela

    2012-01-01

    Primitive retinal vascular abnormalities are benign conditions of the retinal circulation that comprise vascular tumors and telangiectasias. The principal vascular tumors of the retina include retinal capillary hemangioma, cavernous hemangioma of the retina, racemose hemangiomatosis of the retina and retinal vasoproliferative tumor, while primary retinal telangiectasias include Coats' disease, Leber's miliary aneurysms and idiopathic juxtafoveal telangiectasias. In most cases, these alterations result in significant visual impairment due to exudation determined by the structural abnormalities of the retinal vasculature. The aim of this review is to assess the different clinical and diagnostic features of the single pathological entities and to discuss the available treatment modalities including the onset of intravitreal antivascular endothelial growth factor therapy. Copyright © 2012 S. Karger AG, Basel.

  2. Retinal blood vessels extraction using probabilistic modelling.

    PubMed

    Kaba, Djibril; Wang, Chuang; Li, Yongmin; Salazar-Gonzalez, Ana; Liu, Xiaohui; Serag, Ahmed

    2014-01-01

    The analysis of retinal blood vessels plays an important role in detecting and treating retinal diseases. In this review, we present an automated method to segment blood vessels of fundus retinal image. The proposed method could be used to support a non-intrusive diagnosis in modern ophthalmology for early detection of retinal diseases, treatment evaluation or clinical study. This study combines the bias correction and an adaptive histogram equalisation to enhance the appearance of the blood vessels. Then the blood vessels are extracted using probabilistic modelling that is optimised by the expectation maximisation algorithm. The method is evaluated on fundus retinal images of STARE and DRIVE datasets. The experimental results are compared with some recently published methods of retinal blood vessels segmentation. The experimental results show that our method achieved the best overall performance and it is comparable to the performance of human experts.

  3. Retinal complications after bungee jumping.

    PubMed

    Filipe, J A; Pinto, A M; Rosas, V; Castro-Correia, J

    Bungee jumping is becoming a popular sport in the Western world with some cases of ophthalmic complications being reported in recent literature. The authors reported a case of a 23-year-old healthy female who presented retinal complications following a bungee jumping. Her fundi showed superficial retinal hemorrhages in the right eye and a sub-internal limiting membrane hemorrhage affecting the left eye. A general examination, including a full neurological examination, was normal and laboratorial investigations were all within normal values. More studies are necessary to identify risk factors and the true incidence of related ocular lesions, but until then, we think this sport activity should be desencouraged, especially to those that are not psychological and physically fit.

  4. Contribution of ventricular remodeling to pathogenesis of heart failure in rats.

    PubMed

    Brower, G L; Janicki, J S

    2001-02-01

    We previously reported an approximately 50% incidence of rats with symptoms of congestive heart failure (CHF) at 8 wk postinfrarenal aorto-caval fistula. However, it was not clear whether compensatory ventricular remodeling could continue beyond 8 wk or whether the remaining animals would have developed CHF or died. Therefore, the intent of this study was to complete the characterization of this model of sustained volume overload by determining the morbidity and mortality and the temporal response of left ventricular (LV) remodeling and function beyond 8 wk. The findings demonstrate an upper limit to LV hypertrophy and substantial increases in LV volume and compliance, matrix metalloproteinase activity, and collagen volume fraction associated with the development of CHF. There was an 80% incidence of morbidity and mortality following 21 wk of chronic volume overload. These findings indicate that the development of CHF is triggered by marked ventricular dilatation and increased compliance occurring once the myocardial hypertrophic response is exhausted.

  5. Angiographic results of retinal-retinal anastomosis and retinal-choroidal anastomosis after treatments in eyes with retinal angiomatous proliferation

    PubMed Central

    Saito, Masaaki; Iida, Tomohiro; Kano, Mariko; Itagaki, Kanako

    2012-01-01

    Background The purpose of this study was to evaluate the angiographic results of retinal-retinal anastomosis (RRA) and retinal-choroidal anastomosis (RCA) for eyes with retinal angiomatous proliferation (RAP) after treatment with intravitreal bevacizumab injections as monotherapy or intravitreal bevacizumab combined with photodynamic therapy. Methods In this interventional, consecutive case series, we retrospectively reviewed five naïve eyes from four patients (mean age 80 years) treated with three consecutive monthly intravitreal bevacizumab (1.25 mg/0.05 mL) injections as initial treatment, and followed up for at least 3 months. In cases with over 3 months of follow-up and having recurrence of RAP or leakage by fluorescein angiography, retreatment was performed with a single intravitreal bevacizumab injection and photodynamic therapy. Results Indocyanine green angiography showed RRA in three eyes with subretinal neovascularization and RCA in two eyes with choroidal neovascularization at baseline. At 3 months after baseline (month 3), neither the RRA nor RCA was occluded in any eye on indocyanine green angiography. Retreatment with intravitreal bevacizumab plus photodynamic therapy was performed in three eyes at months 3 (persistent leakage on fluorescein angiography), 6, and 7 (recurrence of RAP lesion), which achieved obvious occlusion of the RRA and RCA. Mean best-corrected visual acuity improved from 0.13 to 0.21 at month 3 (P = 0.066). No complications or systemic adverse events were noted. Conclusion Although intravitreal bevacizumab for RAP was effective in improving visual acuity during short-term follow-up, intravitreal bevacizumab could not achieve complete occlusion of RRA and RCA, which could lead to recurrence of a RAP lesion and exudation. Retreatment with intravitreal bevacizumab plus photodynamic therapy ultimately achieved complete occlusion of the RRA and RCA. PMID:22969283

  6. [Retinal ischemia and nitric oxide].

    PubMed

    Neroev, V V; Arkhipova, M M

    2003-01-01

    Retinal ischemia is the main chain in the pathogenesis of vascular diseases of the eye. It was established that nitric oxide (NO) plays the key role in the development of ischemia. Recent understanding of the NO role, as a universal regulator of the cellular and tissue metabolism, is presented. The authors' and published data were used to design a scheme of pathogenesis of retinal ischemia with regard for the NO role. NO can produce both positive and negative effects depending on a stage of the process, NO concentration and on a number of other factors if they are present. Initial stages of hypoxia/ischemia are accompanied by an activation of all forms of NO-synthases (NOS) caused by the influence of biologically active substances (cytokines, prostaglandins, serotonin, bradykinin, glycolisis suboxide products etc.). The activation of inducible NOS, which synthesize a bigger quantity of NO possessing a direct cytotoxic action and contributing to the production of highly toxic radical of peroxinitrit, is in the focus of attention. The damage of cellular structures due to free-radical processes leads to the development of endothelial, macrophage and thrombocyte malfunctions, which manifest itself through a reduced activity of endothelial NOS and through disruption of NO-dependent processes (vasospasm, an increased aggregation of platelets and a reduced fibrinolytic activity). A sharp reduction of NO synthesis substrate (L-arginine) is observed in patients with retinal ischemia. The aggravation of ischemia causes a decrease of NO synthesis due to an exhaustion of L-arginine and its intensified consumption in the course of free-radical processes. The use of NO-inhibitors and of NO-donors at different stages of retinal ischemia prevents the development of neovascularization and proliferation.

