Sample records for retreating ice margin

  1. Asynchronous ice lobe retreat and glacial Lake Bascom: Deglaciation of the Hoosic and Vermont valleys, southwestern Vermont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, E.; Desimone, D.

    Deglaciation of the Hoosic River drainage basin in southwestern Vermont was more complex than previously described. Detailed surficial mapping, stratigraphic relationships, and terrace levels/delta elevations reveal new details in the chronology of glacial Lake Bascom: (1) a pre-Wisconsinan proglacial lake was present in a similar position to Lake Bascom as ice advanced: (2) the northern margin of 275m (900 ft) glacial Lake Bascom extended 10 km up the Vermont Valley; (3) the 215m (705 ft) Bascom level was stable and long lived; (4) intermediate water planes existed between 215m and 190m (625 ft) levels; and (5) a separate ice tonguemore » existed in Shaftsbury Hollow damming a small glacial lake, here named glacial Lake Emmons. This information is used to correlate ice margins to different lake levels. Distance of ice margin retreat during a lake level can be measured. Lake levels are then used as control points on a Lake Bascom relative time line to compare rate of retreat of different ice tongues. Correlation of ice margins to Bascom levels indicates ice retreat was asynchronous between nearby tongues in southwestern Vermont. The Vermont Valley ice tongue retreated between two and four times faster than the Hoosic Valley tongue during the Bascom 275m level. Rate of retreat of the Vermont Valley tongue slowed to one-half of the Hoosic tongue during the 215m--190m lake levels. Factors responsible for varying rates of retreat are subglacial bedrock gradient, proximity to the Hudson-Champlain lobe, and the presence of absence of a calving margins. Asynchronous retreat produced splayed ice margins in southwestern Vermont. Findings from this study do not support the model of parallel, synchronous retreat proposed by many workers for this region.« less

  2. Deglaciation of Fennoscandia

    NASA Astrophysics Data System (ADS)

    Stroeven, Arjen P.; Hättestrand, Clas; Kleman, Johan; Heyman, Jakob; Fabel, Derek; Fredin, Ola; Goodfellow, Bradley W.; Harbor, Jonathan M.; Jansen, John D.; Olsen, Lars; Caffee, Marc W.; Fink, David; Lundqvist, Jan; Rosqvist, Gunhild C.; Strömberg, Bo; Jansson, Krister N.

    2016-09-01

    To provide a new reconstruction of the deglaciation of the Fennoscandian Ice Sheet, in the form of calendar-year time-slices, which are particularly useful for ice sheet modelling, we have compiled and synthesized published geomorphological data for eskers, ice-marginal formations, lineations, marginal meltwater channels, striae, ice-dammed lakes, and geochronological data from radiocarbon, varve, optically-stimulated luminescence, and cosmogenic nuclide dating. This is summarized as a deglaciation map of the Fennoscandian Ice Sheet with isochrons marking every 1000 years between 22 and 13 cal kyr BP and every hundred years between 11.6 and final ice decay after 9.7 cal kyr BP. Deglaciation patterns vary across the Fennoscandian Ice Sheet domain, reflecting differences in climatic and geomorphic settings as well as ice sheet basal thermal conditions and terrestrial versus marine margins. For example, the ice sheet margin in the high-precipitation coastal setting of the western sector responded sensitively to climatic variations leaving a detailed record of prominent moraines and other ice-marginal deposits in many fjords and coastal valleys. Retreat rates across the southern sector differed between slow retreat of the terrestrial margin in western and southern Sweden and rapid retreat of the calving ice margin in the Baltic Basin. Our reconstruction is consistent with much of the published research. However, the synthesis of a large amount of existing and new data support refined reconstructions in some areas. For example, the LGM extent of the ice sheet in northwestern Russia was located far east and it occurred at a later time than the rest of the ice sheet, at around 17-15 cal kyr BP. We also propose a slightly different chronology of moraine formation over southern Sweden based on improved correlations of moraine segments using new LiDAR data and tying the timing of moraine formation to Greenland ice core cold stages. Retreat rates vary by as much as an order of magnitude in different sectors of the ice sheet, with the lowest rates on the high-elevation and maritime Norwegian margin. Retreat rates compared to the climatic information provided by the Greenland ice core record show a general correspondence between retreat rate and climatic forcing, although a close match between retreat rate and climate is unlikely because of other controls, such as topography and marine versus terrestrial margins. Overall, the time slice reconstructions of Fennoscandian Ice Sheet deglaciation from 22 to 9.7 cal kyr BP provide an important dataset for understanding the contexts that underpin spatial and temporal patterns in retreat of the Fennoscandian Ice Sheet, and are an important resource for testing and refining ice sheet models.

  3. Greenland ice sheet retreat since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Beitch, Marci J.

    Late 20th century and 21st century satellite imagery of the perimeter of the Greenland Ice Sheet (GrIS) provide high resolution observations of the ice sheet margins. Examining changes in ice margin positions over time yield measurements of GrIS area change and rates of margin retreat. However, longer records of ice sheet margin change are needed to establish more accurate predictions of the ice sheet's future response to global conditions. In this study, the trimzone, the area of deglaciated terrain along the ice sheet edge that lacks mature vegetation cover, is used as a marker of the maximum extent of the ice from its most recent major advance during the Little Ice Age. We compile recently acquired Landsat ETM+ scenes covering the perimeter of the GrIS on which we map area loss on land-, lake-, and marine-terminating margins. We measure an area loss of 13,327 +/- 830 km2, which corresponds to 0.8% shrinkage of the ice sheet. This equates to an averaged horizontal retreat of 363 +/- 69 m across the entire GrIS margin. Mapping the areas exposed since the Little Ice Age maximum, circa 1900 C.E., yields a century-scale rate of change. On average the ice sheet lost an area of 120 +/- 16 km 2/yr, or retreated at a rate of 3.3 +/- 0.7 m/yr since the LIA maximum.

  4. Bedrock Erosion Surfaces Record Former East Antarctic Ice Sheet Extent

    NASA Astrophysics Data System (ADS)

    Paxman, Guy J. G.; Jamieson, Stewart S. R.; Ferraccioli, Fausto; Bentley, Michael J.; Ross, Neil; Armadillo, Egidio; Gasson, Edward G. W.; Leitchenkov, German; DeConto, Robert M.

    2018-05-01

    East Antarctica hosts large subglacial basins into which the East Antarctic Ice Sheet (EAIS) likely retreated during past warmer climates. However, the extent of retreat remains poorly constrained, making quantifying past and predicted future contributions to global sea level rise from these marine basins challenging. Geomorphological analysis and flexural modeling within the Wilkes Subglacial Basin are used to reconstruct the ice margin during warm intervals of the Oligocene-Miocene. Flat-lying bedrock plateaus are indicative of an ice sheet margin positioned >400-500 km inland of the modern grounding zone for extended periods of the Oligocene-Miocene, equivalent to a 2-m rise in global sea level. Our findings imply that if major EAIS retreat occurs in the future, isostatic rebound will enable the plateau surfaces to act as seeding points for extensive ice rises, thus limiting extensive ice margin retreat of the scale seen during the early EAIS.

  5. Retreat of northern margins of George VI and Wilkins Ice Shelves, Antarctic Peninsula

    USGS Publications Warehouse

    Lucchitta, B.K.; Rosanova, C.E.

    1998-01-01

    The George VI and Wilkins Ice Shelves are considered at risk of disintegration due to a regional atmospheric warming trend on the Antarctic Peninsula. Retreat of the northern margin of the George VI Ice Shelf has been observed previously, but the Wilkins Ice Shelf was thought to be stable. We investigated the positions of the northern fronts of these shelves from the literature and looked for changes on 1974 Landsat and 1992 and 1995 European remote-sensing satellite (ERS) synthetic aperture radar images. Our investigation shows that the northern George VI Ice Shelf lost a total of 906 km2 between 1974 and 1992, and an additional 87 km2 by 1995. The northern margin of the Wilkins Ice Shelf lost 796 km2 between 1990 and 1992, and another 564 km2 between 1992 and 1995. Armadas of tabular icebergs were visible in front of this shelf in the ERS images. These two ice shelves mark the southernmost documented conspicuous retreat of ice-shelf margins.

  6. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion.

    PubMed

    Aitken, A R A; Roberts, J L; van Ommen, T D; Young, D A; Golledge, N R; Greenbaum, J S; Blankenship, D D; Siegert, M J

    2016-05-19

    Climate variations cause ice sheets to retreat and advance, raising or lowering sea level by metres to decametres. The basic relationship is unambiguous, but the timing, magnitude and sources of sea-level change remain unclear; in particular, the contribution of the East Antarctic Ice Sheet (EAIS) is ill defined, restricting our appreciation of potential future change. Several lines of evidence suggest possible collapse of the Totten Glacier into interior basins during past warm periods, most notably the Pliocene epoch, causing several metres of sea-level rise. However, the structure and long-term evolution of the ice sheet in this region have been understood insufficiently to constrain past ice-sheet extents. Here we show that deep ice-sheet erosion-enough to expose basement rocks-has occurred in two regions: the head of the Totten Glacier, within 150 kilometres of today's grounding line; and deep within the Sabrina Subglacial Basin, 350-550 kilometres from this grounding line. Our results, based on ICECAP aerogeophysical data, demarcate the marginal zones of two distinct quasi-stable EAIS configurations, corresponding to the 'modern-scale' ice sheet (with a marginal zone near the present ice-sheet margin) and the retreated ice sheet (with the marginal zone located far inland). The transitional region of 200-250 kilometres in width is less eroded, suggesting shorter-lived exposure to eroding conditions during repeated retreat-advance events, which are probably driven by ocean-forced instabilities. Representative ice-sheet models indicate that the global sea-level increase resulting from retreat in this sector can be up to 0.9 metres in the modern-scale configuration, and exceeds 2 metres in the retreated configuration.

  7. Ice, Ocean and Atmosphere Interactions in the Arctic Marginal Ice Zone

    DTIC Science & Technology

    2015-09-30

    the northward retreat of the ice edge. Through the long-term measurement of the key oceanic, atmospheric, and sea ice processes that...began to move southward towards the Alaskan coast. In 2104 the anomalous areas of ice retreat were the region north of Alaska...and Siberia. (see figures below). This is not uncommon as these regions have seen the greatest retreat in sea ice. See http://nsidc.org

  8. Sedimentology and chronology of the advance and retreat of the last British-Irish Ice Sheet on the continental shelf west of Ireland

    NASA Astrophysics Data System (ADS)

    Peters, Jared L.; Benetti, Sara; Dunlop, Paul; Ó Cofaigh, Colm; Moreton, Steven G.; Wheeler, Andrew J.; Clark, Christopher D.

    2016-05-01

    The last British-Irish Ice Sheet (BIIS) had extensive marine-terminating margins and was drained by multiple large ice streams and is thus a useful analogue for marine-based areas of modern ice sheets. However, despite recent advances from investigating the offshore record of the BIIS, the dynamic history of its marine margins, which would have been sensitive to external forcing(s), remain inadequately understood. This study is the first reconstruction of the retreat dynamics and chronology of the western, marine-terminating, margin of the last (Late Midlandian) BIIS. Analyses of shelf geomorphology and core sedimentology and chronology enable a reconstruction of the Late Midlandian history of the BIIS west of Ireland, from initial advance to final retreat onshore. Five AMS radiocarbon dates from marine cores constrain the timing of retreat and associated readvances during deglaciation. The BIIS advanced without streaming or surging, depositing a bed of highly consolidated subglacial traction till, and reached to within ∼20 km of the shelf break by ∼24,000 Cal BP. Ice margin retreat was likely preceded by thinning, grounding zone retreat and ice shelf formation on the outer shelf by ∼22,000 Cal BP. This ice shelf persisted for ≤2500 years, while retreating at a minimum rate of ∼24 m/yr and buttressing a >150-km long, 20-km wide, bathymetrically-controlled grounding zone. A large (∼150 km long), arcuate, flat-topped grounding-zone wedge, termed here the Galway Lobe Grounding-Zone Wedge (GLGZW), was deposited below this ice shelf and records a significant stillstand in BIIS retreat. Geomorphic relationships indicate that the BIIS experienced continued thinning during its retreat across the shelf, which led to increased topographic influence on its flow dynamics following ice shelf break up and grounding zone retreat past the GLGZW. At this stage of retreat the western BIIS was comprised of several discrete, asynchronous lobes that underwent several readvances. Sedimentary evidence of dilatant till deposition suggests that the readvances may have been rapid and possibly associated with ice streaming or surging. The largest lobe extended offshore from Galway Bay and deposited the Galway Lobe Readvance Moraine by <18,500 Cal BP. Further to the north, an ice lobe readvanced at least 50 km offshore from Killary Harbour, possibly by ≤15,100 Cal BP. The existing chronology currently does not allow us to determine conclusively whether these readvances were a glaciodynamic (internally-driven) response of the ice sheet during deglaciation or were climatically-driven. Following the <18,500 Cal BP readvance, the Galway Lobe experienced accelerated eastward retreat at an estimated rate of ∼113 m/yr.

  9. Landforms, sediments and dates to constrain rates and style of marine-influenced ice sheet decay; the BRITICE-CHRONO project.

    NASA Astrophysics Data System (ADS)

    Clark, Chris

    2014-05-01

    Uncertainty exists regarding the future mass of the Antarctic and Greenland ice sheets and how they will respond to forcings from sea level, and atmospheric and ocean temperatures. If we want to know more about the mechanisms and rate of change of shrinking ice sheets, then why not examine an ice sheet that has fully disappeared and track its retreat through time? If achieved in enough detail such information on ice retreat could be a data-rich playground for improving the next breed of numerical ice sheet models to be used in ice and sea level forecasting. We regard that the last British-Irish Ice Sheet is a good target for this work, on account of its small size, density of information and with its numerous researchers already investigating it. Geomorphological mapping across the British Isles and the surrounding continental shelf has revealed the nature and distribution of glacial landforms. Here we demonstrate how such data have been used to build a pattern of ice margin retreat. The BRITICE-CHRONO consortium of Quaternary scientists and glaciologists, are now working on a project running from 2012 - 2017 to produce an ice sheet wide database of geochronometric dates to constrain and then understand ice margin retreat. This is being achieved by focusing on 8 transects running from the continental shelf edge to a short distance (10s km) onshore and acquiring marine and terrestrial samples for geochronometric dating. The project includes funding for 587 radiocarbon, 140 OSL and 158 TCN samples for surface exposure dating; with sampling accomplished by two research cruises and 16 fieldwork campaigns. Results will reveal the timing and rate of change of ice margin recession for each transect, and combined with existing landform and dating databases, will be used to build an ice sheet-wide empirical reconstruction of retreat. Simulations using two numerical ice sheet models, fitted against the margin data, will help us understand the nature and significance of sea-level rise and ocean/atmosphere forcing on influencing the rate of retreat and ice sheet demise and the effect that bed topography has in controlling this.

  10. Air-Sea Interactions in the Marginal Ice Zone

    DTIC Science & Technology

    2016-03-31

    Arctic Ocean has increased with the significant retreat of the seasonal sea-ice extent. Here, we use wind, wave, turbulence, and ice measurements to...which has experienced a significant retreat of the seasonal ice extent (Comiso and Nishio, 2008; Comiso et al., 2008). Thomson and Rogers (2014) showed

  11. Proglacial deltaic landforms and stratigraphic architecture as a proxy for reconstructing past ice-sheet margin positions

    NASA Astrophysics Data System (ADS)

    Dietrich, Pierre; Ghienne, Jean-François; Normandeau, Alexandre; Lajeunesse, Patrick

    2016-04-01

    Deltaic landforms and related stratigraphic architectures are frequently used as proxy for reconstruction of past continental or marine environmental evolutions. Indeed, in addition to autocyclic processes, emplacement of deltaic systems is primarily controlled by changes in sediment supply and relative sea-level (RSL). In our study, we investigated several proglacial deltaic complexes emplaced since the last deglaciation over more than 700 km along the St. Lawrence North Shore (Québec, Canada). Their geomorphic and stratigraphic records allowed us to infer the retreat pattern of the Laurentide Ice Sheet fronts. Field investigation of representative deltaic complexes revealed an archetypal morphostratigraphic evolution forced by the retreat of the ice margin in a context of falling RSL (glacio-isostatic rebound). The base of the stratigraphic successions consists of outwash fan deposits emplaced in the early deglaciation when ice margin stillstanded immediately beyond the depositional area. The middle part of the succession consists of proglacial delta deposits corresponding to the retreat of the ice margin in the hinterland. At that time, glaciogenic supplies allowed an active progradation preventing fluvial entrenchment in spite of the forced regressive context. The upper part of the succession consists of staged shoreline deposits reworking the rim of the proglacial deltas. These deposits mark the retreat of the ice margin from the drainage basin and the subsequent drop in glaciogenics. Important fluvial entrenchment occurred in the same time, though rates of RSL fall were reduced. We generalize this stratigraphic framework by using solely the landforms (from DEM, aerial photographs or satellite images) tied to deltaic complex developments along the St. Lawrence North Shore. This approach permits an integrated study at the scale of the whole basin even where no field data is available. Recognizing the three steps evidenced from the stratigraphic record ads constrains on the successive ice margin positions through deglaciation. Top surface of the outwash fans, marking the deglaciation of the area, lies at or near the marine limit (highest altitude reached by the post-glacial sea) and is commonly flat; the top surface of the proglacial deltas, recording the upland recession of the ice margin, is gently-sloped basinward, without evidence of fluvial entrenchment; finally, the top surface of coastal deposits, marking the retreat of the ice margin from the drainage basin, is characterized by raised beaches incised by meandering rivers. Determining ages of these successive landforms (14C dating, sea-level curves) allowed us to reconstruct the pattern of ice-sheet retreat since the Younger Dryas up to almost the final disappearance of the Quebec Ice Dome at ~6 kyr BP.

  12. High-resolution chronology for deglaciation of the Patagonian Ice Sheet at Lago Buenos Aires (46.5°S) revealed through varve chronology and Bayesian age modelling

    NASA Astrophysics Data System (ADS)

    Bendle, Jacob M.; Palmer, Adrian P.; Thorndycraft, Varyl R.; Matthews, Ian P.

    2017-12-01

    Glaciolacustrine varves offer the potential to construct continuous, annually-resolved chronologies for ice-sheet deglaciation, and improved understanding of glacier retreat dynamics. This paper investigates laminated glaciolacustrine sediments deposited around the waning margins of the Patagonian Ice Sheet, following the local Last Glacial Maximum (LGM). Detailed macro- and microfacies analyses confirm an annual (varve) structure within these sediments. The correlation of annual layers (varves) across five sites in eastern Lago Buenos Aires yields a 994 ± 36 varve-year (vyr) chronology and thickness record. The floating chronology has been anchored to the calendar-year timescale through identification of the Ho tephra (17,378 ± 118 cal a BP) in the varve sequences. Using a Bayesian age model to integrate the new varve chronology with published moraine ages, the onset of deglaciation at 46.5°S is dated to 18,086 ± 214 cal a BP. New age estimates for deglacial events are combined with high-resolution analysis of varve thickness trends, and new lithostratigraphic data on ice-margin position(s), to reconstruct ice-margin retreat rates for the earliest ca. 1000 years of ice-sheet demise. Glacier retreat rates were moderate (5.3-10.3 m yr-1) until 17,322 ± 115 cal a BP, but subsequently accelerated (15.4-18.0 m yr-1). Sustained influxes of ice-rafted debris (IRD) after 17,145 ± 122 cal a BP suggest retreat rates were enhanced by calving after ice contracted into deeper lake waters. Ice persisted in eastern Lago Buenos Aires until at least 16,934 ± 116 cal a BP, after which the glacier started to retreat towards the Patagonian mountains.

  13. Kame deltas provide evidence for a new glacial lake and suggest early glacial retreat from central Lower Michigan, USA

    NASA Astrophysics Data System (ADS)

    Schaetzl, Randall J.; Lepper, Kenneth; Thomas, Sarah E.; Grove, Leslie; Treiber, Emma; Farmer, Alison; Fillmore, Austin; Lee, Jordan; Dickerson, Bethany; Alme, Kayleigh

    2017-03-01

    In association with an undergraduate Honors Seminar at Michigan State University, we studied two small kame deltas in north-central Lower Michigan. These recently identified deltas provide clear evidence for a previously unknown proglacial lake (Glacial Lake Roscommon) in this large basin located in an interlobate upland. Our first goal was to document and characterize the geomorphology of these deltas. Because both deltas are tied to ice-contact ridges that mark the former position of the retreating ice margin within the lake, our second goal was to establish the age of one of the deltas, thereby constraining the timing of ice retreat in this part of Michigan, for which little information currently exists. Both deltas are composed of well-sorted fine and medium sands with little gravel, and have broad, nearly flat surfaces and comparatively steep fronts. Samples taken from the upper 1.5 m of the deltas show little spatial variation in texture, aside from a general fining toward their outer margins. Gullies on the outer margins of both deltas probably postdate the formation of the deltas proper; we suggest that they formed by runoff during a permafrost period, subsequent to lake drawdown. We named the ice lobe that once covered this area the Mackinac Lobe, because it had likely advanced into the region across the Mackinac Straits area. Five of six optically stimulated luminescence (OSL) ages from one of the deltas had minimal scatter and were within ± 1000 years of one another, with a mean age of 23.1 ± 0.4 ka. These ages suggest that the Mackinac Lobe had started to retreat from the region considerably earlier than previously thought, even while ice was near its maximum extent in Illinois and Indiana, and the remainder of Michigan was ice-covered. This early retreat, which appears to coincide with a short-lived warm period indicated from the Greenland ice core, formed an "opening" that was at least occasionally flooded. Thick and deep, fine-textured deposits, which underlie much of the region, probably date to this time. Our work provides the first evidence of this extremely early ice retreat from central Lower Michigan, occurring almost 4000 years before the southern margin of the ice (Saginaw Lobe) had started its retreat from the state.

  14. First Younger Dryas moraines in Greenland

    NASA Astrophysics Data System (ADS)

    Funder, Svend; Larsen, Nicolaj K.; Linge, Henriette; Möller, Per; Schomacker, Anders; Fabel, Derek; Kjær, Kurt H.; Xu, Sheng

    2016-04-01

    Over the Greenland ice sheet the Younger Dryas (YD) cold climate oscillation (12.9-11.7 kaBP) began with up to 10°C drop in temperatures and ended with up to 12°C abrupt warming. In the light of the present warming and melting of the ice sheet, and its importance for future climate change, the ice sheet's response to these dramatic changes in the past is of great interest. However, even though much effort has gone into charting YD ice margin behaviour around Greenland in recent years, no clear-cut signal of response to the oscillation has been uncovered. Here we show evidence to suggest that three major outlets from a local ice cap at Greenland's north coast advanced and retreated synchronously during YD. The evidence comprises OSL (optically stimulated luminescence) dates from a marine transgression of the coastal valleys that preceded the advance, and exposure ages from boulders on the moraines, formed by glaciers that overrode the marine sediment. The OSL ages suggest a maximum age of 12.4 ±0.6 kaBP for the marine incursion, and 10 exposure ages on boulders from the three moraines provide an average minimum age of 12.5 ±0.7 kaBP for the moraines, implying that the moraines were formed within the interval 11.8-13.0 kaBP. Elsewhere in Greenland evidence for readvance has been recorded in two areas. Most notably, in the East Greenland fjord zone outlet glaciers over a stretch of 800 km coast advanced through the fjords. In Scoresby Sund, where the moraines form a wide belt, an extensive 14C and exposure dating programme has shown that the readvance here probably culminated before YD, while cessation of moraine formation and rapid retreat from the moraine belt did not commence until c. 11.5 kaBP, but no moraines have so far been dated to YD. Readvance is also seen in Disko Bugt, the largest ice sheet outlet in West Greenland. However, here the advance and retreat of the ice stream took place in mid YD times, and lasted only a few hundred years, while YD in general was characterised by large scale, more than 200 km, retreat on the shelf. Therefore, although readvance and retreat occurred in both areas, the readvance was apparently not triggered by the initial YD cooling nor was the retreat caused by the abrupt warming at the end. At all other sites with a record that run through or into YD - Southeast Greenland, South Greenland, northern West Greenland - the ice margins were apparently retreating through YD, leaving the north coast as the only area with evidence for a climatically conditioned YD readvance/retreat. The apparent mismatch between ice core temperatures and ice margin behaviour is generally seen as a function of reduced AMOC (Atlantic Meridional Overturning Circulation), inducing both higher seasonality with very cold winters and warm summers, and also occurrence of warm subsurface water to melt the ice sheet margin along some coasts. Therefore the ice margin response to the cold oscillation was to some extent determined by the nearness to the North Atlantic - with North Greenland being the farthest away. Although this may explain why glaciers advanced in North Greenland, while they melted in more southerly parts, it still leaves the question with a bearing on the future: why don't we see any ice margin response neither to the initial YD cooling, nor to the abrupt warming at the end?

  15. The northern Uummannaq Ice Stream System, West Greenland: ice dynamics and and controls upon deglaciation

    NASA Astrophysics Data System (ADS)

    Lane, Timothy; Roberts, David; Rea, Brice; Cofaigh, Colm Ó.; Vieli, Andreas

    2013-04-01

    At the Last Glacial Maximum (LGM), the Uummannaq Ice Stream System comprised a series coalescent outlet glaciers which extended along the trough to the shelf edge, draining a large proportion of the West Greenland Ice Sheet. Geomorphological mapping, terrestrial cosmogenic nuclide (TCN) exposure dating, and radiocarbon dating constrain warm-based ice stream activity in the north of the system to 1400 m a.s.l. during the LGM. Intervening plateaux areas (~ 2000 m a.s.l.) either remained ice free, or were covered by cold-based icefields, preventing diffluent or confluent flow throughout the inner to outer fjord region. Beyond the fjords, a topographic sill north of Ubekendt Ejland prevented the majority of westward ice flow, forcing it south through Igdlorssuit Sund, and into the Uummannaq Trough. Here it coalesced with ice from the south, forming the trunk zone of the UISS. Deglaciation of the UISS began at 14.9 cal. ka BP, rapidly retreating through the overdeepened Uummannaq Trough. Once beyond Ubekendt Ejland, the northern UISS retreated northwards, separating from the south. Retreat continued, and ice reached the present fjord confines in northern Uummannaq by 11.6 kyr. Both geomorphological (termino-lateral moraines) and geochronological (14C and TCN) data provide evidence for an ice marginal stabilisation at within Karrat-Rink Fjord, at Karrat Island, from 11.6-6.9 kyr. The Karrat moraines appear similar in both fjord position and form to 'Fjord Stade' moraines identified throughout West Greenland. Though chronologies constraining moraine formation are overlapping (Fjord Stade moraines - 9.3-8.2 kyr, Karrat moraines - 11.6-6.9 kyr), these moraines have not been correlated. This ice margin stabilisation was able to persist during the Holocene Thermal Maximum (~7.2 - 5 kyr). It overrode climatic and oceanic forcings, remaining on Karrat Island throughout peaks of air temperature and relative sea-level, and during the influx of the warm West Greenland Current into the Uummannaq region. Based upon analysis of fjord bathymetry and width, this ice marginal stabilisation has been shown to have been caused by increases in topographic constriction at Karrat Island. The location of the marginal stillstand is coincident with a dramatic narrowing of fjord width and bed shallowing. These increases in local lateral resistance reduces the ice flux necessary to maintain a stable grounding line, leading to ice margin stabilisation. This acted to negate the effects of the Holocene Thermal Maximum. Following this stabilisation, retreat within Rink-Karrat Fjord continued, driven by calving into the overdeepened Rink Fjord. Rink Isbræ reached its present ice margin or beyond after 5 kyr, during the Neoglacial. In contrast, the southern UISS reached its present margin at 8.7 kyr and Jakobshavn Isbræ reached its margin by 7 kyr. This work therefore provides compelling evidence for topographically forced asynchronous, non-linear ice stream retreat between outlet glaciers in West Greenland. In addition, it has major implications for our understanding and reconstruction of mid-Holocene ice sheet extent, and ice sheet dynamics during the Holocene Thermal Maximum to Neoglacial switch.

  16. Formation and interpretation of eskers beneath retreating ice sheets

    NASA Astrophysics Data System (ADS)

    Creyts, T. T.; Hewitt, I.

    2017-12-01

    The retreat of the ice sheets during the Pleistocene left large and spectacular subglacial features exposed. Understanding these features gives us insight into how the ice sheets retreated, how meltwater influenced retreat, and can help inform our understanding of potential future rates of ice sheet retreat. Among these features, eskers, long sinuous ridges primarily composed of clastic sediments, lack a detailed explanation of how surface melt rates and ice sheet retreat rates influence their growth and spatial distribution. Here, we develop a theory for esker formation based on the initial work of Rothlisberger modified for sediment transport and inclusion of surface meltwater forcing. The primary subglacial ingredients include water flow through subglacial tunnels with the addition of mass balances for sediment transport. We show how eskers when water flow slows below a critical stress for sediment motion. This implies that eskers are deposited in a localized region near the snout of the ice sheet. Our findings suggest that very long eskers form sequentially as the ice front retreats. The position of the esker follows the path of the channel mouth through time, which does not necessarily coincide with the instantaneous route of the feeding channel. However, in most cases, we expect those locations to be similar. The role of surface meltwater and the climatology associated with the forcing is crucial to the lateral spacing of the eskers. We predict that high surface melt rates lead to narrower catchments but that the greater extent of the ablation area means that channels are likely larger. At the same time, for a given channel size (and hence sediment flux), the size of a deposited esker depends on a margin retreat rate. Hence, the size of the eskers is related delicately to the balance between surface melt rates and margin retreat rates. We discuss how our theory can be combined with observed esker distributions to infer the relationship between these two rates and help understand the melt history of ice sheets.

  17. Ice stream reorganization and glacial retreat on the northwest Greenland shelf

    NASA Astrophysics Data System (ADS)

    Newton, A. M. W.; Knutz, P. C.; Huuse, M.; Gannon, P.; Brocklehurst, S. H.; Clausen, O. R.; Gong, Y.

    2017-08-01

    Understanding conditions at the grounding-line of marine-based ice sheets is essential for understanding ice sheet evolution. Offshore northwest Greenland, knowledge of the Last Glacial Maximum (LGM) ice sheet extent in Melville Bugt was previously based on sparse geological evidence. This study uses multibeam bathymetry, combined with 2-D and 3-D seismic reflection data, to present a detailed landform record from Melville Bugt. Seabed landforms include mega-scale glacial lineations, grounding-zone wedges, iceberg scours, and a lateral shear margin moraine, formed during the last glacial cycle. The geomorphology indicates that the LGM ice sheet reached the shelf edge before undergoing flow reorganization. After retreat of 80 km across the outer shelf, the margin stabilized in a mid-shelf position, possibly during the Younger Dryas (12.9-11.7 ka). The ice sheet then decoupled from the seafloor and retreated to a coast-proximal position. This landform record provides an important constraint on deglaciation history offshore northwest Greenland.

  18. Glacitectonic deformation around the retreating margin of the last Irish ice sheet

    NASA Astrophysics Data System (ADS)

    Knight, J.

    2008-12-01

    Evidence for ice-marginal glacitectonic shunting and deformation of bedrock slabs is described from three sites around the west coast of Ireland. These sites (Brandon Bay, County Kerry; Pigeon Point, County Mayo; Inishcrone, County Sligo) are all locations where the late Devensian ice margin retreated on land and was confined to within limestone bedrock embayments. At these sites, flat-lying bedrock slabs (< 8 m long) have been dissociated from rockhead and moved seaward (in the direction of ice flow) by glacitectonic shunting. At all of the sites, bedrock slabs have been variously stacked, rotated, deformed into open folds, and brecciated. Separating the bedrock slabs is either a thin layer (< 20 cm) of brecciated and mylonitised cemented bedrock that shows internal folding; or a thicker (< 50 cm) normally-graded diamicton with a fine matrix. Together, the presence of these features suggests oscillation of a polythermal and clean basal ice margin that was strongly associated with basal freeze-on and the presence of proglacial permafrost. Subglacial sediment-laden meltwater was focused from behind the ice margin and through permafrost taliks. It is suggested that hydrofracturing under high hydraulic pressure, and through a frozen-bed ice margin, forced sediment injection into bedrock fractures and bedding planes and away from the ice margin, and that bedrock slabs were moved in part by hydraulic lift as well as thrust-style ice-marginal tectonics. The presence of a mosaic of warm and frozen ice-bed patches, in combination with strong geologic control and meltwater generation from behind the ice margin, can help explain formation of these unusual bedrock slab features.

  19. Ice-Sheet Glaciation of the Puget lowland, Washington, during the Vashon Stade (late pleistocene)

    USGS Publications Warehouse

    Thorson, R.M.

    1980-01-01

    During the Vashon Stade of the Fraser Glaciation, about 15,000-13,000 yr B.P., a lobe of the Cordilleran Ice Sheet occupied the Puget lowland of western Washington. At its maximum extent about 14,000 yr ago, the ice sheet extended across the Puget lowland between the Cascade Range and Olympic Mountains and terminated about 80 km south of Seattle. Meltwater streams drained southwest to the Pacific Ocean and built broad outwash trains south of the ice margin. Reconstructed longitudinal profiles for the Puget lobe at its maximum extent are similar to the modern profile of Malaspina Glacier, Alaska, suggesting that the ice sheet may have been in a near-equilibrium state at the glacial maximum. Progressive northward retreat from the terminal zone was accompanied by the development of ice-marginal streams and proglacial lakes that drained southward during initial retreat, but northward during late Vashon time. Relatively rapid retreat of the Juan de Fuca lobe may have contributed to partial stagnation of the northwestern part of the Puget lobe. Final destruction of the Puget lobe occurred when the ice retreated north of Admiralty Inlet. The sea entered the Puget lowland at this time, allowing the deposition of glacial-marine sediments which now occur as high as 50 m altitude. These deposits, together with ice-marginal meltwater channels presumed to have formed above sea level during deglaciation, suggest that a significant amount of postglacial isostatic and(or) tectonic deformation has occurred in the Puget lowland since deglaciation. ?? 1980.

  20. Latest Pleistocene glaciomarine and marine deposition in the northern Puget lowland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dethier, D.P.

    Latest Pleistocene (Fraser) continental ice deposited thick, narrow zones of ice-marginal debris and widespread pebbly silt into marine water as it retreated from the northern Puget lowland of Washington at about 14,000 B.P. Exposed deposits include several collapsed terrestrial ice-contact complexes. Most sediment accumulated in marine water during or after ice retreat, but before glacioisostatic rebound lifted the area about sea level. Gravelly sand, pebbly silt, gravelly diamicton, cross bedded silty sand, and massive to laminated silt were deposited in glaciomarine, marine, estuarine, and shoreline environments now exposed at elevations as high as 150 m. Ice-proximal facies formed from sediment-richmore » fresh-water plumes and mass movements at the margins of grounded ice lobes; transitional and distal deposits incorporated sediment from dispersed meltwater, turbidity flows and icebergs hundreds of m to tens of km from the grounding line. Macrofossils assemblages in the glaciomarine deposits formed in water < 40 meters deep whereas the marine deposits represent intertidal depths to over 80 meters. [sup 14]C shell ages demonstrate that ice retreated 125 km from the E. Strait of Juan de Fuca between about 14.0 ka and 13.5 ka, and that a fluctuating ice margin persisted near the international Border until sometime after 11.5 ka. More than 10 km[sup 3] of ice-marginal sediment, now bands of submerged banks, outline grounding-line positions in the 50 km between the E. Strait of Juan de Fuca and the San Juan Islands.« less

  1. Dynamics, rate and nature of retreat of the British Irish Ice-Sheet offshore of NW Ireland following the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Weilbach, K.; O'Cofaigh, C.; Lloyd, J. M.; Benetti, S.; Dunlop, P.

    2016-12-01

    Recent studies of the British and Irish Ice Sheet (BIIS) have identified evidence of ice extending to the continental shelf edge along the western margin of the ice sheet off NW Ireland. While this advance is assumed to have occurred during the LGM, exact timing of maximum advance, and the timing and nature of the subsequent retreat is not well constrained. The location of the north-western sector of the BIIS adjacent to the North Atlantic makes this area ideal to study the ice sheet dynamics of a major marine terminating ice sheet, and the rate and nature of its retreat following the LGM. High resolution swath bathymetry and sub-bottom profiler (SBP) data along with sedimentological, micropalaeontological and geochronological investigations of sediment cores, collected across the NW Irish shelf, have been used to establish the extent, timing and nature of retreat of this sector of the BIIS. Swath bathymetry show glacial landforms on the shelf, and SBP-data along with twenty seven vibro-cores were collected in east-west oriented transects across a series of arcuate recessional moraines stretching from the shelf edge to Donegal Bay. These moraines record progressive still stands of a lobate ice margin during its retreat from the shelf edge, and are therefore ideal for the investigation of ice-sheet dynamics and chronology during retreat. Twenty two radiocarbon dates from foraminifera and macrofossils, sampled from the sediment cores, indicate that maximum ice sheet extent occurred around 26200 y cal BP, with an initial rapid retreat across the shelf. Visual logging, X-ray imagery, MSCL data and palaeoenvironmental analyses of the sediment cores, indicate that retreat happened in a glacimarine environment, and was punctuated by multiple stillstands and possible readvances across the mid and inner shelf, forming the arcuate moraines. The radiocarbon dates suggest that final retreat occurred after 17857 y. cal BP, which is consistent with onshore cosmogenic exposure ages from NW Ireland, showing de-glaciation around 17400 y cal BP.

  2. Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System

    DTIC Science & Technology

    2015-09-30

    MIZ using WW3 (3 frequency bins, ice retreat in August and ice advance in October); Blue (solid): Based on observations near Antarctica by Meylan...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- Ice interaction in the Marginal Ice Zone: Toward a...Wave-Ocean- Ice Coupled Modeling System W. E. Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529 phone: (228) 688-4727

  3. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM

    NASA Astrophysics Data System (ADS)

    Anderson, John B.; Conway, Howard; Bart, Philip J.; Witus, Alexandra E.; Greenwood, Sarah L.; McKay, Robert M.; Hall, Brenda L.; Ackert, Robert P.; Licht, Kathy; Jakobsson, Martin; Stone, John O.

    2014-09-01

    Onshore and offshore studies show that an expanded, grounded ice sheet occupied the Ross Sea Embayment during the Last Glacial Maximum (LGM). Results from studies of till provenance and the orientation of geomorphic features on the continental shelf show that more than half of the grounded ice sheet consisted of East Antarctic ice flowing through Transantarctic Mountain (TAM) outlet glaciers; the remainder came from West Antarctica. Terrestrial data indicate little or no thickening in the upper catchment regions in both West and East Antarctica during the LGM. In contrast, evidence from the mouths of the southern and central TAM outlet glaciers indicate surface elevations between 1000 m and 1100 m (above present-day sea level). Farther north along the western margin of the Ross Ice Sheet, surface elevations reached 720 m on Ross Island, and 400 m at Terra Nova Bay. Evidence from Marie Byrd Land at the eastern margin of the ice sheet indicates that the elevation near the present-day grounding line was more than 800 m asl, while at Siple Dome in the central Ross Embayment, the surface elevation was about 950 m asl. Farther north, evidence that the ice sheet was grounded on the middle and the outer continental shelf during the LGM implies that surface elevations had to be at least 100 m above the LGM sea level. The apparent low surface profile and implied low basal shear stress in the central and eastern embayment suggests that although the ice streams may have slowed during the LGM, they remained active. Ice-sheet retreat from the western Ross Embayment during the Holocene is constrained by marine and terrestrial data. Ages from marine sediments suggest that the grounding line had retreated from its LGM outer shelf location only a few tens of kilometer to a location south of Coulman Island by ˜13 ka BP. The ice sheet margin was located in the vicinity of the Drygalski Ice Tongue by ˜11 ka BP, just north of Ross Island by ˜7.8 ka BP, and near Hatherton Glacier by ˜6.8 ka BP. Farther south, 10Be exposure ages from glacial erratics on nunataks near the mouths of Reedy, Scott and Beardmore Glaciers indicate thinning during the mid to late Holocene, but the grounding line did not reach its present position until 2 to 3 ka BP. Marine dates, which are almost exclusively Acid Insoluble Organic (AIO) dates, are consistently older than those derived from terrestrial data. However, even these ages indicate that the ice sheet experienced significant retreat after ˜13 ka BP. Geomorphic features indicate that during the final stages of ice sheet retreat ice flowing through the TAM remained grounded on the shallow western margin of Ross Sea. The timing of retreat from the central Ross Sea remains unresolved; the simplest reconstruction is to assume that the grounding line here started to retreat from the continental shelf more or less in step with the retreat from the western and eastern sectors. An alternative hypothesis, which relies on the validity of radiocarbon ages from marine sediments, is that grounded ice had retreated from the outer continental shelf prior to the LGM. More reliable ages from marine sediments in the central Ross Embayment are needed to test and validate this hypothesis.

  4. The geomorphic signature of past ice sheets in the marine record

    NASA Astrophysics Data System (ADS)

    Dowdeswell, J. A.

    2016-12-01

    The deglaciation of high-latitude continental shelves since the Last Glacial Maximum has revealed suites of subglacial and ice-contact landforms that have remained well-preserved beneath tens to hundreds of metres of water. Once ice has retreated, sedimentation is generally low on polar shelves during interglacials and the submarine landforms have not, therefore, been buried by subsequent sedimentation. By contrast, the beds of modern ice sheets are hidden by several thousand metres of ice, which is much more difficult than water to penetrate using geophysical methods. These submarine glacial landforms provide insights into past ice-sheet form and flow, and information on the processes that have taken place beneath former ice sheets. Examples will be shown of streamlined subglacial landforms that indicate the distribution and dimensions of former ice streams on high-latitde continental margins. Distinctive landform assemblages characterise ice stream and inter-ice stream areas. Landforms, including subglacially formed channel systems in inner- and mid-shelf areas, and the lack of them on sedimentary outer shelves, allow inferences to be made about subglacial hydrology. The distribution of grounding-zone wedges and other transverse moraine ridges also provides evidence on the nature of ice-sheet retreat - whether by rapid collapse, episodic retreat or by the slow retreat of grounded ice. Such information can be used to test the predictive capability of ice-sheet numerical models. These marine geophysical and geological observations of submarine glacial landforms enhance our understanding of the form and flow of past ice masses at scales ranging from ice sheets (1000s of km in flow-line and margin length), through ice streams (100s of km long), to surge-type glaciers (10s of km long).

  5. Ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.

    1994-01-01

    Ocean ice interaction processes in the Marginal Ice Zone (MIZ) by wind, waves, and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) images and ocean ice interaction model. A sequence of SAR images of the Chukchi Sea MIZ with three days interval are studied for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea as well as the Barrow wind record are used to interpret the MIZ dynamics.

  6. Neoglacial fluctuations of terrestrial, tidewater, and calving lacustrine glaciers, Blackstone-Spencer Ice Complex, Kenai Mountains, Alaska

    NASA Astrophysics Data System (ADS)

    Crossen, Kristine June

    1997-12-01

    The glaciers surrounding the Blackstone-Spencer Ice Complex display a variety of termini types: Tebenkov, Spencer, Bartlett, Skookum, Trail, Burns, Shakespeare, Marquette, Lawrence, and Ripon glaciers end in terrestrial margins; Blackstone and Beloit glaciers have tidewater termini; and Portage Glacier has a calving lacustrine margin. In addition, steep temperature and precipitation gradients exist across the ice complex from the maritime environment of Prince William Sound to the colder, drier interior. The Neoglacial history of Tebenkov Glacier, as based on overrun trees near the terminus, shows advances ca. 250- 430 AD (calibrated date), ca. 1215-1275 AD (calibrated date), and ca. 1320-1430 AD (tree ring evidence), all intervals of glacier advance around the Gulf of Alaska. However, two tidewater glaciers in Blackstone Bay retreated from their outermost moraines by 1350 AD, apparently asynchronously with respect to the regional climate signal. The most extensive Kenai Mountain glacier expansions during Neoglaciation occurred in the late Little Ice Age. The outermost moraines are adjacent to mature forest stands and bog peats that yield dates as old as 5,600 BP. Prince William Sound glaciers advanced during two Little Ice Age cold periods, 1380-1680 and 1830-1900 AD. The terrestrial glaciers around the Blackstone-Spencer Ice Complex all built moraines during the 19th century and began retreating between 1875 and 1900 AD. Portage and Burns glaciers began retreating between 1790 and 1810 AD, but their margins remained close to the outermost moraines during the 19th century. Regional glacier fluctuations are broadly synchronous in the Gulf of Alaska region. With the exception of the two tidewater glaciers in Blackstone Bay, all glaciers in the Kenai Mountains, no matter their sizes, altitudes, orientations, or types of margins, retreated at the end of the Little Ice Age. The climate signal, especially temperature, appears to be the strongest control on glacier behavior during the last millennium.

  7. Early and abrupt retreat of the Laurentide Ice Sheet margin from the Mackenzie River valley, southern Northwest Territories

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Froese, Duane G.; Gosse, John C.; Yang, Guang; McKenna, Jillian; Hidy, Alan J.

    2017-04-01

    The detachment of the Laurentide Ice Sheet margin from the Canadian Cordillera opened the present-day drainage route of the Mackenzie River to the Arctic Ocean and an ice-free corridor that allowed for migration of species between Beringia and the mid-latitudes of North America. The existing ice-margin chronology depicts the southern reach of the Mackenzie River between 61 and 63° N as glaciated until about 13 ka, representing the last portion of the Laurentide Ice Sheet margin abutting the eastern foot of the Cordillera. A substantial retreat of the ice sheet margin in this region has been suggested to have occurred during the subsequent Younger Dryas cold period, despite the fact that in many other regions ice masses stabilised or even re-grew at this time. However, until now, deglacial chronometry for this region and the western LIS margin is sparse and consists mostly of minimum-limiting macrofossil and bulk C-14 ages from organics materials overlying glacial sediment. With the aim to bring new data on the deglaciation history of the Mackenzie River valley, we collected samples for Be-10 exposure dating from glacial erratic boulders in the southern Franklin Mountains that bound the Mackenzie River valley from the east. The sampling elevations ranged between 1480 and 800 m a.s.l., however, the measured ages show only a weak correlation with elevation. Instead, 10 out of 12 measured samples cluster tightly around 15 ka, with the remaining two samples likely containing Be-10 inherited from previous periods of exposure. Our results thus indicate a pre-Younger Dryas rapid down-wasting of the ice sheet surface, which we infer was accompanied by an ice margin retreat to the southeast. The southern reach of the Mackenzie River valley at the eastern foot of the Cordillera was, according to our results, ice free shortly after 15 ka, with the prospect that the ice-free corridor might have opened significantly earlier than hitherto anticipated. Further research is required in the region south of our study area to establish a firm chronological control on the separation of the Cordilleran and Laurentide ice sheets and the opening of the ice free corridor.

  8. Dendrochronology and late Holocene history of Bering piedmont glacier, Alaska

    USGS Publications Warehouse

    Wiles, G.C.; Post, A.; Muller, E.H.; Molnia, B.F.

    1999-01-01

    Fluctuations of the piedmont lobe of Bering Glacier and its sublobe Steller Glacier over the past two millennia are reconstructed using 34 radiocarbon dates and tree-ring data from 16 sites across the glaciers' forelands. The general sequence of glacial activity is consistent with well-dated fluctuations of tidewater and land-terminating glaciers elsewhere along the Gulf of Alaska. Extensive forested areas along 25 km of the Bering ice margin were inundated by glacio-lacustrine and glacio-fluvial sediments during a probable ice advance shortly before 500 cal yr A.D. Regrowth of forests followed the retreating ice as early as the 7th century A.D., with frequent interruptions of tree growth due to outwash aggradation. Forests overrun by ice and buried in outwash indicate readvance about 1080 cal yr A.D. Retreat followed, with ice-free conditions maintained along the distal portions of the forefield until the early 17th century after which the ice advanced to within a few kilometers of its outer Neoglacial moraine. Ice reached this position after the mid-17th century and prior to 200 yr ago. Since the early 20th century, glacial retreat has been punctuated by periodic surges. The record from forests overrun by the nonsurging Steller Lobe shows that this western ice margin was advancing by 1250 A.D., reaching near its outer moraine after 1420 cal yr A.D. Since the late 19th century, the lobe has dominantly retreated.

  9. Late Quaternary stratigraphy of the eastern Gulf of Maine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacchus, T.S.; Belknap, D.F.

    1993-03-01

    Five distinct seismic facies describe the glacial, glacial-marine and postglacial sediments in the eastern Gulf of Maine. Regional cross-sections clearly document differences in the glacial-marine and postglacial stratigraphy between basins south of Truxton Swell, and Jordan basin to its north. Till occurs throughout the region as a thin veneer within basins, but thickens significantly over the ridges and swells separating basins. The ubiquitous presence of till suggests grounded ice occupied this area some time in the recent past. Ice-proximal glacial-marine (PGM) facies sediments of varying thickness mantle the entire area, occurring as a draped unit over pre-existing topography. Transitional glacial-marinemore » (TGM) facies also occur as a draped unit, but they show onlap onto basin margins. Sediments of the TGM facies are restricted to areas south of Truxton Swell. Ice-distal glacial-marine (DGM) facies sediments also mantle the entire area, but they occur primarily as a ponded, infilling unit. The nature and distribution of these glacial-marine facies within the eastern Gulf of Maine documents changes in the environment of deposition during deglaciation. In the authors model PGM facies sediments are considered to represent settling through the water column of coarse material from the base of an ice shelf. TGM facies sediments indicate retreat of this ice margin coupled with calving of large icebergs with significant amounts of coarse debris, DGM facies sediments indicate further retreat of the ice margin and a lessening of the influence of icebergs. Stepwise ice-margin retreat from south to north through a series of grounding lines and associated pinning points is evident by these time transgressive sedimentary facies that can be correlated across the region.« less

  10. Large-scale glacitectonic deformation in response to active ice sheet retreat across Dogger Bank (southern central North Sea) during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Phillips, Emrys; Cotterill, Carol; Johnson, Kirstin; Crombie, Kirstin; James, Leo; Carr, Simon; Ruiter, Astrid

    2018-01-01

    High resolution seismic data from the Dogger Bank in the central southern North Sea has revealed that the Dogger Bank Formation records a complex history of sedimentation and penecontemporaneous, large-scale, ice-marginal to proglacial glacitectonic deformation. These processes led to the development of a large thrust-block moraine complex which is buried beneath a thin sequence of Holocene sediments. This buried glacitectonic landsystem comprises a series of elongate, arcuate moraine ridges (200 m up to > 15 km across; over 40-50 km long) separated by low-lying ice marginal to proglacial sedimentary basins and/or meltwater channels, preserving the shape of the margin of this former ice sheet. The moraines are composed of highly deformed (folded and thrust) Dogger Bank Formation with the lower boundary of the deformed sequence (up to 40-50 m thick) being marked by a laterally extensive décollement. The ice-distal parts of the thrust moraine complex are interpreted as a "forward" propagating imbricate thrust stack developed in response to S/SE-directed ice-push. The more complex folding and thrusting within the more ice-proximal parts of the thrust-block moraines record the accretion of thrust slices of highly deformed sediment as the ice repeatedly reoccupied this ice marginal position. Consequently, the internal structure of the Dogger Bank thrust-moraine complexes can be directly related to ice sheet dynamics, recording the former positions of a highly dynamic, oscillating Weichselian ice sheet margin as it retreated northwards at the end of the Last Glacial Maximum.

  11. Quantifying the Role of Atmospheric Forcing in Ice Edge Retreat and Advance Including Wind-Wave Coupling

    DTIC Science & Technology

    2015-09-30

    Quantifying the Role of Atmospheric Forcing in Ice Edge Retreat and Advance Including Wind- Wave Coupling Peter S. Guest (NPS Technical Contact) Naval...surface fluxes and ocean waves in coupled models in the Beaufort and Chukchi Seas. 2. Understand the physics of heat and mass transfer from the ocean...to the atmosphere. 3. Improve forecasting of waves on the open ocean and in the marginal ice zone. 2 OBJECTIVES 1. Quantifying the open-ocean

  12. Simple model of melange and its influence on rapid ice retreat in a large-scale Antarctic ice sheet model.

    NASA Astrophysics Data System (ADS)

    Pollard, D.; Deconto, R. M.

    2017-12-01

    Theory, modeling and observations point to the prospect of runaway grounding-line retreat and marine ice loss from West Antarctica and major East Antarctic basins, in response to climate warming. These rapid retreats are associated with geologic evidence of past high sea-level stands, and pose a threat of drastic sea-level rise in the future.Rapid calving of ice from deep grounding lines generates substantial downstream melange (floating ice debris). It is unknown whether this melange has a significant effect on ice dynamics during major Antarctic retreats, through clogging of seaways and back pressure at the grounding line. Observations in Greenland fjords suggest that melange can have a significant buttressing effect, but the lateral scales of Antarctic basins are an order of magnitude larger (100's km compared to 10's km), with presumably much less influence of confining margins.Here we attempt to include melange as a prognostic variable in a 3-DAntarctic ice sheet-shelf model. Continuum mechanics is used as aheuristic representation of discrete particle physics. Melange is createdby ice calving and cliff failure. Its dynamics are treated similarly to ice flow, but with little or no resistance to divergence. Melange providesback pressure where adjacent to grounded tidewater ice faces or ice-shelf edges. We examine the influence of the new melange component during rapid Antarctic retreat in warm-Pliocene and future warming scenarios.

  13. The glacial geomorphology of the Lago Buenos Aires and Lago Puerreydón ice lobes, Central Patagonia

    NASA Astrophysics Data System (ADS)

    Bendle, Jacob; Thorndycraft, Varyl; Palmer, Adrian

    2016-04-01

    Patagonia is ideally located for reconstructions of late Quaternary ice-climate interaction(s) in the Southern Hemisphere mid-latitudes, yet many questions remain concerning post-LGM ice sheet retreat dynamics across the region. While modern-day glaciation is restricted to three small icefields (the North and South Patagonian and Cordillera Darwin icefields), during the Quaternary, and at the LGM, episodes of significant ice advance culminated in an expansive Patagonian ice sheet (PIS) centered over the southern Andes, for which a long and well-preserved landform record exists. Previous mapping in the region has either aimed to achieve regional coverage, necessarily omitting more subtle/complex features suggestive of certain ice-marginal processes, or has focused on the identification of palaeo-ice limits (e.g. moraine ridges) for geochronological applications, with little attention given to other (e.g. glaciofluvial, glaciolacustrine) features that are significant for understanding post-LGM ice sheet retreat dynamics. This poster presents a comprehensive and highly detailed (<30m spatial resolution) map of the glacial geomorphology of the Lago Buenos Aires (46.4°S) and Lago Puerreydón (47.2°S) ice lobes, major outlet glaciers of the central sector of the former PIS. The map allows refined reconstructions of glacial and, in particular, deglacial ice-marginal processes, and will underpin further analysis on the retreat history of the palaeo-ice lobes using high-resolution lithostratigraphic (varve) analyses.

  14. A comparison of Holocene fluctuations of the eastern and western margins of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Levy, L.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Applegate, P. J.; Howley, J.; Axford, Y.

    2013-12-01

    Determining how the Greenland Ice Sheet (GrIS) responded to past temperature fluctuations is important for assessing its future stability in a changing climate. We present a record of the Holocene extents of the western GrIS margin near Kangerlussuaq (67.0°N, 50.7°W) and compare this with the past fluctuations of Bregne ice cap (71°N, 25.6° W), a small ice cap in the Scoresby Sund region 90 km from the eastern GrIS margin, to examine the mechanisms that influenced past ice margin fluctuations. The past extents of the Bregne ice cap are a proxy for the climatic conditions that influenced the nearby GrIS margin. We used glacial geomorphic mapping, 10Be dating of boulders and bedrock, and sediment cores from proglacial and non-glacial lakes. In western Greenland, 10Be ages on the Keglen moraines, 13 km west of the current GrIS margin and the Ørkendalen moraines, ≤2 km west of the current ice margin date to 7.3 × 0.1 ka (n=6) and 6.8 × 0.3 ka (n=9), respectively. Fresh moraines, ≤50 m from the current ice margin date to AD 1830-1950 and are likely associated with advances during the Little Ice Age (LIA). In some areas, the LIA moraines lie stratigraphically above the Ørkendalen moraines, indicating the GrIS was inboard of the Ørkendalen limit from 6.8 ka to the 20th century. In eastern Greenland, 10Be ages show that Bregne ice cap retreated within its late Holocene limit by 10.7 ka. A lack of clastic sediment in a proglacial lake suggests the ice cap was smaller or completely absent from ~10-2.6 ka. A snowline analysis indicates that temperatures ~0.5°C warmer than present would render the entire ice cap into an ablation zone. Glacial silts in the proglacial lake at ~2.6 and ~1.9 cal kyr BP to present indicate advances of Bregne ice cap. Fresh moraines ≤200 m of Bregne ice cap were deposited ≤2.6 cal kyr BP and mark the largest advance of the Holocene. Both the western GrIS margin and Bregne ice cap were influenced by Northern Hemisphere summer insolation during the Holocene. The western GrIS margin retreated significantly and Bregne ice cap likely disappeared during the warm early to middle Holocene. 10Be ages (10.7 ka) outboard of the late Holocene moraines at Bregne ice cap compared to those outside of the LIA moraines near Kangerlussuaq (6.8 ka) differ by ~4 kyr. This disparity in ages may have been caused by a large late Holocene advance in eastern Greenland, or perhaps the western GrIS margin retreated farther inland during the middle Holocene. Decreasing Northern Hemisphere summer insolation during the late Holocene, combined with a strong, cold East Greenland Current near Scoresby Sund may have influenced a significant ice cap advance. The temporal pattern of the responses of the eastern and western ice margins to Holocene climate changes may be indicative of how the GrIS will respond to future changes.

  15. Ice stream behaviour in the western sector of the North Sea during the end of the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Roberts, David; Evans, David; Clark, Chris; Bateman, Mark; Livingstone, Stephen; Medialdea, Alicia; Cofaigh, Colm O.; Grimoldi, Elena; Callard, Louise; Dove, Dayton; Stewart, Heather; Davies, Bethan; Chiverell, Richard

    2016-04-01

    During the last glacial cycle the East coast of the UK was overrun by the British-Irish Ice Sheet (BIIS) flowing eastwards and southwards. In recent years it has become evident that several ice streams including the Tweed, Tyne, and Stainmore Gap ice streams, as well as the late stage North Sea Lobe (NSL), all played a role in shaping the glacial landscape during this period, but understanding the flow phasing of these ice streams during advance and collapse has proved challenging. Here we present new data from the seafloor collected during recent work undertaken by the Britice Chrono and Glanam project teams during cruise JC123 in the North Sea. Sub-bottom seafloor data together with new swath data clearly show that the final phases of the collapse of the NSL were controlled by ice sourced from the Firth of Forth ice stream which deglaciated in a NNW trajectory. Other ice streams being fed from the west (e.g. Stainmore, Tyne, Tweed) were not influential in final phase ice retreat from the southern North Sea. The Forth ice imprint is characterised by several grounding zone/till wedges marking dynamic, oscillatory retreat of the ice as it retreated along an offshore corridor between North Yorkshire and Northumberland. Repeated packages of tills, ice marginal and glaciomarine sediments, which drape glacially scoured bedrock terrain and drumlins along this corridor, point to marine inundation accompanying ice retreat. New TCN ages suggest decoupling of the Tyne Gap ice stream and NSL between 17.8 and 16.5 ka and this coincides with rapid, regional collapse of the NSL between 17.2 and 16.0 ka along the Yorkshire and Durham coasts (new OSL ages; Britice Chrono). Hence, both the central and northern sectors of the BIIS were being strongly influenced by marine margin instability during the latter phases of the last glacial cycle.

  16. The extent and timing of the last British-Irish Ice Sheet offshore of west Ireland-preliminary findings

    NASA Astrophysics Data System (ADS)

    Peters, Jared; Benetti, Sara; Dunlop, Paul; Cofaigh, Colm Ó.

    2014-05-01

    Recently interpreted marine geophysical data from the western Irish shelf has provided the first direct evidence that the last British-Irish Ice Sheet (BIIS) extended westwards onto the Irish continental shelf as a grounded ice mass composed of several lobes with marine-terminating margins. Marine terminating ice margins are known to be sensitive to external forcing mechanisms and currently there is concern regarding the future stability of marine based ice sheets, such as the West Antarctic Ice Sheet, in a warming world. Given its position, the glaciated western Irish continental shelf is a prime location to investigate the processes of how marine-based ice sheets responded to past climatic and oceanic events, which may in turn help us better predict the future trajectory of the marine sectors of modern Ice Sheets. However, despite the potential importance of the former Irish ice margin to our understanding of ice sheet behaviour, the timing and nature of its advance and retreat is currently poorly understood. This study aims to describe the depositional history of the last BIIS on the continental shelf west of Ireland and age-constrain the rate of retreat of two ice lobes that extended from Galway Bay and Clew Bay. This is being accomplished through a multifaceted analysis of at least 29 sediment cores gathered across the continental shelf offshore of counties Galway and Mayo, Ireland. This poster shows results from initial sedimentological descriptions of cores from the mid to outer shelf, which support previous geomorphic interpretations of BIIS history. Preliminary palaeoenvironmental results from ongoing micropaleontological analyses are also discussed and provide new data that verifies sedimentary interpretations on ice proximity. Finally, results from several radiocarbon dates are discussed, which limit these deposits to the last glacial maximum and constrain the timings of ice advance and retreat on the continental shelf west of Ireland.

  17. Late Weichselian ice-sheet dynamics and deglaciation history of the northern Svalbard margin

    NASA Astrophysics Data System (ADS)

    Fransner, O.; Noormets, R. R. N. N.; Flink, A.; Hogan, K.; Dowdeswell, J. A.; O'Regan, M.; Jakobsson, M.

    2016-12-01

    The glacial evolution of the northern Svalbard margin is poorly known compared with the western margin. Gravity cores, swath bathymetric, sub-bottom acoustic and 2D airgun data are used to investigate the Late Weichselian Svalbard-Barents Ice Sheet history on the northern Svalbard margin. Prograding sequences in Kvitøya and Albertini trough mouths (TMs) indicate ice streaming to the shelf edge multiple times during the Quaternary. While Kvitøya Trough has an associated trough-mouth fan (TMF), Albertini TM is cut back into the shelf edge. Down-faulted bedrock below Albertini TM suggests larger sediment accommodation space there, explaining the absence of a TMF. The bathymetry indicates that ice flow in Albertini Trough was sourced from Duvefjorden and Albertinibukta. Exposed crystalline bedrock likely kept the two ice flows separated before merging north of Karl XII-Øya. Subglacial landforms in Rijpfjorden and Duvefjorden indicate that both fjords accommodated northward-flowing ice streams during the LGM. The deeper fjord basin and higher elongation ratios of landforms in Duvefjorden suggest a more focused and/or larger ice flow there. Easily erodible sedimentary rocks are common in Duvefjorden, which may explain different ice flow dynamics in these fjords. Kvitøya TMF is flanked by gullies, probably formed through erosive downslope gravity flows triggered by sediment-laden meltwater during early deglaciation. Glacial landforms in Albertini Trough comprise retreat-related landforms indicating slow deglaciation. Iceberg scours in Albertini Trough suggest the importance of calving for mass-loss. Sets of De Geer moraines in Rijpfjorden imply that slow, grounded retreat continued in <210 m water depth. Lack of retreat-related landforms in deeper areas of Rijpfjorden and in Duvefjorden indicates floating glacier fronts influenced by calving. 14C ages suggest that deglaciation of inner Rijpfjorden and central Duvefjorden were complete before 10,434 cal a BP and 10,779 cal a BP respectively.

  18. Retreat of the Southwest Labrador Sector of the Laurentide Ice Sheet During the Last Termination

    NASA Astrophysics Data System (ADS)

    Lowell, T. V.; Kelly, M. A.; Fisher, T. G.; Barnett, P. J.; Howley, J. A.; Zimmerman, S. R. H.

    2016-12-01

    Large ice sheets are suspected to have played a major role in forcing the transitions from glacial to interglacial conditions, known as terminations. To improve the understanding of the role of the Laurentide Ice Sheet in the last termination, we present a chronology of ice sheet recession from just subsequent to end of the Last Glacial Maximum (LGM) to the early Holocene. We focus on the retreat of the southwest Labrador Sector of the ice sheet in northern Minnesota and adjacent Ontario. Multiple moraines in this region mark an overall pattern of ice recession interrupted by stillstands and/or minor readvances. Radiocarbon and 10Be ages from 50 sites along this 400 km-long transect indicate that the oldest moraine complex, the Vermillion moraine, formed at 17.0 ka. Subsequently, the ice margin retreated with minor standstills until the Dog Lake moraine was deposited between 12.7 and 12.3 ka. Recession from the Dog Lake moraine began by 12.3 ka the ice margin receded 150 km to the north-northeast by 10.7 ka. In general, the radiocarbon and 10Be ages define a pattern of near-continuous ice sheet retreat. Deposition of the Vermillion and Dog Lake moraines occurred at the beginning of Heinrich stadials 1 ( 17.5-14.5 ka) and 0 ( 12.9-11.7 ka), respectively, but ice recession occurred throughout the remainder of these stadials. This pattern is different from climate conditions registered by Greenland ice cores which show cold conditions from the end of the LGM until the Bølling warming at 14.5 ka, and throughout the Younger Dryas ( 12.9-11.7 ka). We suggest that the pattern of ice sheet recession is more similar to mountain glaciers in the southern mid-latitudes and tropics, and that Heinrich stadials may have been characterized by warming at least in the summertime that influenced near global ice recession.

  19. Middle to late Holocene fluctuations of the Vindue glacier, an outlet glacier of the Greenland Ice Sheet, central East Greenland.

    NASA Astrophysics Data System (ADS)

    Levy, L.; Hammer, S. K.; Kelly, M. A.; Lowell, T. V.; Hall, B. L.; Howley, J. A.; Wilcox, P.; Medford, A.

    2014-12-01

    The margins of the Greenland Ice Sheet are currently responding to present-day climate changes. Determining how the ice sheet margins have responded to past climate changes provides a means to understand how they may respond in the future. Here we present a multi-proxy record used to reconstruct the Holocene fluctuations of the Vindue glacier, an ice sheet outlet glacier in eastern Greenland. Lake sediment cores from Qiviut lake (informal name), located ~0.75 km from the present-day Vindue glacier margin contain a sharp transition from medium sand/coarse silt to laminated gyttja just prior to 6,340±130 cal yr BP. We interpret this transition to indicate a time when the Vindue glacier retreated sufficiently to cease glacial sedimentation into the lake basin. Above this contact the core contains laminated gyttja with prominent, ~0.5 cm thick, silt layers. 10Be ages of boulders on bedrock located between Qiviut lake and the present-day ice margin date to 6.81 ± 0.67 ka (n = 3), indicating the time of deglaciation. These ages also agree well with the radiocarbon age of the silt-gyttja transition in Qiviut lake cores. 10Be ages on boulders on bedrock located more proximal to the ice margin (~0.5 km) yield ages of 2.67 ± 0.18 ka (n = 2). These ages indicate either the continued recession of the ice margin during the late Holocene or an advance at this time. Boulders on the historical moraines show that ice retreated from the moraine by AD 1620 ± 20 yrs (n = 2). These results are in contrast with some areas of the western margin of the ice sheet where 10Be ages indicate that the ice sheet was behind its Historical limit from the middle Holocene (~6-7 ka) to Historical time. This may indicate that the eastern margin may have responded to late Holocene cooling more sensitively or that the advance associated with the Historical moraines overran any evidence of late Holocene fluctuations along the western margin of the ice sheet.

  20. Marine evidence of a deconvolving Antarctic Ice Sheet during post-LGM retreat of the Ross Sea sector

    NASA Astrophysics Data System (ADS)

    Prothro, L. O.; Yokoyama, Y.; Simkins, L. M.; Anderson, J. B.; Majewski, W.; Yamane, M.; Ohkouchi, N.

    2017-12-01

    Predictive models of ice sheet and sea level change are dependent on observational data of ice-sheet behavior for model testing and tuning. The geologic record contains a wealth of information about ice-sheet dynamics, with fewer logistical, spatial, and temporal limitations than are involved in data acquisition along contemporary ice margins. However, past ice-sheet behavior is still largely uncertain or contested due to issues with obtaining meaningful radiocarbon dates. We minimize bias from glacially-reworked carbon and limitations from unknown geomorphic context and uncertainty in sediment facies identification by using careful sedimentary analyses within a geomorphic framework, as well as selection of appropriate dating methods. Our study area, the Ross Sea sector of Antarctica, is the primary drainage outlet for 25% of the continent's grounded ice. During the Last Glacial Maximum, the low-profile, marine-based West Antarctic Ice Sheet (WAIS) and the steeper profile, largely land-based East Antarctic Ice Sheet (EAIS) converged in the Ross Sea to flow out to or near the continental shelf edge. Geomorphic and sedimentary data reveal that during their subsequent retreat to form the Ross Sea Embayment, the two ice sheets behaved differently, with the WAIS rapidly retreating tens of kilometers followed by extended pauses, while the EAIS retreated steadily, with shorter (decadal- to century-long) pauses. This behavior leads us to believe that the two ice sheets may have contributed diachronously to sea level. By acquiring accurate timing of grounding line retreat, we are able to calculate volumes of ice lost throughout deglaciation, as well as associated sea level contributions. In addition, we attempt to rectify the contradicting marine and terrestrial interpretations of retreat patterns from the Ross Sea continental shelf.

  1. Contribution of the Greenland Ice Sheet to Sea-Level over the Next Millennium

    NASA Astrophysics Data System (ADS)

    Aschwanden, A.; Fahnestock, M. A.; Truffer, M.

    2017-12-01

    The contribution of Greenland's outlet glaciers to sea-level remains a wild card in global sea level predictions but progress in mapping ice thickness combined with high-resolution flow modeling now allow to revisit questions about the long-term stability of the ice sheet. Here we present the first outlet glacier resolving assessment of Greenland's contribution to sea-level over the next millennium. We find that increased ice discharge resulting from acceleration of outlet glaciers due to ice melt at tidewater glacier margins dominates mass loss during the 21st century. However, as the ice sheet surfaces lowers, surface melt increases and over the course of the millennium, the relative contribution of ice discharge to total mass loss decreases. By the end of the 22nd century, most outlet glaciers in the north-west will have retreated out of tide-water, while in south-east enhanced precipitation partially offsets high ice discharge. The outlet glaciers of the central west coast, most notably Jakobshavn Isbrae, play a key role in dynamic mass loss due to their submarine connection to the interior reservoir. We find that coast-ward advection of cold ice from the interior counteracts outlet glacier acceleration by increasing ice viscosity and thereby reducing vertical shearing. Under the RCP 8.5 scenario, the ice margin in north and north-east Greenland retreats far enough to reach the vast interior where the subglacial topography is below sea level. This leads to a dramatic retreat in the second part of the millenium, and Greenland could shrink to 10% of its current volume by the end of the millennium.

  2. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    This paper reconstructs the deglaciation of the Laurentide Ice Sheet (LIS; including the Innuitian Ice Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in ice streaming and the associated changes in flow patterns and ice divides. We build on a recent inventory of Laurentide ice streams and use an existing ice margin chronology to produce the first detailed transient reconstruction of the ice stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the ice streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the ice sheet lost its marine margin. Ice streams with a terrestrial ice margin in the west and south were more transient and ice flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide ice saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the ice streams in this region switched off at or shortly after the LGM. In contrast, the ice streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the ice sheet in several sectors. We tentatively ascribe the switching-on of some major ice streams during this period (e.g. M'Clintock Channel Ice Stream at the north-west margin), but for other large ice streams whose timing partially overlaps with the YD, the drivers are less clear and ice-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat rates markedly increased after the YD and the ice sheet became limited to the Canadian Shield. This hard-bed substrate brought a change in the character of ice streaming, which became less frequent but generated much broader terrestrial ice streams. The final collapse of the ice sheet saw a series of small ephemeral ice streams that resulted from the rapidly changing ice sheet geometry in and around Hudson Bay. Our reconstruction indicates that the LIS underwent a transition from a topographically-controlled ice drainage network at the LGM to an ice drainage network characterised by less frequent, broad ice streams during the later stages of deglaciation. These deglacial ice streams are mostly interpreted as a reaction to localised ice-dynamical forcing (flotation and calving of the ice front in glacial lakes and transgressing sea; basal de-coupling due to large amount of meltwater reaching the bed, debuttressing due to rapid changes in ice sheet geometry) rather than as conveyors of excess mass from the accumulation area of the ice sheet. At an ice sheet scale, the ice stream drainage network became less widespread and less efficient with the decreasing size of the deglaciating ice sheet, the final elimination of which was mostly driven by surface melt.

  3. Coupling of Waves, Turbulence and Thermodynamics Across the Marginal Ice Zone

    DTIC Science & Technology

    2013-09-30

    ice . The albedo of sea ice is large compared to open water, and most of the incoming solar radiation...ocean and the ice pack where the seasonal retreat of the main ice pack takes place. It is a highly variable sea ice environment, usually comprised of...many individual floes of variable shape and size and made of mixed ice types, from young forming ice to fragmented multiyear ice . The presence of sea

  4. Phased occupation and retreat of the last British-Irish Ice Sheet in the southern North Sea; geomorphic and seismostratigraphic evidence of a dynamic ice lobe

    NASA Astrophysics Data System (ADS)

    Dove, Dayton; Evans, David J. A.; Lee, Jonathan R.; Roberts, David H.; Tappin, David R.; Mellett, Claire L.; Long, David; Callard, S. Louise

    2017-05-01

    Along the terrestrial margin of the southern North Sea, previous studies of the MIS 2 glaciation impacting eastern Britain have played a significant role in the development of principles relating to ice sheet dynamics (e.g. deformable beds), and the practice of reconstructing the style, timing, and spatial configuration of palaeo-ice sheets. These detailed terrestrially-based findings have however relied on observations made from only the outer edges of the former ice mass, as the North Sea Lobe (NSL) of the British-Irish Ice Sheet (BIIS) occupied an area that is now almost entirely submarine (c.21-15 ka). Compounded by the fact that marine-acquired data have been primarily of insufficient quality and density, the configuration and behaviour of the last BIIS in the southern North Sea remains surprisingly poorly constrained. This paper presents analysis of a new, integrated set of extensive seabed geomorphological and seismo-stratigraphic observations that both advances the principles developed previously onshore (e.g. multiple advance and retreat cycles), and provides a more detailed and accurate reconstruction of the BIIS at its southern-most extent in the North Sea. A new bathymetry compilation of the region reveals a series of broad sedimentary wedges and associated moraines that represent several terminal positions of the NSL. These former still-stand ice margins (1-4) are also found to relate to newly-identified architectural patterns (shallow stacked sedimentary wedges) in the region's seismic stratigraphy (previously mapped singularly as the Bolders Bank Formation). With ground-truthing constraint provided by sediment cores, these wedges are interpreted as sub-marginal till wedges, formed by complex subglacial accretionary processes that resulted in till thickening towards the former ice-sheet margins. The newly sub-divided shallow seismic stratigraphy (at least five units) also provides an indication of the relative event chronology of the NSL. While there is a general record of south-to-north retreat, seismic data also indicate episodes of ice-sheet re-advance suggestive of an oscillating margin (e.g. MIS 2 maximum not related to first incursion of ice into region). Demonstrating further landform interdependence, geographically-grouped sets of tunnel valleys are shown to be genetically related to these individual ice margins, providing clear insight into how meltwater drainage was organised at the evolving termini of this dynamic ice lobe. The newly reconstructed offshore ice margins are found to be well correlated with previously observed terrestrial limits in Lincolnshire and E. Yorkshire (Holderness) (e.g. MIS 2 maximum and Withernsea Till). This reconstruction will hopefully provide a useful framework for studies targeting the climatic, mass-balance, and external glaciological factors (i.e. Fennoscandian Ice Sheet) that influenced late-stage advance and deglaciation, important for accurately characterising both modern and palaeo-ice sheets.

  5. Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Jeong, Seongsu; Howat, Ian M.; Bassis, Jeremy N.

    2016-11-01

    Pine Island Glacier has undergone several major iceberg calving events over the past decades. These typically occurred when a rift at the heavily fractured shear margin propagated across the width of the ice shelf. This type of calving is common on polar ice shelves, with no clear connection to ocean-ice dynamic forcing. In contrast, we report on the recent development of multiple rifts initiating from basal crevasses in the center of the ice shelf, resulted in calving further upglacier than previously observed. Coincident with rift formation was the sudden disintegration of the ice mélange that filled the northern shear margin, resulting in ice sheet detachment from this margin. Examination of ice velocity suggests that this internal rifting resulted from the combination of a change in ice shelf stress regime caused by disintegration of the mélange and intensified melting within basal crevasses, both of which may be linked to ocean forcing.

  6. Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes

    PubMed Central

    Miles, Bertie W. J.; Stokes, Chris R.; Jamieson, Stewart S. R.

    2016-01-01

    The dynamics of ocean-terminating outlet glaciers are an important component of ice-sheet mass balance. Using satellite imagery for the past 40 years, we compile an approximately decadal record of outlet-glacier terminus position change around the entire East Antarctic Ice Sheet (EAIS) marine margin. We find that most outlet glaciers retreated during the period 1974–1990, before switching to advance in every drainage basin during the two most recent periods, 1990–2000 and 2000–2012. The only exception to this trend was in Wilkes Land, where the majority of glaciers (74%) retreated between 2000 and 2012. We hypothesize that this anomalous retreat is linked to a reduction in sea ice and associated impacts on ocean stratification, which increases the incursion of warm deep water toward glacier termini. Because Wilkes Land overlies a large marine basin, it raises the possibility of a future sea level contribution from this sector of East Antarctica. PMID:27386519

  7. Pan-ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes.

    PubMed

    Miles, Bertie W J; Stokes, Chris R; Jamieson, Stewart S R

    2016-05-01

    The dynamics of ocean-terminating outlet glaciers are an important component of ice-sheet mass balance. Using satellite imagery for the past 40 years, we compile an approximately decadal record of outlet-glacier terminus position change around the entire East Antarctic Ice Sheet (EAIS) marine margin. We find that most outlet glaciers retreated during the period 1974-1990, before switching to advance in every drainage basin during the two most recent periods, 1990-2000 and 2000-2012. The only exception to this trend was in Wilkes Land, where the majority of glaciers (74%) retreated between 2000 and 2012. We hypothesize that this anomalous retreat is linked to a reduction in sea ice and associated impacts on ocean stratification, which increases the incursion of warm deep water toward glacier termini. Because Wilkes Land overlies a large marine basin, it raises the possibility of a future sea level contribution from this sector of East Antarctica.

  8. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth

    NASA Astrophysics Data System (ADS)

    Cook, Carys P.; van de Flierdt, Tina; Williams, Trevor; Hemming, Sidney R.; Iwai, Masao; Kobayashi, Munemasa; Jimenez-Espejo, Francisco J.; Escutia, Carlota; González, Jhon Jairo; Khim, Boo-Keun; McKay, Robert M.; Passchier, Sandra; Bohaty, Steven M.; Riesselman, Christina R.; Tauxe, Lisa; Sugisaki, Saiko; Galindo, Alberto Lopez; Patterson, Molly O.; Sangiorgi, Francesca; Pierce, Elizabeth L.; Brinkhuis, Henk; Klaus, Adam; Fehr, Annick; Bendle, James A. P.; Bijl, Peter K.; Carr, Stephanie A.; Dunbar, Robert B.; Flores, José Abel; Hayden, Travis G.; Katsuki, Kota; Kong, Gee Soo; Nakai, Mutsumi; Olney, Matthew P.; Pekar, Stephen F.; Pross, Jörg; Röhl, Ursula; Sakai, Toyosaburo; Shrivastava, Prakash K.; Stickley, Catherine E.; Tuo, Shouting; Welsh, Kevin; Yamane, Masako

    2013-09-01

    Warm intervals within the Pliocene epoch (5.33-2.58 million years ago) were characterized by global temperatures comparable to those predicted for the end of this century and atmospheric CO2 concentrations similar to today. Estimates for global sea level highstands during these times imply possible retreat of the East Antarctic ice sheet, but ice-proximal evidence from the Antarctic margin is scarce. Here we present new data from Pliocene marine sediments recovered offshore of Adélie Land, East Antarctica, that reveal dynamic behaviour of the East Antarctic ice sheet in the vicinity of the low-lying Wilkes Subglacial Basin during times of past climatic warmth. Sedimentary sequences deposited between 5.3 and 3.3 million years ago indicate increases in Southern Ocean surface water productivity, associated with elevated circum-Antarctic temperatures. The geochemical provenance of detrital material deposited during these warm intervals suggests active erosion of continental bedrock from within the Wilkes Subglacial Basin, an area today buried beneath the East Antarctic ice sheet. We interpret this erosion to be associated with retreat of the ice sheet margin several hundreds of kilometres inland and conclude that the East Antarctic ice sheet was sensitive to climatic warmth during the Pliocene.

  9. Late Wisconsinan glaciation and postglacial relative sea-level change on western Banks Island, Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Lakeman, Thomas R.; England, John H.

    2013-07-01

    The study revises the maximum extent of the northwest Laurentide Ice Sheet (LIS) in the western Canadian Arctic Archipelago (CAA) during the last glaciation and documents subsequent ice sheet retreat and glacioisostatic adjustments across western Banks Island. New geomorphological mapping and maximum-limiting radiocarbon ages indicate that the northwest LIS inundated western Banks Island after ~ 31 14C ka BP and reached a terminal ice margin west of the present coastline. The onset of deglaciation and the age of the marine limit (22-40 m asl) are unresolved. Ice sheet retreat across western Banks Island was characterized by the withdrawal of a thin, cold-based ice margin that reached the central interior of the island by ~ 14 cal ka BP. The elevation of the marine limit is greater than previously recognized and consistent with greater glacioisostatic crustal unloading by a more expansive LIS. These results complement emerging bathymetric observations from the Arctic Ocean, which indicate glacial erosion during the Last Glacial Maximum (LGM) to depths of up to 450 m.

  10. Evidence of marine ice-cliff instability in Pine Island Bay from iceberg-keel plough marks

    NASA Astrophysics Data System (ADS)

    Wise, Matthew G.; Dowdeswell, Julian A.; Jakobsson, Martin; Larter, Robert D.

    2017-10-01

    Marine ice-cliff instability (MICI) processes could accelerate future retreat of the Antarctic Ice Sheet if ice shelves that buttress grounding lines more than 800 metres below sea level are lost. The present-day grounding zones of the Pine Island and Thwaites glaciers in West Antarctica need to retreat only short distances before they reach extensive retrograde slopes. When grounding zones of glaciers retreat onto such slopes, theoretical considerations and modelling results indicate that the retreat becomes unstable (marine ice-sheet instability) and thus accelerates. It is thought that MICI is triggered when this retreat produces ice cliffs above the water line with heights approaching about 90 metres. However, observational evidence confirming the action of MICI has not previously been reported. Here we present observational evidence that rapid deglacial ice-sheet retreat into Pine Island Bay proceeded in a similar manner to that simulated in a recent modelling study, driven by MICI. Iceberg-keel plough marks on the sea-floor provide geological evidence of past and present iceberg morphology, keel depth and drift direction. From the planform shape and cross-sectional morphologies of iceberg-keel plough marks, we find that iceberg calving during the most recent deglaciation was not characterized by small numbers of large, tabular icebergs as is observed today, which would produce wide, flat-based plough marks or toothcomb-like multi-keeled plough marks. Instead, it was characterized by large numbers of smaller icebergs with V-shaped keels. Geological evidence of the form and water-depth distribution of the plough marks indicates calving-margin thicknesses equivalent to the threshold that is predicted to trigger ice-cliff structural collapse as a result of MICI. We infer rapid and sustained ice-sheet retreat driven by MICI, commencing around 12,300 years ago and terminating before about 11,200 years ago, which produced large numbers of icebergs smaller than the typical tabular icebergs produced today. Our findings demonstrate the effective operation of MICI in the past, and highlight its potential contribution to accelerated future retreat of the Antarctic Ice Sheet.

  11. The Timing of Arctic Sea Ice Advance and Retreat as an Indicator of Ice-Dependent Marine Mammal Habitat

    NASA Astrophysics Data System (ADS)

    Stern, H. L.; Laidre, K. L.

    2013-12-01

    The Arctic is widely recognized as the front line of climate change. Arctic air temperature is rising at twice the global average rate, and the sea-ice cover is shrinking and thinning, with total disappearance of summer sea ice projected to occur in a matter of decades. Arctic marine mammals such as polar bears, seals, walruses, belugas, narwhals, and bowhead whales depend on the sea-ice cover as an integral part of their existence. While the downward trend in sea-ice extent in a given month is an often-used metric for quantifying physical changes in the ice cover, it is not the most relevant measure for characterizing changes in the sea-ice habitat of marine mammals. Species that depend on sea ice are behaviorally tied to the annual retreat of sea ice in the spring and advance in the fall. Changes in the timing of the spring retreat and the fall advance are more relevant to Arctic marine species than changes in the areal sea-ice coverage in a particular month of the year. Many ecologically important regions of the Arctic are essentially ice-covered in winter and ice-free in summer, and will probably remain so for a long time into the future. But the dates of sea-ice retreat in spring and advance in fall are key indicators of climate change for ice-dependent marine mammals. We use daily sea-ice concentration data derived from satellite passive microwave sensors to calculate the dates of sea-ice retreat in spring and advance in fall in 12 regions of the Arctic for each year from 1979 through 2013. The regions include the peripheral seas around the Arctic Ocean (Beaufort, Chukchi, East Siberian, Laptev, Kara, Barents), the Canadian Arctic Archipelago, and the marginal seas (Okhotsk, Bering, East Greenland, Baffin Bay, Hudson Bay). We find that in 11 of the 12 regions (all except the Bering Sea), sea ice is retreating earlier in spring and advancing later in fall. Rates of spring retreat range from -5 to -8 days/decade, and rates of fall advance range from +5 to +9 days/decade, with steeper trends in the Barents Sea. Thus the season of sparse sea-ice coverage is lengthening by about 2 weeks/decade, or 6 weeks over the period of record. The trends in all 11 regions are statistically significant. The dates of sea-ice retreat in spring and advance in fall are negatively correlated: an early spring retreat tends to be followed by a late fall advance, and vice-versa. This is a manifestation of the ice-albedo feedback: with an early sea-ice retreat, the ocean has more time to absorb heat from the sun. The extra heat is stored in the upper ocean through the summer, and must be released to the atmosphere in the fall before sea ice can begin to form, thus delaying fall freeze-up. This relationship gives some predictive power to the date of fall sea-ice advance, given the date of spring retreat. Changes have been reported in the seasonal distribution of polar bears, walruses, seals, and whales in the Arctic. We are developing metrics for potential use by the U.S. National Climate Assessment based on the timing of sea-ice advance and retreat, to be used as indicators of ice-dependent marine mammal habitat. Future work will examine connections between the phenology of Arctic marine mammals and the sea-ice indicators.

  12. Deglaciation-induced uplift of the Petermann glacier ice margin observed with InSAR

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Amelung, F.; Wdowinski, S.

    2016-12-01

    The Greenland ice sheet is rapidly shrinking with the fastest retreat and thinning occurring at the ice sheet margin and near the outlet glaciers. The changes of the ice mass cause an elastic response of the bedrock. Ice mass loss during the summer months is associated with uplift, whereas ice mass increase during the winter months is associated with subsidence.The German TerraSAR-X and TanDEM-X satellites have systematically observed selected sites along the Greenland Petermann ice sheet margin since summer 2012. Here we present ground deformation observations obtained using an InSAR time-series approach based on small baseline interferograms. We observed rapid deglaciation-induced uplift on naked bedrock near the Petermann glacier ice margin Deformation observed by InSAR is consistent with GPS vertical observations. The time series displacement data reveal not only net uplift but also the seasonal variations. There is no strong relative between displacement changes and SMB ice mass change. The seasonal variations in local area may caused by both nearby SMB changes and ice dynamic changes.

  13. Holocene ice marginal fluctuations of the Qassimiut lobe in South Greenland

    PubMed Central

    Larsen, Nicolaj K.; Find, Jesper; Kristensen, Anders; Bjørk, Anders A.; Kjeldsen, Kristian K.; Odgaard, Bent V.; Olsen, Jesper; Kjær, Kurt H.

    2016-01-01

    Knowledge about the Holocene evolution of the Greenland ice sheet (GrIS) is important to put the recent observations of ice loss into a longer-term perspective. In this study, we use six new threshold lake records supplemented with two existing lake records to reconstruct the Holocene ice marginal fluctuations of the Qassimiut lobe (QL) – one of the most dynamic parts of the GrIS in South Greenland. Times when the ice margin was close to present extent are characterized by clastic input from the glacier meltwater, whereas periods when the ice margin was behind its present day extent comprise organic-rich sediments. We find that the overall pattern suggests that the central part of the ice lobe in low-lying areas experienced the most prolonged ice retreat from ~9–0.4 cal. ka BP, whereas the more distal parts of the ice lobe at higher elevation re-advanced and remained close to the present extent during the Neoglacial between ~4.4 and 1.8 cal. ka BP. These results demonstrate that the QL was primarily driven by Holocene climate changes, but also emphasises the role of local topography on the ice marginal fluctuations. PMID:26940998

  14. Chronicling ice shelf history in the sediments left behind

    NASA Astrophysics Data System (ADS)

    Rosenheim, B. E.; Subt, C.; Shevenell, A.; Guitard, M.; Vadman, K. J.; DeCesare, M.; Wellner, J. S.; Bart, P. J.; Lee, J. I.; Domack, E. W.; Yoo, K. C.; Hayes, J. M.

    2017-12-01

    Collapsing and retreating ice shelves leave unmistakable sediment sequences on the Antarctic margin. These sequences tell unequivocal stories of collapse or retreat through a typical progression of sub-ice shelf diamicton (marking the past positions of grounding lines), sequentially overlain by a granulated facies from beneath the ice shelf, ice rafted debris from the calving line, and finally open marine sediment. The timelines to these stories, however, are troublesome. Difficulties in chronicling these stories recorded in sediment have betrayed their importance to our understanding of a warming world in many cases. The difficulties involve the concerted lack of preservation/production of calcium carbonate tests from the water column above and admixture of relict organic material from older sources of carbon. Here, we summarize our advances in the last decade of overcoming difficulties associated with the paucity of carbonate and creating chronologies of ice shelf retreat into the deglacial history of Antarctica by exploiting the range of thermochemical stability in organic matter (Ramped PyrOx) from these sediment sequences. We describe our success in comparing Ramped PyrOx 14C dates with foraminiferal dates, the relationship between sediment facies and radiocarbon age spectrum, and our ability to push limits of dating sediments deposited underneath ice shelves. With attention to the caveats of recent dating developments, we summarize expectations that geologist should have when coring the Antarctic margins to discern deglacial history. Perhaps most important among these expectations is the ability to design coring expeditions without regard to our ability to date calcium carbonate microfossils within the cores, in essence removing suspense of knowing whether cores taken from crucial paleo ice channels and other bathymetric features will ultimately yield a robust chronology for its sedimentary sequence.

  15. Glacial-marine sediments record ice-shelf retreat during the late Holocene in Beascochea Bay on the western margin of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Hardin, L. A.; Wellner, J. S.

    2010-12-01

    Beascochea Bay has an overall rapid rate of sedimentation due to retreating fast-flowing ice, and thus contains high-resolution records of Antarctica’s glacial and climate history. Beascochea Bay is a 16 km long by 8 km wide bay located on the western margin of the Antarctica Peninsula, centered between Anvers Island and Renaud Island, but open to the Bellingshausen Sea. Currently, three tidewater glaciers draining the Bruce Plateau of Graham Land enter into the fjords of Beascochea Bay, releasing terrigenous sediments which have left a record of the fluctuations of the Antarctic Peninsula Ice Cap since the grounded ice decoupled from the seafloor after the last glacial maximum. These three glaciers have played a significant role in providing sediment to the main basin, allowing a detailed sediment facies analysis to be conducted from eight sediment cores which were collected during the austral summer of 2007. Pebbly silty clay sediment cores, along with 3.5 kHz seismic data and multibeam swath bathymetry data, are integrated to reconstruct a glacial retreat timeline for the middle to late Holocene, which can be compared to the recent retreat rates over the last century. Paleoenvironment of deposition is determined by mapping lateral facies changes from the side fjords (proximal) to the outer basin (distal), as each region records the transition from glacial-marine sediments to open-marine sediments. As the ice retreated from the outer basin to the inner basin, and most recently leaving the side fjords, each facies deposited can be age-constrained by radiocarbon, 210Pb, and 137Cs dating methods. A distinct 137Cs signal is readily seen in two kasten cores from a side fjord and the inner basin of Beascochea Bay. This dating method revealed an average sedimentation rate of 2.7 mm per year for approximately the last century, which is comparable to 210Pb rates obtained in other studies. Lithology variations in each sediment core record indications of ice-shelf influence in Beascochea Bay throughout the Holocene deglaciation. The distinctively laminated sub-ice shelf facies can be clearly seen in the x-rays of these cores, and can be easily distinguished from the poorly sorted glacial-marine facies and the greenish finer-grained facies deposited in open-marine conditions. A 14 m long sediment core taken from the outer basin of Beascochea Bay recovered the greatest length of sediment and dates back to the middle Holocene. X-rays of this core show a possible mid-Holocene retreat of the ice shelf followed by intermittent advance and retreat that precedes the most recent retreat. The inner basin of Beascochea Bay has been without an ice shelf for the last 200 years, based on the sedimentation rates of the last century projected downcore.

  16. Rapid Holocene thinning of outlet glaciers followed by readvance in the western Ross Embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Jones, R. S.; Whitmore, R.; Mackintosh, A.; Norton, K. P.; Eaves, S.; Stutz, J.

    2017-12-01

    Investigating Antarctic deglaciation following the LGM provides an opportunity to better understand patterns, mechanisms and drivers of ice sheet retreat. In the Ross Sea sector, geomorphic features preserved on the seafloor indicate that streaming East Antarctic outlet glaciers once extended >100 km offshore of South Victoria Land prior to back-stepping towards their modern configurations. In order to adequately interpret the style and causes of this retreat, the timing and magnitude of corresponding ice thickness change is required. We present new constraints on ice surface lowering from Mawson Glacier, an outlet of the East Antarctic Ice Sheet that flows into the western Ross Sea. Surface-exposure (10Be) ages from samples collected in elevation transects above the modern ice surface reveal that rapid thinning occurred at 5-8 ka, broadly coeval with new ages of grounding-line retreat at 6 ka and rapid thinning recorded at nearby Mackay Glacier at 7 ka. Our data also show that a moraine formed near to the modern ice margin of Mawson Glacier at 0.8 ka, which, together with historical observations, indicates that glaciers in this region readvanced during the last thousand years. We argue that 1) the accelerated thinning of outlet glaciers was driven by local grounding-line retreat through overdeepened basins during the early-mid Holocene, and 2) the glaciers subsequently readvanced, possibly linked to late Holocene sea-ice expansion, before retreating to their current positions. Our work demonstrates that these outlet glaciers were closely coupled to environmental and topography-induced perturbations near their termini throughout the Holocene.

  17. Glacier fluctuations in the Kenai Fjords, Alaska, U.S.A.: An evaluation of controls on Iceberg-calving glaciers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, G.C.; Calkin, P.E.; Post, A.