  7. Inherited Retinal Degenerative Clinical Trial Network. Addendum

    DTIC Science & Technology

    2013-10-01

    visual impairment usually ending in blindness. In the United States, the total number of individuals affected by retinitis pigmentosa (RP) and other...linica l trial in the NEER network for autosomal dominant retinitis pigmentosa , and the ProgSTAR studies for Stargardt disease) . As new interventions b... retinitis pigmentosa continues at six sites- the CTEC site at University of Utah and five additional recruitment sites- the Retina Foundation of the

  8. Microelectronic Array for Stimulation of Retinal Tissue

    DTIC Science & Technology

    2005-01-01

    from diseases such as retinitis pigmentosa and age-related macular degeneration are the leading causes of blindness in the developing world...53featured research 2005 NRL Review Microelectronic Array for Stimulation of Retinal Tissue D. Scribner,1 L. Johnson,4 P. Skeath,4 R. Klein,4...GOALS The development of a high-resolution retinal prosthesis device at the Naval Research Laboratory (NRL) was first discussed in the late 1990s

  9. Gene expression changes within Müller glial cells in retinitis pigmentosa.

    PubMed

    Roesch, Karin; Stadler, Michael B; Cepko, Constance L

    2012-01-01

    Retinitis pigmentosa (RP) is a progressive retinal degeneration in which the retina loses nearly all of its photoreceptor cells and undergoes major structural changes. Little is known regarding the role the resident glia, the Müller glia, play in the progression of the disease. In this article, we define gene expression changes in Müller glial cells (MGCs) from two different mouse models of RP, the retinal degeneration 1 (rd1) and rhodopsin knockout (Rhod-ko) models. The RNA repertoire of single MGCs was comprehensively profiled, and a comparison was made between MGCs from wild-type (WT) and mutant retinas. Two time points were chosen for analysis, one at the peak of rod photoreceptor death and one during the period of cone photoreceptor death. Retinas were dissociated, and single MGCs were chosen under a dissecting microscope using a micropipette. Single cell cDNAs were generated and genome-wide profiles were obtained by hybridization to Affymetrix arrays. A comparison was made among all samples to discover the changes in gene expression during the periods of rod and cone photoreceptor death. MGCs respond to retinal degeneration by undergoing gliosis, a process marked by the upregulation of glial fibrillary acidic protein (Gfap). Many additional transcripts were found to change. These can be placed into functional clusters, such as retinal remodeling, stress response, and immune-related response. A high degree of heterogeneity among the individual cells was observed, possibly due to their different spatial proximities to dying cells and/or inherent heterogeneity among MGCs.

  10. Retinal pathways influence temporal niche

    PubMed Central

    Doyle, Susan E.; Yoshikawa, Tomoko; Hillson, Holly; Menaker, Michael

    2008-01-01

    In mammals, light input from the retina entrains central circadian oscillators located in the suprachiasmatic nuclei (SCN). The phase of circadian activity rhythms with respect to the external light:dark cycle is reversed in diurnal and nocturnal species, although the phase of SCN rhythms relative to the light cycle remains unchanged. Neural mechanisms downstream from the SCN are therefore believed to determine diurnality or nocturnality. Here, we report a switch from nocturnal to diurnal entrainment of circadian activity rhythms in double-knockout mice lacking the inner-retinal photopigment melanopsin (OPN4) and RPE65, a key protein used in retinal chromophore recycling. These mice retained only a small amount of rod function. The change in entrainment phase of Rpe65−/−;Opn4−/− mice was accompanied by a reversal of the rhythm of clock gene expression in the SCN and a reversal in acute masking effects of both light and darkness on activity, suggesting that the nocturnal to diurnal switch is due to a change in the neural response to light upstream from the SCN. A switch from nocturnal to diurnal activity rhythms was also found in wild-type mice transferred from standard intensity light:dark cycles to light:dark cycles in which the intensity of the light phase was reduced to scotopic levels. These results reveal a novel mechanism by which changes in retinal input can mediate acute temporal-niche switching. PMID:18695249

  11. Retinitis pigmentosa in Puerto Rico.

    PubMed

    Tous, Horacio M; Izquierdo, Natalio J

    2006-12-01

    Previous studies have reported that the prevalence of retinitis pigmentosa (RP) varies between one per 3,000 to one in per 5,000 in the general population. To study the incidence and ocular findings of RP in a sub-urban community in Puerto Rico. We conducted a non-concurrent prospective study of 10,100 patients in a sub-urban San Juan community. 44 out of the 10,100 patients had RP (0.44%). Eight out of the 44 patients (18%) had nystagmus, twenty-eight (31.8%) had microcornea, 3 patients (6.8%) had sluggish papillary reaction. Six patients (13.6%) had mild cataracts, 27 (65.9%)had attenuated retinal vessels and thirty five patients (81.4%) had bony spicules. Fifteen patients (34.1%) out of the 44 had retinitis pigmentosa as part of the Bardet-Biedl syndrome. Incidence of RP in Puerto Rico is higher when compared to Maine and Spain (p < 0.001). Autosomal recessive pattern of inheritance is the most common in Puerto Rico. These findings could be due to the island's geographic isolation, and inbreeding.

  12. Mitochondrial dysfunction underlying outer retinal diseases.

    PubMed

    Lefevere, Evy; Toft-Kehler, Anne Katrine; Vohra, Rupali; Kolko, Miriam; Moons, Lieve; Van Hove, Inge

    2017-03-29

    Dysfunction of photoreceptors, retinal pigment epithelium (RPE) or both contribute to the initiation and progression of several outer retinal disorders. Disrupted Müller glia function might additionally subsidize to these diseases. Mitochondrial malfunctioning is importantly associated with outer retina pathologies, which can be classified as primary and secondary mitochondrial disorders. This review highlights the importance of oxidative stress and mitochondrial DNA damage, underlying outer retinal disorders. Indeed, the metabolically active photoreceptors/RPE are highly prone to these hallmarks of mitochondrial dysfunction, indicating that mitochondria represent a weak link in the antioxidant defenses of outer retinal cells.

  13. Retinal Cell Degeneration in Animal Models

    PubMed Central

    Niwa, Masayuki; Aoki, Hitomi; Hirata, Akihiro; Tomita, Hiroyuki; Green, Paul G.; Hara, Akira

    2016-01-01

    The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage. PMID:26784179

  14. RETINAL VASCULITIS ASSOCIATED WITH NEUROMYELITIS OPTICA.

    PubMed

    Mikhail, Mikel; Khan, Ayesha

    2017-01-01

    To report a case of retinal vasculitis in a patient with neuromyelitis optica. Clinical case report, imaging was obtained with photographs, fluorescein angiography, spectral domain optical coherence tomography, and magnetic resonance imaging. The aforementioned patient presented with urinary incontinence and spastic paraparesis. She was found to have a transverse myelitis on magnetic resonance imaging and positive anti-aquaporin-4 (AQP4-Ab) testing. She had no associated visual symptoms. Examination revealed a retinal vasculitis. There have been no previous reports of retinal vasculitis associated with neuromyelitis optica or neuromyelitis optica spectrum disorder. Retinal vasculitis can be associated with neuromyelitis optica.

  15. Retinal Macroglial Responses in Health and Disease

    PubMed Central

    de Hoz, Rosa; Rojas, Blanca; Ramírez, Ana I.; Salazar, Juan J.; Gallego, Beatriz I.; Triviño, Alberto; Ramírez, José M.

    2016-01-01

    Due to their permanent and close proximity to neurons, glial cells perform essential tasks for the normal physiology of the retina. Astrocytes and Müller cells (retinal macroglia) provide physical support to neurons and supplement them with several metabolites and growth factors. Macroglia are involved in maintaining the homeostasis of extracellular ions and neurotransmitters, are essential for information processing in neural circuits, participate in retinal glucose metabolism and in removing metabolic waste products, regulate local blood flow, induce the blood-retinal barrier (BRB), play fundamental roles in local immune response, and protect neurons from oxidative damage. In response to polyetiological insults, glia cells react with a process called reactive gliosis, seeking to maintain retinal homeostasis. When malfunctioning, macroglial cells can become primary pathogenic elements. A reactive gliosis has been described in different retinal pathologies, including age-related macular degeneration (AMD), diabetes, glaucoma, retinal detachment, or retinitis pigmentosa. A better understanding of the dual, neuroprotective, or cytotoxic effect of macroglial involvement in retinal pathologies would help in treating the physiopathology of these diseases. The extensive participation of the macroglia in retinal diseases points to these cells as innovative targets for new drug therapies. PMID:27294114

  16. Retinal detachment following cataract surgery with capsulorhexis.

    PubMed Central

    Kelley, J S; Doxanas, M T

    1995-01-01

    PURPOSE: To estimate the incidence of retinal detachment after cataract surgery with capsulorhexis. METHODS: A consecutive series of 2,150 cataract operations were followed for incidence of retinal detachment. A series of 1,000 patients from this group were analyzed for high risk factors: myopia, age, sex, operative complications and capsulotomy. RESULTS: With minimum one year follow up in 90% of patients the incidence of retinal detachment was 0.25% (5 cases). CONCLUSION: The true incidence of retinal detachment after cataract surgery remains elusive. There is probably a trend toward lower incidence compared to previous reports. PMID:8719688

  17. [Retinal pigment epithelial detachment in hyperviscosity syndrome].

    PubMed

    Müller, V C; Mihailovic, N; Clemens, C R; Alten, F; Eter, N

    2017-05-15

    We present a case of a 57-year-old woman who reported bilateral visual impairment since 2 weeks. She had a medical history of congenital, cyanotic heart failure. Funduscopic examination revealed serous retinal detachment on the left side, central subneurosensory detachment on the right side, retinal vessel tortuosity and multiple retinal haemorrhages in the periphery. As blood analysis showed a distinct increase in haemoglobin and haematocrit, hyperviscosity syndrome was suspected to have caused bilateral serous retinal detachment. Isovolemic haemodilution was performed in close cooperation with the cardiology department with repeated phlebotomy, which resulted in a significant reduction of subretinal fluid and, concurrently, an increase in visual acuity.

  18. Paravascular inner retinal abnormalities in healthy eyes.

    PubMed

    Osaka, Rie; Manabe, Saki; Miyoshi, Yukiko; Nakano, Yuki; Yamashita, Ayana; Shiragami, Chieko; Hirooka, Kazuyuki; Muraoka, Yuki; Tsujikawa, Akitaka

    2017-07-02

    To investigate the prevalence and characteristics of paravascular inner retinal abnormalities in healthy eyes. In this prospective observational case series, we included 178 healthy eyes (178 patients) with no ocular diseases. Eyes with co-existing ocular diseases, e.g., epiretinal membrane, glaucoma, or high myopia, were excluded from the current study. The posterior pole and paravascular areas of the temporal arcade vessels were comprehensively examined by dense radial scanning of optical coherence tomography (OCT) with the extended field imaging technique. On fundus photography, no inner retinal abnormalities were detected along the temporal arcade vessels. On OCT sections, paravascular inner retinal abnormalities were seen in 77 (43.3%) eyes. In 71 (39.9%) eyes, inner retinal cystoid or fissure-like spaces that had no connection to the vitreous cavity were seen adjacent to the temporal arcade vessels. Most of these lesions were detected only on several consecutive OCT sections. In four (2.2%) eyes, inner retinal cleavages with openings to the vitreous cavity were seen adjacent to the temporal arcade vessels. These lesions were more frequently detected in the inferior hemisphere and along the major retinal veins. No eyes showed typical broad defects of the inner retinal tissue. There were no significant differences in age, gender, visual acuity, refractive error, or axial length between eyes with or without paravascular inner retinal abnormalities. Paravascular cystoid or fissure-like spaces were frequently seen in the inner retina of healthy eyes. However, we detected no typical paravascular inner retinal defects in healthy eyes.

  19. Retinal Macroglial Responses in Health and Disease.

    PubMed

    de Hoz, Rosa; Rojas, Blanca; Ramírez, Ana I; Salazar, Juan J; Gallego, Beatriz I; Triviño, Alberto; Ramírez, José M

    2016-01-01

    Due to their permanent and close proximity to neurons, glial cells perform essential tasks for the normal physiology of the retina. Astrocytes and Müller cells (retinal macroglia) provide physical support to neurons and supplement them with several metabolites and growth factors. Macroglia are involved in maintaining the homeostasis of extracellular ions and neurotransmitters, are essential for information processing in neural circuits, participate in retinal glucose metabolism and in removing metabolic waste products, regulate local blood flow, induce the blood-retinal barrier (BRB), play fundamental roles in local immune response, and protect neurons from oxidative damage. In response to polyetiological insults, glia cells react with a process called reactive gliosis, seeking to maintain retinal homeostasis. When malfunctioning, macroglial cells can become primary pathogenic elements. A reactive gliosis has been described in different retinal pathologies, including age-related macular degeneration (AMD), diabetes, glaucoma, retinal detachment, or retinitis pigmentosa. A better understanding of the dual, neuroprotective, or cytotoxic effect of macroglial involvement in retinal pathologies would help in treating the physiopathology of these diseases. The extensive participation of the macroglia in retinal diseases points to these cells as innovative targets for new drug therapies.

  20. Stromal miR-200s contribute to breast cancer cell invasion through CAF activation and ECM remodeling.

    PubMed

    Tang, X; Hou, Y; Yang, G; Wang, X; Tang, S; Du, Y-E; Yang, L; Yu, T; Zhang, H; Zhou, M; Wen, S; Xu, L; Liu, M

    2016-01-01

    The activation of cancer-associated fibroblasts (CAFs) is a key event in tumor progression, and alternative extracellular matrix (ECM) proteins derived from CAFs induce ECM remodeling and cancer cell invasion. Here we found that miR-200 s, which are generally downregulated in activated CAFs in breast cancer tissues and in normal fibroblasts (NFs) activated by breast cancer cells, are direct mediators of NF reprogramming into CAFs and of ECM remodeling. NFs with downregulated miR-200 s displayed the traits of activated CAFs, including accelerated migration and invasion. Ectopic expression of miR-200 s in CAFs at least partially restored the phenotypes of NFs. CAF activation may be governed by the targets of miR-200 s, Fli-1 and TCF12, which are responsible for cell development and differentiation; Fli-1 and TCF12 were obviously elevated in CAFs. Furthermore, miR-200 s and their targets influenced collagen contraction by CAFs. The upregulation of fibronectin and lysyl oxidase directly by miR-200 or indirectly through Fli-1 or TCF12 contributed to ECM remodeling, triggering the invasion and metastasis of breast cancer cells both in vitro and vivo. Thus, these data provide important and novel insights into breast CAF activation and ECM remodeling, which trigger tumor cell invasion.

  1. Phase field approaches of bone remodeling based on TIP

    NASA Astrophysics Data System (ADS)

    Ganghoffer, Jean-François; Rahouadj, Rachid; Boisse, Julien; Forest, Samuel

    2016-01-01

    The process of bone remodeling includes a cycle of repair, renewal, and optimization. This adaptation process, in response to variations in external loads and chemical driving factors, involves three main types of bone cells: osteoclasts, which remove the old pre-existing bone; osteoblasts, which form the new bone in a second phase; osteocytes, which are sensing cells embedded into the bone matrix, trigger the aforementioned sequence of events. The remodeling process involves mineralization of the bone in the diffuse interface separating the marrow, which contains all specialized cells, from the newly formed bone. The main objective advocated in this contribution is the setting up of a modeling and simulation framework relying on the phase field method to capture the evolution of the diffuse interface between the new bone and the marrow at the scale of individual trabeculae. The phase field describes the degree of mineralization of this diffuse interface; it varies continuously between the lower value (no mineral) and unity (fully mineralized phase, e.g. new bone), allowing the consideration of a diffuse moving interface. The modeling framework is the theory of continuous media, for which field equations for the mechanical, chemical, and interfacial phenomena are written, based on the thermodynamics of irreversible processes. Additional models for the cellular activity are formulated to describe the coupling of the cell activity responsible for bone production/resorption to the kinetics of the internal variables. Kinetic equations for the internal variables are obtained from a pseudo-potential of dissipation. The combination of the balance equations for the microforce associated to the phase field and the kinetic equations lead to the Ginzburg-Landau equation satisfied by the phase field with a source term accounting for the dissipative microforce. Simulations illustrating the proposed framework are performed in a one-dimensional situation showing the evolution of

  2. Subnanosecond trigger system for ETA

    SciTech Connect

    Cook, E.G.; Lauer, E.J.; Reginato, L.L.; Rogers D.; Schmidt, J.A.

    1980-05-30

    A high-voltage trigger system capable of triggering 30, 250 kV spark gaps; each with less than +- 1 ns jitter has been constructed. In addition to low jitter rates, the trigger system must be capable of delivering the high voltage pulses to the spark gaps either simultaneously or sequentially as determined by other system requirements. The trigger system consists of several stages of pulse amplification culminating in 160 kV pulses having 30 ns risetime. The trigger system is described and test data provided.

  3. Remodelling of a displaced phalangeal neck fracture.

    PubMed

    Mintzer, C M; Waters, P M; Brown, D J

    1994-10-01

    Phalangeal neck fractures are uncommon in children. When these injuries to the proximal and middle phalanges are displaced and not treated operatively the fracture may heal in a malunited position with loss of motion at the IP joint. Remodelling in the area of the phalangeal neck is thought to be reduced because of its distance from the physis. In cases of malunion osteotomy of the phalangeal neck may be required to restore anatomy and motion. A case is described which demonstrates complete remodelling of a displaced middle phalangeal neck fracture in a child and recovery of a normal range of motion without operative intervention.

  4. The Chd Family of Chromatin Remodelers

    PubMed Central

    Marfella, Concetta G.A.; Imbalzano, Anthony N.