    The histories of four iceberg-calving outlet-glacier systems in the Kenai Fjords National Park underscore the importance of fiord depth, sediment supply, and fiord geometry on glacier stability. These parameters, in turn, limit the reliability of calving glacier chronologies as records of climatic change. Tree-ring analysis together with radiocarbon dating show that the Northwestern and McCarty glaciers, with large drainage basins, were advancing in concert with nearby land-terminating glaciers about A.D. 600. After an interval of retreat and possible nonclimatically induced extension during the Medieval Warm Period, these ice margins advanced again through the Little Ice Age and then retreated synchronouslymore » with the surrounding land-terminating glaciers about A.D. 1900. In contrast, Holgate and Aialik glaciers, with deeper fiords and smaller basins, retreated about 300 yr earlier. Reconstructions of Little Ice Age glaciers suggest that equilibrium-line altitudes of Northwestern and McCarty glaciers were, respectively, 270 and 500 m lower than now. Furthermore, the reconstructions show that these two glaciers were climatically sensitive when at their terminal moranies. However, with ice margins at their present recessional positions and accumulation area ratios between 0.8 and 0.9, only McCarty Glacier shows evidence of advance. Aialik and Holgate glaciers were climatically insensitive during the Little Ice Age maxima and remain insensitive to climate. 40 refs., 7 figs., 2 tabs.« less

  18. Delayed deglaciation or extreme Arctic conditions 21-16 cal. kyr at southeastern Laurentide Ice Sheet margin?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peteet, D. M.; Beh, M.; Orr, C.

    The conventionally accepted ages of the Last Glacial Maximum (LGM) retreat of the southeastern Laurentide Ice Sheet (LIS) are 26–21 cal. kyr (derived from bulk-sediment radiocarbon ages) and 28–23 cal. kyr (varve estimates). By utilizing accelerator mass spectrometry (AMS) 14C dating of earliest macrofossils in 13 lake/bog inorganic clays, we find that vegetation first appeared on the landscape at 16–15 cal. kyr, suggesting ice had not retreated until that time. The gap between previous age estimates and ours is significant and has large implications for our understanding of ocean-atmosphere linkages. Older ages imply extreme Arctic conditions for 9–5 cal kyr;more » a landscape with no ice, yet no deposition in lakes. Also, our new AMS chronology of LIS retreat is consistent with marine evidence of deglaciation from the N. Atlantic, showing significant freshwater input and sea level rise only after 19 cal kyr with a cold meltwater lid, perhaps delaying ice melt.« less

  19. Delayed deglaciation or extreme Arctic conditions 21-16 cal. kyr at southeastern Laurentide Ice Sheet margin?

    DOE PAGES

    Peteet, D. M.; Beh, M.; Orr, C.; ...

    2012-06-15

    The conventionally accepted ages of the Last Glacial Maximum (LGM) retreat of the southeastern Laurentide Ice Sheet (LIS) are 26–21 cal. kyr (derived from bulk-sediment radiocarbon ages) and 28–23 cal. kyr (varve estimates). By utilizing accelerator mass spectrometry (AMS) 14C dating of earliest macrofossils in 13 lake/bog inorganic clays, we find that vegetation first appeared on the landscape at 16–15 cal. kyr, suggesting ice had not retreated until that time. The gap between previous age estimates and ours is significant and has large implications for our understanding of ocean-atmosphere linkages. Older ages imply extreme Arctic conditions for 9–5 cal kyr;more » a landscape with no ice, yet no deposition in lakes. Also, our new AMS chronology of LIS retreat is consistent with marine evidence of deglaciation from the N. Atlantic, showing significant freshwater input and sea level rise only after 19 cal kyr with a cold meltwater lid, perhaps delaying ice melt.« less

  20. Temperature under the Tongue: A paleotemperature record of the Drygalksi Ice Tongue with improved chronology of ice retreat

    NASA Astrophysics Data System (ADS)

    Subt, C.; Rosenheim, B. E.; Lee, J. I.; Yoo, K. C.; Browne, I. M.; Shevenell, A.

    2017-12-01

    The Ross Embayment is among the most well-studied regions in Antarctica. Despite the relative abundance of data, the style and forcing of deglaciation of the Ross Sea sector following the Last Glacial Maximum (LGM; 23-19 ka) is challenging due to the region's considerable size, complex geometry, and the difficulties in dating Antarctic glaciomarine sedimentary sequences. Ross Sea sediments indicate a dynamic glacial retreat in the western Ross Sea, whereas regional glacial systems may have retreated and advanced multiple times during the last deglaciation. Two marine sediment cores collected near the Drygalski Ice Tongue in the western Ross Sea during 2012 and 2015 Korea Polar Research Institute (KOPRI) expeditions reveal a sequence of alternating diatomaceous muds and oozes interbedded with diamict, which suggest dynamic post-LGM grounded ice retreat in the Ross Sea. Dynamic retreat is hypothesized to have been driven by rising sea levels and warmer ocean waters on the continental shelf, thus a record of upper ocean temperatures should reflect this. Here we present the first post-LGM upper ocean temperature record from the Ross Sea, developed using the TEX86 (tetraether index of lipids consisting of 86 carbons) paleothermometer. To overcome the difficulties of dating these sediments using traditional methods, we apply specialized Ramped PyrOx 14C dating for sediments with high proportions of relict carbon . This technique is particularly well-suited for the post-LGM retreat sedimentary sequences from Antarctic margins because it allows for separation of autochthonous and relict material for dating. By combining organic paleothermometry and state-of-the-art chronologic techniques, we gain a more thorough understanding of upper ocean temperatures in the Ross Sea during the last deglaciation, and their implications for ice retreat.

  1. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 2. Sensitivity to external forcings

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.

    2012-06-01

    A coupled ice stream-ice shelf-ocean cavity model is used to assess the sensitivity of the coupled system to far-field ocean temperatures, varying from 0.0 to 1.8°C, as well as sensitivity to the parameters controlling grounded ice flow. A response to warming is seen in grounding line retreat and grounded ice loss that cannot be inferred from the response of integrated melt rates alone. This is due to concentrated thinning at the ice shelf lateral margin, and to processes that contribute to this thinning. Parameters controlling the flow of grounded ice have a strong influence on the response to sub-ice shelf melting, but this influence is not seen until several years after an initial perturbation in temperatures. The simulated melt rates are on the order of that observed for Pine Island Glacier in the 1990s. However, retreat rates are much slower, possibly due to unrepresented bedrock features.

  2. Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849-2012 by forcing prescribed terminus positions in ISSM

    NASA Astrophysics Data System (ADS)

    Haubner, Konstanze; Box, Jason E.; Schlegel, Nicole J.; Larour, Eric Y.; Morlighem, Mathieu; Solgaard, Anne M.; Kjeldsen, Kristian K.; Larsen, Signe H.; Rignot, Eric; Dupont, Todd K.; Kjær, Kurt H.

    2018-04-01

    Tidewater glacier velocity and mass balance are known to be highly responsive to terminus position change. Yet it remains challenging for ice flow models to reproduce observed ice margin changes. Here, using the Ice Sheet System Model (ISSM; Larour et al. 2012), we simulate the ice velocity and thickness changes of Upernavik Isstrøm (north-western Greenland) by prescribing a collection of 27 observed terminus positions spanning 164 years (1849-2012). The simulation shows increased ice velocity during the 1930s, the late 1970s and between 1995 and 2012 when terminus retreat was observed along with negative surface mass balance anomalies. Three distinct mass balance states are evident in the reconstruction: (1849-1932) with near zero mass balance, (1932-1992) with ice mass loss dominated by ice dynamical flow, and (1998-2012), when increased retreat and negative surface mass balance anomalies led to mass loss that was twice that of any earlier period. Over the multi-decadal simulation, mass loss was dominated by thinning and acceleration responsible for 70 % of the total mass loss induced by prescribed change in terminus position. The remaining 30 % of the total ice mass loss resulted directly from prescribed terminus retreat and decreasing surface mass balance. Although the method can not explain the cause of glacier retreat, it enables the reconstruction of ice flow and geometry during 1849-2012. Given annual or seasonal observed terminus front positions, this method could be a useful tool for evaluating simulations investigating the effect of calving laws.

  3. Improved age constraints for the retreat of the Irish Sea Ice Stream

    NASA Astrophysics Data System (ADS)

    Smedley, Rachel; Chiverrell, Richard; Duller, Geoff; Scourse, James; Small, David; Fabel, Derek; Burke, Matthew; Clarke, Chris; McCarroll, Danny; McCarron, Stephen; O'Cofaigh, Colm; Roberts, David

    2016-04-01

    BRITICE-CHRONO is a large (> 45 researchers) consortium project working to provide an extensive geochronological dataset constraining the rate of retreat of a number of ice streams of the British-Irish Ice Sheet following the Last Glacial Maximum. When complete, the large empirical dataset produced by BRITICE-CHRONO will be integrated into model simulations to better understand the behaviour of the British-Irish Ice Sheet in response to past climate change, and provide an analogue for contemporary ice sheets. A major feature of the British-Irish Ice Sheet was the dynamic Irish Sea Ice Stream, which drained a large proportion of the ice sheet and extended to the proposed southern limit of glaciation upon the Isles of Scilly (Scourse, 1991). This study will focus on a large suite of terrestrial samples that were collected along a transect of the Irish Sea basin, covering the line of ice retreat from the Isles of Scilly (50°N) in the south, to the Isle of Man (54°N) in the north; a distance of 500 km. Ages are determined for both the eastern and western margins of the Irish Sea using single-grain luminescence dating (39 samples) and terrestrial cosmogenic nuclide dating (10 samples). A Bayesian sequence model is then used in combination with the prior information determined for deglaciation to integrate the geochronological datasets, and assess retreat rates for the Irish Sea Ice Stream. Scourse, J.D., 1991. Late Pleistocene stratigraphy and palaeobotany of the Isles of Scilly. Philosophical Transactions of the Royal Society of London B334, 405 - 448.

  4. Integrating terrestrial and marine records of the LGM in McMurdo Sound, Antarctica: implications for grounded ice expansion, ice flow, and deglaciation of the Ross Sea Embayment

    NASA Astrophysics Data System (ADS)

    Christ, A. J.; Marchant, D. R.

    2017-12-01

    During the LGM, grounded glacier ice filled the Ross Embayment and deposited glacial drift on volcanic islands and peninsulas in McMurdo Sound, as well as along coastal regions of the Transantarctic Mountains (TAM), including the McMurdo Dry Valleys and Royal Society Range. The flow geometry and retreat history of this ice remains debated, with contrasting views yielding divergent implications for both the fundamental cause of Antarctic ice expansion as well as the interaction and behavior of ice derived from East and West Antarctica during late Quaternary time. We present terrestrial geomorphologic evidence that enables the reconstruction of former ice elevations, ice-flow paths, and ice-marginal environments in McMurdo Sound. Radiocarbon dates of fossil algae interbedded with ice-marginal sediments provide a coherent timeline for local ice retreat. These data are integrated with marine-sediment records and multi-beam data to reconstruct late glacial dynamics of grounded ice in McMurdo Sound and the western Ross Sea. The combined dataset suggest a dominance of ice flow toward the TAM in McMurdo Sound during all phases of glaciation, with thick, grounded ice at or near its maximum extent between 19.6 and 12.3 calibrated thousands of years before present (cal. ka). Our data show no significant advance of locally derived ice from the TAM into McMurdo Sound, consistent with the assertion that Late Pleistocene expansion of grounded ice in McMurdo Sound, and throughout the wider Ross Embayment, occurs in response to lower eustatic sea level and the resulting advance of marine-based outlet glaciers and ice streams (and perhaps also reduced oceanic heat flux), rather than local increases in precipitation and ice accumulation. Finally, when combined with allied data across the wider Ross Embayment, which show that widespread deglaciation outside McMurdo Sound did not commence until 13.1 ka, the implication is that retreat of grounded glacier ice in the Ross Embayment did not add significantly to SLR during Meltwater Pulse 1a (14.0-14.5 ka).

  5. Disintegration of a marine-based ice stream - evidence from the Norwegian Channel, north-eastern North Sea

    NASA Astrophysics Data System (ADS)

    Morén, Björn M.; Petter Sejrup, Hans; Hjelstuen, Berit O.; Haflidason, Haflidi; Schäuble, Cathrina; Borge, Marianne

    2014-05-01

    The Norwegian Channel Ice Stream repeatedly drained large part of the Fennoscandian Ice Sheet through Mid and Late Pleistocene glacial stages. During parts of Marine Isotope Stages 2 and 3, glacial ice from Fennoscandia and the British Isles coalesced in the central North Sea and the Norwegian Channel Ice Stream reached the shelf edge on multiple occasions. Through the last decades a large amount of acoustic and sediment core data have been collected from the Norwegian Channel, providing a good background for studies focussing on stability- and development-controlling parameters for marine-based ice streams, the retreat rate of the Norwegian Channel Ice Stream, and the behaviour of the Fennoscandian Ice Sheet. Further, this improved understanding can be used to develop more accurate numerical climate models and models which can be used to model ice-sheet behaviour of the past as well as the future. This study presents new acoustic records and data from sediment cores which contribute to a better understanding of the retreat pattern and the retreat rate of the last ice stream that occupied the Norwegian Channel. From bathymetric and TOPAS seismic data, mega-scale glacial lineations, grounding-zone wedges, and end moraines have been mapped, thereby allowing us to reconstruct the pro- and subglacial conditions at the time of the creation of these landforms. It is concluded that the whole Norwegian Channel was deglaciated in just over 1 000 years and that for most of this time the ice margin was located at positions reflected by depositional grounding-zone wedges. Further work will explore the influence of channel shape and feeding of ice from western Norwegian fjords on this retreat pattern through numerical modelling.

  6. Hydrologically-induced slow-down as a mechanism for tidewater glacier retreat

    NASA Astrophysics Data System (ADS)

    Hewitt, Ian

    2017-04-01

    Outlet glaciers flowing into the ocean often terminate at a calving front, whose position is sensitively determined by the balance between ice discharge and calving/terminus-melting. Rapid retreat of tidewater glaciers can be initiated when the front is perturbed from a preferred pinning point, particularly when the glacier sits in an overdeepened trough. This is believed to make certain areas of ice sheets particularly vulnerable to ice loss. A number of factors may cause a previously stable front position to become unstable, including changes in buttressing provided by an ice shelf, and changes in ocean temperature. Another possibility is that initial retreat is induced by a reduction in the supply of ice from the interior of the ice sheet. Such a reduction can naturally arise from an increase in surface melting and runoff (in the absence of accumulation changes), and this may be amplified if more efficient meltwater routing reduces basal lubrication, as has been observed in some areas of the Greenland ice sheet. Since the initiation of rapid retreat often results in an increase of ice discharge at the front (due to increased ice thickness), such a process may not be easy to detect. In this study, I employ a simplified model of an outlet glacier and its frontal behaviour to examine the extent to which hydrologically induced slow-down of the feeding ice sheet may induce (or help to induce) calving front retreat. The model builds on earlier parameterisations of grounding line fluxes, and assumes that calving occurs according to a criterion that keeps the front close to the flotation thickness. The glacier bed is assumed to be plastic. This allows for a transparent identification of the different forcing terms affecting margin position. We conclude that hydrologically-induced slow-down of ice sheets is likely to have a more significant effect on mass loss than hydrologically-induced speed-up.

  7. Glaciotectonic origin of the Massachusetts coastal end moraines and a fluctuating late Wisconsinan ice margin.

    USGS Publications Warehouse

    Oldale, R.N.; O'Hara, C. J.

    1984-01-01

    Late Wisconsinan end moraines on Cape Cod and islands south and west of Cape Cod are believed to be glaciotectonic features formed by advancing ice fronts. Evidence for major ice readvances during general recession includes the moraines themselves, till atop stratified drift, and the numerous basal tills that are inferred to exist beneath Cape Cod Bay. The Thompson Glacier end moraine in the Canadian Arctic Archipelago is considered to be a modern example of how late Wisconsinan end moraines on Cape Cod and the islands were formed. It is overriding its outwash plain, displacing outwash deposits forward and upward beyond the ice front. New sheets are added to the base of the moraine as the ice overrides it. Retreat of the ice from Cape Cod and the islands may have been similar to the retreat of the Lake Michigan lobe, deposits of which contain evidence of at least 12 moraine-building episodes caused by readvancing ice.-from Authors

  8. Annually resolved ice core records of tropical climate variability over the past ~1800 years.

    PubMed

    Thompson, L G; Mosley-Thompson, E; Davis, M E; Zagorodnov, V S; Howat, I M; Mikhalenko, V N; Lin, P-N

    2013-05-24

    Ice cores from low latitudes can provide a wealth of unique information about past climate in the tropics, but they are difficult to recover and few exist. Here, we report annually resolved ice core records from the Quelccaya ice cap (5670 meters above sea level) in Peru that extend back ~1800 years and provide a high-resolution record of climate variability there. Oxygen isotopic ratios (δ(18)O) are linked to sea surface temperatures in the tropical eastern Pacific, whereas concentrations of ammonium and nitrate document the dominant role played by the migration of the Intertropical Convergence Zone in the region of the tropical Andes. Quelccaya continues to retreat and thin. Radiocarbon dates on wetland plants exposed along its retreating margins indicate that it has not been smaller for at least six millennia.

  9. Isostasy as a Driver of Paleo Retreat of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Robinson, A.; Tabone, I.; Alvarez-Solas, J.; Montoya, M.

    2016-12-01

    During glacial times, the Greenland ice sheet (GrIS) extended onto the continental shelf, and thus was much more directly affected by changing ocean temperatures through basal melt of the marine ice margins than it is today. The larger glacial ice sheet also induced lithospheric depression of several hundred meters in regions that are near sea level today. As the ice sheet retreated inland under interglacial climatic forcing, the regions significantly affected by local isostatic changes in elevation were exposed to much higher basal melt rates than they would have been given the present-day topography. Here we explore this effect using a hybrid ice sheet model that represents both grounded and floating ice, as well as local isostatic effects, and is driven by both atmospheric and oceanic temperature anomalies. We find that when transient oceanic forcing is included in the model, isostasy plays an important role in allowing oceanic melting to drive GrIS retreat in some regions. During the last interglacial, for example, this effect can account for a significant additional sea-level contribution, as well as an increase in the rate of sea-level rise. Our results highlight the importance of accounting for ice-ocean-lithosphere interactions in the past, in order to be able to properly reconstruct the evolution of the ice sheet, and for estimating its sensitivity to potential changes in climate in the future.

  10. Constraining the Antarctic contribution to global sea-level change: ANDRILL and beyond

    NASA Astrophysics Data System (ADS)

    Naish, Timothy

    2016-04-01

    Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1 to 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the scientific challenges, some potential sub-glacial sedimentary targets, and a strategy for future drilling of sub-glacial sedimentary basins.

  11. Constraining the Antarctic contribution to interglacial sea-level rise

    NASA Astrophysics Data System (ADS)

    Naish, T.; Mckay, R. M.; Barrett, P. J.; Levy, R. H.; Golledge, N. R.; Deconto, R. M.; Horgan, H. J.; Dunbar, G. B.

    2015-12-01

    Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1- 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the scientific challenges, some potential sub-glacial sedimentary targets, and a strategy for future drilling of sub-glacial sedimentary basins.

  12. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonally-Retreating Marginal Ice Zone

    DTIC Science & Technology

    2016-12-30

    of Oceanography . Also, ITP-V investigators have collaborated with aNa a! Postgraduate School 3 student (Gallaher) whose dissertation is based on...under Arctic sea-ice. Journal of Physical Oceanography , doi: http://dx.doi.org/l 0.1175/JPO-D-12-0191.1 Cole, S.T. , F.T. Thwaites, R.A. Krishfield

  13. Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments.

    PubMed

    La Farge, Catherine; Williams, Krista H; England, John H

    2013-06-11

    Across the Canadian Arctic Archipelago, widespread ice retreat during the 20th century has sharply accelerated since 2004. In Sverdrup Pass, central Ellesmere Island, rapid glacier retreat is exposing intact plant communities whose radiocarbon dates demonstrate entombment during the Little Ice Age (1550-1850 AD). The exhumed bryophyte assemblages have exceptional structural integrity (i.e., setae, stem structures, leaf hair points) and have remarkable species richness (60 of 144 extant taxa in Sverdrup Pass). Although the populations are often discolored (blackened), some have developed green stem apices or lateral branches suggesting in vivo regrowth. To test their biological viability, Little Ice Age populations emerging from the ice margin were collected for in vitro growth experiments. Our results include a unique successful regeneration of subglacial bryophytes following 400 y of ice entombment. This finding demonstrates the totipotent capacity of bryophytes, the ability of a cell to dedifferentiate into a meristematic state (analogous to stem cells) and develop a new plant. In polar ecosystems, regrowth of bryophyte tissue buried by ice for 400 y significantly expands our understanding of their role in recolonization of polar landscapes (past or present). Regeneration of subglacial bryophytes broadens the concept of Ice Age refugia, traditionally confined to survival of land plants to sites above and beyond glacier margins. Our results emphasize the unrecognized resilience of bryophytes, which are commonly overlooked vis-a-vis their contribution to the establishment, colonization, and maintenance of polar terrestrial ecosystems.

  14. Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments

    PubMed Central

    La Farge, Catherine; Williams, Krista H.; England, John H.

    2013-01-01

    Across the Canadian Arctic Archipelago, widespread ice retreat during the 20th century has sharply accelerated since 2004. In Sverdrup Pass, central Ellesmere Island, rapid glacier retreat is exposing intact plant communities whose radiocarbon dates demonstrate entombment during the Little Ice Age (1550–1850 AD). The exhumed bryophyte assemblages have exceptional structural integrity (i.e., setae, stem structures, leaf hair points) and have remarkable species richness (60 of 144 extant taxa in Sverdrup Pass). Although the populations are often discolored (blackened), some have developed green stem apices or lateral branches suggesting in vivo regrowth. To test their biological viability, Little Ice Age populations emerging from the ice margin were collected for in vitro growth experiments. Our results include a unique successful regeneration of subglacial bryophytes following 400 y of ice entombment. This finding demonstrates the totipotent capacity of bryophytes, the ability of a cell to dedifferentiate into a meristematic state (analogous to stem cells) and develop a new plant. In polar ecosystems, regrowth of bryophyte tissue buried by ice for 400 y significantly expands our understanding of their role in recolonization of polar landscapes (past or present). Regeneration of subglacial bryophytes broadens the concept of Ice Age refugia, traditionally confined to survival of land plants to sites above and beyond glacier margins. Our results emphasize the unrecognized resilience of bryophytes, which are commonly overlooked vis-a-vis their contribution to the establishment, colonization, and maintenance of polar terrestrial ecosystems. PMID:23716658

  15. Rate and style of ice stream retreat constrained by new surface-exposure ages: The Minch, NW Scotland

    NASA Astrophysics Data System (ADS)

    Bradwell, Tom; Small, David; Fabel, Derek; Dove, Dayton; Cofaigh, Colm O.; Clark, Chris; Consortium, Britice-Chrono

    2016-04-01

    Chronologically constrained studies of former ice-sheet extents and dynamics are important for understanding past cryospheric responses and modelling future ice-sheet and sea-level change. As part of the BRITICE-CHRONO project, we present new geomorphological and chronological data from a marine-terminating ice stream system in NW Europe that operated during the Late Weichselian Glaciation. A suite of 51 cosmogenic-nuclide exposure ages from ice sheet moraines and glacially transported boulders constrain the maximum extent of the ice sheet on the continental shelf (~28 ka BP) and its subsequent retreat, between ~27 and 16 ka BP, into a large marine embayment (ca. 7000 km2; the Minch, NW Scotland). Recently acquired swath bathymetry and acoustic sub-bottom profiler data reveal several large transverse grounding-zone wedges up to 40 m thick and 5 km wide with diagnostic acoustic-facies architecture. These seabed sediment wedges mark former quasi-stable positions of grounded marine-terminating ice-stream fronts; their size and thickness suggest long-lived stillstands of the order of centuries. Statistically significant clusters of exposure ages from glacial deposits on islands and intervening headlands shed important new light on the age of these marine grounding-zone wedges and, by inference, the rate and timing of Minch palaeo-ice stream retreat. We find strong evidence for episodic ice stream retreat on the continental shelf between ~28-24 ka BP, in the outer Minch between ~24-22 ka BP, and in the central Minch between 22-18.5 ka BP. In contrast, final ice stream deglaciation (<18 ka) across the deepest parts of the inner Minch embayment, was probably rapid and uninterrupted - with the ice sheet margin at or close to the present-day coastline in NW Scotland by 16.1 ka BP. It is hoped that these results will form the empirical basis for future ice-sheet modelling of this dynamically sensitive sector of the British-Irish Ice Sheet.

  16. Landscape evolution of Antarctica

    USGS Publications Warehouse

    Jamieson, S.S.R.; Sugden, D.E.

    2007-01-01

    shelf before retreating to its present dimensions at ~13.5 Ma. Subsequent changes in ice extent have been forced mainly by sea-level change. Weathering rates of exposed bedrock have been remarkably slow at high elevations around the margin of East Antarctica under the hyperarid polar climate of the last ~13.5 Ma, offering potential for a long quantitative record of ice-sheet evolution with techniques such as cosmogenic isotope analysis

  17. Lateglacial retreat chronology of the Scandinavian Ice Sheet in Finnmark, northern Norway, reconstructed from surface exposure dating of major end moraines

    NASA Astrophysics Data System (ADS)

    Romundset, Anders; Akçar, Naki; Fredin, Ola; Tikhomirov, Dmitry; Reber, Regina; Vockenhuber, Christof; Christl, Marcus; Schlüchter, Christian

    2017-12-01

    We report results from a comprehensive surface exposure dating campaign in eastern Finnmark, located in the northernmost part of Norway and close to the Norwegian-Russian border. This is a palaeo-glaciologically important region as it sits near the proposed border-zone between the former Scandinavian and Barents Sea Ice Sheets. However, until now the deglaciation history has few direct dates onshore and the chronology of ice front retreat is instead found by correlating ice-marginal deposits with isostatically raised shorelines and marine sediment cores. We measured the content of 10Be (N = 22) and 36Cl (N = 17) from boulders located at the crest of major moraine ridges at four localities; Kjæs, Kongsfjorden, Vardø and Kirkenes. These are key localities of existing regional reconstructions of ice recession in this area. Despite some spread in age results from each locality due to methodological challenges associated with surface exposure dating, the large numbers of samples from each site except Kjæs still allow for obtaining clusters of similar ages which are used for arriving at a likely chronology of ice front retreat. Our results show that the Kongsfjorden and Vardø moraines were deposited 14.3 ± 1.7 ka and 13.6 ± 1.4 ka, respectively, and thus point to a Older Dryas age of the proposed 'Outer Porsanger' deglaciation sub-stage. Moraine ridges belonging to the 'Main' sub-stage near Kirkenes were dated to 11.9 ± 1.2 ka, corresponding well with the ice retreat chronology farther west in northern Norway and suggesting that the maximum Younger Dryas ice sheet extent was attained in the late Younger Dryas along a more than 500 km long stretch in northernmost Scandinavia.

  18. Concentration gradients and growth/decay characteristics of the seasonal sea ice cover

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.; Zwally, H. J.

    1984-01-01

    The characteristics of sea ice cover in both hemispheres are analyzed and compared. The areal sea ice cover in the entire polar regions and in various geographical sectors is quantified for various concentration intervals and is analyzed in a consistent manner. Radial profiles of brightness temperatures from the poles across the marginal zone are also evaluated at different transects along regular longitudinal intervals during different times of the year. These radial profiles provide statistical information about the ice concentration gradients and the rates at which the ice edge advances or retreats during a complete annual cycle.

  19. Glaciological reconstruction of Holocene ice margins in northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Birkel, S. D.; Osterberg, E. C.; Kelly, M. A.; Axford, Y.

    2014-12-01

    The past few decades of climate warming have brought overall margin retreat to the Greenland Ice Sheet. In order to place recent and projected changes in context, we are undertaking a collaborative field-modeling study that aims to reconstruct the Holocene history of ice-margin fluctuation near Thule (~76.5°N, 68.7°W), and also along the North Ice Cap (NIC) in the Nunatarssuaq region (~76.7°N, 67.4°W). Fieldwork reported by Kelly et al. (2013) reveals that ice in the study areas was less extensive than at present ca. 4700 (GIS) and ca. 880 (NIC) cal. years BP, presumably in response to a warmer climate. We are now exploring Holocene ice-climate coupling using the University of Maine Ice Sheet Model (UMISM). Our approach is to first test what imposed climate anomalies can afford steady state ice margins in accord with field data. A second test encompasses transient simulation of the Holocene, with climate boundary conditions supplied by existing paleo runs of the Community Climate System Model version 4 (CCSM4), and a climate forcing signal derived from Greenland ice cores. In both cases, the full ice sheet is simulated at 10 km resolution with nested domains at 0.5 km for the study areas. UMISM experiments are underway, and results will be reported at the meeting.

  20. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  1. The history of retreat dynamics of Petermann Glacier inferred from submarine glacial landforms

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Hogan, K.; Mayer, L. A.; Mix, A. C.; Jerram, K.; Mohammad, R.; Stranne, C.; Eriksson, B.

    2016-12-01

    Preserved submarine glacial landforms produced at the base and margin of ice sheets and outlet glaciers comprise records of past ice dynamics complementary to modern glaciological process studies. The Petermann 2015 Expedition on the Swedish icebreaker Oden systematically mapped approximately 3100 km2 of the seafloor in Petermann Fjord and the adjacent Hall Basin of Nares Strait, northwest Greenland, with an EM122 (12 kHz) multibeam and SBP120 (2-7 kHz) chirp sub-bottom profiler. Complete, overlapping mapping coverage permitted compilation of a high-quality (15x15m) digital terrain model (DTM). In addition, the seafloor at the margin of one of the smaller outlet glaciers draining into the Petermann Fjord and selected shallow areas along the coast were mapped using a small survey boat (RV Skidbladner), equipped with an EM2040 (200-300 kHz) multibeam. High-resolution (2 x 2 m) DTMs were compiled from the RV Skidbladner surveys. The seafloor morphology of Petermann Fjord and adjacent Hall Basin is dominated by a stunning glacial landform record comprising the imprints of Petermann Glacier's retreat dynamics since the Last Glacial Maximum (LGM). The entrance to Petermann Fjord consists of a prominent bathymetric sill formed by a large well-develop grounding zone wedge that undoubtedly represents a stability point during the glacier's retreat history. The deepest entrance to the fjord is 443 m and located on the southern side of this grounding zone wedge. Outside of this grounding zone wedge in Hall Basin, less well developed grounding zones appears to be present. The landform assemblage in between the grounding zones, in particular the lack of retreat ridges, may signify a leap-frog behavior of the glacier's retreat; rapid break-up and disintegration of the outlet glacier causing retreat back to the next stability point dictated by the local bedrock geology. While numerous classical glacial landforms characteristic for fast flowing ice streams are identified, the multibeam bathymetry also reveals an enigmatic, toilet bowl-shaped features whose origin is still unclear. The collected data during the Petermann 2015 Expedition will among other things provide new insights into ice shelf-ocean interactions, essential to projecting future climate impacts on Greenland and global sea level changes.

  2. Modulation of Sea Ice Melt Onset and Retreat in the Laptev Sea by the Timing of Snow Retreat in the West Siberian Plain

    NASA Astrophysics Data System (ADS)

    Crawford, A. D.; Stroeve, J.; Serreze, M. C.; Rajagopalan, B.; Horvath, S.

    2017-12-01

    As much of the Arctic Ocean transitions to ice-free conditions in summer, efforts have increased to improve seasonal forecasts of not only sea ice extent, but also the timing of melt onset and retreat. This research investigates the potential of regional terrestrial snow retreat in spring as a predictor for subsequent sea ice melt onset and retreat in Arctic seas. One pathway involves earlier snow retreat enhancing atmospheric moisture content, which increases downwelling longwave radiation over sea ice cover downstream. Another pathway involves manipulation of jet stream behavior, which may affect the sea ice pack via both dynamic and thermodynamic processes. Although several possible connections between snow and sea ice regions are identified using a mutual information criterion, the physical mechanisms linking snow retreat and sea ice phenology are most clearly exemplified by variability of snow retreat in the West Siberian Plain impacting melt onset and sea ice retreat in the Laptev Sea. The detrended time series of snow retreat in the West Siberian Plain explains 26% of the detrended variance in Laptev Sea melt onset (29% for sea ice retreat). With modest predictive skill and an average time lag of 53 (88) days between snow retreat and sea ice melt onset (retreat), West Siberian Plains snow retreat is useful for refining seasonal sea ice predictions in the Laptev Sea.

  3. Holocene Fluctuations of North Ice Cap, a Proxy for Climate Conditions along the Northwestern Margin of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Osterberg, E. C.; Lasher, G. E.; Farnsworth, L. B.; Howley, J. A.; Axford, Y.; Zimmerman, S. R. H.

    2015-12-01

    North Ice Cap (~76.9°N, 68°W, summit elevation 1322 m asl), a small, independent ice cap in northwestern Greenland, is located within ~25 km of the Greenland Ice Sheet margin and Harald Molkte Bræ outlet glacier. We present geochronological, geomorphic and sedimentological data constraining the Holocene extents of North Ice Cap and suggest that its past fluctuations can be used as a proxy for climate conditions along the northwestern margin of the Greenland Ice Sheet. Prior work by Goldthwait (1960) used glacial geomorphology and radiocarbon ages of subfossil plants emerging along shear planes in the ice cap margin to suggest that that North Ice Cap was not present during the early Holocene and nucleated in the middle to late Holocene time, with the onset of colder conditions. Subfossil plants emerging at shear planes in the North Ice Cap margin yield radiocarbon ages of ~4.8-5.9 cal kyr BP (Goldthwait, 1960) and ~AD 1000-1350 (950-600 cal yr BP), indicating times when the ice cap was smaller than at present. In situ subfossil plants exposed by recent ice cap retreat date to ~AD 1500-1840 (450-110 cal yr BP) and indicate small fluctuations of the ice cap margin. 10Be ages of an unweathered, lichen-free drift <100 m from the present North Ice Cap margin range from ~500 to 8000 yrs ago. We suggest that the drift was deposited during the last ~500 yrs and that the older 10Be ages are influenced by 10Be inherited from a prior period of exposure. We also infer ice cap fluctuations using geochemical data from a Holocene-long sediment core from Deltasø, a downstream lake that currently receives meltwater from North Ice Cap. The recent recession of the North Ice Cap margin influenced a catastrophic drainage of a large proglacial lake, Søndre Snesø, that our field team documented in August 2012. To our knowledge, this is the first significant lowering of Søndre Snesø in historical time.

  4. Timing and east-west correlation of south Swedish ice marginal lines during the Late Weichselian

    NASA Astrophysics Data System (ADS)

    Lundqvist, Jan; Wohlfarth, Barbara

    2000-01-01

    The retreat of the Late Weichselian ice sheet over the southern part of Sweden is marked along the southwest coast by distinct marginal moraine ridges. Their timing can directly and indirectly be assessed based on a number of radiocarbon dates and pollen stratigraphic investigations on lake sediment sequences adjacent to the ice marginal lines. Along the southeastern side of the peninsula, the ice recession has been reconstructed based on a combination of clay-varve chronology, pollen and radiocarbon stratigraphy. A morphological correlation of ice marginal lines between the west and east coast is problematic since the distinct west-coast moraines cannot be followed through the central part of the peninsula towards the east coast. This paper is an attempt to reconstruct an age-equivalent west-east extension of the ice-recession lines on the basis of existing data sets. For our correlation we use calibrated radiocarbon ages for ice marginal deposits on the west coast and compare these with a partly radiocarbon-dated clay-varve chronology on the east coast. We conclude that the two oldest moraines on the west coast formed at ˜18,000-16,000 and ˜15,400-14,500 cal yr BP, respectively. During the following rapid deglaciation, which may have coincided with the beginning of the Bølling pollen zone, large parts of southernmost Sweden became ice free, except for higher elevated areas, where stagnant ice remained for another 400-500 yr. A best guess is that the formation of the next younger ice marginal lines may have occurred at ˜14,400-14,200, ˜14,200 and ˜13,400 cal yr BP and during the Younger Dryas cold event.

  5. Changes in flow of Crosson and Dotson ice shelves, West Antarctica, in response to elevated melt

    NASA Astrophysics Data System (ADS)

    Lilien, David A.; Joughin, Ian; Smith, Benjamin; Shean, David E.

    2018-04-01

    Crosson and Dotson ice shelves are two of the most rapidly changing outlets in West Antarctica, displaying both significant thinning and grounding-line retreat in recent decades. We used remotely sensed measurements of velocity and ice geometry to investigate the processes controlling their changes in speed and grounding-line position over the past 20 years. We combined these observations with inverse modeling of the viscosity of the ice shelves to understand how weakening of the shelves affected this speedup. These ice shelves have lost mass continuously since the 1990s, and we find that this loss results from increasing melt beneath both shelves and the increasing speed of Crosson. High melt rates persisted over the period covered by our observations (1996-2014), with the highest rates beneath areas that ungrounded during this time. Grounding-line flux exceeded basin-wide accumulation by about a factor of 2 throughout the study period, consistent with earlier studies, resulting in significant loss of grounded as well as floating ice. The near doubling of Crosson's speed in some areas during this time is likely the result of weakening of its margins and retreat of its grounding line. This speedup contrasts with Dotson, which has maintained its speed despite increasingly high melt rates near its grounding line, likely a result of the sustained competency of the shelf. Our results indicate that changes to melt rates began before 1996 and suggest that observed increases in melt in the 2000s compounded an ongoing retreat of this system. Advection of a channel along Dotson, as well as the grounding-line position of Kohler Glacier, suggests that Dotson experienced a change in flow around the 1970s, which may be the initial cause of its continuing retreat.

  6. Ice-sheet response to oceanic forcing.

    PubMed

    Joughin, Ian; Alley, Richard B; Holland, David M

    2012-11-30

    The ice sheets of Greenland and Antarctica are losing ice at accelerating rates, much of which is a response to oceanic forcing, especially of the floating ice shelves. Recent observations establish a clear correspondence between the increased delivery of oceanic heat to the ice-sheet margin and increased ice loss. In Antarctica, most of these processes are reasonably well understood but have not been rigorously quantified. In Greenland, an understanding of the processes by which warmer ocean temperatures drive the observed retreat remains elusive. Experiments designed to identify the relevant processes are confounded by the logistical difficulties of instrumenting ice-choked fjords with actively calving glaciers. For both ice sheets, multiple challenges remain before the fully coupled ice-ocean-atmosphere models needed for rigorous sea-level projection are available.

  7. Ocean-ice interaction in the marginal ice zone using synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chich Y.; Weingartner, Thomas J.

    1994-01-01

    Ocean-ice interaction processes in the marginal ice zone (MIZ) by wind, waves, and mesoscale features, such as up/downwelling and eddies are studied using Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) images and an ocean-ice interaction model. A sequence of seven SAR images of the MIZ in the Chukchi Sea with 3 or 6 days interval are investigated for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea, as well as the Barrow wind record, are used to interpret the MIZ dynamics. SAR spectra of waves in ice and ocean waves in the Bering and Chukchi Sea are compared for the study of wave propagation and dominant SAR imaging mechanism. By using the SAR-observed ice edge configuration and wind and wave field in the Chukchi Sea as inputs, a numerical simulation has been performed with the ocean-ice interaction model. After 3 days of wind and wave forcing the resulting ice edge configuration, eddy formation, and flow velocity field are shown to be consistent with SAR observations.

  8. Simulating Ice Dynamics in the Amundsen Sea Sector

    NASA Astrophysics Data System (ADS)

    Schwans, E.; Parizek, B. R.; Morlighem, M.; Alley, R. B.; Pollard, D.; Walker, R. T.; Lin, P.; St-Laurent, P.; LaBirt, T.; Seroussi, H. L.

    2017-12-01

    Thwaites and Pine Island Glaciers (TG; PIG) exhibit patterns of dynamic retreat forced from their floating margins, and could act as gateways for destabilization of deep marine basins in the West Antarctic Ice Sheet (WAIS). Poorly constrained basal conditions can cause model predictions to diverge. Thus, there is a need for efficient simulations that account for shearing within the ice column, and include adequate basal sliding and ice-shelf melting parameterizations. To this end, UCI/NASA JPL's Ice Sheet System Model (ISSM) with coupled SSA/higher-order physics is used in the Amundsen Sea Embayment (ASE) to examine threshold behavior of TG and PIG, highlighting areas particularly vulnerable to retreat from oceanic warming and ice-shelf removal. These moving-front experiments will aid in targeting critical areas for additional data collection in ASE as well as for weighting accuracy in further melt parameterization development. Furthermore, a sub-shelf melt parameterization, resulting from Regional Ocean Modeling System (ROMS; St-Laurent et al., 2015) and coupled ISSM-Massachusetts Institute of Technology general circulation model (MITgcm; Seroussi et al., 2017) output, is incorporated and initially tested in ISSM. Data-guided experiments include variable basal conditions and ice hardness, and are also forced with constant modern climate in ISSM, providing valuable insight into i) effects of different basal friction parameterizations on ice dynamics, illustrating the importance of constraining the variable bed character beneath TG and PIG; ii) the impact of including vertical shear in ice flow models of outlet glaciers, confirming its role in capturing complex feedbacks proximal to the grounding zone; and iii) ASE's sensitivity to sub-shelf melt and ice-front retreat, possible thresholds, and how these affect ice-flow evolution.

  9. Palaeoglaciology of the Alexander Island ice cap, western Antarctic Peninsula, reconstructed from marine geophysical and core data

    NASA Astrophysics Data System (ADS)

    Graham, Alastair G. C.; Smith, James A.

    2012-03-01

    The glacial history of the continental shelf northwest of Alexander Island is not well known, due mainly to a lack of targeted marine data on Antarctica's palaeo-ice sheets in their inter-ice-stream areas. Recently it has been argued that the region was ice-free at the Last Glacial Maximum (LGM) and thus a potential site for glacial refugia. In this paper, multibeam swath bathymetry, sub-bottom profiles and sediment cores are used to map the Alexander Island sector of the Antarctic Peninsula margin, in order to reconstruct the shelf's palaeoglaciology. Sea-floor bedforms provide evidence that an independent ice cap persisted on Alexander Island through the LGM and deglaciation. We show that this ice cap drained via two major, previously-undescribed tidewater outlets (Rothschild and Charcot Glaciers) sourced from an ice dome centred over the west of the island and near-shore areas. The glaciers grounded along deep, fjord-like cross-shelf troughs to within at least ˜10-20 km of the shelf edge, and probably reached the shelf break. Only one small outer-shelf zone appears to have remained free of ice throughout an otherwise extensive LGM. During retreat, grounding-line geomorphology indicates periodic stabilisation of Charcot Glacier on the mid-shelf after 13,500 cal yrs BP, while Rothschild Glacier retreated across its mid-shelf by 14,450 cal yrs BP. The timing of these events is in phase with retreat in nearby Marguerite Trough, and we take this as evidence of a common history and forcing with the Antarctic Peninsula Ice Sheet. The fine details of ice flow documented by our new reconstruction highlight the importance of capturing complex ice flow patterns in models (e.g. in inter-stream areas), for understanding how region-specific parts of Antarctica may change in the future. Moreover, the reconstruction shows that glacial refugia, if present, cannot have been extensive on the Alexander Island shelf at the LGM as indicated by previous biological studies; instead, we argue that any ice-free refugia were probably restricted to isolated outer-shelf pockets, that opened, closed, or were maintained through diachronous ice-sheet advance and retreat.

  10. Late Cenozoic Climate History of the Ross Embayment from the AND-1B Drill Hole: Culmination of Three Decades of Antarctic Margin Drilling

    USGS Publications Warehouse

    Naish, T.R.; Powell, R.D.; Barrett, P.J.; Levy, R.H.; Henrys, S.; Wilson, G.S.; Krissek, L.A.; Niessen, F.; Pompilio, M.; Ross, J.; Scherer, R.; Talarico, F.; Pyne, A.; ,

    2007-01-01

    Because of the paucity of exposed rock, the direct physical record of Antarctic Cenozoic glacial history has become known only recently and then largely from offshore shelf basins through seismic surveys and drilling. The number of holes on the continental shelf has been small and largely confined to three areas (McMurdo Sound, Prydz Bay, and Antarctic Peninsula), but even in McMurdo Sound, where Oligocene and early Miocene strata are well cored, the late Cenozoic is poorly known and dated. The latest Antarctic geological drilling program, ANDRILL, successfully cored a 1285-m-long record of climate history spanning the last 13 m.y. from subsea-floor sediment beneath the McMurdo Ice Shelf (MIS), using drilling systems specially developed for operating through ice shelves. The cores provide the most complete Antarctic record to date of ice-sheet and climate fluctuations for this period of Earth’s history. The >60 cycles of advance and retreat of the grounded ice margin preserved in the AND-1B record the evolution of the Antarctic ice sheet since a profound global cooling step in deep-sea oxygen isotope records ~14 m.y.a. A feature of particular interest is a ~90-m-thick interval of diatomite deposited during the warm Pliocene and representing an extended period (~200,000 years) of locally open water, high phytoplankton productivity, and retreat of the glaciers on land.

  11. Geochronology and paleoclimatic implications of the last deglaciation of the Mauna Kea Ice Cap, Hawaii

    USGS Publications Warehouse

    Anslow, Faron S.; Clark, P.U.; Kurz, M.D.; Hostetler, S.W.

    2010-01-01

    We present new 3He surface exposure ages on moraines and bedrock near the summit of Mauna Kea, Hawaii, which refine the age of the Mauna Kea Ice Cap during the Local Last Glacial Maximum (LLGM) and identify a subsequent fluctuation of the ice margin. The 3He ages, when combined with those reported previously, indicate that the local ice-cap margin began to retreat from its LLGM extent at 20.5??2.5ka, in agreement with the age of deglaciation determined from LLGM moraines elsewhere in the tropics. The ice-cap margin receded to a position at least 3km upslope for ~4.5-5.0kyr before readvancing nearly to its LLGM extent. The timing of this readvance at ~15.4ka corresponds to a large reduction of the Atlantic meridional overturning circulation (AMOC) following Heinrich Event 1. Subsequent ice-margin retreat began at 14.6??1.9ka, corresponding to a rapid resumption of the AMOC and onset of the B??lling warm interval, with the ice cap melting rapidly to complete deglaciation. Additional 3He ages obtained from a flood deposit date the catastrophic outburst of a moraine-dammed lake roughly coeval with the Younger Dryas cold interval, suggesting a more active hydrological cycle on Mauna Kea at this time. A coupled mass balance and ice dynamics model is used to constrain the climate required to generate ice caps of LLGM and readvance sizes. The depression of the LLGM equilibrium line altitude requires atmospheric cooling of 4.5??1??C, whereas the mass balance modeling indicates an accompanying increase in precipitation of as much as three times that of present. We hypothesize (1) that the LLGM temperature depression was associated with global cooling, (2) that the temperature depression that contributed to the readvance occurred in response to an atmospheric teleconnection to the North Atlantic, and (3) that the precipitation enhancement associated with both events occurred in response to a southward shift in the position of the inter-tropical convergence zone (ITCZ). Such a shift in the ITCZ would have allowed midlatitude cyclones to reach Mauna Kea more frequently which would have increased precipitation at high elevations and caused additional cooling. ?? 2010 Elsevier B.V.

  12. Evidence and biogeochemical implications for glacially-derived sediments in an active margin cold seep

    USGS Publications Warehouse

    Pohlman, John W.; Riedel, Michael; Novosel, Ivana; Bauer, James E.; Canuel, Elizabeth A.; Paull, Charles K.; Coffin, Richard B.; Grabowski, Kenneth S.; Knies, David L.; Hyndman, Roy D.; Spence, George D.

    2011-01-01

    Delineating sediment organic matter origins and sediment accumulation rates at gas hydratebearing and hydrocarbon seeps is complicated by the microbial transfer of 13C-depleted and 14Cdepleted methane carbon into sedimentary pools. Sediment 13C and 14C measurements from four cores recovered at Bullseye vent on the northern Cascadia margin are used to identify methane carbon assimilation into different carbon pools. While the total organic carbon (TOC) is mostly unaltered and primarily terrigenous in origin, planktonic foraminifera and the bulk carbonate display evidence of methane overprinting. Mass balance models are applied to determine the extent to which methane overprinting increased the radiocarbon ages of the biogenic foraminifera. The corrected and calibrated foraminifera ages between sediment depths of 70 and 573 cm are from 14.9 to 15.9 ka BP, which coincides with the retreat of the late Quaternary Cordilleran Ice Sheet from Vancouver Island. Uniform TOC _13C values of -24.5 ± 0.5‰ from the upper 8 meters of sediment at Bullseye vent suggest all cored material is Pleistocene-derived glacimarine material deposited as the ice edge retreated landward. Bullseye vent is located within an uplifted sediment block isolated from turbidite deposition and has been a site of non-deposition since the ice sheet retreated from the shelf. Biogeochemical implications of seep sediments being dominated by aged, organic-poor (<0.4 wt% TOC) material are that methane is the primary energy source, and microbes directly and indirectly associated with the anaerobic oxidation of methane (AOM) will dominate the seep microbial community.

  13. Rapid thinning of the Laurentide Ice Sheet in coastal Maine, USA during late Heinrich Stadial 1

    NASA Astrophysics Data System (ADS)

    Koester, A. J.; Shakun, J. D.; Bierman, P. R.; Davis, P. T.; Corbett, L. B.; Zimmerman, S. R. H.

    2016-12-01

    Direct measurements of Laurentide Ice Sheet (LIS) thickness during the last deglaciation are limited, especially in coastal Maine where the LIS had a marine-terminating margin that was susceptible to abrupt climate shifts in the North Atlantic. We measured 31 10Be exposure ages down coastal mountainsides in Acadia National Park and from the slightly inland Pineo Ridge Moraine Complex, a 100 km long glaciomarine delta, to date the timing and rate of LIS thinning and subsequent retreat in coastal Maine. The vertical transects in Acadia have indistinguishable exposure ages over a 300 m range of elevation, suggesting rapid, century-scale thinning centered at 15 ka, similar to abrupt thinning inferred from cosmogenic nuclide ages at Mt. Katahdin in central Maine (Davis et al., 2015). This rapid ice sheet surface lowering during the latter part of the cold Heinrich Stadial 1 event may have been due to rapid calving in the Gulf of Maine, perhaps related to regional oceanic warming associated with weakened Atlantic Meridional Overturning Circulation (AMOC) at this time. Our 10Be ages are substantially younger than radiocarbon constraints on LIS retreat in the coastal lowlands, suggesting that the deglacial marine reservoir effect in this area was greater than the 450 - 600 year correction previously used, perhaps also related to the sluggish AMOC. In addition, the Pineo Ridge Moraine Complex dates to 14.4 ± 0.4 ka, indicating that the LIS margin began retreating from coastal Maine near the onset of the Bølling Interstadial warming.

  14. Greenland's 20th Century retreat illuminated - great spatial variability with strong connections to subglacial topography and fjord bathymetry

    NASA Astrophysics Data System (ADS)

    Bjork, A. A.; Kjeldsen, K. K.; Boeckel, M. V.; Korsgaard, N. J.; Fenty, I. G.; Khan, S. A.; Mouginot, J.; Morlighem, M.; Rignot, E. J.; Dowdeswell, J. A.; Kjaer, K. H.

    2017-12-01

    Mass loss acceleration from the Greenland Ice Sheet is a dominant contributor in recent global sea-level rise, and has been for several decades. While ice sheet wide mass loss has recently been documented from the end of the Little Ice Age (c. 1900 CE) to the 1980s, the detailed changes during this period remain poorly known. In this study, we map glacier margins of Greenland's 310 largest outlet glaciers in order to get the full picture of the 20th Century mass loss. We take advantage of the rich history of aerial photography over Greenland and combine photos from archives in Denmark, Norway, United Kingdom, and United States. We supplement the historical aerial photographs with declassified US spy satellite imagery and recent satellite imagery to document glacial retreat and advance on a decadal scale. With recent advances in bathymetry mapping and subglacial topography mapping, we are able to show that spatial differences in retreat throughout the last 100 years are largely controlled by the underlying topography. Our study further highlights hotspots of past rapid mass loss in Greenland, and discusses implications for periods of regional stability and advance.

  15. The Holocene history of Nares Strait: Transition from glacial bay to Arctic-Atlantic throughflow

    USGS Publications Warehouse

    Jennings, Anne E.; Sheldon, Christina; Cronin, Thomas M.; Francus, Pierre; Stoner, Joseph; Andrews, John

    2011-01-01

    Retreat of glacier ice from Nares Strait and other straits in the Canadian Arctic Archipelago after the end of the last Ice Age initiated an important connection between the Arctic and the North Atlantic Oceans, allowing development of modern ocean circulation in Baffin Bay and the Labrador Sea. As low-salinity, nutrient-rich Arctic Water began to enter Baffin Bay, it contributed to the Baffin and Labrador currents flowing southward. This enhanced freshwater inflow must have influenced the sea ice regime and likely is responsible for poor calcium carbonate preservation that characterizes the Baffin Island margin today. Sedimentologic and paleoceanographic data from radiocarbon-dated core HLY03-05GC, Hall Basin, northern Nares Strait, document the timing and paleoenvironments surrounding the retreat of waning ice sheets from Nares Strait and opening of this connection between the Arctic Ocean and Baffin Bay. Hall Basin was deglaciated soon before 10,300 cal BP (calibrated years before present) and records ice-distal sedimentation in a glacial bay facing the Arctic Ocean until about 9,000 cal BP. Atlantic Water was present in Hall Basin during deglaciation, suggesting that it may have promoted ice retreat. A transitional unit with high ice-rafted debris content records the opening of Nares Strait at approximately 9,000 cal BP. High productivity in Hall Basin between 9,000 and 6,000 cal BP reflects reduced sea ice cover and duration as well as throughflow of nutrient-rich Pacific Water. The later Holocene is poorly resolved in the core, but slow sedimentation rates and heavier carbon isotope values support an interpretation of increased sea ice cover and decreased productivity during the Neoglacial period.

  16. Pleistocene glaciation of Fenland, England, and its implications for evolution of the region

    PubMed Central

    West, R. G.; Hughes, P. D.

    2018-01-01

    Detailed investigation of landforms and their underlying deposits on the eastern margin of Fenland, East Anglia, demonstrated that they represent a series of glaciofluvial delta-fan and related sediments. Associated with these deposits are glacially dislocated sediments including tills, meltwater and pre-existing fluvial sediments. These ‘Skertchly Line’ deposits occur in the context of a substantial ice lobe that entered Fenland from the N to NE, dammed the streams entering the basin and caused glacial lakes to form in the valleys on the margins. Bulldozing by the ice lobe caused a series of ice-pushed ridges to form at the dynamic margin, especially at the ice maximum and during its retreat phases. Meltwater formed a series of marginal fans that coalesced into marginal accumulations in the SE of the basin. The ice lobe is named the Tottenhill glaciation. Further investigations of the Fenland margin have revealed the extent of the Tottenhill glaciation in the Fenland Basin, to the south and west, in sufficient detail to demonstrate the nature of the Tottenhill ice lobe and the landscape left on deglaciation. The ice lobe is likely to have been prone to surging. This is indicated by the low gradient of the ice lobe, the presence of underlying ductile Mesozoic clays, the evidence of ice-marginal flooding and the presence of arcuate glaciotectonic push moraines. Regional correlation, supported by independent numerical geochronology, indicates that the glaciation occurred ca 160 ka, i.e. during the late Middle Pleistocene, Marine Isotope Stage (MIS) 6, the Wolstonian Stage. Comparison and correlation across the southern North Sea Basin confirms that the glaciation is the equivalent of that during the Late Saalian Drenthe Stadial in The Netherlands. The implications of this correlation are presented. Before the glaciation occurred, the Fenland Basin did not exist. It appears to have been initiated by a subglacial tunnel valley system beneath the Anglian (=Elsterian, MIS 12) ice sheet. During the subsequent Hoxnian (=Holsteinian; approx. MIS 11) interglacial, the sea invaded the drainage system inherited following the glacial retreat. The evolution through the subsequent ca 200 ka Early to Middle Wolstonian substages, the interval between the Hoxnian (Holsteinian) temperate Stage and the Wolstonian glaciation, represents a period during which fluvial and periglacial activity modified the landscape under cold climates, and organic sediments were laid down during a warmer event. Palaeolithic humans were also periodically present during this interval, their artefacts having been reworked by the subsequent glaciation. The deglaciation was followed by re-establishment of the rivers associated with the deposition of Late Wolstonian (Warthe Stadial) gravels and sands, and later, deposits of the Ipswichian interglacial (=Eemian, approx. MIS 5e) including freshwater, then estuarine sediments. Subsequent evolution of the basin occurred during the Devensian Stage (=Weichselian, MIS 5d-2) under predominantly cold, periglacial conditions. PMID:29410798

  17. Pleistocene glaciation of Fenland, England, and its implications for evolution of the region.

    PubMed

    Gibbard, P L; West, R G; Hughes, P D

    2018-01-01

    Detailed investigation of landforms and their underlying deposits on the eastern margin of Fenland, East Anglia, demonstrated that they represent a series of glaciofluvial delta-fan and related sediments. Associated with these deposits are glacially dislocated sediments including tills, meltwater and pre-existing fluvial sediments. These 'Skertchly Line' deposits occur in the context of a substantial ice lobe that entered Fenland from the N to NE, dammed the streams entering the basin and caused glacial lakes to form in the valleys on the margins. Bulldozing by the ice lobe caused a series of ice-pushed ridges to form at the dynamic margin, especially at the ice maximum and during its retreat phases. Meltwater formed a series of marginal fans that coalesced into marginal accumulations in the SE of the basin. The ice lobe is named the Tottenhill glaciation. Further investigations of the Fenland margin have revealed the extent of the Tottenhill glaciation in the Fenland Basin, to the south and west, in sufficient detail to demonstrate the nature of the Tottenhill ice lobe and the landscape left on deglaciation. The ice lobe is likely to have been prone to surging. This is indicated by the low gradient of the ice lobe, the presence of underlying ductile Mesozoic clays, the evidence of ice-marginal flooding and the presence of arcuate glaciotectonic push moraines. Regional correlation, supported by independent numerical geochronology, indicates that the glaciation occurred ca 160 ka, i.e. during the late Middle Pleistocene, Marine Isotope Stage (MIS) 6, the Wolstonian Stage. Comparison and correlation across the southern North Sea Basin confirms that the glaciation is the equivalent of that during the Late Saalian Drenthe Stadial in The Netherlands. The implications of this correlation are presented. Before the glaciation occurred, the Fenland Basin did not exist. It appears to have been initiated by a subglacial tunnel valley system beneath the Anglian (=Elsterian, MIS 12) ice sheet. During the subsequent Hoxnian (=Holsteinian; approx. MIS 11) interglacial, the sea invaded the drainage system inherited following the glacial retreat. The evolution through the subsequent ca 200 ka Early to Middle Wolstonian substages, the interval between the Hoxnian (Holsteinian) temperate Stage and the Wolstonian glaciation, represents a period during which fluvial and periglacial activity modified the landscape under cold climates, and organic sediments were laid down during a warmer event. Palaeolithic humans were also periodically present during this interval, their artefacts having been reworked by the subsequent glaciation. The deglaciation was followed by re-establishment of the rivers associated with the deposition of Late Wolstonian (Warthe Stadial) gravels and sands, and later, deposits of the Ipswichian interglacial (=Eemian, approx. MIS 5e) including freshwater, then estuarine sediments. Subsequent evolution of the basin occurred during the Devensian Stage (=Weichselian, MIS 5d-2) under predominantly cold, periglacial conditions.

  18. The Sensitivity of the Greenland Ice Sheet to Glacial-Interglacial Oceanic Forcing

    NASA Astrophysics Data System (ADS)

    Tabone, I.; Blasco Navarro, J.; Robinson, A.; Alvarez-Solas, J.; Montoya, M.

    2017-12-01

    Up to now, the scientific community has mainly focused on the sensitivity of the Greenland Ice Sheet (GrIS) to atmospheric variations. However, several studies suggest that the enhanced ice mass loss experienced by the GrIS in the past decades is directly connected to the increasing North Atlantic temperatures. Melting of GrIS outlet glaciers triggers grounding-line retreat increasing ice discharge into the ocean. This new evidence leads to consider the ocean as a relevant driver to be taken into account when modeling the evolution of the GrIS. The ice-ocean interaction is a primary factor controling not only the likely future retreat of GrIS outlet glaciers, or the huge ice loss in past warming climates, but also, and more strongly, the past GrIS glacial expansion. The latter assumption is supported by reconstructions which propose the GrIS to be fully marine-based during glacials, and thus more exposed to the influence of the ocean. Here, for the first time, we investigate the response of the GrIS to past oceanic changes using a three-dimensional hybrid ice-sheet/ice-shelf model, which combines the Shallow Ice Approximation (SIA) for slow grounded ice sheets and the Shallow Shelf Approximation (SSA) in ice shelves and ice streams. The model accounts for a time-dependent parametrisation of the marine basal melting rate, which is used to reproduce past oceanic variations. In this work simulations of the last two glacial cycles are performed. Our results show that the GrIS is very sensitive to the ocean-triggered submarine melting (freezing). Mild oceanic temperature variations lead to a rapid retreat (expansion) of the GrIS margins, which, inducing a dynamic adjustment of the grounded ice sheet, drive the evolution of the whole ice sheet. Our results strongly suggest the need to consider the ocean as an active forcing in paleo ice sheet models.

  19. Autonomous Observations of the Upper Ocean Stratification and Velocity Fields About the Seasonally-Retreating Marginal Ice Zone

    DTIC Science & Technology

    2015-09-30

    ITP data is underway on multiple fronts. A few scientific highlights follow: An undergraduate student from VIT University in India, Ratnaksha...Yale University PO Box 208109 New Haven, CT 06520-8109 phone: (203) 432-3167 fax: (203) 432 3134 email: mary-louise.timmermans@yale.edu

  20. Groundwater flow modeling of periods with periglacial and glacial climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden

    NASA Astrophysics Data System (ADS)

    Vidstrand, Patrik; Follin, Sven; Selroos, Jan-Olof; Näslund, Jens-Ove

    2014-09-01

    The impact of periglacial and glacial climate conditions on groundwater flow in fractured crystalline rock is studied by means of groundwater flow modeling of the Forsmark site, which was recently proposed as a repository site for the disposal of spent high-level nuclear fuel in Sweden. The employed model uses a thermal-hydraulically coupled approach for permafrost modeling and discusses changes in groundwater flow implied by the climate conditions found over northern Europe at different times during the last glacial cycle (Weichselian glaciation). It is concluded that discharge of particles released at repository depth occurs very close to the ice-sheet margin in the absence of permafrost. If permafrost is included, the greater part discharges into taliks in the periglacial area. During a glacial cycle, hydraulic gradients at repository depth reach their maximum values when the ice-sheet margin passes over the site; at this time, also, the interface between fresh and saline waters is distorted the most. The combined effect of advances and retreats during several glaciations has not been studied in the present work; however, the results indicate that hydrochemical conditions at depth in the groundwater flow model are almost restored after a single event of ice-sheet advance and retreat.

  1. Recent calving dynamics of Glaciar Jorge Montt (Southern Patagonia Icefield) based on feature tracking techniques and oceanographic surveys

    NASA Astrophysics Data System (ADS)

    Bown, F.; Moffat, C. F.; Rivera, A.; Cisternas, S.; Kohoutek, T.

    2013-12-01

    Glaciers in the Southern Patagonia Icefield (SPI) have been retreating, thinning and accelerating in recent decades. Most of the SPI is comprised of temperate ice, therefore melting is the dominant wasting factor, however, calving is also playing a very important role, especially because calving is enhancing ice dynamic responses, mainly when glaciers calve into deep waters. Some of the most exacerbated responses are connected to the well documented and long-term tidewater calving cycle (TCC) overlapped by recent climate-related glacier responses. Glaciar Jorge Montt (48S/73W), is a tidewater glacier (~500 km2) which has experienced the maximum frontal retreat of the whole SPI (near 20 km in 112 years) while retreating up to 400 m water depth. Dead trees found in areas recently open by the glacier's retreat prove a date for the previous advancing cycle which took place during the Little Ice Age (250-400 years BP). This result indicates that the glacier is experiencing the retreating phase of the TCC in centennial time-scales. However, very little is known if this phase will stop or will continue, or how do climate change dynamcis will affect it. In order to understand the present behaviour of the glacier, several surveys have recently been conducted in the area, including airborne lidar and radar surveys, water depth measurements and ice dynamic studies. In order to survey the ice dynamic of the glacier front in connection with tides at the inner fjord, a camera pointing to the glacier terminus and collecting up to 8 photographs per day was installed in April 2012. The camera was continuously working for 60 days, allowing to study in detail the ice velocities, calving fluxes and tides near the ice. Thanks to the geo-location of the oblique photographs, feature tracking techniques were applied to the series in order to determine ice velocities and frontal retreat during the operational period. The resulting average velocities are lower than 10 m d-1, which are certainly smaller than the rates obtained in recent years (23 m d-1), and the frontal changes are also smaller due to the lack of large-magnitude calving events. Indeed, the total area change during the camera operational period yielded 0.03 km^2; this is an order of magnitude lower than the shrinkage taking place during a single calving event observed in previous periods. Part of the glacier frontal retreat during 2012 uncovered the bedrock, and the ice margins are not calving anymore but located few meters above sea level. Diurnal and semi-diurnal tides were recorded in water pressure sensors installed along the fjord. These water level changes at the glacier front were also detected in the photographic records, providing an interesting data source for analyzing possible correlations to daily ice velocities variations. As a result of the slower moving ice and the smaller retreating rates, calving fluxes have diminished, and consequently, the glacier seems to have reached a transitory frontal stability.

  2. Deciphering the evolution of the last Eurasian ice sheets

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Gyllencreutz, Richard; Mangerud, Jan; Svendsen, John Inge

    2016-04-01

    Glacial geologists need ice sheet-scale chronological reconstructions of former ice extent to set individual records in a wider context and compare interpretations of ice sheet response to records of past environmental changes. Ice sheet modellers require empirical reconstructions on size and volume of past ice sheets that are fully documented, specified in time and include uncertainty estimates for model validation or constraints. Motivated by these demands, in 2005 we started a project (Database of the Eurasian Deglaciation, DATED) to compile and archive all published dates relevant to constraining the build-up and retreat of the last Eurasian ice sheets, including the British-Irish, Scandinavian and Svalbard-Barents-Kara Seas ice sheets (BIIS, SIS and SBKIS respectively). Over 5000 dates were assessed for reliability and used together with published ice-sheet margin positions to reconstruct time-slice maps of the ice sheets' extent, with uncertainty bounds, every 1000 years between 25-10 kyr ago and at four additional periods back to 40 kyr ago. Ten years after the idea for a database was conceived, the first version of results (DATED-1) has now been released (Hughes et al. 2016). We observe that: i) both the BIIS and SBKIS achieve maximum extent, and commence retreat earlier than the larger SIS; ii) the eastern terrestrial margin of the SIS reached its maximum extent up to 7000 years later than the westernmost marine margin; iii) the combined maximum ice volume (~24 m sea-level equivalent) was reached c. 21 ka; iv) large uncertainties exist; predominantly across marine sectors (e.g. the timing of coalescence and separation of the SIS and BKIS) but also in well-studied areas due to conflicting yet equally robust data. In just three years since the DATED-1 census (1 January 2013), the volume of new information (from both dates and mapped glacial geomorphology) has grown significantly (~1000 new dates). Here, we present the DATED-1 results in the context of the climatic changes of the last glacial, discuss the implications of emerging post-census data, and describe plans for the next version of the database, DATED-2. Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., Svendsen, J. I. 2016: The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas, 45, 1-45. 10.1111/bor.12142

  3. The evolution of pCO2, ice volume and climate during the middle Miocene

    NASA Astrophysics Data System (ADS)

    Foster, Gavin L.; Lear, Caroline H.; Rae, James W. B.

    2012-08-01

    The middle Miocene Climatic Optimum (17-15 Ma; MCO) is a period of global warmth and relatively high CO2 and is thought to be associated with a significant retreat of the Antarctic Ice Sheet (AIS). We present here a new planktic foraminiferal δ11B record from 16.6 to 11.8 Ma from two deep ocean sites currently in equilibrium with the atmosphere with respect to CO2. These new data demonstrate that the evolution of global climate during the middle Miocene (as reflected by changes in the cyrosphere) was well correlated to variations in the concentration of atmospheric CO2. What is more, within our sampling resolution (∼1 sample per 300 kyr) there is no evidence of hysteresis in the response of ice volume to CO2 forcing during the middle Miocene, contrary to what is understood about the Antarctic Ice Sheet from ice sheet modelling studies. In agreement with previous data, we show that absolute levels of CO2 during the MCO were relatively modest (350-400 ppm) and levels either side of the MCO are similar or lower than the pre-industrial (200-260 ppm). These new data imply the presence of either a very dynamic AIS at relatively low CO2 during the middle Miocene or the advance and retreat of significant northern hemisphere ice. Recent drilling on the Antarctic margin and shore based studies indicate significant retreat and advance beyond the modern limits of the AIS did occur during the middle Miocene, but the complete loss of the AIS was unlikely. Consequently, it seems that ice volume and climate variations during the middle Miocene probably involved a more dynamic AIS than the modern but also some component of land-based ice in the northern hemisphere.

  4. Sedimentology and architecture of De Geer moraines in the western Scottish Highlands, and implications for grounding-line glacier dynamics

    NASA Astrophysics Data System (ADS)

    Golledge, Nicholas R.; Phillips, Emrys

    2008-07-01

    Sedimentary exposures in moraines in a Scottish Highland valley (Glen Chaorach), reveal stacked sequences of bedded and laminated silt, sand and gravel, interspersed or capped with diamicton units. In four examples, faults and folds indicate deformation by glaciotectonism and syndepositional loading. We propose that these sediments were laid down in an ice-dammed lake, close to the last ice margin to occupy this glen. Individual units within cross-valley De Geer moraine ridges are interpreted by comparison with examples from similar environments elsewhere: stratified diamictons containing laminated or bedded lenses are interpreted as subaqueous ice-marginal debris-flow deposits; massive fine-grained deposits as hyperconcentrated flow deposits, and massive gravel units as high-density debris-flow deposits. Using an allostratigraphic approach we argue that glaciotectonically deformed coarsening-upward sand and gravel sequences that culminate in deposition of subglacial diamicton represent glacier advances into the ice-marginal lake, whereas undisturbed cross-bedded sand and gravel reflects channel or fan deposits laid down during glacier retreat. A flat terrace of bedded sand and gravel at the northern end of Glen Chaorach is interpreted as subaerial glaciofluvial outwash. On the basis of these inferences we propose the following three stage deglacial event chronology for Glen Chaorach. During glacier recession, ice separation and intra-lobe ponding first led to subaquaeous deposition of sorted and unsorted facies. Subsequent glacier stabilisation and ice-marginal oscillation produced glaciotectonic structures in the ice-marginal sediment pile and formed De Geer moraines. Finally, drainage of the ice-dammed lake allowed a subaerial ice-marginal drainage system to become established. Throughout deglaciation, deposition within the lake was characterized by abrupt changes in grain size and in the architecture of individual sediment bodies, reflecting changing delivery paths and sediment supply, and by dynamic margin oscillations typical of water-terminating glaciers.

  5. BRITICE-CHRONO: Constraining rates and style of marine-influenced ice sheet decay to provide a data-rich playground for ice sheet modellers

    NASA Astrophysics Data System (ADS)

    Clark, Chris

    2014-05-01

    Uncertainty exists regarding the fate of the Antarctic and Greenland ice sheets and how they will respond to forcings from sea level and atmospheric and ocean temperatures. If we want to know more about the mechanisms and rate of change of shrinking ice sheets, then why not examine an ice sheet that has fully disappeared and track its retreat through time? If achieved in enough detail such information could become a data-rich playground for improving the next breed of numerical ice sheet models to be used in ice and sea level forecasting. We regard that the last British-Irish Ice Sheet is a good target for this work, on account of its small size, density of information and with its numerous researchers already investigating it. BRITICE-CHRONO is a large (>45 researchers) NERC-funded consortium project comprising Quaternary scientists and glaciologists who will search the seafloor around Britain and Ireland and parts of the landmass in order to find and extract samples of sand, rock and organic matter that can be dated (OSL; Cosmogenic; 14C) to reveal the timing and rate of change of the collapsing British-Irish Ice Sheet. The purpose is to produce a high resolution dataset on the demise on an ice sheet - from the continental shelf edge and across the marine to terrestrial transition. Some 800 new date assessments will be added to those that already exist. This poster reports on the hypotheses that underpin the work. Data on retreat will be collected by focusing on 8 transects running from the continental shelf edge to a short distance (10s km) onshore and acquiring marine and terrestrial samples for geochronometric dating. The project includes funding for 587 radiocarbon, 140 OSL and 158 TCN samples for surface exposure dating; with sampling accomplished by two research cruises and 16 fieldwork campaigns. Results will reveal the timing and rate of change of ice margin recession for each transect, and combined with existing landform and dating databases, will be used to build an ice sheet-wide empirical reconstruction of retreat incorporating Bayesian analysis to assess uncertainty. We invite and encourage ice sheet modellers to use our data for modelling experiments and in particular to explore the role of bed topography in modulating ice retreat.

  6. Holocene deglacial history of the northeast Antarctic Peninsula - A review and new chronological constraints

    NASA Astrophysics Data System (ADS)

    Johnson, Joanne S.; Bentley, Michael J.; Roberts, Stephen J.; Binnie, Steven A.; Freeman, Stewart P. H. T.

    2011-12-01

    The northeast Antarctic Peninsula (NEAP) region is currently showing signs of significant environmental change, evidenced by acceleration of glacial retreat and collapse of both Larsen-A and -B ice shelves within the past 15 years. However, data on the past extent of the eastern margin of the Antarctic Peninsula Ice Sheet (APIS) and its Holocene retreat history are sparse, and hence we cannot yet put the recent changes into a long-term context. In order to investigate the timing of deglaciation, we present 16 new cosmogenic 10Be surface exposure ages from sites on northern James Ross Island (Cape Lachman, Johnson Mesa and Terrapin Hill) and Seymour Island. The majority of the ages cluster around 6-10 ka, with three significantly older (25-31 ka). We combine these ages with existing terrestrial and marine radiocarbon deglaciation ages, and a compilation of existing swath bathymetry data, to quantify the temporal and spatial character of the regional glacial history. Ice had begun to retreat from the outer shelf by 18.3 ka, reaching Seymour Island by ˜8 ka. Northern James Ross Island began to deglaciate around the time of the Early Holocene Climatic Optimum (c. 11-9.5 ka). Deglaciation continued, and a transition from grounded to floating ice in Prince Gustav Channel occurred around 8 ka, separating the James Ross Island ice cap from the APIS. This occurred shortly before Prince Gustav Channel ice shelf began to disintegrate at 6.2 ka. Our results suggest there may be a bathymetric control on the spatial pattern of deglaciation in the NEAP.

  7. Simulated influences of Lake Agassiz on the climate of central North America 11,000 years ago

    USGS Publications Warehouse

    Hostetler, S.W.; Bartlein, P.J.; Clark, P.U.; Small, E.E.; Solomon, A.M.

    2000-01-01

    Eleven thousand years ago, large lakes existed in central and eastern North America along the margin of the Laurentide Ice Sheet. The large-scale North American climate at this time has been simulated with atmospheric general circulation models, but these relatively coarse global models do not resolve potentially important features of the mesoscale circulation that arise from interactions among the atmosphere, ice sheet, and proglacial lakes. Here we present simulations of the climate of central and eastern North America 11,000 years ago with a high-resolution, regional climate model nested within a general circulation model. The simulated climate is in general agreement with that inferred from palaeoecological evidence. Our experiments indicate that through mesoscale atmospheric feedbacks, the annual delivery of moisture to the Laurentide Ice Sheet was diminished at times of a large, cold Lake Agassiz relative to periods of lower lake stands. The resulting changes in the mass balance of the ice sheet may have contributed to fluctuations of the ice margin, thus affecting the routing of fresh water to the North Atlantic Ocean. A retreating ice margin during periods of high lake level may have opened an outlet for discharge of Lake Agassiz into the North Atlantic. A subsequent advance of the ice margin due to greater moisture delivery associated with a low lake level could have dammed the outlet, thereby reducing discharge to the North Atlantic. These variations may have been decisive in causing the Younger Dryas cold even.

  8. Seafloor Morphology And Sediment Discharge Of The Storfjorden And Kveithola Palaeo-Ice Streams (NW Barents Sea) During The Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Rebesco, Michele; Pedrosa, Mayte; Demol, Ben; Giulia Lucchi, Renata; Urgeles, Roger; Colmenero-Hidalgo, Elena; Andreassen, Karin; Sverre Laberg, Jan; Winsborrow, Monica

    2010-05-01

    IPY Activity N. 367 focusing on Neogene ice streams and sedimentary processes on high- latitude continental margins (NICE-STREAMS) resulted in two coordinated cruises on the adjacent Storfjorden and Kveithola trough-mouth fans in the NW Barents Sea: SVAIS Cruise of BIO Hespérides, summer 2007, and EGLACOM Cruise of Cruise R/V OGS-Explora, summer 2008. The objectives were to acquire a high-resolution set of bathymetric, seismic and sediment core data in order to decipher the Neogene architectural development of the glacially-dominated NW Barents Sea continental margin in response to natural climate change. The paleo-ice streams drained ice from southern Spitsbergen, Spitsbergen Bank, and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. In the outer trough of southern Storfjorden, lobate moraines superimpose and are cut by very large linear features attributed to mega-iceberg scours. In the adjacent Kveithola trough, a fresh morphology includes mega-scale glacial lineations overprinted by transverse grounding-zone wedges, diagnostic of episodic ice stream retreat. A 15 m thick glacimarine drape suggests an high post-deglaciation sedimentation rate. Preliminary interpretation suggests that the retreat of the Svalbard/Barents Sea Ice Sheet was highly dynamic and that grounded ice persisted on Spitsbergen Bank for some thousands years after the main Barents Sea deglaciation.The Storfjorden continental slope is divided into three wide lobes. Opposite the two northernmost lobes the slope is dominated by straight gullies in the upper part, and deposition of debris lobes on the mid and lower parts. In contrast, the southernmost lobe is characterized by widespread occurrence of submarine landslides. Sediment failure has accompanied the evolution of the southern Storfjorden and Kveithola margin throughout the Late Neogene, with very large mass transport deposits up to 200 m thick in the early phases of the development of the glacially influenced margin. Conversely, the central and northern parts of the Storfjorden margin have prograded without appreciable episodes of mass failure. Sedimentation has occurred through alternate layering of decimeter-thick glacial debris flows deposits, with laminated and acoustically transparent interglacial sediment drape. Gullies and paleo-gullies incise the glacial debris flows and are covered by the interglacial drape. They are formed early during each deglaciation phase, most likely by the erosive action of short-lived hyperpycnal flows generated by sediment-laden subglacial meltwater discharge. In sediment cores thick finely-laminated sedimentary beds on the upper continental slope of the southern part of the margin indicate preferential deposition by settlement of meltwater sediment plumes. High sedimentation rates of plumites may contribute to the slope instability and suggest that meltwater discharge was focused on the southern Storfjorden and Kveithola paleo-ice streams.

  9. Geomorphic and shallow-acoustic investigation of an Antarctic Peninsula fjord system using high-resolution ROV and shipboard geophysical observations: Ice dynamics and behaviour since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    García, Marga; Dowdeswell, J. A.; Noormets, R.; Hogan, K. A.; Evans, J.; Ó Cofaigh, C.; Larter, R. D.

    2016-12-01

    Detailed bathymetric and sub-bottom acoustic observations in Bourgeois Fjord (Marguerite Bay, Antarctic Peninsula) provide evidence on sedimentary processes and glacier dynamics during the last glacial cycle. Submarine landforms observed in the 50 km-long fjord, from the margins of modern tidewater glaciers to the now ice-distal Marguerite Bay, are described and interpreted. The landforms are grouped into four morpho-sedimentary systems: (i) glacial advance and full-glacial; (ii) subglacial and ice-marginal meltwater; (iii) glacial retreat and neoglaciation; and (iv) Holocene mass-wasting. These morpho-sedimentary systems have been integrated with morphological studies of the Marguerite Bay continental shelf and analysed in terms of the specific sedimentary processes and/or stages of the glacial cycle. They demonstrate the action of an ice-sheet outlet glacier that produced drumlins and crag-and-tail features in the main and outer fjord. Meltwater processes eroded bedrock channels and ponds infilled by fine-grained sediments. Following the last deglaciation of the fjord at about 9000 yr BP, subsequent Holocene neoglacial activity involved minor readvances of a tidewater glacier terminus in Blind Bay. Recent stillstands and/or minor readvances are inferred from the presence of a major transverse moraine that indicates grounded ice stabilization, probably during the Little Ice Age, and a series of smaller landforms that reveal intermittent minor readvances. Mass-wasting processes also affected the walls of the fjord and produced scars and fan-shaped deposits during the Holocene. Glacier-terminus changes during the last six decades, derived from satellite images and aerial photographs, reveal variable behaviour of adjacent tidewater glaciers. The smaller glaciers show the most marked recent retreat, influenced by regional physiography and catchment-area size.

  10. Autonomous Observations of the Upper Ocean Stratification and Velocity Fields About the Seasonally-Retreating Marginal Ice Zone

    DTIC Science & Technology

    2013-09-30

    Unit and Attitude Heading Reference System (IMU/ AHRS ). The former was motivated by analysis of prototype data that suggested that vortex shedding from...relative orientation of the coordinate system of the VN-100 IMU/ AHRS (mounted on a board inside the ITP-V pressure case) relative to that of the ACM

  11. Phytoplankton standing crops within an Antarctic ice edge assessed by satellite remote sensing

    NASA Technical Reports Server (NTRS)

    Sullivan, C. W.; Mcclain, C. R.; Comiso, J. C.; Smith, W. O., Jr.

    1988-01-01

    The dynamic interactions between the pack-ice recession and the occurrence of ice blooms of phytoplankton in waters of the marginal ice zone within an Antarctic ice edge were investigated using CZCS and SMMR imageries from the Nimbus 7 satellite (September 16-December 17, 1983), together with in situ measurements of pigments and sea ice concentration carried out from November 7 to December 2. A substantial amount of spatial variability in pigment concentration was observed to occur along the ice edge in the Weddell Sea. The relationships among light, ice distribution, and vertical stability and their effects on observed spatial variations in phytoplankton biomass are discussed. The results of this investigation suggest that the retreat of ice provides an input of significant volumes of meltwater which creates vertical stability for a period necessary to permit growth and accumulation of phytoplankton.

  12. Greenland-Wide Seasonal Temperatures During the Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Buizert, C.; Keisling, B. A.; Box, J. E.; He, F.; Carlson, A. E.; Sinclair, G.; DeConto, R. M.

    2018-02-01

    The sensitivity of the Greenland ice sheet to climate forcing is of key importance in assessing its contribution to past and future sea level rise. Surface mass loss occurs during summer, and accounting for temperature seasonality is critical in simulating ice sheet evolution and in interpreting glacial landforms and chronologies. Ice core records constrain the timing and magnitude of climate change but are largely limited to annual mean estimates from the ice sheet interior. Here we merge ice core reconstructions with transient climate model simulations to generate Greenland-wide and seasonally resolved surface air temperature fields during the last deglaciation. Greenland summer temperatures peak in the early Holocene, consistent with records of ice core melt layers. We perform deglacial Greenland ice sheet model simulations to demonstrate that accounting for realistic temperature seasonality decreases simulated glacial ice volume, expedites the deglacial margin retreat, mutes the impact of abrupt climate warming, and gives rise to a clear Holocene ice volume minimum.

  13. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets.

    PubMed

    Pritchard, Hamish D; Arthern, Robert J; Vaughan, David G; Edwards, Laura A

    2009-10-15

    Many glaciers along the margins of the Greenland and Antarctic ice sheets are accelerating and, for this reason, contribute increasingly to global sea-level rise. Globally, ice losses contribute approximately 1.8 mm yr(-1) (ref. 8), but this could increase if the retreat of ice shelves and tidewater glaciers further enhances the loss of grounded ice or initiates the large-scale collapse of vulnerable parts of the ice sheets. Ice loss as a result of accelerated flow, known as dynamic thinning, is so poorly understood that its potential contribution to sea level over the twenty-first century remains unpredictable. Thinning on the ice-sheet scale has been monitored by using repeat satellite altimetry observations to track small changes in surface elevation, but previous sensors could not resolve most fast-flowing coastal glaciers. Here we report the use of high-resolution ICESat (Ice, Cloud and land Elevation Satellite) laser altimetry to map change along the entire grounded margins of the Greenland and Antarctic ice sheets. To isolate the dynamic signal, we compare rates of elevation change from both fast-flowing and slow-flowing ice with those expected from surface mass-balance fluctuations. We find that dynamic thinning of glaciers now reaches all latitudes in Greenland, has intensified on key Antarctic grounding lines, has endured for decades after ice-shelf collapse, penetrates far into the interior of each ice sheet and is spreading as ice shelves thin by ocean-driven melt. In Greenland, glaciers flowing faster than 100 m yr(-1) thinned at an average rate of 0.84 m yr(-1), and in the Amundsen Sea embayment of Antarctica, thinning exceeded 9.0 m yr(-1) for some glaciers. Our results show that the most profound changes in the ice sheets currently result from glacier dynamics at ocean margins.

  14. Timing of the Northern Prince Gustav Ice Stream retreat and the deglaciation of northern James Ross Island, Antarctic Peninsula during the last glacial-interglacial transition

    NASA Astrophysics Data System (ADS)

    Nývlt, Daniel; Braucher, Régis; Engel, Zbyněk; Mlčoch, Bedřich

    2014-09-01

    The Northern Prince Gustav Ice Stream located in Prince Gustav Channel, drained the northeastern portion of the Antarctic Peninsula Ice Sheet during the last glacial maximum. Here we present a chronology of its retreat based on in situ produced cosmogenic 10Be from erratic boulders at Cape Lachman, northern James Ross Island. Schmidt hammer testing was adopted to assess the weathering state of erratic boulders in order to better interpret excess cosmogenic 10Be from cumulative periods of pre-exposure or earlier release from the glacier. The weighted mean exposure age of five boulders based on Schmidt hammer data is 12.9 ± 1.2 ka representing the beginning of the deglaciation of lower-lying areas (< 60 m a.s.l.) of the northern James Ross Island, when Northern Prince Gustav Ice Stream split from the remaining James Ross Island ice cover. This age represents the minimum age of the transition from grounded ice stream to floating ice shelf in the middle continental shelf areas of the northern Prince Gustav Channel. The remaining ice cover located at higher elevations of northern James Ross Island retreated during the early Holocene due to gradual decay of terrestrial ice and increase of equilibrium line altitude. Schmidt hammer R-values are inversely correlated with 10Be exposure ages and could be used as a proxy for exposure history of individual granite boulders in this region and favour the hypothesis of earlier release of boulders with excessive 10Be concentrations from glacier directly at this site. These data provide evidences for an earlier deglaciation of northern James Ross Island when compared with other recently presented cosmogenic nuclide based deglaciation chronologies, but this timing coincides with rapid increase of atmospheric temperature in this marginal part of Antarctica.

  15. Clay mineralogy of the ocean sediments from the Wilkes Land margin, east Antarctica: implications on the paleoclimate, provenance and sediment dispersal pattern

    NASA Astrophysics Data System (ADS)

    Verma, Kamlesh; Bhattacharya, Sanjeeb; Biswas, P.; Shrivastava, Prakash K.; Pandey, Mayuri; Pant, N. C.

    2014-11-01

    Core U1359 collected from the continental rise off Wilkes Land, east Antarctica, is analyzed for the clay mineralogy and carbon content. The temporal variation of the clay mineralogical data shows a dominance of illite with chlorite, smectite and kaolinite in decreasing concentration. Clay mineral illite is negatively correlated with smectite which shows enrichment during 6.2-6.8, 5.5-5.8, 4.5 and 2.5 Ma. The mineralogical analyses on the silt size fraction (2-53 μm) of some selected samples were also carried out. The combined result of both the size fractions shows the presence of chlorite and illite in both size fractions, smectite and kaolinite only in clay size fraction (<2 μm) and similarity in the crystallinity and chemistry of illite in both fractions. Similar nature of illite in both fractions suggests negligible role of sorting probably due to the deposition from the waxing ice sheet. During times of ice growth, nearby cratonic east Antarctica shield provided biotite-rich sediments to the depositional site. On the other hand, the presence of smectite, only in the clay size fraction, suggests the effective role of sorting probably due to the deposition from distal source in ice retreat condition. During times of ice retreat, smectite-rich sediment derived from Ross Orogen is transported to the core site through surface or bottom water currents. Poor crystallinity of illite due to degradation further corroborates the ice retreat condition. The ice sheet proximal sediments of U1359 show that in the eastern part of Wilkes Land, the `warming' was initiated during late Miocene.

  16. Reconstruction of the Final Phases of Activity and Retreat of the North Sea Lobe Ice Stream during the Late Devensian

    NASA Astrophysics Data System (ADS)

    Grimoldi, E.; Roberts, D. H.; Evans, D. J. A.; Stewart, H. A.; Sejrup, H. P.; Hjelstuen, B. O. B.; Haflidason, H.; Clark, C.

    2016-12-01

    The deglacial history of the former eastern margin of the last British and Irish Ice Sheet (BIIS) is still poorly understood, particularly in the western North Sea basin. The North Sea Lobe (NSL) affected the area, although gaps remain in our knowledge of the geomorphological and sedimentary imprint that the ice stream left on the seafloor and, more importantly, of its way of final retreat. In this work we analyse new high-resolution multibeam bathymetry, 2D seismic profiles and five vibro-cores, collected in the western North Sea in collaboration with the Britice-Chrono project, and provide new insights on the seafloor geomorphology and acoustic and lithological facies that characterize the Quaternary sediments of the area. The presence of bedrock-cored lineations orientated WNW-ESE to NW-SE indicates that the NSL was fed by the Forth ice stream which moved offshore from southern Scotland. Moraine ridges and two grounding zone wedges, perpendicular to the lineations, suggest that the NSL underwent different phases of stillstand/readvance and retreated towards the north-west. Five acoustic facies (AF) were identified, four of which are found on top of pre-Quaternary strata (AF 1), though their lateral extension is discontinuous. They are interpreted to represent glacigenic diamicts (AF 2 and 3), that are overlain by glacimarine (AF 4) and by Holocene deposits (AF 5). The vibro-cores penetrate in depth until reaching the top of AF 3. This facies correlates to the diamictic sediments observed in the cores, which are characterized by soft silts and clays and abundant clasts. The glacimarine sediments generally appear as highly laminated silts and clays with dropstones that usually become less frequent going upwards in the cores. These sediments are also characterized by foraminifera species associated with glacial environments. Foraminifera tests were dated within the galcimarine sequences in two cores and will help constrain the timing of ice retreat. By compiling all the available datasets, we suggest that the NSL flew sub-parallel to the coasts of eastern England during the Late Devensian and underwent different phases of stillstands/readvances that indicate a slow retreat towards land.

  17. Retarded deglaciation of north-Spitsbergen fjords during the last glacial - an example of bathymetric controls on the dynamics of retreating glaciers

    NASA Astrophysics Data System (ADS)

    Forwick, M.; Vorren, T. O.; Hass, H.; Vogt, C. M.

    2012-12-01

    North and west Spitsbergen fjords acted as pathways for fast-flowing ice streams during the last glacial (e.g. Ottesen et al., 2005). The deglaciation of west Spitsbergen fjords occurred stepwise and the ice retreat terminated around 11,200 cal. years BP (calendar years before the present; e.g. Forwick & Vorren, 2009, 2011, and references therein; Baeten et al., 2010). However, the deglaciation dynamics and chronology of north Spitsbergen fjords still remain poorly understood. We present swath-bathymetry, high-resolution seismic data and two sediment cores from the approx. 110 km long, N-S oriented Wijdefjorden-Austfjorden fjord system, the largest fjord system on northern Spitsbergen. The data indicate that - as in the fjords on west Spitsbergen - multiple halts and/or readvances interrupted the retreat of the ice front during the final phase of the last glacial. However, even though the study area and several west Spitsbergen fjords are fed by the same glacier source (the ice field Lomonosovfonna), the final deglaciation of Wijdefjorden-Austfjorden took place after 9300 cal. years BP, i.e. at least approx. 2000 years later than in the west. We assume that the retarded deglaciation in the north is mainly related to the fjord bathymetry, i.e. a more than 35 km wide and up to 60 m high area in the central parts of the study area (approx. 45 km beyond the present fjord head) that acted as pinning point for the grounded glacier. Multiple, relatively large and partly stacked moraine ridges and sediment wedges are suggested to reflected that the ice front retreated slowly across this shallow area and that repeated readvances interrupted this retreat. The absence of larger sediment wedges in the deeper parts between the shallow area and the fjord head may indicate that the final retreat occurred relatively rapid. References: Baeten, N.J., Forwick, M., Vogt, C. & Vorren, T.O., 2010. Late Weichselian and Holocene sedimentary environments and glacial activity in Billefjorden, Svalbard. In: Howe, J.A., Austin, W.E.N, Forwick, M. & Paetzel, M. (eds.): Fjord Systems and Archives. Geological Society, London, Special Publication, 344, 207-223. Forwick, M. & Vorren, T.O., 2009. Late Weichselian and Holocene sedimentary environments and ice rafting in Isfjorden, Spitsbergen. Palaeogeography, Palaeoclimatology, Palaeoecology 280, 258-274. Forwick, M. & Vorren, T.O., 2011. Stratigraphy and deglaciation of the Isfjorden area, Spitsbergen. Norwegian Journal of Geology 90, 163-179. Ottesen, D., Dowdeswell, J.A., Rise, L., 2005. Submarine landforms and the reconstruction of fast-flowing ice streams within a large Quaternary ice sheet: The 2500-km-long Norwegian-Svalbard margin (57°-80°N). Geological Society of America Bulletin 117, 1033-1050.

  18. Records of past ice sheet fluctuations in interior East Antarctica

    USGS Publications Warehouse

    Liu, Xiaohan; Huang, Feixin; Kong, Ping; Fang, Aimin; Li, Xiaoli

    2007-01-01

    The results of a land-based multi-disciplinary study of the past ice surface elevation in the Grove Mountains of interior East Antarctica support a dynamic evolution of the East Antarctic Ice Sheet (EAIS). Moraine boulders of sedimentary rocks and spore pollen assemblage imply a significant shrinkage of the EAIS, with its margin retreating south of the Grove Mountains (~450 km south of recent coast line) before the middle Pliocene. The exposure ages indicate that the ice sheet subsequently re-advanced, with the ice surface rising locally at least 450 m higher than today. It then went back down constantly from before 2.3 Ma to 1.6 Ma. The glacial topography and existence of soil show that the ice surface fluctuation continued since the early Quaternary, but with highest levels never exceeding ~100 m higher than today.