    2007-01-01

    Chromatin remodeling enzymes contribute to the dynamic changes that occur in chromatin structure during cellular processes such as transcription, recombination, repair, and replication. Members of the chromodomain helicase DNA-binding (Chd) family of enzymes belong to the SNF2 superfamily of ATP-dependent chromatin remodelers. The Chd proteins are distinguished by the presence of two N-terminal chromodomains that function as interaction surfaces for a variety of chromatin components. Genetic, biochemical, and structural studies demonstrate that Chd proteins are important regulators of transcription and play critical roles during developmental processes. Numerous Chd proteins are also implicated in human disease. PMID:17350655

  5. Crewmembers in the middeck with the Retinal Photography experiment.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mission Pilot Robert Cabana conducting the Retinal Photography life sciences experiment on test subject Mission Specialist Michael Clifford. The Retinal Photography experiment is Detailed Supplementary Objective # 474.

  6. Scar remodeling after strabismus surgery.

    PubMed Central

    Ludwig, I H

    1999-01-01

    limitation of versions, less separation of the tendons from sclera, and thicker appearance of the scar segments. The use of nonabsorbable sutures in the repair procedure reduced the recurrence rate. Histologic examination of the clinical stretched scar specimens showed dense connective tissue that was less well organized compared with normal tendon. In the tissue culture studies, cells cultured from the stretched scar specimens grew rapidly and were irregularly shaped. A high-molecular-weight protein was identified in the culture medium. By contrast, cells cultured from normal tendon (controls) grew more slowly and regularly, stopped growing at 4 days, and produced less total protein than cultured stretched scar specimens. In the animal model studies, the collagenase-treated sites showed elongated scars with increased collagen between the muscle and the sclera, as well as increased collagen creep rates, compared with the saline-treated controls. The use of nonabsorbable sutures in collagenase-treated animal model surgery sites was associated with shorter, thicker scars compared with similar sites sutured with absorbable sutures. CONCLUSIONS: A lengthened or stretched, remodeled scar between an operated muscle tendon and sclera is a common occurrence and is a factor contributing to the variability of outcome after strabismus repair, even years later. This abnormality may be revealed by careful exploration of previously operated muscles. Definitive repair requires firm reattachment of tendon to sclera with nonabsorbable suture support. Images FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 FIGURE 20 FIGURE 21 FIGURE 22 FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 FIGURE 27 FIGURE 28 FIGURE 29 FIGURE 30 FIGURE 31 FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 35 FIGURE 36 FIGURE 37 FIGURE 38 FIGURE 39 FIGURE 40 FIGURE 41 FIGURE 42 FIGURE 43 FIGURE 44 FIGURE 45 FIGURE 46 FIGURE 52

  7. The Dynamic Sclera: Extracellular Matrix Remodeling in Normal Ocular Growth and Myopia Development

    PubMed Central

    Harper, Angelica R.; Summers, Jody A.

    2014-01-01

    Myopia is a common ocular condition, characterized by excessive elongation of the ocular globe. The prevalence of myopia continues to increase, particularly among highly educated groups, now exceeding 80% in some groups. In parallel with the increased prevalence of myopia, are increases in associated blinding ocular conditions including glaucoma, retinal detachment and macular degeneration, making myopia a significant global health concern. The elongation of the eye is closely related to the biomechanical properties of the sclera, which in turn are largely dependent on the composition of the scleral extracellular matrix. Therefore an understanding of the cellular and extracellular events involved in the regulation of scleral growth and remodeling during childhood and young adulthood will provide future avenues for the treatment of myopia and its associated ocular complications. PMID:25819458

  8. Pediatric Trigger Digits.

    PubMed

    Bauer, Andrea S; Bae, Donald S

    2015-11-01

    Pediatric trigger thumb presents not at birth but early in childhood. Most evidence suggests that it is caused by a developmental size mismatch between the flexor pollicis longus tendon and its sheath. Patients generally present with the thumb interphalangeal joint locked in flexion. Surgical reviews report near universally excellent outcomes after open release of the A1 pulley. However, recent reports indicate that there may be a role for nonsurgical treatment for families that are willing to wait several years for possible spontaneous resolution of the deformity. Triggering in digits other than the thumb in children is generally associated with an underlying diagnosis including anatomic abnormalities of the tendons, and metabolic, inflammatory, and infectious etiologies. Although some have advocated nonsurgical treatment, surgery is often necessary to address the underlying anatomic etiology. More extensive surgery beyond simple A1 pulley release is often required, including release of the A3 pulley and resection of a slip of the flexor digitorum superficialis tendon. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  9. Protons Trigger Mitochondrial Flashes.

    PubMed

    Wang, Xianhua; Zhang, Xing; Huang, Zhanglong; Wu, Di; Liu, Beibei; Zhang, Rufeng; Yin, Rongkang; Hou, Tingting; Jian, Chongshu; Xu, Jiejia; Zhao, Yan; Wang, Yanru; Gao, Feng; Cheng, Heping

    2016-07-26

    Emerging evidence indicates that mitochondrial flashes (mitoflashes) are highly conserved elemental mitochondrial signaling events. However, which signal controls their ignition and how they are integrated with other mitochondrial signals and functions remain elusive. In this study, we aimed to further delineate the signal components of the mitoflash and determine the mitoflash trigger mechanism. Using multiple biosensors and chemical probes as well as label-free autofluorescence, we found that the mitoflash reflects chemical and electrical excitation at the single-organelle level, comprising bursting superoxide production, oxidative redox shift, and matrix alkalinization as well as transient membrane depolarization. Both electroneutral H(+)/K(+) or H(+)/Na(+) antiport and matrix proton uncaging elicited immediate and robust mitoflash responses over a broad dynamic range in cardiomyocytes and HeLa cells. However, charge-uncompensated proton transport, which depolarizes mitochondria, caused the opposite effect, and steady matrix acidification mildly inhibited mitoflashes. Based on a numerical simulation, we estimated a mean proton lifetime of 1.42 ns and diffusion distance of 2.06 nm in the matrix. We conclude that nanodomain protons act as a novel, to our knowledge, trigger of mitoflashes in energized mitochondria. This finding suggests that mitoflash genesis is functionally and mechanistically integrated with mitochondrial energy metabolism.

  10. Implication of Inflammation and Epigenetic Readers in Coronary Artery Remodeling in Patients With Pulmonary Arterial Hypertension.

    PubMed

    Meloche, Jolyane; Lampron, Marie-Claude; Nadeau, Valérie; Maltais, Mélanie; Potus, François; Lambert, Caroline; Tremblay, Eve; Vitry, Géraldine; Breuils-Bonnet, Sandra; Boucherat, Olivier; Charbonneau, Eric; Provencher, Steeve; Paulin, Roxane; Bonnet, Sébastien

    2017-08-01

    Pulmonary arterial hypertension (PAH) is a vascular disease not restricted to the lungs. Many signaling pathways described in PAH are also of importance in other vascular remodeling diseases, such as coronary artery disease (CAD). Intriguingly, CAD is 4× more prevalent in PAH compared with the global population, suggesting a link between these 2 diseases. Both PAH and CAD are associated with sustained inflammation and smooth muscle cell proliferation/apoptosis imbalance and we demonstrated in PAH that this phenotype is, in part, because of the miR-223/DNA damage/Poly[ADP-ribose] polymerase 1/miR-204 axis activation and subsequent bromodomain protein 4 (BRD4) overexpression. Interestingly, BRD4 is also a trigger for calcification and remodeling processes, both of which are important in CAD. Thus, we hypothesize that BRD4 activation in PAH influences the development of CAD. PAH was associated with significant remodeling of the coronary arteries in both human and experimental models of the disease. As observed in PAH distal pulmonary arteries, coronary arteries of patients with PAH also exhibited increased DNA damage, inflammation, and BRD4 overexpression. In vitro, using human coronary artery smooth muscle cells from PAH, CAD and non-PAH-non-CAD patients, we showed that both PAH and CAD smooth muscle cells exhibited increased proliferation and suppressed apoptosis in a BRD4-dependent manner. In vivo, improvement of PAH by BRD4 inhibitor was associated with a reduction in coronary remodeling and interleukin-6 expression. Overall, this study demonstrates that increased BRD4 expression in coronary arteries of patient with PAH contributes to vascular remodeling and comorbidity development. © 2017 American Heart Association, Inc.

  11. Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis.

    PubMed

    Vayndorf, Elena M; Scerbak, Courtney; Hunter, Skyler; Neuswanger, Jason R; Toth, Marton; Parker, J Alex; Neri, Christian; Driscoll, Monica; Taylor, Barbara E

    Understanding cellular outcomes, such as neuronal remodeling, that are common to both healthy and diseased aging brains is essential to the development of successful brain aging strategies. Here, we used Caenorhabdits elegans to investigate how the expression of proteotoxic triggers, such as polyglutamine (polyQ)-expanded huntingtin and silencing of proteostasis regulators, such as the ubiquitin-proteasome system (UPS) and protein clearance components, may impact the morphological remodeling of individual neurons as animals age. We examined the effects of disrupted proteostasis on the integrity of neuronal cytoarchitecture by imaging a transgenic C. elegans strain in which touch receptor neurons express the first 57 amino acids of the human huntingtin (Htt) gene with expanded polyQs (128Q) and by using neuron-targeted RNA interference in adult wild-type neurons to knockdown genes encoding proteins involved in proteostasis. We found that proteostatic challenges conferred by polyQ-expanded Htt and knockdown of specific genes involved in protein homeostasis can lead to morphological changes that are restricted to specific domains of specific neurons. The age-associated branching of PLM neurons is suppressed by N-ter polyQ-expanded Htt expression, whereas ALM neurons with polyQ-expanded Htt accumulate extended outgrowths and other soma abnormalities. Furthermore, knockdown of genes important for ubiquitin-mediated degradation, lysosomal function, and autophagy modulated these age-related morphological changes in otherwise normal neurons. Our results show that the expression of misfolded proteins in neurodegenerative disease such as Huntington's disease modifies the morphological remodeling that is normally associated with neuronal aging. Our results also show that morphological remodeling of healthy neurons during aging can be regulated by the UPS and other proteostasis pathways. Collectively, our data highlight a model in which morphological remodeling during neuronal

  12. Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis

    PubMed Central

    Vayndorf, Elena M; Scerbak, Courtney; Hunter, Skyler; Neuswanger, Jason R; Toth, Marton; Parker, J Alex; Neri, Christian; Driscoll, Monica; Taylor, Barbara E

    2016-01-01

    Understanding cellular outcomes, such as neuronal remodeling, that are common to both healthy and diseased aging brains is essential to the development of successful brain aging strategies. Here, we used Caenorhabdits elegans to investigate how the expression of proteotoxic triggers, such as polyglutamine (polyQ)-expanded huntingtin and silencing of proteostasis regulators, such as the ubiquitin–proteasome system (UPS) and protein clearance components, may impact the morphological remodeling of individual neurons as animals age. We examined the effects of disrupted proteostasis on the integrity of neuronal cytoarchitecture by imaging a transgenic C. elegans strain in which touch receptor neurons express the first 57 amino acids of the human huntingtin (Htt) gene with expanded polyQs (128Q) and by using neuron-targeted RNA interference in adult wild-type neurons to knockdown genes encoding proteins involved in proteostasis. We found that proteostatic challenges conferred by polyQ-expanded Htt and knockdown of specific genes involved in protein homeostasis can lead to morphological changes that are restricted to specific domains of specific neurons. The age-associated branching of PLM neurons is suppressed by N-ter polyQ-expanded Htt expression, whereas ALM neurons with polyQ-expanded Htt accumulate extended outgrowths and other soma abnormalities. Furthermore, knockdown of genes important for ubiquitin-mediated degradation, lysosomal function, and autophagy modulated these age-related morphological changes in otherwise normal neurons. Our results show that the expression of misfolded proteins in neurodegenerative disease such as Huntington’s disease modifies the morphological remodeling that is normally associated with neuronal aging. Our results also show that morphological remodeling of healthy neurons during aging can be regulated by the UPS and other proteostasis pathways. Collectively, our data highlight a model in which morphological remodeling during

  13. Chemical remodeling of cell-surface sialic acids through a palladium-triggered bioorthogonal elimination reaction.

    PubMed

    Wang, Jie; Cheng, Bo; Li, Jie; Zhang, Zhaoyue; Hong, Weiyao; Chen, Xing; Chen, Peng R

    2015-04-27

    We herein report a chemical decaging strategy for the in situ generation of neuramic acid (Neu), a unique type of sialic acid, on live cells by the use of a palladium-mediated bioorthogonal elimination reaction. Palladium nanoparticles (Pd NPs) were found to be a highly efficient and biocompatible depropargylation catalyst for the direct conversion of metabolically incorporated N-(propargyloxycarbonyl)neuramic acid (Neu5Proc) into Neu on cell-surface glycans. This conversion chemically mimics the enzymatic de-N-acetylation of N-acetylneuramic acid (Neu5Ac), a proposed mechanism for the natural occurrence of Neu on cell-surface glycans. The bioorthogonal elimination was also exploited for the manipulation of cell-surface charge by unmasking the free amine at C5 to neutralize the negatively charged carboxyl group at C1 of sialic acids.

  14. Dynamic Remodeling of the Magnetosome Membrane Is Triggered by the Initiation of Biomineralization

    PubMed Central

    Cornejo, Elias; Subramanian, Poorna; Li, Zhuo; Jensen, Grant J.

    2016-01-01

    ABSTRACT Magnetotactic bacteria produce chains of membrane-bound organelles that direct the biomineralization of magnetic nanoparticles. These magnetosome compartments are a model for studying the biogenesis and subcellular organization of bacterial organelles. Previous studies have suggested that discrete gene products build and assemble magnetosomes in a stepwise fashion. Here, using an inducible system, we show that the stages of magnetosome formation are highly dynamic and interconnected. During de novo formation, magnetosomes first organize into discontinuous chain fragments that are subsequently connected by the bacterial actin-like protein MamK. We also find that magnetosome membranes are not uniform in size and can grow in a biomineralization-dependent manner. In the absence of biomineralization, magnetosome membranes stall at a diameter of ~50 nm. Those that have initiated biomineralization then expand to significantly larger sizes and accommodate mature magnetic particles. We speculate that such a biomineralization-dependent checkpoint for membrane growth establishes the appropriate conditions within the magnetosome to ensure successful nucleation and growth of magnetic particles. PMID:26884433

  15. Dynamic Remodeling of the Magnetosome Membrane Is Triggered by the Initiation of Biomineralization.

    PubMed

    Cornejo, Elias; Subramanian, Poorna; Li, Zhuo; Jensen, Grant J; Komeili, Arash

    2016-02-16

    Magnetotactic bacteria produce chains of membrane-bound organelles that direct the biomineralization of magnetic nanoparticles. These magnetosome compartments are a model for studying the biogenesis and subcellular organization of bacterial organelles. Previous studies have suggested that discrete gene products build and assemble magnetosomes in a stepwise fashion. Here, using an inducible system, we show that the stages of magnetosome formation are highly dynamic and interconnected. During de novo formation, magnetosomes first organize into discontinuous chain fragments that are subsequently connected by the bacterial actin-like protein MamK. We also find that magnetosome membranes are not uniform in size and can grow in a biomineralization-dependent manner. In the absence of biomineralization, magnetosome membranes stall at a diameter of ~50 nm. Those that have initiated biomineralization then expand to significantly larger sizes and accommodate mature magnetic particles. We speculate that such a biomineralization-dependent checkpoint for membrane growth establishes the appropriate conditions within the magnetosome to ensure successful nucleation and growth of magnetic particles. Magnetotactic bacteria make magnetic nanoparticles inside membrane-bound organelles called magnetosomes; however, it is unclear how the magnetosome membrane controls the biomineralization that occurs within this bacterial organelle. We placed magnetosome formation under inducible control in Magnetospirillum magneticum AMB-1 and used electron cryo-tomography to capture magnetosomes in their near-native state as they form de novo. An inducible system provided the key evidence that magnetosome membranes grow continuously unless they have not properly initiated biomineralization. Our finding that the size of a bacterial organelle impacts its biochemical function is a fundamental advance that impacts our perception of organelle formation and can inform future attempts aimed at creating designer magnetic particles. Copyright © 2016 Cornejo et al.

  16. Olmesartan ameliorates pressure overload-induced cardiac remodeling through inhibition of TAK1/p38 signaling in mice.