  19. Loitering of the retreating sea ice edge in the Arctic Seas.

    PubMed

    Steele, Michael; Ermold, Wendy

    2015-12-01

    Each year, the arctic sea ice edge retreats from its winter maximum extent through the Seasonal Ice Zone (SIZ) to its summer minimum extent. On some days, this retreat happens at a rapid pace, while on other days, parts of the pan-arctic ice edge hardly move for periods of days up to 1.5 weeks. We term this stationary behavior "ice edge loitering," and identify areas that are more prone to loitering than others. Generally, about 20-25% of the SIZ area experiences loitering, most often only one time at any one location during the retreat season, but sometimes two or more times. The main mechanism controlling loitering is an interaction between surface winds and warm sea surface temperatures in areas from which the ice has already retreated. When retreat happens early enough to allow atmospheric warming of this open water, winds that force ice floes into this water cause melting. Thus, while individual ice floes are moving, the ice edge as a whole appears to loiter. The time scale of loitering is then naturally tied to the synoptic time scale of wind forcing. Perhaps surprisingly, the area of loitering in the arctic seas has not changed over the past 25 years, even as the SIZ area has grown. This is because rapid ice retreat happens most commonly late in the summer, when atmospheric warming of open water is weak. We speculate that loitering may have profound effects on both physical and biological conditions at the ice edge during the retreat season.

  20. Simulating LGM retreat of the Uummannaq Ice Stream and Rinks Isbrae, Western Greenland using a 1-D ice-stream model constrained by a suite of marine and terrestrial data

    NASA Astrophysics Data System (ADS)

    Jamieson, Stewart; Roberts, Dave; Rea, Brice; Lane, Timothy; Vieli, Andreas; Cofaigh, Colm Ó.

    2014-05-01

    We aim to understand what controlled the retreat pattern of the Uummannaq Ice Stream (UIS) during the last deglaciation. Evidence for the pattern of retreat is found in both the marine and terrestrial realms, but because the evidence is temporally and spatially discontinuous, it is challenging to coherently reconstruct both grounding-line retreat and ice-surface thinning such that they are in agreement. Marine stratigraphic and geophysical evidence indicates that the ice stream was grounded close to the continental shelf edge at the Last Glacial Maximum, and retreated rapidly and nonlinearly after 14.8 ka. Cosmogenic nuclide exposure dating on Ubekendt Island at the convergence zone of multiple feeder ice streams show that the ice surface thinned progressively and that the island became ice-free by ca. 12.4 ka. The ice stream then collapsed over the next 1-1.6 kyrs and the ice stream separated into a series of distinct inland arms. In the northernmost Rinks system, there is a 'staircase' of evidence showing ice surface thinning over time, but it is unclear where the grounding line was located during this phase of thinning. Furthermore, it is currently unclear what controlled the nonlinear retreat pattern identified in the Uummannaq system. We develop a numerical model of ice-stream retreat using the marine geophysical data and measurements of sediment strength on the continental shelf to control the boundary conditions. The model has the capability to dynamically and robustly simulate grounding line-retreat behaviour over millennial timescales. We simulate the retreat of the UIS grounding line into the northernmost Rinks system in response to enhanced ocean warming, rising sea level and warming climate. We compare the simulated dynamic behaviour of the UIS against the geomorphological and cosmogenic exposure evidence for ice surface thinning onshore and against dated marine grounding line positions. Our model results enable us to match grounding-line positions in the marine trough to distinct onshore ice-surface heights, and therefore provide a 2-dimensional reconstruction of the geometry of the UIS as it retreated after the LGM. We find that the nonlinearity in retreat rate is conditioned by the locations of vertical and lateral constrictions in the Uummannaq/Rink trough which provide temporary pinning points for the grounding line. When the grounding line retreats rapidly between pinning points, the ice surface thins rapidly inland. When the grounding line is pinned, thinning of the ice surface becomes much slower in locations corresponding to the deposition of moraines. We suggest that the slowdowns in retreat identified in the marine domain are therefore reflected by the generation of moraines in the terrestrial domain. Finally, we generate hypotheses about the timing of marine grounding-line retreat based upon the published terrestrial cosmogenic exposure ages.

  1. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonality Retreating Marginal Ice Zone

    DTIC Science & Technology

    2016-12-30

    graduate school at the Scripps institution of Oceanography . Also, ITP-Y investigators have collaborated with a Naval Postgraduate School 3 student...Physical Oceanography , doi: http://dx.doi.org/10. l J 75/JPO-D-1 2-0 19 l. l Cole, S.T., F.T. Thwaites, R.A. Kri shfield, and J.M. Toole, 2015

  2. Outlet Glacier-Ice Shelf-Ocean Interactions: Is the Tail Wagging the Dog?

    NASA Astrophysics Data System (ADS)

    Parizek, B. R.; Walker, R. T.; Rinehart, S. K.

    2009-12-01

    While the massive interior regions of the Antarctic and Greenland Ice Sheets are presently ``resting quietly", the lower elevations of many outlet glaciers are experiencing dramatic adjustments due to changes in ice dynamics and/or surface mass balance. Oceanic and/or atmospheric forcing in these marginal regions often leads to mass deficits for entire outlet basins. Therefore, coupling the wagging tail of ice-ocean interactions with the vast ice-sheet reservoirs is imperative for accurate assessments of future sea-level rise. To study ice-ocean dynamic processes, we couple an ocean-plume model that simulates ice-shelf basal melting rates based on temperature and salinity profiles combined with plume dynamics associated with the geometry of the ice-shelf cavity (following Jenkins, 1991 and Holland and Jenkins, 1999) with a two-dimensional, isothermal model of outlet glacier-ice shelf flow (as used in Alley et al., 2007; Walker et al., 2008; Parizek et al., in review). Depending on the assigned temperature and salinity profiles, the ocean model can simulate both water-mass end-members: either cold High Salinity Shelf Water (HSSW) or relatively warm Circumpolar Deep Water (CDW), as well as between-member conditions. Notably, the coupled system exhibits sensitivity to the initial conditions. In particular, melting concentrated near the grounding line has the greatest effect in forcing grounding-line retreat. Retreat is further enhanced by a positive feedback between the ocean and ice, as the focused melt near the grounding line leads to an increase in the local slope of the basal ice, thereby enhancing buoyancy-driven plume flow and subsequent melt rates.

  3. Deglaciation-induced uplift and seasonal variations patterns of bedrock displacement in Greenland ice sheet margin observed from GPS, GRACE and InSAR

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Amelung, F.; Wdowinski, S.

    2017-12-01

    The Greenland ice sheet is rapidly shrinking with the fastest retreat and thinning occurring at the ice sheet margin and near the outlet glaciers. The changes of the ice mass cause an elastic response of the bedrock. Theoretically, ice mass loss during the summer melting season is associated with bedrock uplift, whereas increasing ice mass during the winter months is associated with bedrock subsidence. Here we examine the annual changes of the vertical displacements measured at 37 GPS stations and compare the results with Greenland drainage basins' gravity from GRACE. We use both Fourier Series (FS) analysis and Cubic Smoothing Spline (CSS) method to estimate the phases and amplitudes of seasonal variations. Both methods show significant differences seasonal behaviors in southern and northern Greenland. The average amplitude of bedrock displacements (3.29±0.02mm) in south Greenland is about 2 times larger than the north (1.65±0.02mm). The phase of bedrock maximum uplift (November) is considerably consistent with the time of minimum ice mass load in south Greenland (October). However, the phase of bedrock maximum uplift in north Greenland (February) is 4 months later than the minimum ice mass load in north Greenland basins (October). In addition, we present ground deformation near several famous glaciers in Greenland such as Petermann glacier and Jakobshavn glacier. We process InSAR data from TerraSAR-X and Sentinel satellite, based on small baseline interferograms. We observed rapid deglaciation-induced uplift and seasonal variations on naked bedrock near the glacier ice margin.

  4. Formation of lobate debris aprons on Mars: Assessment of regional ice sheet collapse and debris-cover armoring

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.; Marchant, David R.

    2014-01-01

    Lobate debris aprons (LDA) are lobate-shaped aprons surrounding scarps and isolated massifs that are concentrated in the vicinity of the northern Dichotomy Boundary on Mars. LDAs have been interpreted as (1) ice-cemented talus aprons undergoing viscous flow, (2) local debris-covered alpine-like glaciers, or (3) remnants of the collapse of a regional retreating ice sheet. We investigate the plausibility that LDAs are remnants of a more extensive regional ice sheet by modeling this process. We find that as a regional ice sheet collapses, the surface drops below cliff and massif bedrock margins, exposing bedrock and regolith, and initiating debris deposition on the surface of a cold-based glacier. Reduced sublimation due to debris-cover armoring of the proto-LDA surface produces a surface slope and consequent ice flow that carries the armoring debris away from the rock outcrops. As collapse and ice retreat continue the debris train eventually reaches the substrate surface at the front of the glacier, leaving the entire LDA armored by debris cover. Using a simplified ice flow model we are able to characterize the temperature and sublimation rate that would be necessary to produce LDAs with a wide range of specified lateral extents and thicknesses. We then apply this method to a database of documented LDA parameters (height, lateral extent) from the Dichotomy Boundary region, and assess the implications for predicted climate conditions during their formation and the range of formation times implied by the model. We find that for the population examined here, typical temperatures are in the range of -85 to -40 °C and typical sublimation rates lie in the range of 6-14 mm/a. Lobate debris apron formation times (from the point of bedrock exposure to complete debris cover) cluster near 400-500 ka. These results show that LDA length and thickness characteristics are consistent with climate conditions and a formation scenario typical of the collapse of a regional retreating ice sheet and exposure of bedrock cliffs. This scenario helps resolve many of the unusual characteristics of lobate debris aprons (LDA) and lineated valley fill (LVF). For example, the distribution of LVF is very consistent with extensive flow of glacial ice from plateau icefields, and the acquisition of a debris cover in the waning stages of retreat of the regional cover as the bedrock scarps are exposed. The typical concentric development of LDA around massifs is much more consistent with ice sheet retreat than insolation-related local accumulation and flow. We thus conclude that the retreating ice-sheet model is robust and should be investigated and tested in more detail. In addition, these results clearly show that the lobate debris aprons in the vicinity of the Dichotomy Boundary could not have attained temperatures near or above the ice melting point and retained their current shape, a finding that supports subzero temperatures for the last several hundred million years, the age of the LDA surfaces. A further implication is that the LDA ice has been preserved for at least several hundred million years, and could potentially contain the record of the climate of Mars, preserved since that time below a sublimation lag deposit.

  5. Anatomy of the Kitimat fiord system, British Columbia

    NASA Astrophysics Data System (ADS)

    Shaw, John; Stacey, Cooper D.; Wu, Yongsheng; Lintern, D. Gwyn

    2017-09-01

    The geomorphic complexity of the Kitimat fiord system, on the active margin of British Columbia, Canada, is analysed from several perspectives. Sub-glacial landforms and sediments show that grounded ice exiting the fiord system at the last glacial maximum streamed down Moresby Trough towards the Queen Charlotte trough mouth fan. After brief halts on the inner shelf, grounded ice margins cleared the fiord threshold perhaps by c. 15.5 ka cal. yrs BP, and certainly before 13 ka cal. yrs BP. Just outside the fiords, meltwater plumes deposited stratified glaciomarine sediments interbedded with submarine slides. Inside the fiords, thick glaciomarine sediments were deposited, and large transverse moraines formed during temporary halts in retreat. Several glacial outburst floods eroded the Kitkiata moraine and deposited distinctive mud deposits. Postglacial sedimentation on fiord floors has been spatially variable: drifts of mud > 90 m-thick corresponding with areas of low current velocity alternate with areas of non-deposition and erosion corresponding with areas of high velocity. The fiord system hosts more than a hundred morphologically diverse fan deltas that can be classified in the Prior and Bornhold (1989, 1990) system. Submarine mass transport was most frequent immediately following ice retreat (15.5-11.5 ka cal. yrs BP). The largest event ( 1.2 km3) involved failure of glaciomarine sediment on a submarine moraine at Squally Channel, and consequent movement of material into the adjacent deep basin. This event occurred post-13 ka cal. yrs BP. In the postglacial phase, mass transport continued on a lesser scale up to the present day, most intensively in Kitimat Arm. From the perspective of glacial landforms, postglacial sedimentation and mass transport, this Pacific active margin fiord system has some parallels with fiord systems on Canada's east coast passive margin, and with Norwegian fiords, but the intensive development of Holocene fan deltas is strongly distinctive.

  6. Latest Word on Retreat of the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Bindschadler, R.

    2000-01-01

    The West Antarctic ice sheet during the Last Glacial Maximum (LGM) is estimated to have been three times its present volume and to have extended close to the edge of the continental shelf Holocene retreat of this ice sheet in the Ross Sea began between 11,000 and 12,000 years ago. This history implies an average contribution of this ice sheet to sea level of 0.9 mm/a. Evidence of dateable past grounding line positions in the Ross sector are broadly consistent with a linear retreat model. However, inferred rates of retreat for some of these grounding line positions are not consistent with a linear retreat model. More rapid retreat approximately 7600 years ago and possible near-stability in the Ross Sea sector at present suggest a slow rate of initial retreat followed by a more rapid-than-average retreat during the late Holocene, returning to a near-zero rate of retreat currently. This model is also consistent with the mid-Holocene high stand observations of eustatic sea level. Recent compilation of Antarctic bed elevations (BEDMAP) illustrates that the LGM and present grounding lines occur in the shallowest waters, further supporting the model of a middle phase of rapid retreat bracketed by an older and a more recent phase of modest retreat. Extension of these hypotheses into the future make subsequent behavior of the West Antarctic ice sheet more difficult to predict but suggest that if it loses its hold on the present shallow bed, the final retreat of the ice sheet could be very rapid.

  7. Controls on the early Holocene collapse of the Bothnian Sea Ice Stream

    NASA Astrophysics Data System (ADS)

    Clason, Caroline C.; Greenwood, Sarah L.; Selmes, Nick; Lea, James M.; Jamieson, Stewart S. R.; Nick, Faezeh M.; Holmlund, Per

    2016-12-01

    New high-resolution multibeam data in the Gulf of Bothnia reveal for the first time the subglacial environment of a Bothnian Sea Ice Stream. The geomorphological record suggests that increased meltwater production may have been important in driving rapid retreat of Bothnian Sea Ice during deglaciation. Here we apply a well-established, one-dimensional flow line model to simulate ice flow through the Gulf of Bothnia and investigate controls on retreat of the ice stream during the post-Younger Dryas deglaciation of the Fennoscandian Ice Sheet. The relative influence of atmospheric and marine forcings are investigated, with the modeled ice stream exhibiting much greater sensitivity to surface melting, implemented through surface mass balance and hydrofracture-induced calving, than to submarine melting or relative sea level change. Such sensitivity is supported by the presence of extensive meltwater features in the geomorphological record. The modeled ice stream does not demonstrate significant sensitivity to changes in prescribed ice stream width or overall bed slope, but local variations in basal topography and ice stream width result in nonlinear retreat of the grounding line, notably demonstrating points of short-lived retreat slowdown on reverse bed slopes. Retreat of the ice stream was most likely governed by increased ice surface meltwater production, with the modeled retreat rate less sensitive to marine forcings despite the marine setting.

  8. Translating hydrologically-relevant variables from the ice sheet model SICOPOLIS to the Greenland Analog Project hydrologic modeling domain

    NASA Astrophysics Data System (ADS)

    Vallot, Dorothée; Applegate, Patrick; Pettersson, Rickard

    2013-04-01

    Projecting future climate and ice sheet development requires sophisticated models and extensive field observations. Given the present state of our knowledge, it is very difficult to say what will happen with certainty. Despite the ongoing increase in atmospheric greenhouse gas concentrations, the possibility that a new ice sheet might form over Scandinavia in the far distant future cannot be excluded. The growth of a new Scandinavian Ice Sheet would have important consequences for buried nuclear waste repositories. The Greenland Analogue Project, initiated by the Swedish Nuclear Fuel and Waste Management Company (SKB), is working to assess the effects of a possible future ice sheet on groundwater flow by studying a constrained domain in Western Greenland by field measurements (including deep bedrock drilling in front of the ice sheet) combined with numerical modeling. To address the needs of the GAP project, we interpolated results from an ensemble of ice sheet model runs to the smaller and more finely resolved modeling domain used in the GAP project's hydrologic modeling. Three runs have been chosen with three fairly different positive degree-day factors among those that reproduced the modern ice margin at the borehole position. The interpolated results describe changes in hydrologically-relevant variables over two time periods, 115 ka to 80 ka, and 20 ka to 1 ka. In the first of these time periods, the ice margin advances over the model domain; in the second time period, the ice margin retreats over the model domain. The spatially-and temporally dependent variables that we treated include the ice thickness, basal melting rate, surface mass balance, basal temperature, basal thermal regime (frozen or thawed), surface temperature, and basal water pressure. The melt flux is also calculated.

  9. The phenology of Arctic Ocean surface warming.

    PubMed

    Steele, Michael; Dickinson, Suzanne

    2016-09-01

    In this work, we explore the seasonal relationships (i.e., the phenology) between sea ice retreat, sea surface temperature (SST), and atmospheric heat fluxes in the Pacific Sector of the Arctic Ocean, using satellite and reanalysis data. We find that where ice retreats early in most years, maximum summertime SSTs are usually warmer, relative to areas with later retreat. For any particular year, we find that anomalously early ice retreat generally leads to anomalously warm SSTs. However, this relationship is weak in the Chukchi Sea, where ocean advection plays a large role. It is also weak where retreat in a particular year happens earlier than usual, but still relatively late in the season, primarily because atmospheric heat fluxes are weak at that time. This result helps to explain the very different ocean warming responses found in two recent years with extreme ice retreat, 2007 and 2012. We also find that the timing of ice retreat impacts the date of maximum SST, owing to a change in the ocean surface buoyancy and momentum forcing that occurs in early August that we term the Late Summer Transition (LST). After the LST, enhanced mixing of the upper ocean leads to cooling of the ocean surface even while atmospheric heat fluxes are still weakly downward. Our results indicate that in the near-term, earlier ice retreat is likely to cause enhanced ocean surface warming in much of the Arctic Ocean, although not where ice retreat still occurs late in the season.

  10. Sensitivity of the marine-terminating margins to Holocene climate change in south and southeast Greenland

    NASA Astrophysics Data System (ADS)

    Levy, L.; Larsen, N. K.; Kjaer, K. H.; Bjork, A. A.; Kjeldsen, K. K.; Funder, S.; Kelly, M. A.; Howley, J. A.

    2016-12-01

    The marine-terminating glaciers of the Greenland Ice Sheet (GrIS) are responding rapidly to present-day climate change. More than one-third of the GrIS's discharge flows to the ocean through the marine-terminating outlet glaciers of southeastern Greenland, making it a potentially important region of the ice sheet. Documenting how these outlet glaciers have responded to longer-term past climate change (i.e. the Holocene) allows for more accurate predictions of their response to future climate changes. Here, we present 36 new 10Be ages on boulders perched on bedrock and on bedrock that record the timing of ice marginal fluctuations in several fjords in southeast and south Greenland, a region where little is known about past ice fluctuations due to its relative inaccessibility. We show that at Skjoldungen Sund (63.4N), deglaciation was rapid, beginning by 10.1 ± 0.4 ka. Deglaciation occurred concurrently at Timmiarmiut Fjord (62.7N), 100 km to the south, at 10.3 ± 0.4 ka. We suggest that this was in response to the warming ocean and air temperatures of the early Holocene. Additionally, 10Be ages on boulders perched on bedrock just distal to the historic­ moraines in Timmiarmiut Fjord date to 1.7 ± 0.1 ka, indicating the presence of a late Holocene advance prior to the Little Ice Age. In southern Greenland, deglaciation at Lindenow Fjord (60.6N), which drains the Julienhåb ice cap, occurred at 11.2 ± 0.4 ka. The ice then retreated up-fjord at a rate of 70-100 m yr-1, comparable with modern retreat rates of 30-100 m yr-1. We hypothesize that the earlier deglaciation at Lindenow Fjord by 1 ka may indicate that the Julienhåb ice cap was more sensitive to early Holocene warming than the GrIS. Additional 10Be ages from Prins Christen Fjord and near Qaqortoq are forthcoming. These new 10Be ages provide a longer-term perspective of marine-terminating outlet glacier fluctuations in Greenland and show that the ice sheet responded sensitively to Holocene climate change.

  11. Response of ocean ecosystems to climate warming

    NASA Astrophysics Data System (ADS)

    Sarmiento, J. L.; Slater, R.; Barber, R.; Bopp, L.; Doney, S. C.; Hirst, A. C.; Kleypas, J.; Matear, R.; Mikolajewicz, U.; Monfray, P.; Soldatov, V.; Spall, S. A.; Stouffer, R.

    2004-09-01

    We examine six different coupled climate model simulations to determine the ocean biological response to climate warming between the beginning of the industrial revolution and 2050. We use vertical velocity, maximum winter mixed layer depth, and sea ice cover to define six biomes. Climate warming leads to a contraction of the highly productive marginal sea ice biome by 42% in the Northern Hemisphere and 17% in the Southern Hemisphere, and leads to an expansion of the low productivity permanently stratified subtropical gyre biome by 4.0% in the Northern Hemisphere and 9.4% in the Southern Hemisphere. In between these, the subpolar gyre biome expands by 16% in the Northern Hemisphere and 7% in the Southern Hemisphere, and the seasonally stratified subtropical gyre contracts by 11% in both hemispheres. The low-latitude (mostly coastal) upwelling biome area changes only modestly. Vertical stratification increases, which would be expected to decrease nutrient supply everywhere, but increase the growing season length in high latitudes. We use satellite ocean color and climatological observations to develop an empirical model for predicting chlorophyll from the physical properties of the global warming simulations. Four features stand out in the response to global warming: (1) a drop in chlorophyll in the North Pacific due primarily to retreat of the marginal sea ice biome, (2) a tendency toward an increase in chlorophyll in the North Atlantic due to a complex combination of factors, (3) an increase in chlorophyll in the Southern Ocean due primarily to the retreat of and changes at the northern boundary of the marginal sea ice zone, and (4) a tendency toward a decrease in chlorophyll adjacent to the Antarctic continent due primarily to freshening within the marginal sea ice zone. We use three different primary production algorithms to estimate the response of primary production to climate warming based on our estimated chlorophyll concentrations. The three algorithms give a global increase in primary production of 0.7% at the low end to 8.1% at the high end, with very large regional differences. The main cause of both the response to warming and the variation between algorithms is the temperature sensitivity of the primary production algorithms. We also show results for the period between the industrial revolution and 2050 and 2090.

  12. Heterogeneous Status of Glacial Terminal-Contacted Lakes in Himalayas Due to Different Geomorphology and Glacier Characters

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Nie, Y.; Liu, S.

    2014-12-01

    Widespread expanding of glacial lakes around the Himalayas, which has led (or will lead) to hazard risks in their downstream valleys due to the potential glacial outburst flood (GLOF), has been widely reported during the past decades. Among all type of glacial lakes, those lakes contacted with the terminals of modern glaciers are generally found experienced most remarkable area increases. That is mostly due to the coupled processes, such as calving, between the lake growths and ice tongue retreats. Thermal absorption and convection of lake water are important for calving at the ice cliff or sub-marine melting under the supra-ponded water bodies. Currently, many larger moraine dammed lakes, e. g., Imja Tsho (Nepal) and Longbasaba Lake (China), are observed undergoing remarkable growths and synchronically with the rapid ice margin collapses due to calving. Some newly formed and rapidly growing supraglacial lakes are also identified on the debris-covered region of Himalayan glaciers, e. g., the Rongbuk Glacier (China), Ngozumpa Glacier (Nepal) and Thorthormi Glacier (Butan), which are speculated to experience accelerated expanding in the near future and finally developing as bigger terminal-calving lakes. However, not all such lake-glacier systems present the same scenes. After experienced the phases of rapid lake growth and terminal retreat, despite the contacting and calving still existing, the positions of the calving lines may be balanced by the positive advances of the ice tongue. We have observed several lakes with stagnation of growth or even shrinkage in lake area as the advance of the calving ice margin. The heterogeneous status of these ice-contacted glacial lakes are mainly due to the different local geomorphology (e. g., slope, lake-basin shape and valley aspect) and glacier characters (e. g., debris cover, velocity and mass balance). These related factors are important for both the prediction of lake and glacier changes and the evaluation of GLOF hazards in the future.

  13. Large-Ensemble modeling of past and future variations of the Antarctic Ice Sheet with a coupled ice-Earth-sea level model

    NASA Astrophysics Data System (ADS)

    Pollard, David; DeConto, Robert; Gomez, Natalya

    2016-04-01

    To date, most modeling of the Antarctic Ice Sheet's response to future warming has been calibrated using recent and modern observations. As an alternate approach, we apply a hybrid 3-D ice sheet-shelf model to the last deglacial retreat of Antarctica, making use of geologic data of the last ~20,000 years to test the model against the large-scale variations during this period. The ice model is coupled to a global Earth-sea level model to improve modeling of the bedrock response and to capture ocean-ice gravitational interactions. Following several recent ice-sheet studies, we use Large Ensemble (LE) statistical methods, performing sets of 625 runs from 30,000 years to present with systematically varying model parameters. Objective scores for each run are calculated using modern data and past reconstructed grounding lines, relative sea level records, cosmogenic elevation-age data and uplift rates. The LE results are analyzed to calibrate 4 particularly uncertain model parameters that concern marginal ice processes and interaction with the ocean. LE's are extended into the future with climates following RCP scenarios. An additional scoring criterion tests the model's ability to reproduce estimated sea-level high stands in the warm mid-Pliocene, for which drastic retreat mechanisms of hydrofracturing and ice-cliff failure are needed in the model. The LE analysis provides future sea-level-rise envelopes with well-defined parametric uncertainty bounds. Sensitivities of future LE results to Pliocene sea-level estimates, coupling to the Earth-sea level model, and vertical profiles of Earth properties, will be presented.

  14. Tropical Glaciers in the Common Era: Papua, Indonesia, Quelccaya Ice Cap, Peru and Kilimanjaro, Tanzania

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Mosley-Thompson, E. S.; Davis, M. E.

    2011-12-01

    High-resolution ice core stratigraphic records of δ18O (temperature proxy) demonstrate that the current warming at high elevations in mid- to lower latitudes is unprecedented for at least the last two millennia, although at many sites the Early Holocene was much warmer than at present. Here we discuss the interaction of El Niño-Southern Oscillation (ENSO) variability and warming trends as recorded in ice core records from high-altitude tropical glaciers and the implications of the warming trends for the future of these glaciers. ENSO has strong impacts on meteorological phenomena that either directly or indirectly affect most regions on the planet and their populations, particularly throughout the Tropics. Here we examine similarities and differences among ice core records from Papua (Indonesia), Quelccaya Ice Cap (Peru) and Kilimanjaro (Tanzania). Quelccaya, Earth's largest tropical ice cap, has provided continuous, annually-resolved proxy records of climatic and environmental variability preserved in many measurable parameters, especially oxygen and hydrogen isotopic ratios (δ18O, δD) and the net mass balance (accumulation) spanning the last 1800 years. The remarkable similarity between changes in the highland and coastal cultures of Peru and climate variability in the Andes, especially with regard to precipitation, implies a strong connection between prehistoric human activities and climate in this region. The well-documented ice loss on Quelccaya, Kilimanjaro in eastern Africa and the ice fields near Puncak Jaya in Papua, Indonesia presents a possible analog for glacier response in the tropics during the Holocene. The ongoing melting of these ice fields is consistent with model predictions of a vertical amplification of temperature in the Tropics. A sequence of over 50 recently exposed, rooted, soft-bodied plant deposits collected between 2002 and 2011 from the retreating margins of the Quelccaya ice cap provide a longer term perspective for the recent glacier retreat. The ongoing glacier retreat in the Tropics and associated loss of natural resources has dire implications for people living in these areas. These recent changes are examined in the context of the Common Era from a glacier derived paleoclimate perspective as recorded in the glaciers on the world's highest mountains.

  15. The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing

    NASA Astrophysics Data System (ADS)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen P.

    2016-12-01

    The Eurasian ice-sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum (LGM), after the Antarctic and North American ice sheets. Despite its global significance, a comprehensive account of its evolution from independent nucleation centres to its maximum extent is conspicuously lacking. Here, a first-order, thermomechanical model, robustly constrained by empirical evidence, is used to investigate the dynamics of the EISC throughout its build-up to its maximum configuration. The ice flow model is coupled to a reference climate and applied at 10 km spatial resolution across a domain that includes the three main spreading centres of the Celtic, Fennoscandian and Barents Sea ice sheets. The model is forced with the NGRIP palaeo-isotope curve from 37 ka BP onwards and model skill is assessed against collated flowsets, marginal moraines, exposure ages and relative sea-level history. The evolution of the EISC to its LGM configuration was complex and asynchronous; the western, maritime margins of the Fennoscandian and Celtic ice sheets responded rapidly and advanced across their continental shelves by 29 ka BP, yet the maximum aerial extent (5.48 × 106 km2) and volume (7.18 × 106 km3) of the ice complex was attained some 6 ka later at c. 22.7 ka BP. This maximum stand was short-lived as the North Sea and Atlantic margins were already in retreat whilst eastern margins were still advancing up until c. 20 ka BP. High rates of basal erosion are modelled beneath ice streams and outlet glaciers draining the Celtic and Fennoscandian ice sheets with extensive preservation elsewhere due to frozen subglacial conditions, including much of the Barents and Kara seas. Here, and elsewhere across the Norwegian shelf and North Sea, high pressure subglacial conditions would have promoted localised gas hydrate formation.

  16. Oceans Melting Greenland (OMG): 2017 Observations and the First Look at Yearly Ocean/Ice Changes

    NASA Astrophysics Data System (ADS)

    Willis, J. K.; Rignot, E. J.; Fenty, I. G.; Khazendar, A.; Moller, D.; Tinto, K. J.; Morison, J.; Schodlok, M.; Thompson, A. F.; Fukumori, I.; Holland, D.; Forsberg, R.; Jakobsson, M.; Dinardo, S. J.

    2017-12-01

    Oceans Melting Greenland (OMG) is an airborne NASA Mission to investigate the role of the oceans in ice loss around the margins of the Greenland Ice Sheet. A five-year campaign, OMG will directly measure ocean warming and glacier retreat around all of Greenland. By relating these two, we will explore one of the most pressing open questions about how climate change drives sea level rise: How quickly are the warming oceans melting the Greenland Ice Sheet from the edges? This year, OMG collected its second set of both elevation maps of marine terminating glaciers and ocean temperature and salinity profiles around all of Greenland. This give us our first look at year-to-year changes in both ice volume at the margins, as well as the volume and extent of warm, salty Atlantic water present on the continental shelf. In addition, we will compare recent data in east Greenland waters with historical ocean observations that suggest a long-term warming trend there. Finally, we will briefly review the multi-beam sonar and airborne gravity campaigns—both of which were completed last year—and the dramatic improvement they had on bathymetry maps over the continental shelf around Greenland.

  17. Extensive Holocene ice sheet grounding line retreat and uplift-driven readvance in West Antarctica

    NASA Astrophysics Data System (ADS)

    Kingslake, J.; Scherer, R. P.; Albrecht, T.; Coenen, J. J.; Powell, R. D.; Reese, R.; Stansell, N.; Tulaczyk, S. M.; Whitehouse, P. L.

    2017-12-01

    The West Antarctic Ice Sheet (WAIS) reached its Last Glacial Maximum (LGM) extent 29-14 kyr before present. Numerical models used to project future ice-sheet contributions to sea-level rise exploit reconstructions of post-LGM ice mass loss to tune model parameterizations. Ice-sheet reconstructions are poorly constrained in areas where floating ice shelves or a lack of exposed geology obstruct conventional glacial-geological techniques. In the Weddell and Ross Sea sectors, ice-sheet reconstructions have traditionally assumed progressive grounding line (GL) retreat throughout the Holocene. Contrasting this view, using three distinct lines of evidence, we show that the GL retreated hundreds of kilometers inland of its present position, before glacial isostatic rebound during the Mid to Late Holocene caused the GL to readvance to its current position. Evidence for retreat and readvance during the last glacial termination includes (1) widespread radiocarbon in sediment cores recovered from beneath ice streams along the Siple and Gould Coasts, indicating marine exposure at least 200 km inland of the current GL, (2) ice-penetrating radar observations of relic crevasses and other englacial structures preserved in slow-moving grounded ice, indicating ice-shelf grounding and (3) an ensemble of new ice-sheet simulations showing widespread post-LGM retreat of the GL inland of its current location and later readvance. The model indicates that GL readvance across low slope ice-stream troughs requires uplift-driven grounding of the ice shelf on topographic highs (ice rises). Our findings highlight ice-shelf pinning points and lithospheric response to unloading as drivers of major ice-sheet fluctuations. Full WAIS collapse likely requires GL retreat well beyond its current position in the Ronne and Ross Sectors and linkage via Amundsen Sea sector glaciers.

  18. Do pelagic grazers benefit from sea ice? Insights from the Antarctic sea ice proxy IPSO25

    NASA Astrophysics Data System (ADS)

    Schmidt, Katrin; Brown, Thomas A.; Belt, Simon T.; Ireland, Louise C.; Taylor, Kyle W. R.; Thorpe, Sally E.; Ward, Peter; Atkinson, Angus

    2018-04-01

    Sea ice affects primary production in polar regions in multiple ways. It can dampen water column productivity by reducing light or nutrient supply, provide a habitat for ice algae and condition the marginal ice zone (MIZ) for phytoplankton blooms on its seasonal retreat. The relative importance of three different carbon sources (sea ice derived, sea ice conditioned, non-sea-ice associated) for the polar food web is not well understood, partly due to the lack of methods that enable their unambiguous distinction. Here we analysed two highly branched isoprenoid (HBI) biomarkers to trace sea-ice-derived and sea-ice-conditioned carbon in Antarctic krill (Euphausia superba) and relate their concentrations to the grazers' body reserves, growth and recruitment. During our sampling in January-February 2003, the proxy for sea ice diatoms (a di-unsaturated HBI termed IPSO25, δ13C = -12.5 ± 3.3 ‰) occurred in open waters of the western Scotia Sea, where seasonal ice retreat was slow. In suspended matter from surface waters, IPSO25 was present at a few stations close to the ice edge, but in krill the marker was widespread. Even at stations that had been ice-free for several weeks, IPSO25 was found in krill stomachs, suggesting that they gathered the ice-derived algae from below the upper mixed layer. Peak abundances of the proxy for MIZ diatoms (a tri-unsaturated HBI termed HBI III, δ13C = -42.2 ± 2.4 ‰) occurred in regions of fast sea ice retreat and persistent salinity-driven stratification in the eastern Scotia Sea. Krill sampled in the area defined by the ice edge bloom likewise contained high amounts of HBI III. As indicators for the grazer's performance we used the mass-length ratio, size of digestive gland and growth rate for krill, and recruitment for the biomass-dominant calanoid copepods Calanoides acutus and Calanus propinquus. These indices consistently point to blooms in the MIZ as an important feeding ground for pelagic grazers. Even though ice-conditioned blooms are of much shorter duration than blooms downstream of the permanently sea-ice-free South Georgia, they enabled fast growth and offspring development. Our study shows two rarely considered ways that pelagic grazers may benefit from sea ice: firstly, after their release from sea ice, suspended or sinking ice algae can supplement the grazers' diet if phytoplankton concentrations are low. Secondly, conditioning effects of seasonal sea ice can promote pelagic primary production and therefore food availability in spring and summer.

  19. Dynamic influence of pinning points on marine ice-sheet stability: a numerical study in Dronning Maud Land, East Antarctica

    DOE PAGES

    Favier, Lionel; Pattyn, Frank; Berger, Sophie; ...

    2016-11-09

    The East Antarctic ice sheet is likely more stable than its West Antarctic counterpart because its bed is largely lying above sea level. However, the ice sheet in Dronning Maud Land, East Antarctica, contains marine sectors that are in contact with the ocean through overdeepened marine basins interspersed by grounded ice promontories and ice rises, pinning and stabilising the ice shelves. In this paper, we use the ice-sheet model BISICLES to investigate the effect of sub-ice-shelf melting, using a series of scenarios compliant with current values, on the ice-dynamic stability of the outlet glaciers between the Lazarev and Roi Baudouinmore » ice shelves over the next millennium. Overall, the sub-ice-shelf melting substantially impacts the sea-level contribution. Locally, we predict a short-term rapid grounding-line retreat of the overdeepened outlet glacier Hansenbreen, which further induces the transition of the bordering ice promontories into ice rises. Furthermore, our analysis demonstrated that the onset of the marine ice-sheet retreat and subsequent promontory transition into ice rise is controlled by small pinning points, mostly uncharted in pan-Antarctic datasets. Pinning points have a twofold impact on marine ice sheets. They decrease the ice discharge by buttressing effect, and they play a crucial role in initialising marine ice sheets through data assimilation, leading to errors in ice-shelf rheology when omitted. Our results show that unpinning increases the sea-level rise by 10%, while omitting the same pinning point in data assimilation decreases it by 10%, but the more striking effect is in the promontory transition time, advanced by two centuries for unpinning and delayed by almost half a millennium when the pinning point is missing in data assimilation. As a result, pinning points exert a subtle influence on ice dynamics at the kilometre scale, which calls for a better knowledge of the Antarctic margins.« less

  20. Dynamic influence of pinning points on marine ice-sheet stability: a numerical study in Dronning Maud Land, East Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favier, Lionel; Pattyn, Frank; Berger, Sophie

    The East Antarctic ice sheet is likely more stable than its West Antarctic counterpart because its bed is largely lying above sea level. However, the ice sheet in Dronning Maud Land, East Antarctica, contains marine sectors that are in contact with the ocean through overdeepened marine basins interspersed by grounded ice promontories and ice rises, pinning and stabilising the ice shelves. In this paper, we use the ice-sheet model BISICLES to investigate the effect of sub-ice-shelf melting, using a series of scenarios compliant with current values, on the ice-dynamic stability of the outlet glaciers between the Lazarev and Roi Baudouinmore » ice shelves over the next millennium. Overall, the sub-ice-shelf melting substantially impacts the sea-level contribution. Locally, we predict a short-term rapid grounding-line retreat of the overdeepened outlet glacier Hansenbreen, which further induces the transition of the bordering ice promontories into ice rises. Furthermore, our analysis demonstrated that the onset of the marine ice-sheet retreat and subsequent promontory transition into ice rise is controlled by small pinning points, mostly uncharted in pan-Antarctic datasets. Pinning points have a twofold impact on marine ice sheets. They decrease the ice discharge by buttressing effect, and they play a crucial role in initialising marine ice sheets through data assimilation, leading to errors in ice-shelf rheology when omitted. Our results show that unpinning increases the sea-level rise by 10%, while omitting the same pinning point in data assimilation decreases it by 10%, but the more striking effect is in the promontory transition time, advanced by two centuries for unpinning and delayed by almost half a millennium when the pinning point is missing in data assimilation. As a result, pinning points exert a subtle influence on ice dynamics at the kilometre scale, which calls for a better knowledge of the Antarctic margins.« less

  1. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier [Sub-ice shelf sediments record 20 th century retreat history of Pine Island Glacier

    DOE PAGES

    Smith, J. A.; Andersen, T. J.; Shortt, M.; ...

    2016-11-23

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreatmore » is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.« less

  2. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier [Sub-ice shelf sediments record 20 th century retreat history of Pine Island Glacier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J. A.; Andersen, T. J.; Shortt, M.

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreatmore » is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.« less

  3. Iceberg Ploughmarks Indicate Past Rapid Iceberg Calving and Retreat of Pine Island-Thwaites Ice Stream due to Marine Ice-Cliff Instability Processes

    NASA Astrophysics Data System (ADS)

    Wise, M.; Dowdeswell, J. A.; Larter, R. D.; Jakobsson, M.

    2016-12-01

    Seafloor ploughmarks provide evidence of past and present iceberg dimensions and drift direction. Today, Pine Island and Thwaites glaciers, which account for 35% of mass loss from the West Antarctic Ice Sheet (WAIS), calve mainly large, tabular icebergs, which, when grounded, produce `toothcomb-like' multi-keeled ploughmarks. High-resolution multi-beam swath bathymetry of the mid-shelf Pine Island Trough and adjacent banks, reveals many linear-curvilinear depressions interpreted as iceberg-keel ploughmarks, the majority of which are single-keeled in form. From measurements of ploughmark planform and cross-sections, we find iceberg calving from the palaeo-Pine Island-Thwaites Ice Stream was not characterised by small numbers of large, tabular icebergs, but instead, by a large number of `smaller' icebergs with v-shaped keels. Geological evidence of ploughmark form and water-depth distribution indicates calving-margin thicknesses ( 950 m) and subaerial ice-cliff elevations ( 100 m) equivalent to the theoretical threshold recently predicted to trigger ice-cliff structural collapse through Marine Ice Cliff Instability (MICI) processes. Significantly, our proposed period of iceberg ploughing predates the early Holocene climate optimum, and likely occurred in an absence of widespread surface melt. We therefore provide the first observational evidence of rapid retreat of the Palaeo-Pine Island-Thwaites ice stream from the crest of a large, mid-shelf sedimentary depocentre or grounding-zone wedge, to a restabilising position 112 km offshore of the December 2013 calving line, driven by MICI processes commencing 12.3 cal. ka BP. We emphasise the effective operation of MICI processes without extensive surface melt and induced hydrofracture, and conclude that such processes are unlikely to be confined to the past, given the steep, retrograde bed-slope which the modern grounding lines of Pine Island and Thwaites Glaciers are approaching, and the absence of any discernible restabilising features upstream of the modern grounding-zone. We expect MICI to contribute significantly to future ice retreat and sea-level rise under a warming climate, and emphasise the importance of its inclusion in future modelling studies.

  4. Under Sea Ice phytoplankton bloom detection and contamination in Antarctica

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Zeng, T.; Xu, H.

    2017-12-01

    Previous researches reported compelling sea ice phytoplankton bloom in Arctic, while seldom reports studied about Antarctic. Here, lab experiment showed sea ice increased the visible light albedo of the water leaving radiance. Even a new formed sea ice of 10cm thickness increased water leaving radiance up to 4 times of its original bare water. Given that phytoplankton preferred growing and accumulating under the sea ice with thickness of 10cm-1m, our results showed that the changing rate of OC4 estimated [Chl-a] varied from 0.01-0.5mg/m3 to 0.2-0.3mg/m3, if the water covered by 10cm sea ice. Going further, varying thickness of sea ice modulated the changing rate of estimating [Chl-a] non-linearly, thus current routine OC4 model cannot estimate under sea ice [Chl-a] appropriately. Besides, marginal sea ice zone has a large amount of mixture regions containing sea ice, water and snow, where is favorable for phytoplankton. We applied 6S model to estimate the sea ice/snow contamination on sub-pixel water leaving radiance of 4.25km spatial resolution ocean color products. Results showed that sea ice/snow scale effectiveness overestimated [Chl-a] concentration based on routine band ratio OC4 model, which contamination increased with the rising fraction of sea ice/snow within one pixel. Finally, we analyzed the under sea ice bloom in Antarctica based on the [Chl-a] concentration trends during 21 days after sea ice retreating. Regardless of those overestimation caused by sea ice/snow sub scale contamination, we still did not see significant under sea ice blooms in Antarctica in 2012-2017 compared with Arctic. This research found that Southern Ocean is not favorable for under sea ice blooms and the phytoplankton bloom preferred to occur in at least 3 weeks after sea ice retreating.

  5. Surficial geologic map of Berrien County, Michigan, and the adjacent offshore area of Lake Michigan

    USGS Publications Warehouse

    Stone, Byron D.; Kincare, Kevin A.; O'Leary, Dennis W.; Newell, Wayne L.; Taylor, Emily M.; Williams, Van S.; Lundstrom, Scott C.; Abraham, Jared E.; Powers, Michael H.

    2017-12-13

    The surficial geologic map of Berrien County, southwestern Michigan (sheet 1), shows the distribution of glacial and postglacial deposits at the land surface and in the adjacent offshore area of Lake Michigan. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics, stratigraphic relationships, and age. Drill-hole information correlated in cross sections provides details of typical stratigraphic sequences that compose one or more penetrated geologic map units. A new bedrock geologic map (on sheet 2) includes contours of the altitude of the eroded top of bedrock and shows the distribution of middle Paleozoic shale and carbonate units in the subcrop. A sediment thickness map (also on sheet 2) portrays the extent of as much as 150 meters of surficial materials that overlie the bedrock surface.The major physical features of the county are related principally to deposits of the last Laurentide ice sheet that advanced and then retreated back through the region from about 19,000 to 14,000 radiocarbon years before present. Glacial and postglacial deposits underlie the entire county; shale bedrock crops out only in the adjacent offshore area on the bottom of Lake Michigan. All glacial deposits and glacial meltwater deposits in Berrien County are related to the late Wisconsinan glacial advances of the Lake Michigan ice lobe and its three regional recessional moraines, which cross the county as three north-northeast-trending belts.From east to west (oldest to youngest), the three moraine belts are known as the Kalamazoo, Valparaiso, and Lake Border morainic systems. The till-ridge morainic systems (Lake Border and local Valparaiso morainic systems) consist of multiple, elongate moraine ridges separated by till plains and lake-bottom plains. Tills in ground and end moraines in Berrien County are distinguished as informal units, and are correlated with three proposed regional till units in southwestern Michigan, characterized as clayey till, loamy till, or sandy loamy till that are based in part on correlation of silty tills and clay mineralogy. The stratified morainic systems (local Valparaiso and Kalamazoo morainic systems) are composed of multiple ice-marginal glacial-lake deltas and glaciolacustrine fans that form a contiguous array of deposits, welded together at their onlapping contacts, further related by the accordant altitudes of their delta topset plains. Their bounding ice-contact slopes repeatedly are aligned parallel to the regional trend of the receding ice margin. Ice-marginal (ice-contact) deltas were deposited in glacial lakes that expanded northward as the ice sheet retreated. Glaciofluvial topset beds, which overlie deltaic foreset and bottomset facies, fine away from the ice margin. Stratified deposits associated with the Valparaiso moraine were deposited in glacial Lakes Madron and Dowagiac. Subsequent deposits of glacial Lake Baroda preceded basin-wide deposits associated with various levels of Lake Michigan.Sheet 2 includes a series of 10 map figures that show cut-away three-dimensional time slices of the stratigraphic succession, from basal tills on bedrock, to ice-marginal deltas in the three large proglacial lakes, to stacked till/lake-bottom deposits related to the Lake Border ice margin readvances, to young deposits of glacial Lake Chicago and younger phases of other glacial lakes and the Chippewa lake lowstand.The pamphlet contains a discussion of the stratigraphic framework, descriptions of each depositional unit, and graphic logs of U.S. Geological Survey stratigraphic drill holes. The pamphlet also relates the geologic history of Berrien County, beginning with bedrock Paleozoic marine deposits, continuing through erosional effects of multiple glaciations and the detailed steps of late Wisconsinan ice-margin recession as recorded in the moraines, and the rise and fall of postglacial lake levels in the Lake Michigan basin.

  6. Long-term evolution of a small ice cap in Greenland: a dynamic perspective from numerical flow modelling

    NASA Astrophysics Data System (ADS)

    Vieli, Andreas; Lane, Timothy; Adamson, Kathryn

    2017-04-01

    Small ice caps at the periphery of the Greenland ice sheet are often close to the limit of existence and are therefore expected to respond more sensitively to climate change than the land-margin of the neighboring ice sheet. However, their past evolution and dynamic behavior is poorly understood and their use as climate indicators therefore remains so far limited. We here aim to provide a long-term dynamic reconstruction of Lyngmarksbraeen, a small (32km2) ice cap on Disko Island in West Greenland, with a particular focus on the little ice age (LIA, since 1200AD). We use a 2-dim. time-dependent numerical flow model (SIA) and a PDD-mass balance model in combination with historical observations, geomorphological mapping and exposure dating to simulate its long-term evolution and dynamic behaviour. We specifically focus on retreat since the LIA, which is well constrained by geomorphological evidence and historical maps and length records of several small outlet glaciers and data from local and regional climate stations (Qeqertarssuaq and Ilulisat). We also explore aspects related to flow dynamics and find that the dynamic state of this ice cap is, at any time, far from being balanced and is highly sensitive to the surface elevation mass balance feedback and results in an asynchronous response of the different outlets and hysteresis-type behaviour. The modelling is able to reproduce the observed LIA-extent and the almost continuous retreat over the last hundred years well. It further indicates that the ice cap was already dynamically inert since the 1960s. Today, the ice cap has lost almost its entire accumulation area and even without any further warming in the future, the ice cap is expected to vanish within a couple of decades.

  7. Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets

    NASA Astrophysics Data System (ADS)

    Deconto, R. M.; Pollard, D.

    2017-12-01

    New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100, implying that physically plausible upper limits on future sea-level rise might need to be reconsidered.

  8. Terrestrial ice streams-a view from the lobe

    USGS Publications Warehouse

    Jennings, C.E.

    2006-01-01

    The glacial landforms of Minnesota are interpreted as the products of the lobate extensions of ice streams that issued from various ice sheds within the Laurentide Ice Sheet. Low-relief till plains, trough-shaped lowlands, boulder pavements, and streamlined forms make up the subglacial landsystem in Minnesota that is interpreted as having been formed by streaming ice. Extremely uniform tills are created subglacially in a way that remains somewhat mysterious. At the ice margins, thrust moraines and hummocky stagnation topography are more common than single-crested, simple moraines if the ice lobes had repeated advances. Subglacial drainage features are obscure up-ice but are present down-ice in the form of tunnel valleys, eskers, Spooner hills, and associated ice-marginal fans. Ice streaming may occur when basal shear stress is lowered as a result of high subglacial water pressure. Subglacial conditions that allow the retention of water will allow an ice lobe to extend far beyond the ice sheet as long as the ice shed also supports the advance by supplying adequate ice. Even with adequate ice flux, however, the advance of an ice lobe may be terminated, at least temporarily, if the subglacial water is drained, through tunnel valleys or perhaps a permeable substrate. Thrust moraines, and ice stagnation topography will result from sudden drainage. Although climate change is ultimately responsible for the accumulation of ice in the Laurentide Ice Sheet, the asynchronous advances and retreats of the ice lobes in the mid-continent are strongly overprinted by the internal dynamics of individual ice streams as well as the interaction of ice sheds, which obscure the climate signal. ?? 2005 Elsevier B.V. All rights reserved.

  9. A High-Resolution Record of Warm Water Inflow and Iceberg Calving in Upernavik Isfjord During the Past 150 Years.

    NASA Astrophysics Data System (ADS)

    Vermassen, F.; Andresen, C. S.; Sabine, S.; Holtvoeth, J.; Cordua, A. E.; Wangner, D. J.; Dyke, L. M.; Kjaer, K. H.; Kokfelt, U.; Haubner, K.

    2016-12-01

    There is a growing body of evidence demonstrating that changes in warm water inflow to Greenlandic fjords are linked to the rapid retreat of marine-terminating outlet glaciers. This process is thought to be responsible for a substantial component of the increased mass loss from the Greenland Ice Sheet over the last two decades. Sediment cores from glaciated fjords provide high-resolution sedimentological and biological proxy records which can be used to evaluate the interplay of warm water inflow and glacier calving over recent time scales. In this study, multiple short cores ( 2 m) from Upernavik Isfjord, West Greenland, were analysed to establish a multi-proxy record of glacier behaviour and oceanographic conditions that spans the past 150 years. The down-core variation in the amount of ice-rafted debris reveals periods of increased glacier calving, and biomarker proxies are used to reconstruct variability in the inflow of warm, Atlantic-sourced water to the fjord. Measurements of the sortable silt grain size are used to reconstruct bottom-current strength; periods of vigorous current flow are assumed to be due to enhanced warm water inflow. Finally, a record of glacier terminus position changes, derived from historical observations and satellite imagery, allows comparison of our new proxy records with the retreat of the ice margin from 1849 onwards. We use these data to assess the relative importance of mechanisms controlling the (rapid) retreat of marine-terminating glaciers in Upernavik Isfjord.

  10. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier.

    PubMed

    Smith, J A; Andersen, T J; Shortt, M; Gaffney, A M; Truffer, M; Stanton, T P; Bindschadler, R; Dutrieux, P; Jenkins, A; Hillenbrand, C-D; Ehrmann, W; Corr, H F J; Farley, N; Crowhurst, S; Vaughan, D G

    2017-01-05

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line-which marks the boundary between grounded ice and floating ice shelf-is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Thus our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.

  11. UpTempO Buoys for Understanding and Predictions

    DTIC Science & Technology

    2016-02-28

    fall cooling, and interannually as sea ice retreats and the warming season lengthens. The effort was a contribution to the multi-investigator ONR...relationships between sea ice retreat and upper ocean warming. ACCOMPLISHED I. Buoy deployments and data: We worked with the Pacific Gyre (PG...have for the first time investigated the daily variation in ice edge retreat speed from a pan-arctic perspective. We have found that the pace of ice

  12. Modeling Antarctic Ice Sheet retreat in warm climates: a historical perspective.

    NASA Astrophysics Data System (ADS)

    Pollard, D.; Deconto, R. M.; Gasson, E.

    2016-12-01

    Early modeling of Antarctic Ice Sheet size vs. climate focused on asymmetry between retreat and growth, with much greater warming needed to cause retreat from full ice cover, due to Height Mass Balance Feedback and albedo feedback. This led to a long-standing model-data conflict, with models needing 1000 to2000 ppmv atmospheric CO2 to produce retreat from full size, vs. proxy data of large ice fluctuations despite much lower CO2 since the Miocene.Subsequent modeling with marine ice physics found that the West Antarctic Ice Sheet could undergo repeated warm-period collapses with realistic past forcing. However, that yields only 3 to 7 m equivalent sea-level rise above modern, compared to 10 to 20 m or more suggested by some geologic data. Large subglacial basins in East Antarctica could be vulnerable to the same processes,but did not retreat in most models due to narrower and shallower sills.After recent modifications, some ice sheet models were able to produce warm-period collapse of major East Antarctic basins, with sea-level rise of up to 15 m. The modifications are (i) hydrofracturing by surface melt, and structural failure of ice cliffs, or (ii) numerical treatment at the grounding line. In these models, large retreat occurs both for past warmintervals, and also for future business-as-usual scenarios.Some interpretations of data in the late Oligocene and Miocene suggest yet larger fluctuations, between 50 to 100% of modern Antarctic size. That would require surface-melt driven retreat of some terrestrial East Antarctic ice, despite the hysteresis issue raised above. A recent study using a coupled climate-ice sheet model found that with a finer climate gridand more frequent coupling exchange, substantial retreat of terrestrial Antarctica can occur with 500 to 840 ppmv CO2, much lower than in earlier models. This will allow meaningful interactions between modeling and deeper-time geologic interpretations since the late Oligocene.

  13. Seasonal variability in ice-front position, glacier speed, and surface elevation at Helheim Glacier, SE Greenland, from 2010-2016

    NASA Astrophysics Data System (ADS)

    Kehrl, L. M.; Joughin, I. R.; Shean, D. E.

    2016-12-01

    Marine-terminating glaciers can be very sensitive to changes in ice-front position, depending on their geometry. If a nearly grounded glacier retreats into deeper water, the glacier typically must speed up to produce the additional longitudinal and lateral stress gradients necessary to restore force balance. This speedup often causes thinning, which can increase the glacier's susceptibility to further retreat. In this study, we combine satellite observations and numerical modeling (Elmer/Ice) to investigate how seasonal changes in ice-front position affect glacier speed and surface elevation at Helheim Glacier, SE Greenland, from 2010-2016. Helheim's calving front position fluctuated about a mean position from 2010-2016. During 2010/11, 2013/14, and 2015/16, Helheim seasonally retreated and advanced along a reverse bed slope by > 3 km. During these years, the glacier retreated from winter/spring to late summer and then readvanced until winter/spring. During the retreat, Helheim sped up by 20-30% and thinned by 20 m near its calving front. This thinning caused the calving front to unground, and a floating ice tongue was then able to readvance over the following winter with limited iceberg calving. The advance, which continued until the glacier reached the top of the bathymetric high, caused the glacier to slow and thicken. During years when Helheim likely did not form a floating ice tongue, iceberg calving continued throughout the winter. Consequently, the formation of this floating ice tongue may have helped stabilize Helheim after periods of rapid retreat and dynamic thinning. Helheim's rapid retreat from 2001-2005 also ended when a floating ice tongue formed and readvanced over the 2005/06 winter. These seasonal retreat/advance cycles may therefore be important for understanding Helheim's long-term behavior.

  14. Differences in ice retreat across Pine Island Bay, West Antarctica, since the Last Glacial Maximum: Indications from multichannel seismic reflection data

    USGS Publications Warehouse

    Uenzelmann-Neben, G.; Gohl, K.; Larter, R.D.; Schlüter, P.

    2007-01-01

    An understanding of the glacial history of Pine Island Bay (PIB) is essential for refining models of the future stability of the West Antarctic Ice Sheet (WAIS). New multichannel seismic reflection data from inner PIB are interpreted in context of previously published reconstructions for the retreat history in this area since the Last Glacial Maximum. Differences in the behavior of the ice sheet during deglaciation are shown to exist for the western and eastern parts of PIB. While we can identify only a thin veneer of sedimentary deposits in western PIB, eastern PIB shows sedimentary layers ≤ 400 msTWT. This is interpreted as a result of differences in ice retreat: a fast ice retreat in western PIB accompanied by rapid basal melting led to production of large meltwater streams, a slower ice retreat in eastern PIB is most probably the result of smaller drainage basins resulting in less meltwater production.

  15. Net retreat of Antarctic glacier grounding lines

    NASA Astrophysics Data System (ADS)

    Konrad, Hannes; Shepherd, Andrew; Gilbert, Lin; Hogg, Anna E.; McMillan, Malcolm; Muir, Alan; Slater, Thomas

    2018-04-01

    Grounding lines are a key indicator of ice-sheet instability, because changes in their position reflect imbalance with the surrounding ocean and affect the flow of inland ice. Although the grounding lines of several Antarctic glaciers have retreated rapidly due to ocean-driven melting, records are too scarce to assess the scale of the imbalance. Here, we combine satellite altimeter observations of ice-elevation change and measurements of ice geometry to track grounding-line movement around the entire continent, tripling the coverage of previous surveys. Between 2010 and 2016, 22%, 3% and 10% of surveyed grounding lines in West Antarctica, East Antarctica and at the Antarctic Peninsula retreated at rates faster than 25 m yr-1 (the typical pace since the Last Glacial Maximum) and the continent has lost 1,463 km2 ± 791 km2 of grounded-ice area. Although by far the fastest rates of retreat occurred in the Amundsen Sea sector, we show that the Pine Island Glacier grounding line has stabilized, probably as a consequence of abated ocean forcing. On average, Antarctica's fast-flowing ice streams retreat by 110 metres per metre of ice thinning.

  16. Greenhouse to Icehouse Antarctic Paleoclimate and Ice History from George V Land and Adélie Land Shelf Sediments

    NASA Astrophysics Data System (ADS)

    Williams, T.; Escutia, C.; De Santis, L.; O'Brien, P.; Pekar, S. F.; Brinkhuis, H.; Domack, E. W.

    2013-12-01

    Along the George V and Adélie Land continental shelf of East Antarctica, shallowly-buried strata contain a record of Antarctica's climate and ice history from the lush forests of the Eocene greenhouse to the dynamic ice sheet margins of the Neogene. Short piston cores and dredges have recovered Early Cretaceous and Eocene organic-rich sediment at the seabed, and in 2010, IODP Expedition 318 recovered earliest Oligocene and early Pliocene subglacial and proglacial diamictites. However, challenging ice and drilling conditions from the JOIDES Resolution on the shelf resulted in poor core recovery and sites had to be abandoned before the stratigraphic targets could be reached. Therefore, in a new IODP drilling proposal submitted earlier this year, we propose to use the MeBo sea bed drill for improved core recovery and easier access to the shelf, and drill a stratigraphic transect of shallow (~80m) holes. To investigate the evolution of the Antarctic ice sheet in this sector, we target strata above and below regional erosional and downlap surfaces to date and characterize major episodes of ice sheet advance and retreat. These direct records of ice extent on the shelf can be set in the context of Southern Ocean records of temperature, ice-rafted debris (IRD) and latitudinal fluctuations of the opal belt, and hence we can relate ice sheet evolution to paleoclimate conditions. Targets include possible late Eocene precursor glaciations, the Eocene/Oligocene boundary erosion surface, Oligocene and Miocene ice extents, and ice margin fluctuations in the Pliocene. At the Cretaceous and Eocene proposed sites, marine and terrestrial temperature proxies and palynological records will provide information on high-latitude paleoenvironments and pole-equator temperature gradients. Here we present existing data from the area and the proposed new drill sites. The ice and climate history of the George V and Adélie Land margin can provide warm-world scenarios to help understand ice sheet instability in analogous future warm climates.

  17. Seafloor glacial geomorphology in a cross shelf trough: insights into the deglaciation of the Melville Bay Ice Stream

    NASA Astrophysics Data System (ADS)

    Newton, Andrew; Huuse, Mads

    2016-04-01

    Compared to other glaciated margins such as offshore mid-Norway and Svalbard, the Greenland continental shelf has, until recently, been the subject of only a limited amount of academic and industry research. This has been mainly due to the difficulty and expense of obtaining data in such harsh and operationally complex settings. Climate amelioration and technological advance has, particularly in recent years, allowed both academics and industry to substantially increase data collection across the many glaciated continental shelves in the Northern Hemisphere. Baffin Bay has been one of the primary regions of interest for the hydrocarbon industry which has sought to operate in the frontier basins offshore Greenland. As a result of these industry operations, a large database of geophysical and geological data has been collected. Some of this data has been made available to glacial scientists and provides a unique opportunity to investigate the seafloor geomorphology for regions where the majority of previous work has been hypothetical rather than grounded in geological evidence. In the work presented here we present a landform record offshore NW Greenland in the Melville Bay cross-shelf trough. This is one of the largest troughs on the entire Greenland shelf and measures up to 140 km in width. Shallow-marine cores collected in the coastal part of the trough show bedrock of Miocene age and indicate that a significant cover has likely been removed from the shelf by ice streams operating through the Late Cenozoic. This material has then been deposited at the shelf edge as a trough mouth fan. Using multibeam and seismic reflection data a large number of glacial landforms are observed and mapped in the trough. These include mega-scale glacial lineations, grounding-zone wedges, iceberg scours, and iceberg grounding pits. These landforms are used to reconstruct the ice dynamics of the Melville Bugt Ice Stream at the last glacial maximum and during its deglaciation. The observed grounding-zone wedges suggest that initial retreat was punctuated with two still-stands of long enough duration to accumulate material at the grounding zone. As the ice sheet decayed further, a rapid retreat of over 30 km occurred before the grounding line margin was stabilised again. Understanding the nonlinear rate of grounding-line retreat such as that presented here is crucial for the future modelling of not just the evolution of the Greenland Ice Sheet but also those elsewhere.

  18. Deglaciation of the northwestern White Mountains, New Hampshire

    USGS Publications Warehouse

    Thompson, W.B.; Fowler, B.K.; Dorion, C.C.

    1999-01-01

    The mode of deglaciation in the northwestern White Mountains of New Hampshire has been controversial since the mid 1800's. Early workers believed that active ice deposited the Bethlehem Moraine complex in the Ammonoosuc River basin during recession of the last ice sheet. In the 1930's this deglaciation model was replaced by the concept of widespread simultaneous stagnation and downwastage of Late Wisconsinan ice. The present authors reexamined the Bethlehem Moraine complex and support the original interpretation of a series of moraines deposited by active ice. We found other moraine clusters of similar age to the northeast in the Johns River and Israel River basins. Ice-marginal deposits that probably correlate with the Bethlehem Moraine also occur west of Littleton. The Bethlehem Moraine complex and equivalent deposits in adjacent areas were formed by readvance and oscillatory retreat of the Connecticut Valley lobe of the Laurentide Ice Sheet. This event is called the Littleton-Bethlehem Readvance. Throughout the study area, sequences of glaciolacustrine deposits and meltwater drainage channels indicate progressive northward recession of the glacier margin. Radiocarbon dates from nearby New England and Quebec suggest that the ice sheet withdrew from this part of the White Mountains between about 12,500 and 12,000 14C yr BP. We attribute the Littleton-Bethlehem Readvance to a brief climatic cooling during Older Dyas time, close to 12,000 BP.

  19. Ocean forcing of Ice Sheet retreat in central west Greenland from LGM to the early Holocene

    NASA Astrophysics Data System (ADS)

    Jennings, Anne E.; Andrews, John T.; Ó Cofaigh, Colm; Onge, Guillaume St.; Sheldon, Christina; Belt, Simon T.; Cabedo-Sanz, Patricia; Hillaire-Marcel, Claude

    2017-08-01

    Three radiocarbon dated sediment cores from trough mouth fans on the central west Greenland continental slope were studied to determine the timing and processes of Greenland Ice Sheet (GIS) retreat from the shelf edge during the last deglaciation and to test the role of ocean forcing (i.e. warm ocean water) thereon. Analyses of lithofacies, quantitative x-ray diffraction mineralogy, benthic foraminiferal assemblages, the sea-ice biomarker IP25, and δ18 O of the planktonic foraminifera Neogloboquadrina pachyderma sinistral from sediments in the interval from 17.5-10.8 cal ka BP provide consistent evidence for ocean and ice sheet interactions during central west Greenland (CWG) deglaciation. The Disko and Uummannaq ice streams both retreated from the shelf edge after the last glacial maximum (LGM) under the influence of subsurface, warm Atlantic Water. The warm subsurface water was limited to depths below the ice stream grounding lines during the LGM, when the GIS terminated as a floating ice shelf in a sea-ice covered Baffin Bay. The deeper Uummannaq ice stream retreated first (ca. 17.1 cal ka BP), while the shallower Disko ice stream retreated at ca. 16.2 cal ka BP. The grounding lines were protected from accelerating mass loss (calving) by a buttressing ice shelf and by landward shallowing bathymetry on the outer shelf. Calving retreat was delayed until ca. 15.3 cal ka BP in the Uummannaq Trough and until 15.1 cal ka BP in the Disko Trough, during another interval of ocean warming. Instabilities in the Laurentide, Innuitian and Greenland ice sheets with outlets draining into northern Baffin Bay periodically released cold, fresh water that enhanced sea ice formation and slowed GIS melt. During the Younger Dryas, the CWG records document strong cooling, lack of GIS meltwater, and an increase in iceberg rafted material from northern Baffin Bay. The ice sheet remained in the cross-shelf troughs until the early Holocene, when it retreated rapidly by calving and strong melting under the influence of atmosphere and ocean warming and a steep reverse slope toward the deep fjords. We conclude that ocean warming played an important role in the palaeo-retreat dynamics of the GIS during the last deglaciation.

  20. A preliminary geomorphological map from the Múlajökull drumlin field, Iceland

    NASA Astrophysics Data System (ADS)

    Jonsson, S. A.; Schomacker, A.; Benediktsson; Johnson, M.; Ingolfsson, O.

    2012-12-01

    The drumlin field in front of Múlajökull, a surge-type, outlet glacier from Hofsjökull in Iceland, is the only known active drumlin field (Johnson et al., 2010). The aim of this study is to further explore the distribution and formation of drumlins and drumlin fields in a modern glacial environment. We use data from Digital Elevation Models (DEMs), aerial imagery and field mapping. Here we present a preliminary geomorphological map based on remote sensing and fieldwork in 2010 and 2011. Geomorphological mapping of the drumlin field both with DEMs and ground proofing has revealed over 100 drumlins and a number of drumlinized ridges. The drumlins furthest from the present ice margin are broader and have lower relief than those closer to the ice. We suggest that this reflects an evolution of the drumlin form during recurrent surging. The drumlins farther away from the ice have experienced fewer surges than those that have just been uncovered due to present retreat of the ice margin. During successive surges, the drumlins become narrower and develop a higher relief. Reference: Johnson, M.D., Schomacker, A., Benediktsson, Í. Ö., Geiger, A. J., Ferguson, A. and Ingólfsson, Ó. 2010, Active drumlin field revealed at the margin of Múlajökull, Iceland: A surge-type glacier: Geology v. 38, p. 943-946.

  1. Interplay of grounding-line dynamics and sub-shelf melting during retreat of the Bjørnøyrenna Ice Stream.

    PubMed

    Petrini, Michele; Colleoni, Florence; Kirchner, Nina; Hughes, Anna L C; Camerlenghi, Angelo; Rebesco, Michele; Lucchi, Renata G; Forte, Emanuele; Colucci, Renato R; Noormets, Riko

    2018-05-08

    The Barents Sea Ice Sheet was a marine-based ice sheet, i.e., it rested on the Barents Sea floor during the Last Glacial Maximum (21 ky BP). The Bjørnøyrenna Ice Stream was the largest ice stream draining the Barents Sea Ice Sheet and is regarded as an analogue for contemporary ice streams in West Antarctica. Here, the retreat of the Bjørnøyrenna Ice Stream is simulated by means of two numerical ice sheet models and results assessed against geological data. We investigate the sensitivity of the ice stream to changes in ocean temperature and the impact of grounding-line physics on ice stream retreat. Our results suggest that the role played by sub-shelf melting depends on how the grounding-line physics is represented in the models. When an analytic constraint on the ice flux across the grounding line is applied, the retreat of Bjørnøyrenna Ice Stream is primarily driven by internal ice dynamics rather than by oceanic forcing. This suggests that implementations of grounding-line physics need to be carefully assessed when evaluating and predicting the response of contemporary marine-based ice sheets and individual ice streams to ongoing and future ocean warming.

  2. Late glacial and Holocene history of the Greenland Ice Sheet margin, Nunatarssuaq, Northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Farnsworth, L. B.; Kelly, M. A.; Axford, Y.; Bromley, G. R.; Osterberg, E. C.; Howley, J. A.; Zimmerman, S. R. H.; Jackson, M. S.; Lasher, G. E.; McFarlin, J. M.

    2015-12-01

    Defining the late glacial and Holocene fluctuations of the Greenland Ice Sheet (GrIS) margin, particularly during periods that were as warm or warmer than present, provides a longer-term perspective on present ice margin fluctuations and informs how the GrIS may respond to future climate conditions. We focus on mapping and dating past GrIS extents in the Nunatarssuaq region of northwestern Greenland. During the summer of 2014, we conducted geomorphic mapping and collected rock samples for 10Be surface exposure dating as well as subfossil plant samples for 14C dating. We also obtained sediment cores from an ice-proximal lake. Preliminary 10Be ages of boulders deposited during deglaciation of the GrIS subsequent to the Last Glacial Maximum range from ~30-15 ka. The apparently older ages of some samples indicate the presence of 10Be inherited from prior periods of exposure. These ages suggest deglaciation occurred by ~15 ka however further data are needed to test this hypothesis. Subfossil plants exposed at the GrIS margin on shear planes date to ~ 4.6-4.8 cal. ka BP and indicate less extensive ice during middle Holocene time. Additional radiocarbon ages from in situ subfossil plants on a nunatak date to ~3.1 cal. ka BP. Geomorphic mapping of glacial landforms near Nordsø, a large proglacial lake, including grounding lines, moraines, paleo-shorelines, and deltas, indicate the existence of a higher lake level that resulted from a more extensive GrIS margin likely during Holocene time. A fresh drift limit, characterized by unweathered, lichen-free clasts approximately 30-50 m distal to the modern GrIS margin, is estimated to be late Holocene in age. 10Be dating of samples from these geomorphic features is in progress. Radiocarbon ages of subfossil plants exposed by recent retreat of the GrIS margin suggest that the GrIS was at or behind its present location at AD ~1650-1800 and ~1816-1889. Results thus far indicate that the GrIS margin in northwestern Greenland responded sensitively to Holocene climate changes. Ongoing research will improve the chronological constraints on these fluctuations.

  3. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, Jeanne M.; Molnia, Bruce F.

    2004-07-01

    Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes ( ML≥2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes ( Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake ( Ms=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass change during the 1899-1979 time period to calculate the change in the fault stability margin (FSM) prior to the 1979 St. Elias earthquake. Our results suggest that a cumulative decrease in the fault stability margin at seismogenic depths, due to ice wastage over 80 years, was large, up to ˜2 MPa. Ice wastage would promote thrust faulting in events such as the 1979 earthquake and subsequent aftershocks.

  4. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    USGS Publications Warehouse

    Sauber, J.M.; Molnia, B.F.

    2004-01-01

    Across the plate boundary zone in south central Alaska, tectonic strain rates are high in a region that includes large glaciers undergoing wastage (glacier retreat and thinning) and surges. For the coastal region between the Bering and Malaspina Glaciers, the average ice mass thickness changes between 1995 and 2000 range from 1 to 5 m/year. These ice changes caused solid Earth displacements in our study region with predicted values of -10 to 50 mm in the vertical and predicted horizontal displacements of 0-10 mm at variable orientations. Relative to stable North America, observed horizontal rates of tectonic deformation range from 10 to 40 mm/year to the north-northwest and the predicted tectonic uplift rates range from approximately 0 mm/year near the Gulf of Alaska coast to 12 mm/year further inland. The ice mass changes between 1995 and 2000 resulted in discernible changes in the Global Positioning System (GPS) measured station positions of one site (ISLE) located adjacent to the Bagley Ice Valley and at one site, DON, located south of the Bering Glacier terminus. In addition to modifying the surface displacements rates, we evaluated the influence ice changes during the Bering glacier surge cycle had on the background seismic rate. We found an increase in the number of earthquakes (ML???2.5) and seismic rate associated with ice thinning and a decrease in the number of earthquakes and seismic rate associated with ice thickening. These results support the hypothesis that ice mass changes can modulate the background seismic rate. During the last century, wastage of the coastal glaciers in the Icy Bay and Malaspina region indicates thinning of hundreds of meters and in areas of major retreat, maximum losses of ice thickness approaching 1 km. Between the 1899 Yakataga and Yakutat earthquakes (Mw=8.1, 8.1) and prior to the 1979 St. Elias earthquake (M s=7.2), the plate interface below Icy Bay was locked and tectonic strain accumulated. We used estimated ice mass change during the 1899-1979 time period to calculate the change in the fault stability margin (FSM) prior to the 1979 St. Elias earthquake. Our results suggest that a cumulative decrease in the fault stability margin at seismogenic depths, due to ice wastage over 80 years, was large, up to ???2 MPa. Ice wastage would promote thrust faulting in events such as the 1979 earthquake and subsequent aftershocks.

  5. A ground penetrating radar investigation of a glacial-marine ice- contact delta, Pineo Ridge, eastern coastal Maine

    USGS Publications Warehouse

    Tary, A.K.; Duncan, M. FitzGerald; Weddle, T.K.

    2007-01-01

    In eastern coastal Maine, many flat-topped landforms, often identified as glacial-marine deltas, are cultivated for blueberry production. These agriculturally valuable features are not exploited for aggregate resources, severely limiting stratigraphic exposure. Coring is often forbidden; where permissible, coarse-grained surficial sediments make coring and sediment retrieval difficult. Ground penetrating radar (GPR) has become an invaluable tool in an ongoing study of the otherwise inaccessible subsurface morphology in this region and provides a means of detailing the large-scale sedimentary structures comprising these features. GPR studies allow us to reassess previous depositional interpretations and to develop alternative developmental models. The work presented here focuses on Pineo Ridge, a large, flat-topped ice-marginal glacial-marine delta complex with a strong linear trend and two distinct landform zones, informally termed East Pineo and West Pineo. Previous workers have described each zone separately due to local morphological variation. Our GPR work further substantiates this geomorphic differentiation. East Pineo developed as a series of deltaic lobes prograding southward from an ice-contact margin during the local marine highstand. GPR data do not suggest postdepositional modification by ice-margin re-advance. We suggest that West Pineo has a more complex, two-stage depositional history. The southern section of the feature consists of southward-prograding deltaic lobes deposited during retreat of the Laurentide ice margin, with later erosional modification during marine regression. The northern section of West Pineo formed as a series of northward-prograd- ing deltaic lobes as sediment-laden meltwater may have been diverted by the existing deposits of the southern section of West Pineo. ?? 2007 The Geological Society of America. All rights reserved.

  6. Tropical tales of polar ice: evidence of Last Interglacial polar ice sheet retreat recorded by fossil reefs of the granitic Seychelles islands

    NASA Astrophysics Data System (ADS)

    Dutton, Andrea; Webster, Jody M.; Zwartz, Dan; Lambeck, Kurt; Wohlfarth, Barbara

    2015-01-01

    In the search for a record of eustatic sea level change on glacial-interglacial timescales, the Seychelles ranks as one of the best places on the planet to study. Owing to its location with respect to the former margins of Northern Hemisphere ice sheets that wax and wane on orbital cycles, the local-or relative-sea level history is predicted to lie within a few meters of the globally averaged eustatic signal during the Last Interglacial period. We have surveyed and dated Last Interglacial fossil corals to ascertain peak sea level and hence infer maximum retreat of polar ice sheets during this time interval. We observe a pattern of gradually rising sea level in the Seychelles between ˜129 and 125 thousand years ago (ka), with peak eustatic sea level attained after 125 ka at 7.6 ± 1.7 m higher than present. After accounting for thermal expansion and loss of mountain glaciers, this sea-level budget would require ˜5-8 m of polar ice sheet contribution, relative to today's volume, of which only ˜2 m came from the Greenland ice sheet. This result clearly identifies the Antarctic ice sheet as a significant source of melt water, most likely derived from one of the unstable, marine-based sectors in the West and/or East Antarctic ice sheet. Furthermore, the establishment of a +5.9 ± 1.7 m eustatic sea level position by 128.6 ± 0.8 ka would require that partial AIS collapse was coincident with the onset of the sea level highstand.

  7. Late Holocene spatio-temporal variability of the south Greenland Ice Sheet and adjacent mountain glaciers

    NASA Astrophysics Data System (ADS)

    Sinclair, G.; Carlson, A. E.; Rood, D. H.; Axford, Y.

    2017-12-01

    The late Holocene, with its spatially complex pattern of centennial-scale climate variation, is an ideal time period to test the response of the cryosphere to atmospheric and oceanic temperature changes. The south Greenland Ice Sheet (sGrIS), with its proximity to areas of North Atlantic Deep Water formation and a large spectrum of glaciological regimes over a relatively small area, provides an excellent location to examine the spatial heterogeneity of ice-sheet and glacier responses to climate change. Here, we will present 50 Be-10 surface exposure ages from eight moraines in six locations around the margin of the sGrIS. These moraines are located just outboard of historical moraines, and will therefore allow us to constrain the timing of the most extensive prehistoric late-Holocene advance and retreat of ice margins draining the sGrIS and independent valley glaciers. The dataset includes both marine- and land-terminating glaciers draining the sGrIS, the low-altitude Qassimiut lobe, the high-altitude alpine Julianhåb ice cap and isolated valley glaciers. This diverse dataset will allow us to determine to what extent late-Holocene centennial-scale behavior of the ice-sheet and glacier margins were synchronous, perhaps in response to an external climate forcing, or more stochastic, governed instead by local factors such as basal thermal regime, bedrock topography, or microclimates. This has implications for understanding the forcings and responses of cryospheric changes at timescales relevant to human society. In addition to providing context for paleoclimatic and glacial geologic investigations, this work will inform future sea-level projections by providing targets for validating high-resolution ice-sheet and glacier models.

  8. Formation processes of sea ice floe size distribution in the interior pack and its relationship to the marginal ice zone off East Antarctica

    NASA Astrophysics Data System (ADS)

    Toyota, Takenobu; Kohout, Alison; Fraser, Alexander D.

    2016-09-01

    To understand the behavior of the Seasonal Ice Zone (SIZ), which is composed of sea-ice floes of various sizes, knowledge of the floe size distribution (FSD) is important. In particular, FSD in the Marginal Ice Zone (MIZ), controlled by wave-ice interaction, plays an important role in determining the retreating rates of sea-ice extent on a global scale because the cumulative perimeter of floes enhances melting. To improve the understanding of wave-ice interaction and subsequent effects on FSD in the MIZ, FSD measurements were conducted off East Antarctica during the second Sea Ice Physics and Ecosystems eXperiment (SIPEX-2) in late winter 2012. Since logistical reasons limited helicopter operations to two interior ice regions, FSD in the interior ice region was determined using a combination of heli-photos and MODIS satellite visible images. The possible effect of wave-ice interaction in the MIZ was examined by comparison with past results obtained in the same MIZ, with our analysis showing: (1) FSD in the interior ice region is basically scale invariant for both small- (<100 m) and large- (>1 km) scale regimes; (2) although fractal dimensions are quite different between these two regimes, they are both rather close to that in the MIZ; and (3) for floes <100 m in diameter, a regime shift which appeared at 20-40 m in the MIZ is absent. These results indicate that one role of wave-ice interaction is to modulate the FSD that already exists in the interior ice region, rather than directly determine it. The possibilities of floe-floe collisions and storm-induced lead formation are considered as possible formation processes of FSD in the interior pack.

  9. Holocene Activity of the Quelccaya Ice Cap: A Working Model

    NASA Astrophysics Data System (ADS)

    Lowell, T. V.; Smith, C. A.; Kelly, M. A.; Stroup, J. S.

    2012-12-01

    The patterns and magnitudes of past climate change in the topics are still under discussion. We contribute here by reporting on patterns of glacier length changes of the largest glacier in the tropics, Quelccaya Ice Cap (~13.9°S, 70.9°W, summit at 5645 m). This ice cap has several local domes that may have different patterns of length changes because of differing elevations of the domes (high to the north, lower to the south). Prior work (Mark et al. 2003, Abbott et al., 2004; Thompson et al., 2005; Buffen, et al., 2009), new radiocarbon ages, and stratigraphic and geomorphic relationships are used to determine the general pattern of length changes for the outlets from this ice cap. We exploit geomorphic relationships and present new radiocarbon ages on interpreted stratigraphic sections to determine the pattern of length changes for this ice cap. Ice retreated during late glacial times (Rodbell and Seltzer, 2000; Kelly et al., in press). By 11,400 yr BP it had reached a position ~1.2 km beyond its present (2000 AD) extent. While length during the early Holocene is problematic, present evidence permits, but does not prove, extents of 0.5 to 1.0 km down-valley from the present margin. Between 6400 and 4400 yr BP the ice cap was smaller than present, but it advanced multiple times during the late Holocene. Lengths of up to 1 km beyond present were achieved at 3400 yr BP and ~500 yr BP. Additionally, the ice advanced to 0.8 km beyond its present margin at 1600 yr BP. Because these glaciers were temperate, we take these lengths to represent primarily changes in temperature. This may suggest that lowering insolation values in the northern hemisphere during the Holocene provide a first order control on tropical temperatures. Alternatively, it may be that major reorganization of the topical circulation belts about 5000 yr BP yields two configurations of the QIC and hence Holocene temperatures - one at the present ice margin and and the second about 1 km beyond the present ice margin. In either case, the pulsating glacier lengths indicate a dynamic Holocene climate.

  10. Atmospherically-driven collapse of a marine-based ice stream

    NASA Astrophysics Data System (ADS)

    Greenwood, S. L.; Clason, C. C.

    2016-12-01

    Marine-terminating glaciers and the sectors of ice sheets that are grounded below sea level are widely considered to be vulnerable to unstable retreat. The southern sector of the retreating Fennoscandian Ice Sheet comprised a large, aqueous-terminating ice sheet catchment grounded well below sea level throughout its deglaciation. However, the behaviour, timing of and controls upon ice sheet retreat through the Baltic and Bothnian basins have thus far been inferred only indirectly from peripheral, terrestrial-based geological archives. Recent acquisition of high-resolution multibeam bathymetry opens these basins up, for the first time, to direct investigation of their glacial footprint and palaeo-ice sheet behaviour. Multibeam data reveal a rich glacial landform legacy of the Bothnian Sea deglaciation. A late-stage palaeo-ice stream formed a narrow corridor of fast flow. Its pathway is overprinted by a vast field of basal crevasse squeeze ridges, while abundant traces of high subglacial meltwater volumes call for considerable input of surface meltwater to the subglacial system. We interpret a short-lived ice stream event under high extension, precipitating large-scale hydrofracture-driven collapse of the ice sheet sector under conditions of high surface melting. Experiments with a physically-based numerical flowline model indicate that the rate and pattern of Bothnian Sea ice stream retreat are most sensitive to surface mass balance change and crevasse propagation, while remarkably insensitive to submarine melting and sea level change. We interpret strongly atmospherically-driven retreat of this marine-based ice sheet sector.

  11. Mega debris flow deposits on the western Wilkes Land margin, East Antarctica

    USGS Publications Warehouse

    Donda, F.; O'Brien, P.E.; De Santis, L.; Rebesco, M.; Brancolini, Giuliano

    2007-01-01

    Multichannel seismic data collected off Western Wilkes Land (East Antarctica) reveal the occurrence of mega debris flow deposits on the lower slope and rise that were formed throughout the Miocene. Commonly, debris flow units are separated by thin deposits of well-stratified facies, interpreted as predominantly glaciomarine mixed contouritic and distal turbidite deposits. These units could act as weak layers and could have played a major role in the slope instability. High sedimentation rates, due to large amounts of sediment delivered from a temperate, wet-based ice sheet, constituted a key factor in the sediment failures. The main trigger mechanism would probably have been earthquakes enhanced by isostatic rebound following major ice sheet retreats.

  12. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene.

    PubMed

    Kingslake, J; Scherer, R P; Albrecht, T; Coenen, J; Powell, R D; Reese, R; Stansell, N D; Tulaczyk, S; Wearing, M G; Whitehouse, P L

    2018-06-01

    To predict the future contributions of the Antarctic ice sheets to sea-level rise, numerical models use reconstructions of past ice-sheet retreat after the Last Glacial Maximum to tune model parameters 1 . Reconstructions of the West Antarctic Ice Sheet have assumed that it retreated progressively throughout the Holocene epoch (the past 11,500 years or so) 2-4 . Here we show, however, that over this period the grounding line of the West Antarctic Ice Sheet (which marks the point at which it is no longer in contact with the ground and becomes a floating ice shelf) retreated several hundred kilometres inland of today's grounding line, before isostatic rebound caused it to re-advance to its present position. Our evidence includes, first, radiocarbon dating of sediment cores recovered from beneath the ice streams of the Ross Sea sector, indicating widespread Holocene marine exposure; and second, ice-penetrating radar observations of englacial structure in the Weddell Sea sector, indicating ice-shelf grounding. We explore the implications of these findings with an ice-sheet model. Modelled re-advance of the grounding line in the Holocene requires ice-shelf grounding caused by isostatic rebound. Our findings overturn the assumption of progressive retreat of the grounding line during the Holocene in West Antarctica, and corroborate previous suggestions of ice-sheet re-advance 5 . Rebound-driven stabilizing processes were apparently able to halt and reverse climate-initiated ice loss. Whether these processes can reverse present-day ice loss 6 on millennial timescales will depend on bedrock topography and mantle viscosity-parameters that are difficult to measure and to incorporate into ice-sheet models.

  13. Bed elevation of Jakobshavn Isbræ, West Greenland, from high-resolution airborne gravity and other data

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E.; Elieff, S.; Morlighem, M.; Millan, R.; Mouginot, J.; Holland, D. M.; Holland, D.; Paden, J.

    2017-04-01

    Jakobshavn Isbræ, West Greenland, which holds a 0.6 m sea level volume equivalent, has been speeding up and retreating since the late 1990s. Interpretation of its retreat has been hindered by difficulties in measuring its ice thickness with airborne radar depth sounders. Here we employ high-resolution, helicopter-borne gravity data from 2012 to reconstruct its bed elevation within 50 km of the ocean margin using a three-dimensional inversion constrained by fjord bathymetry data offshore and a mass conservation algorithm inland. We find the glacier trough to be asymmetric and several 100 m deeper than estimated previously in the lower part. From 1996 to 2016, the grounding line migrated at 0.6 km/yr from 700 m to 1100 m depth. Upstream, the bed drops to 1600 m over 10 km then slowly climbs to 1200 m depth in 40 km. Jakobshavn Isbræ will continue to retreat along a retrograde slope for decades to come.

  14. Palaeo-ice stream pathways in the easternmost Amundsen Sea Embayment, West Antarctica

    NASA Astrophysics Data System (ADS)

    Klages, Johann P.; Kuhn, Gerhard; Graham, Alastair G. C.; Smith, James A.; Hillenbrand, Claus-Dieter; Nitsche, Frank O.; Larter, Rob D.; Gohl, Karsten

    2015-04-01

    Multibeam swath bathymetry datasets collected over the past two decades have been compiled to identify palaeo-ice stream pathways in the easternmost Amundsen Sea Embayment. We mapped 3010 glacial landforms to reconstruct palaeo-ice flow in the ~250 km-long Abbot Glacial Trough that was occupied by a large palaeo-ice stream, fed by two tributaries (Cosgrove and Abbot) that reached the continental shelf edge during the last maximum ice-sheet advance. The mapping has enabled a clear differentiation between glacial landforms interpreted as indicative of wet- (e.g. mega-scale glacial lineations) and cold-based ice (e.g. hill-hole pairs) during the last glaciation of the continental shelf. Both the regions of fast palaeo-ice flow within the palaeo-ice stream troughs, and the regions of slow palaeo-ice flow on adjacent seafloor highs (referred to as inter-ice stream ridges) additionally record glacial landforms such as grounding-zone wedges and recessional moraines that indicate grounding line stillstands of the ice sheet during the last deglaciation from the shelf. As the palaeo-ice stream flowed along a trough with variable geometry and variable subglacial substrate, it appears that trough sections characterized by constrictions and outcropping hard substrate that changes the bed gradient, led the pace of grounding-line retreat to slow and subsequently pause, resulting in the deposition of grounding-zone wedges. The stepped retreat recorded within the Abbot Glacial Trough corresponds well to post-glacial stepped retreat interpreted for the neighbouring Pine Island-Thwaites Palaeo-Ice Stream trough, thus suggesting a uniform pattern of episodic retreat across the eastern Amundsen Sea Embayment. The correlation of episodic retreat features with geological boundaries further emphasises the significance of subglacial geology in steering ice stream flow. Our new geomorphological map of the easternmost Amundsen Sea Embayment resolves the pathways of palaeo-ice streams that were probably all active during the last maximum extent of the ice sheet on this part of the shelf, and reveals the style of postglacial grounding-line retreat. Both are important input variables in ice sheet models and therefore can be used for validating the reliability of these models.

  15. Sea-ice indicators of polar bear habitat

    NASA Astrophysics Data System (ADS)

    Stern, Harry L.; Laidre, Kristin L.

    2016-09-01

    Nineteen subpopulations of polar bears (Ursus maritimus) are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology - the cycle of biological events - is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat) on its way to the summer minimum or rises above the threshold (advance) on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979-2014) mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from -3 to -9 days decade-1 in spring and from +3 to +9 days decade-1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days) and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of -7 to -19 days decade-1, with larger trends in the Barents Sea and central Arctic Basin. The June-October sea-ice concentration is declining in all regions at rates ranging from -1 to -9 percent decade-1. These sea-ice metrics (or indicators of habitat change) were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in future reports.

  16. Timing and Rate of Deglaciation of the MIS 2 Cordilleran Ice Sheet in Yukon Territory

    NASA Astrophysics Data System (ADS)

    Ward, B. C.; Bond, J. D.; Gosse, J. C.; Turner, D. G.

    2015-12-01

    The northern Cordilleran ice sheet (CIS) consisted of a series of quasi-independent ice lobes that coalesced during the last glacial maximum (LGM) to form a continuous carapace of precipitation limited ice over southern Yukon. Variations in effective precipitation to different source areas of these ice lobes have been used to explain disparities in glacier extents in marine oxygen isotope stages (MIS) 4 and 6. Deglaciation of the northern margin of the CIS and its rate of recession from the LGM are poorly understood. We use cosmogenic nuclide exposure dating (10Be and 36Cl) on groups of 3-4 glacial erratics to reconstruct the timing and rate of deglaciation. Our sampling concentrated on the St. Elias, Cassiar and Selwyn lobes, as well an independent glacier from the Ogilvie Mountains. Boulders sampled up-ice from terminal moraines show that the initiation of deglaciation varied regionally. 36Cl ages from the Ogilvie Mountains indicate that deglaciation initiated by 24.8 ka. Further south in the Selwyn Lobe, two sites separated by ~150 km returned ages of 15.2 and 16.1 ka. To the south-west, three boulders from the Cassiar Lobe are 13.6 ka. Rates of deglaciation are best constrained for the Cassiar Lobe with two transects along different flow lines. Multiple valley bottom samples in the mid-deglaciation setting at Whitehorse yielded ages of 12.0 ka, while one boulder from the adjacent ridge top 600 m above is 13.5 ka. In the accumulation zone, ice-free conditions occurred by 10.8 ka. The other transect has higher elevation samples in a mid-deglaciation setting in the Pelly Mountains that indicate deglaciation occurred by 13.0 ka. Samples taken from high elevation and valley bottom sites close to accumulation zones of the Cassiar Lobe yielded ages of 13.6 and 11.0 ka, respectively. These results provide a chronology for the style of deglaciation interpreted from regional mapping throughout Yukon: gradual initial retreat and thinning marked by moraines, followed by rapid downwasting and regional stagnation. Thinning of the ice to expose uplands in the Cassiar lobe was coincident with margin retreat. The increase in rates of deglaciation after 12 ka fits well with mapped evidence of regional stagnation. These ages correspond to evidence in the north Pacific of rapid warming immediately after the Younger Dryas in the pre-Boreal.

  17. Glaciation and regional groundwater flow in the Fennoscandian shield

    USGS Publications Warehouse

    Provost, A.M.; Voss, C.I.; Neuzil, C.E.

    2012-01-01

    Regional-scale groundwater flow modeling of the Fennoscandian shield suggests that groundwater flow can be strongly affected by future climate change and glaciation. We considered variable-density groundwater flow in a 1500-km-long and approximately 10-km-deep cross-section through southern Sweden. Groundwater flow and shield brine transport in the cross-sectional model were analyzed under projected surface conditions for the next 140 ka. Simulations suggest that blockage of recharge and discharge by low-permeability permafrost or cold-based ice causes sinking of brine and consequent freshening of near-surface water in areas of natural discharge. Although recharge of basal meltwater is limited by the requirement that water pressure at the base of the ice sheet not exceed the pressure exerted by the weight of the ice, warm-based ice with basal melting creates a potential for groundwater recharge rates much larger than those of present, ice-free conditions. In the simulations, regional-scale redistribution of recharged water by subsurface flow is minor over the duration of a glacial advance (approximately 10 ka). During glacial retreat, significant upward flow of groundwater may occur below the ice sheet owing to pressure release. If the mechanical loading efficiency of the rocks is high, both subsurface penetration of meltwater during glacial advance and up-flow during glacial retreat are reduced because of loading-induced pressure changes. The maximum rate of groundwater discharge in the simulations occurs at the receding ice margin, and some discharge occurs below incursive postglacial seas. Recharge of basal meltwater could decrease the concentration of dissolved solids significantly below present-day levels at depths of up to several kilometers and may bring oxygenated conditions to an otherwise reducing chemical environment for periods exceeding 10 ka.

  18. Holocene glacier fluctuations inferred from lacustrine sediment, Emerald Lake, Kenai Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    LaBrecque, Taylor S.; Kaufman, Darrell S.

    2016-01-01

    Physical and biological characteristics of lacustrine sediment from Emerald Lake were used to reconstruct the Holocene glacier history of Grewingk Glacier, southern Alaska. Emerald Lake is an ice-marginal threshold lake, receiving glaciofluvial sediment when Grewingk Glacier overtops the topographic divide that separates it from the lake. Sub-bottom acoustical profiles were used to locate core sites to maximize both the length and resolution of the sedimentary sequence recovered in the 4-m-long cores. The age model for the composite sequence is based on 13 14C ages and a 210Pb profile. A sharp transition from the basal inorganic mud to organic-rich mud at 11.4 ± 0.2 ka marks the initial retreat of Grewingk Glacier below the divide of Emerald Lake. The overlaying organic-rich mud is interrupted by stony mud that records a re-advance between 10.7 ± 0.2 and 9.8 ± 0.2 ka. The glacier did not spill meltwater into the lake again until the Little Ice Age, consistent with previously documented Little Ice Ages advances on the Kenai Peninsula. The retreat of Grewingk Glacier at 11.4 ka took place as temperature increased following the Younger Dryas, and the subsequent re-advance corresponds with a climate reversal beginning around 11 ka across southern Alaska.