    PubMed

    Wu, Lianpin; Mei, Liqin; Chong, Lin; Huang, Yinqing; Li, Yuechun; Chu, Maoping; Yang, Xiangjun

    2016-01-15

    Many studies have demonstrated the potent effects of ARB administration on heart failure. However, the mechanism of the potent effects of ARB on cardiac remodeling is less well understood. We investigated the role of Olmesartan on the fibrosis and hypertrophy in mouse heart. We employed TAC surgery, a mouse model of chronic cardiac failure. All the mice were separated into three groups: the sham group, TAC group and TAC plus Olmesartan group (given Olmesartan treatment after TAC). We analyzed left ventricle remodeling, and function by echocardiography or pathology. We further detected the level of marker genes involved in fibrosis and hypertrophy and in cultured neonatal rat cardiac fibroblasts and myocytes infected by constitutively active TAK1 and p38MAPK. After TAC, all the mice developed hypertrophy, worse cardiac function and malignant remodeling in left ventricle. Olmesartan improved heart remodeling and function without changing pressure of blood. Moreover, Olmesartan reduced the level of transforming growth factor β activated kinase-1 (TAK1) and phospho-p38MAPK. In neonatal rat cardiac fibroblast cells and cardiomyocytes, Olmesartan also decreased TAK1 and p38MAPK activation triggered by TGFβ1 or AngII. The inhibitory effect of Olmesartan was abrogated by overexpression of constitutively active TAK1 and p38MAPK by adenovirus system. Our results suggest Olmesartan improves heart remodeling and function induced by pressure overload. P38MAPK inactivation attenuated by olmesartan via inhibition of TAK1 pathway plays an important role in the process. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. RHGF-1/PDZ-RhoGEF and retrograde DLK-1 signaling drive neuronal remodeling on microtubule disassembly

    PubMed Central

    Chen, Chun-Hao; Lee, Albert; Liao, Chien-Po; Liu, Ya-Wen; Pan, Chun-Liang

    2014-01-01

    Neurons remodel their connectivity in response to various insults, including microtubule disruption. How neurons sense microtubule disassembly and mount remodeling responses by altering genetic programs in the soma are not well defined. Here we show that in response to microtubule disassembly, the Caenorhabditis elegans PLM neuron remodels by retracting its synaptic branch and overextending the primary neurite. This remodeling required RHGF-1, a PDZ-Rho guanine nucleotide exchange factor (PDZ-RhoGEF) that was associated with and inhibited by microtubules. Independent of the myosin light chain activation, RHGF-1 acted through Rho-dependent kinase LET-502/ROCK and activated a conserved, retrograde DLK-1 MAPK (DLK-1/dual leucine zipper kinase) pathway, which triggered synaptic branch retraction and overgrowth of the PLM neurite in a dose-dependent manner. Our data represent a neuronal remodeling paradigm during development that reshapes the neural circuit by the coordinated removal of the dysfunctional synaptic branch compartment and compensatory extension of the primary neurite. PMID:25359212

  18. Strategies for Energy Efficient Remodeling: SEER 2003 Case Study Report

    SciTech Connect

    2004-11-01

    The goal of the Strategies for Energy Efficiency in Remodeling (SEER) project is to provide information, based on research and case studies, to remodelers and consumers about opportunities to increase home energy performance.

  19. Retinal fundus imaging in mouse models of retinal diseases.

    PubMed

    Alex, Anne F; Heiduschka, Peter; Eter, Nicole

    2013-01-01

    The development of in vivo retinal fundus imaging in mice has opened a new research horizon, not only in ophthalmic research. The ability to monitor the dynamics of vascular and cellular changes in pathological conditions, such as neovascularization or degeneration, longitudinally without the need to sacrifice the mouse, permits longer observation periods in the same animal. With the application of the high-resolution confocal scanning laser ophthalmoscopy in experimental mouse models, access to a large spectrum of imaging modalities in vivo is provided.

  20. Retinal vessel tortuosity associated with central retinal vein occlusion: an optical coherence tomography study.

    PubMed

    Muraoka, Yuki; Tsujikawa, Akitaka; Kumagai, Kyoko; Akagi-Kurashige, Yumiko; Ogino, Ken; Murakami, Tomoaki; Miyamoto, Kazuaki; Yoshimura, Nagahisa

    2014-01-07

    We studied morphologic changes of the retinal vasculature in eyes with central retinal vein occlusion (CRVO) through the use of optical coherence tomography (OCT). Major retinal vessels in 35 eyes from 35 consecutive patients with acute CRVO were examined prospectively and longitudinally with sequential thin sectioning and circumpapillary scanning. Anteroposterior venous tortuosity associated with CRVO was quantified on longitudinal OCT images of a randomly selected major temporal vein. On OCT sections of a given vein, we identified the innermost and outermost points of the vessel wall. The degree of anteroposterior venous tortuosity was defined as the difference between the vertical distances from the retinal pigment epithelium to the center of the venous lumen at these two points. The OCT images revealed that the major retinal veins traveled tortuously through the swollen neurosensory retina from the inner retinal surface to the retinal pigment epithelium. The degree of anteroposterior venous tortuosity was correlated with poor visual acuity (r = 0.457, P = 0.017), increased mean foveal thickness (r = 0.671, P < 0.001), and the height of foveal detachment (r = 0.414, P = 0.032). In 4 (11%) eyes, a localized retinal detachment was detected around the optic disc, which correlated with anteroposterior venous tortuosity. In 14 (40%) eyes, elongated major retinal veins disrupted the boundary between retinal vessels and parenchyma, which resulted in juxtavenous splitting of the neurosensory retina. In eyes with CRVO, OCT can be used to visualize anteroposterior venous tortuosity and associated structural changes to the retinal parenchyma.

  1. Somatostatin protects human retinal pericytes from inflammation mediated by microglia.

    PubMed

    Mazzeo, Aurora; Arroba, Ana I; Beltramo, Elena; Valverde, Angela M; Porta, Massimo

    2017-11-01

    Diabetic retinopathy (DR) is usually considered a microvascular disease. However, involvement of the neuroretina in the early stages of DR has recently gained major credit. Inflammatory processes, leading to glial activation and neuronal apoptosis, develop early in the retina of diabetic subjects. Pericytes constitute a link between the vascular and the neural retina, play a central role in blood-retinal barrier maintenance, and may influence neuroinflammation. Somatostatin (SST) is a potent neuroprotective factor, which is down-regulated during early DR. In this paper, we have investigated the effects of the inflammatory signals triggered by the activation of microglia on inflammation and apoptosis/survival pathways in pericytes. Microglia cells (Bv-2) were stimulated with lipopolysaccharide (LPS) and/or SST. Human retinal pericytes (HRP) were exposed to conditioned media (CM) collected from Bv-2 cells in physiological conditions and in the settings described above. A panel of inflammation, apoptosis and survival mediators was analyzed. HRP treated with LPS-CM showed a significant increase of pro-inflammatory (iNos and TNFα) and pro-apoptotic mediators (FasL, active caspase-8, tBid and Bax), and a concomitant decrease in pro-survival factors (BclxL and pAkt). SST added to LPS was able to counteract these effects in all conditions. In conclusion, SST is able to modulate apoptosis/survival pathways in HRP during microglia-mediated inflammation. These results demonstrate a crosstalk between microglia and retinal pericytes, evidencing a possible defensive role of microglia in the early phases of DR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Mechanisms of mutant PDE6 proteins underlying retinal diseases.