  19. Frequency, triggering factors and possible consequences of mass movements on outlet glaciers in Iceland.

    NASA Astrophysics Data System (ADS)

    Saemundsson, Thorsteinn; Margeirsson, Guðbjörn

    2016-04-01

    During the last 15 years several mass movements of various size and origin, e.g. rock avalanches, rock slides and debris slides have been observed to have fall on outlet glaciers in Iceland. This should not come as a surprise in this type of glacial environment, but in a way it does. When looking at the history only few mass movements are recorded to have fall on outlet glaciers in Iceland, during the decades before the year 2000 or since 1960. This "lack of mass movements" can be explained by the fact that fewer observations and monitoring were done in the past, but is it so or are we seeing increasing activity? Looking at the distribution of the known mass movements, two activity periods cam be identified. The former one around 1970 and the second one starting around 2000 and is still ongoing. Both of these periods are characterized by warmer climate leading to retreating phases of glaciers. Two larger mass movements are known from these two retreating periods. The former one occurred in January 1967. Then a large rockslide fell on the snout and into the glacial lake of the Steinholtsjökull outlet glacier in the northern side of the Eyjafjallajökull ice cap. The rockslide broke up the snout of the glacier and caused large floodwave bursting down the Steinholtsdalur valley transporting large volume of sediments down its path. The later one occurred in 2007, when a large rockavalanche fell on the Morsárjökull outlet glacier, in the southern side of the Vatnajökull ice cap. The avalanche debris covered around 1/5 of the glacier surface. Today the retreat and thinning of glaciers in Iceland are extremely rapid. The consequences of such a rapid retreat are e.g. unstable valley slopes surrounding the outlet glaciers, both in loose sediments and bedrock, thawing of mountain permafrost and not least formation of glacial lakes in front of the rapid retreating ice margins. Such conditions can become extremely hazardous, as seen by the above mentioned examples, both for all infrastructure but not least for the rapidly increasing tourism in Iceland.

  20. Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Halberstadt, Anna Ruth W.; Simkins, Lauren M.; Greenwood, Sarah L.; Anderson, John B.

    2016-05-01

    Studying the history of ice-sheet behaviour in the Ross Sea, Antarctica's largest drainage basin can improve our understanding of patterns and controls on marine-based ice-sheet dynamics and provide constraints for numerical ice-sheet models. Newly collected high-resolution multibeam bathymetry data, combined with two decades of legacy multibeam and seismic data, are used to map glacial landforms and reconstruct palaeo ice-sheet drainage. During the Last Glacial Maximum, grounded ice reached the continental shelf edge in the eastern but not western Ross Sea. Recessional geomorphic features in the western Ross Sea indicate virtually continuous back-stepping of the ice-sheet grounding line. In the eastern Ross Sea, well-preserved linear features and a lack of small-scale recessional landforms signify rapid lift-off of grounded ice from the bed. Physiography exerted a first-order control on regional ice behaviour, while sea floor geology played an important subsidiary role. Previously published deglacial scenarios for Ross Sea are based on low-spatial-resolution marine data or terrestrial observations; however, this study uses high-resolution basin-wide geomorphology to constrain grounding-line retreat on the continental shelf. Our analysis of retreat patterns suggests that (1) retreat from the western Ross Sea was complex due to strong physiographic controls on ice-sheet drainage; (2) retreat was asynchronous across the Ross Sea and between troughs; (3) the eastern Ross Sea largely deglaciated prior to the western Ross Sea following the formation of a large grounding-line embayment over Whales Deep; and (4) our glacial geomorphic reconstruction converges with recent numerical models that call for significant and complex East Antarctic ice sheet and West Antarctic ice sheet contributions to the ice flow in the Ross Sea.

  1. On the pattern of WAIS retreat in eastern Ross Sea based on a regional synthesis of new geophysical and geological data acquired during NBP1502

    NASA Astrophysics Data System (ADS)

    McGlannan, A. J.; Bart, P. J.; Anderson, J. B.

    2016-02-01

    New multibeam and seismic data acquired during NBP1502 reveal that a series of backstepping grounding zone wedges (GZWs) were constructed on the middle shelf as the West Antarctic Ice Sheet (WAIS) retreated from the Whales Deep paleo-ice stream trough. The geomorphological information provided by these geophysical data were used to acquire a regional grid of jumbo-piston and kasten cores. Here, we present our regional synthesis of the new geophysical and geological data. The distributions of upcore transitions from diamict to sub-ice-shelf facies on the outer-most shelf demonstrate that as the grounded ice retreated in four discrete backsteps, the calving front remained in the vicinity of the shelf edge, approximately 50 kilometers to the north. In contrast, the upcore transition at the fourth backstep shows GZW diamict directly overlain by open-marine facies. We interpret this to indicate that a major retreat of both grounded and floating ice was associated with the termination of the middle-shelf grounding event. The minimum retreat distance was greater than 100 kilometers.

  2. Ongoing calving-frontal dynamics of glaciers in the Northern Patagonia Icefield, Chile

    NASA Astrophysics Data System (ADS)

    Bown, F.; Rivera, A.; Burger, F.; Carrión, D.; Cisternas, S.; Gacitúa, G.; Pena, M.; Oberreuter, J.; Silva, R.; Uribe, J. A.; Wendt, A.; Zamora, R.

    2013-05-01

    Patagonian glaciers are increasingly contributing to the global-sea level rise due to negative mass balances in recent decades, in spite of moderated temperature and precipitation changes taking place in the region. The Austral Chilean glaciers retreat and thinning are strongly influenced by local topography and frontal characteristics, both playing a key role in disrupting glacier responses. One of the main ice bodies in this region is the Northern Patagonian Icefield ( NPI, 46S/73W, 3953 km2), a plateau from where tens of outlet glaciers have been inventoried. Many of these glaciers are ending at sea or freshwater lakes where they are calving. This calving feature is typically associated to non-climatic fluctuations characterized by abnormally-high and sudden retreat and other exacerbated behaviors such as ice flow acceleration and dynamical thinning. The main aim of this work is the study of recent calving dynamics of three glaciers of the NPI, in order to analyze similarities versus differences associated to their location, topographical constraints and bathymetry, among other features. With this aim, airborne LIDAR and radar surveys, as well as field trips were conducted to the area in year 2012 where several instruments and sensors were installed. The selected study sites were the NPI eastern side freshwater calving glaciers Colonia (47.19S/73.29W) and Nef (47.03S/73.27W), and the NPI western margin tidewater calving San Rafael glacier (46.70S/73.76W). With all the collected data, calving fluxes of 0.03 km3 a-1 and 0.08 km3 a-1 were detected at Glaciares Colonia and Nef respectively. At San Rafael, the calving flux was much higher (0.94 km3 a-1) mainly due to a deeper bathymetry near the glacier front, and very high velocities (10m d-1) compared to the eastern side glaciers. At Glaciar San Rafael the calving flux is very likely modulated by tidal components and local buoyancy conditions, while at the eastern glaciers, calving is a near marginal feature compared with ongoing thinning rates due to higher ablation. In the long term perspective, San Rafael is a good example of the tidewater calving cycle described for several glaciers in Alaska and Patagonia. At the eastern side glaciers, frontal retreats have been bigger than at San Rafael in recent years, but in the long term (since the Little Ice Age), San Rafael experienced a much stronger frontal recession (more than 12 km). This contrasting calving behavior between eastern and western margin glaciers, is only enhancing ice losses differences, but not changing ongoing receding trends.;

  3. Present-day dynamics and future evolution of the world's northernmost ice cap, Hans Tausen Iskappe (Greenland)

    NASA Astrophysics Data System (ADS)

    Zekollari, Harry; Huybrechts, Philippe; Noël, Brice; van de Berg, Willem Jan; van den Broeke, Michiel R.

    2017-04-01

    In this study the dynamics of Hans Tausen Iskappe (western Peary Land, Greenland) are investigated with a coupled ice flow - mass balance model. Precipitation is obtained from the Regional Climate Model RACMO 2.3 and the surface mass balance is calculated from a Positive Degree-Day runoff/retention model, for which the input parameters are derived from field observations. For the ice flow a 3-D higher-order thermo-mechanical model is used, which is run at a 250 m resolution. Under 1961-1990 climatic conditions a steady state ice cap is obtained that is overall similar in geometry to the present-day ice cap. Ice thickness, temperature and flow velocity in the interior agree well with observations. For the outlet glaciers a reasonable agreement with temperature and ice thickness measurements can only be obtained with an additional heat source related to infiltrating meltwater. The simulations indicate that the SMB-elevation feedback has a major effect on the ice cap response time and stability. This causes the southern part of the ice cap to be extremely sensitive to a change in climatic conditions and leads to thresholds in the ice cap evolution. Under constant 2005-2014 climatic conditions the entire southern part of the ice cap cannot be sustained and the ice cap loses about 80% of its present-day volume. The future projected loss of surrounding permanent sea-ice and corresponding potential sharp precipitation increase may however lead to an attenuation of the retreat and even potential stabilization of the ice cap for a warming of up to 2-3°C. In a warmer and wetter climate the ice margin will retreat while the interior is projected to grow, leading to a steeper ice cap, in line with the present-day observed trends. For intermediate (+4°C) and high warming scenarios (+8°C) the ice cap is projected to disappear respectively around 2400 and 2200 A.D., almost irrespective of the projected precipitation regime and the simulated present-day geometry.

  4. Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Serreze, Mark C.; Crawford, Alex D.; Stroeve, Julienne C.; Barrett, Andrew P.; Woodgate, Rebecca A.

    2016-10-01

    As assessed over the period 1979-2014, the date that sea ice retreats to the shelf break (150 m contour) of the Chukchi Sea has a linear trend of -0.7 days per year. The date of seasonal ice advance back to the shelf break has a steeper trend of about +1.5 days per year, together yielding an increase in the open water period of 80 days. Based on detrended time series, we ask how interannual variability in advance and retreat dates relate to various forcing parameters including radiation fluxes, temperature and wind (from numerical reanalyses), and the oceanic heat inflow through the Bering Strait (from in situ moorings). Of all variables considered, the retreat date is most strongly correlated (r ˜ 0.8) with the April through June Bering Strait heat inflow. After testing a suite of statistical linear models using several potential predictors, the best model for predicting the date of retreat includes only the April through June Bering Strait heat inflow, which explains 68% of retreat date variance. The best model predicting the ice advance date includes the July through September inflow and the date of retreat, explaining 67% of advance date variance. We address these relationships by discussing heat balances within the Chukchi Sea, and the hypothesis of oceanic heat transport triggering ocean heat uptake and ice-albedo feedback. Developing an operational prediction scheme for seasonal retreat and advance would require timely acquisition of Bering Strait heat inflow data. Predictability will likely always be limited by the chaotic nature of atmospheric circulation patterns.

  5. Glacial sediments and landforms of Holderness, eastern England: A glacial depositional model for the North Sea Lobe of the British-Irish Ice Sheet

    NASA Astrophysics Data System (ADS)

    Evans, David J. A.; Thomson, Stephen A.

    2010-08-01

    Borehole records and exposures at coastal cliffs and inland quarries around Holderness are used in a critical assessment of the glacial depositional environments that operated at the margin of the North Sea lobe of the British-Irish Ice Sheet at the Last Glacial Maximum. Four lithofacies associations (LFA) are recognized in the area: LFAs 1 and 4 are laminated to massive diamictons, traditionally called the Skipsea and Withernsea tills/members, and display deformation structures indicative of stress from the NE, attenuated rafts of soft bedrock lithologies, ice-bed separation (canal fill) features and pseudo-stratification, and clast macrofabric data predominantly indicate deformation only to low strains. They are interpreted as subaqueous deposits subsequently deformed by glacier ice to create end products that lie on the glacitectonite continuum. Localized increases in strain signature are equated with the development of shear zones between onshore thickening wedges of deformed, pre-existing lake sediment. LFA 2 comprises cross-bedded clinoforms, locally steepening into foresets, at the core of linear hummocks along the central spine of Holderness (LFA 2a) and rhythmically laminated silts and sands with dropstones (LFA 2b). These sediments are interpreted as coalescent glacilacustrine subaqueous outwash fans, fining distally to lake bottom rhythmites and varves. Ice-contact deposition is evident in compressional folding, faulting and hydrofracture filling due to ice overriding, and extensional faulting associated with localized ice melt-out. Depressions produced by folding or sagging provided the accommodation space for the later deposition of LFA 2 and 3 through syntectonic sedimentation. LFA 3 comprises flat-lying beds of well to poorly sorted cross-stratified sands and gravels, interpreted as proximal proglacial braided outwash deposits laid down largely in ribbon sandar defined by the topography of abandoned ice-contact glacilacustrine depo-centres. Well developed ice wedge pseudomorphs in LFA 3 record permafrost conditions during ice sheet marginal recession, indicating that North Sea lobe oscillations may have been non-climatic or surge related. A depositional model is proposed in which "advance" and "retreat" phase tills/glacitectonites and associated ice-contact lake sediments are the geological imprint of a single glaciation. The initial advance of the North Sea lobe is recorded by a westerly thinning advance till (LFA 1). Later LFA 1 and 4 retreat "tills" are strictly glacitectonites, and are thicker depositional units because later ice readvances encroached upon and cannibalized more substantial sequences of deglacial lake sediment and subaqueous ice-contact fans (LFA 2). Similar regional till architectures will be manifest wherever the palaeogeography resulted in the onshore flow of ice and the concomitant production of glacitectonites from glacial lake sediments.

  6. Variation in annual production of copepods, euphausiids, and juvenile walleye pollock in the southeastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Sigler, Michael F.; Napp, Jeffrey M.; Stabeno, Phyllis J.; Heintz, Ronald A.; Lomas, Michael W.; Hunt, George L.

    2016-12-01

    We synthesize recent research on variation in annual production of copepods (Calanus spp.), euphausiids (Thysanoessa spp.), and juvenile walleye pollock (Gadus chalcogrammus) in the southeastern Bering Sea. We reach five conclusions: 1) the timing of the spring bloom is more important than the amount of annual primary production for the transfer of primary to secondary production (i.e., timing matters); 2) summer and fall, not just spring, matter: organisms must maximize energy intake devoted to somatic growth and storage of lipids and minimize energy expenditures during each season; 3) stored lipids are important for the overwinter survival of both zooplankton and age-0 walleye pollock; 4) variation in ice extent and timing of ice retreat affect the spatial distributions of phytoplankton, zooplankton, and age-0 walleye pollock; when these spatial distributions match in late-ice-retreat years, the annual production of copepods, euphausiids, and juvenile walleye pollock often increases (i.e., location matters); 5) if years with late ice retreat, which favor copepod, euphausiid, and juvenile walleye pollock production, occur in succession, top-down control increases. These conclusions help to explain annual variation in production of copepods, euphausiids and juvenile walleye pollock. Copepods and euphausiids often are more abundant in cold years with late ice retreat than in warm years with early ice retreat due to bloom timing and the availability of ice algae during years with late ice retreat. As a consequence, age-0 walleye pollock consume lipid-enriched prey in cold years, better preparing them for their first winter and their overwinter survival is greater. In addition, there is a spatial match of primary production, zooplankton, and age-0 walleye pollock in cold years and a mismatch in warm years.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiroyuki Enomoto; Atsumu Ohmura

    The relationship between sea ice and weather, one of the least known components of the climatic system, could be an important factor for the climate of high latitudes. The annual cycle of the sea ice extent is characterized by a asymmetric development, with the sea ice area slowly advancing toward the equator in the winter and rapidly retreating in summer. In this study, the seasonal asymmetric behavior of ice extent and the changes in sea ice concentration are shown to be linked to the atmospheric convergence line (ACL) around Antarctica. It is found that the relative positions of the ACLmore » characterized by the half-year cycle exert a strong influence upon the mean movement of the sea ice. It is also observed from the investigations of the areal concentration prior to the sea ice retreat is needed for a rapid retreat.« less

  8. Marine geological and geophysical records of the last British-Irish Ice Sheet on the continental shelf west of Ireland

    NASA Astrophysics Data System (ADS)

    O'Cofaigh, Colm; Callard, S. Louise; Benetti, Sara; Chiverell, Richard C.; Saher, Margot; van Landeghem, Katrien; Livingstone, Stephen J.; Scourse, James; Clark, Chris D.

    2015-04-01

    The record of glaciation on the continental shelf west of Ireland has, until recently, been relatively poorly studied. The UK NERC funded project BRITICE-CHRONO collected marine geophysical data in the form of multibeam swath bathymetry and sub-bottom profiles supplemented by over 50 vibro- and piston cores across the continental shelf west of Ireland during cruise JC106 of the RRS James Cook in 2014. Across the western Irish shelf, offshore of counties Galway and Clare, a series of large arcuate moraines record the former presence of a grounded ice sheet on the shelf. However, geophysical data from further to the west across the Porcupine Bank show a series of ridges and wedge-shaped sedimentary features whose form is consistent with an origin as moraines and/or grounding-zone wedges. Sediment cores from several of these landforms recovered stiff, massive diamictons containing reworked shells that are interpreted as subglacial tills. Cores from the eastern Porcupine Bank recovered laminated muds with cold-water glacimarine foraminifera, in some cases overlying till. Collectively the geophysical and sedimentary data imply the presence of grounded ice across the northern Porcupine Bank and thus much further west on the Irish margin than has previously been considered. This ice underwent retreat in a glacimarine setting. The large 'Olex Moraine' on the western Irish shelf is thus interpreted as recessional feature. Work is currently underway to dates these features and to obtain a retreat chronology for this sector of the last British-Irish Ice Sheet.

  9. Meteoric 10Be as a tracer of subglacial processes and interglacial surface exposure in Greenland

    NASA Astrophysics Data System (ADS)

    Graly, Joseph A.; Corbett, Lee B.; Bierman, Paul R.; Lini, Andrea; Neumann, Thomas A.

    2018-07-01

    In order to test whether sediment emerging from presently glaciated areas of Greenland was exposed near or at Earth's surface during previous interglacial periods, we measured the rare isotope 10Be contained in grain coatings of sediment collected at five ice marginal sites. Such grain coatings contain meteoric 10Be (10Bemet), which forms in the atmosphere and is deposited onto Earth's surface. Samples include sediment entrained in ice, glaciofluvial sediment collected at the ice margin, and subglacial sediment extracted during hot water drilling in the ablation zone. Due to burial by ice, contemporary subglacial sediment could only have acquired substantial 10Bemet concentrations during periods in the past when the Greenland Ice Sheet was less extensive than present. The highest measured 10Bemet concentrations are comparable to those found in well-developed, long-exposed soils, suggesting subglacial preservation and glacial transport of sediment exposed during preglacial or interglacial periods. Ice-bound sediment has significantly higher 10Bemet concentrations than glaciofluvial sediment, suggesting that glaciofluvial processes are sufficiently erosive to remove tracers of previous interglacial exposures. Northern Greenland sites where ice and sediment are supplied from the ice sheet's central main dome have significantly higher 10Bemet concentrations than sites in southern Greenland, indicating greater preglacial or interglacial landscape preservation in central Greenland than in the south. Because southern Greenland has more frequent and spatially extensive periods of glacial retreat but nevertheless has less evidence of past subaerial exposure, we suggest that 10Bemet measurements in glacial sediment are primarily controlled by erosional efficiency rather than interglacial exposure length.

  10. Large-scale evolution of the central-east Greenland margin: New insights to the North Atlantic glaciation history

    NASA Astrophysics Data System (ADS)

    Pérez, Lara F.; Nielsen, Tove; Knutz, Paul C.; Kuijpers, Antoon; Damm, Volkmar

    2018-04-01

    The continental shelf of central-east Greenland is shaped by several glacially carved transverse troughs that form the oceanward extension of the major fjord systems. The evolution of these troughs through time, and their relation with the large-scale glaciation of the Northern Hemisphere, is poorly understood. In this study seismostratigraphic analyses have been carried out to determine the morphological and structural development of this important sector of the East Greenland glaciated margin. The age of major stratigraphic discontinuities has been constrained by a direct tie to ODP site 987 drilled in the Greenland Sea basin plain off Scoresby Sund fan system. The areal distribution and internal facies of the identified seismic units reveal the large-scale depositional pattern formed by ice-streams draining a major part of the central-east Greenland ice sheet. Initial sedimentation along the margin was, however, mainly controlled by tectonic processes related to the margin construction, continental uplift, and fluvial processes. From late Miocene to present, progradational and erosional patterns point to repeated glacial advances across the shelf. The evolution of depo-centres suggests that ice sheet advances over the continental shelf have occurred since late Miocene, about 2 Myr earlier than previously assumed. This cross-shelf glaciation is more pronounced during late Miocene and early Pliocene along Blosseville Kyst and around the Pliocene/Pleistocene boundary off Scoresby Sund; indicating a northward migration of the glacial advance. The two main periods of glaciation were separated by a major retreat of the ice sheet to an inland position during middle Pliocene. Mounded-wavy deposits interpreted as current-related deposits suggest the presence of changing along-slope current dynamics in concert with the development of the modern North Atlantic oceanographic pattern.

  11. Determining and Interpreting Detailed Ice Surface Elevation Changes of the Glaciers in Upernavik Isstrom, Northwest Greenland, 1985-2016

    NASA Astrophysics Data System (ADS)

    Wendler, Lindsay

    The several distinct glaciers of Upernavik Isstrom, which drain a portion of the northwest margin of the Greenland Ice Sheet (GrIS), exhibit variable thinning, retreat, and velocity behaviors, despite being in such close proximity, draining into the same fjord, and experiencing similar climatic conditions. The goal of this study was to reconstruct, in as much detail as possible, a 1985-2016 surface elevation change history for each Upernavik glacier. Surface elevation datasets used in these reconstructions included laser altimetry data collected by several NASA systems (ATM, LVIS, ICESat) and digital elevation models (DEMs) derived from various sources (1985 aerial photographs; ASTER, SPOT, and Worldview-1 and 2 satellite stereo imagery). The Surface Elevation Reconstruction and Change detection (SERAC) program was used to combine the data and correct the DEMs for use in final reconstructions. The spatiotemporal pattern of ice surface change was analyzed and compared with other data sets, such as bed elevation, SMB anomalies, runoff, as well as marginal retreat derived from satellite imagery corresponding to the ASTER DEMs, to investigate possible forcings that may have influenced the variable behavior of the glaciers. We detected rapid thinning on glaciers 1, 2, and 5 and determined the timing of these thinning events. Major findings included detection of rapid dynamic thinning of glacier 1 between 2005 and 2006, during a period of a stable calving front position. Continued thinning and speed-up led to a loss of contact with a pinning point causing a major retreat between 2007 and 2008. This sequence of events contradicts previously held hypotheses that major thinning was caused by reduced backstress when a long-lived floating tongue disintegrated. Also, our results show a period of large thinning on glacier 2 between 2010 and 2011, after the retreat of the front resulted in a loss of contact between the glacier and one of its flanking outcrops, suggesting that reduction of lateral drag might have contributed to the thinning. While this study reinforces that bed topography is a major factor in controlling outlet glacier dynamic thinning, it also highlights the importance of other factors, such as variations in calving rates and lateral drag. My study produced improved surface elevation change histories of the Upernavik glaciers that are the most detailed and accurate to date and will be important for future numerical modeling studies of outlet glacier dynamic processes.

  12. Submarine glacial landforms on the Bay of Fundy–northern Gulf of Maine continental shelf

    USGS Publications Warehouse

    Todd, B.J.; Shaw, J.; Valentine, Page C.

    2016-01-01

    The Bay of Fundy–northern Gulf of Maine region surrounds the southern part of Nova Scotia, encompassing, from west to east, the Bay of Fundy, Grand Manan Basin, German Bank, Browns Bank, Northeast Channel and northeastern Georges Bank (Fig. 1a, b). During the last glacial maximum (c. 24–20 14C ka BP), the SE margin of the Laurentide Ice Sheet (LIS) occupied the study area, the rest of the Gulf of Maine and the continental Scotian Shelf off Atlantic Canada (see Dyke et al. 2002, fig. 1; Shaw et al. 2006, fig. 8; Hundert & Piper 2008, fig. 16). Early mapping of the glaciated region on the Scotian Shelf using side-scan sonar imagery and seismic-reflection profiles revealed topographic features interpreted to be recessional moraines indicative of retreat of the LIS (King et al. 1972; King 1996). Subsequently, multibeam sonar seafloor mapping of local-scale glacial landforms on the inner Scotian Shelf off Halifax, Nova Scotia (Fig. 1b) provided further information on the dynamics of the advance and retreat of the ice sheet (Loncarevic et al.1994). Interpretation of seismic-reflection profiles across Georges Bank revealed that the surficial sediment is a veneer of glacial debris transported to Georges Bank by the LIS during the late Pleistocene from continental areas to the north (Shepard et al. 1934; Knott & Hoskins 1968; Schlee 1973; Twichell et al. 1987; Fader et al. 1988). Recent high-resolution multibeam sonar surveys of German Bank and the Bay of Fundy mapped a complex of ice-advance and ice-retreat features attributed to the activity of the LIS (Todd et al. 2007; Todd & Shaw 2012).

  13. A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes.

    PubMed

    Young, Duncan A; Wright, Andrew P; Roberts, Jason L; Warner, Roland C; Young, Neal W; Greenbaum, Jamin S; Schroeder, Dustin M; Holt, John W; Sugden, David E; Blankenship, Donald D; van Ommen, Tas D; Siegert, Martin J

    2011-06-02

    The first Cenozoic ice sheets initiated in Antarctica from the Gamburtsev Subglacial Mountains and other highlands as a result of rapid global cooling ∼34 million years ago. In the subsequent 20 million years, at a time of declining atmospheric carbon dioxide concentrations and an evolving Antarctic circumpolar current, sedimentary sequence interpretation and numerical modelling suggest that cyclical periods of ice-sheet expansion to the continental margin, followed by retreat to the subglacial highlands, occurred up to thirty times. These fluctuations were paced by orbital changes and were a major influence on global sea levels. Ice-sheet models show that the nature of such oscillations is critically dependent on the pattern and extent of Antarctic topographic lowlands. Here we show that the basal topography of the Aurora Subglacial Basin of East Antarctica, at present overlain by 2-4.5 km of ice, is characterized by a series of well-defined topographic channels within a mountain block landscape. The identification of this fjord landscape, based on new data from ice-penetrating radar, provides an improved understanding of the topography of the Aurora Subglacial Basin and its surroundings, and reveals a complex surface sculpted by a succession of ice-sheet configurations substantially different from today's. At different stages during its fluctuations, the edge of the East Antarctic Ice Sheet lay pinned along the margins of the Aurora Subglacial Basin, the upland boundaries of which are currently above sea level and the deepest parts of which are more than 1 km below sea level. Although the timing of the channel incision remains uncertain, our results suggest that the fjord landscape was carved by at least two iceflow regimes of different scales and directions, each of which would have over-deepened existing topographic depressions, reversing valley floor slopes.

  14. Effects of ice shelf basal melt variability on evolution of Thwaites Glacier

    NASA Astrophysics Data System (ADS)

    Hoffman, M. J.; Fyke, J. G.; Price, S. F.; Asay-Davis, X.; Perego, M.

    2017-12-01

    Theory, modeling, and observations indicate that marine ice sheets on a retrograde bed, including Thwaites Glacier, Antarctica, are only conditionally stable. Previous modeling studies have shown that rapid, unstable retreat can occur when steady ice-shelf basal melting causes the grounding line to retreat past restraining bedrock bumps. Here we explore the initiation and evolution of unstable retreat of Thwaites Glacier when the ice-shelf basal melt forcing includes temporal variability mimicking realistic climate variability. We use the three-dimensional, higher-order Model for Prediction Across Scales-Land Ice (MPASLI) model forced with an ice shelf basal melt parameterization derived from previous coupled ice sheet/ocean simulations. We add sinusoidal temporal variability to the melt parameterization that represents shoaling and deepening of Circumpolar Deep Water. We perform an ensemble of 250 year duration simulations with different values for the amplitude, period, and phase of the variability. Preliminary results suggest that, overall, variability leads to slower grounding line retreat and less mass loss than steady simulations. Short period (2 yr) variability leads to similar results as steady forcing, whereas decadal variability can result in up to one-third less mass loss. Differences in phase lead to a large range in mass loss/grounding line retreat, but it is always less than the steady forcing. The timing of ungrounding from each restraining bedrock bump, which is strongly affected by the melt variability, is the rate limiting factor, and variability-driven delays in ungrounding at each bump accumulate. Grounding line retreat in the regions between bedrock bumps is relatively unaffected by ice shelf melt variability. While the results are sensitive to the form of the melt parameterization and its variability, we conclude that decadal period ice shelf melt variability could potentially delay marine ice sheet instability by up to many decades. However, it does not alter the eventual mass loss and sea level rise at centennial scales. The potential differences are significant enough to highlight the need for further observations to constrain the amplitude and period of the modes of climate and ocean variability relevant to Antarctic ice shelf melting.

  15. Increased ocean-induced melting triggers glacier retreat in northwest and southeast Greenland

    NASA Astrophysics Data System (ADS)

    Wood, M.; Rignot, E. J.; Fenty, I. G.; Menemenlis, D.; Millan, R.; Morlighem, M.; Mouginot, J.

    2017-12-01

    Over the past 30 years, the tidewater glaciers of northwest, central west, and southeast Greenland have exhibited widespread retreat, yet we observe different behaviors from one glacier to the next, sometimes within the same fjord. This retreat has been synchronous with oceanic warming in Baffin Bay and the Irminger Sea. Here, we estimate the ocean-induced melt rate of marine-terminating glaciers in these sectors of the Greenland Ice Sheet using simulations from the MITgcm ocean model for various water depths, ocean thermal forcing (TF) and subglacial water fluxes (SG). We use water depth from Ocean Melting Greenland (OMG) bathymetry and inverted airborne gravity, ocean thermal forcing from the Estimating the Circulation and Climate of the Ocean (Phase II, ECCO2) combined with CTD data from 2012 and 2015, and time series of subglacial water flux combining runoff production from the 1-km Regional Atmospheric Climate Model (RACMO2.3) with basal melt beneath land ice from the JPL/UCI ISSM model. Time series of melt rates are formed as a function of grounding line depth, SG flux and TF. We compare the results with the history of ice velocity and ice front retreat to quantify the impact of ice melt by the ocean over past three decades. We find that the timing of ice front retreat coincides with enhanced ocean-induced melt and that abrupt retreat is induced when additional ablation exceeds the magnitude of natural seasonal variations of the glacier front. Sverdrup Gletscher, Umiamako Isbrae, and the northern branch Puisortoq Gletscher in northwest, central west, and southwest Greenland, respectively, began multi-kilometer retreats coincident with ocean warming and enhanced melt. Limited retreat is observed where the bathymetry is shallow, on a prograde slope or glacier is stuck on a sill, e.g. Ussing Braeer in the northwest, Sermeq Avannarleq in central west, and Skinfaxe Gletscher in the southeast. These results illustrate the sensitivity of glaciers to changes in oceanic forcing and the modulating effect of bathymetry on their rate and magnitude of retreat. This work was carried out under a grant with NASA Cryosphere Program and for the EVS-2 Ocean Melting Greenland (OMG) mission.

  16. Rate of Mass Loss Across the Instability Threshold for Thwaites Glacier Determines Rate of Mass Loss for Entire Basin

    NASA Astrophysics Data System (ADS)

    Waibel, M. S.; Hulbe, C. L.; Jackson, C. S.; Martin, D. F.

    2018-01-01

    Rapid change now underway on Thwaites Glacier (TG) raises concern that a threshold for unstoppable grounding line retreat has been or is about to be crossed. We use a high-resolution ice sheet model to examine the mechanics of TG self-sustained retreat by nudging the grounding line just past the point of instability. We find that by modifying surface slope in the region of the grounding line, the rate of the forcing dictates the rate of retreat, even after the external forcing is removed. Grounding line retreats that begin faster proceed more rapidly because the shorter time interval for the grounding line to erode into the grounded ice sheet means relatively thicker ice and larger driving stress upstream of the boundary. Retreat is sensitive to short-duration re-advances associated with reduced external forcing where the bathymetry allows regrounding, even when an instability is invoked.

  17. Retreat of the Coalescent Greenland and Innuitian Ice Sheets from Nares Strait

    NASA Astrophysics Data System (ADS)

    Jennings, A. E.; Bailey, E.; Oliver, B.; Andrews, J. T.; Prins, M. A.; Troelstra, S.; Stoner, J. S.; Reilly, B. T.; Davies-Walczak, M.; Mix, A. C.

    2015-12-01

    Nares Strait, which forms one of the main connections between the Arctic Ocean and Baffin Bay was blocked by coalescent Innuitian and Greenland ice sheets during the LGM. Nares Strait opened ca. 9000 cal ka BP when the connection between the two ice sheets was finally severed. Our research focuses on the events and processes leading up to the opening of the strait and the response of the glacier and marine systems to establishment of the throughflow. The study at present involves new analysis of two sediment cores: 2001LSSL-163PC from Smith Sound, at the southern end of Nares Strait, and 2001LSSL-079PC from the mouth of Petermann Fjord at the northern end of the strait. X-radiography and core photographs were studied to establish basic lithofacies and stratigraphy. Foraminiferal faunas provide insight into changes in ice margin proximity, Atlantic Water advection and sea-ice conditions and are used to develop the radiocarbon chronologies. Quantitative X-ray diffraction analysis of bulk sediments aids in determining sediment provenance and the establishment of a north to south connection. Grain size analysis allows sediment processes and sedimentary environments, such as iceberg rafting, current deposition, and sub ice-shelf deposition to be evaluated. A radiocarbon date of >50 kyr was obtained from foraminifera in an overconsolidated, gray diamicton in core 163PC. The diamicton is overlain by a red deglacial sequence of barren laminated sediments followed by gray pebbly mud. Two radiocarbon dates submitted from near the base of the pebbly mud constrain the timing of ice retreat from Smith Sound. The chronology of core 079PC indicates that it captures the opening of Nares Strait, but 4 submitted radiocarbon dates will further constrain its chronology. The goal of the work on these two cores is to lay a framework for extensive marine fieldwork to study ice sheet-ocean interactions in the Petermann Glacier in late summer 2015.

  18. The Unexpected Re-Growth of Ice-Entombed Bryophytes in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    La Farge, C.

    2014-12-01

    The rapid retreat of glaciers and ice caps throughout the Canadian Arctic is exposing pristine vegetation preserved beneath cold-based ice. For the past half century this vegetation has been consistently reported as dead. This interpretation has been overturned by the successful re-growth of Little Ice Age (1550-1850 AD) bryophytes emerging from the Teardrop Glacier, Sverdrup Pass, Ellesmere Island (79° N) collected in 2009. Some populations showed regeneration in the field and lab experiments confirmed their capacity to regrow. The species richness of these subglacial populations is exceptional, comprising >62 species that represent 44% of the extant bryophyte flora of Sverdrup Pass. Cold-based glaciers are known to provide critical habitats for a variety of microbiota (i.e., fungi, algae, cyanobacteria, bacteria and viruses) in high latitude ecosystems. The regeneration of Little Ice Age bryophytes fundamentally expands the concept of biological refugia to land plants that was previously restricted to survival above and beyond glacial margins. Given this novel understanding of subglacial ecosystems, fieldwork is now being extended southward to plateau ice caps on Baffin Island, Nunavut, where ice retreat is exposing subglacial populations of greater antiquity (thousands to tens of thousands of radiocarbon years before present). Bryophytes by nature are totipotent (stem cell equivalency) and poikilohydric (desiccation tolerance), which facilitate their unique adaptation to extreme environments. Continuity of the Arctic bryophyte flora extends back through the Holocene to the late Tertiary [Beaufort Fm, 2-5 Ma], when the majority of taxa were the same, based on records spanning the archipelago from Ellesmere to Banks Island. This record contrasts with that of vascular plants, which have had a number of extinctions, necessitating recolonization of arctic populations from outside the region. The biological significance of a stable bryophyte element highlights their capacity, resilience and persistence throughout arctic climate fluctuations, suggesting they - like those entombed during the Little Ice Age - have survived glaciation in situ, frozen in time.

  19. Meltwater drainage beneath ice sheets: What can we learn from uniting observations of paleo- and contemporary subglacial hydrology?

    NASA Astrophysics Data System (ADS)

    Simkins, L. M.; Carter, S. P.; Greenwood, S. L.; Schroeder, D. M.

    2017-12-01

    Understanding meltwater at the base of ice sheets is critical for predicting ice flow and subglacial sediment deformation. Whereas much progress has been made with observing contemporary systems, these efforts have been limited by the short temporal scales of remote sensing data, the restricted spatial coverage of radar sounding data, and the logistical challenges of direct access. Geophysical and sedimentological data from deglaciated continental shelves reveal broad spatial and temporal perspectives of subglacial hydrology, that complement observations of contemporary systems. Massive bedrock channels, such as those on the sediment-scoured inner continental shelf of the Amundsen Sea and the western Antarctic Peninsula, are up to hundreds of meters deep, which indicate either catastrophic drainage events or slower channel incision over numerous glaciations or sub-bank full drainage events. The presence of these deep channels has implications for further ice loss as they may provide conduits today for warm water incursion into sub-ice shelf cavities. Sediment-based subglacial channels, widespread in the northern hemisphere terrestrial domain and increasingly detected on both Arctic and Antarctic marine margins, help characterize more ephemeral drainage systems active during ice sheet retreat. Importantly, some observed sediment-based channels are connected to upstream subglacial lakes and terminate at paleo-grounding lines. From these records of paleo-subglacial hydrology, we extract the relative timing of meltwater drainage, estimate water fluxes, and contemplate the sources and ultimate fate of basal meltwater, refining predictive models for modern systems. These insights provided by geological data fill a gap in knowledge regarding spatial and temporal dynamics of subglacial hydrology and offer hindsight into meltwater drainage influence/association with ice flow and retreat behavior. The union of information gathered from paleo- and contemporary subglacial hydrology strengthens our understanding of the nature of meltwater drainage beneath ice sheets and informs better theory and numerical models.

  20. Sea-ice induced growth decline in Arctic shrubs.

    PubMed

    Forchhammer, Mads

    2017-08-01

    Measures of increased tundra plant productivity have been associated with the accelerating retreat of the Arctic sea-ice. Emerging studies document opposite effects, advocating for a more complex relationship between the shrinking sea-ice and terrestrial plant productivity. I introduce an autoregressive plant growth model integrating effects of biological and climatic conditions for analysing individual ring-width growth time series. Using 128 specimens of Salix arctica , S. glauca and Betula nana sampled across Greenland to Svalbard, an overall negative effect of the retreating June sea-ice extent was found on the annual growth. The negative effect of the retreating June sea-ice was observed for younger individuals with large annual growth allocations and with little or no trade-off between previous and current year's growth. © 2017 The Author(s).

  1. Antarctic grounding-line migration

    NASA Astrophysics Data System (ADS)

    Slater, T.; Konrad, H.; Shepherd, A.; Gilbert, L.; Hogg, A.; McMillan, M.; Muir, A. S.

    2017-12-01

    Knowledge of grounding-line position is critical for quantifying ice discharge into the ocean, as a boundary condition for numerical models of ice flow, and as an indicator of ice sheet stability. Although geological investigations have documented extensive grounding-line retreat since the period of the Last Glacial Maximum, observations of grounding line migration during the satellite era are restricted to a handful of locations. We combine satellite altimeter observations of ice-elevation change and airborne measurements of ice geometry to track movement of the Antarctic Ice Sheet grounding line. Based on these data, we estimate that 22%, 3%, and 10% of the West Antarctic, East Antarctic, and Antarctic Peninsula ice sheet grounding lines are retreating at rates faster than the typical pace since the Last Glacial Maximum, and that the continent loses over 200 km2 of grounded-ice area per year. Although by far the fastest rates of retreat occurred in the Amundsen Sea Sector, the Pine Island Glacier grounding line has stabilized - likely as a consequence of abated ocean forcing during the survey period.

  2. Ice sheet systems and sea level change.

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.

    2015-12-01

    Modern views of ice sheets provided by satellites, airborne surveys, in situ data and paleoclimate records while transformative of glaciology have not fundamentally changed concerns about ice sheet stability and collapse that emerged in the 1970's. Motivated by the desire to learn more about ice sheets using new technologies, we stumbled on an unexplored field of science and witnessed surprising changes before realizing that most were coming too fast, soon and large. Ice sheets are integrant part of the Earth system; they interact vigorously with the atmosphere and the oceans, yet most of this interaction is not part of current global climate models. Since we have never witnessed the collapse of a marine ice sheet, observations and exploration remain critical sentinels. At present, these observations suggest that Antarctica and Greenland have been launched into a path of multi-meter sea level rise caused by rapid climate warming. While the current loss of ice sheet mass to the ocean remains a trickle, every mm of sea level change will take centuries of climate reversal to get back, several major marine-terminating sectors have been pushed out of equilibrium, and ice shelves are irremediably being lost. As glaciers retreat from their salty, warm, oceanic margins, they will melt away and retreat slower, but concerns remain about sea level change from vastly marine-based sectors: 2-m sea level equivalent in Greenland and 23-m in Antarctica. Significant changes affect 2/4 marine-based sectors in Greenland - Jakobshavn Isb. and the northeast stream - with Petermann Gl. not far behind. Major changes have affected the Amundsen Sea sector of West Antarctica since the 1980s. Smaller yet significant changes affect the marine-based Wilkes Land sector of East Antarctica, a reminder that not all marine-based ice is in West Antarctica. Major advances in reducing uncertainties in sea level projections will require massive, interdisciplinary efforts that are not currently in place but are getting there. Projection scenarios are overwhelmingly conservative, pushed up by observations, awaiting more detailed knowledge of ocean circulation, winds, ice-ocean interaction, and mechanics of rapid ice fracture, not to mention the mere definition of static boundaries (ice thickness and sea floor bathymetry).

  3. Preservation of Midlatitude Ice Sheets on Mars

    NASA Astrophysics Data System (ADS)

    Bramson, A. M.; Byrne, S.; Bapst, J.

    2017-11-01

    Excess ice with a minimum age of tens of millions of years is widespread in Arcadia Planitia on Mars, and a similar deposit has been found in Utopia Planitia. The conditions that led to the formation and preservation of these midlatitude ice sheets hold clues to past climate and subsurface structure on Mars. We simulate the thermal stability and retreat of buried excess ice sheets over 21 Myr of Martian orbital solutions and find that the ice sheets can be orders of magnitude older than the obliquity cycles that are typically thought to drive midlatitude ice deposition and sublimation. Retreat of this ice in the last 4 Myr could have contributed 6% of the volume of the north polar layered deposits (NPLD) and more than 10% if the NPLD are older than 4 Myr. Matching the measured dielectric constants of the Arcadia and Utopia Planitia deposits requires ice porosities of 25-35%. We model geothermally driven vapor migration through porous ice under Martian temperatures and find that Martian firn may be able to maintain porosity for timescales longer than we predict for retreat of the ice.

  4. 2017 Rapid Retreat Of Thwaites Glacier

    NASA Astrophysics Data System (ADS)

    Milillo, P.; Rignot, E. J.; Mouginot, J.; Scheuchl, B.

    2017-12-01

    We employ data from the second generation of SAR systems e.g. the Italian COSMO- SkyMed (CSK) constellation and the German TanDEM-X (TDX) formation to monitor grounding line retreat using short repeat-time interferometry and accurate InSAR DEM on Thwaites glacier in the Amundsen Sea Embayment (ASE), West Antarctica. The ASE is a marine-based ice sheet with a retrograde bed containing enough ice to raise global sea level by 120 cm. Several studies have inferred the mechanical properties of portions of ASE using observationally constrained numerical models, but these studies offer only temporal snapshots of basal mechanics owing to a dearth of observational time series. Prior attempts of grounding lines mapping have been limited because few space-borne SAR missions offer the short-term repeat pass capability required to map the differential vertical displacement of floating ice at tidal frequencies with sufficient detail to resolve grounding line boundaries in areas of fast ice deformation. Using 1-day CSK repeat pass data and TDX DEMs, we collected frequent, high-resolution grounding line measurements of Thwaites glaciers spanning 2015-2017. We compare the results with ERS data spanning 1996-2011, and Sentinel-1a 2014-2015 data. Between 2011 and 2017 we observe a maximum retreat of 5-7 km across the main Thwaites glacier tongue and Thwaites Eastern ice shelf (TEIS) corresponding to an increased retreat rate of 0.5 km/yr. Grounding line retreat has been fueled by the enhanced intrusion of warm, salty, subsurface ocean water of circumpolar deep water origin onto the continental shelf, beneath the floating ice shelf, to reach the glacier grounding zone and melt it from below at rates varying from 50 to 150 m/yr. The retreat rate varies depending on the magnitude of ice melt by the ocean, the rate of ice thinning and the shape of the glacier surface and bed topography.

  5. A 70-year record of outlet glacier retreat in northern Greenland

    NASA Astrophysics Data System (ADS)

    Hill, Emily; Carr, Rachel; Stokes, Chris; Gudmundsson, Hilmar

    2017-04-01

    Over the past two decades, the Greenland Ice Sheet (GrIS) has undergone accelerated mass loss increasing its contribution to sea level rise. This is partly attributed to increased mass loss from dynamic marine-terminating outlet glaciers. Despite marine-terminating outlet glaciers in northern Greenland draining 40% of the ice sheet by area, they are comparatively less well-studied than other regions of the ice sheet (e.g. central west or south-east). This region could be susceptible to marine-ice sheet instability due to large proportions of the bedrock rested below sea level and is also unique in the presence of large floating ice tongues. Here, we use a range of satellite imagery sources, accompanied by historical maps, to examine multi-decadal front position changes at 21 outlet glaciers in northern Greenland between 1948 and 2016. We accompany these terminus changes, with annual records of ice velocity, climate-ocean forcing data, and glacier-specific factors (e.g. fjord-width and basal topography) to understand the dominant forcing on glacier dynamics in the region. Over the last 70 years, there has been a clear pattern of glacier retreat in northern Greenland. This is particularly notable during the last two decades, where 62% of our study glaciers showed accelerated retreat. This was most notable at Humboldt, Tracy, Hagen Brae, C. H. Ostenfeld and Petermann Glaciers, and in the case of the latter three glaciers, this involved substantial retreat of their floating ice tongues (> 10 km). Alongside retreat, several study glaciers underwent simultaneous velocity increases. However, the collapse of floating ice tongues did not always result in increased velocity. Similar to other regions of the ice sheet, recent glacier retreat in the northern regions of the Greenland Ice Sheet could be linked to climatic-oceanic forcing, but at this stage this remains largely unknown. This response to external forcing is further complicated by the presence of glacier-surging recorded at several of our study glaciers. As northern Greenland is predicted to undergo greater warming due to Arctic amplification during the 21st century, we conclude that the region could become an increasingly important source of mass loss.

  6. The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.

    PubMed

    Notz, Dirk

    2009-12-08

    We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.

  7. Mind the Gap: Reconstructing the timing and consequences of the blockage of the Humber Gap by the last British-Irish Ice Sheet

    NASA Astrophysics Data System (ADS)

    Bateman, Mark; Evans, David; Roberts, David; Ely, Jeremy; Medialdea, Alicia; Clark, Chris

    2017-04-01

    The Eastern England terrestrial glacial sequences are critical to the spatial and temporal reconstruction of the last British-Irish Ice sheet (BIIS). Understanding the Humber Gap area is key as its blockage by ice created the extensive proglacial lakes. Here we use the glacial geomorphology and luminescence based chronologies from the Humber Gap region to establish the extent and thickness of the North Sea Lobe (NSL) of the BIIS. From this we establish the initial maximal ice advance occurred regionally at 21.2 ka. The NSL retreated off-shore 18 ka (Stage 2). Punctuated in stages in the south of the region whilst in the north retreat was initially rapid before a series of near synchronous ice-advances occurred at 16.8 ka (Stage 3). Full withdrawal of BIIS ice occurred prior to 15 ka (Stage 4). Geomorphic mapping and stratigraphy confirms the existence of a proto Lake Humber in Stage 1 which persisted to Stage 3 expanding eastward as the NSL ice retreated. It appears wherever during the advance and retreat of the NSL ice encountered low topography and reverse gradients proglacial lakes commonly formed. These lakes through ice draw down and associated streaming/surging may in part explain the dynamism of the parts of the NSL. The above record of ice-dammed lakes provides an analogue for now off-shore parts of the BIIS where it advanced as number of asynchronous lowland lobes.

  8. Deglacial to Holocene history of ice-sheet retreat and bottom current strength on the western Barents Sea shelf

    NASA Astrophysics Data System (ADS)

    Lantzsch, Hendrik; Hanebuth, Till J. J.; Horry, Jan; Grave, Marina; Rebesco, Michele; Schwenk, Tilmann

    2017-10-01

    High-resolution sediment echosounder data combined with radiocarbon-dated sediment cores allowed us to reconstruct the Late Quaternary stratigraphic architecture of the Kveithola Trough and surrounding Spitsbergenbanken. The deposits display the successive deglacial retreat of the Svalbard-Barents Sea Ice Sheet. Basal subglacial till indicates that the grounded ice sheet covered both bank and trough during the Late Weichselian. A glaciomarine blanket inside the trough coinciding with laminated plumites on the bank formed during the initial ice-melting phase from at least 16.1 to 13.5 cal ka BP in close proximity to the ice margin. After the establishment of open-marine conditions at around 13.5 cal ka BP, a sediment drift developed in the confined setting of the Kveithola Trough, contemporary with crudely laminated mud, an overlying lag deposit, and modern bioclastic-rich sand on Spitsbergenbanken. The Kveithola Drift shows a remarkable grain-size coarsening from the moat towards the southern flank of the trough. This trend contradicts the concept of a separated drift (which would imply coarser grain sizes in proximity of the moat) and indicates that the southern bank is the main sediment source for the coarse material building up the Kveithola Drift. This depocenter represents, therefore, a yet undescribed combination of off-bank wedge and confined drift. Although the deposits inside Kveithola Trough and on Spitsbergenbanken display different depocenter geometries, time-equivalent grain-size changes imply a region-wide sediment-dynamic connection. We thus relate a phase of coarsest sediment supply (8.8-6.3 cal ka BP) to an increase in bottom current strength, which might be related to a stronger Atlantic Water inflow from the Southeast across the bank leading to winnowing and off-bank export of sandy sediments.

  9. Interactions between Antarctic sea ice and large-scale atmospheric modes in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Schroeter, Serena; Hobbs, Will; Bindoff, Nathaniel L.

    2017-03-01

    The response of Antarctic sea ice to large-scale patterns of atmospheric variability varies according to sea ice sector and season. In this study, interannual atmosphere-sea ice interactions were explored using observations and reanalysis data, and compared with simulated interactions by models in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Simulated relationships between atmospheric variability and sea ice variability generally reproduced the observed relationships, though more closely during the season of sea ice advance than the season of sea ice retreat. Atmospheric influence on sea ice is known to be strongest during advance, and it appears that models are able to capture the dominance of the atmosphere during advance. Simulations of ocean-atmosphere-sea ice interactions during retreat, however, require further investigation. A large proportion of model ensemble members overestimated the relative importance of the Southern Annular Mode (SAM) compared with other modes of high southern latitude climate, while the influence of tropical forcing was underestimated. This result emerged particularly strongly during the season of sea ice retreat. The zonal patterns of the SAM in many models and its exaggerated influence on sea ice overwhelm the comparatively underestimated meridional influence, suggesting that simulated sea ice variability would become more zonally symmetric as a result. Across the seasons of sea ice advance and retreat, three of the five sectors did not reveal a strong relationship with a pattern of large-scale atmospheric variability in one or both seasons, indicating that sea ice in these sectors may be influenced more strongly by atmospheric variability unexplained by the major atmospheric modes, or by heat exchange in the ocean.

  10. The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss

    PubMed Central

    Notz, Dirk

    2009-01-01

    We discuss the existence of cryospheric “tipping points” in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice–albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet. PMID:19884496

  11. Determining and Interpreting Detailed Ice Surface Elevation Changes of the Glaciers in Upernavik Isstrøm, Northwest Greenland, 1985-2016

    NASA Astrophysics Data System (ADS)

    Wendler, L.; Csatho, B. M.; Schenk, A. F.

    2017-12-01

    The several distinct glaciers of Upernavik Isstrøm in NW Greenland exhibit variable thinning, retreat, and velocity behaviors, despite being in close proximity, draining into the same fjord, and experiencing similar climatic conditions. This study reconstructed the 1985-2016 surface elevation change history for each Upernavik glacier. The data sets used included altimetry data collected by NASA's ATM, LVIS, and ICESat systems and digital elevation models (DEMs) derived from 1985 aerial photographs; ASTER, SPOT, and Worldview-1 and 2 satellite stereo imagery. The Surface Elevation Reconstruction and Change detection (SERAC) program was used to combine the data and correct the DEMs for fusing with the altimetry data. The spatiotemporal pattern of ice surface change was partitioned into changes related to surface processes and ice dynamics. The resulting ice thickness change time series were compared to other data sets, such as bed elevation, SMB anomalies, runoff, as well as marginal retreat derived from satellite imagery corresponding to the ASTER DEMs, to investigate possible forcings causing the variable behavior of the glaciers. Major findings include detection of rapid dynamic thinning of glacier 1 between 2005 and 2006, during a period of a stable calving front position. Continuing thinning and speed-up led to a loss of contact with a pinning point causing a major retreat between 2007 and 2008. This sequence of events contradicts previously held hypotheses that major thinning was caused by reduced backstress when a long-lived floating tongue disintegrated. Also, our results show a period of large thinning on glacier 2 between 2010 and 2011, after the retreat of the front resulted in a loss of contact between the glacier and one of its flanking outcrops suggesting that reduction of lateral drag might have contributed to the thinning. While the study reinforces that bed topography is a major factor in controlling outlet glacier dynamic thinning, it also highlights the importance of other factors, such as variations in calving rates and lateral drag. The study produced improved surface elevation change histories of the Upernavik glaciers that are the most detailed and accurate to date and will be important for future numerical modeling studies of outlet glacier dynamic processes.

  12. Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss

    PubMed Central

    Gomez, Natalya; Pollard, David; Holland, David

    2015-01-01

    The stability of marine sectors of the Antarctic Ice Sheet (AIS) in a warming climate has been identified as the largest source of uncertainty in projections of future sea-level rise. Sea-level fall near the grounding line of a retreating marine ice sheet has a stabilizing influence on the ice sheets, and previous studies have established the importance of this feedback on ice age AIS evolution. Here we use a coupled ice sheet–sea-level model to investigate the impact of the feedback mechanism on future AIS retreat over centennial and millennial timescales for a range of emission scenarios. We show that the combination of bedrock uplift and sea-surface drop associated with ice-sheet retreat significantly reduces AIS mass loss relative to a simulation without these effects included. Sensitivity analyses show that the stabilization tends to be greatest for lower emission scenarios and Earth models characterized by a thin elastic lithosphere and low-viscosity upper mantle, as is the case for West Antarctica. PMID:26554381

  13. Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica.

    PubMed

    Quartino, María Liliana; Deregibus, Dolores; Campana, Gabriela Laura; Latorre, Gustavo Edgar Juan; Momo, Fernando Roberto

    2013-01-01

    Climate warming has been related to glacial retreat along the Western Antarctic Peninsula. Over the last years, a visible melting of Fourcade Glacier (Potter Cove, South Shetland Islands) has exposed newly ice-free hard bottom areas available for benthic colonization. However, ice melting produces a reduction of light penetration due to an increase of sediment input and higher ice impact. Seventeen years ago, the coastal sites close to the glacier cliffs were devoid of macroalgae. Are the newly ice-free areas suitable for macroalgal colonization? To tackle this question, underwater video transects were performed at six newly ice-free areas with different degree of glacial influence. Macroalgae were found in all sites, even in close proximity to the retreating glacier. We can show that: 1. The complexity of the macroalgal community is positively correlated to the elapsed time from the ice retreat, 2. Algae development depends on the optical conditions and the sediment input in the water column; some species are limited by light availability, 3. Macroalgal colonization is negatively affected by the ice disturbance, 4. The colonization is determined by the size and type of substrate and by the slope of the bottom. As macroalgae are probably one of the main energy sources for the benthos, an expansion of the macroalgal distribution can be expected to affect the matter and energy fluxes in Potter Cove ecosystem.

  14. Investigation of Controls on Ice Dynamics in Northeast Greenland from Ice-Thickness Change Record Using Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Larour, E. Y.; Schenk, A. F.; Schlegel, N.; Duncan, K.

    2015-12-01

    We present a new, complete ice thickness change reconstruction of the NE sector of the Greenland Ice Sheet for 1978-2014, partitioned into changes due to surface processes and ice dynamics. Elevation changes are computed from all available stereoscopic DEMs, and laser altimetry data (ICESat, ATM, LVIS). Surface Mass Balance and firn-compaction estimates are from RACMO2.3. Originating nearly at the divide of the Greenland Ice Sheet (GrIS), the dynamically active North East Ice Stream (NEGIS) is capable of rapidly transmitting ice-marginal forcing far inland. Thus, NEGIS provides a possible mechanism for a rapid drawdown of ice from the ice sheet interior as marginal warming, thinning and retreat continues. Our altimetry record shows accelerating dynamic thinning of Zachariæ Isstrom, initially limited to the deepest part of the fjord near the calving front (1978-2000) and then extending at least 75 km inland. At the same time, changes over the Nioghalvfjerdsfjorden (N79) Glacier are negligible. We also detect localized large dynamic changes at higher elevations on the ice sheet. These thickness changes, often occurring at the onset of fast flow, could indicate rapid variations of basal lubrication due to rerouting of subglacial drainage. We investigate the possible causes of the observed spatiotemporal pattern of ice sheet elevation changes using the Ice Sheet System Model (ISSM). This work build on our previous studies examining the sensitivity of ice flow within the Northeast Greenland Ice Stream (NEGIS) to key fields, including ice viscosity, basal drag. We assimilate the new altimetry record into ISSM to improve the reconstruction of basal friction and ice viscosity. Finally, airborne geophysical (gravity, magnetic) and ice-penetrating radar data is examined to identify the potential geologic controls on the ice thickness change pattern. Our study provides the first comprehensive reconstruction of ice thickness changes for the entire NEGIS drainage basin during the last 40 years. Through the use of ISSM, we examine possible mechanism explaining the observed changes. The improved understanding gained through this research will contribute better projections of future ice loss from this most vulnerable region of the GrIS.

  15. Mechanisms that Amplify, Attenuate and Deviate Glacier Response to Climate Change in Central East Greenland. (Invited)

    NASA Astrophysics Data System (ADS)

    Jiskoot, H.

    2013-12-01

    A multidecadal review of glacier fluctuations and case-studies of glacier processes and environments in central East Greenland will be used to demonstrate Mechanisms that Amplify, Attenuate and Deviate glacier response to climate forcings (MAAD). The different spatial and temporal scales at which MAAD affect mass balance and ice flow may complicate interpretation and longterm extrapolation of glacier response to climate change. A framework of MAAD characterisation and best-practice for interpreting climate signals while taking into account MAAD will be proposed. Glaciers in the Watkins Bjerge, Geikie Plateau and Stauning Alps regions of central East Greenland (68°-72°N) contain about 50000 km2 of glacierized area peripheral to the Greenland Ice Sheet. Within the region, large north-south and coast-inland climatic gradients, as well as complicated topography and glacier dynamics, result in discrepant glacier behaviour. Average retreat rates have doubled from about 2 to 4 km2 a-1 between the late 20th and early 21st centuries. However, glaciers terminating along the Atlantic coast display two times the retreat, thinning, and acceleration rates compared to glaciers terminating in inland fjords or on land. Despite similar climatic forcing variable glacier behaviour is apparent: individual glacier length change ranges from +57 m a-1 to -428 m a-1, though most retreat -20 to -100 m a-1. Interacting dynamic, mass balance and glacio-morphological mechanisms can amplify, attenuate or deviate glacier response (MAAD) to climate change, thus complicating the climatological interpretation of glacier length, area, and thickness changes. East Greenland MAAD include a range of common positive and negative feedback mechanisms in surface mass balance and terminus and subglacial boundary conditions affecting ice flow, but also mechanisms that have longterm or delayed effects. Certain MAAD may affect glacier change interpretation on multiple timescales: e.g. surging glaciers do not only pose problems for the direct interpretation of climate change from length and volume changes due to their dynamically-driven advance and retreat regimes, but also for the reconstruction of LIA extents from trimlines and moraines, and the reconstruction of surface mass balance due to crevasses, potholes or debris-cover. This presentation will address a range of MAAD, including thermal regime transitions; ocean influences on tidewater-terminating glaciers; glacier fragmentation and tributary-trunk interaction; glacier surging and tidewater behaviour; seasonal variations; glacier hypsometry and morphology; terrain and substrate; melt-albedo and melt-ice flow feedbacks; and ice marginal lakes.

  16. Evidence for a dynamic East Antarctic ice sheet during the mid-Miocene climate transition

    NASA Astrophysics Data System (ADS)

    Pierce, Elizabeth L.; van de Flierdt, Tina; Williams, Trevor; Hemming, Sidney R.; Cook, Carys P.; Passchier, Sandra

    2017-11-01

    The East Antarctic ice sheet underwent a major expansion during the Mid-Miocene Climate Transition, around 14 Ma, lowering sea level by ∼60 m. However, direct or indirect evidence of where changes in the ice sheet occurred is limited. Here we present new insights on timing and locations of ice sheet change from two drill sites offshore East Antarctica. IODP Site U1356, Wilkes Land, and ODP Site 1165, Prydz Bay are located adjacent to two major ice drainage areas, the Wilkes Subglacial Basin and the Lambert Graben. Ice-rafted detritus (IRD), including dropstones, was deposited in concentrations far exceeding those known in the rest of the Miocene succession at both sites between 14.1 and 13.8 Ma, indicating that large amounts of IRD-bearing icebergs were calved from independent drainage basins during this relatively short interval. At Site U1356, the IRD was delivered in distinct pulses, suggesting that the overall ice advance was punctuated by short periods of ice retreat in the Wilkes Subglacial Basin. Provenance analysis of the mid-Miocene IRD and fine-grained sediments provides additional insights on the movement of the ice margin and subglacial geology. At Site U1356, the dominant 40Ar/39Ar thermochronological age of the ice-rafted hornblende grains is 1400-1550 Ma, differing from the majority of recent IRD in the area, from which we infer an inland source area of this thermochronological age extending along the eastern part of the Adélie Craton, which forms the western side of the Wilkes Subglacial Basin. Neodymium isotopic compositions from the terrigenous fine fraction at Site U1356 imply that the ice margin periodically expanded from high ground well into the Wilkes Subglacial Basin during periods of MMCT ice growth. At Site 1165, MMCT pebble-sized IRD are sourced from both the local Lambert Graben and the distant Aurora Subglacial Basin drainage area. Together, the occurrence and provenance of the IRD and glacially-eroded sediment at these two marine drill sites proximal to the Antarctic continent provide a previously undocumented record of dynamic ice margin change during the 14.1-13.8 Ma interval in three major East Antarctic drainage basins.

  17. Modeling Wave-Ice Interactions in the Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Orzech, Mark; Shi, Fengyan; Bateman, Sam; Veeramony, Jay; Calantoni, Joe

    2015-04-01

    The small-scale (O(m)) interactions between waves and ice floes in the marginal ice zone (MIZ) are investigated with a coupled model system. Waves are simulated with the non-hydrostatic finite-volume model NHWAVE (Ma et al., 2012) and ice floes are represented as bonded collections of smaller particles with the discrete element system LIGGGHTS (Kloss et al., 2012). The physics of fluid and ice are recreated as authentically as possible, to allow the coupled system to supplement and/or substitute for more costly and demanding field experiments. The presentation will first describe the development and validation of the coupled system, then discuss the results of a series of virtual experiments in which ice floe and wave characteristics are varied to examine their effects on energy dissipation, MIZ floe size distribution, and ice pack retreat rates. Although Wadhams et al. (1986) suggest that only a small portion (roughly 10%) of wave energy entering the MIZ is reflected, dissipation mechanisms for the remaining energy have yet to be delineated or measured. The virtual experiments are designed to focus on specific properties and processes - such as floe size and shape, collision and fracturing events, and variations in wave climate - and measure their relative roles the transfer of energy and momentum from waves to ice. Questions to be examined include: How is energy dissipated by ice floe collisions, fracturing, and drag, and how significant is the wave attenuation associated with each process? Do specific wave/floe length scale ratios cause greater wave attenuation? How does ice material strength affect the rate of wave energy loss? The coupled system will ultimately be used to test and improve upon wave-ice parameterizations for large-scale climate models. References: >Kloss, C., C. Goniva, A. Hager, S. Amberger, and S. Pirker (2012). Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics 12(2/3), 140-152. >Ma, G., F. Shi, and J.T. Kirby (2012). Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling 43-44, 22-35. >Wadhams P., V. Squire, J.A. Ewing, and R.W. Pascal (1986). The effect of the marginal ice zone on the directional wave spectrum of the ocean. J. Phys. Oceanog., 16(2), 358-376.

  18. The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011

    NASA Astrophysics Data System (ADS)

    Ogi, M.; Wallace, J. M.

    2012-12-01

    Masayo Ogi 1 and John M. Wallace 2 masayo.ogi@jamstec.go.jp wallace@atmos.washington.edu 1Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan 2 Department of Atmospheric Sciences, University of Washington, Seattle, Washington The seasonal evolutions of Arctic sea ice extent (SIE) during the summers of 2010 and 2011 are contrasted with that in 2007. The June SIE in 2010 was lower than that in 2007 and was the lowest for that calendar month in the 32-year (1979-2010) record. The September SIE in 2010 would have set a new record low had it not been for the fact that the ice retreated more slowly during the summer months in that year than it did in 2007. Hence from early July onward, the SIE in 2010 remained at levels above those observed in 2007. The SIE minimum in September 2010 proved to be the third lowest on record, eclipsed by values in both 2007 and 2008. In spring and summer of 2011, the Arctic SIE was as low as it was in 2007, but the SIE in September 2011 did not reach record low levels. The SIE minimum in 2011 proved to be the second lowest on record for the period of 1979-2011. Summertime atmospheric conditions play an important role in controlling the variations in Arctic SIE. In a previous study based on statistical analysis of data collected prior to 2007, we showed that anticyclonic summertime circulation anomalies over the Arctic Ocean during the summer months favor low September SIE. We also found that the record-low ice summer year 2007 was characterized by a strong anticyclonic circulation anomaly, accompanied by an Ekman drift of ice out of the marginal seas toward the central Arctic and eventually toward the Fram Strait, as evidenced by the tracks of drifting buoys. Here we assess the extent to which year-to-year differences in summer winds over the Arctic might have contributed to the differing rates of retreat of ice during the summers of 2007, 2010, and 2011. Our results show that the May-June (MJ) pattern in 2010 is characterized by strong anticyclonic wind anomalies over the Arctic Ocean. The corresponding pattern for July-August-September (JAS) is dominated by a cyclonic gyre centered over the Kara Sea. The corresponding patterns for 2007 are weak in MJ and strongly anticyclonic in JAS. The JJA pattern in 2011 is characterized by anticyclonic wind anomalies over the Arctic directed toward the Fram Strait, whereas the September pattern exhibits wind anomalies directed away from the Fram Strait across the central Arctic Ocean toward the Chukchi Sea. The corresponding patterns for 2007 are strongly anticyclonic and directed toward the Fram Strait in both JJA and September. In the absence of the late season push by the winds, the ice did not retreat quite as far in 2011 as it did in 2007. We have shown evidence that low level winds over the Arctic play an important role in mediating the rate of retreat of sea ice during summer. Anomalous anticyclonic flow over the interior of the Arctic directed toward the Fram Strait favors rapid retreat and vice versa. We have argued that the relative rankings of the September SIE for the years 2007, 2010 and 2011 are largely attributable to the differing rates of decrease of SIE during these summers, which are a consequence of year-to-year differences in the seasonal evolution of summertime winds over the Arctic.

  19. Latest Pleistocene advance and collapse of the Matanuska - Knik glacier system, Anchorage Lowland, southern Alaska

    NASA Astrophysics Data System (ADS)

    Kopczynski, Sarah E.; Kelley, Samuel E.; Lowell, Thomas V.; Evenson, Edward B.; Applegate, Patrick J.

    2017-01-01

    At the end of the last ice age, glacier systems worldwide underwent dramatic retreat. Here, we document the advance and retreat of a glacier system with adjacent marine- and land-based components during the latter part of the Termination. We utilize three lines of evidence: lithologic provenance, geomorphic mapping, and radiocarbon ages derived from lake cores to reconstruct glacier extent and timing of advance and retreat within our study area centered at N 61.50°, W 149.50°, just north of Anchorage, Alaska. Two glaciers, sourced in the Talkeetna and Chugach Mountains, flowed down the Matanuska and Knik Valleys forming a coalesced lobe that advanced onto the Anchorage Lowlands and terminated at Elmendorf Moraine. We use the presence of lithologies unique to the Matanuska catchment in glacial drift to delineate the paleoflow lines and to estimate the suture line of the two glacier systems. The eastern side of the lobe, attributed to ice flow from the Knik Valley, was in contact with elevated marine waters within the Knik Arm fjord, and thus retreat was likely dominated by calving. Geomorphic evidence suggests the western side of the lobe, attributed to ice flow from Matanuska Valley, retreated due to stagnation. We constrain retreat of the combined Matanuska and Knik lobe with thirteen new radiocarbon ages, in addition to previously published radiocarbon ages, and with geomorphic evidence suggesting the retreat occurred in two phases. Retreat from the Elmendorf Moraine began between 16.8 and 16.4 ka BP. A second, faster retreat phase occurred later and was completed by 13.7 ka BP. With the 140 km of total retreat occurring over ∼3000 years or less. This pattern of glacial advance and retreats agrees well with the deglacial histories from the southern sectors of the Cordilleran Ice Sheet, as well as many other alpine glacier systems in the western U.S. and northern Alaska. This consistent behavior of glacier systems may indicate that climate oscillated over western North America early in deglaciation before it was recorded in other proxies such as ice cores. Furthermore, the period in which we note mountain glacier collapse in northwestern North America is synchronous with the worldwide glacial termination raising questions about intrahemispheric linkages.

  20. Phytoplankton in the Beaufort and Chukchi Seas: Distributions, Dynamics and Environmental Forcing

    NASA Technical Reports Server (NTRS)

    Wang, Jian; Cota, Glenn F.; Comiso, Josefino C.

    2005-01-01

    Time-series of remotely sensed distributions of phytoplankton, sea ice, surface temperature, albedo, and clouds were examined to evaluate the impact of the variability of environmental conditions and physical forcing on the phytoplankton distribution in the Beaufort and Chukchi Seas. Large-scale distributions of these parameters were studied for the first time using weekly and monthly composites from April 1998 through September 2002. The basic data set used in this study are phytoplankton pigment concentration derived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), ice concentration obtained from the Special Sensor Microwave Imager (SSM/I) and surface temperature, cloud cover, and albedo derived from the Advanced Very High Resolution Radiometer (AVHRR). Seasonal variations of the sea ice cover was observed to be the dominant environmental factor as the ice edge blooms followed the retreating marginal ice zones northward. Blooms were most prominent in the southwestern Chukchi Sea, and were especially persistent immediately north of the Bering Strait in nutrient- rich Anadyr water and in some fronts. Chlorophyll concentrations are shown to increase from a nominal value during onset of melt in April to a maximum value in mid-spring or summer depending on location. Large interannual variability of ice cover and phytoplankton distributions was observed with the year 1998 being uniquely associated with an early season occurrence of a massive bloom. This is postulated to be caused in part by a rapid response of phytoplankton to an early retreat of the sea ice cover in the Beaufort Sea region. Correlation analyses showed relatively high negative correlation between chlorophyll and ice concentration with the correlation being highest in May, the correlation coefficient being -0.45. 1998 was also the warmest among the five years globally and the sea ice cover was least extensive in the Beaufort-Khukchi Sea region, partly because of the 1997-98 El Nino. Strong correlations were noted between ice extent and surface temperature, the correlation coefficient being highest at - 0.79 in April, during the onset of the bloom period

  1. Appearance of De Geer moraines in southern and western Finland - Implications for reconstructing glacier retreat dynamics

    NASA Astrophysics Data System (ADS)

    Ojala, Antti E. K.

    2016-02-01

    LiDAR digital elevation models (DEMs) from southern and western Finland were investigated to map and discriminate features of De Geer moraines, sparser and more scattered end moraines, and larger end moraine features (i.e., ice-marginal complexes). The results indicate that the occurrence and distribution of De Geer moraines and scattered end moraine ridges in Finland are more widespread than previously suggested. This is probably attributed to the ease of detecting and mapping these features with high-resolution DEMs, indicating the efficiency of LiDAR applications in geological and geomorphological studies. The variable appearance and distribution of moraine ridges in Finland support previous interpretations that no single model is likely to be appropriate for the genesis of De Geer moraines at all localities and for all types of end moraines. De Geer moraine appearances and interdistances probably result from a combination of the general rapidity of ice-margin recession during deglaciation, the proglacial water depth in which they were formed, and local glacier dynamics related to climate and terrain topography. The correlation between the varved clay-based rate of deglaciation and interdistances of distinct and regularly spaced De Geer moraine ridges indicates that the rate of deglaciation is probably involved in the De Geer ridge-forming process, but more thorough comparisons are needed to understand the extent to which De Geer interdistances represent an annual rate of ice-margin decay and the rapidity of regional deglaciation.

  2. Rate of Mass Loss Across the Instability Threshold for Thwaites Glacier Determines Rate of Mass Loss for Entire Basin

    DOE PAGES

    Waibel, M. S.; Hulbe, C. L.; Jackson, C. S.; ...

    2018-01-16

    Rapid change now underway on Thwaites Glacier (TG) raises concern that a threshold for unstoppable grounding line retreat has been or is about to be crossed. We use a high-resolution ice sheet model to examine the mechanics of TG self-sustained retreat by nudging the grounding line just past the point of instability. We find that by modifying surface slope in the region of the grounding line, the rate of the forcing dictates the rate of retreat, even after the external forcing is removed. Grounding line retreats that begin faster proceed more rapidly because the shorter time interval for the groundingmore » line to erode into the grounded ice sheet means relatively thicker ice and larger driving stress upstream of the boundary. Retreat is sensitive to short-duration re-advances associated with reduced external forcing where the bathymetry allows regrounding, even when an instability is invoked.« less

  3. Rate of Mass Loss Across the Instability Threshold for Thwaites Glacier Determines Rate of Mass Loss for Entire Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waibel, M. S.; Hulbe, C. L.; Jackson, C. S.

    Rapid change now underway on Thwaites Glacier (TG) raises concern that a threshold for unstoppable grounding line retreat has been or is about to be crossed. We use a high-resolution ice sheet model to examine the mechanics of TG self-sustained retreat by nudging the grounding line just past the point of instability. We find that by modifying surface slope in the region of the grounding line, the rate of the forcing dictates the rate of retreat, even after the external forcing is removed. Grounding line retreats that begin faster proceed more rapidly because the shorter time interval for the groundingmore » line to erode into the grounded ice sheet means relatively thicker ice and larger driving stress upstream of the boundary. Retreat is sensitive to short-duration re-advances associated with reduced external forcing where the bathymetry allows regrounding, even when an instability is invoked.« less

  4. The lithostratigraphy of a marine kame delta-outwash fan complex at Pease AFB, Newington, NH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dineen, R.J.; Manning, S.; McGeehan, K.

    The overburden stratigraphy at Pease AFB is based on over 1,200 wells, borings, piezometers, and test pits, and includes five lithologic units: Fill, Upper Sand (US), Marine Clay and Silt (MCS), Lower Sand (LS), and Till (GT). The US is a yellow brown, poorly sorted sand to silty sand and is massive to laminated, and locally has hummocky bedding. The MCS (the Presumpscot Formation) is a dark gray, massive to laminated sandy to silty clay, and is locally interbedded with silty sand. The MCS contains a trace of organic matter, primarily as fine particles of peat. The LS is amore » gray to brown, poorly sorted, silty sand to gravelly sand that is massive to planar bedded and locally grades down into GT and/or upward into MCS. The GT consists of a massive to crudely bedded dark gray to dark brown, very poorly sorted, sandy silt to gravelly, silty sand. The US, MCS, LS and upper part of the GT were deposited in a marine environment at or near the ice margin. Pease AFB is built on two large fans of gravelly sand (LS plus US) that are bordered to the east by NW-SE till ridges (drumlins ). The northern-most fan is flat-topped with a surface elevation of 30 m ASL. The southern fan is more hummocky, with a surface elevation of 18.5 m ASL. Both fans coarsen towards the NW, and are interbedded with MCS towards the SE. The apices of the fans overlie deeply-scoured troughs in the rock surface. The fans are interpreted to be kame deltas or submarine outwash fans that are deposited along the retreating Wisconsinan ice margin by concentrated meltwater flow. Later, the US may have been deposited by marine shoreface erosion of the emergent fans as the ice front retreated and sea level fell.« less

  5. Hydrogeology of the Susquehanna River valley-fill aquifer system and adjacent areas in eastern Broome and southeastern Chenango Counties, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2012-01-01

    The hydrogeology of the valley-fill aquifer system along a 32-mile reach of the Susquehanna River valley and adjacent areas was evaluated in eastern Broome and southeastern Chenango Counties, New York. The surficial geology, inferred ice-marginal positions, and distribution of stratified-drift aquifers were mapped from existing data. Ice-marginal positions, which represent pauses in the retreat of glacial ice from the region, favored the accumulation of coarse-grained deposits whereas more steady or rapid ice retreat between these positions favored deposition of fine-grained lacustrine deposits with limited coarse-grained deposits at depth. Unconfined aquifers with thick saturated coarse-grained deposits are the most favorable settings for water-resource development, and three several-mile-long sections of valley were identified (mostly in Broome County) as potentially favorable: (1) the southernmost valley section, which extends from the New York–Pennsylvania border to about 1 mile north of South Windsor, (2) the valley section that rounds the west side of the umlaufberg (an isolated bedrock hill within a valley) north of Windsor, and (3) the east–west valley section at the Broome County–Chenango County border from Nineveh to East of Bettsburg (including the lower reach of the Cornell Brook valley). Fine-grained lacustrine deposits form extensive confining units between the unconfined areas, and the water-resource potential of confined aquifers is largely untested. Recharge, or replenishment, of these aquifers is dependent not only on infiltration of precipitation directly on unconfined aquifers, but perhaps more so from precipitation that falls in adjacent upland areas. Surface runoff and shallow groundwater from the valley walls flow downslope and recharge valley aquifers. Tributary streams that drain upland areas lose flow as they enter main valleys on permeable alluvial fans. This infiltrating water also recharges valley aquifers. Current (2012) use of water resources in the area is primarily through domestic wells, most of which are completed in fractured bedrock in upland areas. A few villages in the Susquehanna River valley have supply wells that draw water from beneath alluvial fans and near the Susquehanna River, which is a large potential source of water from induced infiltration.

  6. Radiocarbon chronology of the last deglaciation in the Baffin Bay reveals asynchronous melting of Arctic and Laurentide ice sheets

    NASA Astrophysics Data System (ADS)

    Jackson, Rebecca; Kucera, Michal; Vogt, Christoph; Wacker, Lukas

    2016-04-01

    The transition from the last ice age into the Holocene interglacial was characterised by rapid retreat of North American ice sheets, discharging large quantities of meltwater into the Labrador Sea. Whereas the meltwater chronology of the Laurentide Ice Sheet is well documented, the deglacial history of the American Arctic ice sheets (Inuit Ice sheet and northern Greenland Ice Sheet) draining into the Labrador Sea via the Baffin Bay is less well constrained. Here we present the first high-resolution radiocarbon-dated deglacial records from the Canadian and Greenland margins of the central Baffin Bay. Sedimentological and geochemical data confirm the presence during Termination I of two events of enhanced delivery of detrital carbonate (Baffin Bay Detrital Carbonate Events) dated to 14.2-13.7 ka BP and 12.7-11 ka BP. The events are synchronous across the Baffin Bay and their mineralogical signature indicates a common source of detrital carbonate from the Canadian Arctic, with a synchronous clastic source proximal to Greenland. The events postdate Heinrich layers and their onset is not linked to Greenland temperature change. This indicates that the deglaciation of American Arctic ice sheets and associated meltwater discharge were decoupled from the dominant North Atlantic climate mode.

  7. New insights into West Greenland ice sheet/stream dynamics during the last glacial cycle.

    NASA Astrophysics Data System (ADS)

    Roberts, David; Lane, Tim; Rea, Brice; Cofaigh, Colm O.; Jamieson, Stewart; Vieli, Andreas; Rodes, Angel

    2015-04-01

    Onshore and offshore geomorphological mapping and deglacial chronologies from West Greenland constrain the nature and magnitude of ice advance and decay of the Greenland Ice Sheet (GrIS) during the last glacial cycle. Several ice stream troughs are known to have fed ice to the shelf edge during the last glacial cycle. Their offshore expression suggests that many were coalescent systems fed by smaller outlet glaciers and ice streams onshore but their central flow pathways were also controlled by geology and preglacial topography. The bed morphology of these large ice streams shows they operated over soft, deforming beds with drumlins, mega-scale glacial lineations and grounding zone wedges marking an offshore transition from predominant areal scour onshore. Records of offshore deglacial chronology remain sparse but the Uummannaq and Disko Bugt ice stream corridors are now well constrained. The Uummannaq ice stream (UIS) completely deglaciated from the continental shelf between 14.8 ka and 11.0 ka in response to rising air temperatures, increasing JJA solar radiation and sea-level rise, but temporary standstills and the asynchronous retreat history of its feeder zones suggest that topography/bathymetry strongly modulated retreat rates as ice became 'locked' back into the coastal fjord system. Initial reconstructions of behaviour UIS discounted an oceanic role in early deglaciation and favoured retreat from the mid-shelf and inner-shelf prior to the Younger Dryas but both these concepts remain under investigation. In Disko Bugt, Jakobshavn Isbrae deglaciated later than the UIS and remained on the outer shelf during the Younger Dyras stadial (12.8 - 11.7 cal. kyrs BP) only reaching in the inner coast fjords at approximately 10.0 ka. The later deglaciation of the Disko system (despite similar external forcing mechanisms) was controlled by regional topographic/bathymetric contrasts in their respective trough morphologies. This hypothesis is supported by recent model output which indicates that non-linear retreat, grounding line stability and up-ice surface thinning is heavily influenced by both vertical and lateral constrictions in marine trough systems. While the offshore ice stream corridors are beginning to reveal their dynamic retreat history, knowledge of the inter-stream areas on the continental shelf remains very poor. The western, onshore sector of the GrIS has a much improved deglacial chronology derived from radiocarbon and new cosmogenic surface exposure dating undertaken in the last decade, but the deglacial history of wide swathes of the inner, mid and outer continental shelf remains completely unknown. The Hellefiske moraines on the West Greenland shelf were described in the late 1970's but little is known of ice sheet retreat behaviour across these areas. Understanding the deglacial signature of such regions is important if we are to use palaeo-reconstructions to understand ice sheet collapse/retreat mechanisms and to inform future model predictions.

  8. Effect of fjord geometry on Greenland mass loss in a warming climate (Invited)

    NASA Astrophysics Data System (ADS)

    Nick, F. M.; Vieli, A.; Andersen, M. L.; Joughin, I. R.

    2013-12-01

    Over the past decade, ice loss from the Greenland Ice Sheet increased as a result of both increased surface melting and ice discharge through the narrow outlet glaciers. The complicated behaviour of narrow outlet glaciers has not yet been fully captured by the ice-sheet models used to predict Greenland's contribution to future sea level. Here we try to quantify the future dynamic contribution of four major marine terminating outlet glaciers to sea-level rise. We use a glacier flow line model that includes a fully dynamic treatment of marine termini to simulate behavior of Helheim, Kangerdlugssuaq, Petermann and Jakobshavn Isbræ. The contribution from these glaciers to sea-level rise is largely (80%) dynamic in origin and is caused by several episodic retreats past overdeepenings in outlet glacier troughs. Model results show that the shape of the glacier and its fjord can alter how the glacier will respond to a changing climate. Dynamic losses are mainly related to channel geometry and occur when an ice front retreats from a basal high through an overdeepening. Subsequent decelerations in retreat and mass loss mostly coincide with a decrease in water depth as the glacier retreats or re-advances to a new or previous bathymetric high. In some cases, channel narrowing may temporarily slowdown the terminus retreat even when the terminus is located on an upward bed slope.

  9. Evidence for smaller extents of the northwestern Greenland Ice Sheet and North Ice Cap during the Holocene

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Osterberg, E. C.; Axford, Y.; Bigl, M.; Birkel, S. D.; Corbett, L. B.; Roy, E. P.; Thompson, J. T.; Whitecloud, S.

    2013-12-01

    The Greenland Ice Sheet (GrIS) and local glaciers on Greenland are responding dynamically to warming temperatures with widespread retreat. GRACE satellite data (e.g., Kahn et al., 2010) and the Petermann Glacier calving events document the recent expansion of ice loss into northwestern Greenland. To improve the ability to estimate future ice loss in a warming climate, we are developing records of the response of the northwestern Greenlandic cryosphere to Holocene climatic conditions, with a focus on past warm periods. Our ongoing research includes analyses of glacial geology, sub-fossil vegetation, lake sediment cores, chironomid assemblages and ice cores combined with glaciological modeling. To constrain past ice extents that were as small as, or smaller than, at present, we recovered sub-fossil vegetation exposed at the receding margins of the GrIS and North Ice Cap (NIC) in the Nunatarssuaq region (~76.7°N, 67.4°W) and of the GrIS near Thule (~76.5°N, 68.7°W). We present vegetation types and radiocarbon ages of 30 plant samples collected in August 2012. In the Nunatarssuaq region, five ages of in situ (rooted) vegetation including Polytrichum moss, Saxifraga nathorstii and grasses located <5 m outboard of the GrIS margin are ~120-200 cal yr BP (range of medians of the 2-sigma calibrated age ranges). Nine ages of in situ Polytrichum, Saxifraga oppositafolia and grasses from ~1-5 m inboard of the NIC margin (excavated from beneath ice) range from ~50 to 310 cal yr BP. The growth of these plants occurred when the GrIS and NIC were at least as small as at present and their ages suggest that ice advances occurred in the last 50-120 yrs. In addition to the in situ samples, we collected plants from well-preserved ground material exposed along shear planes in the GrIS margins. In Nunatarssuaq, two Polytrichum mosses rooted in ground material and exposed along a shear plane in the GrIS margin date to 4680 and 4730 cal yr BP. Near Thule, three ages of Salix arctica rooted in ground material and exposed along a shear plane in the GrIS are ~170-390 cal yr BP. Four ages of plant fragments within ice in a shear plane in the NIC margin are ~600-950 cal yr BP. Since these organic remains have been transported from beneath the GrIS and NIC, respectively, they indicate times of smaller than present ice extents. Together these plants provide evidence that the northwestern GrIS was smaller than at present at ~4600-4800 and ~170-390 cal yr BP. Advance to the modern GrIS extent was likely underway at of after ~170 cal yr BP. NIC was smaller than at present at ~600-950 cal yr. Our ongoing research is investigating the climatic conditions during these times and the relationship of these restricted ice extents to those documented elsewhere on Greenland as well as on Baffin Island.

  10. Constraints on ice volume changes of the WAIS and Ross Ice Shelf since the LGM based on cosmogenic exposure ages in the Darwin-Hatherton glacial system of the Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Fink, David; Storey, Bryan; Hood, David; Joy, Kurt; Shulmeister, James

    2010-05-01

    Quantitative assessment of the spatial and temporal scale of ice volume change of the West Antarctic ice sheet (WAIS) and Ross Ice Shelf since the last glacial maximum (LGM) ~20 ka is essential to accurately predict ice sheet response to current and future climate change. Although global sea level rose by approximately 120 metres since the LGM, the contribution of polar ice sheets is uncertain and the timing of any such contribution is controversial. Mackintosh et al (2007) suggest that sectors of the EAIS, similar to those studied at Framnes Mountains where the ice sheet slowly calves at coastal margins, have made marginal contributions to global sea-level rise between 13 and 7 ka. In contrast, Stone et al (2003) document continuing WAIS decay during the mid-late Holocene, raising the question of what was the response of the WAIS since LGM and into the Holocene. Terrestrial evidence is restricted to sparse coastal oasis and ice free mountains which archive limits of former ice advances. Mountain ranges flanking the Darwin-Hatherton glaciers exhibit well-defined moraines, weathering signatures, boulder rich plateaus and glacial tills, which preserve the evidence of advance and retreat of the ice sheet during previous glacial cycles. Previous studies suggest a WAIS at the LGM in this location to be at least 1,000 meters thicker than today. As part of the New Zealand Latitudinal Gradient Project along the Transantarctic, we collected samples for cosmogenic exposure dating at a) Lake Wellman area bordering the Hatherton Glacier, (b) Roadend Nunatak at the confluence of the Darwin and Hatherton glaciers and (c) Diamond Hill which is positioned at the intersection of the Ross Ice Shelf and Darwin Glacier outlet. While the technique of exposure dating is very successful in mid-latitude alpine glacier systems, it is more challenging in polar ice-sheet regions due to the prevalence of cold-based ice over-riding events and absence of outwash processes which removes glacially transported debris. Our glacial geomorphic survey from ice sheet contact edge (~850 masl) to mountain peak at 1600 masl together with a suite of 10Be and 26Al exposure ages, documents a pre-LGM ice volume at least 800 meters thicker than current ice levels which was established at least 2 million years ago. However a complex history of exposure and re-exposure of the ice free regions in this area is seen in accordance with advance and retreat of the ice sheets that feeds into the Darwin -Hatherton system. A cluster of mid-altitude boulders, located below a prominent moraine feature mapped previously as demarcating the LGM ice advance limits, have exposure ages ranging from 30 to 40 ka. Exposure ages for boulders just above the ice contact range from 1to 19 ka and allow an estimate of inheritance. Hence, we conclude that LGM ice volume was not as large as previously estimated and actually little different from what is observed today. These results raise rather serious questions about the implications of a reduced WAIS at the LGM, its effect on the development of the Ross Ice Shelf, and how the Antarctic ice sheets respond to global warming. J. O. Stone et al., Science v299, 99 (2003). A. Mackintosh, D. White, D. Fink, D. Gore et al, Geology, v 35; 551-554 (2007).

  11. The paradox of a long grounding during West Antarctic Ice Sheet retreat in Ross Sea.

    PubMed

    Bart, Philip J; Krogmeier, Benjamin J; Bart, Manon P; Tulaczyk, Slawek

    2017-04-28

    Marine geological data show that the West Antarctic Ice Sheet (WAIS) advanced to the eastern Ross Sea shelf edge during the Last Glacial Maximum (LGM) and eventually retreated ~1000 km to the current grounding-line position on the inner shelf. During the early deglacial, the WAIS deposited a voluminous stack of overlapping grounding zone wedges (GZWs) on the outer shelf of the Whales Deep Basin. The large sediment volume of the GZW cluster suggests that the grounding-line position of the paleo-Bindschadler Ice Stream was relatively stationary for a significant time interval. We used an upper bound estimate of paleo-sediment flux to investigate the lower bound duration over which the ice stream would have deposited sediment to account for the GZW volume. Our calculations show that the cluster represents more than three millennia of ice-stream sedimentation. This long duration grounding was probably facilitated by rapid GZW growth. The subsequent punctuated large-distance (~200 km) grounding-line retreat may have been a highly non-linear ice sheet response to relatively continuous external forcing such as gradual climate warming or sea-level rise. These findings indicate that reliable predictions of future WAIS retreat may require incorporation of realistic calculations of sediment erosion, transport and deposition.

  12. Neoglacial Antarctic sea-ice expansion driven by mid-Holocene retreat of the Ross Ice Shelf.

    NASA Astrophysics Data System (ADS)

    Bendle, J. A.; Newton, K.; Mckay, R. M.; Crosta, X.; Etourneau, J.; Anya, A. B.; Seki, O.; Golledge, N. R.; Bertler, N. A. N.; Willmott, V.; Schouten, S.; Riesselman, C. R.; Masse, G.; Dunbar, R. B.

    2017-12-01

    Recent decades have seen expanding Antarctic sea-ice coverage, coeval with thinning West Antarctic Ice Sheet (WAIS) ice shelves and the rapid freshening of surface and bottom waters along the Antarctic margin. The mid-Holocene Neoglacial transition represents the last comparable baseline shift in sea-ice behaviour. The drivers and feedbacks involved in both the recent and Holocene events are poorly understood and characterised by large proxy-model mismatches. We present new records of compound specific fatty acid isotope analyses (δ2H-FA), highly-branched isoprenoid alkenes (HBIs) TEX86L temperatures, grain-size, mass accumulations rates (MARs) and image analyses from a 171m Holocene sediment sequence from Site U1357 (IODP leg 318). In combination with published records we reconstruct Holocene changes in glacial meltwater, sedimentary inputs and sea-ice. The early Holocene (11 to 10 ka) is characterised by large fluctuations in inputs of deglacial meltwater and sediments and seismic evidence of downlapping material from the south, suggesting a dominating influence from glacial retreat of the local outlet glaciers. From 10 to 8 ka there is decreasing meltwater inputs, an onlapping drift and advection of material from the east. After ca. 8 ka positively correlated δ2H-FA and MARs infer that pulses of glacial melt correlate to stronger easterly currents, driving erosion of material from upstream banks and that the Ross Ice Shelf (RIS) becomes a major influence. A large mid-Holocene meltwater pulse (preceded by warming TEX86L temperatures) is evident between ca. 6 to 4.5 ka, culminating in a rapid and permanent increase in sea-ice from 4.5 ka. This is coeval with cosmogenic nuclide evidence for a rapid thinning of the Antarctic ice sheet during the mid-Holocene (Hein et al., 2016). We suggest this represents a final major pulse of deglaciation from the Ross Ice Shelf, which initiates the Neoglacial, driving cool surface waters along the coast and greater sea-ice production in the Adélie and more widely. Our work provides a mechanism for rapid expansion of Antarctic sea ice with a background of a warming climate and highlights how better representation of meltwater inputs and sea ice dynamics will be fundamental to improving projections for future climate change in the Antarctic. Hein, et al,. Nat. Comms, 12511, 2016.

  13. Lacustrine Records of Holocene Mountain Glacier Fluctuations from Western Greenland

    NASA Astrophysics Data System (ADS)

    Schweinsberg, A.; Briner, J. P.; Bennike, O.