    PubMed

    Gopalakrishna, Kota N; Boyd, Kimberly; Artemyev, Nikolai O

    2017-09-01

    Mutations in PDE6 genes encoding the effector enzymes in rods and cones underlie severe retinal diseases including retinitis pigmentosa (RP), autosomal dominant congenital stationary night blindness (adCSNB), and achromatopsia (ACHM). Here we examined a spectrum of pathogenic missense mutations in PDE6 using the system based on co-expression of cone PDE6C with its specialized chaperone AIPL1 and the regulatory Pγ subunit as a potent co-chaperone. We uncovered two mechanisms of PDE6C mutations underlying ACHM: (a) folding defects leading to expression of catalytically inactive proteins and (b) markedly diminished ability of Pγ to co-chaperone mutant PDE6C proteins thereby dramatically reducing the levels of functional enzyme. The mechanism of the Rambusch adCSNB associated with the H258N substitution in PDE6B was probed through the analysis of the model mutant PDE6C-H262N. We identified two interrelated deficits of PDE6C-H262N: disruption of the inhibitory interaction of Pγ with mutant PDE6C that markedly reduced the ability of Pγ to augment the enzyme folding. Thus, we conclude that the Rambusch adCSNB is triggered by low levels of the constitutively active PDE6. Finally, we examined PDE6C-L858V, which models PDE6B-L854V, an RP-linked mutation that alters the protein isoprenyl modification. This analysis suggests that the type of prenyl modifications does not impact the folding of PDE6, but it modulates the enzyme affinity for its trafficking partner PDE6D. Hence, the pathogenicity of PDE6B-L854V likely arises from its trafficking deficiency. Taken together, our results demonstrate the effectiveness of the PDE6C expression system to evaluate pathogenicity and elucidate the mechanisms of PDE6 mutations in retinal diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The bacterial toxin CNF1 as a tool to induce retinal degeneration reminiscent of retinitis pigmentosa

    PubMed Central

    Guadagni, Viviana; Cerri, Chiara; Piano, Ilaria; Novelli, Elena; Gargini, Claudia; Fiorentini, Carla; Caleo, Matteo; Strettoi, Enrica

    2016-01-01

    Retinitis pigmentosa (RP) comprises a group of inherited pathologies characterized by progressive photoreceptor degeneration. In rodent models of RP, expression of defective genes and retinal degeneration usually manifest during the first weeks of postnatal life, making it difficult to distinguish consequences of primary genetic defects from abnormalities in retinal development. Moreover, mouse eyes are small and not always adequate to test pharmacological and surgical treatments. An inducible paradigm of retinal degeneration potentially extensible to large animals is therefore desirable. Starting from the serendipitous observation that intraocular injections of a Rho GTPase activator, the bacterial toxin Cytotoxic Necrotizing Factor 1 (CNF1), lead to retinal degeneration, we implemented an inducible model recapitulating most of the key features of Retinitis Pigmentosa. The model also unmasks an intrinsic vulnerability of photoreceptors to the mechanism of CNF1 action, indicating still unexplored molecular pathways potentially leading to the death of these cells in inherited forms of retinal degeneration. PMID:27775019

  4. Origin of fundus hyperautofluorescent spots and their role in retinal degeneration in a mouse model of Goldmann-Favre syndrome.

    PubMed

    Wang, Nan-Kai; Lai, Chi-Chun; Liu, Chi-Hsiu; Yeh, Lung-Kun; Chou, Chai Lin; Kong, Jian; Nagasaki, Takayuki; Tsang, Stephen H; Chien, Chung-Liang

    2013-09-01

    Goldmann-Favre syndrome, also known as enhanced S-cone syndrome, is an inherited retinal degeneration disease in which a gain of photoreceptor cell types results in retinal dysplasia and degeneration. Although microglia have been implicated in the pathogenesis of many neurodegenerative diseases, the fundamental role of these cells in this disease is unknown. In the current study, sequential analyses suggest that microglia are recruited and appear after outer nuclear layer folding. By crossing rd7 mice (a model for hereditary retinal degeneration owing to Nr2e3 mutation) with mice carrying the macrophage Fas-induced apoptosis (Mafia) transgene, we generated double-mutant mice and studied the role of the resident retinal microglia. Microglial cells in these double-mutant mice express enhanced green fluorescent protein (EGFP) and a suicide gene that can trigger Fas-mediated apoptosis via systemic treatment with AP20187 (FK506 dimerizer). We demonstrated that more than 80% of the EGFP+ cells in retinas from rd7/rd7;Tg/Tg mice express Iba-1 (a microglial marker), and resident microglia are still present in the retina because AP20187 does not cross the blood-brain barrier. Hence, only circulating bone marrow (BM)-derived microglia are depleted. Depletion of circulating BM-derived microglia accelerates retinal degeneration in rd7 mice. An increased number of autofluorescent (AF) spots is a consequence of resident microglia proliferation, which in turn establishes an inflammatory cytokine milieu via the upregulation of IL-1β, IL-6 and TNFα expression. This inflammation is likely to accelerate retinal degeneration. This study not only identifies inflammation as a crucial step in the pathogenesis of retinal degeneration, but also highlights the involvement of specific cytokine genes that could serve as future treatment targets in retinal degenerations.

  5. Origin of fundus hyperautofluorescent spots and their role in retinal degeneration in a mouse model of Goldmann-Favre syndrome

    PubMed Central

    Wang, Nan-Kai; Lai, Chi-Chun; Liu, Chi-Hsiu; Yeh, Lung-Kun; Chou, Chai Lin; Kong, Jian; Nagasaki, Takayuki; Tsang, Stephen H.; Chien, Chung-Liang

    2013-01-01

    SUMMARY Goldmann-Favre syndrome, also known as enhanced S-cone syndrome, is an inherited retinal degeneration disease in which a gain of photoreceptor cell types results in retinal dysplasia and degeneration. Although microglia have been implicated in the pathogenesis of many neurodegenerative diseases, the fundamental role of these cells in this disease is unknown. In the current study, sequential analyses suggest that microglia are recruited and appear after outer nuclear layer folding. By crossing rd7 mice (a model for hereditary retinal degeneration owing to Nr2e3 mutation) with mice carrying the macrophage Fas-induced apoptosis (Mafia) transgene, we generated double-mutant mice and studied the role of the resident retinal microglia. Microglial cells in these double-mutant mice express enhanced green fluorescent protein (EGFP) and a suicide gene that can trigger Fas-mediated apoptosis via systemic treatment with AP20187 (FK506 dimerizer). We demonstrated that more than 80% of the EGFP+ cells in retinas from rd7/rd7;Tg/Tg mice express Iba-1 (a microglial marker), and resident microglia are still present in the retina because AP20187 does not cross the blood-brain barrier. Hence, only circulating bone marrow (BM)-derived microglia are depleted. Depletion of circulating BM-derived microglia accelerates retinal degeneration in rd7 mice. An increased number of autofluorescent (AF) spots is a consequence of resident microglia proliferation, which in turn establishes an inflammatory cytokine milieu via the upregulation of IL-1β, IL-6 and TNFα expression. This inflammation is likely to accelerate retinal degeneration. This study not only identifies inflammation as a crucial step in the pathogenesis of retinal degeneration, but also highlights the involvement of specific cytokine genes that could serve as future treatment targets in retinal degenerations. PMID:23828046

  6. The trophic effect of ouabain on retinal ganglion cells is mediated by IL-1β and TNF-α

    SciTech Connect

    Salles von-Held-Ventura, Juliana; Mázala-de-Oliveira, Thalita; Cândida da Rocha Oliveira, Amanda; Granja, Marcelo Gomes; Giestal-de-Araujo, Elizabeth

    2016-09-09

    Ouabain is a steroid hormone that binds to the enzyme Na{sup +}, K{sup +} – ATPase and stimulates different intracellular pathways controlling growth, proliferation and cell survival. IL-1β and TNF-α are pleiotropic molecules, conventionally regarded as pro-inflammatory cytokines with well-known effects in the immune system. In addition, IL-1β and TNF-α also play important roles in the nervous system including neuroprotective effects. Previous data from our group showed that ouabain treatment is able to induce an increase in retinal ganglion cell survival kept in mixed retinal cell cultures. The aim of this work was to investigate if IL-1β and TNF-α could be mediating the trophic effect of ouabain on retinal ganglion cells. Our results show that the trophic effect of ouabain on retinal ganglion cell was inhibited by either anti-IL-1β or anti-TNF-α antibodies. In agreement, IL-1β or TNF-α increased the retinal ganglion cells survival in a dose-dependent manner. Accordingly, ouabain treatment induces a temporal release of TNF-α and IL-1β from retinal cell cultures. Interestingly, TNF-α and IL-1β regulate each other intracellular levels. Our results suggest that ouabain treatment triggers the activation of TNF-α and IL-1β signaling pathways leading to an increase in retinal ganglion cell survival. - Highlights: • Pro-inflammatory cytokines regulates the ouabain effect on RGC survival. • Ouabain treatment modulates the intracellular levels of TNF-α and IL-1β. • Ouabain induces the release of TNF-α and IL-1β in retinal cell cultures.