    2014-12-01

    Recent studies have focused on documenting fluctuations of the Greenland Ice Sheet margin throughout the Holocene but few data exist that constrain past changes of local glaciers independent of the ice sheet. Our research combines proglacial lake sediment analysis with cosmogenic 10Be dating of Holocene moraines and radiocarbon dating of ice-cap-killed vegetation with an overall objective to use this multi-proxy approach to generate a detailed record of the coupled climate-glacier system through the Holocene. Here, we present lacustrine records of mountain glacier variability from continuous pro-glacial lake sediment sequences recovered from two glaciated catchments in northeastern Nuussuaq, western Greenland. We use radiocarbon-dated sediments from Sikuiui and Pauiaivik lakes to reconstruct the timing of advance and retreat of local glaciers. Sediments were characterized with magnetic susceptibility (MS), gamma density, Itrax XRF and visible reflectance spectroscopy at 0.2 cm intervals and sediment organic matter at 0.5 cm intervals. Basal radiocarbon ages provide minimum-age constraints on deglaciation from Sikuiui and Pauiaivik lakes of ~9.6 and 8.7 ka, respectively. Organic-rich gyttja from deglaciation until ~5.0 ka in Pauiaivik Lake suggests minimal glacial extent there while slightly elevated MS values from ~9.0 - 7.0 ka in Sikuiui Lake may reflect early Holocene glacial advances. Minerogenic sediment input gradually increases starting at ~5.0 ka in Pauiaivik Lake, which we interpret as the onset of Neoglaciation in the catchment. Furthermore, a distinct episode of enhanced glacial activity from ~4.0 - 2.2 ka in Sikuiui Lake may be correlative to a period of persistent snowline lowering evidenced by radiocarbon dates of ice-killed vegetation from nearby ice cap margins. Results from these lacustrine records and our ice-killed vegetation dataset suggest a middle Holocene onset of Neoglaciation ~5.0 - 4.0 ka in this region. We are supplementing these records with cosmogenic 10Be exposure dating to further constrain the timing of deglaciation. In addition, these sedimentary archives will continue to be compared to radiocarbon dates of ice-killed vegetation along adjacent ice cap margins to determine if times of persistent snowline lowering are correlative to periods of glacier advance.

  14. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah L.; Hindmarsh, Richard C. A.; Whitehouse, Pippa; Bentley, Michael J.; King, Matt

    2014-05-01

    The Holocene deglaciation of West Antarctica resulted in widespread ice surface lowering. While many ice-sheet reconstructions generally assume a monotone Holocene retreat for the West Antarctica Ice sheet (WAIS) [Ivins et al., 2013; Peltier, 2004; Whitehouse et al., 2012], an increasing number of glaciological observations infer it is readvancing, following retreat behind the present-day margin[Siegert et al., 2013]. We will show that a readvance in the Weddell Sea region can reconcile two outstanding problems: (i) the present-day widespread occurrence of seemingly stable ice-streams grounded on beds that deepen inland in apparent contradiction to theory [Schoof, 2007]; and (ii) the inability of models of Glacial Isostatic Adjustment (GIA) to match present-day uplift rates [Whitehouse et al., 2012]. Combining a suite of ice loading histories that include a readvance with a model of GIA provides significant improvements to predictions of present-day uplift rates, and we are able to reproduce previously unexplained observations of subsidence in the southern sector of the Weddell Sea. We hypothesize that retreat behind present grounding lines occurred when the bed was lower, and isostatic recovery led to shallowing, ice sheet re-grounding and readvance. We will conclude that some sections of the current WAIS grounding line that are theoretically unstable, may be advancing and that the volume change of the WAIS may have been more complex in the Late Holocene than previously posited. This revised Holocene ice-loading history would have important implications for the GIA correction applied to Gravity Recovery and Climate Experiment (GRACE) data, likely resulting in a reduction in the GIA correction and a smaller estimate of present-day ice mass loss within the Weddell Sea region of the WAIS. Ivins, E. R., T. S. James, J. Wahr, E. J. O. Schrama, F. W. Landerer, and K. M. Simon (2013), Antarctic contribution to sea level rise observed by GRACE with improved GIA correction, Journal of Geophysical Research: Solid Earth, 118(6), 3126-3141. Peltier, W. R. (2004), Global glacial isostasy and the surface of the ice-age earth: The ice-5G (VM2) model and grace, Annu Rev Earth Pl Sc, 32, 111-149. Schoof, C. (2007), Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, Journal of Geophysical Research: Earth Surface, 112(F3). Siegert, M., N. Ross, H. Corr, J. Kingslake, and R. Hindmarsh (2013), Late Holocene ice-flow reconfiguration in the Weddell Sea sector of West Antarctica, Quaternary Sci Rev, 78(0), 98-107. Whitehouse, P. L., M. J. Bentley, G. A. Milne, M. A. King, and I. D. Thomas (2012), A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates, Geophys J Int, 190(3), 1464-1482.

  15. Rapid advance and retreat over centennial/millennial timescales at Kangiata Nunaata Sermia, SW Greenland - implications for modelling, and behaviour of tidewater glaciers

    NASA Astrophysics Data System (ADS)

    Lea, J.; Mair, D. W.; Rea, B. R.; Schofield, J.; Kamenos, N.; Pearce, D.; Schoenrock, K. M.

    2017-12-01

    While the Greenland Ice Sheet has undergone significant retreat over the last 80 years, our understanding of the ice sheet's response to climate forcing over centennial to millennial timescales is poorly constrained. Knowledge of marine glacier outlets over these timescales would provide crucial information regarding longer term ice sheet dynamics, beyond instrumental and historical records. It is notably difficult to constrain such histories for these glaciers due to: (i) a highly dynamic ice front environment in combination with the Little Ice Age advance(s) destroying much of the preceding evidence for glacier change; (ii) often poor landform/sediment preservation due to steep sided fjords; (iii) the areas with greatest preservation potential, the fjords bottoms, being submarine and often ice choked, and therefore non-trivial to survey, and sample. The tidewater glacier Kangiata Nunaata Sermia (KNS), SW Greenland provides an exception to this. Here we present a record of >22km of terminus advance and retreat spanning the last 1000 years using a combination of geomorphological, sedimentological and archaeological evidence. This timescale includes periods of substantial warming and cooling of air temperatures that appear to correspond to periods of advance and retreat. Results also suggest that the average advance rates in the early part of the millennium (110 m a-1) are of a similar magnitude to contemporary retreat rates observed around Greenland. The results generated here provide an ideal opportunity to validate the performance of numerical models (notably those that include calving) over centennial timescales. Evaluating model performance against the past behaviour of KNS could therefore lead to significant improvements in the confidence of ice sheet change projections up to 2100 and beyond.

  16. Evidence of Macroalgal Colonization on Newly Ice-Free Areas following Glacial Retreat in Potter Cove (South Shetland Islands), Antarctica

    PubMed Central

    Quartino, María Liliana; Deregibus, Dolores; Campana, Gabriela Laura; Latorre, Gustavo Edgar Juan; Momo, Fernando Roberto

    2013-01-01

    Climate warming has been related to glacial retreat along the Western Antarctic Peninsula. Over the last years, a visible melting of Fourcade Glacier (Potter Cove, South Shetland Islands) has exposed newly ice-free hard bottom areas available for benthic colonization. However, ice melting produces a reduction of light penetration due to an increase of sediment input and higher ice impact. Seventeen years ago, the coastal sites close to the glacier cliffs were devoid of macroalgae. Are the newly ice-free areas suitable for macroalgal colonization? To tackle this question, underwater video transects were performed at six newly ice-free areas with different degree of glacial influence. Macroalgae were found in all sites, even in close proximity to the retreating glacier. We can show that: 1. The complexity of the macroalgal community is positively correlated to the elapsed time from the ice retreat, 2. Algae development depends on the optical conditions and the sediment input in the water column; some species are limited by light availability, 3. Macroalgal colonization is negatively affected by the ice disturbance, 4. The colonization is determined by the size and type of substrate and by the slope of the bottom. As macroalgae are probably one of the main energy sources for the benthos, an expansion of the macroalgal distribution can be expected to affect the matter and energy fluxes in Potter Cove ecosystem. PMID:23484000

  17. Evidence for slow late-glacial ice retreat in the upper Rangitata Valley, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Shulmeister, J.; Fink, D.; Winkler, S.; Thackray, G. D.; Borsellino, R.; Hemmingsen, M.; Rittenour, T. M.

    2018-04-01

    A suite of cosmogenic radionuclide ages taken from boulders on lateral and latero-terminal moraines in the Rangitata Valley, eastern South Island, New Zealand demonstrates that relatively thick ice occupied valley reaches inland of the Rangitata Gorge until c. 21 ka. Thereafter ice began to thin, and by c. 17 ka it had retreated 33 km up-valley of the Rangitata Gorge to the Butler-Brabazon Downs, a structurally created basin in the upper Rangitata Valley. Despite its magnitude, this retreat represents a minor ice volume reduction from 21 ka to 17 ka, and numerous lateral moraines preserved suggest a relatively gradual retreat over that 4 ka period. In contrast to records from adjacent valleys, there is no evidence for an ice-collapse at c. 18 ka. We argue that the Rangitata record constitutes a more direct record of glacial response to deglacial climate than other records where glacial dynamics were influenced by proglacial lake development, such as the Rakaia Valley to the North and the major valleys in the Mackenzie Basin to the south-west. Our data supports the concept of a gradual warming during the early deglaciation in the South Island New Zealand.

  18. Exhumed subglacial landscape in Uruguay: Erosional landforms, depositional environments, and paleo-ice flow in the context of the late Paleozoic Gondwanan glaciation

    NASA Astrophysics Data System (ADS)

    Assine, Mario Luis; de Santa Ana, Héctor; Veroslavsky, Gerardo; Vesely, Fernando F.

    2018-07-01

    A well-exposed glacial surface sculpted on Precambrian crystalline basement rocks occurs below the glacial succession of the San Gregorio Formation on the eastern border of the Chaco-Parana Basin in Uruguay and was formed in the context of the late Paleozoic Gondwana Ice Age. On the glacial surface are asymmetric parallel streamlined bedrock landforms interpreted as whalebacks. The downglacier (lee-side) faces of the whalebacks have gentle slopes dipping NNW with striated and sometimes polished surfaces on crystalline rocks. These landforms are covered by 10-100-cm-thick layers of tillites and shear-laminated siltstones, suggesting glacial abrasion produced mainly by subglacial till sliding. The subglacial facies are ice-molded, and exhibit meso-scale glacial lineations such as ridges and grooves up to 30 m long and 30 cm deep. The subglacial association is directly overlain by proglacial fine-grained facies (rhythmites) with dropstones indicating a subaqueous depositional environment following ice-margin retreat. The fine-grained facies are erosively cut by a succession of sandstones with wave-generated stratification resting on a basal conglomerate. Intraformational striated surfaces, NNE-oriented, were found on four distinct bedding planes within the sandstone package and interpreted as ice keel scour marks produced by floating ice. The San Gregorio deposits are partially confined in a wide and shallow subglacial trough and the stratigraphic succession is interpreted as the record of a glacial advance-retreat cycle comparable to deglacial sequences from other late Paleozoic localities. The paleo-ice flow to the NNW indicated by subglacial lineations is parallel to that verified in the southernmost Paraná Basin located north of the study area, suggesting a paleogeographic scenario in which glaciers advanced northward into a glaciomarine environment. The proposed palaeogeography does not confirm the previous hypothesis of an ice center on the Sul-Riograndense Shield but, instead, it corroborates a south-derived Uruguayan Ice Lobe advancing to the north, probably with provenance far afield in terranes of the present-day southern African.

  19. Sedimentary and rock magnetic signatures and event scenarios of deglacial outburst floods from the Laurentian Channel Ice Stream

    NASA Astrophysics Data System (ADS)

    Leng, Wei; von Dobeneck, Tilo; Bergmann, Fenna; Just, Janna; Mulitza, Stefan; Chiessi, Cristiano M.; St-Onge, Guillaume; Piper, David J. W.

    2018-04-01

    Eastern Canadian margin sediments bear testimony to several catastrophic deglacial meltwater discharges from the retreating Laurentide Ice Sheet. The reddish-brown plumite layers deposited on the levees of the Laurentian Fan valleys have been recognized as indications of multiple outburst floods between Heinrich events 2 and 1. Five event layers have been consistently recorded in three new gravity cores retrieved on the SW Grand Banks slope and comply with the previously published Laurentian Fan core MD95-2029. The apparently huge extent of these outburst plumes around the Laurentian Fan as well as their causes and consequences are investigated in this study using physical properties, rock magnetic and grain-size analyses, together with seismoacoustic profiling. We provide the first detailed 14C ages of the outburst event sequence and discuss their recurrence intervals in the context of regional ice retreat. Compared to the hemipelagic interlayers, event layers have overall uniform and systematic changes of rock-magnetic properties. Hematite contents increase over time and proximally while magnetite grain sizes fine upwards and spatially away from the fan. Based on the sediment composition and load, we argue that these plumites were formed by recurrent erosion of glacial mud deposits in the Laurentian Channel by meltwater outbursts. Three alternative glaciological scenarios are evaluated: in each case, the provenance of the transported sediment is not an indicator of the precise source of the meltwater.

  20. The Holocene and the Late Deglaciation: timing and development on the northern Svalbard margin

    NASA Astrophysics Data System (ADS)

    Slubowska, M. A.; Koc, N.; Rasmussen, T. L.

    2002-12-01

    Svalbard is located in the high Arctic (76§ to 81§ N and 10§ to 28§ E) at the northernmost reach of the warmer West Spitsbergen Current, which forms the continuation of the North Atlantic Current. At this position, close to the Polar Front, even small variations in the current are expected to have large effects on the regional climate. Therefore, the Svalbard area is ideal for monitoring past changes in the ocean circulation as well as the timing and the nature of the Svalbard ice sheet disintegration. We have investigated core NP94-51 SC2 (80§ 21,346 N, 16§ 17,970 E, 400m water depth and 714 cm long) retrieved from the mouth of the Hinlopen Strait in the Arctic Ocean, north of Svalbard. The main objective of this study is to document a) the deglaciation history of the area, b) the Holocene climate variability on the decadal time scales using sedimentological, physical and biological analysis. AMS-14C dating gives the age of approximately 14,000 BP for the bottom of the core. The Holocene interglacial is represented by c. 5 m. A detailed analysis of different oceanographic proxies such as: ice rafted debris, magnetic susceptibility, spectral reflectance (L*a*b scale), benthic and planktic foraminiferal fauna, diatom flora, grain size and radiocarbon dates (AMS-14C) were used to reconstruct the paleoceanographic evolution of the area. The results show that disintegration of the Hinlopen Strait ice sheet and, possibly, the northern margin of the Svalbard ice sheet began at 14,000 BP. The influx of the subsurface Atlantic waters into the area began during the Bolling interstadial at 12,600 BP, while the surface waters were still cold and of low salinity. The retreat of the sea ice cover occurred together with the opening of the surface waters at 10,800 BP. During major part of the Younger Dryas (10,800 - 10,000 BP) the Polar Front was located close to the core site. At 10,100 BP the Polar Front retreated from that area. In comparison to the deglaciation, preliminary results of grain sizes, magnetic susceptibility and reflectance from the Holocene period indicate relatively low variability in the environmental conditions.

  1. Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Fujiwara, A.; Hirawake, T.; Suzuki, K.; Imai, I.; Saitoh, S.-I.

    2014-04-01

    This study assesses the response of phytoplankton assemblages to recent climate change, especially with regard to the shrinking of sea ice in the northern Chukchi Sea of the western Arctic Ocean. Distribution patterns of phytoplankton groups in the late summers of 2008-2010 were analysed based on HPLC pigment signatures and, the following four major algal groups were inferred via multiple regression and cluster analyses: prasinophytes, diatoms, haptophytes and dinoflagellates. A remarkable interannual difference in the distribution pattern of the groups was found in the northern basin area. Haptophytes dominated and dispersed widely in warm surface waters in 2008, whereas prasinophytes dominated in cold water in 2009 and 2010. A difference in the onset date of sea ice retreat was evident among years-the sea ice retreat in 2008 was 1-2 months earlier than in 2009 and 2010. The spatial distribution of early sea ice retreat matched the areas in which a shift in algal community composition was observed. Steel-Dwass's multiple comparison tests were used to assess the physical, chemical and biological parameters of the four clusters. We found a statistically significant difference in temperature between the haptophyte-dominated cluster and the other clusters, suggesting that the change in the phytoplankton communities was related to the earlier sea ice retreat in 2008 and the corollary increase in sea surface temperatures. Longer periods of open water during the summer, which are expected in the future, may affect food webs and biogeochemical cycles in the western Arctic due to shifts in phytoplankton community structure.

  2. Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    name prefix surname suffix, given; Fujiwara, A.; Hirawake, T.; Suzuki, K.; Imai, I.; Saitoh, S.-I.

    2013-09-01

    This study assesses the response of phytoplankton assemblages to recent climate change, especially with regard to the shrinking of sea ice in the northern Chukchi Sea of the western Arctic Ocean. Distribution patterns of phytoplankton groups in the late summers of 2008-2010 were analyzed based on HPLC pigment signatures and, the following four major algal groups were inferred via multiple regression and cluster analyses: prasinophytes, diatoms, haptophytes and dinoflagellates. A remarkable interannual difference in the distribution pattern of the groups was found in the northern basin area. Haptophytes dominated and dispersed widely in warm surface waters in 2008, whereas prasinophytes dominated in cold water in 2009 and 2010. A difference in the onset date of sea ice retreat was evident among years - the sea ice retreat in 2008 was 1-2 months earlier than in 2009 and 2010. The spatial distribution of early sea ice retreat matched the areas in which a shift in algal community composition was observed. Steel-Dwass's multiple comparison tests were used to assess the physical, chemical and biological parameters of the four clusters. We found a statistically significant difference in temperature between the haptophyte-dominated cluster and the other clusters, suggesting that the change in the phytoplankton communities was related to the earlier sea ice retreat in 2008 and the corollary increase in sea surface temperatures. Longer periods of open water during the summer, which are expected in the future, may affect food webs and biogeochemical cycles in the western Arctic due to shifts in phytoplankton community structure.

  3. Evidence of a high-Andean, mid-Holocene plant community: An ancient DNA analysis of glacially preserved remains.

    PubMed

    Gould, Billie A; León, Blanca; Buffen, Aron M; Thompson, Lonnie G

    2010-09-01

    Around the world, tropical glaciers and ice caps are retreating at unprecedented rates because of climate change. In at least one location, along the margin of the Quelccaya Ice Cap in southeastern Peru, ancient plant remains have been continually uncovered since 2002. We used genetic analysis to identify plants that existed at these sites during the mid-Holocene. • We examined remains between 4576 and 5222 yr old, using PCR amplification, cloning, and sequencing of a fragment of the chloroplast trnL intron. We then matched these sequences to sequences in GenBank. • We found evidence of at least five taxa characteristic of wetlands, which occur primarily at lower elevations in the region today. • A diverse community most likely existed at these locations the last time they were ice-free and thus has the potential to reestablish with time. This is the first genetic analysis of vegetation uncovered by receding glacial ice, and it may become one of many as ancient plant materials are newly uncovered in a changing climate.

  4. Short-term sea ice forecasts with the RASM-ESRL coupled model: A testbed for improving simulations of ocean-ice-atmosphere interactions in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Solomon, A.; Cox, C. J.; Hughes, M.; Intrieri, J. M.; Persson, O. P. G.

    2015-12-01

    The dramatic decrease of Arctic sea-ice has led to a new Arctic sea-ice paradigm and to increased commercial activity in the Arctic Ocean. NOAA's mission to provide accurate and timely sea-ice forecasts, as explicitly outlined in the National Ocean Policy and the U.S. National Strategy for the Arctic Region, needs significant improvement across a range of time scales to improve safety for human activity. Unfortunately, the sea-ice evolution in the new Arctic involves the interaction of numerous physical processes in the atmosphere, ice, and ocean, some of which are not yet understood. These include atmospheric forcing of sea-ice movement through stress and stress deformation; atmospheric forcing of sea-ice melt and formation through energy fluxes; and ocean forcing of the atmosphere through new regions of seasonal heat release. Many of these interactions involve emerging complex processes that first need to be understood and then incorporated into forecast models in order to realize the goal of useful sea-ice forecasting. The underlying hypothesis for this study is that errors in simulations of "fast" atmospheric processes significantly impact the forecast of seasonal sea-ice retreat in summer and its advance in autumn in the marginal ice zone (MIZ). We therefore focus on short-term (0-20 day) ice-floe movement, the freeze-up and melt-back processes in the MIZ, and the role of storms in modulating stress and heat fluxes. This study uses a coupled ocean-atmosphere-seaice forecast model as a testbed to investigate; whether ocean-sea ice-atmosphere coupling improves forecasts on subseasonal time scales, where systematic biases develop due to inadequate parameterizations (focusing on mixed-phase clouds and surface fluxes), how increased atmospheric resolution of synoptic features improves the forecasts, and how initialization of sea ice area and thickness and snow depth impacts the skill of the forecasts. Simulations are validated with measurements at pan-Arctic land sites, satellite data, and recent ocean field campaigns.

  5. High-resolution record of the deglaciation of the British-Irish Ice Sheet from North Atlantic deep-sea sediments.

    NASA Astrophysics Data System (ADS)

    Tarlati, S.; Benetti, S.; Callard, L.; O'Cofaigh, C.; Dunlop, P.; Chiverrell, R. C.; Fabel, D.; Moreton, S.; Clark, C.

    2016-12-01

    During the last glacial maximum the British-Irish Ice Sheet (BIIS) covered the majority of Ireland and Britain. Recent studies have described the BIIS as largely marine-based and highly dynamic with several advances and retreats recorded on the continental shelf. The focus of this study is the more recent sediment record from the Donegal Barra Fan (DBF), the largest sediment depocentre formed by the ice streaming of the western BIIS onto the North Atlantic continental margin. In this project, well-preserved, glacially-derived, deep-water sediments from 3 cores, up to 6.7 m long and retrieved from the DBF, are used to investigate and chronologically constrain the pattern of deglaciation of the BIIS. Deep-water sediments can record continuous sedimentation through time, avoiding hiatuses and erosional surfaces characteristic of a glacial environment and allow a detailed reconstruction of deglacial processes. Five lithofacies have been identified using sedimentology, x-rays, physical properties and grain size analysis. They include bioturbated foraminifera-bearing muds, interpreted as hemipelagic and contouritic deposits from interglacial periods. Chaotic and laminated muds, ice-rafted debris (IRD)-rich layers and laminated mud to sand couplets are characteristic of the glacial period including ice-sheet maximum extent and the beginning of retreat. These represent downslope mass movements, plumites from meltwater alongside melting icebergs and turbidites. Radiocarbon dates from foraminifera suggest that the deglacial sedimentary sequence is up to 5m thick. The IRD concentration and abundance of the foraminifera Neogloboquadrina pachyderma sinistral indicate a minimum of 3 different calving events during deglaciation and a marked Younger Dryas cooling and ice calving period. Additionally the δ 18O record will be used to investigate the record of climatic changes in the region and x-ray fluorescence will be used to assess sediment provenance during deglaciation.

  6. Balance of the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For several decades, measurements of the West Antarctic Ice Sheet showed it to be retreating rapidly. But new data derived from satellite-borne radar sensors show the ice sheet to be growing. Changing Antarctic ice sheets remains an area of high scientific interest, particularly in light of recent global warming concerns. These new findings are significant because scientists estimate that sea level would rise 5-6 meters (16-20 feet) if the ice sheet collapsed into the sea. Do these new measurements signal the end of the ice sheet's 10,000-year retreat? Or, are these new satellite data simply much more accurate than the sparse ice core and surface measurements that produced the previous estimates? Another possibility is that the ice accumulation may simply indicate that the ice sheet naturally expands and retreats in regular cycles. Cryologists will grapple with these questions, and many others, as they examine the new data. The image above depicts the region of West Antarctica where scientists measured ice speed. The fast-moving central ice streams are shown in red. Slower tributaries feeding the ice streams are shown in blue. Green areas depict slow-moving, stable areas. Thick black lines depict the areas that collect snowfall to feed their respective ice streams. Reference: Ian Joughin and Slawek Tulaczyk Science Jan 18 2002: 476-480. Image courtesy RADARSAT Antarctic Mapping Project

  7. On the impact of ice-ocean interaction on Greenland glaciers versus calving speed.

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.; Menemenlis, D.; Morlighem, M.; Wood, M.; Millan, R.; Mouginot, J.; An, L.

    2016-12-01

    Glacier retreat from frontal ablation is a delicate balance between subaqueous melt, calving processes and bed geometry. Here, we model subaqueous melt from a large number of Greenland tidewater glaciers using generalized 3D, high resolution simulations of ice melt from the MITgcm ocean model constrained by subglacial melt from RACMO2.3 and ISSM, ocean temperature from ECCO2-4km Arctic, and bed topography from OMG and MC for 1992-2015. The results are analyzed in combination with ice-front retreat and glacier speed from Landsat and imaging radar data since the 1990s. We find that subaqueous melt is 2-3 times greater in summer than in winter and doubled in magnitude since the 1990s because of enhanced ice sheet runoff and warmer ocean temperature. Glaciers that retreated rapidly are characterized by subaqueous melt rates comparable to their calving speed and favorable bed geometry. Glaciers dominated by calving processes are in contrast more resilient to thermal forcing from the ocean, especially in the presence of stabilizing geometry. The study highlights the fundamental importance of calving processes in controlling glacier retreat in Greenland.

  8. Sensitivity of Totten Glacier Ice Shelf extent and grounding line to oceanic forcing

    NASA Astrophysics Data System (ADS)

    Pelle, T.; Morlighem, M.; Choi, Y.

    2017-12-01

    Totten Glacier is a major outlet glacier of the East Antarctic Ice Sheet and has been shown to be vulnerable to ocean-induced melt in both its past and present states. The intrusion of warm, circumpolar deep water beneath the Totten Glacier Ice Shelf (TGIS) has been observed to accelerate ice shelf thinning and promote iceberg calving, a primary mechanism of mass discharge from Totten. As such, accurately simulating TGIS's ice front dynamics is crucial to the predictive capabilities of ice sheet models in this region. Here, we study the TGIS using the Ice Sheet System Model (ISSM) and test the applicability of three calving laws: Crevasse Formation calving, Eigen calving, and Tensile Stress calving. We simulate the evolution of Totten Glacier through 2100 under enhanced oceanic forcing in order to investigate both future changes in ice front dynamics and possible thresholds of instability. In addition, we artificially retreat Totten's ice front position and allow the model to proceed dynamically in order to analyze the response of the glacier to calving events. Our analyses show that Tensile Stress calving most accurately reproduces Totten Glacier's observed ice front position. Furthermore, unstable grounding line retreat is projected when Totten is simulated under stronger oceanic thermal forcing scenarios and when the calving front is significantly retreated.

  9. Giant seafloor craters formed by hydrate-controlled large-scale methane expulsion from the Arctic seafloor after ice sheet retreat

    NASA Astrophysics Data System (ADS)

    Andreassen, K.; Hubbard, A.; Patton, H.; Vadakkepuliyambatta, S.; Winsborrow, M.; Plaza-Faverola, A. A.; Serov, P.

    2017-12-01

    Large-scale methane releases from thawing Arctic gas hydrates is a major concern, yet the processes and fluxes involved remain elusive. We present geophysical data indicating two contrasting processes of natural methane emissions from the seafloor of the northern Barents Sea, Polar North Atlantic. Abundant gas flares, acoustically imaged in the water column reveal slow, gradual release of methane bubbles, a process that is commonly documented from nearby areas, elsewhere in the Arctic and along continental margins worldwide. Conversely, giant craters across the study area indicate a very different process. We propose that these are blow-out craters, formed through large-scale, abrupt methane expulsion induced when gas hydrates destabilized after the Barents Sea Ice Sheet retreated from the area. The data reveal over 100 giant seafloor craters within an area of 440 km2. These are up to 1000 m in diameter, 30 m deep and with a semi-circular to elliptical shape. We also identified numerous large seafloor mounds, which we infer to have formed by the expansion of gas hydrate accumulations within the shallow subsurface, so-called gas hydrate pingos. These are up to 1100 m wide and 20 m high. Smaller craters and mounds < 200 m wide and with varying relief are abundant across the study site. The empirical observations and analyses are combined with numerical modelling of ice sheet, isostatic and gas hydrate evolution and indicate that during glaciation, natural gas migrating from underlying hydrocarbon reservoirs was stored as subglacial gas hydrates. On ice sheet retreat, methane from these hydrate reservoirs and underlying free gas built up and abruptly released, forming the giant mounds and craters observed in the study area today. Petroleum basins are abundant beneath formerly and presently glaciated regions. We infer that episodes of subglacial sequestration of gas hydrates and underlying free gas and subsequent abrupt expulsions were common and widespread throughout Quaternary glacial cycles. The presented conceptual model for the evolution of giant craters can also serve as an analogue for future destabilization of glacially influenced hydrate reservoirs.

  10. Antarctic ice-sheet loss driven by basal melting of ice shelves.

    PubMed

    Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L

    2012-04-25

    Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.

  11. Abrupt tropical climate change: past and present.

    PubMed

    Thompson, Lonnie G; Mosley-Thompson, Ellen; Brecher, Henry; Davis, Mary; León, Blanca; Les, Don; Lin, Ping-Nan; Mashiotta, Tracy; Mountain, Keith

    2006-07-11

    Three lines of evidence for abrupt tropical climate change, both past and present, are presented. First, annually and decadally averaged delta(18)O and net mass-balance histories for the last 400 and 2,000 yr, respectively, demonstrate that the current warming at high elevations in the mid- to low latitudes is unprecedented for at least the last 2 millennia. Second, the continuing retreat of most mid- to low-latitude glaciers, many having persisted for thousands of years, signals a recent and abrupt change in the Earth's climate system. Finally, rooted, soft-bodied wetland plants, now exposed along the margins as the Quelccaya ice cap (Peru) retreats, have been radiocarbon dated and, when coupled with other widespread proxy evidence, provide strong evidence for an abrupt mid-Holocene climate event that marked the transition from early Holocene (pre-5,000-yr-B.P.) conditions to cooler, late Holocene (post-5,000-yr-B.P.) conditions. This abrupt event, approximately 5,200 yr ago, was widespread and spatially coherent through much of the tropics and was coincident with structural changes in several civilizations. These three lines of evidence argue that the present warming and associated glacier retreat are unprecedented in some areas for at least 5,200 yr. The ongoing global-scale, rapid retreat of mountain glaciers is not only contributing to global sea-level rise but also threatening freshwater supplies in many of the world's most populous regions.

  12. High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution

    PubMed Central

    Lecavalier, Benoit S.; Fisher, David A.; Milne, Glenn A.; Vinther, Bo M.; Tarasov, Lev; Lacelle, Denis; Main, Brittany; Zheng, James; Bourgeois, Jocelyne; Dyke, Arthur S.

    2017-01-01

    We present a revised and extended high Arctic air temperature reconstruction from a single proxy that spans the past ∼12,000 y (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Ellesmere Island, Canada) indicates an earlier and warmer Holocene thermal maximum with early Holocene temperatures that are 4–5 °C warmer compared with a previous reconstruction, and regularly exceed contemporary values for a period of ∼3,000 y. Our results show that air temperatures in this region are now at their warmest in the past 6,800–7,800 y, and that the recent rate of temperature change is unprecedented over the entire Holocene. The warmer early Holocene inferred from the Agassiz ice core leads to an estimated ∼1 km of ice thinning in northwest Greenland during the early Holocene using the Camp Century ice core. Ice modeling results show that this large thinning is consistent with our air temperature reconstruction. The modeling results also demonstrate the broader significance of the enhanced warming, with a retreat of the northern ice margin behind its present position in the mid Holocene and a ∼25% increase in total Greenland ice sheet mass loss (∼1.4 m sea-level equivalent) during the last deglaciation, both of which have implications for interpreting geodetic measurements of land uplift and gravity changes in northern Greenland. PMID:28512225

  13. Bedrock morphology reveals drainage network in northeast Baffin Bay

    NASA Astrophysics Data System (ADS)

    Slabon, Patricia; Dorschel, Boris; Jokat, Wilfried; Freire, Francis

    2018-02-01

    A subglacial drainage network underneath the paleo-ice sheet off West Greenland is revealed by a new compilation of high-resolution bathymetry data from Melville Bay, northeast Baffin Bay. This drainage network is an indicator for ice streaming and subglacial meltwater flow toward the outer shelf. Repeated ice sheet advances and retreats across the crystalline basement together with subglacial meltwater drainage had their impact in eroding overdeepened troughs along ice stream pathways. These overdeepenings indicate the location of a former ice sheet margin. The troughs inherit characteristics of glacial and subglacial meltwater erosion. Most of the troughs follow tectonic weakness zones such as faults and fractures in the crystalline bedrock. Many of these tectonic features correspond with the orientations of major fault axes in the Baffin Bay region. The troughs extend from the present (sub) glacial fjord systems at the Greenland coast and parallel modern outlet-glacier pathways. The fast flowing paleo-ice streams were likely accelerated from the meltwater flow as indicated by glacial landforms within and along the troughs. The ice streams flowed along narrow tributary troughs and merged to form large paleo-ice streams bedded in the major cross-shelf troughs of Melville Bay. Apart from the troughs, a rough seabed topography characterises the bedrock, and we see a sharp geomorphic transition where ice flowed onto sedimentary rock and deposits.

  14. Surface Exposure Dating of Glaciated Landscapes in Washington Land, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    Reusche, M.; Ceperley, E. G.; Marcott, S. A.; Brook, E.; Mix, A. C.

    2016-12-01

    The timing and rate of sea-level contribution from the Greenland ice sheet (GIS) and its outlet glaciers through the 21st century is uncertain. Given the long response time of ice sheets, characterizing the sensitivity of the GIS to both atmospheric and oceanic forcings in the past plays a vital role in forecasting future GIS changes. Our terrestrial-based study is primarily focused along the margins of the marine-terminating Petermann Glacier of northwestern Greenland, and is part of a larger multidisciplinary research effort with oceanographers, geophysicists, and atmospheric scientists that aims to better understand Petermann's response to past perturbations in climate and the primary mechanisms that drive those changes. In order to more accurately determine the ice sheet history of the northwestern sector of the GIS, rock samples from erratic boulders on moraines and from across an expansive ice free region (Washington Land) adjacent to Nares Strait were collected for surface exposure dating with 10Be. The project goal is to apply exposure histories from these glacial erratics to determine the timing and rate of GIS retreat since the last glacial maximum from Nares Strait up to the relatively `fresh' moraines that front the present GIS and Petermann Glacier margins nearly 70 km away. Moraine chronologies will also be constructed from these presumably late Holocene moraines, which serve as unique evidence of pre-Little Ice Age (LIA) Neoglaciation that are often obliterated from the landscape due to the large extent of the LIA advance across much of Greenland. Preliminary exposure ages and results will be presented and discussed within the context of the ice-ocean-atmosphere system of northwestern Greenland and compared to ongoing and prior work.

  15. Constraining Landscape History and Glacial Erosivity Using Paired Cosmogenic Nuclides in Upernavik, Northwest Greenland

    NASA Technical Reports Server (NTRS)

    Corbett, Lee B.; Bierman, Paul R.; Graly, Joseph A.; Neumann, Thomas A.; Rood, Dylan H.

    2013-01-01

    High-latitude landscape evolution processes have the potential to preserve old, relict surfaces through burial by cold-based, nonerosive glacial ice. To investigate landscape history and age in the high Arctic, we analyzed in situ cosmogenic Be(sup 10) and Al (sup 26) in 33 rocks from Upernavik, northwest Greenland. We sampled adjacent bedrock-boulder pairs along a 100 km transect at elevations up to 1000 m above sea level. Bedrock samples gave significantly older apparent exposure ages than corresponding boulder samples, and minimum limiting ages increased with elevation. Two-isotope calculations Al(sup26)/B(sup 10) on 20 of the 33 samples yielded minimum limiting exposure durations up to 112 k.y., minimum limiting burial durations up to 900 k.y., and minimum limiting total histories up to 990 k.y. The prevalence of BE(sup 10) and Al(sup 26) inherited from previous periods of exposure, especially in bedrock samples at high elevation, indicates that these areas record long and complex surface exposure histories, including significant periods of burial with little subglacial erosion. The long total histories suggest that these high elevation surfaces were largely preserved beneath cold-based, nonerosive ice or snowfields for at least the latter half of the Quaternary. Because of high concentrations of inherited nuclides, only the six youngest boulder samples appear to record the timing of ice retreat. These six samples suggest deglaciation of the Upernavik coast at 11.3 +/- 0.5 ka (average +/- 1 standard deviation). There is no difference in deglaciation age along the 100 km sample transect, indicating that the ice-marginal position retreated rapidly at rates of approx.120 m yr(sup-1).

  16. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone.

    PubMed

    Kashiwase, Haruhiko; Ohshima, Kay I; Nihashi, Sohey; Eicken, Hajo

    2017-08-15

    Ice-albedo feedback due to the albedo contrast between water and ice is a major factor in seasonal sea ice retreat, and has received increasing attention with the Arctic Ocean shifting to a seasonal ice cover. However, quantitative evaluation of such feedbacks is still insufficient. Here we provide quantitative evidence that heat input through the open water fraction is the primary driver of seasonal and interannual variations in Arctic sea ice retreat. Analyses of satellite data (1979-2014) and a simplified ice-upper ocean coupled model reveal that divergent ice motion in the early melt season triggers large-scale feedback which subsequently amplifies summer sea ice anomalies. The magnitude of divergence controlling the feedback has doubled since 2000 due to a more mobile ice cover, which can partly explain the recent drastic ice reduction in the Arctic Ocean.

  17. Capturing total chronological and spatial uncertainties in palaeo-ice sheet reconstructions: the DATED example

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Gyllencreutz, Richard; Mangerud, Jan; Svendsen, John Inge

    2017-04-01

    Glacial geologists generate empirical reconstructions of former ice-sheet dynamics by combining evidence from the preserved record of glacial landforms (e.g. end moraines, lineations) and sediments with chronological evidence (mainly numerical dates derived predominantly from radiocarbon, exposure and luminescence techniques). However the geomorphological and sedimentological footprints and chronological data are both incomplete records in both space and time, and all have multiple types of uncertainty associated with them. To understand ice sheets' response to climate we need numerical models of ice-sheet dynamics based on physical principles. To test and/or constrain such models, empirical reconstructions of past ice sheets that capture and acknowledge all uncertainties are required. In 2005 we started a project (Database of the Eurasian Deglaciation, DATED) to produce an empirical reconstruction of the evolution of the last Eurasian ice sheets, (including the British-Irish, Scandinavian and Svalbard-Barents-Kara Seas ice sheets) that is fully documented, specified in time, and includes uncertainty estimates. Over 5000 dates relevant to constraining ice build-up and retreat were assessed for reliability and used together with published ice-sheet margin positions based on glacial geomorphology to reconstruct time-slice maps of the ice sheets' extent. The DATED maps show synchronous ice margins with maximum-minimum uncertainty bounds for every 1000 years between 25-10 kyr ago. In the first version of results (DATED-1; Hughes et al. 2016) all uncertainties (both quantitative and qualitative, e.g. precision and accuracy of numerical dates, correlation of moraines, stratigraphic interpretations) were combined based on our best glaciological-geological assessment and expressed in terms of distance as a 'fuzzy' margin. Large uncertainties (>100 km) exist; predominantly across marine sectors and other locations where there are spatial gaps in the dating record (e.g. the timing of coalescence and separation of the Scandinavian and Svalbard-Barents-Kara ice sheets) but also in well-studied areas due to conflicting yet apparently equally robust data. In the four years since the DATED-1 census (1 January 2013), the volume of new information (from both dates and mapped glacial geomorphology) has grown significantly ( 1000 new dates). Here, we present work towards the updated version of results, DATED-2, that attempts to further reduce and explicitly report all uncertainties inherent in ice sheet reconstructions. Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., Svendsen, J. I. 2016: The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas, 45, 1-45. 10.1111/bor.12142

  18. Early ice retreat and ocean warming may induce copepod biogeographic boundary shifts in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Feng, Zhixuan; Ji, Rubao; Campbell, Robert G.; Ashjian, Carin J.; Zhang, Jinlun

    2016-08-01

    Early ice retreat and ocean warming are changing various facets of the Arctic marine ecosystem, including the biogeographic distribution of marine organisms. Here an endemic copepod species, Calanus glacialis, was used as a model organism, to understand how and why Arctic marine environmental changes may induce biogeographic boundary shifts. A copepod individual-based model was coupled to an ice-ocean-ecosystem model to simulate temperature- and food-dependent copepod life history development. Numerical experiments were conducted for two contrasting years: a relatively cold and normal sea ice year (2001) and a well-known warm year with early ice retreat (2007). Model results agreed with commonly known biogeographic distributions of C. glacialis, which is a shelf/slope species and cannot colonize the vast majority of the central Arctic basins. Individuals along the northern boundaries of this species' distribution were most susceptible to reproduction timing and early food availability (released sea ice algae). In the Beaufort, Chukchi, East Siberian, and Laptev Seas where severe ocean warming and loss of sea ice occurred in summer 2007, relatively early ice retreat, elevated ocean temperature (about 1-2°C higher than 2001), increased phytoplankton food, and prolonged growth season created favorable conditions for C. glacialis development and caused a remarkable poleward expansion of its distribution. From a pan-Arctic perspective, despite the great heterogeneity in the temperature and food regimes, common biogeographic zones were identified from model simulations, thus allowing a better characterization of habitats and prediction of potential future biogeographic boundary shifts.

  19. 3D full-Stokes modeling of the grounding line dynamics of Thwaites Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Yu, H.; Rignot, E. J.; Morlighem, M.; Seroussi, H. L.

    2016-12-01

    Thwaites Glacier (TG) is the broadest and second largest ice stream in the West Antarctica. Satellite observations have revealed rapid grounding line retreat and mass loss of this glacier in the past few decades, which has been attributed to the enhanced basal melting in the Amundsen Sea Embayment. With a retrograde bed configuration, TG is on the verge of collapse according to the marine ice sheet instability theory. Here, we use the UCI/JPL Ice Sheet System Model (ISSM) to simulate the grounding line position of TG to determine its stability, rate of retreat and sensitivity to enhanced basal melting using a three-dimensional full-Stokes numerical model. Simulations with simplified models (Higher Order (HO), and Shelfy-Stream Approximation (SSA)) are also conducted for comparison. We first validate our full Stokes model by conducting MISMIP3D experiments. Then we applied the model to TG using new bed elevation dataset combining IceBridge (OIB) gravity data, OIB ice thickness, ice flow vectors from interferometry and a mass conservation method at 450 m spacing. Basal friction coefficient and ice rheology of floating ice are inferred to match observed surface velocity. We find that the grounding line is capable of retreating at rate of 1km/yr under current forcing and that the glacier's sensitivity to melt is higher in the Stokes model than HO or SSA, which means that projections using SSA or HO might underestimate the future rate of retreat of the glacier. This work has been performed at UC Irvine and Caltech's Jet Propulsion Laboratory under a contract with NASA's Cryospheric Science Program.

  20. Post-glacial sea-level history for SW Ireland (Bantry Bay) based on offshore evidence

    NASA Astrophysics Data System (ADS)

    Plets, R. M.; Callard, L.; Cooper, A.; Long, A. J.; Belknap, D. F.; Edwards, R.; Jackson, D.; Kelley, J. T.; Long, D.; Milne, G. A.; Monteys, X.; Quinn, R.

    2013-12-01

    In recent years, progress in remote sensing techniques has helped to constrain the advance and retreat phases of the British-Irish Ice Sheet during and after the Last Glacial Maximum (LGM), both on- and offshore. However, little evidence has been collected to study the pattern of relative sea-level (RSL) change immediately after ice sheet retreat. Glacio-isostatic adjustment (GIA) models suggest a complex RSL pattern around Ireland, influenced by local and regional isostatic movements. Unfortunately, such models are poorly constrained for periods during which RSL was significantly lower than present, particularly the Late Pleistocene and Early Holocene, owing to the paucity of accurate observational data offshore. This poster presents post-LGM stratigraphic evidence from Bantry Bay (SW Ireland), one of seven areas targeted around the Irish Sea as part of a larger NERC funded project which aims to provide the first field data on the depth and age of the RSL minimum since deglaciation in the Irish Sea Basin. Data examined consists of: multibeam bathymetry and backscatter, pinger sub-bottom and vibrocores (25 sites). Notable features on the multibeam are a bluff line in the outer bay with a maximum height of 10 m in water depths of c. -80 m which forms the western edge of a large sediment lobe. The south-western boundary of this lobe is marked by a series of long (up to 22 km), parallel ridges at depths between -96 m and -131 m, with iceberg scouring evident on the offshore margin. Six seismo-stratigraphic units are interpreted from the pinger data, the most prominent of which can be traced from the inner part of the Bay to the inshore edge of the ridges. This unit sits on an erosional surface, is characterised by a turbid acoustic signature and is identified as alternating sand and clay layers with some traces of organic material and gas. Equal amounts of marine and estuarine foraminifera are present within this unit, whilst the underlying unit has a higher percentage of brackish species and the overlying unit becomes predominantly marine. Based on this evidence, we suggest that the erosional surface represents the transgressive surface, underlying intertidal sediments. Mapping the extent of this surface reveals a maximum depth of -75 m offshore, rising gradually to a depth of -30 m in the inner Bay, a profile remarkably similar to the modelled sea-level curve for the area. The long parallel ridges are interpreted to represent ice-marginal, submarine moraine ridges associated with ice retreat, behind which a glacio-marine delta formed, resulting in the large sediment lobe imaged at the mouth of Bantry Bay. Foraminifera from the proposed transgressive surface have been submitted for radiocarbon dating. Once available, these results will be used for fine-tuning the Earth and ice model parameters in the GIA model. Such adjustments could have important implications for modelled RSL curves around the Irish Sea basin.

  1. Sea ice breakup and marine melt of a retreating tidewater outlet glacier in northeast Greenland (81°N).

    PubMed

    Bendtsen, Jørgen; Mortensen, John; Lennert, Kunuk; K Ehn, Jens; Boone, Wieter; Galindo, Virginie; Hu, Yu-Bin; Dmitrenko, Igor A; Kirillov, Sergei A; Kjeldsen, Kristian K; Kristoffersen, Yngve; G Barber, David; Rysgaard, Søren

    2017-07-10

    Rising temperatures in the Arctic cause accelerated mass loss from the Greenland Ice Sheet and reduced sea ice cover. Tidewater outlet glaciers represent direct connections between glaciers and the ocean where melt rates at the ice-ocean interface are influenced by ocean temperature and circulation. However, few measurements exist near outlet glaciers from the northern coast towards the Arctic Ocean that has remained nearly permanently ice covered. Here we present hydrographic measurements along the terminus of a major retreating tidewater outlet glacier from Flade Isblink Ice Cap. We show that the region is characterized by a relatively large change of the seasonal freshwater content, corresponding to ~2 m of freshwater, and that solar heating during the short open water period results in surface layer temperatures above 1 °C. Observations of temperature and salinity supported that the outlet glacier is a floating ice shelf with near-glacial subsurface temperatures at the freezing point. Melting from the surface layer significantly influenced the ice foot morphology of the glacier terminus. Hence, melting of the tidewater outlet glacier was found to be critically dependent on the retreat of sea ice adjacent to the terminus and the duration of open water.

  2. Observations reveal external driver for Arctic sea-ice retreat

    NASA Astrophysics Data System (ADS)

    Notz, Dirk; Marotzke, Jochem

    2012-04-01

    The very low summer extent of Arctic sea ice that has been observed in recent years is often casually interpreted as an early-warning sign of anthropogenic global warming. For examining the validity of this claim, previously IPCC model simulations have been used. Here, we focus on the available observational record to examine if this record allows us to identify either internal variability, self-acceleration, or a specific external forcing as the main driver for the observed sea-ice retreat. We find that the available observations are sufficient to virtually exclude internal variability and self-acceleration as an explanation for the observed long-term trend, clustering, and magnitude of recent sea-ice minima. Instead, the recent retreat is well described by the superposition of an externally forced linear trend and internal variability. For the externally forced trend, we find a physically plausible strong correlation only with increasing atmospheric CO2 concentration. Our results hence show that the observed evolution of Arctic sea-ice extent is consistent with the claim that virtually certainly the impact of an anthropogenic climate change is observable in Arctic sea ice already today.

  3. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat.

    PubMed

    Pasotti, Francesca; Saravia, Leonardo Ariel; De Troch, Marleen; Tarantelli, Maria Soledad; Sahade, Ricardo; Vanreusel, Ann

    2015-01-01

    The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased connectedness and resource recycling.

  4. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat

    PubMed Central

    Pasotti, Francesca; Saravia, Leonardo Ariel; De Troch, Marleen; Tarantelli, Maria Soledad; Sahade, Ricardo; Vanreusel, Ann

    2015-01-01

    The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased connectedness and resource recycling. PMID:26559062

  5. Deglaciation of the Western Margin of the Barents Sea Ice Sheet - a Swath Bathymetric and Sub-Bottom Seismic Study from Eglacom Nice-Streams Data in the Kveithola Trough

    NASA Astrophysics Data System (ADS)

    Rebesco, M.; Liu, Y.; Camerlenghi, A.; Winsborrow, M. C.; Laberg, J.; Caburlotto, A.; Diviacco, P.; Accettella, D.; Sauli, C.; Wardell, N.

    2010-12-01

    IPY Activity N. 367 focusing on Neogene ice streams and sedimentary processes on high- latitude continental margins (NICE-STREAMS) resulted in two coordinated cruises on the adjacent Storfjorden and Kveithola trough-mouth fans in the NW Barents Sea: SVAIS Cruise of BIO Hespérides, summer 2007, and EGLACOM Cruise of Cruise R/V OGS-Explora, summer 2008. The objectives were to acquire a high-resolution set of bathymetric, seismic and sediment core data in order to decipher the Neogene architectural development of the glacially-dominated NW Barents Sea continental margin in response to natural climate change. The paleo-ice streams drained ice from southern Spitsbergen, Spitsbergen Bank, and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. We describe here the EGLACOM data collected within the Kveithola Trough, an E-W trending glacial trough in the NW Barents Sea, NW of the Bear Island. Swath bathymetry shows that the seafloor is characterised by E-W trending mega-scale glacial lineations (MSGL) that record a fast flowing ice stream draining the Svalbard/Barents Sea Ice Sheet (SBIS) during the Last Glacial Maximum (LGM). MSGL are overprinted by transverse sediment ridges about 15 km apart which give rise to a staircase axial profile of the trough. Such transverse ridges are interpreted as grounding-zone wedges (GZW) formed by deposition of unconsolidated, saturated subglacial till during episodic ice stream retreat. Sub-bottom (CHIRP) and multi-channel reflection seismic data show that present-day morphology is largely inherited from the palaeo-seafloor topography at the time of deposition of the transverse ridges, overlain by a draping glaciomarine unit up to over 15 m thick. Our data allow the reconstruction of depositional processes that accompanied the deglaciation of the Spitsbergen Bank area. The sedimentary drape deposited on top of the GZWs which accumulated at a very high rate in the order of 1-1.5 m ka-1 has a potential to preserve a high resolution palaeoclimatic record of the deglaciation and post-glacial condition in this sector of the Barents Sea.

  6. Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat

    USGS Publications Warehouse

    O'Neel, S.; Pfeffer, W.T.; Krimmel, R.; Meier, M.

    2005-01-01

    Changes in driving and resistive stresses play an essential role in governing the buoyancy forces that are important controls on the speed and irreversibility of tidewater glacier retreats. We describe changes in geometry, velocity, and strain rate and present a top-down force balance analysis performed over the lower reach of Columbia Glacier. Our analysis uses new measurements and estimates of basal topography and photogrammetric surface velocity measurements made between 1977 and 2001, while assuming depth-independent strain. Sensitivity tests show that the method is robust and insensitive to small changes in the calculation parameters. Spatial distributions of ice speed show little correspondence with driving stress. Instead, spatial patterns of ice speed exhibit a nonlinear correspondence with basal drag. Primary resistance to flow comes from basal drag, but lateral drag becomes increasingly more important throughout the retreat, which may account for observed increases in speed. Maximum basal drag is always located in a prominent constriction located ~12 km upstream from the preretreat terminus. Once the terminus retreated into deep water off the terminal moraine marking the modern maximum extent, the upstream location of this maximum basal drag helped to promote thinning and decrease effective pressure in the lower region by limiting replenishing ice flow from upstream. An increase in both ice velocity and calving resulted, initiating what appears to be an irreversible retreat. Copyright 2005 by the American Geophysical Union.

  7. Post-LGM Grounding-Line Positions of the Bindschadler Paleo Ice Stream in the Ross Sea Embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Bart, Philip J.; Anderson, John B.; Nitsche, Frank

    2017-10-01

    The West Antarctic Ice Sheet (WAIS) retreated more than 1,000 km since last grounding at the Ross Sea outer continental shelf. Here we show an interpretation of former grounding line positions from a new large-area multibeam survey and a regional grid of chirp cross-sectional data from the Whales Deep Basin in eastern Ross Sea. The basin is a paleo-glacial trough that was occupied by the Bindschadler Ice Stream when grounded ice advanced to the shelf edge during the Last Glacial Maximum. These new geophysical data provide unambiguous evidence that the WAIS occupied at least seven grounding line positions within 60 km of the shelf edge. Four of seven grounding zone wedges (GZWs) are partly exposed over large areas of the trough. The overlapping stratal arrangement created a large-volume compound GZW. Some of the groundings involved local readvance of the grounding line. Subsequent to these seven outer continental shelf groundings, the ice sheet retreated more than 200 km towards Roosevelt Island on the middle continental shelf. The major retreat across the middle continental shelf is recorded by small-scale moraine ridges that mantle the top of GZW7, and these are suggestive of relatively continuous grounding line recession. The results indicate that retreat was considerably more complex than was possible to reconstruct with reconnaissance-level data. The added details are important to climate models, which must first be able to reproduce the recent retreat pattern in all of its complexities to improve confidence in model predictions of the system's future response.

  8. Insights into the Geographic Sequence of Deglaciation in the Weddell Sea Embayment by Provenance of Ice-Rafted Debris

    NASA Astrophysics Data System (ADS)

    Williams, T.; Hemming, S. R.; Licht, K.; Agrios, L.; Brachfeld, S. A.; van de Flierdt, T.; Hillenbrand, C. D.; Ehrmann, W. U.; Zhai, X.; Cai, Y.; Corley, A. D.; Kuhn, G.

    2017-12-01

    The geochemical and geochronological fingerprint of rock debris eroded and carried by ice streams may be used to identify the provenance of iceberg-rafted debris (IRD) in the marine sediment record. During ice retreat following glacial maxima, it has been shown that there is an increase in IRD accumulation in marine sediments underlying the western limb of the Weddell Gyre. Here we present IRD provenance records from sediment core PS1571-1 in the NW Weddell Sea, and interpret these records in terms of the geographic sequence of ice sheet retreat in the Weddell Sea embayment during the most recent deglaciation. We first characterize the source areas of eroded debris around the Weddell Sea Embayment, using published mapping of the embayment and new material from: 1. Till in modern moraines at the edges of ice streams, including the Foundation Ice Stream, the Academy Glacier, and the Recovery Glacier; and 2. Subglacial till and proximal glaciomarine sediment from existing cores located along the front of the Filchner and Ronne Ice Shelves, collected on past expeditions of the RV Polarstern. The analyses on these samples include 40Ar/39Ar hornblende and biotite thermochronology and U-Pb zircon geochronology on individual mineral grains, and K-Ar thermochronology, Nd isotopes, and clay mineralogy on the clay grain size fraction. Results so far indicate that samples along the front of the Filchner and Ronne Ice Shelves record the geochemical and geochronological fingerprint that would be expected from tracing ice flow lines back to the bedrock terranes. The Ronne (west), Hughes (central), and Filchner (east) sectors have distinguishable provenance source signatures, and further subdivision is possible. In core PS1571-1, downcore IRD provenance changes reflect iceberg output and ice sheet retreat from the different sectors of the embayment through the last deglaciation. The detrital provenance method of interpreting the geographic sequence of ice retreat can equally be applied to previous deglaciations of the Weddell Sea Embayment.

  9. Modelling West Antarctic ice sheet growth and collapse through the past five million years.

    PubMed

    Pollard, David; DeConto, Robert M

    2009-03-19

    The West Antarctic ice sheet (WAIS), with ice volume equivalent to approximately 5 m of sea level, has long been considered capable of past and future catastrophic collapse. Today, the ice sheet is fringed by vulnerable floating ice shelves that buttress the fast flow of inland ice streams. Grounding lines are several hundred metres below sea level and the bed deepens upstream, raising the prospect of runaway retreat. Projections of future WAIS behaviour have been hampered by limited understanding of past variations and their underlying forcing mechanisms. Its variation since the Last Glacial Maximum is best known, with grounding lines advancing to the continental-shelf edges around approximately 15 kyr ago before retreating to near-modern locations by approximately 3 kyr ago. Prior collapses during the warmth of the early Pliocene epoch and some Pleistocene interglacials have been suggested indirectly from records of sea level and deep-sea-core isotopes, and by the discovery of open-ocean diatoms in subglacial sediments. Until now, however, little direct evidence of such behaviour has been available. Here we use a combined ice sheet/ice shelf model capable of high-resolution nesting with a new treatment of grounding-line dynamics and ice-shelf buttressing to simulate Antarctic ice sheet variations over the past five million years. Modelled WAIS variations range from full glacial extents with grounding lines near the continental shelf break, intermediate states similar to modern, and brief but dramatic retreats, leaving only small, isolated ice caps on West Antarctic islands. Transitions between glacial, intermediate and collapsed states are relatively rapid, taking one to several thousand years. Our simulation is in good agreement with a new sediment record (ANDRILL AND-1B) recovered from the western Ross Sea, indicating a long-term trend from more frequently collapsed to more glaciated states, dominant 40-kyr cyclicity in the Pliocene, and major retreats at marine isotope stage 31 ( approximately 1.07 Myr ago) and other super-interglacials.

  10. Modeling the response of Northwest Greenland to enhanced ocean thermal forcing and subglacial discharge

    NASA Astrophysics Data System (ADS)

    Morlighem, M.; Wood, M.; Seroussi, H. L.; Bondzio, J. H.; Rignot, E. J.

    2017-12-01

    Glacier-front dynamics is an important control on Greenland's ice mass balance. Warm and salty Atlantic water, which is typically found at a depth below 200-300 m, has the potential to trigger ice-front retreats of marine-terminating glaciers, and the corresponding loss in resistive stress leads to glacier acceleration and thinning. It remains unclear, however, which glaciers are currently stable but may retreat in the future, and how far inland and how fast they will retreat. Here, we quantify the sensitivity and vulnerability of marine-terminating glaciers along the Northwest coast of Greenland (from 72.5° to 76°N) to ocean forcing using the Ice Sheet System Model (ISSM), and its new ice front migration capability. We rely on the ice melt parameterization from Rignot et al. 2016, and use ocean temperature and salinity from high-resolution ECCO2 simulations on the continental shelf to constrain the thermal forcing. The ice flow model includes a calving law based on a Von Mises criterion. We investigate the sensitivity of Northwest Greenland to enhanced ocean thermal forcing and subglacial discharge. We find that some glaciers, such as Dietrichson Gletscher or Alison Gletscher, are sensitive to small increases in ocean thermal forcing, while others, such as Illullip Sermia or Qeqertarsuup Sermia, are very difficult to destabilize, even with a quadrupling of the melt. Under the most intense melt experiment, we find that Hayes Gletscher retreats by more than 50 km inland into a deep trough and its velocity increases by a factor of 10 over only 15 years. The model confirms that ice-ocean interactions are the triggering mechanism of glacier retreat, but the bed controls its magnitude. This work was performed at the University of California Irvine under a contract with the National Aeronautics and Space Administration, Cryospheric Sciences Program (#NNX15AD55G), and the National Science Foundation's ARCSS program (#1504230).

  11. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change

    USGS Publications Warehouse

    Ullman, David J.; Carlson, Anders E.; Hostetler, Steven W.; Clark, Peter U.; Cuzzone, Joshua; Milne, Glenn A.; Winsor, Kelsey; Caffee, Marc A.

    2016-01-01

    Despite elevated summer insolation forcing during the early Holocene, global ice sheets retained nearly half of their volume from the Last Glacial Maximum, as indicated by deglacial records of global mean sea level (GMSL). Partitioning the GMSL rise among potential sources requires accurate dating of ice-sheet extent to estimate ice-sheet volume. Here, we date the final retreat of the Laurentide Ice Sheet with 10Be surface exposure ages for the Labrador Dome, the largest of the remnant Laurentide ice domes during the Holocene. We show that the Labrador Dome deposited moraines during North Atlantic cold events at ∼10.3 ka, 9.3 ka and 8.2 ka, suggesting that these regional climate events helped stabilize the retreating Labrador Dome in the early Holocene. After Hudson Bay became seasonally ice free at ∼8.2 ka, the majority of Laurentide ice-sheet melted abruptly within a few centuries. We demonstrate through high-resolution regional climate model simulations that the thermal properties of a seasonally ice-free Hudson Bay would have increased Laurentide ice-sheet ablation and thus contributed to the subsequent rapid Labrador Dome retreat. Finally, our new 10Be chronology indicates full Laurentide ice-sheet had completely deglaciated by 6.7 ± 0.4 ka, which re quires that Antarctic ice sheets contributed 3.6–6.5 m to GMSL rise since 6.3–7.1 ka.

  12. Physical and biological oceanographic interaction in the spring bloom at the Bering Sea marginal ice edge zone

    NASA Astrophysics Data System (ADS)

    Niebauer, H. J.; Alexander, Vera; Henrichs, Susan

    1990-12-01

    At the edge of the melting sea ice pack in the Bering Sea in spring, physical, biological, and chemical oceanographic processes combine to generate a short-lived, intense phytoplankton bloom that is associated with the retreating ice edge. The bloom begins a week or so before the first of May triggered by insolation and by the low-salinity meltwater stratification in the presence of high nitrate concentrations (˜ > 25 μM). Meltwater (salinity) stratification delineates ice edge blooms from open water blooms where temperature gradients generate the stratification. Five cross-ice sections of temperature, salinity, σt, chlorophyll, and nitrate are presented as a time series from April 27 to May 5 illustrating the bloom. Evidence of two separate but concurrent blooms in the ice edge zone are presented. In addition, meteorological and oceanographic conditions were observed that should have been conducive to ice edge up welling. While significant ice and water movement occurred, upwelling was not observed. Finally, the Bering Sea ice edge spring bloom is compared with other ice edge systems in both hemispheres, showing that initial Bering Sea nitrate concentrations are among the highest observed but quickly become limiting owing to the rapid build up of phytoplankton populations. This primary production is not coupled to the pelagic Zooplankton because Zooplankton are largely absent on account of the cold temperatures. Observed maximum chlorophyll concentrations in the bloom are several times greater than those observed in other systems.

  13. Evaluating Potential Tipping Points of Antarctic basins

    NASA Astrophysics Data System (ADS)

    Durand, G.; Sainan, S.; Pattyn, F.; Jourdain, N.

    2017-12-01

    Antarctica is currently loosing mass and its forthcoming contribution to sea-level rise could substantially increase during the coming centuries. This is essentially due to geometrical constraints, i.e., in regions where grounded ice lies on a bedrock below sea-level sloping down towards the interior of the ice sheet (retrograde slope). For such a configuration the ice sheet is considered potentially unstable, as suggested by theory. However, recent observations on accelerated grounding-line retreat and new insights in modeling Pine Island and Thwaites glaciers give evidence that such self-sustained retreat, called marine ice sheet instability (MISI), has already been on its way. Although West Antarctica appears to be the most vulnerable region for MISI occurrence, similar topographic configurations are also observed in East Antarctica, in the Wilkes Basin in particular. Therefore, evaluating the MISI potential at a pan-Antarctic scale is becoming a priority. Here, using the f.ETISh ice sheet model, an ensemble of simulations of the entire contemporary Antarctic ice sheet has been carried out. In particular, we investigate the debuttressing of ice shelves required to initiate MISI for each coastal region around Antarctica by forcing the model with realistic sub-shelf melt pulses of varying duration and amplitude. We further identify the currently grounded areas where the outlet glaciers could hardly stabilize, the Amundsen Sea Sector being the more prone to large self-sustained retreats. On the contrary, the ability of Cook and Ninnis ice shelves to recover after large perturbations and enough buttress upstream outlet glaciers tends to limit self-sustained retreat of the sector. For each basin, rates of contribution to sea-level rise are discussed together with the RCPs and time when tipping points could be reached and MISI triggered.

  14. Sensitivity analysis of sea level rise contribution depending on external forcing: A case study of Victoria Land, East Antarctica.

    NASA Astrophysics Data System (ADS)

    Park, I. W.; Lee, S. H.; Lee, W. S.; Lee, C. K.; Lee, K. K.

    2017-12-01

    As global mean temperature increases, it affects increase in polar glacier melt and thermal expansion of sea, which contributed to global sea level rise. Unlike large sea level rise contributors in Western Antarctica (e. g. Pine island glacier, Thwaites glacier), glaciers in East Antarctica shows relatively stable and slow ice velocity. However, recent calving events related to increase of supraglacier lake in Nansen ice shelf arouse the questions in regards to future evolution of ice dynamics at Victoria Land, East Antarctica. Here, using Ice Sheet System Model (ISSM), a series of numerical simulations were carried out to investigate ice dynamics evolution (grounding line migration, ice velocity) and sea level rise contribution in response to external forcing conditions (surface mass balance, floating ice melting rate, and ice front retreat). In this study, we used control method to set ice dynamic properties (ice rigidity and friction coefficient) with shallow shelf approximation model and check each external forcing conditions contributing to sea level change. Before 50-year transient simulations were conducted based on changing surface mass balance, floating ice melting rate, and ice front retreat of Drygalski ice tongue and Nansen ice shelf, relaxation was performed for 10 years to reduce non-physical undulation and it was used as initial condition. The simulation results showed that sea level rise contribution were expected to be much less compared to other fast glaciers. Floating ice melting rate was most sensitive parameter to sea level rise, while ice front retreat of Drygalski tongue was negligible. The regional model will be further updated utilizing ice radar topography and measured floating ice melting rate.

  15. A Younger Dryas re-advance of local glaciers in north Greenland

    NASA Astrophysics Data System (ADS)

    Larsen, Nicolaj K.; Funder, Svend; Linge, Henriette; Möller, Per; Schomacker, Anders; Fabel, Derek; Xu, Sheng; Kjær, Kurt H.

    2016-09-01

    The Younger Dryas (YD) is a well-constrained cold event from 12,900 to 11,700 years ago but it remains unclear how the cooling and subsequent abrupt warming recorded in ice cores was translated into ice margin fluctuations in Greenland. Here we present 10Be surface exposure ages from three moraines in front of local glaciers on a 50 km stretch along the north coast of Greenland, facing the Arctic Ocean. Ten ages range from 11.6 ± 0.5 to 27.2 ± 0.9 ka with a mean age of 12.5 ± 0.7 ka after exclusion of two outliers. We consider this to be a minimum age for the abandonment of the moraines. The ages of the moraines are furthermore constrained using Optically Stimulated Luminescence (OSL) dating of epishelf sediments, which were deposited prior to the ice advance that formed the moraines, yielding a maximum age of 12.4 ± 0.6 ka, and bracketing the formation and subsequent abandonment of the moraines to within the interval 11.8-13.0 ka ago. This is the first time a synchronous YD glacier advance and subsequent retreat has been recorded for several independent glaciers in Greenland. In most other areas, there is no evidence for re-advance and glaciers were retreating during YD. We explain the different behaviour of the glaciers in northernmost Greenland as a function of their remoteness from the Atlantic Meridional Overturning Circulation (AMOC), which in other areas has been held responsible for modifying the YD drop in temperatures.

  16. Rise and fall of a small ice-dammed lake - Role of deglaciation processes and morphology

    NASA Astrophysics Data System (ADS)

    Nehyba, Slavomír; Hanáček, Martin; Engel, Zbyněk; Stachoň, Zdeněk

    2017-10-01

    A small ice-dammed lake, which developed along the margin of Nordenskiöldbreen on the northern coast of Adolfbukta, (central Spitsbergen, Svalbard) has been studied by a combination of facies analysis, ground penetrating radar, analysis of photos and satellite imagery, and by surface mapping by Unmanned Aerial Vehicle (drone). The lake existed between the years 1990-2012 and occupied two partial depressions in the bedrock, separated by a bedrock ridge for the dominant period of its history. Whereas the eastern depression was almost completely infilled due to direct fluvial input, the western depression revealed only thin sedimentary cover and was dotted from the eastern depression by an outflow of surficial waters. Gilbert delta deposits with typical tripartite zones of topset, foreset and bottomset were recognised in the eastern depression. Topset was comprised by deposits of a braided river. Foreset is formed by deposits of sediment gravity flows (turbidity currents and debris flows). Bottomset is represented by alternating suspension deposits and deposits of hyperpycnal underflows (low-density turbidity currents). The ruling factors of the evolution of the delta were glacier retreat, bedrock morphology, both affecting the relative lake level, and the rate of sediment delivery. Glacier retreat over stepped and inclined bedrock morphology led to delta prograding and downstepping. The recognised fluvio-deltaic terraces revealed four lake level falls followed by fluvial downcutting, erosion and redeposition of the older deltaic/lake deposits, the shifting of the lake's position towards the damming glacier and the transition of the sediment input in the same direction. The termination of the lake was a result of further glacier retreat and the opening of subglacial drainage.

  17. Links between the Amundsen Sea Low and sea ice in the Ross Sea: seasonal and interannual relationships

    NASA Astrophysics Data System (ADS)

    Raphael, Marilyn N.; Holland, Marika M.; Landrum, Laura; Hobbs, William R.

    2018-05-01

    Previous studies have shown that sea ice extent in the Southern Ocean is influenced by the intensity and location of the Amundsen Sea Low (ASL), through their effect on the meridional winds. However, the inhomogeneous nature of the influence of the ASL on sea ice as well as its influence during critical periods of the sea ice annual cycle is not clear. In this study, we do a spatio-temporal analysis of links between the ASL and the sea ice during the advance and retreat periods of the ice over the period 1979-2013 focusing on the role of the meridional and zonal winds. We use the ERA-Interim monthly-averaged 500 mb geopotential height and 10 m wind data along with monthly Passive Microwave Sea Ice Concentrations (SIC) to examine the seasonal and interannual relationships between the ASL and SIC in the Ross-Amundsen sea ice sector. To characterize the state of the ASL we use indices that describe its location and its intensity. We show that the ASL has preferred locations and intensities during ice advance and retreat seasons. The strength and direction of the influence of the ASL are not spatially homogeneous and can change from advance to retreat season and there are strong significant relationships between the characteristics of the ASL and SIC, within and across seasons and interannually.

  18. Using timing of ice retreat to predict timing of fall freeze-up in the Arctic

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne C.; Crawford, Alex D.; Stammerjohn, Sharon

    2016-06-01

    Reliable forecasts of the timing of sea ice advance are needed in order to reduce risks associated with operating in the Arctic as well as planning of human and environmental emergencies. This study investigates the use of a simple statistical model relating the timing of ice retreat to the timing of ice advance, taking advantage of the inherent predictive power supplied by the seasonal ice-albedo feedback and ocean heat uptake. Results show that using the last retreat date to predict the first advance date is applicable in some regions, such as Baffin Bay and the Laptev and East Siberian seas, where a predictive skill is found even after accounting for the long-term trend in both variables. Elsewhere, in the Arctic, there is some predictive skills depending on the year (e.g., Kara and Beaufort seas), but none in regions such as the Barents and Bering seas or the Sea of Okhotsk. While there is some suggestion that the relationship is strengthening over time, this may reflect that higher correlations are expected during periods when the underlying trend is strong.

  19. Ice Core Records of Recent Northwest Greenland Climate

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Wong, G. J.; Ferris, D.; Lutz, E.; Howley, J. A.; Kelly, M. A.; Axford, Y.; Hawley, R. L.

    2014-12-01

    Meteorological station data from NW Greenland indicate a 3oC temperature rise since 1990, with most of the warming occurring in fall and winter. According to remote sensing data, the NW Greenland ice sheet (GIS) and coastal ice caps are responding with ice mass loss and margin retreat, but the cryosphere's response to previous climate variability is poorly constrained in this region. We are developing multi-proxy records (lake sediment cores, ice cores, glacial geologic data, glaciological models) of Holocene climate change and cryospheric response in NW Greenland to improve projections of future ice loss and sea level rise in a warming climate. As part of our efforts to develop a millennial-length ice core paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn cores (up to 21 m) from the coastal region of the GIS (2Barrel site; 76.9317o N, 63.1467o W, 1685 m el.) and the summit of North Ice Cap (76.938o N, 67.671o W, 1273 m el.) in 2011, 2012 and 2014. The 2Barrel ice core record has statistically significant relationships with regional spring and fall Baffin Bay sea ice extent, summertime temperature, and annual precipitation. Here we evaluate relationships between the 2014 North Ice Cap firn core glaciochemical record and climate variability from regional instrumental stations and reanalysis datasets. We compare the coastal North Ice Cap record to more inland records from 2Barrel, Camp Century and NEEM to evaluate spatial and elevational gradients in recent NW Greenland climate change.

  20. Motion of Major Ice Shelf Fronts in Antarctica from Slant Range Analysis of Radar Altimeter Data, 1978 - 1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Beckley, M. A.; Brenner, A. C.; Giovinetto, M. B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Slant range analysis of radar altimeter data from the Seasat, Geosat, ERS-1 and ERS-2 databases are used to determine barrier location at particular times, and estimate barrier motion (km/yr) for major Antarctic ice shelves. The barrier locations, which are the seaward edges or fronts of floating ice shelves, advance with time as the ice flows from the grounded ice sheets and retreat whenever icebergs calve from the fronts. The analysis covers various multiyear intervals from 1978 to 1998, supplemented by barrier location maps produced elsewhere for 1977 and 1986. Barrier motion is estimated as the ratio between mean annual ice shelf area change for a particular interval, and the length of the discharge periphery. This value is positive if the barrier location progresses seaward, or negative if the barrier location regresses (break-back). Either positive or negative values are lower limit estimates because the method does not detect relatively small area changes due to calving or surge events. The findings are discussed in the context of the three ice shelves that lie in large embayments (the Filchner-Ronne, Amery, and Ross), and marginal ice shelves characterized by relatively short distances between main segments of grounding line and barrier (those in the Queen Maud Land sector between 10.1 deg. W and 32.5 deg. E, and the West and Shackleton ice shelves). All the ice shelves included in the study account for approximately three-fourths of the total ice shelf area of Antarctica, and discharge approximately two-thirds of the total grounded ice area.

  1. Sedimentary response to ice stream advance and retreat on the Storfjorden Trough Mouth Fan (NW Barents Sea), during Late Weichselian

    NASA Astrophysics Data System (ADS)

    Pedrosa, Mayte; Camerlengui, Angelo; de Mol, Ben; Lucchi, Renata. G.; Úrgeles, Roger; Rebesco, Michele; Winsborrow, Monica; Laberg, Jan. S.; Andreassen, Karin; Accettella, Daniela

    2010-05-01

    This seafloor morphological study of the Storfjorden Trough Mouth Fan (TMF) (offshore Svalbard, NW Barents Sea) is based on new multibeam bathymetry and chirp sub-bottom profiler data acquired in 2007 during the BIO Hespérides cruise SVAIS that provides an unprecedented image of the sedimentary processes that accompanied the last advance and retreat of the Storfjorden Ice Stream. Compared to other glacial-marine sedimentary systems (such as the adjacent Bjørnøyrenna TMF), the Storfjorden TMF system is small and associated to a relatively small terrestrial ice sheet, approximately 40.000 km2, with local provenance from Svalbard and the Spitsbergen Bank. Due to this short distance from the ice source to the calving areas and the resulting short residence time of ice in the ice sheet, therefore the glacio -marine system of the Storfjorden reacts rapidly to climatic changes. The Storfjorden continental slope is characterized by three depositional lobes, produced by focused sedimentation at the terminus of ice streams that have changed their location with time. The superficial morphology features associated to the two northernmost lobes are straight gullies in the upper slope, and debris lobes starting from the midslope onwards. The seafloor expression of the southernmost lobe, adjacent to the much smaller Kveithola TMF, demonstrate almost no gully incisions and is dominated by the widespread occurrence of small-scale submarine landslides. The subbottom profiles illustrate that sediment failures occurred throughout the Late Neogene evolution of the southern Storfjorden and Kveithola margin, including large-scale mass transport deposits of up to 200 m thick. Seismic facies of the Neogene sequence shows an alternation of glacigenic debris flows and laminated sediment drape inferred to be plumites. Gullies incising glacigenic debris flows at the surface and subsurface and are filled by an interglacial drape sequence. The gullies are formed during each deglaciation phase, most likely by the erosive action of short-lived high density currents originated by sediment-loaded subglacial melt water discharge.At the outer continental shelf of the southernmost lobe a striking fresh linear straight, which has a width of 1, 5 kilometres and cut the morainal deposits. These features are interpreted as mega-scale glacial lineations, which are tentatively attributed to mega-iceberg scours. These lineations are witness the latest advances of the Storfjorden ice streams before the final retreat which was located at the southernmost lobe. One of the main pre-conditioning factors to slope instability on the southern part of the Storfjorden TMF is identified as high sedimentation rate plumites deposited on the middle-upper continental slope by glacial melt water plumes. This study is part of the SVAIS project (funded by the Spanish IPY), that has a main objective to improve the understanding and the relationship between sedimentation and ice sheet dynamics under natural climatic changes.

  2. Modeling the evolution of the Laurentide Ice Sheet from MIS 3 to the Last Glacial Maximum: an approach using sea level modeling and ice flow dynamics

    NASA Astrophysics Data System (ADS)

    Weisenberg, J.; Pico, T.; Birch, L.; Mitrovica, J. X.

    2017-12-01

    The history of the Laurentide Ice Sheet since the Last Glacial Maximum ( 26 ka; LGM) is constrained by geological evidence of ice margin retreat in addition to relative sea-level (RSL) records in both the near and far field. Nonetheless, few observations exist constraining the ice sheet's extent across the glacial build-up phase preceding the LGM. Recent work correcting RSL records along the U.S. mid-Atlantic dated to mid-MIS 3 (50-35 ka) for glacial-isostatic adjustment (GIA) infer that the Laurentide Ice Sheet grew by more than three-fold in the 15 ky leading into the LGM. Here we test the plausibility of a late and extremely rapid glaciation by driving a high-resolution ice sheet model, based on a nonlinear diffusion equation for the ice thickness. We initialize this model at 44 ka with the mid-MIS 3 ice sheet configuration proposed by Pico et al. (2017), GIA-corrected basal topography, and mass balance representative of mid-MIS 3 conditions. These simulations predict rapid growth of the eastern Laurentide Ice Sheet, with rates consistent with achieving LGM ice volumes within 15 ky. We use these simulations to refine the initial ice configuration and present an improved and higher resolution model for North American ice cover during mid-MIS 3. In addition we show that assumptions of ice loads during the glacial phase, and the associated reconstructions of GIA-corrected basal topography, produce a bias that can underpredict ice growth rates in the late stages of the glaciation, which has important consequences for our understanding of the speed limit for ice growth on glacial timescales.

  3. College Fjord, Prince Williams Sound

    NASA Image and Video Library

    2001-07-21

    The College Fjord with its glaciers was imaged by ASTER on June 24, 2000. This image covers an area 20 kilometers (13 miles) wide and 24 kilometers (15 miles) long in three bands of the reflected visible and infrared wavelength region. College Fjord is located in Prince Williams Sound, east of Seward, Alaska. Vegetation is in red, and snow and ice are white and blue. Ice bergs calved off of the glaciers can be seen as white dots in the water. At the head of the fjord, Harvard Glacier (left) is one of the few advancing glaciers in the area; dark streaks on the glacier are medial moraines: rock and dirt that indicate the incorporated margins of merging glaciers. Yale Glacier to the right is retreating, exposing (now vegetated) bedrock where once there was ice. On the west edge of the fjord, several small glaciers enter the water. This fjord is a favorite stop for cruise ships plying Alaska's inland passage. This image is located at 61.2 degrees north latitude and 147.7 degrees west longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02664

  4. High-resolution sub-ice-shelf seafloor records of twentieth century ungrounding and retreat of Pine Island Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Davies, D.; Bingham, R. G.; Graham, A. G. C.; Spagnolo, M.; Dutrieux, P.; Vaughan, D. G.; Jenkins, A.; Nitsche, F. O.

    2017-09-01

    Pine Island Glacier Ice Shelf (PIGIS) has been thinning rapidly over recent decades, resulting in a progressive drawdown of the inland ice and an upstream migration of the grounding line. The resultant ice loss from Pine Island Glacier (PIG) and its neighboring ice streams presently contributes an estimated ˜10% to global sea level rise, motivating efforts to constrain better the rate of future ice retreat. One route toward gaining a better understanding of the processes required to underpin physically based projections is provided by examining assemblages of landforms and sediment exposed over recent decades by the ongoing ungrounding of PIG. Here we present high-resolution bathymetry and sub-bottom-profiler data acquired by autonomous underwater vehicle (AUV) surveys beneath PIGIS in 2009 and 2014, respectively. We identify landforms and sediments associated with grounded ice flow, proglacial and subglacial sediment transport, overprinting of lightly grounded ice-shelf keels, and stepwise grounding line retreat. The location of a submarine ridge (Jenkins Ridge) coincides with a transition from exposed crystalline bedrock to abundant sediment cover potentially linked to a thick sedimentary basin extending upstream of the modern grounding line. The capability of acquiring high-resolution data from AUV platforms enables observations of landforms and understanding of processes on a scale that is not possible in standard offshore geophysical surveys.

  5. Investigating the response of Crane Glacier, Antarctic Peninsula to the disintegration of the Larsen B ice shelf using a 2-D flowline model

    NASA Astrophysics Data System (ADS)

    Campbell, A. J.; Hulbe, C. L.; Sergienko, O.

    2009-12-01

    Many of the glaciers flowing into the Larsen B ice shelf sped up and experienced front retreat following its March 2002 disintegration. Crane Glacier stands out among the fast responding glaciers for its dramatic increase in speed, from ~500 m/a to ~1500 m/a in its downstream reach, large surface lowering, and front retreat. Between march 2002 and early 2005, the glacier's calving front retreated by about 11.5 km to a location at which it has remained since that time. In order to investigate the physical processes that control the reaction of Crane Glacier to ice shelf disintegration, a flowline model has been developed. The model solves for the full momentum balance along the flowline using the finite element method and allows for basal sliding using a Budd type sliding relation. Model parameters are tuned to reproduce observation of surface velocity prior to ice shelf disintegration. Model can be applied diagnostically to examine instantaneous changes in boundary conditions or prognostically to evolve surface elevation over time. The instantaneous model response of the glacier to ice shelf removal produces surface velocities and thinning rates that agree well with observations. When the front position is modified to represent the steady position reached in 2005, the model again produces velocities similar to those observed on the glacier. A typical tidewater calving criterion can be used to predict the steady position toward which the front retreated. We conclude that the post-collapse speed up is facilitated by rapid basal sliding, which allows a small perturbation in vertical shearing to be amplified into a large velocity response. The pattern of glacier front retreat can be explained by a tidewater calving instability. These conclusions underscore the importance of basal sliding parametrizations in understanding observed changes in ice sheet outlet glaciers and modeling their future behavior. Correct representation of iceberg calving is also important.

  6. Impacts of sea ice retreat, thinning, and melt-pond proliferation on the summer phytoplankton bloom in the Chukchi Sea, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Palmer, Molly A.; Saenz, Benjamin T.; Arrigo, Kevin R.

    2014-07-01

    In 2011, a massive phytoplankton bloom was observed in the Chukchi Sea under first-year sea ice (FYI), an environment in which primary productivity (PP) has historically been low. In this paper, we use a 1-D biological model of the Chukchi shelf ecosystem, in conjunction with in situ chemical and physiological data, to better understand the conditions that facilitated the development of such an unprecedented bloom. In addition, to assess the effects of changing Arctic environmental conditions on net PP (NPP), we perform model runs with varying sea ice and snow thickness, timing of melt, melt ponds, and biological parameters. Results from model runs with conditions similar to 2011 indicate that first-year ice (FYI) with at least 10% melt pond coverage transmits sufficient light to support the growth of shade-adapted Arctic phytoplankton. Increasing pond fraction by 20% enhanced peak under-ice NPP by 26% and produced rates more comparable to those measured during the 2011 bloom, but there was no effect of further increasing pond fraction. One of the important consequences of large under-ice blooms is that they consume a substantial fraction of surface nutrients such that NPP is greatly diminished in the marginal ice zone (MIZ) following ice retreat, where NPP has historically been the highest. In contrast, in model runs with <10% ponds, no under-ice bloom formed, and although peak MIZ NPP increased by 18-30%, this did not result in higher total annual NPP. This suggests that under-ice blooms contribute importantly to total annual NPP. Indeed, in all runs exhibiting under-ice blooms, total annual NPP was higher than in runs with the majority of NPP based in open water. Consistent with this, in model runs where ice melted one month earlier, peak under-ice NPP decreased 30%, and annual NPP was lower as well. The only exception was the case with no sea ice in the region: a weak bloom in early May was followed by low but sustained NPP throughout the entire growth season (almost all of which occurred in deep, subsurface layers), resulting in higher total annual NPP than in cases with sea ice present. Our results also show that both ultraviolet radiation and zooplankton grazers reduce peak open water NPP but have little impact on under-ice NPP, which has important implications for the relative proportion of NPP concentrated in pelagic vs. benthic food webs. Finally, the shift in the relative amount of NPP occurring in under-ice vs. open-water environments may affect total ecosystem productivity.

  7. Detrital Carbonate Events on the Labrador Shelf, a 13 to 7 kyr Template for Freshwater Forcing From the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Jennings, A. E.; Andrews, J. T.

    2008-12-01

    A complex sequence of abrupt glacial advances and retreats punctuate the late phases of Laurentide Ice Sheet deglaciation. These episodes have been reconstructed from interpretation and mapping of glacial deposits on land and in marine basins proximal to the former ice margins in Hudson Strait, Hudson Bay, and the SE Baffin Island shelf. As these events likely produced pulses of freshwater discharge into the North Altantic, which may be responsible for rapid climate change, their timing and magnitude need to be understood. The timing of these events is well constrained by radiocarbon ages, but the ocean reservoir age in ice proximal areas is subject to very large uncertainties, making it difficult to determine calibrated ages for the glacial events so that they can be compared to other climate records. We suggest that the sequence of high detrital carbonate peaks in Holocene and Late Glacial sediments in the Cartwright Saddle of the Labrador shelf provides a template of the abrupt glacial events of the NE margin of the Laurentide Ice Sheet, particularly events that issued from Hudson Strait and Hudson Bay, but possibly including events in Baffin Bay. Once the Labrador Shelf was deglaciated and the local ice had retreated inland, the Cartwright Saddle was a distal trap for sediments released from Hudson Strait and other ice sheet outlets farther north as their sediments and meltwater were carried southwards by surface currents. Core MD99-2236 contains a sediment record beginning c. 13.9 cal ka. We assume a marine reservoir age for the Cartwright Saddle of 450 yrs, which is reasonable given the ice distal and oceanic position of the site. Carbonate was measured on average at a 30 yr time resolution. Carbonate values are elevated between 11.7 and 7 cal kyr BP, with six spikes exceeding 30 percent. Each spike corresponds to a light isotope spike in foraminifers, suggesting that each major spike is associated with a pulse of glacial meltwater. Elevated IRD counts associated with the carbonate spikes suggest that at least some of the meltwater was released by icebergs. Age estimates of these peaks are: 11.5, 10.6, 9.5, 9.1, 8.7, and 8.2 cal kyr BP, and their duration ranges between 50 and 200 years. A 'red bed' is associated with a subsidiary carbonate spike 8.57 cal ka, very close to the estimated age of the timing of the final outburst drainage of lakes Agassiz and Ojibway: about 8.47 cal ka BP. A lower carbonate spike at 11.1 cal ka is associated with a light isotope event. The carbonate record of MD99-2236 promises to be an important key to the timing and role of deglacial episodes in freshwater forcing on North Altantic climate.

  8. Hydrologic conditions and hazards in the Kennicott River basin, Wrangell-St. Elias National Park Preserve, Alaska

    USGS Publications Warehouse

    Rickman, R.L.; Rosenkrans, D.S.

    1997-01-01

    McCarthy, Alaska, is on the Kennicott River, about 1 mile from the terminus of Kennicott Glacier in the Wrangell-St. Elias National Park and Preserve. Most visitors to McCarthy and the park cross the West Fork Kennicott River using a hand-pulled tram and cross the East Fork Kennicott River on a temporary footbridge. Outburst floods from glacier-dammed lakes result in channel erosion, aggradation, and migration of the Kennicott River, which disrupt transportation links, destroy property, and threaten life. Hidden Creek Lake, the largest of six glacier-dammed lakes in the Kennicott River Basin, has annual outbursts that cause the largest floods on the Kennicott River. Outbursts from Hidden Creek Lake occur from early fall to mid-summer, and lake levels at the onset of the outbursts have declined between 1909 and 1995. Criteria for impending outbursts for Hidden Creek Lake include lake stage near or above 3,000 to 3,020 feet, stationary or declining lake stage, evidence of recent calving of large ice blocks from the ice margin, slush ice and small icebergs stranded on the lakeshore, and fresh fractures in the ice-margin region. The lower Kennicott Glacier has thinned and retreated since about 1860. The East and West Fork Kennicott River channels migrated in response to changes in the lower Kennicott Glacier. The largest channel changes occur during outburst floods from Hidden Creek Lake, whereas channel changes from the other glacier-dammed lake outbursts are small. Each year, the West Fork Kennicott River conveys a larger percentage of the Kennicott Glacier drainage than it did the previous year. Outburst floods on the Kennicott River cause the river stage to rise over a period of several hours. Smaller spike peaks have a very rapid stage rise. Potential flood magnitude was estimated by combining known maximum discharges from Hidden Creek Lake and Lake Erie outburst floods with a theoretical large regional flood. Flood hazard areas at the transportation corridor were delineated, and possible future geomorphological changes were hypothesized. McCarthy, Alaska, is on the Kennicott River, about 1 mile from the terminus of Kennicott Glacier in the Wrangell-St. Elias National Park and Preserve. Most visitors to McCarthy and the park cross the West Fork Kennicott River using a hand-pulled tram and cross the East Fork Kennicott River on a temporary footbridge. Outburst floods from glacier-dammed lakes result in channel erosion, aggradation, and migration of the Kennicott River, which disrupt transportation links, destroy property, and threaten life. Hidden Creek Lake, the largest of six glacier-dammed lakes in the Kennicott River Basin, has annual outbursts that cause the largest floods on the Kennicott River. Outbursts from Hidden Creek Lake occur from early fall to mid-summer, and lake levels at the onset of the outbursts have declined between 1909 and 1995. Criteria for impending outbursts for Hidden Creek Lake include lake stage near or above 3,000 to 3,020 feet, stationary or declining lake stage, evidence of recent calving of large ice blocks from the ice margin, slush ice and small icebergs stranded on the lakeshore, and fresh fractures in the ice-margin region. The lower Kennicott Glacier has thinned and retreated since about 1860. The East and West Fork Kennicott River channels migrated in response to changes in the lower Kennicott Glacier. The largest channel changes occur during outburst floods from Hidden Creek Lake, whereas channel changes from the other glacier-dammed lake outbursts are small. Each year, the West Fork Kennicott River conveys a larger percentage of the Kennicott Glacier drainage than it did the previous year. Outburst floods on the Kennicott River cause the river stage to rise over a period of several hours. Smaller spike peaks have a very rapid stage rise. Potential flood magnitude was estimated by combining known maximum discharges from Hidden Creek Lake and Lake Erie outburst floods with

  9. Observing Muostakh Island disappear: erosion of a ground-ice-rich coast in response to summer warming and sea ice reduction on the East Siberian shelf

    NASA Astrophysics Data System (ADS)

    Günther, F.; Overduin, P. P.; Baranskaya, A.; Opel, T.; Grigoriev, M. N.

    2013-08-01

    Observations of coastline retreat using contemporary very high resolution satellite and historical aerial imagery were compared to measurements of open water fractions and summer air temperatures. We analyzed seasonal and interannual variations of thawing-induced cliff top retreat (thermo-denudation) and marine abrasion (thermo-abrasion) on Muostakh Island in the southern central Laptev Sea. The island is composed of ground-ice-rich permafrost deposits of Ice Complex type that render it particularly susceptible to erosion along the coast, resulting in land loss. Based on topographic reference measurements during field campaigns, we generated digital elevation models using stereophotogrammetry, in order to block adjust and ortho-rectify aerial photographies from 1951 and GeoEye, QuickBird, WorldView-1, and WorldView-2 imagery from 2010 to 2012 for change detection. Coastline retreat for erosive segments ranged from -13 to -585 m and was -109 ± 81 m (-1.8 ± 1.3 m a-1) on average during the historical period. Current seasonal dynamics of cliff top retreat revealed rapid thermo-denudation rates of -10.2 ± 4.5 m a-1 in mid summer and -4.1 ± 2.0 m a-1 on average during the 2010-2012 observation period. Using sea ice concentration data from the Special Sensor Microwave Imager (SSM/I) and air temperature time series from Tiksi, we calculated seasonal duration available for thermo-abrasion, expressed as open water days, and for thermo-denudation, based on thawing degree days. Geomorphometric analysis revealed that total ground ice content on Muostakh is made up of equal amounts of intrasedimentary and macro ground ice, while its vertical hourglass distribution provides favorable local preconditions for subsidence and the acceleration of coastal thermo-erosion under intensifying environmental forcings. Our results showed a~close relationship between mean summer air temperature and coastal thermo-erosion rates, in agreement with observations made for various permafrost coastlines different from East Siberian Ice Complex coasts elsewhere in the Arctic. Seasonality and recent interannual variations of coastline retreat rates suggest that the combination of macro ground ice distribution in the ground and changes in enviromental forcing generate a cyclicity in coastal thermo-erosion, that is currently increasing in frequency.

  10. What happened to Larsen C?

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.; Larour, E. Y.; Scheuchl, B.; Khazendar, A.; Bamber, J. L.; Mouginot, J.

    2017-12-01

    In 2017, Larsen C experienced one of the largest calving events in the past century, retreating the ice front by 40 km. The rift that led to this calving event originated decades ago along the flank of Hollick-Kenyon Peninsula and stopped along a suture zone, but started progressing again in 2011 and especially 2014-2015, to eventually lead to the calving of A68. The retreat changed the ice front shape between Bawden Ice Rise and Gibbs Ice Rise from convex to concave, similar to what happened to Larsen B in the late 1990s and Larsen A in the 1980s. Following that retreat, Larsen B eventually collapsed in 2002. The calving is not driven by the traditional processes of viscous bending, hydrofracture, calving cliff failure, longitudinal stress stretching, necking of bottom crevasses joining with surface crevasses, but instead by fracture mechanics. Fracture would be facilitated by the melting of the ice mélange filling the rift, a thinning of the ice shelf, a melting of the heterogeneous marine ice column, or changes in the firn/ice column associated with warming. The ice shelf thinned from the top and below over the last decades; altimetry data from 1994 to 2014 suggesting a decrease in ice shelf thickness of 40-50 m near the zone of rupture. Changes in ocean temperature are relatively undocumented in this part of Antarctica. Air temperature has warmed by 2.4 degrees C over the last 3 decades with a return to colder conditions in recent years yet still much warmer than 30 years ago. We detect no significant change in ice shelf velocity from 2006 to 2017, including after the calving event. The calving front has now retreated within 20-30 km of the compressive arch. We analyze the ice mélange in between the rift with Operation IceBridge laser data from 2009 to 2016 and radio echo sounding data from OIB CreSIS sounder since 2009 to detect changes in ice mélange and marine ice composition. We conclude on how the loss of structural rigidity has lead - or not - to the propagation of the rift beyond its natural range in the mid 2010s and what magnitude ocean warming would have been necessary to explain this change. This work was performed under a contract with NASA Cryosphere Program.

  11. Variability and Trends in the Arctic Sea Ice Cover: Results from Different Techniques

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert

    2017-01-01

    Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at negative 3.88 percent decade and negative 4.37 percent decade, respectively, compared to an average of negative 4.36 percent decade and negative 4.57 percent decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.

  12. Warm ocean surface led to ice margin retreat in central-eastern Baffin Bay during the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Oksman, Mimmi; Weckström, Kaarina; Miettinen, Arto; Juggins, Stephen; Divine, Dmitry; Jackson, Rebecca; Korsgaard, Niels J.; Telford, Richard; Kucera, Michal

    2017-04-01

    The Greenland ice sheet stability is linked to fast-flowing ice streams that are influenced by sea surface temperatures (SSTs) at their front. One of the largest ice streams in West Greenland is the Jakobshavn Isbræ, which has been shown to have collapsed at ca. 12.2 kyr BP in the middle of the Younger Dryas (YD) cold period (12.9-11.7 kyr BP). The cause for this collapse is still unknown yet hypotheses, such as warm Atlantic water inflow, have been put forward to explain it. Here we present the first diatom-based high-resolution reconstruction of sea surface conditions in the central-eastern Baffin Bay between 14.0 and 10.2 kyr BP. The sea surface temperatures reveal warmer conditions beginning at ca. 13.4 kyr BP and leading to intensive calving and iceberg discharge from Jakobshavn Isbræ visible as increased sedimentation rates and deposition of coarse-grained material in our sediment stratigraphy. The warm YD ocean surface conditions in Baffin Bay are out of phase with the δ18O record from the North Greenland Ice Core Project (NGRIP) and other SST records from northern North-Atlantic. We show that the ocean has had significant interactions with the Greenland ice sheet in the past and emphasize its importance under the current warming of the North Atlantic.

  13. Diverse landscapes beneath Pine Island Glacier influence ice flow.

    PubMed

    Bingham, Robert G; Vaughan, David G; King, Edward C; Davies, Damon; Cornford, Stephen L; Smith, Andrew M; Arthern, Robert J; Brisbourne, Alex M; De Rydt, Jan; Graham, Alastair G C; Spagnolo, Matteo; Marsh, Oliver J; Shean, David E

    2017-11-20

    The retreating Pine Island Glacier (PIG), West Antarctica, presently contributes ~5-10% of global sea-level rise. PIG's retreat rate has increased in recent decades with associated thinning migrating upstream into tributaries feeding the main glacier trunk. To project future change requires modelling that includes robust parameterisation of basal traction, the resistance to ice flow at the bed. However, most ice-sheet models estimate basal traction from satellite-derived surface velocity, without a priori knowledge of the key processes from which it is derived, namely friction at the ice-bed interface and form drag, and the resistance to ice flow that arises as ice deforms to negotiate bed topography. Here, we present high-resolution maps, acquired using ice-penetrating radar, of the bed topography across parts of PIG. Contrary to lower-resolution data currently used for ice-sheet models, these data show a contrasting topography across the ice-bed interface. We show that these diverse subglacial landscapes have an impact on ice flow, and present a challenge for modelling ice-sheet evolution and projecting global sea-level rise from ice-sheet loss.

  14. Assessing the Response of Alaska's Glaciers to Post-Little Ice Age Climate Change

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.

    2001-12-01

    A comprehensive survey of the eleven mountain ranges and three island areas in Alaska that presently support glaciers was conducted to determine how glaciers in each area have responded to post-Little Ice Age (LIA) climate change. Today, glaciers cover 5 percent of Alaska, about 75,000 sq. km., range in elevation from 6,000 m to below sea level, and span latitudes from south of 55 degrees N to north of 69 degrees N. During the LIA, Alaskan glaciers expanded significantly, covering 10 percent more area than today. Many different types of data were used to construct baselines and determine glacier change. These include: published descriptions of glaciers (1794 - 2000), historic and modern maps (1794 - 2000), aerial photography (1926 - 2001), ground photography (1884 - 2001), airborne radar (1981 - 1991), satellite radar (1978 - 1998), space photography (1984 - 1994), multi-spectral satellite imagery (1972 - 2001), aerial reconnaissance and field observations by the author (1968 - 2001), and various types of proxy data. Data available varied for each region and glacier. Every mountain range and island group investigated is characterized by significant glacier retreat, thinning, and/or stagnation, especially at lower elevations. At some locations, glaciers have completely disappeared during the twentieth century. In other areas, retreat that started as early as the early eighteenth century, has continued into the twenty-first century. Ironically, in several areas, retreat is resulting in the number of glaciers is actually increasing, but the volume and area of ice is decreasing. The key survey findings are: ALEXANDER ARCHIPELAGO, KODIAK ISLAND, ALEUTIAN ISLANDS: every glacier examined showed evidence of thinning and retreat. Some have disappeared since last being mapped in the mid-twentieth century; COAST MOUNTAINS, ST. ELIAS MOUNTAINS, CHUGACH MOUNTAINS, KENAI MOUNTAINS, WRANGELL MOUNTAINS, ALASKA RANGE, AND THE ALEUTIAN RANGE: more than 95 percent of glaciers ending below an elevation of 1,500 m are retreating, thinning, and/or stagnating. Some advancing glaciers have tidewater termini. The two largest glaciers, Bering and Malaspina Glaciers, are thinning and retreating, losing several cubic kilometers of ice each year to melting and calving; TALKEETNA MOUNTAINS, AHKLUN-WOOD RIVER MOUNTAINS, KIGLUAIK MOUNTAINS, AND THE BROOKS RANGE: every glacier examined is retreating. Some disappeared during the twentieth century. Glaciers at higher elevations show little or no change. Perhaps, at these locations, regional climate change has not resulted in temperatures being elevated to a level where they impact existing glacier ice. Increases in precipitation may also be compensating for increases in melting. Throughout Alaska, in response to post-Little Ice Age climate change, all but a few glaciers that descent below an elevation of 1,500 m have thinned, stagnated, and/or retreated. Of the nearly 700 named Alaskan glaciers, less than a dozen are currently advancing.

  15. Friis Hills Drilling Project - Coring an Early to mid-Miocene terrestrial sequence in the Transantarctic Mountains to examine climate gradients and ice sheet variability along an inland-to-offshore transect

    NASA Astrophysics Data System (ADS)

    Lewis, A. R.; Levy, R. H.; Naish, T.; Gorman, A. R.; Golledge, N.; Dickinson, W. W.; Kraus, C.; Florindo, F.; Ashworth, A. C.; Pyne, A.; Kingan, T.

    2015-12-01

    The Early to mid-Miocene is a compelling interval to study Antarctic ice sheet (AIS) sensitivity. Circulation patterns in the southern hemisphere were broadly similar to present and reconstructed atmospheric CO2 concentrations were analogous to those projected for the next several decades. Geologic records from locations proximal to the AIS are required to examine ice sheet response to climate variability during this time. Coastal and offshore drill core records recovered by ANDRILL and IODP provide information regarding ice sheet variability along and beyond the coastal margin but they cannot constrain the extent of inland retreat. Additional environmental data from the continental interior is required to constrain the magnitude of ice sheet variability and inform numerical ice sheet models. The only well-dated terrestrial deposits that register early to mid-Miocene interior ice extent and climate are in the Friis Hills, 80 km inland. The deposits record multiple glacial-interglacial cycles and fossiliferous non-glacial beds show that interglacial climate was warm enough for a diverse biota. Drifts are preserved in a shallow valley with the oldest beds exposed along the edges where they terminate at sharp erosional margins. These margins reveal drifts in short stratigraphic sections but none is more than 13 m thick. A 34 m-thick composite stratigraphic sequence has been produced from exposed drift sequences but correlating beds in scattered exposures is problematic. Moreover, much of the sequence is buried and inaccessible in the basin center. New seismic data collected during 2014 reveal a sequence of sediments at least 50 m thick. This stratigraphic package likely preserves a detailed and more complete sedimentary sequence for the Friis Hills that can be used to refine and augment the outcrop-based composite stratigraphy. We aim to drill through this sequence using a helicopter-transportable diamond coring system. These new cores will allow us to obtain continuous measurements on unweathered material through the terrestrial sequence. Beds of tephra are exposed in outcrop and we expect to encounter these key age markers in the cored sequence. These new high quality, well-dated terrestrial data will be directly compared to marine cores to provide environmental data across a broad onshore-offshore transect.

  16. A Century of Retreat at Portage Glacier, South-Central Alaska

    USGS Publications Warehouse

    Kennedy, Ben W.; Trabant, Dennis C.; Mayo, Lawrence R.

    2006-01-01

    Introduction: The Portage Glacier, in south-central Alaska, is viewed by thousands of visitors annually who come to the U.S. Forest Service Begich, Boggs Visitor Center located on the road system between Anchorage and Whittier, Alaska. During the past century, the terminus of the glacier has retreated nearly 5 kilometers to its present location (fig. 1). Like other glaciers that terminate in water, such as Columbia Glacier near Valdez or Mendenhall Glacier near Juneau, Portage Glacier has experienced accelerated retreats in recent decades that likely were initially triggered by climate change begun at the end of the Little Ice Age in the mid-1800s and subsequently controlled in recent history primarily by calving of the glacier terminus. Photographic records of the terminus covering 1914 until present day track the patterns of retreat. These data, coupled with USGS climate information collected from the southern end of the ice field, provide insight to the patterns of retreat that might be observed in the future.

  17. A Detailed Geophysical Investigation of the Grounding of Henry Ice Rise, with Implications for Holocene Ice-Sheet Extent.

    NASA Astrophysics Data System (ADS)

    Wearing, M.; Kingslake, J.

    2017-12-01

    It is generally assumed that since the Last Glacial Maximum the West Antarctic Ice Sheet (WAIS) has experienced monotonic retreat of the grounding line (GL). However, recent studies have cast doubt on this assumption, suggesting that the retreat of the WAIS grounding line may have been followed by a significant advance during the Holocene in the Weddell and Ross Sea sectors. Constraining this evolution is important as reconstructions of past ice-sheet extent are used to spin-up predictive ice-sheet models and correct mass-balance observations for glacial isostatic adjustment. Here we examine in detail the formation of the Henry Ice Rise (HIR), which ice-sheet model simulations suggest played a key role in Holocene ice-mass changes in the Weddell Sea sector. Observations from a high-resolution ground-based, ice-penetrating radar survey are best explained if the ice rise formed when the Ronne Ice Shelf grounded on a submarine high, underwent a period of ice-rumple flow, before the GL migrated outwards to form the present-day ice rise. We constrain the relative chronology of this evolution by comparing the alignment and intersection of isochronal internal layers, relic crevasses, surface features and investigating the dynamic processes leading to their complex structure. We also draw analogies between HIR and the neighbouring Doake Ice Rumples. The date of formation is estimated using vertical velocities derived with a phase-sensitive radio-echo sounder (pRES). Ice-sheet models suggest that the formation of the HIR and other ice rises may have halted and reversed large-scale GL retreat. Hence the small-scale dynamics of these crucial regions could have wide-reaching consequences for future ice-sheet mass changes and constraining their formation and evolution further would be beneficial. One stringent test of our geophysics-based conclusions would be to drill to the bed of HIR to sample the ice for isotopic analysis and the bed for radiocarbon analysis.

  18. Calving Geometry of Thwaites Glacier Linked to Semi-brittle Ice Dynamics

    NASA Astrophysics Data System (ADS)

    Logan, L. C.; Lavier, L.; Choi, E.; Tan, E.; Catania, G. A.; Holt, J.

    2016-12-01

    In the coming decades the linkage between ice dynamics, basal melt, and calving will play a central role in the flow of Thwaites Glacier, which has undergone vast and recent retreat. We explore this connection using a 3D, transient, thermomechanical ice flow model under different basal melt scenarios. Our use of a semi-brittle ice rheology enables the time-dependent development and tracking of surface and basal crevasses that determine the calving rate at this location. With the use of adaptive re-meshing, we are able to simulate the glacier's retreat response to different boundary forcings. We show that the resulting characteristic pinch-and-swell model geometries in the floating tongue compare well with airborne radar data acquired across the grounding line and floating tongue of Thwaites Glacier. These geometric features may be reproduced using this semi-brittle rheology, and further, are linked directly to the calving rate of Thwaites Glacier (and others). The use of semi-brittle rheology on decadal time scales may help provide constraints on the near-term future behavior of glaciers vulnerable to ocean-induced retreat, as this rheology targets the complex interaction of ice failure, basal melt, and flow.

  19. From the front

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Stephen

    The causes of recent dynamic thinning of Greenland's outlet glaciers have been debated. Realistic simulations suggest that changes at the marine fronts of these glaciers are to blame, implying that dynamic thinning will cease once the glaciers retreat to higher ground. For the last decade, many outlet glaciers in Greenland that terminate in the ocean have accelerated, thinned, and retreated. To explain these dynamic changes, two hypotheses have been discussed. Atmospheric warming has increased surface melting and may also have increased the amount of meltwater reaching the glacier bed, increasing lubrication at the base and hence the rate of glaciermore » sliding. Alternatively, a change in the delicate balance of forces where the glacier fronts meet the ocean could trigger the changes. Faezeh Nick and colleagues5 present ice-sheet modeling experiments that mimic the observations on Helheim glacier, East Greenland, and suggest that the dynamic behaviour of outlet glaciers follows from perturbations at their marine fronts. Greenland's ice sheet loses mass partly through surface melting and partly through fast flowing outlet glaciers that connect the vast plateau of inland ice with the ocean. Earlier ice sheet models have failed to reproduce the dynamic variability exhibited by ice sheets over time. It has therefore not been possible to distinguish with confidence between basal lubrication from surface meltwater and changes at the glaciers' marine fronts as causes for the observed changes on Greenland's outlet glaciers. But this distinction bears directly on future sea-level rise, the raison d'etre of much of modern-day glaciology: If the recent dynamic mass loss Greenland's outlet glaciers is linked to changing atmospheric temperatures, it may continue for as long as temperatures continue to increase. On the other hand, if the source of the dynamic mass loss is a perturbation at the ice-ocean boundary, these glaciers will lose contact with that perturbation after a finite amount of thinning and retreat. Therefore, the first hypothesis implies continued retreat of outlet glaciers into the foreseeable future, while the second does not -- provided the bedrock topography prohibits a connection between the retreating glacier and the ocean. Nick and coauthors test the physical mechanisms implied in each hypotbesis in an innovative ice-flow model, and use that model to try to match a time series of observations from Helheim glacier, one of Greenland's three largest outlet glaciers. Along with many observations, the simulations strongly support the contention that the recent retreat of Greenland's outlet glaciers is the result of changes at their marine fronts.Further, the simulations confirm the earlier hypotheses that bedrock topography largely controlled Helheim glacier's rapid acceleration and retreat in 2004 and 2005, and its deceleration and stabilization in 2006. Finally, the current work implies that if requirements of observational data (high-resolution bed topography) and computational resources (fine computational grid resolution) can be met, improved predictive capability for ice-sheet models is attainable. With respect to the concerns raised by the IPCC, this study signals progress.« less

  20. Characterising Late-Holocene glacier variability in the southern tropical Andes

    NASA Astrophysics Data System (ADS)

    Bromley, G.; Winckler, G.; Hall, B. L.; Schaefer, J. M.

    2011-12-01

    Accurate resolution of both the timing and magnitude of Late-Holocene climate events, such as the Little Ice Age, is vital in order to test different hypotheses for the causes and propagation of such climate variability. However, in contrast to higher latitudes, well-dated records from the tropics are relatively rare and the overall climatic structure of the last millennium remains unresolved. Much of this uncertainty stems from difficulties associated with radiocarbon dating in these dry, often high-altitude environments, a situation that now is being addressed through the application and refinement of cosmogenic surface-exposure methods. We present detailed Late-Holocene moraine records, resolved with radiocarbon and surface-exposure dating, from sites across the Andes of southern Peru. Specifically, we describe glacial records from both the arid Western Cordillera, where glaciation is limited by moisture availability, and the humid Eastern Cordillera, where ablation is controlled primarily by air temperature. In both locations, the most recent advance is marked by two to three unweathered terminal moraines located several hundred metres beyond the modern ice margins. Our chronology indicates that, while the advance occurred broadly in step with the classic 'Little Ice Age', the maximum glacial extent in southern Peru was achieved relatively early on and that the 18th and 19th centuries were dominated by glacier retreat. In a broader temporal context, our data also confirm that, in contrast to northern temperate latitudes, the event in southern Peru was the most recent significant interruption in a progressive Holocene retreat. The consistency in glacier response between the different climate zones suggests (i) that this pattern of Late-Holocene climate variability was of at least regional extent and (ii) that temperature fluctuations were the primary driving mechanism.

  1. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica.

    PubMed

    Cochran, James R; Tinto, Kirsty J; Bell, Robin E

    2015-05-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β , of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Abbot Ice Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the ice sheet Bellingshausen plate boundary is located near the base of continental slope and rise.

  2. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    PubMed Central

    Cochran, James R; Tinto, Kirsty J; Bell, Robin E

    2015-01-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5–1.7 with 80–100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Key Points: Abbot Ice Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the ice sheet Bellingshausen plate boundary is located near the base of continental slope and rise PMID:26709352

  3. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions.

    PubMed

    Hillenbrand, Claus-Dieter; Smith, James A; Hodell, David A; Greaves, Mervyn; Poole, Christopher R; Kender, Sev; Williams, Mark; Andersen, Thorbjørn Joest; Jernas, Patrycja E; Elderfield, Henry; Klages, Johann P; Roberts, Stephen J; Gohl, Karsten; Larter, Robert D; Kuhn, Gerhard

    2017-07-05

    Glaciological and oceanographic observations coupled with numerical models show that warm Circumpolar Deep Water (CDW) incursions onto the West Antarctic continental shelf cause melting of the undersides of floating ice shelves. Because these ice shelves buttress glaciers feeding into them, their ocean-induced thinning is driving Antarctic ice-sheet retreat today. Here we present a multi-proxy data based reconstruction of variability in CDW inflow to the Amundsen Sea sector, the most vulnerable part of the West Antarctic Ice Sheet, during the Holocene epoch (from 11.7 thousand years ago to the present). The chemical compositions of foraminifer shells and benthic foraminifer assemblages in marine sediments indicate that enhanced CDW upwelling, controlled by the latitudinal position of the Southern Hemisphere westerly winds, forced deglaciation of this sector from at least 10,400 years ago until 7,500 years ago-when an ice-shelf collapse may have caused rapid ice-sheet thinning further upstream-and since the 1940s. These results increase confidence in the predictive capability of current ice-sheet models.

  4. Early Paleozoic paleogeography of the northern Gondwana margin: new evidence for Ordovician-Silurian glaciation

    NASA Astrophysics Data System (ADS)

    Semtner, A.-K.; Klitzsch, E.

    1994-12-01

    During the Early Paleozoic, transgressions and the distribution of sedimentary facies on the northern Gondwana margin were controlled by a regional NNW-SSE to almost north-south striking structural relief. In Early Silurian times, a eustatic highstand enabled the sea to reach its maximum southward extent. The counterclockwise rotation of Gondwana during the Cambrian and Early Ordovician caused the northern Gondwana margin to shift from intertropical to southern polar latitudes in Ordovician times. Glacial and periglacial deposits are reported from many localities in Morocco, Algeria, Niger, Libya, Chad, Sudan, Jordan and Saudi Arabia. The Late Ordovician glaciation phase was followed by a period of a major glacioeustatic sea-level rise in the Early Silurian due to the retreat of the ice-cap. As a consequence of the decreasing water circulation in the basin centers (Central Arabia, Murzuk- and Ghadames basins), highly bituminous euxinic shales were deposited. These shales are considered to be the main source rock of Paleozoic oil and gas deposits in parts of Saudi Arabia, Libya and Algeria. The following regression in the southern parts of the Early Silurian sea was probably caused by a second glacial advance, which was mainly restricted to areas in Chad, Sudan and Niger. Evidence for glacial activity and fluvioglacial sedimentation is available from rocks overlying the basal Silurian shale in north-east Chad and north-west Sudan. The Early Silurian ice advance is considered to be responsible for the termination of euxinic shale deposition in the basin centers.

  5. Distribution of Arctic and Pacific copepods and their habitat in the northern Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Sasaki, Hiroko; Matsuno, Kohei; Fujiwara, Amane; Onuka, Misaki; Yamaguchi, Atsushi; Ueno, Hiromichi; Watanuki, Yutaka; Kikuchi, Takashi

    2016-08-01

    The advection of warm Pacific water and the reduction in sea ice in the western Arctic Ocean may influence the abundance and distribution of copepods, a key component of food webs. To quantify the factors affecting the abundance of copepods in the northern Bering and Chukchi seas, we constructed habitat models explaining the spatial patterns of large and small Arctic and Pacific copepods separately. Copepods were sampled using NORPAC (North Pacific Standard) nets. The structures of water masses indexed by principle component analysis scores, satellite-derived timing of sea ice retreat, bottom depth and chlorophyll a concentration were integrated into generalized additive models as explanatory variables. The adequate models for all copepods exhibited clear continuous relationships between the abundance of copepods and the indexed water masses. Large Arctic copepods were abundant at stations where the bottom layer was saline; however they were scarce at stations where warm fresh water formed the upper layer. Small Arctic copepods were abundant at stations where the upper layer was warm and saline and the bottom layer was cold and highly saline. In contrast, Pacific copepods were abundant at stations where the Pacific-origin water mass was predominant (i.e. a warm, saline upper layer and saline and a highly saline bottom layer). All copepod groups showed a positive relationship with early sea ice retreat. Early sea ice retreat has been reported to initiate spring blooms in open water, allowing copepods to utilize more food while maintaining their high activity in warm water without sea ice and cold water. This finding indicates that early sea ice retreat has positive effects on the abundance of all copepod groups in the northern Bering and Chukchi seas, suggesting a change from a pelagic-benthic-type ecosystem to a pelagic-pelagic type.

  6. Change and Variability in East Antarctic Sea Ice Seasonality, 1979/80–2009/10

    PubMed Central

    Massom, Robert; Reid, Philip; Stammerjohn, Sharon; Raymond, Ben; Fraser, Alexander; Ushio, Shuki

    2013-01-01

    Recent analyses have shown that significant changes have occurred in patterns of sea ice seasonality in West Antarctica since 1979, with wide-ranging climatic, biological and biogeochemical consequences. Here, we provide the first detailed report on long-term change and variability in annual timings of sea ice advance, retreat and resultant ice season duration in East Antarctica. These were calculated from satellite-derived ice concentration data for the period 1979/80 to 2009/10. The pattern of change in sea ice seasonality off East Antarctica comprises mixed signals on regional to local scales, with pockets of strongly positive and negative trends occurring in near juxtaposition in certain regions e.g., Prydz Bay. This pattern strongly reflects change and variability in different elements of the marine “icescape”, including fast ice, polynyas and the marginal ice zone. A trend towards shorter sea-ice duration (of 1 to 3 days per annum) occurs in fairly isolated pockets in the outer pack from∼95–110°E, and in various near-coastal areas that include an area of particularly strong and persistent change near Australia's Davis Station and between the Amery and West Ice Shelves. These areas are largely associated with coastal polynyas that are important as sites of enhanced sea ice production/melt. Areas of positive trend in ice season duration are more extensive, and include an extensive zone from 160–170°E (i.e., the western Ross Sea sector) and the near-coastal zone between 40–100°E. The East Antarctic pattern is considerably more complex than the well-documented trends in West Antarctica e.g., in the Antarctic Peninsula-Bellingshausen Sea and western Ross Sea sectors. PMID:23705008

  7. Change and variability in East antarctic sea ice seasonality, 1979/80-2009/10.

    PubMed

    Massom, Robert; Reid, Philip; Stammerjohn, Sharon; Raymond, Ben; Fraser, Alexander; Ushio, Shuki

    2013-01-01

    Recent analyses have shown that significant changes have occurred in patterns of sea ice seasonality in West Antarctica since 1979, with wide-ranging climatic, biological and biogeochemical consequences. Here, we provide the first detailed report on long-term change and variability in annual timings of sea ice advance, retreat and resultant ice season duration in East Antarctica. These were calculated from satellite-derived ice concentration data for the period 1979/80 to 2009/10. The pattern of change in sea ice seasonality off East Antarctica comprises mixed signals on regional to local scales, with pockets of strongly positive and negative trends occurring in near juxtaposition in certain regions e.g., Prydz Bay. This pattern strongly reflects change and variability in different elements of the marine "icescape", including fast ice, polynyas and the marginal ice zone. A trend towards shorter sea-ice duration (of 1 to 3 days per annum) occurs in fairly isolated pockets in the outer pack from∼95-110°E, and in various near-coastal areas that include an area of particularly strong and persistent change near Australia's Davis Station and between the Amery and West Ice Shelves. These areas are largely associated with coastal polynyas that are important as sites of enhanced sea ice production/melt. Areas of positive trend in ice season duration are more extensive, and include an extensive zone from 160-170°E (i.e., the western Ross Sea sector) and the near-coastal zone between 40-100°E. The East Antarctic pattern is considerably more complex than the well-documented trends in West Antarctica e.g., in the Antarctic Peninsula-Bellingshausen Sea and western Ross Sea sectors.

  8. Rift in Antarctic Glacier: a Unique Chance to Study Ice Shelf Retreat

    NASA Technical Reports Server (NTRS)

    Howat, Ian M.; Jezek, Ken; Studinger, Michael; Macgregor, Joseph A.; Paden, John; Floricioiu, Dana; Russell, Rob; Linkswiler, Matt; Dominguez, Roseanne T.

    2012-01-01

    It happened again, but this time it was caught in the act. During the last week of September 2011 a large transverse rift developed across thefloating terminus of West Antarcticas PineIsland Glacier, less than 5 years after its lastlarge calving event, in 2007 (Figure 1). PineIsland Glaciers retreat has accelerated substantiallyin the past 2 decades, and it is nowlosing 50 gigatons of ice per year, or roughly 25 of Antarcticas total annual contributionto sea level rise [Rignot et al., 2008]. The glaciers recent accelerated retreat is likely triggered by ocean warming and increased submarine melting. As such, it is of significant interest to glaciologists and of heightened societal relevance.

  9. Seasonal variability in whale encounters in the Western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Thiele, Deborah; Chester, Edwin T.; Moore, Sue E.; Širovic, Ana; Hildebrand, John A.; Friedlaender, Ari S.

    2004-08-01

    Cetacean sighting surveys were conducted as part of nine multidisciplinary research cruises over late summer, autumn and winter of 2 years (2001-2003) during the Southern Ocean Global Ocean Ecosystems (SO GLOBEC) program. Sea-ice cover differed markedly between years, with apparent effects on cetacean distribution. No ice was present until late June in 2001, while the previous winter sea ice never fully retreated (>30% cover) during the 2002 or 2003 summer, thus increasing the proportion of thicker and more complex ice, including multi-year floes. Humpback (237 sightings; 537 individuals) and minke (103 sightings: 267 individuals) whales were the most commonly detected species. Data from seven comparable cruises were used to identify habitat for minke and humpback whales over five geographically distinct spatial divisions in the study area. In all years, both species were predominantly found in near coastal habitat, particularly in the fjords where complex habitat likely concentrated prey. In 2002 and 2003 the presence of sea ice provided additional feeding habitat, and the numbers of minkes (in winter) and humpbacks (late summer and autumn) in the area doubled compared with 2001. Humpbacks in particular were concentrated at the ice boundaries during late summer and autumn, while minke numbers increased in the winter that followed and occupied ice-covered areas along the entire shelf edge. Important resource sites for these species are mainly located in near-coastal areas and are used in all years, but when ice margins exist and intersect with resource sites they attract much larger numbers of animals due to the dynamics between sea ice and prey.

  10. Changing Groundwater and Lake Storage in the Americas from the Last Glacial Maximum to the Present Day

    NASA Astrophysics Data System (ADS)

    Callaghan, K. L.; Wickert, A. D.; Michael, L.; Fan, Y.; Miguez-Macho, G.; Mitrovica, J. X.; Austermann, J.; Ng, G. H. C.

    2017-12-01

    Groundwater accounts for 1.69% of the globe's water storage - nearly the same amount (1.74%) that is stored in ice caps and glaciers. The volume of water stored in this reservoir has changed over glacial-interglacial cycles as climate warms and cools, sea level rises and falls, ice sheets advance and retreat, surface topography isostatically adjusts, and patterns of moisture transport reorganize. During the last deglaciation, over the past 21000 years, all of these factors contributed to profound hydrologic change in the Americas. In North America, deglaciation generated proglacial lakes and wetlands along the isostatically-depressed margin of the retreating Laurentide Ice Sheet, along with extensive pluvial lakes in the desert southwest. In South America, changing patterns of atmospheric circulation caused regional and time-varying wetting and drying that led to fluctuations in water table levels. Understanding how groundwater levels change in response to these factors can aid our understanding of the effects of modern climate change on groundwater resources. Using a model that incorporates temporally evolving climate, topography (driven by glacial isostatic adjustment), ice extent, sea level, and spatially varying soil properties, we present our estimates of changes in total groundwater storage in the Americas over the past 21000 years. We estimate depth to water table at 500-year intervals and at a 30-arcsecond resolution. This allows a comparative assessment of changing groundwater storage volumes through time. The model has already been applied to the present day and has proven successful in estimating modern groundwater depths at a broad scale (Fan et al., 2013). We also assess changing groundwater-fed lakes, and compare model-estimated lake sizes and locations to paleorecords of these lakes. Our data- and model-integrated look back at the terminal Pleistocene provides an estimate of groundwater variability under extreme climate change. Preliminary results show changes in groundwater storage within the Americas on the order of tens of centimetres in units of equivalent global sea-level change.

  11. Coupled energy-balance/ice-sheet model simulations of the glacial cycle: A possible connection between terminations and terrigenous dust

    NASA Astrophysics Data System (ADS)

    Peltier, W. Richard; Marshall, Shawn

    1995-07-01

    We apply a coupled energy-balance/ice-sheet climate model in an investigation of northern hemisphere ice-sheet advance and retreat over the last glacial cycle. When driven only by orbital insolation variations, the model predicts ice-sheet advances over the continents of North America and Eurasia that are in good agreement with geological reconstructions in terms of the timescale of advance and the spatial positioning of the main ice masses. The orbital forcing alone, however, is unable to induce the observed rapid ice-sheet retreat, and we conclude that additional climatic feedbacks not explicitly included in the basic model must be acting. In the analyses presented here we have parameterized a number of potentially important effects in order to test their relative influence on the process of glacial termination. These include marine instability, thermohaline circulation effects, carbon dioxide variations, and snow albedo changes caused by dust loading during periods of high atmospheric aerosol concentration. For the purpose of these analyses the temporal changes in the latter two variables were inferred from ice core records. Of these various influences, our analyses suggest that the albedo variations in the ice-sheet ablation zone caused by dust loading may represent an extremely important ablation mechanism. Using our parameterization of "dirty" snow in the ablation zone we find glacial retreat to be strongly accelerated, such that complete collapse of the otherwise stable Laurentide ice sheet ensues. The last glacial maximum configurations of the Laurentide and Fennoscandian complexes are also brought into much closer accord with the ICE-3G reconstruction of Tushingham and Peltier (1991,1992) and the ICE-4G reconstruction of Peltier (1994) when this effect is reasonably introduced.

  12. Sediment transport drives tidewater glacier periodicity.

    PubMed

    Brinkerhoff, Douglas; Truffer, Martin; Aschwanden, Andy

    2017-07-21

    Most of Earth's glaciers are retreating, but some tidewater glaciers are advancing despite increasing temperatures and contrary to their neighbors. This can be explained by the coupling of ice and sediment dynamics: a shoal forms at the glacier terminus, reducing ice discharge and causing advance towards an unstable configuration followed by abrupt retreat, in a process known as the tidewater glacier cycle. Here we use a numerical model calibrated with observations to show that interactions between ice flow, glacial erosion, and sediment transport drive these cycles, which occur independent of climate variations. Water availability controls cycle period and amplitude, and enhanced melt from future warming could trigger advance even in glaciers that are steady or retreating, complicating interpretations of glacier response to climate change. The resulting shifts in sediment and meltwater delivery from changes in glacier configuration may impact interpretations of marine sediments, fjord geochemistry, and marine ecosystems.The reason some of the Earth's tidewater glaciers are advancing despite increasing temperatures is not entirely clear. Here, using a numerical model that simulates both ice and sediment dynamics, the authors show that internal dynamics drive glacier variability independent of climate.

  13. Wisconsinan and early Holocene glacial dynamics of Cumberland Peninsula, Baffin Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Margreth, Annina; Gosse, John C.; Dyke, Arthur S.

    2017-07-01

    Three glacier systems-an ice sheet with a large marine-based ice stream, an ice cap, and an alpine glacier complex-coalesced on Cumberland Peninsula during the Late Wisconsinan. We combine high-resolution mapping of glacial deposits with new cosmogenic nuclide and radiocarbon age determinations to constrain the history and dynamics of each system. During the Middle Wisconsinan (Oxygen Isotope Stage 3, OIS-3) the Cumberland Sound Ice Stream of the Laurentide Ice Sheet retreated well back into Cumberland Sound and the alpine ice retreated at least to fiord-head positions, a more significant recession than previously documented. The advance to maximal OIS-2 ice positions beyond the mouth of Cumberland Sound and beyond most stretches of coastline remains undated. Partial preservation of an over-ridden OIS-3 glaciomarine delta in a fiord-side position suggests that even fiord ice was weakly erosive in places. Moraines formed during deglaciation represent stillstands and re-advances during three major cold events: H-1 (14.6 ka), Younger Dryas (12.9-11.7 ka), and Cockburn (9.5 ka). Distinctly different responses of the three glacial systems are evident, with the alpine system responding most sensitively to Bølling-Allerød warming whereas the larger systems retreated mainly during Pre-Boreal warming. While the larger ice masses were mainly influenced by internal dynamics, the smaller alpine glacier system responded sensitively to local climate effects. Asymmetrical recession of the alpine glacier complex indicates topoclimatic control on deglaciation and perhaps migration of the accumulation area toward moisture source.

  14. Last deglaciation of the Svalbard/Barents Sea Ice Sheet - a swath bathymetric and sub-bottom seismic study from the Kveithola Trough

    NASA Astrophysics Data System (ADS)

    Rebesco, Michele; Liu, Yanguang; Camerlenghi, Angelo; Winsborrow, Monica; Sverre Laberg, Jan; Caburlotto, Andrea; Diviacco, Paolo; Accettella, Daniela; Sauli, Chiara; Wardell, Nigel

    2010-05-01

    Kveithola Trough, an E-W trending cross-shelf glacial trough in the NW Barents Sea, was surveyed for the first time during the EGLACOM cruise between 8th July and 4th August 2008 on board R/V OGS-Explora. EGLACOM (Evolution of a GLacial Arctic COntinental Margin: the southern Svalbard ice stream-dominated sedimentary system) project is the Italian contribution to the International Polar Year (IPY) Activity 367 (Neogene ice streams and sedimentary processes on high- latitude continental margins - NICE STREAMS). Such IPY activity included as well the Spanish SVAIS 2008 cruise on board BIO Hesperides. EGLACOM data acquisition, focused on the Storfjorden Fan and Kveithola Trough, included a multi-channel seismic (MCS) reflection survey and the simultaneous collection of swath bathymetry and sub-bottom CHIRP profiles. Swath bathymetry in the Kveithola Trough shows that the seafloor is characterized by E-W trending mega-scale glacial lineations (MSGL). These include large-scale ridges about 2 km wide and 15 m high as well as smaller grooves about 100 m wide and a few metres deep. Such MSGL record the fast flow of an ice stream draining the Svalbard/Barents Sea Ice Sheet (SBSIS) during the Last Glacial Maximum (LGM). MSGL are overprinted by transverse sediment ridges about 15 km apart which give rise to a staircase long profile of the trough. Such transverse ridges are interpreted as grounding-zone wedges (GZW) formed by deposition of unconsolidated, saturated subglacial till during ice stream retreat. Sub-bottom (CHIRP) and multi-channel reflection seismic data show that the morphology is controlled by stacked sets of lensoidal transparent units (tills) overlain by a draping glaciomarine unit up to over 15 m thick. Formed during temporary stillstands in grounding-zone position before complete deglaciation, GZW ridges are diagnostic of episodic retreat. Our data allow the reconstruction of deglaciation in the Spitsbergen Bank area, with each stage during deglaciation recorded by deposition of a GZW. Three independent lines of reasoning suggest that an ice cap persisted on Spitsbergen Bank for some thousand years and lasted much longer than those that fed the adjacent glacial troughs: 1) the freshness of the morphology in Kveithola Trough compared to that of adjacent Storfjorden and Bear Island troughs; 2) the volume of sediment in the GZW ridges compared to the small catchment area; 3) preliminary assessment of the stratigraphic position of debris flow deposits on the continental slope. The 15 m of sedimentary drape deposited on top of GZW ridges contains a high-resolution palaeoclimatic record of the last thousand years, which accumulated at a very high average sedimentation rate. Sampling (through drilling) of the thin glaciomarine sediments between the till lenses of the successive GZW ridges may allow the dating of deglaciation phases in the Barents Sea.

  15. Rapid thinning and collapse of lake calving Yakutat Glacier, Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Trussel, Barbara Lea

    Glaciers around the globe are experiencing a notable retreat and thinning, triggered by atmospheric warming. Tidewater glaciers in particular have received much attention, because they have been recognized to contribute substantially to global sea level rise. However, lake calving glaciers in Alaska show increasingly high thinning and retreat rates and are therefore contributors to sea level rise. The number of such lake calving systems is increasing worldwide as land-terminating glaciers retreat into overdeepened basins and form proglacial lakes. Yakutat Glacier in Southeast Alaska is a low elevation lake calving glacier with an accumulation to total area ratio of 0.03. It experienced rapid thinning of 4.43 +/- 0.06 m w.e. yr-1 between 2000-2010 and terminus retreat of over 15 km since the beginning of the 20th century. Simultaneously, adjacent Yakutat Icefield land-terminating glaciers thinned at lower but still substantial rates (3.54 +/- 0.06 m w.e. yr -1 for the same time period), indicating lake calving dynamics help drive increased mass loss. Yakutat Glacier sustained a ˜3 km long floating tongue for over a decade, which started to disintegrate into large tabular icebergs in 2010. Such floating tongues are rarely seen on temperate tidewater glaciers. The floating ice was weakened by surface ablation, which then allowed rifts to form and intersect. Ice velocity from GPS measurements showed that the ice on the floating tongue was moving substantially faster than grounded ice, which was attributed to rift opening between the floating and grounded ice. Temporal variations of rift opening were determined from time-lapse imagery, and correlated well with variations in ice speeds. Larger rift opening rates occurred during and after precipitation or increased melt episodes. Both of these events increased subglacial discharge and could potentially increase the subaqueous currents towards the open lake and thus increase drag on the ice underside. Simultaneously, increased water input may cause lake level in rifts to rise resulting in faster rift propagation and spreading. Similar formation and disintegration of floating tongues are expected to occur in the glacier's future, as the ice divide lies below the current lake level. In addition to calving retreat, Yakutat Glacier is rapidly thinning, which lowers its surface and therefore exposes the ice to warmer air temperatures causing increased thinning. Even under a constant climate, this positive feedback mechanism would force Yakutat Glacier to quickly retreat and mostly disappear. Simulations of future mass loss were run for two scenarios, keeping the current climate and forcing it with a projected warming climate. Results showed that over 95% of the glacier ice will have disappeared by 2120 or 2070 under a constant vs projected climate, respectively. For the first few decades, the glacier will be able to maintain its current thinning rate by retreating and thus losing areas of lowest elevation. However, once higher elevations have thinned substantially, the glacier cannot compensate any more to maintain a constant thinning rate and transfers into an unstable run-away situation. To stop this collapse and transform Yakutat Glacier into equilibrium in its current geometry, air temperatures would have to drop by 1.5 K or precipitation would have to increase by more than 50%. An increase in precipitation alone is unlikely to lead to a stable configuration, due to the very small current accumulation area.

  16. Tropical Andean and African glacier extent through the Holocene assessed with proglacial in situ 14C and 10Be measurements

    NASA Astrophysics Data System (ADS)

    Vickers, A. C.; Shakun, J. D.; Goehring, B. M.; Kelly, M. A.; Jackson, M. S.; Jomelli, V.

    2017-12-01

    We present measurements of the in situ cosmogenic radionuclides 14C and 10Be from recently exposed proglacial bedrock samples at the margin of the Quelccaya Ice Cap in Peru (n=5) and the Rwenzori mountains in Africa (n=3) to calculate cumulative exposure, burial, and erosion histories at these sites over the Holocene. The Holocene history (11 ka - present) of tropical glaciers gives important context to their observed retreat over the last century, insight into their sensitivity to climate forcing, and constraints on past climate change. Paired in situ 14C/10Be methods are used to exploit the multiple controls on nuclide concentrations and their differing half-lives (5730 years vs 1.38 Myr). In particular, the concentrations of both 14C and 10Be increase with exposure and decrease with glacial erosion; however,14C decreases not only due to glacial erosion, but also in appreciable amounts due to radio-decay during periods of burial as short as 800 years. Our results show similarities at both sites, with moderately high 10Be concentrations but 14C/10Be ratios approximately one-third of the production value, suggesting that both sites experienced several thousand years of exposure followed by burial during the mid-to-late Holocene. Our results are consistent with recently exposed subfossil plant remains at the Quelccaya margin that imply ice extended beyond its current position since 5.2 ka We will also present 10Be ages of several boulders from probable Little Ice Age moraines of the Charquini Sur Glacier in Bolivia (n=2) and Ritacuba Negro Glacier in Colombia (n=4) to better understand the timing of Little Ice Age advances in the tropical Andes.

  17. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, James R.; Tinto, Kirsty J.; Bell, Robin E.

    2015-05-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. The copyright line for this article was changed on 5 JUN 2015 after original online publication.

  18. Understanding global climate change: paleoclimate perspective from the world's highest mountains.

    PubMed

    Thompson, Lonnie G

    2010-06-01

    Glaciers are among the world's best recorders of, and first responders to, natural and anthropogenic climate change and provide a time perspective for current climatic and environmental variations. Over the last 50 years such records have been recovered from the polar regions as well as low-latitude, high-elevation ice fields. Analyses of these ice cores and of the glaciers from which they have been drilled have yielded three lines of evidence for past and present abrupt climate change: (1) the temperature and precipitation histories recorded in the glaciers as revealed by the climate records extracted from the ice cores; (2) the accelerating loss of the glaciers themselves; and (3) the uncovering of ancient fauna and flora from the margins of the glaciers as a result of their recent melting, thus illustrating the significance of the current ice loss. The current melting of high-altitude, low-latitude ice fields is consistent with model predictions for a vertical amplification of temperature in the tropics. The ongoing rapid retreat of the world's mountain glaciers, as well as the margins of the Greenland and Antarctic ice sheets, is not only contributing to global sea level rise, but also threatening fresh-water supplies in many of the most populous regions. More recently, strong evidence has appeared for the acceleration of the rate of ice loss in the tropics, which especially presents a clear and present danger to water supplies for at-risk populations in South America and Asia. The human response to this issue, however, is not so clear, for although the evidence from both data and models becomes more compelling, the rate of global CO2 emissions continues to accelerate. Climatologically, we are in unfamiliar territory, and the world's ice cover is responding dramatically. The loss of glaciers, which can be viewed as the world's water towers, threatens water resources that are essential for hydroelectric power, crop irrigation, municipal water supplies, and even tourism. As these glaciers are disappearing, we are also losing very valuable paleoclimate archives.

  19. The Sea-Ice Floe Size Distribution

    NASA Astrophysics Data System (ADS)

    Stern, H. L., III; Schweiger, A. J. B.; Zhang, J.; Steele, M.

    2017-12-01

    The size distribution of ice floes in the polar seas affects the dynamics and thermodynamics of the ice cover and its interaction with the ocean and atmosphere. Ice-ocean models are now beginning to include the floe size distribution (FSD) in their simulations. In order to characterize seasonal changes of the FSD and provide validation data for our ice-ocean model, we calculated the FSD in the Beaufort and Chukchi seas over two spring-summer-fall seasons (2013 and 2014) using more than 250 cloud-free visible-band scenes from the MODIS sensors on NASA's Terra and Aqua satellites, identifying nearly 250,000 ice floes between 2 and 30 km in diameter. We found that the FSD follows a power-law distribution at all locations, with a seasonally varying exponent that reflects floe break-up in spring, loss of smaller floes in summer, and the return of larger floes after fall freeze-up. We extended the results to floe sizes from 10 m to 2 km at selected time/space locations using more than 50 high-resolution radar and visible-band satellite images. Our analysis used more data and applied greater statistical rigor than any previous study of the FSD. The incorporation of the FSD into our ice-ocean model resulted in reduced sea-ice thickness, mainly in the marginal ice zone, which improved the simulation of sea-ice extent and yielded an earlier ice retreat. We also examined results from 17 previous studies of the FSD, most of which report power-law FSDs but with widely varying exponents. It is difficult to reconcile the range of results due to different study areas, seasons, and methods of analysis. We review the power-law representation of the FSD in these studies and discuss some mathematical details that are important to consider in any future analysis.

  20. Sea ice and millennial-scale climate variability in the Nordic seas 90 kyr ago to present

    PubMed Central

    Hoff, Ulrike; Rasmussen, Tine L.; Stein, Ruediger; Ezat, Mohamed M.; Fahl, Kirsten

    2016-01-01

    In the light of rapidly diminishing sea ice cover in the Arctic during the present atmospheric warming, it is imperative to study the distribution of sea ice in the past in relation to rapid climate change. Here we focus on glacial millennial-scale climatic events (Dansgaard/Oeschger events) using the sea ice proxy IP25 in combination with phytoplankton proxy data and quantification of diatom species in a record from the southeast Norwegian Sea. We demonstrate that expansion and retreat of sea ice varies consistently in pace with the rapid climate changes 90 kyr ago to present. Sea ice retreats abruptly at the start of warm interstadials, but spreads rapidly during cooling phases of the interstadials and becomes near perennial and perennial during cold stadials and Heinrich events, respectively. Low-salinity surface water and the sea ice edge spreads to the Greenland–Scotland Ridge, and during the largest Heinrich events, probably far into the Atlantic Ocean. PMID:27456826

  1. Sea ice and millennial-scale climate variability in the Nordic seas 90 kyr ago to present.

    PubMed

    Hoff, Ulrike; Rasmussen, Tine L; Stein, Ruediger; Ezat, Mohamed M; Fahl, Kirsten

    2016-07-26

    In the light of rapidly diminishing sea ice cover in the Arctic during the present atmospheric warming, it is imperative to study the distribution of sea ice in the past in relation to rapid climate change. Here we focus on glacial millennial-scale climatic events (Dansgaard/Oeschger events) using the sea ice proxy IP25 in combination with phytoplankton proxy data and quantification of diatom species in a record from the southeast Norwegian Sea. We demonstrate that expansion and retreat of sea ice varies consistently in pace with the rapid climate changes 90 kyr ago to present. Sea ice retreats abruptly at the start of warm interstadials, but spreads rapidly during cooling phases of the interstadials and becomes near perennial and perennial during cold stadials and Heinrich events, respectively. Low-salinity surface water and the sea ice edge spreads to the Greenland-Scotland Ridge, and during the largest Heinrich events, probably far into the Atlantic Ocean.

  2. Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability

    PubMed Central

    Jones, R. S.; Mackintosh, A. N.; Norton, K. P.; Golledge, N. R.; Fogwill, C. J.; Kubik, P. W.; Christl, M.; Greenwood, S. L.

    2015-01-01

    Outlet glaciers grounded on a bed that deepens inland and extends below sea level are potentially vulnerable to ‘marine ice sheet instability'. This instability, which may lead to runaway ice loss, has been simulated in models, but its consequences have not been directly observed in geological records. Here we provide new surface-exposure ages from an outlet of the East Antarctic Ice Sheet that reveal rapid glacier thinning occurred approximately 7,000 years ago, in the absence of large environmental changes. Glacier thinning persisted for more than two and a half centuries, resulting in hundreds of metres of ice loss. Numerical simulations indicate that ice surface drawdown accelerated when the otherwise steadily retreating glacier encountered a bedrock trough. Together, the geological reconstruction and numerical simulations suggest that centennial-scale glacier thinning arose from unstable grounding line retreat. Capturing these instability processes in ice sheet models is important for predicting Antarctica's future contribution to sea level change. PMID:26608558

  3. Quaternary geology of the Boston area: Glacial events from Lake Charles to Lake Aberjona

    USGS Publications Warehouse

    Stone, Byron D.; Lane, John W.

    2014-01-01

    The multiple-glacial and glaciomarine Quaternary history of the Boston, Massachusetts area has been known generally since the earliest studies of the then newly recognized glacial deposits described by Prof. Louis Agassiz in the late1840’s and fossil marine shells in the drift in the 1850’s. Attention then turned to possible glacial erosional effects on the preglacial bedrock physiography, as related to rock units and structure, and to the challenges of defining useful physical and lithic characteristics of the drift by Prof. W.O. Crosby and others, 1880-1900. The problems of deducing the relative stratigraphic order among such small, fossil-barren surficial sedimentary deposits, and extending knowledge gained from studies of postulated ancient glacial lakes to a regional understanding of the history of many lakes during the retreat of the ice sheet required field work and use of geologic maps. With the advent of modern topographic maps in the 1880’s, the early period of discovery included field studies of glacial lake deposits in local river basins in the Boston region, basins that drain northward, thereby creating glacial lake basins dammed by the ice margin as it retreated to the north. Guided by M.I.T. and Harvard professors W.O. Crosby, N.S. Shaler, J.B. Woodworth, W.M. Davis, and others in the 1880-1920 period, the first Quaternary glacial stratigraphers were students (e.g. Crosby and Grabau, 1896, Clapp, 1905, Fuller 1905, Goldthwaite 1906, Grabau, 1906, Taylor, Tight).

  4. Post-LGM grounding line and calving front translations of the West Antarctic Ice Sheet in the Whales Deep paleo-ice-stream trough, eastern Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    McGlannan, A. J.; Bart, P. J.; Chow, J.

    2016-12-01

    A large-area (2500 km2) multibeam survey of the Whales Deep paleo-ice-stream trough, eastern Ross Sea, Antarctica was acquired during NBP1502B. This sector of the continental shelf is important as it was covered by grounded and floating ice, which drained the central part of an expanded West Antarctic Ice Sheet (WAIS) during the last glacial cycle. The seafloor geomorphology shows a well-defined cluster of four back stepping grounding zone wedges (GZWs) that were deposited in a partly overlapping fashion on the middle continental shelf during WAIS retreat. These observations permit two end-member possibilities for how the WAIS grounding line and calving front vacated the trough. In the first scenario, each GZW represents successive landward shifts of the grounding line and calving front. In the second scenario, each GZW represents a large-scale retreat and re-advance of grounded and floating ice. To determine which of these two end-member scenarios most accurately describes WAIS retreat from this sector of Ross Sea, we evaluated a grid of kasten and piston cores. The core stations were selected on the basis of backstepping GZWs along the trough axis. Our core data analyses included an integration of visual core descriptions, x-ray images, grain size, water content, total organic carbon, shear strengths, and diatom assemblage data. Core data reveal a single transgressive succession from proximal diamict overlain by sub-ice-shelf and/or open-marine sediments. These data strongly support the first scenario, suggesting that an ice shelf remained continuously intact during the time that the grounding line successively moved from the shelf edge to the middle shelf by small-scale landward translations until the end of the fourth grounding event. Sedimentologic and diatom-assemblage data from the inner shelf show that only the last middle shelf grounding event ended with a long-distance retreat of grounded and then floating ice to south of the modern calving front.

  5. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    NASA Astrophysics Data System (ADS)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  6. Pedogenesis on ice (Invited)

    NASA Astrophysics Data System (ADS)

    Hodson, A. J.

    2010-12-01

    It is well known from ice cores that organic and mineral debris accumulates within glacier ice following atmospheric deposition. However, the concentrations of such debris are usually greatest upon the ice surface, especially at the margins of continental glaciers and ice sheets, where it forms mm-scale aggregate particles called “cryoconite”. According to the literature, cryoconite covers about 2 % of the ablation areas of glaciers outside Greenland and Antarctica, equivalent to a mass loading of ca. 25 g/m2. Of the great ice sheets not included in this figure, Greenland is the easiest to estimate, and new observations from the NE and SW sectors indicate mass loadings in the range 17 - 440 g/m2. Studies of cryoconite often report the presence of a significant biomass (usually 10^4 - 10^7 cells/g) that is capable of a wide range of biogeochemical functions. The first part of this presentation will therefore explore the contention that the formation of cryoconite represents the first stages of pedogenesis, resulting in the production of soil-type aggregates that inoculate glacial forefields following glacier retreat. Emphasis will be given to the relevant processes that result in aggregate formation, including rapid cell-mineral attachment within melting snowpacks and the slower, biological processes of cementation within thermodynamically stable habitats such as cryoconite holes. The second part of the presentation will use examples from Svalbard, Greenland and Antarctica to consider the carbon balance of the cryoconite during the longest phase of its life cycle: upon the ice. It will be demonstrated how the efficacy of photosynthesis is strongly influenced by thermodynamic conditions at or near this surface. Data from the Greenland and Antarctic ice sheets will show how thermal equilibration decouples variations in photosynthesis from variations in incident radiation over timescales > 1 d, resulting in an equitable, low-carbon economy for aggregates within deep cryoconite holes. Here rates of primary production can be low (e.g. average 2.2 µg C/g (cryoconite)/d in East Antarctica). However, upon maritime glaciers and perhaps parts of the Greenland Ice Sheet margin, high rates of sensible heat transfer maintain cryoconite aggregates close to or upon the ice surface, rendering a communal existence far less likely. This near-surface habitat enables higher rates of photosynthesis (e.g. average 17 µgC/g/d in Svalbard), but also means the probability of meltwater flushing from the ice surface is greatly increased.

  7. Greenland's Biggest Losers

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Hubbard, A.; Howat, I. M.; Csatho, B. M.; Decker, D. T.; Bates, R.; Tulaczyk, S. M.

    2010-12-01

    On 4 August, 2010, 275 square km of the front of the floating Petermann Glacier, far northwest Greenland, broke away. The glacier effectively retreated 15 km. Petermann has retreated 21 km since year 2000. Consulting available imagery, publications, and maps spanning the past century, we conclude that this is a retreat to a minimum extent in the observational record. This glacier is not the only ice are loser in Greenland. GRACE observations verify the concern of increased mass budget deficit. Retreat is ongoing at the 110 km wide Humboldt glacier and at the 23 km wide Zachariae ice stream. Humboldt, Zachariae, and Petermann (16 km wide) are among a handful of large marine-terminating outlets that have bedrock trenches that lead inland below sea level to the thick, interior reservoir of the ice sheet. Sleeping giants are awakening. Our area change survey of the 35 widest Greenland outlets indicates an annual marine-terminating glacier area loss rate in excess of 130 sq km per year. Here, we evaluate in this context the mechanisms for marine-terminating glacier retreat, dynamical responses to calving, and the apparent climate forcings. The work thus consults a suite of data sets, including: long-term meteorological station records; satellite-derived sea and land surface temperatures; satellite-derived sea ice extent; regional climate model output; oceanographic casts; time lapse cameras, surface elevation change, and tidal records. Cumulative area change at Greenland’s glacier top 5 “losers”. 2010 areas are measured ~1 month prior to the end of summer melt when the survey usually is made . We do not expect 2010 area changes to be much different using the future data. If anything, we expect the losses to be larger. Click here for a full resolution graphic.

  8. Antarctic Ice Sheet Grounding line migration monitoring using COSMO-SkyMed very short repeat-time SAR Interferometry.

    NASA Astrophysics Data System (ADS)

    Milillo, P.; Rignot, E. J.; Mouginot, J.; Scheuchl, B.; Morlighem, M.; Li, X.; Salzer, J. T.

    2016-12-01

    We employ data from the second generation of SAR systems e.g. the Italian COSMO-SkyMed constellation and the German TanDEM-X formation to monitor the characteristics of grounding line migration using short repeat-time interferometry and accurate InSAR DEM in the Amundsen Sea Embayment (ASE), West Antarctica. The ASE is a marine-based ice sheet with a retrograde bed containing enough ice to raise global sea level by 120 cm. Several studies have inferred the mechanical properties of portions of ASE using observationally constrained numerical models, but these studies offer only temporal snapshots of basal mechanics owing to a dearth of observational time series. Using 1-day CSK repeat pass data and TanDEM-X DEMs, we collected frequent, high-resolution grounding line measurements of Pine Island (PIG), Thwaites, Kohler and Smith glaciers spanning 2015-2016. We compare the results with ERS data spanning 1996-2011, and Sentinel-1a 2014-2015 data. We observe an ongoing, rapid 2km/yr grounding line retreat on Smith, 0.5 km/yr retreat on Pope, ongoing 1 km/yr retreat on Thwaites and PIG and a slight re-advance on Kohler since 2011. On PIG, the data reveal seawater infiltration at high tides over many km along the glacier flanks, significantly more than in 1996/2000. We attribute these infiltrations to the fast retreat of PIG over a rough bed. Such intrusion of warm water fuel the melting of basal ice at the grounding line, which provides an additional positive feedback to the glacier retreat not accounted for in models. We do not observe similar patterns on the other glaciers.

  9. Holocene Paleoceanographic Environments at the Chukchi-Alaskan Margin: Implications for Future Changes

    NASA Astrophysics Data System (ADS)

    Polyak, L.; Nam, S. I.; Dipre, G.; Kim, S. Y.; Ortiz, J. D.; Darby, D. A.

    2017-12-01

    The impacts of the North Pacific oceanic and atmospheric system on the Arctic Ocean result in accelerated sea-ice retreat and related changes in hydrography and biota in the western Arctic. Paleoclimatic records from the Pacific sector of the Arctic are key for understanding the long-term history of these interactions. As opposed to stratigraphically long but strongly compressed sediment cores recovered from the deep Arctic Ocean, sediment depocenters on the Chukchi-Alaskan margin yield continuous, medium to high resolution records formed since the last deglaciation. While early Holocene conditions were non-analogous to modern environments due to the effects of prolonged deglaciation and insufficiently high sea levels, mid to late Holocene sediments are more relevant for recent and modern climate variability. Notably, a large depocenter at the Alaskan margin has sedimentation rates estimated as high as a few millimeters per year, thus providing a decadal to near-annual resolution. This high accumulation can be explained by sediment delivery via the Alaskan Coastal Current originating from the Bering Sea and supposedly controlled by the Aleutian Low pressure center. Preliminary results from sediment cores recovering the last several centuries, along with a comparison with other paleoclimatic proxy records from the Arctic-North Pacific region, indicate a persistent role of the Aleutian Low in the Bering Strait inflow and attendant deposition. More proxy studies are underway to reconstruct the history of this circulation system and its relationship with sea ice extent. The expected results will improve our understanding of natural variability in oceanic and atmospheric conditions at the Chukchi-Alaskan margin, a critical area for modulating the Arctic climate change.

  10. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma

    NASA Astrophysics Data System (ADS)

    Golledge, Nicholas R.; Thomas, Zoë A.; Levy, Richard H.; Gasson, Edward G. W.; Naish, Timothy R.; McKay, Robert M.; Kowalewski, Douglas E.; Fogwill, Christopher J.

    2017-07-01

    The geometry of Antarctic ice sheets during warm periods of the geological past is difficult to determine from geological evidence, but is important to know because such reconstructions enable a more complete understanding of how the ice-sheet system responds to changes in climate. Here we investigate how Antarctica evolved under orbital and greenhouse gas conditions representative of an interglacial in the early Pliocene at 4.23 Ma, when Southern Hemisphere insolation reached a maximum. Using offline-coupled climate and ice-sheet models, together with a new synthesis of high-latitude palaeoenvironmental proxy data to define a likely climate envelope, we simulate a range of ice-sheet geometries and calculate their likely contribution to sea level. In addition, we use these simulations to investigate the processes by which the West and East Antarctic ice sheets respond to environmental forcings and the timescales over which these behaviours manifest. We conclude that the Antarctic ice sheet contributed 8.6 ± 2.8 m to global sea level at this time, under an atmospheric CO2 concentration identical to present (400 ppm). Warmer-than-present ocean temperatures led to the collapse of West Antarctica over centuries, whereas higher air temperatures initiated surface melting in parts of East Antarctica that over one to two millennia led to lowering of the ice-sheet surface, flotation of grounded margins in some areas, and retreat of the ice sheet into the Wilkes Subglacial Basin. The results show that regional variations in climate, ice-sheet geometry, and topography produce long-term sea-level contributions that are non-linear with respect to the applied forcings, and which under certain conditions exhibit threshold behaviour associated with behavioural tipping points.

  11. Surface water hydrology and the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.

    2016-12-01

    Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.

  12. Controls on subglacial patterns and depositional environments in western Ireland

    NASA Astrophysics Data System (ADS)

    Knight, J.

    2009-12-01

    In western Ireland, Late Devensian ice flow dynamics and resultant patterns of landforms and sediments reflect the interplay between internal (glaciological) forcing and external forcing by rapid climate changes centred on the adjacent Atlantic Ocean. This interplay can be best demonstrated where ice from climatically-sensitive mountain source regions flowed into surrounding lowlands, such as the Connemara region of west County Galway, western Ireland. Here, a semi-independent ice cap was present over the Twelve Bens mountains, and interacted with ice from the much larger regional ice sheet from central Ireland. Landform and sediment patterns in the flat lowland region (c. 100 km2 below 30 m asl) to the south of the Twelve Bens reflect elements of this ice interaction. In detail, landform and sediment distributions here are highly complex with marked spatial differences in patterns of sediment availability. Across much of the region, sculpted bedrock forms (whaleback and bedrock drumlin ridges, roches mountonnées, striae) reflect subglacial abrasion across the underlying igneous and metamorphic bedrock that forms a relatively flat and lake-dominated landscape. Glacigenic sediments are found only at or around ice-retreat margins, and within isolated bedrock valleys. Here, diamicton drumlins are relatively uncommon but yet must represent depositional conditions that are not reflected elsewhere in this ice sheet sector where subglacial sediments are generally absent. This paper explores the interrelationship between local and regional ice flows through their impact on spatial patterns of glacial landforms and sediments. The paper presents field data on the characteristics of bedrock forms (erosional) and diamicton drumlins (depositional). Subglacial sediments are described from drumlin outcrops at key sites around Connemara, which helps in the understanding of the evolution of the subglacial environment in response to ice interactions from different source regions.

  13. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 1. Model description and behavior

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.

    2012-06-01

    Antarctic ice shelves interact closely with the ocean cavities beneath them, with ice shelf geometry influencing ocean cavity circulation, and heat from the ocean driving changes in the ice shelves, as well as the grounded ice streams that feed them. We present a new coupled model of an ice stream-ice shelf-ocean system that is used to study this interaction. The model is capable of representing a moving grounding line and dynamically responding ocean circulation within the ice shelf cavity. Idealized experiments designed to investigate the response of the coupled system to instantaneous increases in ocean temperature show ice-ocean system responses on multiple timescales. Melt rates and ice shelf basal slopes near the grounding line adjust in 1-2 years, and downstream advection of the resulting ice shelf thinning takes place on decadal timescales. Retreat of the grounding line and adjustment of grounded ice takes place on a much longer timescale, and the system takes several centuries to reach a new steady state. During this slow retreat, and in the absence of either an upward-or downward-sloping bed or long-term trends in ocean heat content, the ice shelf and melt rates maintain a characteristic pattern relative to the grounding line.

  14. Pumice in the interglacial Whidbey Formation at Blowers Bluff, central Whidbey Island, WA, USA

    USGS Publications Warehouse

    Dethier, D.P.; Dragovich, J.D.; Sarna-Wojcicki, A. M.; Fleck, R.J.

    2008-01-01

    A new 40Ar/39Ar age of 128??9 ka and chemical analyses of pumice layers from interglacial alluvium at Blowers Bluff, Whidbey Island, WA, show that the deposits are part of the Whidbey Formation, a widespread, mainly subsurface unit. Glass chemistry of the dated dacitic pumice does not match any analyzed northern Cascade source, but upper Pleistocene dacites from Glacier Peak and early Pleistocene silicic rocks from the Kulshan caldera are chemically similar. The chemistry of pumiceous dacite in younger units, including the latest Pleistocene Partridge Gravel, is similar to that of the dated material. The deep troughs of the modern northern Puget lowland must have been filled during deposition of the Whidbey Formation, allowing volcanic-rich sediment to reach what is now Whidbey Island. Topographic analysis of LIDAR images demonstrates that extensive erosion occurred during latest Pleistocene ice retreat. The Partridge Gravel likely records subglacial fluvial erosion along an ice tunnel and ice-marginal deposition into adjacent marine waters. Pumice in the Partridge Gravel probably was reworked from stratigraphically and topographically lower deposits, including those at Blowers Bluff. ?? 2007 Elsevier Ltd and INQUA.

  15. Oceanic Forcing of Ice-Sheet Retreat: West Antarctica and More

    NASA Astrophysics Data System (ADS)

    Alley, Richard B.; Anandakrishnan, Sridhar; Christianson, Knut; Horgan, Huw J.; Muto, Atsu; Parizek, Byron R.; Pollard, David; Walker, Ryan T.

    2015-05-01

    Ocean-ice interactions have exerted primary control on the Antarctic Ice Sheet and parts of the Greenland Ice Sheet, and will continue to do so in the near future, especially through melting of ice shelves and calving cliffs. Retreat in response to increasing marine melting typically exhibits threshold behavior, with little change for forcing below the threshold but a rapid, possibly delayed shift to a reduced state once the threshold is exceeded. For Thwaites Glacier, West Antarctica, the threshold may already have been exceeded, although rapid change may be delayed by centuries, and the reduced state will likely involve loss of most of the West Antarctic Ice Sheet, causing >3 m of sea-level rise. Because of shortcomings in physical understanding and available data, uncertainty persists about this threshold and the subsequent rate of change. Although sea-level histories and physical understanding allow the possibility that ice-sheet response could be quite fast, no strong constraints are yet available on the worst-case scenario. Recent work also suggests that the Greenland and East Antarctic Ice Sheets share some of the same vulnerabilities to shrinkage from marine influence.

  16. Deglacial history of the Pensacola Mountains, Antarctica from glacial geomorphology and cosmogenic nuclide surface exposure dating

    NASA Astrophysics Data System (ADS)

    Bentley, M. J.; Hein, A. S.; Sugden, D. E.; Whitehouse, P. L.; Shanks, R.; Xu, S.; Freeman, S. P. H. T.

    2017-02-01

    The retreat history of the Antarctic Ice Sheet is important for understanding rapid deglaciation, as well as to constrain numerical ice sheet models and ice loading models required for glacial isostatic adjustment modelling. There is particular debate about the extent of grounded ice in the Weddell Sea embayment at the Last Glacial Maximum, and its subsequent deglacial history. Here we provide a new dataset of geomorphological observations and cosmogenic nuclide surface exposure ages of erratic samples that constrain the deglacial history of the Pensacola Mountains, adjacent to the present day Foundation Ice Stream and Academy Glacier in the southern Weddell Sea embayment. We show there is evidence of at least two glaciations, the first of which was relatively old and warm-based, and a more recent cold-based glaciation. During the most recent glaciation ice thickened by at least 450 m in the Williams Hills and at least 380 m on Mt Bragg. Progressive thinning from these sites was well underway by 10 ka BP and ice reached present levels by 2.5 ka BP, and is broadly similar to the relatively modest thinning histories in the southern Ellsworth Mountains. The thinning history is consistent with, but does not mandate, a Late Holocene retreat of the grounding line to a smaller-than-present configuration, as has been recently hypothesized based on ice sheet and glacial isostatic modelling. The data also show that clasts with complex exposure histories are pervasive and that clast recycling is highly site-dependent. These new data provide constraints on a reconstruction of the retreat history of the formerly-expanded Foundation Ice Stream, derived using a numerical flowband model.

  17. Changes in bacterioplankton community structure during early lake ontogeny resulting from the retreat of the Greenland Ice Sheet

    PubMed Central

    Peter, Hannes; Jeppesen, Erik; De Meester, Luc; Sommaruga, Ruben

    2018-01-01

    Retreating glaciers and ice sheets are among the clearest signs of global climate change. One consequence of glacier retreat is the formation of new meltwater-lakes in previously ice-covered terrain. These lakes provide unique opportunities to understand patterns in community organization during early lake ontogeny. Here, we analyzed the bacterial community structure and diversity in six lakes recently formed by the retreat of the Greenland Ice Sheet (GrIS). The lakes represented a turbidity gradient depending on their past and present connectivity to the GrIS meltwaters. Bulk (16S rRNA genes) and putatively active (16S rRNA) fractions of the bacterioplankton communities were structured by changes in environmental conditions associated to the turbidity gradient. Differences in community structure among lakes were attributed to both, rare and abundant community members. Further, positive co-occurrence relationships among phylogenetically closely related community members dominate in these lakes. Our results show that environmental conditions along the turbidity gradient structure bacterial community composition, which shifts during lake ontogeny. Rare taxa contribute to these shifts, suggesting that the rare biosphere has an important ecological role during early lakes ontogeny. Members of the rare biosphere may be adapted to the transient niches in these nutrient poor lakes. The directionality and phylogenetic structure of co-occurrence relationships indicate that competitive interactions among closely related taxa may be important in the most turbid lakes. PMID:29087379

  18. New details about the LGM extent and subsequent retreat of the West Antarctic Ice Sheet from the easternmost Amundsen Sea Embayment shelf

    NASA Astrophysics Data System (ADS)

    Klages, J. P.; Hillenbrand, C. D.; Kuhn, G.; Smith, J. A.; Graham, A. G. C.; Nitsche, F. O.; Frederichs, T.; Arndt, J. E.; Gebhardt, C.; Robin, Z.; Uenzelmann-Neben, G.; Gohl, K.; Jernas, P.; Wacker, L.

    2017-12-01

    In recent years several previously undiscovered grounding-zone wedges (GZWs) have been described within the Abbot-Cosgrove palaeo-ice stream trough on the easternmost Amundsen Sea Embayment shelf. These GZWs document both the Last Glacial Maximum (LGM; 26.5-19 cal. ka BP) grounding-line extent and the subsequent episodic retreat within this trough that neighbors the larger Pine Island-Thwaites trough to the west. Here we combine bathymetric, seismic, and geologic data showing that 1) the grounding line in Abbot Trough did not reach the continental shelf break at any time during the last glacial period, and 2) a prominent stacked GZW constructed from six individual wedges lying upon another was deposited 100 km upstream from the LGM grounding-line position. The available data allow for calculating volumes for most of these individual GZWs and for the entire stack. Sediment cores were recovered seawards from the outermost GZW in the trough, and from the individual wedges of the stacked GZW in order to define the LGM grounding-line extent, and provide minimum grounding-line retreat ages for the respective positions on the stacked GZW. We present implications of a grounded-ice free outer shelf throughout the last glacial period. Furthermore, we assess the significance of the grounding-line stillstand period recorded by the stacked GZW in Abbot Trough for the timing of post-LGM retreat of the West Antarctic Ice Sheet from the Amundsen Sea Embayment shelf.

  19. Changes in bacterioplankton community structure during early lake ontogeny resulting from the retreat of the Greenland Ice Sheet.

    PubMed

    Peter, Hannes; Jeppesen, Erik; De Meester, Luc; Sommaruga, Ruben

    2017-10-31

    Retreating glaciers and ice sheets are among the clearest signs of global climate change. One consequence of glacier retreat is the formation of new meltwater-lakes in previously ice-covered terrain. These lakes provide unique opportunities to understand patterns in community organization during early lake ontogeny. Here, we analyzed the bacterial community structure and diversity in six lakes recently formed by the retreat of the Greenland Ice Sheet (GrIS). The lakes represented a turbidity gradient depending on their past and present connectivity to the GrIS meltwaters. Bulk (16S rRNA genes) and putatively active (16S rRNA) fractions of the bacterioplankton communities were structured by changes in environmental conditions associated to the turbidity gradient. Differences in community structure among lakes were attributed to both, rare and abundant community members. Further, positive co-occurrence relationships among phylogenetically closely related community members dominate in these lakes. Our results show that environmental conditions along the turbidity gradient structure bacterial community composition, which shifts during lake ontogeny. Rare taxa contribute to these shifts, suggesting that the rare biosphere has an important ecological role during early lakes ontogeny. Members of the rare biosphere may be adapted to the transient niches in these nutrient poor lakes. The directionality and phylogenetic structure of co-occurrence relationships indicate that competitive interactions among closely related taxa may be important in the most turbid lakes.The ISME Journal advance online publication, 31 October 2017; doi:10.1038/ismej.2017.191.

  20. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    PubMed

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-11-10

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  1. A new Late Weichselian and Holocene marine chronology for the western Svalbard slope 30,000-0 cal years BP

    NASA Astrophysics Data System (ADS)

    Jessen, Simon P.; Rasmussen, Tine L.; Nielsen, Tove; Solheim, Anders

    2010-05-01

    Data have been compiled from eleven sediment cores from 76° to 80°N on the western Svalbard slope. The cores are from water depths between 630 and 1880 m and show clear similarities in lithology and magnetic susceptibility. All cores penetrated into mass transported sediments from glacigenic debris flow events and turbidity flow events. The mass transport probably occurred when the ice reached the shelf edge. The deposits date between 24,080 ± 150 and 23,550 ± 185 calibrated (cal) years BP. The records also include laminated, fine grained sediments interpreted as deposits from sediment-laden meltwater plumes dated between 14,780 ± 220 and 14,300 ± 260 cal years BP. In Holocene sediments a diatom-rich fine grained layer dates 10,100 ± 150 to 9840 ± 200 cal years BP. The eleven cores have been stacked into one record with absolute age control from 35 AMS 14C dates. Together with oxygen isotope stratigraphy and contents of ice rafted detritus the stacked record provides a useful chronology tool for cores on the western Svalbard slope. Our study improves the age control of earlier well documented glacial events and shows that the maximum glacial state and the onset of the deglaciation both occurred 2500-3000 years earlier than previously reconstructed for the western Svalbard margin. The results indicate that during the last 30,000 years advance and retreat of the Svalbard-Barents Sea Ice Sheet was closely linked to the flow of Atlantic Water and Polar Water over the margin.

  2. Evolution of ocean-induced ice melt beneath Zachariæ Isstrøm, Northeast Greenland combining observations and an ocean general circulation model from 1978 to present

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Menemenlis, D.; Millan, R.; Bjørk, A. A.; Khan, S. A.; Charolais, A.

    2017-12-01

    Zachariæ Isstrøm, a major ice stream in northeast Greenland, lost a large fraction of its ice shelf during the last decade. We study the evolution of subaqueous melting of its floating section from 1978 to present. The ice shelf melt rate depends on thermal forcing from warm, salty, subsurface ocean waters of Atlantic origin (AW), the mixing of AW with fresh, buoyant subglacial discharge at the calving margin, and the shape of the sub-ice-shelf cavity. Subglacial discharge doubled as a result of enhanced ice sheet runoff caused by warmer air temperatures. Ocean thermal forcing has increased due to enhanced advection of AW. Using an Eulerian method, MEaSUREs ice velocity, Operation IceBridge (OIB) ice thickness, and RACMO2.3 surface balance data, we evaluate the ice shelf melt rate in 1978, 1999 and 2010. The melt rate doubled from 1999 to 2010. Using a Lagrangian method with World View imagery, we map the melt rate in detail from 2011 to 2016. We compare the results with 2D simulations from the Massachusetts Institute of Technology general circulation model (MITgcm), at a high spatial resolution (20-m horizontal and 40-m vertical grid spacing), using OIB ice thickness and sub-ice-shelf cavity for years 1978, 1996, 2010 and 2011, combined with in-situ ocean temperature/salinity data from Ocean Melting Greenland (OMG) 2017. We find that winter melt rates are 2 3 times smaller than summer rates and melt rates increase by one order magnitude during the transition from ice shelf termination to near-vertical calving wall termination. As the last remaining bits of floating ice shelf disappear, ice-ocean interaction will therefore play an increasing role in driving the glacier retreat into its marine-based basin. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.

  3. Ice-Cliff Failure via Retrogressive Slumping

    NASA Astrophysics Data System (ADS)

    Parizek, B. R.; Christianson, K.; Alley, R. B.; Voytenko, D.; Vankova, I.; Dixon, T. H.; Holland, D.

    2016-12-01

    The magnitude and rate of future sea-level rise from warming-induced ice-sheet shrinkage remain notably uncertain. Removal of most of an ice sheet by surface melting alone requires centuries to millennia. Oceanic warming may accelerate loss by removing buttressing ice shelves and thereby speeding flow of non-floating ice into the ocean, but, until recently, modeled timescales for major dynamic ice-sheet shrinkage were centuries or longer. Beyond certain thresholds, however, observations show that warming removes floating ice shelves, leaving grounded ice cliffs from which icebergs break off directly. Cliffs higher than some limit experience rapid structural failure. Recent parameterization of this process in a comprehensive ice-flow model produced much faster sea-level rise from future rapid warming than in previous modeling studies, through formation and retreat of tall ice cliffs. Fully physical representations of this process are not yet available, however. Here, we use modeling guided by terrestrial radar data from Helheim Glacier, Greenland to show that cliffs will fail by slumping and trigger rapid retreat at a threshold height that, in crevassed ice with surface melting, may be only slightly above the 100-m maximum observed today, but may be roughly twice that (180-275 m) in mechanically-competent ice under well-drained or low-melt conditions.

  4. New deglacial and Holocene micropaleontological and geochemical records from the southern margin of the Svalbard Archipelago (Arctic Ocean)

    NASA Astrophysics Data System (ADS)

    Rigual-Hernández, Andrés.

    2010-05-01

    This study is presented in the context of the Spanish research project "The development of an Arctic ice stream-dominated sedimentary system: The southern Svalbard continental margin" (SVAIS), developed within the framework of the International Polar Year (IPY) Activity N. 367 (NICE STREAMS). Its main goal is to understand the evolution of glacial continental margins and their relationship with the changes in ice sheet dynamics induced by natural climatic changes, combining the geophysical data with the sediment record both collected during an oceanographic cruise in the Storfjorden area (SW Svalbard margin) in August 2007. This marine depositional system, dominated by an ice stream during the last glacial period, was selected due to its small size inducing a rapid response to climatic changes, and for the oceanographic relevance of the area for global ocean circulation. The results obtained aim to define the sedimentary architecture and morphology, and to provide more insight into the paleoceanographic and paleoclimatic evolution of the region. We specifically report on new micropaleontological and geochemical data obtained from the sediment cores. A preliminary age model indicates that the sediment sequences cover approximately the Last Deglaciation and the Holocene. Microfossils are generally well preserved, although the abundances of the different groups show marked shifts along the record. Low concentrations of coccolithophores, diatoms, planktic foraminifers and cysts of organic-walled dinoflagellates (dinocysts) are found at the lower half of the sequence (IRD-rich, coarser-grained sediments), and increase towards the Late Holocene (fine-grained bioturbated sediments). The Climatic Optimum is characterized by the warmest sea surface temperatures as estimated from the fossil assemblage, diverse transfer functions and biogeochemical proxies, and by high nutrient contents in the bottom waters shown by light carbon isotope values and high Cd/Ca ratios in benthic foraminifers. Dilution by terrigenous material, related to the retreat of the Barents Sea Ice Sheet in response to changes in the strength of the Atlantic-sourced, warm Western Spitsbergen Current, seems to be important in driving the abundances of microfossils and of organic compounds. The different stages of the Deglaciation and the Holocene and the associated modifications in the surface oceanic environment are documented by changes in the fossil assemblage composition of the different microfossil groups, while synchronous changes in the bottom water masses are registered by stable isotope and trace element analyses of benthic foraminifers.

  5. Investigating Long-term Behavior of Outlet Glaciers in Greenland

    NASA Technical Reports Server (NTRS)

    Csatho, Beata; vanderVeen, Kees; Schenk, Toni

    2005-01-01

    Repeat surveys by airborne laser altimetry in the 1990s have revealed significant thinning of outlet glaciers draining the interior of the Greenland Ice Sheet, with thinning rates up to several meters per year. To fully appreciate the significance of these recent glacier changes, the magnitude of retreat and surface lowering must be placed within the broader context of the retreat since the Last Glacial Maximum and, more significantly, of the retreat following the temporary glacier advance during the Little Ice Age (LIA). The LIA maximum stand is marked by trimlines, sharp boundaries between recently deglacifated unvegetated rocks, and vegetated surfaces at higher elevations. The objective of this project was to demonstrate the use of remote sensing data to map these trimlines and other glacial geomorphologic features.

  6. Coastal retreat and shoreface profile variations in the Canadian Beaufort Sea

    USGS Publications Warehouse

    Hequette, A.; Barnes, P.W.

    1990-01-01

    The coastline of the southern Canadian Beaufort Sea consists primarily of unconsolidated bluffs. Although the sea is ice-free for 3 months of the year and wave energy is restricted by pack ice, the coast is undergoing regional retreat with erosion rates as high as 10 m a-1 in some locations. Simple and multiple regression analyses were carried out to determine the degree of correlation between the mean retreat rate measured at various locations and the different parameters that may control shoreline recession. Sediment texture, ground-ice content, cliff height, wave energy and shoreface gradient revealed medium to poor correlation with erosion rates, showing that the recessive evolution of the coastline can not be explained solely by wave-induced and subaerial processes. The comparison of nearshore echo-sounding records from 1987 with bathymetry from 1971 showed substantial erosion (up to 1 m) of the submarine profile between 12 and 15 m of water. There is strong evidence that this erosion has been caused by sea ice gouging on the seafloor. From depths of 5 to 9 m, accretion has taken place, possibly induced by ice-push processes, and inshore of the 5 m isobath wave and current erosion of the shoreface has occurred. These results suggest that the erosion of the inner shelf by ice gouging drives the erosion observed inshore on the coastal bluffs and nearshore zone as the shoreface profile strives for a state of dynamic equilibrium. ?? 1990.

  7. Predicting uncertainty in future marine ice sheet volume using Bayesian statistical methods

    NASA Astrophysics Data System (ADS)

    Davis, A. D.

    2015-12-01

    The marine ice instability can trigger rapid retreat of marine ice streams. Recent observations suggest that marine ice systems in West Antarctica have begun retreating. However, unknown ice dynamics, computationally intensive mathematical models, and uncertain parameters in these models make predicting retreat rate and ice volume difficult. In this work, we fuse current observational data with ice stream/shelf models to develop probabilistic predictions of future grounded ice sheet volume. Given observational data (e.g., thickness, surface elevation, and velocity) and a forward model that relates uncertain parameters (e.g., basal friction and basal topography) to these observations, we use a Bayesian framework to define a posterior distribution over the parameters. A stochastic predictive model then propagates uncertainties in these parameters to uncertainty in a particular quantity of interest (QoI)---here, the volume of grounded ice at a specified future time. While the Bayesian approach can in principle characterize the posterior predictive distribution of the QoI, the computational cost of both the forward and predictive models makes this effort prohibitively expensive. To tackle this challenge, we introduce a new Markov chain Monte Carlo method that constructs convergent approximations of the QoI target density in an online fashion, yielding accurate characterizations of future ice sheet volume at significantly reduced computational cost.Our second goal is to attribute uncertainty in these Bayesian predictions to uncertainties in particular parameters. Doing so can help target data collection, for the purpose of constraining the parameters that contribute most strongly to uncertainty in the future volume of grounded ice. For instance, smaller uncertainties in parameters to which the QoI is highly sensitive may account for more variability in the prediction than larger uncertainties in parameters to which the QoI is less sensitive. We use global sensitivity analysis to help answer this question, and make the computation of sensitivity indices computationally tractable using a combination of polynomial chaos and Monte Carlo techniques.

  8. How well can the observed Arctic sea ice summer retreat and winter advance be represented in the NCEP Climate Forecast System version 2?

    NASA Astrophysics Data System (ADS)

    Collow, Thomas W.; Wang, Wanqiu; Kumar, Arun; Zhang, Jinlun

    2017-09-01

    The capability of a numerical model to simulate the statistical characteristics of the summer sea ice date of retreat (DOR) and the winter date of advance (DOA) is investigated using sea ice concentration output from the Climate Forecast System Version 2 model (CFSv2). Two model configurations are tested, the operational setting (CFSv2CFSR) which uses initial data from the Climate Forecast System Reanalysis, and a modified version (CFSv2PIOMp) which ingests sea ice thickness initialization data from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) and includes physics modifications for a more realistic representation of heat fluxes at the sea ice top and bottom. First, a method to define DOR and DOA is presented. Then, DOR and DOA are determined from the model simulations and observational sea ice concentration from the National Aeronautics and Space Administration (NASA). Means, trends, and detrended standard deviations of DOR and DOA are compared, along with DOR/DOA rates in the Arctic Ocean. It is found that the statistics are generally similar between the model and observations, although some regional biases exist. In addition, regions of new ice retreat in recent years are represented well in CFSv2PIOMp over the Arctic Ocean, in terms of both spatial extent and timing. Overall, CFSv2PIOMp shows a reduction in error throughout the Arctic. Based on results, it is concluded that the model produces a reasonable representation of the climatology and variability statistics of DOR and DOA in most regions. This assessment serves as a prerequisite for future predictability experiments.

  9. Results from ISOMIP+ and MISOMIP1, two interrelated marine ice sheet and ocean model intercomparison projects

    NASA Astrophysics Data System (ADS)

    Asay-Davis, X.; Galton-Fenzi, B.; Gwyther, D.; Jourdain, N.; Martin, D. F.; Nakayama, Y.; Seroussi, H. L.

    2016-12-01

    MISMIP+ (the third Marine Ice Sheet MIP), ISOMIP+ (the second Ice Shelf-Ocean MIP) and MISOMIP1 (the first Marine Ice Sheet-Ocean MIP) prescribe a set of idealized experiments for marine ice-sheet models, ocean models with ice-shelf cavities, and coupled ice sheet-ocean models, respectively. Here, we present results from ISOMIP+ and MISOMIP1 experiments using several ocean-only and coupled ice sheet-ocean models. Among the ocean models, we show that differences in model behavior are significant enough that similar results can only be achieved by tuning model parameters (the heat- and salt-transfer coefficients across the sub-ice-shelf boundary layer) for each model. This tuning is constrained by a desired mean melt rate in quasi-steady state under specified forcing conditions, akin to tuning the models to match observed melt rates. We compare the evolution of ocean temperature transects, melt rate, friction velocity and thermal driving between ocean models for the five ISOMIP+ experiments (Ocean0-4), which have prescribed ice-shelf topography. We find that melt patterns differ between models based on the relative importance of overturning strength and vertical mixing of temperature even when the models have been tuned to achieve similar melt rates near the grounding line. For the two MISOMIP1 experiments (IceOcean1 without dynamic calving and IceOcean2 with a simple calving parameterization), we compare temperature transects, melt rate, ice-shelf topography and grounded area across models and for several model configurations. Consistent with preliminary results from MISMIP+, we find that for a given coupled model, the use of a Coulomb-limited basal friction parameterization below grounded ice and the application of dynamic calving both significantly increase the rate of grounding-line retreat, whereas the rate of retreat appears to be less sensitive to the ice stress approximation (shallow-shelf approximation, higher-order, etc.). We show that models with similar mean melt rates, stress approximations and basal friction parameterizations produce markedly different rates of grounding-line retreat, and we investigate possible sources of these disparities (e.g. differences in coupling strategy or melt distribution).

  10. Regional Changes in the Sea Ice Cover and Ice Production in the Antarctic

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2011-01-01

    Coastal polynyas around the Antarctic continent have been regarded as sea ice factories because of high ice production rates in these regions. The observation of a positive trend in the extent of Antarctic sea ice during the satellite era has been intriguing in light of the observed rapid decline of the ice extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross Sea, strongly negative in the Bellingshausen/Amundsen Seas and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal ice zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic sea ice cover could be caused primarily by enhanced ice production in the Ross Sea that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate-of-increase in the net ice export of about 30,000 km2 per year. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in ice production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-ice shelf.

  11. The early rise and late demise of New Zealand’s last glacial maximum

    PubMed Central

    Rother, Henrik; Fink, David; Shulmeister, James; Mifsud, Charles; Evans, Michael; Pugh, Jeremy

    2014-01-01

    Recent debate on records of southern midlatitude glaciation has focused on reconstructing glacier dynamics during the last glacial termination, with different results supporting both in-phase and out-of-phase correlations with Northern Hemisphere glacial signals. A continuing major weakness in this debate is the lack of robust data, particularly from the early and maximum phase of southern midlatitude glaciation (∼30–20 ka), to verify the competing models. Here we present a suite of 58 cosmogenic exposure ages from 17 last-glacial ice limits in the Rangitata Valley of New Zealand, capturing an extensive record of glacial oscillations between 28–16 ka. The sequence shows that the local last glacial maximum in this region occurred shortly before 28 ka, followed by several successively less extensive ice readvances between 26–19 ka. The onset of Termination 1 and the ensuing glacial retreat is preserved in exceptional detail through numerous recessional moraines, indicating that ice retreat between 19–16 ka was very gradual. Extensive valley glaciers survived in the Rangitata catchment until at least 15.8 ka. These findings preclude the previously inferred rapid climate-driven ice retreat in the Southern Alps after the onset of Termination 1. Our record documents an early last glacial maximum, an overall trend of diminishing ice volume in New Zealand between 28–20 ka, and gradual deglaciation until at least 15 ka. PMID:25071171

  12. The early rise and late demise of New Zealand's last glacial maximum.

    PubMed

    Rother, Henrik; Fink, David; Shulmeister, James; Mifsud, Charles; Evans, Michael; Pugh, Jeremy

    2014-08-12

    Recent debate on records of southern midlatitude glaciation has focused on reconstructing glacier dynamics during the last glacial termination, with different results supporting both in-phase and out-of-phase correlations with Northern Hemisphere glacial signals. A continuing major weakness in this debate is the lack of robust data, particularly from the early and maximum phase of southern midlatitude glaciation (∼30-20 ka), to verify the competing models. Here we present a suite of 58 cosmogenic exposure ages from 17 last-glacial ice limits in the Rangitata Valley of New Zealand, capturing an extensive record of glacial oscillations between 28-16 ka. The sequence shows that the local last glacial maximum in this region occurred shortly before 28 ka, followed by several successively less extensive ice readvances between 26-19 ka. The onset of Termination 1 and the ensuing glacial retreat is preserved in exceptional detail through numerous recessional moraines, indicating that ice retreat between 19-16 ka was very gradual. Extensive valley glaciers survived in the Rangitata catchment until at least 15.8 ka. These findings preclude the previously inferred rapid climate-driven ice retreat in the Southern Alps after the onset of Termination 1. Our record documents an early last glacial maximum, an overall trend of diminishing ice volume in New Zealand between 28-20 ka, and gradual deglaciation until at least 15 ka.

  13. Fast Recession of a West Antarctic Glacier

    NASA Technical Reports Server (NTRS)

    Rignot, E. J.

    1998-01-01

    Satellite radar interferometry observations of Pine Island Glacier, in West Antarctica, reveal that the hinge-line position of this major ice stream retreated 1.2+/-0.2 km per year between 1992 and 1996, which in turn implies ice thinning at 3.5+/-0.6m ice per year.

  14. Holocene fluctuations of Quelccaya Ice Cap, Peru based on lacustrine and surficial geologic archives

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.

    2013-12-01

    Peru's Quelccaya Ice Cap (QIC; 13.9°S, 70.8°W, ~5200-5670 m asl) is an important site for understanding tropical paleoclimate, mainly because of annually layered ice cores that provide an ~1800 year long record of tropical paleoclimatic conditions (e.g., Thompson et al., 2013). Here, we present a detailed record of QIC fluctuations using surficial deposits and lake sediments that extend back to late glacial time. We compare the late Holocene records of QIC 10Be-dated moraines and ice core data with lake sediments from a nearby glacially fed lake to establish the framework we use to interpret a Holocene long sediment record from a glacially fed lake. We also examine sediments from a nearby non-glacial lake to constrain non-glacial clastic input. We collected two ~5 m-long sediment cores, one from Laguna Challpacocha, which is currently fed by QIC meltwater, and one from the Laguna Yanacocha, which has not received QIC meltwater since ~12.3 ka. Changes in magnetic susceptibility, loss on ignition, bulk density and X-ray fluorescence chemistry combined with 14C and 210Pb chronologies provide information about sediment transported to the lakes. Retreat from the late Holocene extent defined by the 10Be-dated moraine record (~0.52 ka) is contemporaneous with a sharp transition from organic to clastic sedimentation in the Challpacocha core at ~ 0.52 ka. This implies that glacially-sourced clastic sedimentation, as tracked by loss on ignition, Ti counts and bulk density, increased during ice cap recession. Based on these same proxy data, we suggest the following Holocene history of QIC: QIC receded from the Challpacocha basin by ~10.6 ka. Increased clastic sedimentation at 8.2 - 4.1, 3.6 - 2.7 ka and from 0.55 ka - present are interpreted as times of ice cap recession. The increased clastic sedimentation at ~8.2 - 4.1 ka is consistent with surficial deposits near the present-day ice margin that indicate that at ~7.0 - 4.6 ka QIC was smaller than at present (Buffen et al., 2009). Clastic sedimentation may reflect the glacier thermal regime. Relic plants now being uncovered by the receding QIC (Thompson et al., 2006, 2013) suggest advance of cold-based ice that did not produce significant meltwater or rock flour. Striations, also present on the landscape, indicate warm-based ice conditions, which would produce meltwater and rock flour. We suggest that these striations were likely produced during ice cap retreat. A small QIC during early and middle Holocene time and large QIC during late Holocene time is similar to the Holocene extents of many Northern Hemisphere glaciers and apparently follows the pattern of Northern Hemisphere summer insolation.

  15. Changes in ice-margin processes and sediment routing during ice-sheet advance across a marginal moraine

    USGS Publications Warehouse

    Knight, P.G.; Jennings, C.E.; Waller, R.I.; Robinson, Z.P.

    2007-01-01

    Advance of part of the margin of the Greenland ice sheet across a proglacial moraine ridge between 1968 and 2002 caused progressive changes in moraine morphology, basal ice formation, debris release, ice-marginal sediment storage, and sediment transfer to the distal proglacial zone. When the ice margin is behind the moraine, most of the sediment released from the glacier is stored close to the ice margin. As the margin advances across the moraine the potential for ice-proximal sediment storage decreases and distal sediment flux is augmented by reactivation of moraine sediment. For six stages of advance associated with distinctive glacial and sedimentary processes we describe the ice margin, the debris-rich basal ice, debris release from the glacier, sediment routing into the proglacial zone, and geomorphic processes on the moraine. The overtopping of a moraine ridge is a significant glaciological, geomorphological and sedimentological threshold in glacier advance, likely to cause a distinctive pulse in distal sediment accumulation rates that should be taken into account when glacial sediments are interpreted to reconstruct glacier fluctuations. ?? 2007 Swedish Society for Anthropology and Geography.