  7. Revealing remodeler function: Varied and unique

    NASA Astrophysics Data System (ADS)

    Eastlund, Allen

    Chromatin remodelers perform a necessary and required function for the successful expression of our genetic code. By modifying, shifting, or ejecting nucleosomes from the chromatin structure they allow access to the underlying DNA to the rest of the cell's machinery. This research has focused on two major remodeler motors from major families of chromatin remodelers: the trimeric motor domain of RSC and the motor domain of the ISWI family, ISWI. Using primarily stopped-flow spectrofluorometry, I have categorized the time-dependent motions of these motor domains along their preferred substrate, double-stranded DNA. Combined with collected ATP utilization data, I present the subsequent analysis and associated conclusions that stem from the underlying assumptions and models. Interestingly, there is little in common between the investigated proteins aside from their favored medium. While RSC exhibits modest translocation characteristics and highly effective motion with the ability for large molecular forces, ISWI is not only structurally different but highly inefficient in its motion leading to difficulties in determining its specific translocation mechanics. While chromatin remodeling is a ubiquitous facet of eukaryotic life, there remains much to be understood about their general mechanisms.

  8. Immune modulation of resistance artery remodelling.

    PubMed

    Schiffrin, Ernesto L

    2012-01-01

    Low-grade inflammation plays a role in cardiovascular disease. The innate and the adaptive immune responses participate in mechanisms that contribute to inflammatory responses. It has been increasingly appreciated that different subsets of lymphocytes and the cytokines they produce modulate the vascular remodelling that occurs in cardiovascular disease. Effector T cells such as T-helper (Th) 1 (interferon-γ-producing) and Th2 lymphocytes (that produce interleukin-4), as well as Th17 (that produce interleukin-17), and T suppressor lymphocytes including regulatory T cells (Treg), which express the transcription factor forkhead box P3 (Foxp3), are involved in the remodelling of small arteries that occurs under the action of angiotensin II, deoxycorticosterone-salt and aldosterone-salt, as well as in models of hypertension such as the Dahl-salt-sensitive rat. The mechanism whereby the immune system is activated is unclear, but it has been suggested that neo-antigens may be generated by the elevation of blood pressure or other stimuli, leading to the activation of the immune response. Activated Th1 may contribute to vascular remodelling directly on blood vessels via effects of the cytokines produced or indirectly by actions on the kidney. The protective effect of Treg may be mediated similarly directly or via renal effects. These data offer promise for the discovery of new therapeutic targets to ameliorate vascular remodelling, which could lead to improved outcome in cardiovascular disease in humans.

  9. Lymphangiogenesis in myocardial remodelling after infarction

    PubMed Central

    Ishikawa, Y; Akishima-Fukasawa, Y; Ito, K; Akasaka, Y; Tanaka, M; Shimokawa, R; Kimura-Matsumoto, M; Morita, H; Sato, S; Kamata, I; Ishii, T

    2007-01-01

    Ishikawa Y, Akishima-Fukasawa Y, Ito K, Akasaka Y, Tanaka M, Shimokawa R, Kimura-Matsumoto M, Morita H, Sato S, Kamata I & Ishii T (2007) Histopathology51, 345–353 Lymphangiogenesis in myocardial remodelling after infarction Aims The lymphatic system is involved in fluid homeostasis of the cardiac interstitium, but lymphangiogenesis in myocardial remodelling has not previously been examined histopathologically. The aim was to investigate by D2-40 immunohistochemistry the sequential changes in lymphatic distribution in the process of myocardial remodelling after myocardial infarction (MI). Methods and results Myocardial tissues in various phases of healing after MI were obtained from 40 autopsied hearts. D2-40+ lymphatic vessel density (LD) and CD34+ blood vessel density (BD) in the lesion were determined. BD decreased with advance of myocardial necrosis, subsequently increased at the early stage of granulation and thereafter decreased with the progression of scar formation. In contrast, lymphatic vessels were not detected in lesions with coagulation necrosis, and newly formed lymphatics first appeared in the early stages of granulation. A subsequent increase in LD was demonstrated in the late stages of granulation, and lymphatics remained up to the scar phase. Vascular endothelial growth factor-C was consistently expressed in viable cardiomyocytes around the lesion in all of these stages. Conclusion In myocardial remodelling after MI, lymphangiogenesis lags behind blood vessel angiogenesis; newly formed lymphatics may be involved mainly in the maturation of fibrosis and scar formation through the drainage of excessive proteins and fluid. PMID:17727476

  10. Challenging Modernization: Remodelling the Education Workforce

    ERIC Educational Resources Information Center

    Butt, Graham; Gunter, Helen

    2005-01-01

    This special edition enables an in-depth look at the process of modernization of education in England, in relation to other international developments. In particular we focus on the reform of teachers? work by examining the antecedence of the current policy of remodelling through three articles based on the Evaluation of the Department for…

  11. Interleukin-20 promotes airway remodeling in asthma.

    PubMed

    Gong, Wenbin; Wang, Xin; Zhang, Yuguo; Hao, Junqing; Xing, Chunyan; Chu, Qi; Wang, Guicheng; Zhao, Jiping; Wang, Junfei; Dong, Qian; Liu, Tian; Zhang, Yuanyuan; Dong, Liang

    2014-12-01

    Previous studies have demonstrated that interleukin-20 (IL-20) is a pro-inflammatory cytokine, and it has been implicated in psoriasis, lupus nephritis, rheumatoid arthritis, atherosclerosis, and ulcerative colitis. Little is known about the effects of IL-20 in airway remodeling in asthma. The aim of our study was to demonstrate the function of IL-20 in airway remodeling in asthma. To identify the expression of IL-20 and its receptor, IL-20R1/IL-20R2, in the airway epithelium in bronchial tissues, bronchial biopsy specimens were collected from patients and mice with asthma and healthy subjects and stained with specific antibodies. To characterize the effects of IL-20 in asthmatic airway remodeling, we silenced and stimulated IL-20 in cell lines isolated from mice by shRNA and recombinant protein approaches, respectively, and detected the expression of α-SMA and FN-1 by Western blot analysis. First, overexpression of IL-20 and its receptor, IL-20R1/IL-20R2, was detected in the airway epithelium collected from patients and mice with asthma. Second, IL-20 increased the expression of fibronectin-1 and α-SMA, and silencing of IL-20 in mouse lung epithelial (MLE)-12 cells decreased the expression of fibronectin-1 and α-SMA. IL-20 may be a critical cytokine in airway remodeling in asthma. This study indicates that targeting IL-20 and/or its receptors may be a new therapeutic strategy for asthma.

  12. Nostalgia: content, triggers, functions.

    PubMed

    Wildschut, Tim; Sedikides, Constantine; Arndt, Jamie; Routledge, Clay

    2006-11-01

    Seven methodologically diverse studies addressed 3 fundamental questions about nostalgia. Studies 1 and 2 examined the content of nostalgic experiences. Descriptions of nostalgic experiences typically featured the self as a protagonist in interactions with close others (e.g., friends) or in momentous events (e.g., weddings). Also, the descriptions contained more expressions of positive than negative affect and often depicted the redemption of negative life scenes by subsequent triumphs. Studies 3 and 4 examined triggers of nostalgia and revealed that nostalgia occurs in response to negative mood and the discrete affective state of loneliness. Studies 5, 6, and 7 investigated the functional utility of nostalgia and established that nostalgia bolsters social bonds, increases positive self-regard, and generates positive affect. These findings demarcate key landmarks in the hitherto uncharted research domain of nostalgia.

  13. Gravity triggered neutrino condensates

    SciTech Connect

    Barenboim, Gabriela

    2010-11-01

    In this work we use the Schwinger-Dyson equations to study the possibility that an enhanced gravitational attraction triggers the formation of a right-handed neutrino condensate, inducing dynamical symmetry breaking and generating a Majorana mass for the right-handed neutrino at a scale appropriate for the seesaw mechanism. The composite field formed by the condensate phase could drive an early epoch of inflation. We find that to the lowest order, the theory does not allow dynamical symmetry breaking. Nevertheless, thanks to the large number of matter fields in the model, the suppression by additional powers in G of higher order terms can be compensated, boosting them up to their lowest order counterparts. This way chiral symmetry can be broken dynamically and the infrared mass generated turns out to be in the expected range for a successful seesaw scenario.

  14. Targeting collagen strands by photo-triggered triple-helix hybridization.

    PubMed

    Li, Yang; Foss, Catherine A; Summerfield, Daniel D; Doyle, Jefferson J; Torok, Collin M; Dietz, Harry C; Pomper, Martin G; Yu, S Michael

    2012-09-11

    Collagen remodeling is an integral part of tissue development, maintenance, and regeneration, but excessive remodeling is associated with various pathologic conditions. The ability to target collagens undergoing remodeling could lead to new diagnostics and therapeutics as well as applications in regenerative medicine; however