  16. Exploring tidewater glacier retreat using past and current observations at Columbia Glacier, Alaska. (Invited)

    NASA Astrophysics Data System (ADS)

    O'Neel, S.; Pfeffer, W. T.; Howat, I. M.; Conway, H.; Columbia Glacier Consortium

    2010-12-01

    Since fulfilling Austin Post’s prediction of impending retreat in the late 1970s, Columbia Glacier has repeatedly surprised both casual and careful observers with its ability for rapid change. Over the last three decades, Columbia Glacier has lost approximately 18 km of its original 66 km length, while thinning by approximately 50% at the present terminus. The total ice volume lost to the Gulf of Alaska Estimates upwards of 120 km3 constrain the total ice volume lost to the Gulf of Alaska. Recently, the terminus supported a ~1.5 km long floating tongue for over than a year, contradicting the common assumption that the mechanical properties of temperate ice prohibit flotation over sustained time intervals. The rich history of study offers an opportunity to better understand tidewater glacier retreat, and a valuable analog to the dynamic instability underway at several ice sheet outlet glaciers. Current research aims to improve processing resolution of existing aerial photographic data, while complimenting the 30-year photogrammetric record with a suite of field observations. Recent instrumentation includes: oblique time lapse and still imagery, semi-permanent GPS, airborne radar, mass balance, passive seismology and LiDAR. This presentation will focus on innovative methods developed in recent field seasons, sharing insight each has provided into the retreat process . 1The Columbia Glacier Consortium consists of: Fabian Walter (SIO), Kenichi Matsuoka (NPI), Ben Smith (UW), Ethan Welty (CU-Boulder), Chris Larsen (UAF), Dave Finnegan (CRREL), Dan McNamara (USGS), Yushin Ahn (OSU), Julie Markus (OSU), Adam LeWinter (EIS).

  17. Glacial History of the NE Antarctic Peninsula over centennial to millennial timescales

    NASA Astrophysics Data System (ADS)

    Davies, B. J.; Glasser, N. F.; Hambrey, M.; Carrivick, J.; Smellie, J.

    2010-12-01

    A detailed glacier inventory of 232 glaciers was undertaken of the northeast Antarctic Peninsula and James Ross Island for the first time. Glacier inventories provide representative, detailed and natural indications of the impacts of climate change. Documenting the continued response of ice shelf feeder glaciers after the collapse of the Prince Gustav Ice Shelf in 1997 is especially important for predicting future glacier behaviour in this region. James Ross Island has a relatively long history of glacier observations, and offers a unique opportunity to assess the ongoing impacts of a changing climate in a very sensitive part of the global system. This work classified and mapped the glaciers of James Ross Island and the northern Antarctic Peninsula for the first time, documenting change in extent and behaviour in 1988, 2001 and 2009, and characterising glacier response to ice shelf collapse. Glacier altitude, aspect, area, slope and rate of recession were among the indices' measured. James Ross Island is approximately 78% ice-covered, with ice-free terrain exhibiting characteristic permafrost and thermokarst landforms, including rock glaciers and ice-cored moraine. The island is dominated by the cold-based Mount Haddington Ice Cap, which feeds numerous polythermal elongate tidewater valley glaciers. The tidewater glaciers typically form extensive medial, lateral and terminal moraines. Initial inventory results show that ice-shelf feeder tidewater glaciers on the APIS have stabilised since the 1997 collapse of the Prince Gustav Ice Shelf, although recession continues. Of the non-ice-shelf tidewater glaciers, glacier recession has accelerated in the decade since 2001. Land-based valley glacier retreat has accelerated post 2001, in line with continued atmospheric warming. Climate relationships can be determined from altitude-aspect relationships, with glaciers on the drier eastern side of James Ross Island retreating fastest. Glacier mass balances are strongly influenced by glacier hypsometry, aspect, and slope, resulting in asymmetric retreat patterns.

  18. Does the Arctic Amplification peak this decade?

    NASA Astrophysics Data System (ADS)

    Martin, Torge; Haine, Thomas W. N.

    2017-04-01

    Temperatures rise faster in the Arctic than on global average, a phenomenon known as Arctic Amplification. While this is well established from observations and model simulations, projections of future climate (here: RCP8.5) with models of the Coupled Model Intercomparison Project phase 5 (CMIP5) also indicate that the Arctic Amplification has a maximum. We show this by means of an Arctic Amplification factor (AAF), which we define as the ratio of Arctic mean to global mean surface air temperature (SAT) anomalies. The SAT anomalies are referenced to the period 1960-1980 and smoothed by a 30-year running mean. For October, the multi-model ensemble-mean AAF reaches a maximum in 2017. The maximum moves however to later years as Arctic winter progresses: for the autumn mean SAT (September to November) the maximum AAF is found in 2028 and for winter (December to February) in 2060. Arctic Amplification is driven, amongst others, by the ice-albedo feedback (IAF) as part of the more general surface albedo feedback (involving clouds, snow cover, vegetation changes) and temperature effects (Planck and lapse-rate feedbacks). We note that sea ice retreat and the associated warming of the summer Arctic Ocean are not only an integral part of the IAF but are also involved in the other drivers. In the CMIP5 simulations, the timing of the AAF maximum coincides with the period of fastest ice retreat for the respective month. Presence of at least some sea ice is crucial for the IAF to be effective because of the contrast in surface albedo between ice and open water and the need to turn ocean warming into ice melt. Once large areas of the Arctic Ocean are ice-free, the IAF should be less effective. We thus hypothesize that the ice retreat significantly affects AAF variability and forces a decline of its magnitude after at least half of the Arctic Ocean is ice-free and the ice cover becomes basically seasonal.

  19. Simulating a Dynamic Antarctic Ice Sheet in the Early to Middle Miocene

    NASA Astrophysics Data System (ADS)

    Gasson, E.; DeConto, R.; Pollard, D.; Levy, R. H.

    2015-12-01

    There are a variety of sources of geological data that suggest major variations in the volume and extent of the Antarctic ice sheet during the early to middle Miocene. Simulating such variability using coupled climate-ice sheet models is problematic due to a strong hysteresis effect caused by height-mass balance feedback and albedo feedback. This results in limited retreat of the ice sheet once it has reached the continental size, as likely occurred prior to the Miocene. Proxy records suggest a relatively narrow range of atmospheric CO2 during the early to middle Miocene, which exacerbates this problem. We use a new climate forcing which accounts for ice sheet-climate feedbacks through an asynchronous GCM-RCM coupling, which is able to better resolve the narrow Antarctic ablation zone in warm climate simulations. When combined with recently suggested mechanisms for retreat into subglacial basins due to ice shelf hydrofracture and ice cliff failure, we are able to simulate large-scale variability of the Antarctic ice sheet in the Miocene. This variability is equivalent to a seawater oxygen isotope signal of ~0.5 ‰, or a sea level equivalent change of ~35 m, for a range of atmospheric CO2 between 280 - 500 ppm.

  20. Greenland ice sheet outlet glacier front changes: comparison of year 2008 with past years

    NASA Astrophysics Data System (ADS)

    Decker, D. E.; Box, J.; Benson, R.

    2008-12-01

    NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) imagery are used to calculate inter-annual, end of summer, glacier front area changes at 10 major Greenland ice sheet outlets over the 2000-2008 period. To put the recent 8 end of summer net annual changes into a longer perspective, glacier front position information from the past century are also incorporated. The largest MODIS-era area changes are losses/retreats; found at the relatively large Petermann Gletscher, Zachariae Isstrom, and Jakobshavn Isbrae. The 2007-2008 net ice area losses were 63.4 sq. km, 21.5 sq. km, and 10.9 sq. km, respectively. Of the 10 largest Greenland glaciers surveyed, the total net cumulative area change from end of summer 2000 to 2008 is -536.6 sq km, that is, an area loss equivalent with 6.1 times the area of Manhattan Is. (87.5 sq km) in New York, USA. Ice front advances are evident in 2008; also at relatively large and productive (in terms of ice discharge) glaciers of Helheim (5.7 sq km), Store Gletscher (4.9 sq km), and Kangerdlugssuaq (3.4 sq km). The largest retreat in the 2000-2008 period was 54.2 sq km at Jakobshavn Isbrae between 2002 and 2003; associated with a floating tongue disintegration following a retreat that began in 2001 and has been associated with thinning until floatation is reached; followed by irreversible collapse. The Zachariae Isstrom pro-glacial floating ice shelf loss in 2008 appears to be part of an average ~20 sq km per year disintegration trend; with the exception of the year 2006 (6.2 sq km) advance. If the Zachariae Isstrom retreat continues, we are concerned the largest ice sheet ice stream that empties into Zachariae Isstrom will accelerate, the ice stream front freed of damming back stress, increasing the ice sheet mass budget deficit in ways that are poorly understood and could be surprisingly large. By approximating the width of the surveyed glacier frontal zones, we determine and present effective glacier normalized length (L') changes that also will be presented at the meeting. The narrow Ingia Isbrae advanced in L' the most in 2006-2007 by 9.2 km. Jakobshavn decreased in L' the most in 2002-2003 by 8.0 km. Petermann decreased in length the most in 2000-2001, that is, L' = -5.3 km and again by L' = -3.9 km in 2007-2008. Helheim Gl. retreated in 2004-2005 by L' = -4.6 km and advanced 2005-2006 by L' = 4.4 km. The 10 glacier average L' change from end of summer 2000 end of summer 2008 was 0.6 km. Results from a growing list of glaciers will be presented. We attempt to interpret the observed glacier changes using glaciological theory and regional climate observations.

  1. Effects of physical constraints on the lability of POM during summer in the Ross Sea

    NASA Astrophysics Data System (ADS)

    Misic, Cristina; Covazzi Harriague, Anabella; Mangoni, Olga; Aulicino, Giuseppe; Castagno, Pasquale; Cotroneo, Yuri

    2017-02-01

    The 0-200 m surface layer of the Ross Sea was studied during summer 2014 to investigate the lability of the particulate organic matter (POM) in response to physical parameters. With the use of satellite information, we selected three zones, characterised by different physical setting: a northern offshore area, crossing the summer-polynya area of the Ross Sea (hereafter called ROME 1), a more coastal area next to the Terra Nova Bay polynya (ROME 2); a southern offshore area, towards the Ross Ice Shelf (ROME 3). Ice-maps showed that the seasonal ice retreat had already occurred in early December for most of the stations. Statistical analysis of the quantitative and qualitative characteristics of the POM pointed to significant differences between the stations, especially in the upper mixed layer (UML). A comparison with previous studies showed that the localised pulses of POM accumulation in the UML were similar to those recorded at the highly productive marginal ice zones, providing notable trophic support to the ecosystem. The UML, although rather thin and easily subjected to alterations, confirmed its pivotal role in the ecosystem dynamics. A POM quality favourable to consumers was highlighted at several stations in ROME 1 and ROME 3. Reduced trophic support was, instead, found in ROME 2. Limited POM consumption where deep-water formation takes place would increase the POM role in the transfer of C to the depths.

  2. Extreme rates of riverbank erosion of the high bluff formed by the ice-rich syngenetic permafrost (yedoma), Itkillik River, Northern Alaska

    NASA Astrophysics Data System (ADS)

    Kanevskiy, M. Z.; Shur, Y.; Fortier, D.; Jorgenson, T.; Stephani, E.; Strauss, J.

    2013-12-01

    Riverbank erosion in areas underlain by ice-rich permafrost is strongly affected by the processes of thawing of ground ice, which include (1) thermal erosion, and (2) thermal denudation. Thermal erosion is a process of combined thermal and mechanical action of moving water, which results in simultaneous thawing of frozen soil and its removal by water. Thermal erosion can cause block collapse of eroded banks. Thermal denudation is a process of thawing of frozen soils exposed in the bluff due to solar energy and consequent removal of thawed soils by gravity. Studies of riverbank and coastal erosion revealed that the highest rates of erosion are typical of bluffs composed by yedoma (ice- and organic-rich syngenetically frozen silty deposits). Yedoma deposits can be up to 50 m thick, and they contain huge ice wedges up to 10 m wide. Since 2006, we have studied the process of riverbank erosion of the 35 m high exposure of yedoma along the Itkillik River in northern Alaska. Based on five measurements of the areas occupied by wedge ice in panoramic photographs taken in 2006, 2007, 2011, and 2012, the average wedge-ice volume makes 61% of the entire exposed bluff. The total volumetric ground ice content of the Itkillik yedoma, including wedge, segregated and pore ice, is 85%. We detect three main stages of the riverbank erosion for the study site and other similar sites in the areas of ice-rich permafrost: (1) thermal erosion combined with thermal denudation, (2) thermal denudation, and (3) slope stabilization. The first stage includes formation of thermoerosional niches; development of sub-vertical cracks and block-fall collapse of cornices; and thawing and disintegration of blocks of ground ice and frozen soil in the water. All these processes are accompanied by thermal denudation of the exposed bluff. On August 16, 2007, a big portion of the bluff fell down along the crack sub-parallel to the bluff. As a result, the vertical wall more than 65 m long entirely formed by the wedge ice was exposed. This block-fall affected the area of approximately 800 m2, and the volume of frozen soil and ice involved in the block-fall was about 15,000 m3. The riverbank retreat due to thermal erosion and/or thermal denudation, measured from August 2007 to August 2011, varied from less than 10 to almost 100 m. An estimated retreat rate average for the whole 680 m long bluff was 11.4 m/year, but for the most actively eroded central part of the bluff (150 m long) it was 20.3 m/year, ranging from 16 to 24 m/year. During these 4 years, about 650,000 m3 of ice and organic-rich frozen soil were transported to the river from the retreating bank (more than 160,000 m3/year). Analysis of aerial photographs (1948-1979) and satellite images (1974-2013) showed that the riverbank was relatively stable till July 1995, when the Itkillik River changed its course and triggered extremely active thermal erosion. The total retreat of the riverbank in 1995-2010 varied from 180 to 280 m, which means that the average retreat rate for the most actively eroded part of the riverbank reached almost 19 m/year. Such a high rate of riverbank erosion over a long time period has not been reported before for any permafrost regions of Eurasia and North America.

  3. Benthic colonization in newly ice-free soft-bottom areas in an Antarctic fjord

    PubMed Central

    Servetto, Natalia; Torre, Luciana; Sahade, Ricardo

    2017-01-01

    Extended glacier retreat is among the main consequences of the rapid warming of the West Antarctic Peninsula. Particularly, in the inner part of Potter Cove (South Shetland Islands, Antarctica) large areas are now exposed to open sea conditions owing to the retreat of Fourcade glacier. During the 2010 austral summer, underwater photographic surveys were undertaken by SCUBA diving up to 30 m in these new ice-free areas 80 m from the glacier front. Our main aim was to investigate colonization and early succession of the benthic assemblages on soft-bottom areas. Here, we reported a total of 1,146 animals belonging to 13 taxa. Filter-feeders comprised the largest trophic group and sessile fauna showed much higher coverages and densities than mobile fauna at all depths. The most abundant groups were ascidians and bryozoans, which together comprised ~90% of all taxa documented. In a region where most of marine-terminating glaciers are in retreat, these results are an important contribution to improve our knowledge on colonization in the newly ice-free areas. PMID:29117262

  4. Benthic colonization in newly ice-free soft-bottom areas in an Antarctic fjord.

    PubMed

    Lagger, Cristian; Servetto, Natalia; Torre, Luciana; Sahade, Ricardo

    2017-01-01

    Extended glacier retreat is among the main consequences of the rapid warming of the West Antarctic Peninsula. Particularly, in the inner part of Potter Cove (South Shetland Islands, Antarctica) large areas are now exposed to open sea conditions owing to the retreat of Fourcade glacier. During the 2010 austral summer, underwater photographic surveys were undertaken by SCUBA diving up to 30 m in these new ice-free areas 80 m from the glacier front. Our main aim was to investigate colonization and early succession of the benthic assemblages on soft-bottom areas. Here, we reported a total of 1,146 animals belonging to 13 taxa. Filter-feeders comprised the largest trophic group and sessile fauna showed much higher coverages and densities than mobile fauna at all depths. The most abundant groups were ascidians and bryozoans, which together comprised ~90% of all taxa documented. In a region where most of marine-terminating glaciers are in retreat, these results are an important contribution to improve our knowledge on colonization in the newly ice-free areas.

  5. Reconstruction of Jakobshavn Isbrae's calving dynamics from 1985 to 2017 and sensitivity to future ocean forcing

    NASA Astrophysics Data System (ADS)

    Bondzio, J. H.; Morlighem, M.; Seroussi, H. L.

    2017-12-01

    Oceanic forcing is likely to have triggered the breakup of Jakobshavn Isbræ's floating ice tongue in the late 1990s, which led to ongoing dynamic changes such as widespread flow acceleration and mass loss. Our understanding of the link between ice dynamics, oceanic forcing, and calving is limited, yet crucial for prognostic simulations of Jakobshavn Isbræ. Here, we first reconstruct Jakobshavn's calving dynamics from 1985 to 2017, by relying on the model from Bondzio et al. 2017, but with a freely evolving ice front. We test different calving rate parameterizations implemented in the Ice Sheet System Model (ISSM) and determine the best law by comparing the modeled retreat to observations. We then identify the controls on calving rate and ice front retreat by varying the submarine melting rate and frontal melt rates as a function of subglacial water discharge and ocean thermal forcing. This sensitivity analysis is an important step toward performing prognostic simulations of JI and provides pathways for future data acquisition.

  6. Geologic and hydrologic hazards in glacierized basins in North America resulting from 19th and 20th century global warming

    USGS Publications Warehouse

    O'Connor, J. E.; Costa, J.E.

    1993-01-01

    Alpine glacier retreat resulting from global warming since the close of the Little Ice Age in the 19th and 20th centuries has increased the risk and incidence of some geologic and hydrologic hazards in mountainous alpine regions of North America. Abundant loose debris in recently deglaciated areas at the toe of alpine glaciers provides a ready source of sediment during rainstorms or outburst floods. This sediment can cause debris flows and sedimentation problems in downstream areas. Moraines built during the Little Ice Age can trap and store large volumes of water. These natural dams have no controlled outlets and can fail without warning. Many glacier-dammed lakes have grown in size, while ice dams have shrunk, resulting in greater risks of ice-dam failure. The retreat and thinning of glacier ice has left oversteepened, unstable valley walls and has led to increased incidence of rock and debris avalanches. ?? 1993 Kluwer Academic Publishers.

  7. Asynchronously Coupled Models of Ice Loss from Airless Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Schorghofer, N.

    2016-12-01

    Ice is found near the surface of dwarf planet Ceres, in some main belt asteroids, and perhaps in NEOs that will be explored or even mined in future. The simple but important question of how fast ice is lost from airless bodies can present computational challenges. The thermal cycle on the surface repeats on much shorter time-scales than ice retreats; one process acts on the time-scale of hours, the other over billions of years. This multi-scale situation is addressed with asynchronous coupling, where models with different time steps are woven together. The sharp contrast at the retreating ice table is dealt with with explicit interface tracking. For Ceres, which is covered with a thermally insulating dust mantle, desiccation rates are orders of magnitude slower than had been calculated with simpler models. More model challenges remain: The role of impact devolatization and the time-scale for complete desiccation of an asteroid. I will also share my experience with code distribution using GitHub and Zenodo.

  8. History and anatomy of subsurface ice on Mars

    NASA Astrophysics Data System (ADS)

    Schorghofer, Norbert; Forget, Francois

    2012-08-01

    Ice buried beneath a thin layer of soil has been revealed by neutron spectroscopy and explored by the Phoenix Mars Lander. It has also been exposed by recent impacts. This subsurface ice is thought to lose and gain volume in response to orbital variations (Milankovitch cycles). We use a powerful numerical model to follow the growth and retreat of near-surface ice as a result of regolith-atmosphere exchange continuously over millions of years. If a thick layer of almost pure ice has been deposited recently, it has not yet reached equilibrium with the atmospheric water vapor and may still remain as far equatorward as 43°N, where ice has been revealed by recent impacts. A potentially observable consequence is present-day humidity output from the still retreating ice. We also demonstrate that in a sublimation environment, subsurface pore ice can accumulate in two ways. The first mode, widely known, is the progressive filling of pores by ice over a range of depths. The second mode occurs on top of an already impermeable ice layer; subsequent ice accumulates in the form of pasted on horizontal layers such that beneath the ice table, the pores are completely full with ice. Most or all of the pore ice on Mars today may be of the second type. At the Phoenix landing site, where such a layer is also expected to exist above an underlying ice sheet, it may be extremely thin, due to exceptionally small variations in ice stability over time.

  9. Effects of elevated temperatures and rising sea level on Arctic Coast

    USGS Publications Warehouse

    Barnes, Peter W.

    1990-01-01

    Ice is a major agent on the inner shelf, gouging the bottom, increasing hydraulic scour, transporting sediment, and influencing river flood patterns. Rapid coastal retreat is common and low barrier islands and beaches are constantly changing due to the influence of permafrost, ice-push, waves, and currents. Coastal processes are presently a balance between the influence of ice and the action of waves and currents. Quantitative values for processes are poorly known, however our qualitative understanding is nearly complete. Climatic warming and rising sea levels would decrease the temporal and aerial extent of coastal ice thereby expanding the role of waves and currents. As a result, shoreline retreat rates would increase, producing a transgressive erosional surface on the low coastal plain. With increased wave activity, beaches and barrier islands presently nourished by ice push processes would decay and disappear. Increased sediment supply from a deeply thawed, active layer would release more sediments to rivers and coasts. Additional research should be focused on permafrost and sea ice processes active during freeze up and breakup; the two seasons of most vigorous activity and change.

  10. Accelerating ice loss from the fastest Greenland and Antarctic glaciers

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Frederick, E.; Li, J.; Krabill, W.; Manizade, S.; Paden, J.; Sonntag, J.; Swift, R.; Yungel, J.

    2011-05-01

    Ice discharge from the fastest glaciers draining the Greenland and Antarctic ice sheets - Jakobshavn Isbrae (JI) and Pine Island Glacier (PIG)- continues to increase, and is now more than double that needed to balance snowfall in their catchment basins. Velocity increase probably resulted from decreased buttressing from thinning (and, for JI, breakup) of their floating ice tongues, and from reduced basal drag as grounding lines on both glaciers retreat. JI flows directly into the ocean as it becomes afloat, and here creep rates are proportional to the cube of bed depth. Rapid thinning of the PIG ice shelf increases the likelihood of its breakup, and subsequent rapid increase in discharge velocity. Results from a simple model indicate that JI velocities should almost double to >20 km a-1 by 2015, with velocities on PIG increasing to >10 km a-1 after breakup of its ice shelf. These high velocities would probably be sustained over many decades as the glaciers retreat within their long, very deep troughs. Resulting sea-level rise would average about 1.5 mm a-1.

  11. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia

    PubMed Central

    Kumpula, Timo; Meschtyb, Nina; Laptander, Roza; Macias-Fauria, Marc; Zetterberg, Pentti; Verdonen, Mariana; Kim, Kwang-Yul; Boisvert, Linette N.; Stroeve, Julienne C.; Bartsch, Annett

    2016-01-01

    Sea ice loss is accelerating in the Barents and Kara Seas (BKS). Assessing potential linkages between sea ice retreat/thinning and the region's ancient and unique social–ecological systems is a pressing task. Tundra nomadism remains a vitally important livelihood for indigenous Nenets and their large reindeer herds. Warming summer air temperatures have been linked to more frequent and sustained summer high-pressure systems over West Siberia, Russia, but not to sea ice retreat. At the same time, autumn/winter rain-on-snow (ROS) events have become more frequent and intense. Here, we review evidence for autumn atmospheric warming and precipitation increases over Arctic coastal lands in proximity to BKS ice loss. Two major ROS events during November 2006 and 2013 led to massive winter reindeer mortality episodes on the Yamal Peninsula. Fieldwork with migratory herders has revealed that the ecological and socio-economic impacts from the catastrophic 2013 event will unfold for years to come. The suggested link between sea ice loss, more frequent and intense ROS events and high reindeer mortality has serious implications for the future of tundra Nenets nomadism. PMID:27852939

  12. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia.

    PubMed

    Forbes, Bruce C; Kumpula, Timo; Meschtyb, Nina; Laptander, Roza; Macias-Fauria, Marc; Zetterberg, Pentti; Verdonen, Mariana; Skarin, Anna; Kim, Kwang-Yul; Boisvert, Linette N; Stroeve, Julienne C; Bartsch, Annett

    2016-11-01

    Sea ice loss is accelerating in the Barents and Kara Seas (BKS). Assessing potential linkages between sea ice retreat/thinning and the region's ancient and unique social-ecological systems is a pressing task. Tundra nomadism remains a vitally important livelihood for indigenous Nenets and their large reindeer herds. Warming summer air temperatures have been linked to more frequent and sustained summer high-pressure systems over West Siberia, Russia, but not to sea ice retreat. At the same time, autumn/winter rain-on-snow (ROS) events have become more frequent and intense. Here, we review evidence for autumn atmospheric warming and precipitation increases over Arctic coastal lands in proximity to BKS ice loss. Two major ROS events during November 2006 and 2013 led to massive winter reindeer mortality episodes on the Yamal Peninsula. Fieldwork with migratory herders has revealed that the ecological and socio-economic impacts from the catastrophic 2013 event will unfold for years to come. The suggested link between sea ice loss, more frequent and intense ROS events and high reindeer mortality has serious implications for the future of tundra Nenets nomadism. © 2016 The Authors.

  13. Accelerating Ice Loss from the Fastest Greenland and Antarctic Glaciers

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Frederick, E.; Li, J.; Krabill, W.; Manizade, S.; Paden, J.; Sonntag, J.; Swift, R.; Yungel, J.

    2011-01-01

    Ice discharge from the fastest glaciers draining the Greenland and Antarctic ice sheets . Jakobshavn Isbrae (JI) and Pine Island Glacier (PIG). continues to increase, and is now more than double that needed to balance snowfall in their catchment basins. Velocity increase probably resulted from decreased buttressing from thinning (and, for JI, breakup) of their floating ice tongues, and from reduced basal drag as grounding lines on both glaciers retreat. JI flows directly into the ocean as it becomes afloat, and here creep rates are proportional to the cube of bed depth. Rapid thinning of the PIG ice shelf increases the likelihood of its breakup, and subsequent rapid increase in discharge velocity. Results from a simple model indicate that JI velocities should almost double to >20 km/a by 2015, with velocities on PIG increasing to >10 km/a after breakup of its ice shelf. These high velocities would probably be sustained over many decades as the glaciers retreat within their long, very deep troughs. Resulting sea ]level rise would average about 1.5 mm/a.

  14. Arctic sea ice variability in the context of recent atmospheric circulation trends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deser, C.; Walsh, J.E.; Timlin, M.S.

    Sea ice is a sensitive component of the climate system, influenced by conditions in both the atmosphere and ocean. Variations in sea ice may in turn modulate climate by altering the surface albedo; the exchange of heat, moisture, and momentum between the atmosphere and ocean; and the upper ocean stratification in areas of deep water formation. The surface albedo effect is considered to be one of the dominant factors in the poleward amplification of global warming due to increased greenhouse gas concentrations simulated in many climate models. Forty years (1958--97) of reanalysis products and corresponding sea ice concentration data aremore » used to document Arctic sea ice variability and its association with surface air temperature (SAT) and sea level pressure (SLP) throughout the Northern Hemisphere extratropics. The dominant mode of winter (January-March) sea ice variability exhibits out-of-phase fluctuations between the western and eastern North Atlantic, together with a weaker dipole in the North Pacific. The time series of this mode has a high winter-to-winter autocorrelation (0.69) and is dominated by decadal-scale variations and a longer-term trend of diminishing ice cover east of Greenland and increasing ice cover west of Greenland. Associated with the dominant pattern of winter sea ice variability are large-scale changes in SAT and SLP that closely resemble the North Atlantic oscillation. The associated SAT and surface sensible and latent heat flux anomalies are largest over the portions of the marginal sea ice zone in which the trends of ice coverage have been greatest, although the well-documented warming of the northern continental regions is also apparent. the temporal and spatial relationships between the SLP and ice anomaly fields are consistent with the notion that atmospheric circulation anomalies force the sea ice variations. However, there appears to be a local response of the atmospheric circulation to the changing sea ice variations. However, there appears to be a local response of the atmospheric circulation to the changing sea ice cover east of Greenland. Specifically, cyclone frequencies have increased and mean SLPs have decreased over the retracted ice margin in the Greenland Sea, and these changes differ from those associated directly with the North Atlantic oscillation. The dominant mode of sea ice variability in summer (July-September) is more spatially uniform than that in winter. Summer ice extent for the Arctic as a whole has exhibited a nearly monotonic decline (-4% decade{sup {minus}1}) during the past 40 yr. Summer sea ice variations appear to be initiated by atmospheric circulation anomalies over the high Arctic in late spring. Positive ice-albedo feedback may account for the relatively long delay (2--3 months) between the time of atmospheric forcing and the maximum ice response, and it may have served to amplify the summer ice retreat.« less

  15. Geology of the Stroudsburg quadrangle and Adjacent areas, Pennsylvania--New Jersey

    USGS Publications Warehouse

    Epstein, Jack Burton

    1971-01-01

    The Stroudsburg area is within the Valley and Ridge and Great Valley physiographic provinces, Northampton and Monroe Counties, Pennsylvania, and Warren County, New Jersey. The northeast-trending subparallel valleys and ridges resulted from erosion of folded heterogeneous sedimentary rocks. These are Middle Ordovician to Middle Devonian in age and are more than 17,000 feet thick. Deposition of a thick flysch sequence (Martinsburg Formation of Ordovician age) accompanied onset of Taconic orogenesis. It was followed by deposition of a thick molasse sequence of Silurian and Early Devonian age (continental and marginal-marine clastics--Shawangunk Formation and Bloomsburg Red Beds--overlain by predominantly marginal-marine and subtidal limestone, dolomite, shale, and sandstone--Poxono Island Formation through Oriskany Group). Basin deepening and gradual shallowing occurred during Esopus through Mahantango deposition, heralding the Acadian clastic wedge exposed north of the Stroudsburg area. Interpretation of sedimentary structures and regional stratigraphic relations suggest that the Silurian and Devonian rocks were deposited in the following environments: A1luviated coastal plain (meandering and braided streams), tidal flats (supratidal and intertidal), barrier zone, and neritic zone (upper and lower). The rock stratigraphic units have been grouped into four lithotectonic units, each having a different style of deformation. Folds produced in these rocks are disharmonic, and it is believed that each rock sequence is set off from units above and below by decollements, or zones of detachment. Movement was northwest into the Appalachian basin, primarily by gravitational sliding. The contact between the Shawangunk Formation of Silurian age and Martinsburg Formation of Ordovician age, is one zone of detachment as well as an angular unconformity. Deformational effects of the Middle to Late Ordovician Taconic orogeny are elusive, but it appears that the folds and most minor structures, including the prominent regional cleavage, were produced during the late Paleozoic Appalachian orogeny and are superimposed upon larger Taconic folds and faults. Field relations and microscopic study suggest that the regional cleavage in the Stroudsburg area is due to laminar flow of pelitic material along cleavage folia accompanied by mechanical reorientation of platy and elongate minerals and neocrystallization of mica, quartz, chlorite, and probably albite. Numerous lines of evidence point to the conclusion that cleavage developed after the rock was indurated and formed at, and Just below, conditions of low-grade metamorphism. Intensity of cleavage development increases to the southeast across the area. Second-generation slip cleavage, also believed to be Appalachian in age, formed by mechanical reorientation of minerals as well as by limited new mineral growth. The topography had a profound effect on the direction of movement of the Wisconsin glacier, as well as the manner of its retreat and the deposits that were formed. Till and stratified drift of Wisconsin age and till of Illinoian(?) age are common in the area. Wisconsin deglaciation occurred by northeastward retreat and by stagnation. A conspicuous terminal moraine marks the limit of Wisconsin ice movement. Lake Sciota was dammed between the retreating ice, the moraine, and the surrounding ridges north of Godfrey Ridge. Several deltas mark ice stand positions during the retreat of the ice. Lake-bottom and kame deposits are locally common in Cherry Valley. South of Kittatinny Mountain, on the other hand, melt water was freely discharged to the south. The wind and water gaps in the Stroudsburg area (including Delaware Water Gap and Wind Gap) are structurally controlled; specifically they are located where folds die out in short distances, where folding is locally more intense, or where resistant rocks dip steeply and have a narrow width of outcrop. This conclusion is contrary to

  16. Mass balance, meteorology, area altitude distribution, glacier-surface altitude, ice motion, terminus position, and runoff at Gulkana Glacier, Alaska, 1996 balance year

    USGS Publications Warehouse

    March, Rod S.

    2003-01-01

    The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.

  17. Geomorphic change detection in proglacial areas using repetitive unmanned aerial vehicle (UAV) surveys

    NASA Astrophysics Data System (ADS)

    Ewertowski, Marek; Evans, David; Roberts, David; Tomczyk, Aleksandra; Ewertowski, Wojciech

    2017-04-01

    Glacial forelands exposed due to the glacier recession are one of the most dynamically transformed landscapes in Polar and mountainous areas. These areas are supposed to be intensively changed by various geomorphological processes related to the glacial retreat and meltwater activity, as well as paraglacial adjustment of topography. This study deals with landscape transformation in an annual time-scale in the foreland of Hørbyebreen and Rieperbreen (Svalbard) and Fjallsjökull and Kviárjökull (Iceland) to assess landscape changes in 2014-2016 period. The main aim of this study is to map and quantify landforms development in detailed spatial scale to provide an insight into geomorphological processes which occurred shortly after the retreat of the ice margin. Low-altitude aerial photographs were taken using small quadcopter equipped with 12 MP camera. Images were acquired at an elevation between 40 and 60 m above the ground level. The images were subsequently processed using structure-from-motion approach to produce orthomosaics ( 3 cm cell size) and digital elevation models (DEMs) with 5-10 cm cell size. Subtracting DEMs from subsequent time periods created DEMs of Differences — which enabled us to calculate the amount of material loss or deposition. Accuracy of the orthophotos and DEMs was improved using ground control points measured with dGPS. Over the 2014-2016 period repetitive UAV-based surveys revealed and quantify changes in landscape including: (1) glacier thinning; (2) ice-cored moraines degradation; (3) development of terminoglacial and supraglacial lakes; (4) debris flow activity. Short-time dynamics of different components showed very high variability over time and space illustrating relative importance of ice backwasting and downwasting as well as glacifluvial processes for studied forelands The research was founded by Polish National Science Centre (project granted by decision number DEC-2011/01/D/ST10/06494).

  18. WHISPERS Project on the easternmost slope of the Ross Sea (Antarctica): preliminary results.

    NASA Astrophysics Data System (ADS)

    Olivo, E.; De Santis, L.; Bergamasco, A.; Colleoni, F.; Gales, J. A.; Florindo-Lopez, C.; Kim, S.; Kovacevic, V.; Rebesco, M.

    2017-12-01

    The advance and retreat of the West Antarctic Ice Sheet from the outer continental shelf and the oceanic circulation are the main causes of the depositional processes on the Ross Sea continental slope, at present time and during the most of the Cenozoic. Currently the Antarctic Bottom Water formation is directly linked to the relatively warm Circumpolar Deep Water that, encroaching the continental shelf, mixes with the colder Ross Sea Bottom Water. Detailed multibeam and geological surveys useful to locate and characterize peculiar morphological structures on the bottom are essential to study how the glacial and oceanographic processes interact with the seabed sediments. In the framework of the PNRA-WHISPERS project (XXXIIth Italian Antarctic expedition - January/March 2017), new multibeam bathymetric, sub-bottom chirp, were acquired from the easternmost margin of the Ross Sea, on the southeastern side of the Hayes Bank, usually covered by sea ice. We observed on the upper slope erosional features (incised gullies of likely glacial meltwater origin). A broad scar in the upper slope is characterized by an elongated SSW-NNE ridge (10 km long, 850-1200 m water depth, 2 km wide), that may be a remnants of previous glacial or debris flow deposits, eroded by meltwater outwash discharge at the beginning of grounding ice retreat and by RSBW cascading along the slope, as documented by Expandable Bathy-Thermograph and Acoustic Depth Current Profile data. Sub-bottom chirp profiles crossing this ridge show a very low amplitude reflective sea bed, supporting the hypothesis of its soft sediment nature, in good agreement with a very low acoustic velocity obtained by multichannel seismic data reprocessing. The occurrence of internal stratification on 2D multichannel seismic profiles would discount a gas-fluids related mud volcano origin. No sediment cores were collected, due to bad sea conditions and limited ship time, further data collection would be needed to fully understand the origin of such depositional feature and its relation with slope glacial and oceanographic processes.

  19. Modeling ice front Dynamics of Northwest Greenland in response to ocean thermal forcing, using ISSM and OMG data

    NASA Astrophysics Data System (ADS)

    Morlighem, M.; Bondzio, J. H.; Seroussi, H. L.; Wood, M.; Rignot, E. J.

    2016-12-01

    Glacier-front dynamics is an important control on Greenland's ice mass balance. Warmer ocean waters trigger ice-front retreats of marine-terminating glaciers, and the corresponding loss in resistive stress leads to glacier acceleration and thinning. Here, we quantify the sensitivity and vulnerability of marine-terminating glaciers along the Northwest coast of Greenland (from 73°N to 7°N) to ocean-induced melt using the Ice Sheet System Model (ISSM) and bathymetry data collected by NASA's Occreans Melting Greenland (OMG). We first combine OMG bathymetry data with ice velocity from satellites and ice thickness from airborne radars using a mass conservation approach on land to produce ice thickness and bed elevation mapping across the ice-ocean boundary that are more precise and reliable than ever before. Using this new map, we then develop a plan-view model of this region that includes a level set based moving boundary capability, a parameterized ocean-induced melt and a calving law based on a Von Mises criterion. We find that some glaciers, such as Dietrichson Gletscher or Alison Gletscher, are sensitive to small increases in ocean-induced melt, while others, such as Steenstrup Gletscher or Qeqertarsuup Sermia, are very difficult to destabilize, even with a quadrupling of the melt. Under the most intense melt experiment of 12 m/day in the summer, we find that Hayes Gletscher retreats by more than 50 km inland into a deep trough and its velocity increases by a factor of 10 over only 15 years. The model suggests that ice-ocean interactions are the triggering mechanism of glacier retreat, but the bed controls its magnitude. This work was performed at the University of California Irvine under a contract with the National Aeronautics and Space Administration, Cryospheric Sciences Program, grant NNX15AD55G.

  20. Acquisition of Ice Thickness and Ice Surface Characteristics in the Seasonal Ice Zone by CULPIS-X during the US Coast Guard’s Arctic Domain Awareness Program

    DTIC Science & Technology

    2014-09-30

    OBJECTIVES • What is the volume of sea ice in the Beaufort Sea Seasonal Ice Zone (SIZ) and how does this evolve during summer as the ice edge...retreats? Recent observations suggest that the remaining ice in the Beaufort Sea is younger and thinner in recent years in part because even the oldest...surrounding ice . Recent analyses have indicated that ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer

  1. Repeating platinum/bevacizumab in recurrent or progressive cervical cancer yields marginal survival benefits.

    PubMed

    Zamorano, Abigail S; Wan, Leping; Powell, Matthew A; Massad, L Stewart

    2017-11-01

    Our objective was to assess overall survival of cervical cancer patients following prior platinum/bevacizumab chemotherapy, comparing retreatment with platinum/bevacizumab with alternative therapies. A retrospective analysis was performed of women who received platinum/bevacizumab (PB) chemotherapy for cervical cancer at Washington University between July 1, 2005 and December 31, 2015. Wilcoxon rank-sum exact test and Fisher's exact test were used to compare the treatment groups, and Kaplan Meier curves were generated. Cox regression analyses were performed, with treatment free interval and prior therapy response included as covariates. Of 84 patients who received PB chemotherapy, 59 (70%) received no second line chemotherapy, as they did not recur, progressed without further chemotherapy, were lost to follow up, or expired. Of the remaining 25 patients, 9 were retreated with the combination of platinum/bevacizumab (PB), 6 were retreated with a platinum regimen without bevacizumab (P), and 10 were retreated with neither (not-P). The only long-term survivor was in the not-P group and was treated with an immunotherapy agent. Median overall survival of all patients was 7.1 months. There was a marginal difference in survival between women in the PB and not-PB groups (11.8 versus 5.7 months; HR 3.02, 95% CI, 0.98-9.28). There was no difference in survival based on platinum interval (HR 0.81; 95% CI, 0.27-2.45). Outcomes are grim for women retreated after platinum/bevacizumab therapy and are only marginally improved by retreatment with a platinum/bevacizumab regimen. Rather than additional PB therapy, women with cervical cancer who recur after platinum/bevacizumab should consider supportive care or clinical trials.

  2. Sensitivity, stability and future evolution of the world's northernmost ice cap, Hans Tausen Iskappe (Greenland)

    NASA Astrophysics Data System (ADS)

    Zekollari, Harry; Huybrechts, Philippe; Noël, Brice; van de Berg, Willem Jan; van den Broeke, Michiel R.

    2017-03-01

    In this study the dynamics and sensitivity of Hans Tausen Iskappe (western Peary Land, Greenland) to climatic forcing is investigated with a coupled ice flow-mass balance model. The surface mass balance (SMB) is calculated from a precipitation field obtained from the Regional Atmospheric Climate Model (RACMO2.3), while runoff is calculated from a positive-degree-day runoff-retention model. For the ice flow a 3-D higher-order thermomechanical model is used, which is run at a 250 m resolution. A higher-order solution is needed to accurately represent the ice flow in the outlet glaciers. Under 1961-1990 climatic conditions a steady-state ice cap is obtained that is overall similar in geometry to the present-day ice cap. Ice thickness, temperature and flow velocity in the interior agree well with observations. For the outlet glaciers a reasonable agreement with temperature and ice thickness measurements can be obtained with an additional heat source related to infiltrating meltwater. The simulations indicate that the SMB-elevation feedback has a major effect on the ice cap response time and stability. This causes the southern part of the ice cap to be extremely sensitive to a change in climatic conditions and leads to thresholds in the ice cap evolution. Under constant 2005-2014 climatic conditions the entire southern part of the ice cap cannot be sustained, and the ice cap loses about 80 % of its present-day volume. The projected loss of surrounding permanent sea ice and resultant precipitation increase may attenuate the future mass loss but will be insufficient to preserve the present-day ice cap for most scenarios. In a warmer and wetter climate the ice margin will retreat, while the interior is projected to thicken, leading to a steeper ice cap, in line with the present-day observed trends. For intermediate- (+4 °C) and high- warming scenarios (+8 °C) the ice cap is projected to disappear around AD 2400 and 2200 respectively, almost independent of the projected precipitation regime and the simulated present-day geometry.

  3. Funnel-shaped surface depressions - Indicator or accelerant of rapid glacier disintegration? A case study in the Tyrolean Alps

    NASA Astrophysics Data System (ADS)

    Stocker-Waldhuber, Martin; Fischer, Andrea; Keller, Lorenz; Morche, David; Kuhn, Michael

    2017-06-01

    Alpine glaciers have been retreating at extreme and historically unprecedented rates. While the general course of regional retreat rates reflects long-term climatic change, individual extreme events are closely related to the geomorphological settings and processes of the specific glacier. Nevertheless, these extreme events also influence the regional means and might be an important feedback mechanism accelerating the response of glaciers to climate change. In 2009, during the recent disintegration of the terminus of Gepatschferner (46°52‧30″N, 10°45‧25″E), a shallow circular depression appeared at the glacier tongue with a decrease of surface ice flow velocity to almost nil. In 2015 the area was ice-free. During a heavy precipitation event in August 2012, a subglacial sediment layer of > 10 m was flushed out, which accelerated the subsidence of the ice surface. The development of this 15 to 30 m deep depression was monitored with a combination of methods in high detail, including direct ablation measurements and a time series of seven high-resolution airborne laser DEMs, plus recordings of ice flow velocity and surface elevation with DGPS. The thickness of ice and sediment layers was measured with vibroseismic soundings in 2012 and 2013. Similar developments were observed at three other glaciers with extreme retreat rates. Our investigation suggests that this mechanism has a major impact on and can be read as an indicator of a nonlinear increased response of glaciers to climate change.

  4. Altimeter Observations of Wave Climate in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Babanin, A. V.; Liu, Q.; Zieger, S.

    2016-02-01

    Wind waves are a new physical phenomenon to the Arctic Seas, which in the past were covered with ice. Now, over summer months, ice coverage retreats up to high latitudes and waves are generated. The marginal open seas provide new opportunities and new problems. Navigation and other maritime activities become possible, but wave heights, storm surges and coastal erosion will likely increase. Air-sea interactions enter a completely new regime, with momentum, energy, heat, gas and moisture fluxes being moderated or produced by the waves, and impacting on upper-ocean mixing. All these issues require knowledge of the wave climate. We will report results of investigation of wave climate and its trends by means of satellite altimetry. This is a challenging, but important topic. On one hand, no statistical approach is possible since in the past for most of the Arctic Ocean there was limited wave activity. Extrapolations of the current observations into the future are not feasible, because ice cover and wind patterns in the Arctic are changing. On the other hand, information on the mean and extreme wave properties, such as wave height, period, direction, on the frequency of occurrence and duration of the storms is of great importance for oceanographic, meteorological, climate, naval and maritime applications in the Arctic Seas.

  5. Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas: Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys

    DTIC Science & Technology

    2017-06-04

    Ice Zone Reconnai ssance Survey project (SIZRS). Combined with oceanographic and sea ice components of the SIZRS project. The projects i dentified...with clear , warm advection events . 1S. SUBJECT TERMS Sea i ce, atmosphere , sea ice retreat , Seasonal Ice Zone Reconnaissance Survey , SIZRS , model...Reconnaissance Surveys Axel Schweiger Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, Wa. 98105 phone: (206) 543

  6. Acquisition of Ice Thickness and Ice Surface Characteristics in the Seasonal Ice Zone by CULPIS-X During the US Coast Guard’s Arctic Domain Awareness Program

    DTIC Science & Technology

    2013-09-30

    What is the volume of sea ice in the Beaufort Sea SIZ and how does this evolve during summer as the ice edge retreats? Recent observations...suggest that the remaining ice in the Beaufort Sea is younger and thinner in recent years in part because even the oldest ice advected into the region does...indicated that ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer. During winter, leads and very

  7. Remote sensing of the marginal ice zone during Marginal Ice Zone Experiment (MIZEX) 83

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Campbell, W. J.; Burns, B. A.; Ellingsen, E.; Farrelly, B. A.; Gloersen, P.; Grenfell, T. C.; Hollinger, J.; Horn, D.; Johannessen, J. A.

    1984-01-01

    The remote sensing techniques utilized in the Marginal Ice Zone Experiment (MIZEX) to study the physical characteristics and geophysical processes of the Fram Strait Region of the Greenland Sea are described. The studies, which utilized satellites, aircraft, helicopters, and ship and ground-based remote sensors, focused on the use of microwave remote sensors. Results indicate that remote sensors can provide marginal ice zone characteristics which include ice edge and ice boundary locations, ice types and concentration, ice deformation, ice kinematics, gravity waves and swell (in the water and the ice), location of internal wave fields, location of eddies and current boundaries, surface currents and sea surface winds.

  8. Comparing the Records of Calving Front Position, Elevation, and Velocity for Neighboring Glaciers in Sermilik Fjord

    NASA Astrophysics Data System (ADS)

    Goliber, S. A.; Allwes, K.; Roberts, C.; Csatho, B. M.

    2016-12-01

    The southeast region of the Greenland Ice Sheet has thinned at a high rate compared to the rest of the Ice Sheet over the last decade and is characterized by a high diversity of outlet glacier behaviors (Csatho et al., 2014). While the entire region has experienced an overall mass loss from a warming climate, some major outlet glaciers exhibit varying amounts of thinning and thickening attributed to changes in ice dynamics. From 1980 to 2016, Helheim, Fenris, and Midgard glaciers (all located in the Sermilik fjord system) have shown dissimilar thinning and thickening patterns, retreat rates, and velocity changes despite their close geographic proximity. To understand why these glaciers behave so differently, detailed calving front and trimline reconstructions were created from historical maps, aerial photographs, and satellite imagery. Additionally, we measured elevation changes from Airborne Topographic Mapper (ATM) laser altimetry data and DEMs derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Satellite Pour l'Observation de la Terre (SPOT) stereo imagery. The presentation compares the elevation and velocity records with the timing of calving front changes of Helheim, Fenris and Midgard glaciers. Helheim Glacier has retreated a net distance of 7 km since 1972 and exhibited a thinning-thickening- thickening pattern from 2003-2009. It retreated to its maximum inland position in 2005, followed by a re-advance to a new equilibrium position by 2007. The calving front then oscillated around a relatively stable position from 2007 to 2014. However, in 2015, it again retreated to within 2 km of its 2005 position. Contrastingly, Midgard Glacier has experienced decelerated thinning from 2003-2009, followed by an acceleration of thinning. Midgard Glacier retreated a total of 15 km between 1972 and 2015, behind its confluence with a former tributary. While Fenris Glacier exhibits a thinning-thickening-thinning pattern similar to Helheim Glacier, it has much lower velocities and has retreated only a total of 2 km since 1975.

  9. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    NASA Astrophysics Data System (ADS)

    Bradley, Sarah; Reerink, Thomas; van de Wal, Roderik S. W.; Helsen, Michiel; Goelzer, Heiko

    2016-04-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. As there are few observational estimates of the long-term (yrs) sub marine basal melting rates (mbm) for the GIS, we developed a mbm parameterization within IMAU-ice controlled primarily by changes in paleo water depth. We also investigate the influence of the LIS on the GIS evolution by including relative sea level forcing's derived from a Glacial Isostatic Adjustment model. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but significantly reduces the GIS contribution to Last interglacial ESL.

  10. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    NASA Astrophysics Data System (ADS)

    Bradley, S.; Reerink, T.; Vandewal, R.; Helsen, M.

    2015-12-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. There is few observational estimates of long-term (yrs) sub marine basal melting rates (mbm) for the GIS. Therefore we investigate a range of relationships to constrain the spatial and temporal parameterisation of mbm within IMAU-ice related to changes in paleo water depth, driven by changes in relative sea level and ocean temperature. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Initial results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but the total contribution to LIG ESL is reduced by up to 0.6 m.

  11. Earth Observation taken during the Expedition 37 mission

    NASA Image and Video Library

    2013-09-30

    ISS037-E-005104 (2 Oct. 2013) --- Upsala Glacier Retreat and Patagonia Icefield are featured in this image photographed by an Expedition 37 crew member on the International Space Station. This photograph highlights the snout of the Upsala Glacier (49.88S 73.3W) on the Argentine side of the North Patagonian Icefield. Ice flow in this glacier (white mass, left) is from the north (left). Dark lines of rocky moraine within the ice give a sense of the slow ice flow from left to right. A smaller side glacier joins Upsala at the present-day ice front—the wall from which masses of ice periodically collapse into Lake Argentino. In this image the 2.75-kilometer-long wall casts a thin, dark shadow. The surface of Lake Argentino is whitened by a mass of ice debris from a recent collapse of the ice wall. Larger icebergs that have calved appear as white dots on the lake surface at right. Remotely sensed data, including detailed astronaut images such as this, have recorded the position of the ice front over the years. Even though the ice actually flows slowly southward, comparison of this October 2013 image with older data (not shown) indicates that the ice wall of the glacier has moved backwards—upstream—an average of 3.6 kilometers since early 2002. This so-called “retreat” is believed by scientists to indicate local climatic warming in this part of South America. The warming not only causes the ice front to retreat but more importantly, causes overall thinning of the glacier ice mass, as a study of 63 glaciers in Patagonia has shown is now a general trend (Rignot et al. 2003). Ice-front retreat is now known to be related to volumetric loss due to melting. Water color is related to glacier flow. Lake Argentino receives most of the ice from the glacier and thus also receives most of the “rock flour” (rocks ground to white powder by the ice scraping against the rock floor of the valley) from underneath the glacier. Glacial flour turns the lake water a gray-green hue in this image. The darker blue of the smaller lakes (top) indicates that they are receiving much less rock flour.

  12. Tracking Retreat of the North Seasonal Ice Cap on Mars: Results from the THEMIS Investigation

    NASA Technical Reports Server (NTRS)

    Ivanov, A. B.; Wagstaff, K. L.; Ttus, T. N.

    2005-01-01

    The CO2 ice caps on Mars advance and retreat with the seasons. This phenomenon was first observed by Cassini and then confirmed by numerous ground based observations in 19th and 20th centuries. With the advent of the space age observations of the seasonal ice cap were done by all orbiting spacecraft starting with Mariner 7. Viking Orbiters and more recently the Mars Global Surveyor (particularly Mars Orbiter Camera (MOC) and Thermal Emission Spectrometer (TES) instruments) have accumulated significant data on the retreat of the CO2 seasonal cap. During Mars year 2 of THEMIS operations at Mars, we planned an observational campaign in which the THEMIS instrument (onboard the Mars Odyssey spacecraft) repeatedly observed the north seasonal polar cap from midwinter to late spring. THEMIS allows simultaneous observations in both Thermal IR (12.57 m) and Visible wavelengths (0.65 m). One of the goals for this work is to initiate an interannual program for observations of the seasonal ice caps using the THEMIS instrument. The most efficient way to detect the edge between frost and bare ground is directly onboard of the spacecraft. Prior to onboard software design effort, we have developed two groundbased algorithms for automatically finding the edge of the seasonal polar cap in THEMIS IR data. The first algorithm relies on fully calibrated data and can be used for highly reliable groundbased analyses. The second method was specifically developed for processing raw, uncalibrated data in a highly efficient way. It has the potential to enable automatic, onboard detections of the seasonal cap retreat. We have experimentally confirmed that both methods produce similar results, and we have validated both methods against a model constructed from the MGS TES data from the same season.

  13. New constraints on the deglaciation chronology of the southeastern margin of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Levy, L.; Larsen, N. K.; Kjaer, K. H.; Bjork, A. A.; Kjeldsen, K. K.; Funder, S.; Kelly, M. A.; Howley, J. A.; Zimmerman, S. R. H.

    2015-12-01

    The Greenland Ice Sheet (GrIS) is responding rapidly to climate change. Marine terminating outlet glaciers that drain the GrIS have responded especially sensitively to present-day climate change by accelerating, thinning and retreating. In southeastern Greenland several outlet glaciers are undergoing rapid changes in mass balance and ice dynamics. To improve our understanding of the future, long-term response of these marine-terminating outlet glaciers to climate change, we focus on the response of three outlet glaciers to climate change since the Last Glacial Maximum. The timing and rates of late-glacial and early Holocene deglaciation of the southeastern sector of the GrIS are relatively unconstrained due to the inaccessibility of the region. Using a helicopter and a sailboat, we collected samples for 10Be surface exposure dating from three fjords in southeastern Greenland: Skjoldungen (63.4N), Uvtorsiutit (62.7N), and Lindenow (60.6N). These fjords drain marine terminating glaciers of the GrIS. Here we present 18 new 10Be ages from ~50 km long transects along these fjords that mark the timing of deglaciation from the outer coast inland to the present-day GrIS margin. Together with previously constrained deglaciation chronologies from Bernstorffs, Sermilik, and Kangerdlussuaq fjords in southeastern Greenland, these new chronologies offer insight into the late-glacial and early Holocene dynamics of the southeastern GrIS outlet glaciers. We compare the timing and rate of deglaciation in southeastern Greenland to climate records from the region to examine the mechanisms that drove deglaciation during late-glacial and early Holocene time. These new 10Be ages provide a longer-term perspective of marine terminating outlet glacier fluctuations in southeastern Greenland and can be used to model the ice sheet's response to late-glacial and early Holocene climate changes.

  14. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  15. A Perspective on the Unprecedented Impact of the 2015/16 El Niño on the Tropical Quelccaya Ice Cap, Peru from Four Decades of Surface Sampling and Deep Drilling

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Mosley-Thompson, E.; Davis, M. E.; Beaudon, E.; Lin, P. N.

    2016-12-01

    Atmospheric warming ( 0.10oC/decade in the last 70 years) has been observed over the Peruvian Andes and is likely the most dominant forcing for recent glacier wasting. The margin of the Quelccaya ice cap (QIC, 13o56'S; 70o50'W 5670 m asl) has been retreating for the last 50 years as the 0oC isotherm now rises seasonally above the QIC summit. Recent major El Niños have augmented the effects of this warming trend, and the impacts of the 2015/16 El Niño were more devastating than those experienced during the 1982/83 event of similar magnitude. The ice margin has retreated and thinned dramatically over the last year, and currently the QIC is smaller than it has been in over 6 millennia. Since 1974 we have conducted a program of surface sampling and deep drilling on the QIC. The seasonal δ18O oscillations which are obvious in the fresh snow (and underlying firn) deposited within each thermal year are attenuated at depth due to melting and percolation through the firn, and this has become increasingly pronounced over 43 years. Although the trend in δ18O of the top layers has remained constant, the increasing density and decreasing seasonal amplitude suggest that surface warming is enhancing post-depositional effects even on fresh snow. Snow deposited during the 1982/83 and 2015/16 El Niños show comparable isotopic enrichment ( 5‰) over the average of "normal" and La Niña years, but the net balance during the latest event was 55% below average, while that for the 82/83 event was 10% below average. These observations suggest the possibility that a threshold has been crossed such that future El Niños may exert stronger impacts on Peruvian glaciers than in the past. The surface studies on the QIC show that the δ18O composition of the snow is affected by synoptic-scale variations in the upper atmosphere over the tropical western Atlantic and the northern Amazon Basin and by sea surface temperatures in the equatorial Pacific Ocean. During major El Niños the latter have a much stronger influence on δ18O than the former while the opposite situation is observed during non-El Niño events. Better documentation and understanding of these recent relationships can facilitate interpretation of the atmospheric and oceanic controls on δ18O in the 1800-year old ice core records from Quelccaya.

  16. Regional and global forcing of glacier retreat during the last deglaciation.

    PubMed

    Shakun, Jeremy D; Clark, Peter U; He, Feng; Lifton, Nathaniel A; Liu, Zhengyu; Otto-Bliesner, Bette L

    2015-08-21

    The ongoing retreat of glaciers globally is one of the clearest manifestations of recent global warming associated with rising greenhouse gas concentrations. By comparison, the importance of greenhouse gases in driving glacier retreat during the most recent deglaciation, the last major interval of global warming, is unclear due to uncertainties in the timing of retreat around the world. Here we use recently improved cosmogenic-nuclide production-rate calibrations to recalculate the ages of 1,116 glacial boulders from 195 moraines that provide broad coverage of retreat in mid-to-low-latitude regions. This revised history, in conjunction with transient climate model simulations, suggests that while several regional-scale forcings, including insolation, ice sheets and ocean circulation, modulated glacier responses regionally, they are unable to account for global-scale retreat, which is most likely related to increasing greenhouse gas concentrations.

  17. Pacing the post-Last Glacial Maximum demise of the Animas Valley glacier and the San Juan Mountain ice cap, Colorado

    NASA Astrophysics Data System (ADS)

    Guido, Zackry S.; Ward, Dylan J.; Anderson, Robert S.

    2007-08-01

    During the Last Glacial Maximum (LGM), a 5000 km2 ice cap covered the San Juan Mountains of southwest Colorado. The largest valley glacier draining this ice cap occupied the Animas Valley and flowed 91 km to the south. To characterize the post-LGM demise of the Animas Valley glacier, we employ cosmogenic 10Be to date the LGM terrace outside the terminal moraines and a suite of seven glacially polished bedrock samples. The 10Be depth profile within the terrace sediments suggests abandonment at 19.4 ± 1.5 ka. As deglaciation began, the ponding of Glacial Lake Durango behind the terminal moraines shut off fluvial sediment supply and caused terrace abandonment. The age of the terrace therefore records the initiation of LGM retreat. Negligible 10Be inheritance in the terrace profile suggests that glacial erosion of the bedrock valley floor from which sediments were derived erased all cosmogenic inventory. Glacial polish exposure ages monotonically decrease up-valley from 17.1 to 12.3 ka, with the single exception of a sample collected from a quartzite rib, yielding an average retreat rate of 15.4 m/yr. This trend and the lack of inherited cosmogenic nuclides in the terrace sediments imply that polish ages accurately record the glacial retreat history. Retreat of the Animas lobe began at a time of regional drying recorded in sediments and shoreline elevations of large lakes. Deglaciation lasted for ˜7.2 k.y., and was complete by 12.3 ± 1.0 ka. The retreat history followed the pattern of increasing insolation and was perhaps fastest during a time of regional drying.

  18. Bathymetry and retreat of Southeast Greenland glaciers from Operation IceBridge and Ocean Melting Greenland data

    NASA Astrophysics Data System (ADS)

    Millan, R.; Rignot, E. J.; Morlighem, M.; Bjork, A. A.; Mouginot, J.; Wood, M.

    2017-12-01

    Southeast Greenland has been one of the largest contributors to ice mass loss in Greenland in part because of significant changes in glacier dynamics. The leading hypothesis for the changes in glacier dynamics is that enhanced thermal forcing from the ocean has dislodged a number of glaciers from their anchoring positions and some of them retreated rapidly along a reverse bed. The glaciers response has been observed to vary significantly from one fjord to the next, but until now there was not enough data to understand or interpret these changes. In particular, there was no data on glacier bed topography and seafloor bathymetry in the fjords. Here we present the results of new fjord mapping by the NASA Ocean Melting Greenland mission combined with a recent high-resolution airborne gravity survey by NASA Operation IceBridge. We combine these data with a reconstruction of the bed using a mass conservation approach upstream extending into the glacial fjords for the first time. In the fjord and along the ice-ocean transition, we employ a 3D inversion of gravity data to infer the bed elevation along a set of 9 survey boxes spanning south of Helheim Glacier to the southern tip of Southeast Greenland. We combine the results with an analysis of the glacier front history since the 1930's and Conductivity Temperature Depth data obtained in the fjord by OMG in 2016. The data reveals bed elevations several 100-m deeper than previously thought, for almost all the glaciers, up to 500 m for some of them. For many glaciers, the bed profiles help to completely understand the history of retreat of the glaciers. For instance, glaciers stranded on sills have been stable; glaciers on a reverse slope have retreated rapidly; and glaciers with a normal slope have retreated slowly. The mapping also helps document the extent of the marine portion of the glacier basins. In many of the fjords, we document the presence of warm, salty Atlantic Water which fuels large melt rates. We employ simulations from the MITgcm model to estimate the melt rates and further interpret the glacier retreat pattern. In addition, we estimate that more than half of the glaciers surveyed in most detail is very likely to retreat rapidly in the near future because they stand neat retrograde slope. These glaciers will contribute further to the mass loss from this part of Greenland into the ocean.

  19. Arctic ice cover, ice thickness and tipping points.

    PubMed

    Wadhams, Peter

    2012-02-01

    We summarize the latest results on the rapid changes that are occurring to Arctic sea ice thickness and extent, the reasons for them, and the methods being used to monitor the changing ice thickness. Arctic sea ice extent had been shrinking at a relatively modest rate of 3-4% per decade (annually averaged) but after 1996 this speeded up to 10% per decade and in summer 2007 there was a massive collapse of ice extent to a new record minimum of only 4.1 million km(2). Thickness has been falling at a more rapid rate (43% in the 25 years from the early 1970s to late 1990s) with a specially rapid loss of mass from pressure ridges. The summer 2007 event may have arisen from an interaction between the long-term retreat and more rapid thinning rates. We review thickness monitoring techniques that show the greatest promise on different spatial and temporal scales, and for different purposes. We show results from some recent work from submarines, and speculate that the trends towards retreat and thinning will inevitably lead to an eventual loss of all ice in summer, which can be described as a 'tipping point' in that the former situation, of an Arctic covered with mainly multi-year ice, cannot be retrieved.

  20. Sediment Production and Storage Through a Glacial-Interglacial Cycle on a Cool-Temperate Glaciated Margin

    NASA Astrophysics Data System (ADS)

    Powell, R. D.

    2001-12-01

    The southern Alaska margin has high coastal mountains, which coupled with temperate glaciation, result in extremely high modern erosion rates (e.g. Jaeger et al., 2001), possibly exceeding rates of orogenic uplift (Meigs and Sauber, 2000). Where measured, modern sediment yields are among the highest of any basin worldwide (Hallet et al., 1996; Elverhoi et al., 1998; Jaeger et al., 1998). In Muir Inlet, Glacier Bay, sediment yields from slowly retreating glaciers decrease logarithmically with decreasing drainage basin area (Powell, 1991), a trend also reflected in regional data synthesized in Hallet et al. (1996). Alley (1997) then hypothesized that if erosion increases with basin area then where two tributaries join, deeper erosion would ensue, which is consistent with linear erosional troughs and hanging valleys. The idea is also consistent with the general downglacier increase in water flux at the glacier bed. However over longer periods, data from seismic profiles of the Gulf of Alaska shelf, show sediment yields are nearly the same through a glacial-interglacial cycle; regional data from other glaciated basins appear to confirm that trend (Elverhoi et al., 1998). If yields are continuously high from bedrock erosion, then why are mountains not eroded to base level because erosion rates are higher than isostatic uplift? Why are trends in yields apparently different during recent retreats with decreasing basin sizes than during longer term glacial cycles? Answers to these questions may be numerous and compound; however, one possibility will be evaluated. We know there is significant modern bedrock erosion occurring during glacial retreat and that also appears to have been the case during advance. Native stories describing the last (Little Ice Age) advance in Glacier Bay describe a large amount of sediment being produced (Powell et al., 1995) indicating that significant erosion was occurring. Fjord-wall stratigraphy shows that sediment had infilled much of the Bay up to ca. 200 m above modern sea level (Goldthwait,1986) prior to the LIA. During that advance, all sediments were then eroded down to bedrock, locally up to 400-500 m below sea level (Powell and Molnia, 1989), and then dumped at the Bay entrance, the site of maximum advance Powell et al., 1995). By inference, because most sediment packages on the shelf are deposited during glacially advanced phases, they probably mostly include sediment redistributed from fjords and inner shelf with a minor component from freshly eroded mountain bedrock. The ELA, under which most erosion may occur (Meigs and Sauber, 2000), lies over fjords during glacial maxima where the glacier is probably thickest with pressure melting and melting/freezing occurring at the bed. Erosion of sediment deposited there during a retreat phase may be enhanced, as may fjord over-deepening, whereas, thinner ice over mountains is likely to be cold at the bed, limiting erosion. As the glacier retreats the ELA moves toward the mountains as may the center of erosion, which then occurs mainly on bedrock. Mountain uplift may be enhanced during interglacials when glacio-isostatic rebound occurs and increased erosion adds to the isostatic effect. Therefore, during glacial-interglacial cycles average sediment yields from a glacier may not vary significantly, but the main centers of erosion change through time as does the eroding substrate and locations of depocenters.

  1. Reconstructing the history of major Greenland glaciers since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A. F.; van der Veen, C. J.; Stearns, L.; Babonis, G. S.

    2008-12-01

    The Greenland Ice Sheet may have been responsible for rapid sea level rise during the last interglacial period and recent studies indicate that it is likely to make a faster contribution to sea-level rise than previously believed. Rapid thinning and velocity increase has been observed on most major outlet glaciers with terminus retreat that might lead to increased discharge from the interior and consequent further thinning and retreat. Potentially, such behavior could have serious implications for global sea level. However, the current thinning may simply be a manifestation of longer-term behavior of the ice sheet as it responds to the general warming following the Little Ice Age (LIA). Although Greenland outlet glaciers have been comprehensively monitored since the 1980s, studies of long-term changes mostly rely on records of the calving front position. Such records can be misleading because the glacier terminus, particularly if it is afloat, can either advance or retreat as ice further upstream thins and accelerates. To assess whether recent trends deviate from longer-term behavior, we examined three rapidly thinning and retreating outlet glaciers, Jakobshavn Isbrae in west, Kangerdlussuaq Glacier in east and Petermann Glacier in northwest Greenland. Glacier surface and trimline elevations, as well as terminus positions were measured using historical photographs and declassified satellite imagery acquired between the 1940s and 1985. These results were combined with data from historical records, ground surveys, airborne laser altimetry, satellite observations and field mapping of lateral moraines and trimlines, to reconstruct the history of changes since the (LIA) up to the present. We identified several episodes of rapid thinning and ice shelf break-up, including thinning episodes that occurred when the calving front was stationary. Coastal weather station data are used to assess the influence of air temperatures and intensity of surface melting, and to isolate glacier changes likely associated with changes in glacier dynamics. We also examined the potential influence of geologic control, including the effect of increased heat flux and high rates of subglacial melt suggested by geophysical data.

  2. Response of Debris-Covered and Clean-Ice Glaciers to Climate Change from Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Rupper, S.; Maurer, J. M.; Schaefer, J. M.; Roe, G.; Huybers, K. M.

    2017-12-01

    Debris-covered glaciers form a significant percentage of the glacier area and volume in many mountainous regions of the world, and respond differently to climatic forcings as compared to clean-ice glaciers. In particular, debris-covered glaciers tend to downwaste with very little retreat, while clean-ice glaciers simultaneously thin and retreat. This difference has posed a significant challenge to quantifying glacier sensitivity to climate change, modeling glacier response to future climate change, and assessing the impacts of recent and future glacier changes on mountain environments and downstream populations. In this study, we evaluate observations of the geodetic mass balance and thinning profiles of 1000 glaciers across the Himalayas from 1975 to 2016. We use this large sampling of glacier changes over multiple decades to provide a robust statistical comparison of mass loss for clean-ice versus debris-covered glaciers over a period relevant to glacier dynamics. In addition, we force a glacier model with a series of climate change scenarios, and compare the modeled results to the observations. We essentially ask the question, "Are our theoretical expectations consistent with the observations?" Our observations show both clean-ice and debris-covered glaciers, regionally averaged, thinned in a similar pattern for the first 25-year observation period. For the more recent 15-year period, clean ice glaciers show significantly steepened thinning gradients across the surface, while debris-covered glaciers have continued to thin more uniformaly across the surface. Our preliminary model results generally agree with these observations, and suggest that both glacier types are expected to have a thinning phase followed by a retreat phase, but that the timing of the retreat phase is much later for debris-covered glaciers. Thus, these early results suggest these two glacier types are dynamically very similar, but are currently in different phases of response to recent climate change. This difference in phase of response will be carefully evaluated by integrating the modeling and observational components of this work. In addition, we will use this integrated framework to assess the expected impacts of differing glacier response on glacier-related resources in the Himalayas over the coming century.

  3. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    PubMed

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  4. The last deglacial retreat history of the East Antarctic Ice Sheet recorded in sediments from off the Wilkes Land Coast

    NASA Astrophysics Data System (ADS)

    Yokoyama, Y.; Yamane, M.; Miyairi, Y.; Suga, H.; Dunbar, R. B.; Ohkouchi, N.

    2017-12-01

    Timing of past ice sheet retreat of Antarctic continent has been debated with regards to the global sea level changes since the Last Glacial Maximum (LGM) centered at around 20 ka. Exposure dating using cosmogenic radio nuclide (CRN) for glacial deposits have been widely used to reconstruct the last deglacial history though this cannot apply where no-ice free coasts are existed. One such location is the Wilkes Land where the East Antarctic Ice Sheet (EAIS) is situated directory on seafloor. Sediment cores obtained off the Wilkes Land coast successfully retrieved cores during the Intergrated Ocean Drilling Program (IODP) Expedition 318 (Escuita et al., 2011). Major obstacle to obtain reliable chronology for marine cores around Antarctica is sparsity of carbonate materials such as foraminifera. Thus compound-specific radiocarbon analysis (CSRA) has been used and we applied CSRA to the sediments obtained off the Wilkes land coast. The CSRA targeted C16 and C16:1 fatty acid due to their high degradation rate. Hence low concentrations of these compounds are expected. We found major sedimentation occurred since the beginning of Holocene. The result is then compared to the previously reported dates from the land based CRN dates (eg., Mckintosh et al., 2013; Yamane et al., 2011) to discuss the timing of retreat of EAIS.

  5. Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics

    NASA Astrophysics Data System (ADS)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid collapse would sever the ties between the British and Irish Ice Sheets and drive flow configuration changes in response. Enhanced calving and flow acceleration in response to rising relative sea level is speculated to have undermined the integrity of the ice stream system, precipitating its collapse and driving the reconstructed pattern of ice sheet evolution.

  6. Percutaneous Renal Cryoablation: Short-Axis Ice-Ball Margin as a Predictor of Outcome.

    PubMed

    Ge, Benjamin H; Guzzo, Thomas J; Nadolski, Gregory J; Soulen, Michael C; Clark, Timothy W I; Malkowicz, Stanley B; Wein, Alan J; Hunt, Stephen J; Stavropoulos, S William

    2016-03-01

    To determine if CT characteristics of intraprocedural ice balls correlate with outcomes after cryoablation. A retrospective review was performed on 63 consecutive patients treated with renal cryoablation. Preprocedural and intraprocedural images were used to identify the size and location of renal tumors and ice balls as well as the tumor coverage and ice-ball margins. Review of follow-up imaging (1 mo and then 3-6-mo intervals) distinguished successful ablations from cases of residual tumor. Patients who underwent successful ablation (n = 50; 79%) had a mean tumor diameter of 2.5 cm (range, 0.9-4.3 cm) and mean ice-ball margin of 0.4 cm (range, 0.2-1.2 cm). Patients with residual tumor (n = 13; 21%) had a mean tumor diameter of 3.8 cm (range, 1.8-4.5 cm) and mean ice-ball margin of -0.4 cm (range, -0.9 to 0.4 cm). Residual and undertreated tumors were larger and had smaller ice-ball margins than successfully treated tumors (P < .01). Ice-ball diameters were significantly smaller after image reformatting (P < .01). Ice-ball margins of 0.15 cm had 90% sensitivity, 92% specificity, and 98% positive predictive value for successful ablation. Success was independent of tumor location or number of cryoprobes. Ice-ball margin and real-time intraprocedural reformatting could be helpful in predicting renal cryoablation outcomes. Although a 0.5-cm margin is preferred, a well-centered ice ball with a short-axis margin greater than 0.15 cm strongly correlated with successful ablation. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  7. Glacier Erosion and Response to Climate in Chilean Patagonia

    NASA Astrophysics Data System (ADS)

    Koppes, M.; Hallet, B.; Stewart, R.

    2006-12-01

    A vibrant dimension in current research on landscape evolution is the potential impact of climate change on erosion rates due to differences in efficiency of glacial and non-glacial erosion processes. The climate-sensitive rate and spatial distribution of erosion can be as important as the tectonic environment in determining the development of mountain ranges. To evaluate properly how glacial erosion influences orogenic processes and reflects climate variability, it is necessary to understand how ice dynamics control erosion rates. The Patagonian Andes are a unique laboratory for documenting glacial erosion in a range of precipitation and thermal regimes, as zonal atmospheric circulation in the region creates strong latitudinal gradients. We will present relevant findings from two tidewater glaciers in Chilean Patagonia: San Rafael glacier, which drains the northern portion of the North Patagonian Icefield (46.6S, 74W), and Marinelli glacier, the largest glacier in the Cordillera Darwin of Tierra del Fuego (54.6S, 69W). Both glaciers have been in steady retreat during the latter half of the 20th century, and both calve into a fjord or lagoon, which provides an efficient trap for the sediment eroded by the glacier and deposited at the calving front. The reconstructed flux of ice into the glaciers is compared to the retreat of the ice fronts and to the sediment flux to examine the influence of ice dynamics on the rate of glacier erosion. NCEP-NCAR Reanalysis climate data, adjusted to local conditions by correlation with automatic weather stations installed at the glacier termini and coupled to a model of orographic enhancement of precipitation over the glacier basin, were used to reconstruct the daily precipitation input into and ablation output from the glaciers during the last 50 years. The sediment flux out of the glaciers during this period was calculated from acoustic reflection profiles of the sediments accumulated in the proglacial fjords, and used to infer erosion rates. Preliminary results indicate 1) that high rates of retreat of the ice front occur during years in which the total input of snow into the glacier is balanced by the total ablation, and hence the residual flux of ice at the terminus is insufficient to compensate for the calving, and 2) that the highest basin- wide erosion rates reflect years in which total ice accumulation is lower and retreat rates are high. Interestingly, basin-wide erosion rates from these glaciers are up to an order of magnitude higher than long- term exhumation rates derived from detrital apatite thermochronometry in the basins, indicating that current rates of erosion far exceed long-term rates, and are reflective of periods of warming climate and enhanced glacial retreat.

  8. Isotope evidence of paleo - El Nino - Southern Oscillation cycles in loess-paleosol record in the central United States

    USGS Publications Warehouse

    Wang, Hongfang; Follmer, L.R.; Chao-li, Liu

    2000-01-01

    The ??13C of soil carbonate in rhizoconcretions collected from a loess-paleosol sequence in the central United States indicates that growing-season C3/C4 plant ratio oscillated by 35% on a 900 ?? 200 yr time scale during the late Wisconsinan glaciation. The pattern appears in phase with advance and retreat of the southern margin of the Laurentide ice sheet, suggesting influence by paleo-El Nin??o-Southern Oscillation cycles. The ??13C of soil organic matter indicates that the annual average C3/C4 plant ratio oscillated only by 18%, with a periodicity of 450 ?? 100 yr, and closely matched the cyclic pattern of loess-paleosol layers. It suggests a periodic enhancement of the penetration of the Gulf of Mexico air over the region during this time.

  9. Ice-borne prehistoric finds in the Swiss Alps reflect Holocene glacier fluctuations

    NASA Astrophysics Data System (ADS)

    Grosjean, Martin; Suter, Peter J.; Trachsel, Mathias; Wanner, Heinz

    2007-03-01

    During the hot summer of 2003, reduction of an ice field in the Swiss Alps (Schnidejoch) uncovered spectacular archaeological hunting gear, fur, leather and woollen clothing and tools from four distinct windows of time: Neolithic Age (4900 to 4450 cal. yr BP), early Bronze Age (4100-3650 cal. yr BP), Roman Age (1st-3rd century AD), and Medieval times (8-9th century AD and 14-15th century AD). Transalpine routes connecting northern Italy with the northern Alps during these slots is consistent with late Holocene maximum glacier retreat. The age cohorts of the artefacts are separated which is indicative of glacier advances when the route was difficult and not used for transit. The preservation of Neolithic leather indicates permanent ice cover at that site from ca. 4900 cal. yr BP until AD 2003, implying that the ice cover was smaller in 2003 than at any time during the last 5000 years. Current glacier retreat is unprecedented since at least that time. This is highly significant regarding the interpretation of the recent warming and the rapid loss of ice in the Alps. Copyright

  10. Variations of soil profile characteristics due to varying time spans since ice retreat in the inner Nordfjord, western Norway

    NASA Astrophysics Data System (ADS)

    Navas, Ana; Laute, Katja; Beylich, Achim A.; Gaspar, Leticia

    2013-04-01

    In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils have been formed after deglaciation. The climate in the upper valley part is sub-arctic oceanic with an annual areal precipitation of ca 1500 mm. The lithology in Erdalen and Bødalen consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. Parts of the valleys were affected by the Little Ice Age glacier advance with the maximum glacier extent around 1750 BP. In this study five sites on moraine and colluvium materials were selected to examine the main soil properties of the most representative soils found in the region. The objective was to assess if soil profile characteristics and pattern of fallout radionuclides (FRN's) and environmental radionuclides (ERN's) are affected by different stages of ice retreat. Soil profiles were sampled at 5 cm depth interval increments until 20 cm depth. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. At P2 profile where ice retreated earlier (ca., 1767) depth profile activities of FRŃs are more homogenous than in P1 that became ice-free since ca. 1930. The sampled soils on the colluviums outside the LIA glacier limit became ice free during the Preboral. The Regosols present better developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Lower activities of FRŃs in soils on the moraines are related to the predominant sand material that has less capacity to fix the radionuclides. Lower 40K activities in Erdalen as compared to Bødalen are likely related to soil mineralogical composition. All profiles show disequilibrium in the uranium and thorium series. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbexactivities differs in the soils related to the LIA glacier limits in the drainage basins.

  11. North Atlantic warming and the retreat of Greenland's outlet glaciers.

    PubMed

    Straneo, Fiammetta; Heimbach, Patrick

    2013-12-05

    Mass loss from the Greenland ice sheet quadrupled over the past two decades, contributing a quarter of the observed global sea-level rise. Increased submarine melting is thought to have triggered the retreat of Greenland's outlet glaciers, which is partly responsible for the ice loss. However, the chain of events and physical processes remain elusive. Recent evidence suggests that an anomalous inflow of subtropical waters driven by atmospheric changes, multidecadal natural ocean variability and a long-term increase in the North Atlantic's upper ocean heat content since the 1950s all contributed to a warming of the subpolar North Atlantic. This led, in conjunction with increased runoff, to enhanced submarine glacier melting. Future climate projections raise the potential for continued increases in warming and ice-mass loss, with implications for sea level and climate.

  12. Space Radar Image of Weddell Sea, Antarctica

    NASA Image and Video Library

    1999-05-01

    This Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar color composite shows a portion of the Weddell Sea, which is adjacent to the continent of Antarctica. The image shows extensive coverage of first-year sea ice mixtures and patches of open water inside the ice margin. The image covers a 100 kilometer by 30 kilometer (62 mile by 18.5 mile) region of the southern ocean, centered at approximately 57 degrees south latitude and 3 degrees east longitude, which was acquired on October 3, 1994. Data used to create this image were obtained using the L-band (horizontally transmitted and vertically received) in red; the L-band (horizontally transmitted and received) in green; and the C-band (horizontally transmitted and received) in blue. The sea ice, which appears rust-brown in the image, is composed of loosely packed floes from approximately 1 meter to 2 meters (3 feet to 6.5 feet) thick and ranging from 1 meter to 20 meters (3 feet to 65.5 feet) in diameter. Large patches of open water, shown as turquoise blue, are scattered throughout the area, which is typical for ice margins experiencing off-ice winds. The thin, well-organized lines clearly visible in the ice pack are caused by radar energy reflected by floes riding the crest of ocean swells. The wispy, black features seen throughout the image represent areas where new ice is forming. Sea ice, because it acts as an insulator, reduces the loss of heat between the relatively warm ocean and cold atmosphere. This interaction is an important component of the global climate system. Because of the unique combination of winds, currents and temperatures found in this region, ice can extend many hundreds of kilometers north of Antarctica each winter, which classifies the Weddell Sea as one of nature's greatest ice-making engines. During the formation of sea ice, great quantities of salt are expelled from the frozen water. The salt increases the density of the upper layer of sea water, which then sinks to great depths. Oceanographers believe this process forms most of the oceans' deep water. Sea ice covering all of the southern oceans, including the Weddell Sea, typically reaches its most northerly extent in about September. As periods of daylight become gradually longer in the Southern Hemisphere, ice formation stops and the ice edge retreats southward. By February, most of the sea ice surrounding Antarctica disappears. Imaging radar is extremely useful for studying the polar regions because of the long periods of darkness and extensive cloud cover. The multiple frequencies of the SIR-C/X-SAR instruments allow further study into ways of improving the separation of the various thickness ranges of sea ice, which are vital to understanding the heat balance in the ice, ocean and atmospheric system. http://photojournal.jpl.nasa.gov/catalog/PIA01737

  13. New Constraints on Post-LGM WAIS Retreat from the Whales Deep Paleo-ice-stream Trough in Eastern Ross Sea

    NASA Astrophysics Data System (ADS)

    DeCesare, M.; Bart, P. J.; Rosenheim, B. E.

    2016-02-01

    New multibeam and seismic data acquired during NBP1502 show that a back-stepping cluster containing at least four grounding zone wedges (GZWs) define a bathymetric saddle on the middle shelf of the Whales Deep paleo-ice-stream trough in eastern Ross Sea. Our synthesis of geophysical data with jumbo piston/kasten cores show that we penetrated diamict, sub-ice shelf and open marine sediments associated with four temporally distinct grounding events. A high number of well-preserved benthic and planktonic foraminifera were found in sediments we interpret to have been deposited in sub-ice shelf and open marine environments. A low number of similarly well-preserved benthic foraminifera were recovered from the underlying ice proximal diamict that was deposited on the GZW foreset. We tentatively propose that the pristine foraminifera are in situ and that these specimens provide a unique opportunity to constrain the retreat of grounded and floating ice from the eastern Ross Sea outer continental shelf. Our ongoing synthesis of new radiocarbon dates, stable isotope (δ18O and δ13C) and element/calcium ratios (e.g., Mg/Ca, B/Ca) will be presented.

  14. A major increase in winter snowfall during the middle Holocene on western Greenland caused by reduced sea ice in Baffin Bay and the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Thomas, Elizabeth K.; Briner, Jason P.; Ryan-Henry, John J.; Huang, Yongsong

    2016-05-01

    Precipitation is predicted to increase in the Arctic as temperature increases and sea ice retreats. Yet the mechanisms controlling precipitation in the Arctic are poorly understood and quantified only by the short, sparse instrumental record. We use hydrogen isotope ratios (δ2H) of lipid biomarkers in lake sediments from western Greenland to reconstruct precipitation seasonality and summer temperature during the past 8 kyr. Aquatic biomarker δ2H was 100‰ more negative from 6 to 4 ka than during the early and late Holocene, which we interpret to reflect increased winter snowfall. The middle Holocene also had high summer air temperature, decreased early winter sea ice in Baffin Bay and the Labrador Sea, and a strong, warm West Greenland Current. These results corroborate model predictions of winter snowfall increases caused by sea ice retreat and furthermore suggest that warm currents advecting more heat into the polar seas may enhance Arctic evaporation and snowfall.

  15. Glaciation and regional ground-water flow in the Fennoscandian Shield: Site 94

    USGS Publications Warehouse

    Provost, Alden M.; Voss, Clifford I.; Neuzil, C.E.

    1998-01-01

    Results from a regional-scale ground-water flow model of the Fennoscandian shield suggest that ground-water flow is strongly affected by surface conditions associated with climatic change and glaciation. The model was used to run a series of numerical simulations of variable-density ground-water flow in a 1500-km-long and approximately 10-km-deep cross-section that passes through southern Sweden. Ground-water flow and shield brine transport in the cross-sectional model are controlled by an assumed time evolution of surface conditions over the next 140 ka. Simulations show that, under periglacial conditions, permafrost may locally or extensively impede the free recharge or discharge of ground water. Below cold-based glacial ice, no recharge or discharge of ground water occurs. Both of these conditions result in the settling of shield brine and consequent freshening of near-surface water in areas of natural discharge blocked by permafrost. The presence of warm-based ice with basal melting creates a potential for ground-water recharge rates much larger than under present, ice-free conditions. Recharging basal meltwater can reach depths of a few kilometers in a few thousand years. The vast majority of recharged water is accommodated through storage in the volume of bedrock below the local area of recharge; regional (lateral) redistribution of recharged water by subsurface flow is minor over the duration of a glacial advance (~10 ka). During glacial retreat, the weight of the ice overlying a given surface location decreases, and significant upward flow of ground water may occur below the ice sheet due to pressure release, despite the continued potential for recharge of basal meltwater. Excess meltwater must exit from below the glacier through subglacial cavities and channels. Subsurface penetration of meltwater during glacial advance and up-flow during glacial retreat are greatest if the loading efficiency of the shield rock is low. The maximum rate of ground-water discharge occurs at the receding ice margin, and some discharge occurs below incursive post-glacial seas. The simulation results suggest that vertical movement of deep shield brines induced by the next few glacial cycles should not increase the concentration of dissolved solids significantly above present-day levels. However, the concentration of dissolved solids should decrease significantly at depths of up to several kilometers during periods of glacial meltwater recharge. The meltwater may reside in the subsurface for periods exceeding 10 ka and may bring oxygenated conditions to an otherwise reducing chemical environment.

  16. Radar image interpretation techniques applied to sea ice geophysical problems

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.

    1983-01-01

    The geophysical science problems in the sea ice area which at present concern understanding the ice budget, where ice is formed, how thick it grows and where it melts, and the processes which control the interaction of air-sea and ice at the ice margins is discussed. The science problems relate to basic questions of sea ice: how much is there, thickness, drift rate, production rate, determination of the morphology of the ice margin, storms feeling for the ice, storms and influence at the margin to alter the pack, and ocean response to a storm at the margin. Some of these questions are descriptive and some require complex modeling of interactions between the ice, the ocean, the atmosphere and the radiation fields. All involve measurements of the character of the ice pack, and SAR plays a significant role in the measurements.

  17. Regional and global forcing of glacier retreat during the last deglaciation

    PubMed Central

    Shakun, Jeremy D.; Clark, Peter U.; He, Feng; Lifton, Nathaniel A.; Liu, Zhengyu; Otto-Bliesner, Bette L.

    2015-01-01

    The ongoing retreat of glaciers globally is one of the clearest manifestations of recent global warming associated with rising greenhouse gas concentrations. By comparison, the importance of greenhouse gases in driving glacier retreat during the most recent deglaciation, the last major interval of global warming, is unclear due to uncertainties in the timing of retreat around the world. Here we use recently improved cosmogenic-nuclide production-rate calibrations to recalculate the ages of 1,116 glacial boulders from 195 moraines that provide broad coverage of retreat in mid-to-low-latitude regions. This revised history, in conjunction with transient climate model simulations, suggests that while several regional-scale forcings, including insolation, ice sheets and ocean circulation, modulated glacier responses regionally, they are unable to account for global-scale retreat, which is most likely related to increasing greenhouse gas concentrations. PMID:26293133

  18. Sedimentary processes on the Storfjorden trough-mouth fan during last deglaciation phase: the role of subglacial meltwater plumes on continental margin sedimentation

    NASA Astrophysics Data System (ADS)

    Lucchi, Renata G.; Camerlenghi, Angelo; Colmenero-Hidalgo, Elena; Sierro, Francisco J.; Bárcena, Maria Angeles; Flores, José-Abel; Urgeles, Roger; Macrı, Patrizia; Sagnotti, Leonardo; Caburlotto, Andrea

    2010-05-01

    The continental margin of the Southern Storfjorden trough-mouth fan was investigated within the SVAIS project (BIO Hesperides cruise, August 2007) as a Spanish contribution to IPY Activity N. 367 (Neogene ice streams and sedimentary processes on high- latitude continental margins - NICE STREAMS). The objectives were to investigate the glacially-dominated late-Neogene-Quaternary sedimentary architecture of the NW Barents Sea continental margin and reconstruct its sedimentary system in response to natural climate change. The paleo-ice streams in Storfjorden had a small catchment area draining ice from the southern Spitsbergen and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. Here ground truthing recovered the last few thousands years sedimentary sequence thought to represent last deglaciation phase. Detailed palaeostratigraphic investigations together with paleomagnetic and rock magnetic analyses and AMS dating define the constraints for high-resolution inter-core correlation and dating. Most of the cores contain at the base gravity-mass deposits including debris flows and over-consolidated glacigenic diamicton. Mass deposits are overlain by an oxidized interval originated at the release and sink of fresh, cold and oxygenated melt-waters at the inception of the deglaciation phase. On the upper slope the oxidized interval is overlain by several meters of finely-stratified sediments composed of sandy-silt layers cyclically recurring within finer-grained laminated silty-clay sediments. Textural and compositional analyses suggest preferential deposition by settling from meltwater sediment-laden plumes (plumites) occurred during deglaciation with coarser layers representing episodes of subglacial meltwater discharge (glacial hyperpycnal flows) accompanying the ice streams retreat. The laminated sequence is truncated at uppermost part by a more recent gravity-mass deposit that possibly removed part of the younger sequence. In the deeper part of the slope the plumites consist of crudely laminated, terrigenous and almost barren sediments. Here the sedimentary sequence is topped by intensively bioturbated, bioclasts-bearing silty-clays representing the most recent interglacial sedimentation. On the continental shelf, the upper sedimentary sequence contains dispersed cm-thick bivalve's shells suggesting an oxygenated and nutrient-rich environment (interglacial) overlaying an interval of terrigenous, barren sediments (deglaciation). Here the short core's length suggests the presence of stiffer/coarser sediments at the base that could not be sampled. The seismic stratigraphy indicates that the slope is formed by alternating debris flow deposits and layered sediments corresponding into our cores to the fast-deposited, low-density, terrigenous plumites. Bathymetric and seismic data revealed the presence of widespread submarine landslides restricted to the southernmost part of Storfjorden continental slope. Geotechnical investigation are in progress in order to understand if such layered deposits can act on the slope as a possible preferential weak horizon favoring sediment failure.

  19. A time-series study of the spring bloom at the Bering Sea ice edge I. Physical processes, chlorophyll and nutrient chemistry

    NASA Astrophysics Data System (ADS)

    Niebauer, H. J.; Alexander, Vera; Henrichs, Susan M.

    1995-12-01

    An intense but short-lived phytoplankton bloom develops in the low-salinity melt waters at the edge of the Bering Sea ice as the ice melts and retreats each spring. In spring 1988 we followed the development of this bloom by sampling every 3 h while following a freely drifting drogue in the marginal ice-edge zone for two four-day periods. The first period (29 April-3 May) was at an early stage of the bloom while the second period (10-13 May) was at the peak of the bloom. Early in the bloom, the phytoplankton consumed all the nitrate (˜400 mmoles m -2) initially present in the surface water producing large accumulations of particulate carbon (>1000 mmoles C m -2). By the time of peak chlorophyll concentrations (˜35 mg M -3), nitrate concentrations had been depleted so that the sustained high productivity depended on either recycled or imported nutrients. After this point, there was little net additional accumulation of biomass. From these data plus cruise data from previous years, we find that the Bering Sea ice-edge bloom typically begins in the last week of April and appears to precede blooms in the adjacent ice-free waters by days to weeks. The variability in bloom onset observed over several years is not linked very closely to the large scale climatic variations found in this region, but rather appears to be related to local weather during the end of April and the first part of May, with calm, sunny weather being required to initiate the blooms.

  20. Map Showing Limits of Tahoe Glaciation in Sequoia and Kings Canyon National Parks, California

    USGS Publications Warehouse

    Moore, James Gregory; Mack, Gregory S.

    2008-01-01

    The latest periods of extensive ice cover in the Sierra Nevada include the Tahoe glaciation followed by the Tioga glaciation, and evidence for these ice ages is widespread in the Sequoia and Kings Canyon National Parks area. However, the timing of the advances and retreats of the glaciers during the periods of glaciation continues to be a matter of debate. A compilation of existing work (Clark and others, 2003) defines the Tioga glaciation at 14-25 thousand years ago and splits the Tahoe glaciation into two stages that range from 42-50 and 140-200 thousand years ago. The extent of the Tahoe ice mass shown in the map area is considered to represent the younger Tahoe stage, 42-50 thousand years ago. Evidence of glaciations older than the Tahoe is limited in the southern Sierra Nevada. After the Tioga glaciation, only minor events with considerably less ice cover occurred. The Tioga glaciation was slightly less extensive than the Tahoe glaciation, and each covered about half of the area of Sequoia and Kings Canyon National Parks. The Tahoe glaciers extended 500-1,000 ft lower and 0.5-1.2 mi farther down valleys. Evidence for the Tahoe glacial limits is not as robust as that for Tioga, but the extent of the Tahoe ice is mapped because it covered a larger area and the ice did leave prominent moraines (piles of sediment and boulders deposited by glaciers as they melted at their margins) lower on the east front of the range. Current Sierra redwood (Sequoiadendron giganteum) groves occur in a belt on the west side of the Sierra Nevada, generally west of the area of Tahoe glaciation.

  1. Deglaciation of the Eurasian ice sheet complex

    NASA Astrophysics Data System (ADS)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Auriac, Amandine; Whitehouse, Pippa L.; Stroeven, Arjen P.; Shackleton, Calvin; Winsborrow, Monica; Heyman, Jakob; Hall, Adrian M.

    2017-08-01

    The Eurasian ice sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum with a span of over 4500 km and responsible for around 20 m of eustatic sea-level lowering. Whilst recent terrestrial and marine empirical insights have improved understanding of the chronology, pattern and rates of retreat of this vast ice sheet, a concerted attempt to model the deglaciation of the EISC honouring these new constraints is conspicuously lacking. Here, we apply a first-order, thermomechanical ice sheet model, validated against a diverse suite of empirical data, to investigate the retreat of the EISC after 23 ka BP, directly extending the work of Patton et al. (2016) who modelled the build-up to its maximum extent. Retreat of the ice sheet complex was highly asynchronous, reflecting contrasting regional sensitivities to climate forcing, oceanic influence, and internal dynamics. Most rapid retreat was experienced across the Barents Sea sector after 17.8 ka BP when this marine-based ice sheet disintegrated at a rate of ∼670 gigatonnes per year (Gt a-1) through enhanced calving and interior dynamic thinning, driven by oceanic/atmospheric warming and exacerbated by eustatic sea-level rise. From 14.9 to 12.9 ka BP the EISC lost on average 750 Gt a-1, peaking at rates >3000 Gt a-1, roughly equally partitioned between surface melt and dynamic losses, and potentially contributing up to 2.5 m to global sea-level rise during Meltwater Pulse 1A. Independent glacio-isostatic modelling constrained by an extensive inventory of relative sea-level change corroborates our ice sheet loading history of the Barents Sea sector. Subglacial conditions were predominately temperate during deglaciation, with over 6000 subglacial lakes predicted along with an extensive subglacial drainage network. Moreover, the maximum EISC and its isostatic footprint had a profound impact on the proglacial hydrological network, forming the Fleuve Manche mega-catchment which had an area of ∼2.5 × 106 km2 and drained the present day Vistula, Elbe, Rhine and Thames rivers through the Seine Estuary. During the Bølling/Allerød oscillation after c. 14.6 ka BP, two major proglacial lakes formed in the Baltic and White seas, buffering meltwater pulses from eastern Fennoscandia through to the Younger Dryas when these massive proglacial freshwater lakes flooded into the North Atlantic Ocean. Deglaciation temporarily abated during the Younger Dryas stadial at 12.9 ka BP, when remnant ice across Svalbard, Franz Josef Land, Novaya Zemlya, Fennoscandia and Scotland experienced a short-lived but dynamic re-advance. The final stage of deglaciation converged on present day ice cover around the Scandes mountains and the Barents Sea by 8.7 ka BP, although the phase-lagged isostatic recovery still continues today.

  2. Geoengineering Marine Ice Sheets

    NASA Astrophysics Data System (ADS)

    Wolovick, M.

    2017-12-01

    Mass loss from Greenland and Antarctica is highly sensitive to the presence of warm ocean water that drives melting at the grounding line. Rapid melting near the grounding line causes ice shelf thinning, loss of buttressing, flow acceleration, grounding line retreat, and ultimately mass loss and sea-level rise. If the grounding line enters a section of overdeepened bed the ice sheet may even enter a runaway collapse via the marine ice sheet instability. The warm water that triggers this process resides offshore at depth and accesses the grounding line through deep troughs in the continental shelf. In Greenland, warm water transport is further constricted through narrow fjords. Here, I propose blocking warm water transport through these choke points with an artificial sill. Using a simple width- and depth-averaged model of ice stream flow coupled to a buoyant-plume model of ocean melting, I find that grounding line retreat and sea level rise can be delayed or reversed for hundreds of years if warm water is prevented from accessing the grounding line at depth. Blocking of warm water from the sub-ice cavity causes ice shelf thickening, increased buttressing, and grounding line readvance. The increase in buttressing is greatly magnified if the thickened ice shelf regrounds on a bathymetric high or on the artificial sill itself. In some experiments for Thwaites Glacier the grounding line is able to recover from a severely retreated state over 100 km behind its present-day position. Such a dramatic recovery demonstrates that it is possible, at least in principle, to stop and reverse an ongoing marine ice sheet collapse. If the ice shelf regrounds on the artificial sill itself, erosion of the sill beneath the grounded ice could reduce the effectiveness of the intervention. However, experiments including sill erosion suggest that even a very weak sill (1 kPa) could delay a collapse for centuries. The scale of the artificial sills in Greenlandic fjords is comparable to existing large public works, while in Antarctica they are one to two orders of magnitude larger. However, this is still small in comparison to the global disruption that would be caused by a collapse of West Antarctica. Marine-terminating ice streams are high-leverage points in the climate system, where global impacts can be achieved through local intervention.

  3. How Will Aerosol-Cloud Interactions Change in an Ice-Free Arctic Summer?

    NASA Astrophysics Data System (ADS)

    Gilgen, Anina; Katty Huang, Wan Ting; Ickes, Luisa; Lohmann, Ulrike

    2016-04-01

    Future temperatures in the Arctic are expected to increase more than the global mean temperature, which will lead to a pronounced retreat in Arctic sea ice. Before mid-century, most sea ice will likely have vanished in late Arctic summers. This will allow ships to cruise in the Arctic Ocean, e.g. to shorten their transport passage or to extract oil. Since both ships and open water emit aerosol particles and precursors, Arctic clouds and radiation may be affected via aerosol-cloud and cloud-radiation interactions. The change in radiation feeds back on temperature and sea ice retreat. In addition to aerosol particles, also the temperature and the open ocean as a humidity source should have a strong effect on clouds. The main goal of this study is to assess the impact of sea ice retreat on the Arctic climate with focus on aerosol emissions and cloud properties. To this purpose, we conducted ensemble runs with the global climate model ECHAM6-HAM2 under present-day and future (2050) conditions. ECHAM6-HAM2 was coupled with a mixed layer ocean model, which includes a sea ice model. To estimate Arctic aerosol emissions from ships, we used an elaborated ship emission inventory (Peters et al. 2011); changes in aerosol emissions from the ocean are calculated online. Preliminary results show that the sea salt aerosol and the dimethyl sulfide burdens over the Arctic Ocean significantly increase. While the ice water path decreases, the total water path increases. Due to the decrease in surface albedo, the cooling effect of the Arctic clouds becomes more important in 2050. Enhanced Arctic shipping has only a very small impact. The increase in the aersol burden due to shipping is less pronounced than the increase due to natural emissions even if the ship emissions are increased by a factor of ten. Hence, there is hardly an effect on clouds and radiation caused by shipping. References Peters et al. (2011), Atmos. Chem. Phys., 11, 5305-5320

  4. Arctic warming: nonlinear impacts of sea-ice and glacier melt on seabird foraging.

    PubMed

    Grémillet, David; Fort, Jérôme; Amélineau, Françoise; Zakharova, Elena; Le Bot, Tangi; Sala, Enric; Gavrilo, Maria

    2015-03-01

    Arctic climate change has profound impacts on the cryosphere, notably via shrinking sea-ice cover and retreating glaciers, and it is essential to evaluate and forecast the ecological consequences of such changes. We studied zooplankton-feeding little auks (Alle alle), a key sentinel species of the Arctic, at their northernmost breeding site in Franz-Josef Land (80°N), Russian Arctic. We tested the hypothesis that little auks still benefit from pristine arctic environmental conditions in this remote area. To this end, we analysed remote sensing data on sea-ice and coastal glacier dynamics collected in our study area across 1979-2013. Further, we recorded little auk foraging behaviour using miniature electronic tags attached to the birds in the summer of 2013, and compared it with similar data collected at three localities across the Atlantic Arctic. We also compared current and historical data on Franz-Josef Land little auk diet, morphometrics and chick growth curves. Our analyses reveal that summer sea-ice retreated markedly during the last decade, leaving the Franz-Josef Land archipelago virtually sea-ice free each summer since 2005. This had a profound impact on little auk foraging, which lost their sea-ice-associated prey. Concomitantly, large coastal glaciers retreated rapidly, releasing large volumes of melt water. Zooplankton is stunned by cold and osmotic shock at the boundary between glacier melt and coastal waters, creating new foraging hotspots for little auks. Birds therefore switched from foraging at distant ice-edge localities, to highly profitable feeding at glacier melt-water fronts within <5 km of their breeding site. Through this behavioural plasticity, little auks maintained their chick growth rates, but showed a 4% decrease in adult body mass. Our study demonstrates that arctic cryosphere changes may have antagonistic ecological consequences on coastal trophic flow. Such nonlinear responses complicate modelling exercises of current and future polar ecosystem dynamics. © 2015 John Wiley & Sons Ltd.

  5. Evaluation of changes in atmospheric and oceanic fluxes during continental ice sheet retreat

    NASA Astrophysics Data System (ADS)

    Martin, J.; Martin, E. E.; Deuerling, K. M.

    2017-12-01

    Extensive land areas were exposed across North America, Eurasia, and to a lesser extent Greenland as continental ice sheets retreated following the last glacial maximum. A transect of watersheds from the coast to the western Greenland Ice Sheet (GrIS) provides an opportunity to evaluate possible changes in oceanic solute fluxes and atmospheric CO2 exchange as ice sheets retreat. We evaluate these fluxes in one proglacial watershed (draining ice sheet runoff) and four deglaciated watersheds (draining local precipitation and permafrost melt). Sr isotope ratios indicate bedrock near the coast has experienced greater weathering than near the ice sheet. A mass balance model of the major element composition of stream water indicates weathering in deglaciated watersheds is dominated by carbonic acid dissolution of carbonate minerals near the ice sheet that switches to carbonic acid alteration of silicate minerals near the coast. In addition, weathering by sulfuric acid, derived from oxidative dissolution of sulfide minerals, increases from the ice sheet to the coast. These changes in the weathered minerals and weathering acids impact CO2 sequestration associated with weathering. Weathering consumes 350 to 550 µmol CO2/L in watersheds near the ice sheet, but close to the coast, consumes only 15 µmol CO2/L in one watershed and sources 140 µmol CO2/L to the atmosphere at another coastal watershed. The decreasing CO2 weathering sink from the GrIS to coast reflects decreased carbonic acid weathering and increased sulfuric acid weathering of carbonate minerals. The proglacial stream shows downstream variations in composition from mixing of two water sources, with only minor in-stream weathering, which consumes < 0.1 µmol CO2/L. Discharge from the deglaciated watersheds is currently unknown but their higher solute concentrations and CO2 exchange than proglacial systems suggest deglaciated watersheds dominate atmospheric fluxes of CO2 and oceanic solute fluxes. These results imply that the initial CO2 drawdown associated with weathering of freshly exposed, fine-grained glacial sediment in deglaciated watersheds will decrease as the extent of weathering increases. As a result, weathering in this environment may become a source of atmospheric CO2 that could enhance CO2 induced global warming.

  6. A Late-Glacial sedimentary sequence at KIlkeel, Northern Ireland: implications for the glaciation of the Irish Sea Basin

    NASA Astrophysics Data System (ADS)

    Merritt, Jon; Roberson, Sam; Cooper, Mark

    2017-04-01

    This paper re-evaluates the nature and timing of a Late-Glacial ice sheet re-advance in the north western sector of the Irish Sea basin. The sedimentary archive in the region records the collapse of the Irish Sea Ice Stream, a major outlet glacier of the British-Irish Ice Sheet. The region documents the interplay between southerly flowing Scottish ice, ice flowing southeast from Lough Neagh and locally sourced Mournes ice. We present the results of sedimentological analysis of a glacigenic sequence exposed in a modern cliff section 3 km long between Derryoge and Kilkeel, Co. Down, Northern Ireland. The interaction between an advancing ice-sheet outlet lobe and rapidly changing sea levels are examined using facies analysis and micromorphology. The section is composed of four lithofacies associations (LAs). These are, from the base, a laminated, fossiliferous and deformed silt (LA1) at least 4.5 m thick that contains lenses of diamicton and discontinuous rafts of sandy gravel. Marine shells form the axis of a fold hinge, part of a lightly tectonised channel fill within the raft. LA1 is overlain by a sandy diamict (LA2) up to 14 m thick containing mainly local clasts with some of northern provenance. Within LA2 are wide channel structures infilled by laminated clayey silts (LA2b). These form deposits up to 14 m thick and contain small-scale folds, discrete shear zones and ball-and-pillow structures. LA2b forms a lithofacies association with LA2, consisting of a lower subfacies of sheared and deformed silts, overlain by sandy diamicton, capped by a striated boulder pavement. These are interpreted to represent retreat/advance cycles of a marine terminating ice margin. Up to five such cycles are identified. LA2 is widely punctuated by fissures and conduits infilled by loose sands and gravels. These are inferred to be emplaced by subglacial meltwater during the final stages of ice sheet advance. Covering both LA2 and LA2b, LA3 is a unit of glaciofluvial outwash, composed of cross-trough stratified sandy gravels, with flame structures indicative of syn-depositional loading. The entire sequence is capped by loose interbedded sands and gravels (LA4) representing a Late-Glacial raised beach. Evidence of a marine terminating ice margin provides support for high relative sea levels in the north western sector of the Irish Sea during deglaciation. Forthcoming dates from shells with the rafted subaqueous fan deposits underlying LF2 provide the opportunity to constrain either: a) sea-level rise prior to the onset of Irish Sea Basin glaciation, or, b) Late-Glacial sea level rise following deglaciation of the Irish Sea and prior to the re-advance of local ice masses.

  7. Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate

    DOE PAGES

    Cornford, S. L.; Martin, D. F.; Payne, A. J.; ...

    2015-03-23

    We use the BISICLES adaptive mesh ice sheet model to carry out one, two, and three century simulations of the fast-flowing ice streams of the West Antarctic Ice Sheet. Each of the simulations begins with a geometry and velocity close to present day observations, and evolves according to variation in meteoric ice accumulation, ice shelf melting, and mesh resolution. Future changes in accumulation and melt rates range from no change, through anomalies computed by atmosphere and ocean models driven by the E1 and A1B emissions scenarios, to spatially uniform melt rates anomalies that remove most of the ice shelves overmore » a few centuries. We find that variation in the resulting ice dynamics is dominated by the choice of initial conditions, ice shelf melt rate and mesh resolution, although ice accumulation affects the net change in volume above flotation to a similar degree. Given sufficient melt rates, we compute grounding line retreat over hundreds of kilometers in every major ice stream, but the ocean models do not predict such melt rates outside of the Amundsen Sea Embayment until after 2100. Sensitivity to mesh resolution is spurious, and we find that sub-kilometer resolution is needed along most regions of the grounding line to avoid systematic under-estimates of the retreat rate, although resolution requirements are more stringent in some regions – for example the Amundsen Sea Embayment – than others – such as the Möller and Institute ice streams.« less

  8. Satellite Observed Changes in the Arctic

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Parkinson, Claire L.

    2004-01-01

    The Arctic is currently considered an area in transformation. Glaciers have been retreating, permafrost has been diminishing, snow covered areas have been decreasing, and sea ice and ice sheets have been thinning. This paper provides an overview of the unique role that satellite sensors have contributed in the detection of changes in the Arctic and demonstrates that many of the changes are not just local but a pan-Arctic phenomenon. Changes from the upper atmosphere to the surface are discussed and it is apparent that the magnitude of the trends tends to vary from region to region and from season to season. Previous reports of a warming Arctic and a retreating perennial ice cover have also been updated, and results show that changes are ongoing. Feedback effects that can lead to amplification of the signals and the role of satellite data in enhancing global circulation models are also discussed.

  9. Multi-decadal elevation changes on Bagley Ice Valley and Malaspina Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald R.; Lingle, Craig S.; Tangborn, Wendell V.; Rabus, Bernhard T.

    2003-08-01

    Digital elevation models (DEMs) of Bagley Ice Valley and Malaspina Glacier produced by (i) Intermap Technologies, Inc. (ITI) from airborne interferometric synthetic aperture radar (InSAR) data acquired 4-13 September 2000, (ii) the German Aerospace Center (DRL) from spaceborne InSAR data acquired by the Shuttle Radar Topography Mission (SRTM) 11-22 February 2000, and (iii) the US Geological Survey (USGS) from aerial photographs acquired in 1972/73, were differenced to estimate glacier surface elevation changes from 1972 to 2000. Spatially non-uniform thickening, 10 +/- 7 m on average, is observed on Bagley Ice Valley (accumulation area) while non-uniform thinning, 47 +/- 5 m on average, is observed on the glaciers of the Malaspina complex (mostly ablation area). Even larger thinning is observed on the retreating tidewater Tyndall Glacier. These changes have resulted from increased temperature and precipitation associated with climate warming, and rapid tidewater retreat.

  10. Windblown Pliocene diatoms and East Antarctic Ice Sheet retreat

    PubMed Central

    Scherer, Reed P.; DeConto, Robert M.; Pollard, David; Alley, Richard B.

    2016-01-01

    Marine diatoms in tillites along the Transantarctic Mountains (TAMs) have been used to suggest a diminished East Antarctic Ice Sheet (EAIS) during Pliocene warm periods. Updated ice-sheet modelling shows significant Pliocene EAIS retreat, creating marine embayments into the Wilkes and Aurora basins that were conducive to high diatom productivity and rapid accumulation of diatomaceous sediments. Here we show that subsequent isostatic uplift exposed accumulated unconsolidated marine deposits to wind erosion. We report new atmospheric modelling utilizing Pliocene climate and derived Antarctic landscapes indicating that prevailing mid-altitude winds transported diatoms towards the TAMs, dominantly from extensive emerged coastal deposits of the Aurora Basin. This result unifies leading ideas from competing sides of a contentious debate about the origin of the diatoms in the TAMs and their link to EAIS history, supporting the view that parts of the EAIS are vulnerable to relatively modest warming, with possible implications for future sea-level rise. PMID:27649516

  11. Ku band airborne radar altimeter observations of marginal sea ice during the 1984 Marginal Ice Zone Experiment

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1991-01-01

    Pulse-limited, airborne radar data taken in June and July 1984 with a 13.8-GHz altimeter over the Fram Strait marginal ice zone are analyzed with the aid of large-format aerial photography, airborne synthetic aperture radar data, and surface observations. Variations in the radar return pulse waveforms are quantified and correlated with ice properties recorded during the Marginal Ice Zone Experiment. Results indicate that the wide-beam altimeter is a flexible instrument, capable of identifying the ice edge with a high degree of accuracy, calculating the ice concentration, and discriminating a number of different ice classes. This suggests that microwave radar altimeters have a sensitivity to sea ice which has not yet been fully exploited. When fused with SSM/I, AVHRR and ERS-1 synthetic aperture radar imagery, future ERS-1 altimeter data are expected to provide some missing pieces to the sea ice geophysics puzzle.

  12. Eskers in Ireland, analogs for sinuous ridges on Mars

    NASA Astrophysics Data System (ADS)

    Pellicer, Xavier; Bourke, Mary

    2014-05-01

    Sinuous ridges on the surface of Mars are often inferred as putative esker ridges. Eskers cover several hundred kilometers of the Irish landscape and are one of the dominant landforms in the Irish Midlands. Well exposed stratigraphic sections and the body of existing knowledge due to extensive research carried out on these landforms make the Irish eskers an excellent analog for sinuous ridges on Mars. The Irish Eskers are sinuous ridges 0.1 - 80 km long, 20 - 500 m wide and 4 - 50 m high laid down by glacial meltwater in tunnels and crevasses in stationary or retreating ice sheets. They are commonly composed of sands and gravels with rounded boulders and cobbles. The gravels are usually bedded and the beds often slump towards the flank of the esker, indicating collapse as the confining ice walls melt. Four types of eskers have been identified in Ireland: (i) Continuous subglacial tunnel fill represents deposition within tunnels underneath or within an ice body originally used as water escape conduits; (ii) Continuous fluvial ice-channel fill deposit in channels cut into the ice on top of the glacier or down to the substrate subsequently infilled by sediments; (iii) Long beads - subglacial tunnel fill are segmented ridges, with a length-width ratio of 5:1 to 10:1, representing sequential deposition near or at the ice margin as the ice sheet retreats; (iv) Short beads are glaciolacustrine deposits interpreted as sequential deposition of ice-contact subaqueous outwash fans. Irish eskers have significant morphological similarities with those identified on Mars providing an opportunity for an insightful morphological and morphometric analysis to determine potential formative environments on Mars. Putative Martian eskers are 2-300 km long, 50-3000 m wide and 10-150 m high. The Irish eskers are similar in scale and present dimensions within these ranges. Eskers in Ireland are composed of sand and gravel with cobbles and boulders. Mars esker-like ridges observed in high resolution images also show the presence of large boulders. Large glacial lakes in the Irish Midlands during ice withdrawal aided the outstanding preservation of these features. This permitted the cataloguing of 'pristine' morphologies and morphometries. Esker-like ridges identified on Mars are often located in low relief and depressions and show similar topographic conditions to those in Ireland. The ExoMars rover scheduled to be launched on the surface of Mars by 2018 carries the first space-borne GPR system (Wisdom) with the objective of characterizing the top 3 m of the Martian subsurface. Ground Penetrating Radar (GPR) surveys carried out on the Irish eskers and associated sediments depicted the landforms internal architecture and paleocurrent indicators. A throughout investigation of the Irish eskers as Mars analogs using remote sensing methods and GPR will contribute to the understanding of sinuous ridges on Mars.

  13. Hydrography and circulation of ice-marginal lakes at Bering Glacier, Alaska, U.S.A.

    USGS Publications Warehouse

    Josberger, E.G.; Shuchman, R.A.; Meadows, G.A.; Savage, S.; Payne, J.

    2006-01-01

    An extensive suite of physical oceanographic, remotely sensed, and water quality measurements, collected from 2001 through 2004 in two ice-marginal lakes at Bering Glacier, Alaska-Berg Lake and Vitus Lake-show that each has a unique circulation controlled by their specific physical forcing within the glacial system. Conductivity profiles from Berg Lake, perched 135 m a.s.l., show no salt in the lake, but the temperature profiles indicate an apparently unstable situation, the 4??C density maximum is located at 10 m depth, not at the bottom of the lake (90 m depth). Subglacial discharge from the Steller Glacier into the bottom of the lake must inject a suspended sediment load sufficient to marginally stabilize the water column throughout the lake. In Vitus Lake, terminus positions derived from satellite imagery show that the glacier terminus rapidly retreated from 1995 to the present resulting in a substantial expansion of the volume of Vitus Lake. Conductivity and temperature profiles from the tidally influenced Vitus Lake show a complex four-layer system with diluted (???50%) seawater in the bottom of the lake. This lake has a complex vertical structure that is the result of convection generated by ice melting in salt water, stratification within the lake, and freshwater entering the lake from beneath the glacier and surface runoff. Four consecutive years, from 2001 to 2004, of these observations in Vitus Lake show little change in the deep temperature and salinity conditions, indicating limited deep water renewal. The combination of the lake level measurements with discharge measurements, through a tidal cycle, by an acoustic Doppler Current Profiler (ADCP) deployed in the Seal River, which drains the entire Bering system, showed a strong tidal influence but no seawater entry into Vitus Lake. The ADCP measurements combined with lake level measurements established a relationship between lake level and discharge, which when integrated over a tidal cycle, gives a tidally averaged discharge ranging from 1310 to 1510 m3 s-1. ?? 2006 Regents of the University of Colorado.

  14. A Digital 3D-Reconstruction of the Younger Dryas Baltic Ice Lake

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Alm, G.; Bjorck, S.; Lindeberg, G.; Svensson, N.

    2005-12-01

    A digital 3D-reconstruction of the final stage of the ice dammed Baltic Ice Lake (BIL), dated to the very end of the Younger Dryas cold period (ca. 11 600 cal. yr BP) has been compiled using a combined bathymetric-topographic Digital Terrain Model (DTM), Scandinavian ice sheet limits, Baltic Sea Holocene bottom sediment thickness information, and a paleoshoreline database maintained at the Lund University. The combined bathymetric-topographic Digital Terrain Model (DTM) model used to reconstruct the ice dammed lake was compiled specifically for this study from publicly available data sets. The final DTM is in the form of a digital grid on Lamberts Equal Area projection with a resolution of 500 x 500 m, which permits a much more detailed reconstruction of the BIL than previously made. The lake was constructed through a series of experiments where mathematical algorithms were applied to fit the paleolake's surface through the shoreline database. The accumulated Holocene bottom sediments in the Baltic Sea were subsequently subtracted from the present bathymetry in our reconstruction. This allows us to estimate the Baltic Ice Lake's paleobathymetry, area, volume, and hypsometry, which will comprise key input data to lake/climate modeling exercises following this study. The Scandinavian ice sheet margin eventually retreated north of Mount Billingen, which was the high point in terrain of Southern central Sweden bordering to lower terrain further to the North. As a consequence, the BIL was catastrophically drained through this area, resulting in a 25 m drop of the lake level. With our digital BIL model we estimate that approximately 7, 800 km3 of water drained during this event and that the ice dammed lake area was reduced with ca 18 percent. The digital BIL reconstruction is analyzed using 3D-visualization techniques that provide new detailed information on the paleogeography in the area, both before and after the lake drainage, with implications for interpretations of geological records concerning the post-glacial environmental development of southern Scandinavia.

  15. Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard

    NASA Astrophysics Data System (ADS)

    Vallot, Dorothée; Åström, Jan; Zwinger, Thomas; Pettersson, Rickard; Everett, Alistair; Benn, Douglas I.; Luckman, Adrian; van Pelt, Ward J. J.; Nick, Faezeh; Kohler, Jack

    2018-02-01

    In this paper, we study the effects of basal friction, sub-aqueous undercutting and glacier geometry on the calving process by combining six different models in an offline-coupled workflow: a continuum-mechanical ice flow model (Elmer/Ice), a climatic mass balance model, a simple subglacial hydrology model, a plume model, an undercutting model and a discrete particle model to investigate fracture dynamics (Helsinki Discrete Element Model, HiDEM). We demonstrate the feasibility of reproducing the observed calving retreat at the front of Kronebreen, a tidewater glacier in Svalbard, during a melt season by using the output from the first five models as input to HiDEM. Basal sliding and glacier motion are addressed using Elmer/Ice, while calving is modelled by HiDEM. A hydrology model calculates subglacial drainage paths and indicates two main outlets with different discharges. Depending on the discharge, the plume model computes frontal melt rates, which are iteratively projected to the actual front of the glacier at subglacial discharge locations. This produces undercutting of different sizes, as melt is concentrated close to the surface for high discharge and is more diffuse for low discharge. By testing different configurations, we show that undercutting plays a key role in glacier retreat and is necessary to reproduce observed retreat in the vicinity of the discharge locations during the melting season. Calving rates are also influenced by basal friction, through its effects on near-terminus strain rates and ice velocity.

  16. High resolution dating of moraines on Kodiak Island, Alaska links Atlantic and North Pacific climatic changes during the late glacial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, D.H.

    1992-01-01

    Much less is known about the paleoclimate and paleoceanography of the North Pacific than the North Atlantic despite the North Pacific's important role in the global ocean-climate system. Kodiak Island lies in the northwestern Gulf of Alaska astride the eastern end of the Aleutian Low. On southwestern Kodiak Island, coastal bluffs section a series of moraines, kettle ponds, and bogs formed between 15 and 9 ka BP. Distinctive tephras from volcanoes on the Alaska Peninsula provide time-lines within the stratigraphy. Deformation events recorded in sediment stacks from basins within glaciotectonic landforms allows precise dating of glacial events. An ice capmore » occupied the Kodiak archipelago during the last glaciation. Three glacial advances of the southwestern margin of this ice cap occurred after 15 ka BP. At 13.4 ka, piedmont ice lobes formed large push moraines extending into Shelikof Strait during the Low Cape Advance. The less-extensive Tundra Advance culminated between 12 and 11.7 ka BP followed by glacier retreat then readvance to form the prominent Olga Moraine system between 11 and 10 ka BP. The timing of the Tundra and Olga Advances correlates closely with that of the Older and Younger Dryas cold episodes in northwestern Europe suggesting that these climatic oscillations were synchronous throughout the northern hemisphere.« less

  17. Last Glacial-Interglacial Transition ice dynamics in the Wicklow Mountains, Ireland

    NASA Astrophysics Data System (ADS)

    Knight, Lauren; Boston, Clare; Lovell, Harold; Pepin, Nick

    2017-04-01

    Understanding of the extent and dynamics of former ice masses in the Wicklow Mountains, Ireland, during the Last Glacial-Interglacial Transition (LGIT; 15-10 ka BP) is currently unresolved. Whilst it is acknowledged that the region hosted a local ice cap within the larger British-Irish Ice Sheet at the Last Glacial Maximum (LGM; 27 ka BP), there has been little consideration of ice cap disintegration to a topographically constrained ice mass during the LGIT. This research has produced the first regional glacial geomorphological map, through remote sensing (aerial photograph and digital terrain model interrogation) and field mapping. This has allowed both the style and extent of mountain glaciation and ice recession dynamics during the LGIT to be established. This geomorphological mapping has highlighted that evidence for local glaciation in the Wicklow Mountains is more extensive than previously recognised, and that small icefields and associated outlet valley glaciers existed during the LGIT following disintegration of the Wicklow Ice Cap. A relative chronology based on morphostratigraphic principles is developed, which indicates complex patterns of ice mass oscillation characterised by periods of both sustained retreat and minor readvance. Variations in the pattern of recession across the Wicklow Mountains are evident and appear to be influenced, in part, by topographic controls (e.g. slope, aspect, glacier hypsometry). In summary, this research establishes a relative chronology of glacial events in the region during the LGIT and presents constraints on ice mass extent, dynamics and retreat patterns, offering an insight into small ice mass behaviour in a warming climate.

  18. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves

    PubMed Central

    Liu, Yan; Moore, John C.; Cheng, Xiao; Gladstone, Rupert M.; Bassis, Jeremy N.; Liu, Hongxing; Wen, Jiahong; Hui, Fengming

    2015-01-01

    Iceberg calving from all Antarctic ice shelves has never been directly measured, despite playing a crucial role in ice sheet mass balance. Rapid changes to iceberg calving naturally arise from the sporadic detachment of large tabular bergs but can also be triggered by climate forcing. Here we provide a direct empirical estimate of mass loss due to iceberg calving and melting from Antarctic ice shelves. We find that between 2005 and 2011, the total mass loss due to iceberg calving of 755 ± 24 gigatonnes per year (Gt/y) is only half the total loss due to basal melt of 1516 ± 106 Gt/y. However, we observe widespread retreat of ice shelves that are currently thinning. Net mass loss due to iceberg calving for these ice shelves (302 ± 27 Gt/y) is comparable in magnitude to net mass loss due to basal melt (312 ± 14 Gt/y). Moreover, we find that iceberg calving from these decaying ice shelves is dominated by frequent calving events, which are distinct from the less frequent detachment of isolated tabular icebergs associated with ice shelves in neutral or positive mass balance regimes. Our results suggest that thinning associated with ocean-driven increased basal melt can trigger increased iceberg calving, implying that iceberg calving may play an overlooked role in the demise of shrinking ice shelves, and is more sensitive to ocean forcing than expected from steady state calving estimates. PMID:25733856

  19. Magnetic and mineralogical properties of central Baffin Bay sediments since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Simon, Q.; St-Onge, G.; Hillaire-Marcel, C.

    2011-12-01

    Magnetic and mineralogical properties of terrigenous sediments from the deep central Baffin Bay (HU2008-029-016PC - 70°46,14N/-64°65,77W - 2063 m) were analyzed as a means of linking sedimentological changes to ice-margin dynamics along the surrounding coastlines of W. Greenland, E. Baffin Island and N.E. Ellesmere Island since the Last Glacial Maximum (LGM). A chronology based on relative paleointensity (RPI) and secular variation (PSV) in sections where magnetism properties were suitable has been set. The age-model yields a low mean sedimentation rate varying between 4 - 8 cm/kyr along the core and illustrates a significant increase during Termination 1. Carbonate content increases drastically from 16 ka due to increasing supplies of dolomitic material from dolostone rocks outcropping in the Canadian Arctic Archipelago and associated with inputs from the Innuitian Ice Sheet margin. The magnetic properties demonstrate major changes during the deglaciation and especially during Heinrich event 1 (H1), the Younger Dryas (YD) and throughout the Holocene. Very low median destructive field (MDF) of the natural remanent magnetization (NRM) values are observed during the 11.5 - 12.6 ka (YD) and 14.8 - 16 (H1) ka intervals, and are reflecting coarser magnetic grains. Similarly, the kARM/kLF grain-size ratio shows coarser magnetic grain size during the H1 and YD intervals, and finer magnetic grains during the LGM (19 - 22 ka). During the LGM, "glacial flour" formed by mechanical grinding of rocks by ice sheets released finer magnetic grains from lateral source (e.g., Greenland continental shelf). On the contrary, during the YD and H1 periods, icebergs released coarser magnetic grains from a northern source (axial source). The Holocene is marked by the highest median destructive field (MDF) and ARM20mT/ARM0mT values of the core, indicating an increased proportion of finer magnetic grains during this interval. Together with the large increase in the silt fraction, these different proxies tend to demonstrate the establishment of the modern Baffin Bay oceanic circulation that followed the deglaciation and the opening of Lancaster Sound, Jones Sound and Nares Strait, and the onset of the Western Greenland Current. These data provide strong marine evidence of 1) increasing supplies of sedimentary material coming from the rapid retreat of ice streams in the northern part of Baffin Bay starting at 16 ka and 2) the ice-margin dynamics (Innuitian vs. Greenland ice sheets) since the LGM. The study enables to document these sedimentological changes with regard to regional and Northern Hemisphere climatic variability, and highlights the importance of Baffin Bay for the establishment of modern oceanic circulation.

  20. 77 FR 76316 - Self-Regulatory Organizations; ICE Clear Europe Limited; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-27

    ... enhancement to the SPAN for the ICE Margining algorithm employed to calculate Original Margin. All capitalized... Allocation Methodology is an enhancement to the SPAN[supreg] \\6\\ for the ICE Margining algorithm employed to... the SPAN margin calculation algorithm itself has not been changed. As of August 30, 2011, Position...

  1. Sea Ice, Hydrocarbon Extraction, Rain-on-Snow and Tundra Reindeer Nomadism in Arctic Russia

    NASA Astrophysics Data System (ADS)

    Forbes, B. C.; Kumpula, T.; Meschtyb, N.; Laptander, R.; Macias-Fauria, M.; Zetterberg, P.; Verdonen, M.

    2015-12-01

    It is assumed that retreating sea ice in the Eurasian Arctic will accelerate hydrocarbon development and associated tanker traffic along Russia's Northern Sea Route. However, oil and gas extraction along the Kara and Barents Sea coasts will likely keep developing rapidly regardless of whether the Northwest Eurasian climate continues to warm. Less certain are the real and potential linkages to regional biota and social-ecological systems. Reindeer nomadism continues to be a vitally important livelihood for indigenous tundra Nenets and their large herds of semi-domestic reindeer. Warming summer air temperatures over the NW Russian Arctic have been linked to increases in tundra productivity, longer growing seasons, and accelerated growth of tall deciduous shrubs. These temperature increases have, in turn, been linked to more frequent and sustained summer high-pressure systems over West Siberia, but not to sea ice retreat. At the same time, winters have been warming and rain-on-snow (ROS) events have become more frequent and intense, leading to record-breaking winter and spring mortality of reindeer. What is driving this increase in ROS frequency and intensity is not clear. Recent modelling and simulation have found statistically significant near-surface atmospheric warming and precipitation increases during autumn and winter over Arctic coastal lands in proximity to regions of sea-ice loss. During the winter of 2013-14 an extensive and lasting ROS event led to the starvation of 61,000 reindeer out of a population of ca. 300,000 animals on Yamal Peninsula, West Siberia. Historically, this is the region's largest recorded mortality episode. More than a year later, participatory fieldwork with nomadic herders during spring-summer 2015 revealed that the ecological and socio-economic impacts from this extreme event will unfold for years to come. There is an urgent need to understand whether and how ongoing Barents and Kara Sea ice retreat may affect the region's ancient and unique social-ecological systems. If sea ice retreat is contributing to increasingly severe ROS events and high reindeer mortality, it has major implications for the future of reindeer nomadism. At the same time, rapid oil and gas infrastructure expansion has strong potential to limit the movement of large herds during extreme events.

  2. Sustaining Military Operations in the Arctic -- The U.S. Cannot do it Alone

    DTIC Science & Technology

    2012-05-04

    for cruise ship captains to allow their passengers better views of polar bears and icebergs , for shipping companies to move their cargo on ever...as_arctic_sea_ice_retreats_storms_take_toll_on_the_land/2412/. 8 region which regularly sees icebergs and ice flows, this can be an acute hazard. 23 Amplifying the challenge to...we discussed, high winds caused by storms can blow icebergs and thick flows of sea ice into these zones. Even in the summer months, drifting ice

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornford, S. L.; Martin, D. F.; Lee, V.

    At least in conventional hydrostatic ice-sheet models, the numerical error associated with grounding line dynamics can be reduced by modifications to the discretization scheme. These involve altering the integration formulae for the basal traction and/or driving stress close to the grounding line and exhibit lower – if still first-order – error in the MISMIP3d experiments. MISMIP3d may not represent the variety of real ice streams, in that it lacks strong lateral stresses, and imposes a large basal traction at the grounding line. We study resolution sensitivity in the context of extreme forcing simulations of the entire Antarctic ice sheet, using the BISICLES adaptive mesh ice-sheet model with two schemes: the original treatment, and a scheme, which modifies the discretization of the basal traction. The second scheme does indeed improve accuracy – by around a factor of two – for a given mesh spacing, butmore » $$\\lesssim 1$$ km resolution is still necessary. For example, in coarser resolution simulations Thwaites Glacier retreats so slowly that other ice streams divert its trunk. In contrast, with $$\\lesssim 1$$ km meshes, the same glacier retreats far more quickly and triggers the final phase of West Antarctic collapse a century before any such diversion can take place.« less

  4. Variations of soil profile characteristics due to varying time spans since ice retreat in the inner Nordfjord, western Norway

    NASA Astrophysics Data System (ADS)

    Navas, A.; Laute, K.; Beylich, A. A.; Gaspar, L.

    2014-01-01

    In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils have been formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine the main soil properties to assess if soil profile characteristics and pattern of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significant lower mass activities of FRNs are found in soils on the moraines than on colluviums. Variations of ERNs activities in the valleys are related to characteristics soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbex activities differs in the soils related to the LIA glacier limits in the drainage basins.

  5. Variations of soil profile characteristics due to varying time spans since ice retreat in the inner Nordfjord, western Norway

    NASA Astrophysics Data System (ADS)

    Navas, A.; Laute, K.; Beylich, A. A.; Gaspar, L.

    2014-06-01

    In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils were formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic, and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine main soil properties, grain size distribution, soil organic carbon and pH to assess if soil profile characteristics and patterns of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significantly lower mass activities of FRNs were found in soils on the moraines than on colluviums. Variations of ERN activities in the valleys were related to characteristics of soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbex activities differs in the soils related to the LIA glacier limits in the drainage basins.

  6. The sensitivity of the Greenland Ice Sheet to glacial-interglacial oceanic forcing

    NASA Astrophysics Data System (ADS)

    Tabone, Ilaria; Blasco, Javier; Robinson, Alexander; Alvarez-Solas, Jorge; Montoya, Marisa

    2018-04-01

    Observations suggest that during the last decades the Greenland Ice Sheet (GrIS) has experienced a gradually accelerating mass loss, in part due to the observed speed-up of several of Greenland's marine-terminating glaciers. Recent studies directly attribute this to warming North Atlantic temperatures, which have triggered melting of the outlet glaciers of the GrIS, grounding-line retreat and enhanced ice discharge into the ocean, contributing to an acceleration of sea-level rise. Reconstructions suggest that the influence of the ocean has been of primary importance in the past as well. This was the case not only in interglacial periods, when warmer climates led to a rapid retreat of the GrIS to land above sea level, but also in glacial periods, when the GrIS expanded as far as the continental shelf break and was thus more directly exposed to oceanic changes. However, the GrIS response to palaeo-oceanic variations has yet to be investigated in detail from a mechanistic modelling perspective. In this work, the evolution of the GrIS over the past two glacial cycles is studied using a three-dimensional hybrid ice-sheet-shelf model. We assess the effect of the variation of oceanic temperatures on the GrIS evolution on glacial-interglacial timescales through changes in submarine melting. The results show a very high sensitivity of the GrIS to changing oceanic conditions. Oceanic forcing is found to be a primary driver of GrIS expansion in glacial times and of retreat in interglacial periods. If switched off, palaeo-atmospheric variations alone are not able to yield a reliable glacial configuration of the GrIS. This work therefore suggests that considering the ocean as an active forcing should become standard practice in palaeo-ice-sheet modelling.

  7. Spring and fall phytoplankton blooms in a productive subarctic ecosystem, the eastern Bering Sea, during 1995-2011

    NASA Astrophysics Data System (ADS)

    Sigler, Michael F.; Stabeno, Phyllis J.; Eisner, Lisa B.; Napp, Jeffrey M.; Mueter, Franz J.

    2014-11-01

    The timing and magnitude of phytoplankton blooms in subarctic ecosystems often strongly influence the amount of energy that is transferred through subsequent trophic pathways. In the eastern Bering Sea, spring bloom timing has been linked to ice retreat timing and production of zooplankton and fish. A large part of the eastern Bering Sea shelf (~500 km wide) is ice-covered during winter and spring. Four oceanographic moorings have been deployed along the 70-m depth contour of the eastern Bering Sea shelf with the southern location occupied annually since 1995, the two northern locations since 2004 and the remaining location since 2001. Chlorophyll a fluorescence data from the four moorings provide 37 realizations of a spring bloom and 33 realizations of a fall bloom. We found that in the eastern Bering Sea: if ice was present after mid-March, spring bloom timing was related to ice retreat timing (p<0.001, df=1, 24); if ice was absent or retreated before mid-March, a spring bloom usually occurred in May or early June (average day 148, SE=3.5, n=11). A fall bloom also commonly occurred, usually in late September (average day 274, SE=4.2, n=33), and its timing was not significantly related to the timing of storms (p=0.88, df=1, 27) or fall water column overturn (p=0.49, df=1, 27). The magnitudes of the spring and fall blooms were correlated (p=0.011, df=28). The interval between the spring and fall blooms varied between four to six months depending on year and location. We present a hypothesis to explain how the large crustacean zooplankton taxa Calanus spp. likely respond to variation in the interval between blooms (spring to fall and fall to spring).

  8. Adaptive mesh refinement versus subgrid friction interpolation in simulations of Antarctic ice dynamics

    DOE PAGES

    Cornford, S. L.; Martin, D. F.; Lee, V.; ...

    2016-05-13

    At least in conventional hydrostatic ice-sheet models, the numerical error associated with grounding line dynamics can be reduced by modifications to the discretization scheme. These involve altering the integration formulae for the basal traction and/or driving stress close to the grounding line and exhibit lower – if still first-order – error in the MISMIP3d experiments. MISMIP3d may not represent the variety of real ice streams, in that it lacks strong lateral stresses, and imposes a large basal traction at the grounding line. We study resolution sensitivity in the context of extreme forcing simulations of the entire Antarctic ice sheet, using the BISICLES adaptive mesh ice-sheet model with two schemes: the original treatment, and a scheme, which modifies the discretization of the basal traction. The second scheme does indeed improve accuracy – by around a factor of two – for a given mesh spacing, butmore » $$\\lesssim 1$$ km resolution is still necessary. For example, in coarser resolution simulations Thwaites Glacier retreats so slowly that other ice streams divert its trunk. In contrast, with $$\\lesssim 1$$ km meshes, the same glacier retreats far more quickly and triggers the final phase of West Antarctic collapse a century before any such diversion can take place.« less

  9. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Weber, M. E.; Clark, P. U.; Ricken, W.; Mitrovica, J. X.; Hostetler, S. W.; Kuhn, G.

    2012-04-01

    The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood because only a few findings with robust chronologies exist for Antarctic ice sheets. We developed a chronology for the Weddell Sea sector of the East Antarctic ice sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates the advance to their maximum extent at 29 -28 ka, and retreat from their maximum extent at 19 ka was nearly synchronous with Northern Hemisphere ice sheets (Weber, M.E., Clark, P. U., Ricken, W., Mitrovica, J. X., Hostetler, S. W., and Kuhn, G. (2011): Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum. - Science, 334, 1265-1269, doi: 10.1126:science.1209299). As for the deglaciation, modeling studies suggest a late ice-sheet retreat starting around 14 ka BP and ending around 7 ka BP with a large impact of an unstable West Antarctic Ice Sheet (WAIS) and a small impact of a stable East Antarctic Ice Sheet (EAIS). However, the Weddell Sea sites studied here, as well as sites from the Scotia Sea, provide evidence that specifically the EAIS responded much earlier, possibly provided a significant contribution to the last sea-level rise, and was much more dynamic than previously thought. Using the results of an atmospheric general circulation we conclude that surface climate forcing of Antarctic ice mass balance would likely cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Furthermore, our new data support teleconnections involving a sea-level fingerprint forced from Northern Hemisphere ice sheets as indicated by gravitational modeling. Also, changes in North Atlantic Deepwater formation and attendant heat flux to Antarctic grounding lines may have contributed to synchronizing the hemispheric ice sheets.

  10. Satellite microwave and in situ observations of the Weddell Sea ice cover and its marginal ice zone

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.; Sullivan, C. W.

    1986-01-01

    The radiative and physical characteristics of the Weddell Sea ice cover and its marginal ice zone are analyzed using multichannel satellite passive microwave data and ship and helicopter observations obtained during the 1983 Antarctic Marine Ecosystem Research. Winter and spring brightness temperatures are examined; spatial variability in the brightness temperatures of consolidated ice in winter and spring cyclic increases and decrease in brightness temperatures of consolidated ice with an amplitude of 50 K at 37 GHz and 20 K at 18 GHz are observed. The roles of variations in air temperature and surface characteristics in the variability of spring brightness temperatures are investigated. Ice concentrations are derived using the frequency and polarization techniques, and the data are compared with the helicopter and ship observations. Temporal changes in the ice margin structure and the mass balance of fresh water and of biological features of the marginal ice zone are studied.

  11. The "Golden Shale": An indicator of coastal stability for Marble Point, McMurdo Sound, over the last four million years

    USGS Publications Warehouse

    Claridge, G.G.C.; Campbell, I.B.

    2007-01-01

    A small sedimentary deposit near Gneiss Point on the western side of McMurdo Sound, previously identified as shale, is described. The deposit is phillipsite, a zeolite that is believed to have formed from the deposition and alteration of volcanic ash in a small ice-marginal saline lake. Other previously recorded occurrences of phillipsite in the dry valleys are believed to be several million years old. A similar age for this deposit is suggested for the Gneiss Point deposit. This is consistent with other weathering and landscape features found in the immediate area, including traces of halloysite in soils. The deposit is very close to sea level but could not have formed if the site had been below sea level, indicating that there has been very little uplift following that which caused the sea to retreat from the Wright Fiord.

  12. Glacial climate driven sedimentation overwhelms tectonics in the battle for control of margin architecture: Southeast Alaska, St. Elias Orogeny

    NASA Astrophysics Data System (ADS)

    Gulick, S. P.; Jaeger, J. M.; Willems, B.; Powell, R. D.; Lowe, L. A.

    2006-12-01

    The interplay of tectonic and climatic processes is fundamental to the development of mountain belts and the ensuing patterns of deformation and erosion. Of equal significance is the interaction of tectonic and climatic processes in the development of orogenic sedimentary basins, or in the case of a coastal mountain belt, in the growth of a continental margin. The Chugach-St. Elias Orogeny, which is driven by the collision of the Yakutat microplate with North America in southeast Alaska, has generated the highest coastal relief in the world. The combined forces of tectonic uplift and glacial erosion have resulted in the accumulation of over 5 km of sediment to form the continental shelf and the creation of the Surveyor Fan that is over 2 km thick proximally. High-resolution GI-gun seismic data allow for detailed examination of the margin architecture off the Bering Glacier within the leading edge of the Yakutat block. The deformation and growth of the margin appears to have first undergone a tectonically dominated phase followed more recently by a glacially dominated phase. During the tectonically dominated period a broad anticline-syncline system helped create accommodation space and the margin both shallowed and widened to its current 50 km width. Based on ties with industry well cuttings, the dominance switched sometime between 0.75 and 1.25 Ma to being completely controlled by glacial advance-retreat patterns. The mappable glacial sequences are undeformed by the underlying anticlines and display several notable features: 1) erosional bases that can often be mapped across the entire shelf, terminating at the shelf edge, 2) little evidence for terminal or retreat moraines on the shelf suggesting very rapid and single phase retreat of the glacier, 3) incomplete glacial sequences due to erosion by later advances, and 4) minimal creation of accommodation space. We investigate the cause of the switch to glacial dominance, the mechanisms and causes of the potentially extremely rapid glacial retreats, and the geodynamics of these glacial advances with respect to the development of margin architecture.

  13. The impacts of intense moisture transport on the deep and marginal sea-ice zones of the Arctic during winter

    NASA Astrophysics Data System (ADS)

    Woods, Cian; Caballero, Rodrigo

    2015-04-01

    Over the past few decades observations have shown that the Arctic is warming at a much faster rate than the global average; a phenomenon know as polar amplification. This tendency for the high latitudes to warm at a disproportionate rate compared to the global average is also a robust feature of global climate model simulations and highlights the importance of climate research in this region. The most often cited mechanism explaining polar amplification is the ice-albedo feed-back; a mechanism by which the surface albedo decreases as sea ice retreats in response to a warming climate. This in turn leads to a higher absorption of insolation and the melting of more ice. In recent years the role of the ice-albedo feedback mechanism as the main cause of polar amplification has been brought into question. GCM studies show a slight reduction of the total poleward energy transport in a warming climate; with the dry static component decreasing at a much faster rate than the moist component. This repartitioning of the poleward energy transport has implications for the formation of clouds in the Arctic, which induce a secondary warming by trapping escaping OLR. These cloud processes in the atmosphere can explain at least part of the recent temperature amplification in the Arctic; and indeed even aquaplanet model studies with zero sea-ice reproduce the polar amplification phenomenon. Directionally, the ice-albedo feedback is a "bottom-up" process; inducing warming in the atmosphere from an increasing surface heat source i.e. more open ocean. The opening of more ocean surface is also consistent with the bottom amplified structure of warming in the Arctic. Here we present evidence for a mechanism in the atmosphere that matches with observations, but in fact acts the opposite direction i.e. "top-down", whereby moist air masses from lower latitudes, termed "moisture intrusions", travelling over the sea-ice increase the longwave down radiation and in turn induce a bottom amplified warming at the surface. There are an average of 14 such events that enter the polar cap each winter, driving about 50% of the seasonal variation in surface temperature over the deep Arctic. We show that, over the last 30 years, the marginal ice-zones in the Barents, Labrador and Chukchi Seas have experienced roughly a doubling in the frequency of these intense moisture intrusion events during winter. Interestingly, these are the regions that have experienced the most rapid wintertime ice loss in the Arctic, raising the question: to what extent has the recent Arctic warming been driven by local vs. interannual/remote processes?

  14. Comparing a thermo-mechanical Weichselian ice sheet reconstruction to GIA driven reconstructions: aspects of earth response and ice configuration

    NASA Astrophysics Data System (ADS)

    Schmidt, P.; Lund, B.; Näslund, J.-O.

    2013-12-01

    In this study we compare a recent reconstruction of the Weichselian ice-sheet as simulated by the University of Main ice-sheet model (UMISM) to two reconstructions commonly used in glacial isostatic adjustment (GIA) modeling: ICE-5G and ANU (also known as RSES). The UMISM reconstruction is carried out on a regional scale based on thermo-mechanical modelling whereas ANU and ICE-5G are global models based on the sea-level equation. The Weichselian ice-sheet in the three models are compared directly in terms of ice volume, extent and thickness, as well as in terms of predicted glacial isostatic adjustment in Fennoscandia. The three reconstructions display significant differences. UMISM and ANU includes phases of pronounced advance and retreat prior to the last glacial maximum (LGM), whereas the thickness and areal extent of the ICE-5G ice-sheet is more or less constant up until LGM. The final retreat of the ice-sheet initiates at earliest time in ICE-5G and latest in UMISM, while ice free conditions are reached earliest in UMISM and latest in ICE-5G. The post-LGM deglaciation style also differs notably between the ice models. While the UMISM simulation includes two temporary halts in the deglaciation, the later during the Younger Dryas, ANU only includes a decreased deglaciation rate during Younger Dryas and ICE-5G retreats at a relatively constant pace after an initial slow phase. Moreover, ANU and ICE-5G melt relatively uniformly over the entire ice-sheet in contrast to UMISM which melts preferentially from the edges. We find that all three reconstructions fit the present day uplift rates over Fennoscandia and the observed relative sea-level curve along the Ångerman river equally well, albeit with different optimal earth model parameters. Given identical earth models, ICE-5G predicts the fastest present day uplift rates and ANU the slowest, ANU also prefers the thinnest lithosphere. Moreover, only for ANU can a unique best fit model be determined. For UMISM and ICE-5G there is a range of earth models that can reproduce the present day uplift rates equally well. This is understood from the higher present day uplift rates predicted by ICE-5G and UMISM, which results in a bifurcation in the best fit mantle viscosity. Comparison of the uplift histories predicted by the ice-sheets indicate that inclusion of relative sea-level data in the data fit can reduce the observed ambiguity. We study the areal distributions of present day residual surface velocities in Fennoscandia and show that all three reconstructions generally over-predict velocities in southwestern Fennoscandia and that there are large differences in the fit to the observational data in Finland and northernmost Sweden and Norway. These difference may provide input to further enhancements of the ice-sheet reconstructions.

  15. Remote sensing of the Fram Strait marginal ice zone

    USGS Publications Warehouse

    Shuchman, R.A.; Burns, B.A.; Johannessen, O.M.; Josberger, E.G.; Campbell, W.J.; Manley, T.O.; Lannelongue, N.

    1987-01-01

    Sequential remote sensing images of the Fram Strait marginal ice zone played a key role in elucidating the complex interactions of the atmosphere, ocean, and sea ice. Analysis of a subset of these images covering a 1-week period provided quantitative data on the mesoscale ice morphology, including ice edge positions, ice concentrations, floe size distribution, and ice kinematics. The analysis showed that, under light to moderate wind conditions, the morphology of the marginal ice zone reflects the underlying ocean circulation. High-resolution radar observations showed the location and size of ocean eddies near the ice edge. Ice kinematics from sequential radar images revealed an ocean eddy beneath the interior pack ice that was verified by in situ oceanographic measurements.

  16. Discharge of debris from ice at the margin of the Greenland ice sheet

    USGS Publications Warehouse

    Knight, P.G.; Waller, R.I.; Patterson, C.J.; Jones, A.P.; Robinson, Z.P.

    2002-01-01

    Sediment production at a terrestrial section of the ice-sheet margin in West Greenland is dominated by debris released through the basal ice layer. The debris flux through the basal ice at the margin is estimated to be 12-45 m3 m-1 a-1. This is three orders of magnitude higher than that previously reported for East Antarctica, an order of magnitude higher than sites reported from in Norway, Iceland and Switzerland, but an order of magnitude lower than values previously reported from tidewater glaciers in Alaska and other high-rate environments such as surging glaciers. At our site, only negligible amounts of debris are released through englacial, supraglacial or subglacial sediment transfer. Glacio-fluvial sediment production is highly localized, and long sections of the ice-sheet margin receive no sediment from glaciofluvial sources. These findings differ from those of studies at more temperate glacial settings where glaciofluvial routes are dominant and basal ice contributes only a minor percentage of the debris released at the margin. These data on debris flux through the terrestrial margin of an outlet glacier contribute to our limited knowledge of debris production from the Greenland ice sheet.

  17. Impact of Basal Conditions on Grounding-Line Retreat

    NASA Astrophysics Data System (ADS)

    Koellner, S. J.; Parizek, B. R.; Alley, R. B.; Muto, A.; Holschuh, N.; Nowicki, S.

    2017-12-01

    An often-made assumption included in ice-sheet models used for sea-level projections is that basal rheology is constant throughout the domain of the simulation. The justification in support of this assumption is that physical data for determining basal rheology is limited and a constant basal flow law can adequately approximate current as well as past behavior of an ice-sheet. Prior studies indicate that beneath Thwaites Glacier (TG) there is a ridge-and-valley bedrock structure which likely promotes deformation of soft tills within the troughs and sliding, more akin to creep, over the harder peaks; giving rise to a spatially variable basal flow law. Furthermore, it has been shown that the stability of an outlet glacier varies with the assumed basal rheology, so accurate projections almost certainly need to account for basal conditions. To test the impact of basal conditions on grounding-line evolution forced by ice-shelf perturbations, we modified the PSU 2-D flowline model to enable the inclusion of spatially variable basal rheology along an idealized bedrock profile akin to TG. Synthetic outlet glacier "data" were first generated under steady-state conditions assuming a constant basal flow law and a constant basal friction coefficient field on either a linear or bumpy sloping bed. In following standard procedures, a suite of models were then initialized by assuming different basal rheologies and then determining the basal friction coefficients that produce surface velocities matching those from the synthetic "data". After running each of these to steady state, the standard and full suite of models were forced by drastically reducing ice-shelf buttressing through side-shear and prescribed basal-melting perturbations. In agreement with previous findings, results suggest a more plastic basal flow law enhances stability in response to ice-shelf perturbations by flushing ice from farther upstream to sustain the grounding-zone mass balance required to prolong the current grounding-line position. Mixed rheology beds tend to mimic the retreat of the higher-exponent bed, a behavior enhanced over bumps as the stabilizing ridges tap into ice from local valleys. Thus, accounting for variable basal conditions in ice-sheet model projections is critical for improving both the timing and magnitude of retreat.

  18. Disentangling the Roles of Atmospheric and Oceanic Forcing on the Last Deglaciation of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Keisling, B. A.; Deconto, R. M.

    2017-12-01

    Today the Greenland Ice Sheet loses mass via both oceanic and atmospheric processes. However, the relative importance of these mass balance components is debated, especially their potential impact on ongoing and future mass imbalance. Discerning the impact of oceanic versus atmospheric forcing during past periods of mass loss provides potential insight into the future behavior of the ice sheet. Here we present an ensemble of Greenland Ice Sheet simulations of the last deglaciation, designed to assess separately the roles of the ocean and the atmosphere in driving mass loss over the last twenty thousand years. We use twenty-eight different ocean forcing scenarios along with a cutting-edge reconstruction of time-evolving atmospheric conditions based on climate model output and δ15N-based temperature reconstructions to generate a range of ice-sheet responses during the deglaciation. We then compare the simulated timing of ice-retreat in individual catchments with estimates based on both 10Be (exposure) and 14C (minimum-limiting) dates. These experiments allow us to identify the ocean forcing scenario that best match the data on a local-to-regional (i.e., 100-1000 km) scales, providing an assessment of the relative importance of ocean and atmospheric forcing components around the periphery of Greenland. We use these simulations to quantify the importance of the three major mass balance terms (calving, oceanic melting, and surface melting) and assess the uncertainty of the relative influence of these factors during the most recent periods of major ice loss. Our results show that mass balance components around different sectors of the ice sheet respond differently to forcing, with oceanic components driving the majority of retreat in south and east Greenland and atmospheric forcing dominating in west and north Greenland In addition, we target three areas at high spatial resolution ( 1 km) around Greenland currently undergoing substantial change (Jakobshavn, Petermann, and Nioghalvfjerdsfjord/Zakariae) to directly compare simulated deglacial retreat rates with those implied by submarine and subaerial moraine systems.

  19. Tracking millennial-scale Holocene glacial advance and retreat using osmium isotopes: Insights from the Greenland ice sheet

    USGS Publications Warehouse

    Rooney, Alan D.; Selby, David; Llyod, Jeremy M.; Roberts, David H.; Luckge, Andreas; Sageman, Bradley B.; Prouty, Nancy G.

    2016-01-01

    High-resolution Os isotope stratigraphy can aid in reconstructing Pleistocene ice sheet fluctuation and elucidating the role of local and regional weathering fluxes on the marine Os residence time. This paper presents new Os isotope data from ocean cores adjacent to the West Greenland ice sheet that have excellent chronological controls. Cores MSM-520 and DA00-06 represent distal to proximal sites adjacent to two West Greenland ice streams. Core MSM-520 has a steadily decreasing Os signal over the last 10 kyr (187Os/188Os = 1.35–0.81). In contrast, Os isotopes from core DA00-06 (proximal to the calving front of Jakobshavn Isbræ) highlight four stages of ice stream retreat and advance over the past 10 kyr (187Os/188Os = 2.31; 1.68; 2.09; 1.47). Our high-resolution chemostratigraphic records provide vital benchmarks for ice-sheet modelers as we attempt to better constrain the future response of major ice sheets to climate change. Variations in Os isotope composition from sediment and macro-algae (seaweed) sourced from regional and global settings serve to emphasize the overwhelming effect weathering sources have on seawater Os isotope composition. Further, these findings demonstrate that the residence time of Os is shorter than previous estimates of ∼104 yr.

  20. Ice Mass Changes in the Russian High Arctic from Repeat High Resolution Topography.

    NASA Astrophysics Data System (ADS)

    Willis, Michael; Zheng, Whyjay; Pritchard, Matthew; Melkonian, Andrew; Morin, Paul; Porter, Claire; Howat, Ian; Noh, Myoung-Jong; Jeong, Seongsu

    2016-04-01

    We use a combination of ASTER and cartographically derived Digital Elevation Models (DEMs) supplemented with WorldView DEMs, the ArcticDEM and ICESat lidar returns to produce a time-series of ice changes occurring in the Russian High Arctic between the mid-20th century and the present. Glaciers on the western, Barents Sea coast of Novaya Zemlya are in a state of general retreat and thinning, while those on the eastern, Kara Sea coast are retreating at a slower rate. Franz Josef Land has a complicated pattern of thinning and thickening, although almost all the thinning is associated with rapid outlet glaciers feeding ice shelves. Severnaya Zemlya is also thinning in a complicated manner. A very rapid surging glacier is transferring mass into the ocean from the western periphery of the Vavilov Ice Cap on October Revolution Island, while glaciers feeding the former Matusevich Ice Shelf continue to thin at rates that are faster than those observed during the operational period of ICESat, between 2003 and 2009. Passive microwave studies indicate the total number of melt days is increasing in the Russian Arctic, although much of the melt may refreeze within the firn. It is likely that ice dynamic changes will drive mass loss for the immediate future. The sub-marine basins beneath several of the ice caps in the region suggest the possibility that mass loss rates may accelerate in the future.

  1. Changes in ice dynamics along the northern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Seehaus, Thorsten; Marinsek, Sebastian; Cook, Alison; Van Wessem, Jan-Melchior; Braun, Matthias

    2017-04-01

    The climatic conditions along the Antarctic Peninsula have undergone considerable changes during the last 50 years. A period of pronounced air temperature rise, increasing ocean temperatures as well as changes in the precipitation pattern have been reported by various authors. Consequently, the glacial systems showed changes including widespread retreat, surface lowering as well as variations in flow speeds. During the last decades numerous ice shelves along the Antarctic Peninsula retreated, started to break-up or disintegrated completely. The loss of the buttressing effect caused tributary glaciers to accelerate with increasing ice discharge along the Antarctic Peninsula. Quantification of the mass changes is still subject to considerable errors although numbers derived from the different methods are converging. The aim is to study the reaction of glaciers at the northern Antarctic Peninsula to the changing climatic conditions and the readjustments of tributary glaciers to ice shelf disintegration, as well as to better quantify the ice mass loss and its temporal changes. We analysed time series of various satellite sensors (ERS-1/2 SAR, ENVISAT ASAR, RADARSAT-1, ALOS PALSAR, TerraSAR-X/TanDEM-X, ASTER, Landsat) to detect changes in ice dynamics of 74 glacier basins along the northern Antarctic Peninsula (<65°). Intensity feature tracking techniques were applied on data stacks from different SAR satellites over the last 20 years to infer temporal trends in glacier surface velocities. In combination with ice thickness reconstructions and modeled climatic mass balance fields regional imbalances were calculated. Variations in ice front position were mapped based on optical and SAR satellite data sets. Along the west coast of the northern Antarctic Peninsula an increase in flow speeds by 40% between 1992 and 2014 was observed, whereas glaciers on the east side (north of former Prince-Gustav Ice Shelf) showed a strong deceleration. Nearly all former ice shelf tributaries showed similar reactions to ice shelf disintegration, with a significant acceleration and frontal retreat after ice shelf break-up and a subsequent deceleration and front stabilization. In total an ice discharge of 17.93±6.22 Gt/a was estimated for the study region in the period 2010-2014. Regional mass balance estimates indicate nearly balanced mass budgets in the period 1992-1996 and positive imbalances in more recent years (2010-2014), dominated by the clearly positive mass balances along the west coast due to high climatic mass balances. The detailed multi-mission time series analysis of glacier changes supports the interpretation of the ongoing processes in this region and allows multi temporal imbalance estimates.

  2. Wave propagation in the marginal ice zone - Model predictions and comparisons with buoy and synthetic aperture radar data

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Holt, Benjamin; Vachon, Paris W.

    1991-01-01

    Ocean wave dispersion relation and viscous attenuation by a sea ice cover are studied for waves propagating into the marginal ice zone (MIZ). The Labrador ice margin experiment (LIMEX), conducted on the MIZ off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR imagery, ice property and wave buoy data. Wave energy attenuation rates are estimated from SAR data and the ice motion package data that were deployed at the ice edge and into the ice pack, and compared with a model. It is shown that the model data comparisons are quite good for the ice conditions observed during LIMEX 1987.

  3. Dynamics and unsteady morphologies at ice interfaces driven by D2O–H2O exchange

    PubMed Central

    Holmes-Cerfon, Miranda; Kohn, Robert V.

    2017-01-01

    The growth dynamics of D2O ice in liquid H2O in a microfluidic device were investigated between the melting points of D2O ice (3.8 °C) and H2O ice (0 °C). As the temperature was decreased at rates between 0.002 °C/s and 0.1 °C/s, the ice front advanced but retreated immediately upon cessation of cooling, regardless of the temperature. This is a consequence of the competition between diffusion of H2O into the D2O ice, which favors melting of the interface, and the driving force for growth supplied by cooling. Raman microscopy tracked H/D exchange across the solid H2O–solid D2O interface, with diffusion coefficients consistent with transport of intact H2O molecules at the D2O ice interface. At fixed temperatures below 3 °C, the D2O ice front melted continuously, but at temperatures near 0 °C a scalloped interface morphology appeared with convex and concave sections that cycled between growth and retreat. This behavior, not observed for D2O ice in contact with D2O liquid or H2O ice in contact with H2O liquid, reflects a complex set of cooperative phenomena, including H/D exchange across the solid–liquid interface, latent heat exchange, local thermal gradients, and the Gibbs–Thomson effect on the melting points of the convex and concave features. PMID:29042511

  4. Change in the Extent of Baffin Island's Penny Ice Cap in Response to Regional Warming, 1969 - 2014

    NASA Astrophysics Data System (ADS)

    Cox, M. C.; Cormier, H. M.; Gardner, A. S.

    2014-12-01

    Glaciers are retreating globally in response to warmer atmospheric temperatures, adding large volumes of melt water to the world's oceans. The largest glacierized region and present-day contributor to sea level rise outside of the massive ice sheets is the Canadian Arctic. Recent work has shown that the glaciers of the southern Canadian Arctic (Baffin and Bylot Island) have experienced accelerated rates of ice loss in recent decades, but little is known regarding the spatial and temporal variations in rates of loss. For this study we examine in detail changes in the extent of the Penny Ice Cap (a proxy for ice loss) between 1969 and 2014 to better understand the climatic drivers of the recently observed accelerated rates of ice loss on Baffin Island. To do this, we reconstruct the extent of the ice cap for the year 1969 from historical maps and for the years 1985, 1995, 2010, and 2014 from Landsat 5 TM and Landsat 8 OLI imagery. We use 2009 SPOT HRS imagery and a novel extent comparison algorithm to assess the accuracy of glacier extents derived from Landsat imagery. Regional temperature and precipitation records were used to explain the spatial pattern of change. Due to large variation in elevations, hypsometry was also investigated as a contributor to differences in rates of change across the ice cap. Preliminary results show overall retreat throughout the ice cap but with regional differences in area and length change on either side of the Ice Cap divide.

  5. Late-Quaternary glaciation and postglacial emergence, southern Eureka Sound, high-Arctic Canada

    NASA Astrophysics Data System (ADS)

    O Cofaigh, Colm Seamus

    Eureka Sound is the inter-island channel separating Ellesmere and Axel Heiberg islands, High Arctic Canada. This thesis reconstructs the glacial and sea level history of southern Eureka Sound through surficial geological mapping, studies of glacial sedimentology and geomorphology, surveying of raised marine shorelines, radiocarbon dating of marine shells and driftwood and surface exposure dating of erratics and bedrock. Granite dispersal trains, shelly till and ice-moulded bedrock record westerly-flow of warm-based, regional ice into Eureka Sound from a source on southeastern Ellesmere Island during the late Wisconsinan. Regional ice was coalescent with local ice domes over Raanes and northern Svendsen peninsulas. Marine limit (dating <=9.2 ka BP; <=9.9 ka cal BP) is inset into the dispersal trains and records early Holocene deglaciation of regional ice. Collectively these data indicate an extensive ice-cover in southern Eureka Sound during the Last Glacial Maximum. Ice-divides were located along the highlands of central Ellesmere and Axel Heiberg islands, from which ice converged on Eureka Sound, and subsequently flowed north and south along the channel. Deglaciation was characterised by a two-step retreat pattern, likely triggered by eustatic sea level rise and abrupt early Holocene warming. Initial break-up and radial retreat of ice in Eureka Sound and the larger fiords, preceded terrestrial stabilisation along coastlines and inner fiords. Location of deglacial depocentres was predominantly controlled by fiord bathymetry. Regionally, two-step deglaciation is reflected by prominent contrasts in glacial geomorphology between the inner and outer parts of many fiords. Glacial sedimentological and geomorphological evidence indicates spatial variation in basal thermal regime between retreating trunk glaciers. Holocene emergence of up to 150 m asl along southern Eureka Sound is recorded by raised marine deltas, beaches and washing limits. Emergence curves exhibit marked contrasts in the form and rate of initial unloading. Isobases drawn on the 8.5 ka shoreline for greater Eureka Sound demonstrate that a cell of highest emergence extends along the length of the channel, and closes in the vicinity of the entrance to Norwegian Bay. The isobase pattern indicates a distinct loading centre over the sound, and in conjunction with glacial geological evidence, suggests that the thickest late Wisconsinan ice lay over the channel.

  6. Morphological properties of tunnel valleys of the southern sector of the Laurentide Ice Sheet and implications for their formation

    NASA Astrophysics Data System (ADS)

    Livingstone, Stephen J.; Clark, Chris D.

    2016-07-01

    Tunnel valleys have been widely reported on the bed of former ice sheets and are considered an important expression of subglacial meltwater drainage. Although known to have been cut by erosive meltwater flow, the water source and development of channels has been widely debated; ranging between outburst flood events through to gradually occurring channel propagation. We have mapped and analysed the spatial pattern and morphometry of tunnel valleys and associated glacial landforms along the southern sector of the former Laurentide Ice Sheet from high-resolution digital elevation models. Around 2000 tunnel valleys have been mapped, revealing an organised pattern of sub-parallel, semi-regularly spaced valleys that form in distinctive clusters. The tunnel valleys are typically < 20 km long, and 0.5-3 km wide, although their width varies considerably down-valley. They preferentially terminate at moraines, which suggests that formation is time dependent; while we also observe some tunnel valleys that have grown headwards out of hill-hole pairs. Analysis of cross-cutting relationships between tunnel valleys, moraines and outwash fans permits reconstruction of channel development in relation to the retreating ice margin. This palaeo-drainage reconstruction demonstrates incremental growth of most valleys, with some used repeatedly or for long periods, during deglaciation, while others were abandoned shortly after their formation. Our data and interpretation support gradual (rather than a single-event) formation of most tunnel valleys with secondary contributions from flood drainage of subglacial and or supraglacially stored water down individual tunnel valleys. The distribution and morphology of tunnel valleys is shown to be sensitive to regional factors such as basal thermal regime, ice and bed topography, timing and climate.

  7. Tsivat Basin conduit system persists through two surges, Bering Piedmont Glacier, Alaska

    USGS Publications Warehouse

    Fleisher, P.J.; Cadwell, D.H.; Muller, E.H.

    1998-01-01

    The 1993-1995 surge of Bering Glacier, Alaska, occurred in two distinct phases. Phase 1 of the surge began on the eastern sector in July, 1993 and ended in July, 1994 after a powerful outburst of subglacial meltwater into Tsivat Lake basin on the north side of Weeping Peat Island. Within days, jokulhlaup discharge built a 1.5 km2 delta of ice blocks (25-30 m) buried in outwash. By late October 1994, discharge temporarily shifted to a vent on Weeping Peat Island, where a second smaller outburst dissected the island and built two new sandar. During phase 2, which began in spring 1995 and ended within five months, continuous discharge issued from several vents along the ice front on Weeping Peat Island before returining to the Tsivat Basin. Surge related changes include a five- to six-fold increase in meltwater turbidity; the redirection of supercooled water in two ice-contact lakes; and an increase in the rate of glaciolacustrine sedimentation. US Geological Survey aerial photos by Austin Post show large ice blocks in braided channels indicating excessive subglacial discharge in a similar position adjacent to Weeping Peat Island during the 1966-1967 surge. During the subsequent three decades of retreat, the location of ice-marginal, subglacial discharge vents remained aligned on a linear trend that describes the position of a persistent subglacial conduit system. The presence of a major conduit system, possibly stabilized by subglacial bedrock topography, is suggested by: 1) high-level subglacial meltwater venting along the northern side of Weeping Peat Island during the 1966-1967 surge, 2) persistent low-level discharge between surges, and 3) the recurrence of localizing meltwater outbursts associated with both phases of the 1993-1005 surge.

  8. The Relationship Between Arctic Sea Ice Albedo and the Geophysical Parameters of the Ice Cover

    NASA Astrophysics Data System (ADS)

    Riihelä, A.

    2015-12-01

    The Arctic sea ice cover is thinning and retreating. Remote sensing observations have also shown that the mean albedo of the remaining ice cover is decreasing on decadal time scales, albeit with significant annual variability (Riihelä et al., 2013, Pistone et al., 2014). Attribution of the albedo decrease between its different drivers, such as decreasing ice concentration and enhanced surface melt of the ice, remains an important research question for the forecasting of future conditions of the ice cover. A necessary step towards this goal is understanding the relationships between Arctic sea ice albedo and the geophysical parameters of the ice cover. Particularly the question of the relationship between sea ice albedo and ice age is both interesting and not widely studied. The recent changes in the Arctic sea ice zone have led to a substantial decrease of its multi-year sea ice, as old ice melts and is replaced by first-year ice during the next freezing season. It is generally known that younger sea ice tends to have a lower albedo than older ice because of several reasons, such as wetter snow cover and enhanced melt ponding. However, the quantitative correlation between sea ice age and sea ice albedo has not been extensively studied to date, excepting in-situ measurement based studies which are, by necessity, focused on a limited area of the Arctic Ocean (Perovich and Polashenski, 2012).In this study, I analyze the dependencies of Arctic sea ice albedo relative to the geophysical parameters of the ice field. I use remote sensing datasets such as the CM SAF CLARA-A1 (Karlsson et al., 2013) and the NASA MeaSUREs (Anderson et al., 2014) as data sources for the analysis. The studied period is 1982-2009. The datasets are spatiotemporally collocated and analysed. The changes in sea ice albedo as a function of sea ice age are presented for the whole Arctic Ocean and for potentially interesting marginal sea cases. This allows us to see if the the albedo of the older sea ice in the central parts of the Arctic Ocean is resistant to the decreasing overall trend.A similar analysis is also extended to ice concentration, melt season length and other appropriate parameters describing the surface conditions. The results of the analyses are summed up to provide an assessment of the relative impact strengths of the ice field parameters on the albedo.

  9. Performance of an airborne imaging 92/183 GHz radiometer during the Bering Sea Marginal Ice Zone Experiment (MIZEX-WEST)

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Mcsheehy, J. J.; Cavalieri, D. J.

    1983-01-01

    An airborne imaging 92/183 GHz radiometer was recently flown onboard NASA's Convair 990 research aircraft during the February 1983 Bering Sea Marginal Ice Zone Experiment (MIZEX-WEST). The 92 GHz portion of the radiometer was used to gather ice signature data and to generate real-time millimeter wave images of the marginal ice zone. Dry atmospheric conditions in the Arctic resulted in good surface ice signature data for the 183 GHz double sideband (DSB) channel situated + or - 8.75 GHz away from the water vapor absorption line. The radiometer's beam scanner imaged the marginal ice zone over a + or - 45 degrees swath angle about the aircraft nadir position. The aircraft altitude was 30,000 feet (9.20 km) maximum and 3,000 feet (0.92 km) minimum during the various data runs. Calculations of the minimum detectable target (ice) size for the radiometer as a function of aircraft altitude were performed. In addition, the change in the atmospheric attenuation at 92 GHz under varying weather conditions was incorporated into the target size calculations. A radiometric image of surface ice at 92 GHz in the marginal ice zone is included.

  10. Waves and mesoscale features in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chih Y.

    1993-01-01

    Ocean-ice interaction processes in the Marginal Ice Zone (MIZ) by waves and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) imagery and wave-ice interaction models. Satellite observations of mesoscale features can play a crucial role in ocean-ice interaction study.

  11. Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849-2017 with ISSM

    NASA Astrophysics Data System (ADS)

    Haubner, K.; Box, J.; Schlegel, N.; Larour, E. Y.; Morlighem, M.; Solgaard, A.; Kjeldsen, K. K.; Larsen, S. H.; Rignot, E. J.; Dupont, T. K.; Kjaer, K. H.

    2017-12-01

    Tidewater terminus changes have a significant influence on glacier velocity and mass balance and impact therefore Greenland's ice mass balance. Improving glacier front changes in ice sheet models helps understanding the processes that are driving glacier mass changes and improves predictions on Greenland's mass loss. We use the level set based moving boundary capability (Bondzio et al., 2016) included in the Ice Sheet System Model ISSM to reconstruct velocity and thickness changes on Upernavik Isstrøm, Greenland from 1849 to 2017. During the simulation, we use various data sets. For the model initialization, trim line data and an observed calving front position determine the shape of the ice surface elevation. The terminus changes are prescribed by observations. Data sets like the GIMP DEM, ArcticDEM, IceBridge surface elevation and ice surface velocities from the ESA project CCI and NASA project MEaSUREs help evaluating the simulation performance. The simulation is sensitive to the prescribed terminus changes, showing an average acceleration along the three flow lines between 50% and 190% from 1849 to 2017. Simulated ice surface velocity and elevation between 1990 and 2012 are within +/-20% of observations (GIMP, ArcticDEM, IceBridge, CCI and MEaSUREs). Simulated mass changes indicate increased dynamical ice loss from 1932 onward, amplified by increased negative SMB anomalies after 1998. More detailed information about methods and findings can be found in Haubner et al., 2017 (in TC discussion, describing simulation results between 1849-2012). Future goals are the comparison of ice surface velocity changes simulated with prescribed terminus retreat against other retreat schemes (Morlighem et al., 2016; Levermann et al., 2012; Bondzio et al., 2017) and applying the method onto other tidewater glaciers.

  12. Correlation studies of passive and active microwave data in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.

    1991-01-01

    The microwave radiative and backscatter characteristics of sea ice in an Arctic marginal ice zone have been studied using near-simultaneous passive and active synthetic aperture radar microwave data. Intermediate-resolution multichannel passive microwave data were registered and analyzed. Passive and active microwave data generally complement each other as the two sensors are especially sensitive to different physical properties of the sea ice. In the inner pack, undeformed first-year ice is observed to have low backscatter values but high brightness temperatures while multiyear ice has generally high backscatter values and low brightness temperatures. However, in the marginal ice zone, the signature and backscatter for multiyear ice are considerably different and closer to those of first-year ice. Some floes identified by photography as snow-covered thick ice have backscatter similar to that of new ice or open water while brash ice has backscatter similar to or higher than that of ridged ice.

  13. Pace of glacial retreat and limits on paleoclimate conditions for the Pine Creek Glacier, Montana, during the Pinedale Glaciation

    NASA Astrophysics Data System (ADS)

    Huss, E.; Laabs, B. J.; Leonard, E. M.; Licciardi, J. M.; Plummer, M. A.; Caffee, M. W.

    2012-12-01

    The timing of glaciation and the changes in climate that occurred both during and after the Last Glacial Maximum (LGM) in the Rocky Mountains are not well defined. Given the sensitivity of mountain glaciers to factors such as temperature, precipitation, and solar radiation, reconstructions of the history and extent of paleo-glaciers can be used to infer paleoclimate. Pine Creek Valley, located in the Absaroka Mountains in southwestern Montana, is an ideal setting for this type of research because it was occupied by a discrete valley glacier, the extent of which is precisely known during the LGM. To determine the pace and timing of ice retreat in this valley, glacially polished bedrock surfaces along the path of deglaciation were sampled at several points for cosmogenic 10Be surface exposure dating. The ages obtained range from 17.9 ± 0.8 to 13.2 ± 0.5 ka. When combined with the reconstructed ice extent during the LGM and subsequent deglaciation, these ages yield maximum and minimum retreat rates of 3.1 m/yr and 1.1 m/yr, respectively. These values constrain how long it took the glacier to retreat into a well-defined cirque from the terminal moraines. Paleoclimate conditions for the LGM were estimated using a two-dimensional, numerical, combined energy and mass balance and ice flow model. Previous qualitative inferences of paleoclimate in southern Montana indicate climate during the local LGM was colder and drier than modern values. If precipitation values were held constant or reduced for the Pine Creek glacier, the model suggests a temperature depression of at least 8°C.

  14. End of the Little Ice Age in the Alps forced by industrial black carbon

    PubMed Central

    Painter, Thomas H.; Flanner, Mark G.; Kaser, Georg; Marzeion, Ben; VanCuren, Richard A.; Abdalati, Waleed

    2013-01-01

    Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Alpine temperature and precipitation records suggest that glaciers should instead have continued to grow until circa 1910. Radiative forcing by increasing deposition of industrial black carbon to snow may represent the driver of the abrupt glacier retreats in the Alps that began in the mid-19th century. Ice cores indicate that black carbon concentrations increased abruptly in the mid-19th century and largely continued to increase into the 20th century, consistent with known increases in black carbon emissions from the industrialization of Western Europe. Inferred annual surface radiative forcings increased stepwise to 13–17 W⋅m−2 between 1850 and 1880, and to 9–22 W⋅m−2 in the early 1900s, with snowmelt season (April/May/June) forcings reaching greater than 35 W⋅m−2 by the early 1900s. These snowmelt season radiative forcings would have resulted in additional annual snow melting of as much as 0.9 m water equivalent across the melt season. Simulations of glacier mass balances with radiative forcing-equivalent changes in atmospheric temperatures result in conservative estimates of accumulating negative mass balances of magnitude −15 m water equivalent by 1900 and −30 m water equivalent by 1930, magnitudes and timing consistent with the observed retreat. These results suggest a possible physical explanation for the abrupt retreat of glaciers in the Alps in the mid-19th century that is consistent with existing temperature and precipitation records and reconstructions. PMID:24003138

  15. End of the Little Ice Age in the Alps forced by industrial black carbon.

    PubMed

    Painter, Thomas H; Flanner, Mark G; Kaser, Georg; Marzeion, Ben; VanCuren, Richard A; Abdalati, Waleed

    2013-09-17

    Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Alpine temperature and precipitation records suggest that glaciers should instead have continued to grow until circa 1910. Radiative forcing by increasing deposition of industrial black carbon to snow may represent the driver of the abrupt glacier retreats in the Alps that began in the mid-19th century. Ice cores indicate that black carbon concentrations increased abruptly in the mid-19th century and largely continued to increase into the 20th century, consistent with known increases in black carbon emissions from the industrialization of Western Europe. Inferred annual surface radiative forcings increased stepwise to 13-17 W⋅m(-2) between 1850 and 1880, and to 9-22 W⋅m(-2) in the early 1900s, with snowmelt season (April/May/June) forcings reaching greater than 35 W⋅m(-2) by the early 1900s. These snowmelt season radiative forcings would have resulted in additional annual snow melting of as much as 0.9 m water equivalent across the melt season. Simulations of glacier mass balances with radiative forcing-equivalent changes in atmospheric temperatures result in conservative estimates of accumulating negative mass balances of magnitude -15 m water equivalent by 1900 and -30 m water equivalent by 1930, magnitudes and timing consistent with the observed retreat. These results suggest a possible physical explanation for the abrupt retreat of glaciers in the Alps in the mid-19th century that is consistent with existing temperature and precipitation records and reconstructions.

  16. Walrus areas of use in the Chukchi Sea during sparse sea ice cover

    USGS Publications Warehouse

    Jay, Chadwick V.; Fischbach, Anthony S.; Kochnev, Anatoly A.

    2012-01-01

    The Pacific walrus Odobenus rosmarus divergens feeds on benthic invertebrates on the continental shelf of the Chukchi and Bering Seas and rests on sea ice between foraging trips. With climate warming, ice-free periods in the Chukchi Sea have increased and are projected to increase further in frequency and duration. We radio-tracked walruses to estimate areas of walrus foraging and occupancy in the Chukchi Sea from June to November of 2008 to 2011, years when sea ice was sparse over the continental shelf in comparison to historical records. The earlier and more extensive sea ice retreat in June to September, and delayed freeze-up of sea ice in October to November, created conditions for walruses to arrive earlier and stay later in the Chukchi Sea than in the past. The lack of sea ice over the continental shelf from September to October caused walruses to forage in nearshore areas instead of offshore areas as in the past. Walruses did not frequent the deep waters of the Arctic Basin when sea ice retreated off the shelf. Walruses foraged in most areas they occupied, and areas of concentrated foraging generally corresponded to regions of high benthic biomass, such as in the northeastern (Hanna Shoal) and southwestern Chukchi Sea. A notable exception was the occurrence of concentrated foraging in a nearshore area of northwestern Alaska that is apparently depauperate in walrus prey. With increasing sea ice loss, it is likely that walruses will increase their use of coastal haul-outs and nearshore foraging areas, with consequences to the population that are yet to be understood.

  17. Arctic sea ice thickness characteristics in winter 2004 and 2007 from submarine sonar transects

    NASA Astrophysics Data System (ADS)

    Wadhams, Peter; Hughes, Nick; Rodrigues, JoãO.

    2011-08-01

    A transect of the Arctic Ocean by the British submarine Tireless in March 2007 enabled the thickness characteristics of the ice cover to be measured during the winter immediately preceding the exceptional retreat of summer 2007. In this paper we report on mean and modal drafts, probability density functions of draft, and the frequency and depth distribution of pressure ridges, and we compare results with those from an earlier submarine cruise in winter 2004 which covered part of the same area. In the region from north of Fram Strait to Ellesmere Island (about 85°N, 0-70°W) we find no change in mean drafts between 2004 and 2007 though there is a change in ice composition, with more ridging in 2007 but a lesser modal draft. This agrees with the observations of younger ice being driven toward Fram Strait in 2007. The region north of Ellesmere Island continues to be a "redoubt" containing more thick deformed multiyear ice than any other part of the transect. In the west the submarine profiled extensively under the SEDNA ice camp at 73°N 145°W. This is in the same location as the 1976 AIDJEX ice camp and a sonar survey done by a U.S. submarine in April 1976. We found that a large decrease in mean draft had occurred (32%) over 31 years and that in 2007 the SEDNA region contained the thinnest ice of any part of the Arctic surveyed by the submarine; this was a region from which the ice completely retreated during the subsequent summer of 2007.

  18. Recent transformations in the high-Arctic glacier landsystem Hørbyebreen, Svalbard.

    NASA Astrophysics Data System (ADS)

    Ewertowski, Marek; Evans, David; Roberts, David; Tomczyk, Aleksandra

    2016-04-01

    The Hørbyebreen is a polythermal valley glacier in the Petuniabukta area, central part of Spitsbergen. Since the end of the Little Ice Age, a debris-free glacier margin retreated by more than 3 km exposing complex landform assemblages including ice-cored moraines, flutes, eskers and geometric ridge networks. Glacier recession and landforms' development in the terrestrial parts of the foreland were quantified using time-series of orthophotos and digital elevation models (generated based on 1961, 1990, 2009 aerial photographs) and high resolution satellite images from 2013. Additionally, detailed analyses of a case study area were performed based on unmanned aerial vehicle (UAV) imagery (3 cm resolution) captured in 2014. A time-series of 1:5,000 geomorphological maps of the whole foreland, together with 1:300 map of a sample area of complex geometric ridge networks and results of sedimentological analysis, enable us to assess the evolution of glacial landform assemblages. The two main areas of the Hørbyebreen foreland were identified as: (1) the outer moraine ridge and (2) the inner zone between the contemporary ice edge and the outer moraine ridge. The outer moraine ridge was relatively stable and subject to mainly vertical transformation between 1960 and 2009. The most prominent changes were observed within the inner zone. In 1960 it was covered by glacier ice, whereas in 2009 this area exhibited a wide range of subglacial and englacial landforms, including a network of rectilinear ridges which we interpret as crevasse infills created by the injection of pressurized englacial meltwater. Other prominent features in this zone include controlled moraine, indicative of sub-marginal debris entrainment by the polythermal snout, and complex esker network. This landform assemblage is diagnostic of a variable process-form regime in which the glacial geomorphology of polythermal conditions is supplemented with surge signatures and therefore is likely to be the most representative landsystem model for terrestrial-terminating Svalbard glaciers. The research was founded by Polish National Science Centre (project granted by decision number DEC-2011/01/D/ST10/06494).

  19. Spring-summer net community production, new production, particle export and related water column biogeochemical processes in the marginal sea ice zone of the Western Antarctic Peninsula 2012-2014.

    PubMed

    Ducklow, Hugh W; Stukel, Michael R; Eveleth, Rachel; Doney, Scott C; Jickells, Tim; Schofield, Oscar; Baker, Alex R; Brindle, John; Chance, Rosie; Cassar, Nicolas

    2018-06-28

    New production (New P, the rate of net primary production (NPP) supported by exogenously supplied limiting nutrients) and net community production (NCP, gross primary production not consumed by community respiration) are closely related but mechanistically distinct processes. They set the carbon balance in the upper ocean and define an upper limit for export from the system. The relationships, relative magnitudes and variability of New P (from 15 NO 3 - uptake), O 2  : argon-based NCP and sinking particle export (based on the 238 U :  234 Th disequilibrium) are increasingly well documented but still not clearly understood. This is especially true in remote regions such as polar marginal ice zones. Here we present a 3-year dataset of simultaneous measurements made at approximately 50 stations along the Western Antarctic Peninsula (WAP) continental shelf in midsummer (January) 2012-2014. Net seasonal-scale changes in water column inventories (0-150 m) of nitrate and iodide were also estimated at the same stations. The average daily rates based on inventory changes exceeded the shorter-term rate measurements. A major uncertainty in the relative magnitude of the inventory estimates is specifying the start of the growing season following sea-ice retreat. New P and NCP(O 2 ) did not differ significantly. New P and NCP(O 2 ) were significantly greater than sinking particle export from thorium-234. We suggest this is a persistent and systematic imbalance and that other processes such as vertical mixing and advection of suspended particles are important export pathways.This article is part of the theme issue 'The marine system of the west Antarctic Peninsula: status and strategy for progress in a region of rapid change'. © 2018 The Author(s).

  20. Exposed subsurface ice sheets in the Martian mid-latitudes

    NASA Astrophysics Data System (ADS)

    Dundas, Colin M.; Bramson, Ali M.; Ojha, Lujendra; Wray, James J.; Mellon, Michael T.; Byrne, Shane; McEwen, Alfred S.; Putzig, Nathaniel E.; Viola, Donna; Sutton, Sarah; Clark, Erin; Holt, John W.

    2018-01-01

    Thick deposits cover broad regions of the Martian mid-latitudes with a smooth mantle; erosion in these regions creates scarps that expose the internal structure of the mantle. We investigated eight of these locations and found that they expose deposits of water ice that can be >100 meters thick, extending downward from depths as shallow as 1 to 2 meters below the surface. The scarps are actively retreating because of sublimation of the exposed water ice. The ice deposits likely originated as snowfall during Mars’ high-obliquity periods and have now compacted into massive, fractured, and layered ice. We expect the vertical structure of Martian ice-rich deposits to preserve a record of ice deposition and past climate.

  1. Ice streaming in western Scotland and the deglaciation of the Hebrides Shelf and Firth of Lorn

    NASA Astrophysics Data System (ADS)

    Arosio, Riccardo; Howe, John; O'Cofaigh, Colm; Crocket, Kirsty

    2014-05-01

    Previously, numerous studies have been undertaken both onshore and offshore to decipher the morphological and sedimentological record in order to better constrain the limits and duration of the British-Irish Ice Sheet (BIIS) (Ballantyne et al. 2009, Bradwell et al. 2008b, Clark et al. 2011, Dunlop et al. 2010, Howe et al. 2012, O'Cofaigh et al., 2012). Late glacial ice sheet dynamics have been revealed to be far more rapid and responsive to climatic amelioration than had previously been considered. Notable in this debate has been the evidence that has been obtained in the inshore and, to a lesser extent, offshore on the UK continental shelf. Here new geomorphological data, principally multibeam echo sounder (MBES) data has provided imagery of previously unseen features interpreted as being glacial in origin. In the wake of these new discoveries this projects aims to investigate the extent, timing, growth and final disintegration of the BIIS across Western Scotland. This area of particular interest for the development of the glaciated North Atlantic margin has been generally neglected in past studies, especially across the mid-outer shelf, which constitutes a missing part in the jigsaw of the reconstructed BIIS during the last ~20.000yrs. We aim to mainly focus on geomorphological analyses of MBES data collected in the Firth of Lorn and Sea of Hebrides; a study of features as moraines, glacial lineations and drumlins will provide important clues on the dynamics and maximum extension of the sheet. Subsequently we will examine the geometry and composition of the shelf sediment infill, aiming to constrain the influence of ice retreat on depositional environments using multi-element geochemical (Pb-isotopes ratios, 14C and OSL dating) and sedimentological techniques. Such an investigation will also give retrospective information on the sources for these sediments, hence more indications on ice configuration. Ultimately we aim to provide a model of deglaciation for the western sector of the BIIS. Keywords: British-Irish Ice Sheet, NW Scotland, glacial bedforms, geochronology References Ballantyne, C.K., Schnabel, C. & Xu, S. 2009. Readvance of the last British Ice Sheet during Greenland Interstade (GI-1): the Wester Ross Readvance, NW Scotland. Quaternary Science Reviews, 28, 783-789 Bradwell, T., Fabel, D., Stoker, M., Mathers, H., McHargue, L., Howe, J., 2008b. Ice caps existed throughout the Late glacial interstadial in northern Scotland. Journal of Quaternary Science 23, 401-407. Clark, C.D., Hughes, A.L.C., Greenwood, S.L., Jordan, C., Sejrup, H.P. 2012. Pattern and timing of retreat of the last British-Irish Ice Sheet. Quaternary Science Reviews. Dunlop, P., Shannon, R., McCabe, M., Quinn, R., Doyle, E. 2010. Marine geophysical evidence for ice sheet extension and recession on the Malin Shelf: New evidence for the western limits of the British-Irish Ice Sheet. Marine Geology, 276: 86-99. Howe, J. A., Dove, D., Bradwell, T. & Gaferia, J. 2012. Submarine geomorphology and glacial history of the Sea of the Hebrides, UK. Marine Geology 315-318, 64-78 O' Cofaigh, C., Dunlop, P. Benetti, S., 2012. Marine geophysical evidence for Late Pleistocene ice sheet extent and recession off northwest Ireland, Quaternary Science Reviews. In press.

  2. A multi-decadal remote sensing study on glacial change in the North Patagonia Ice Field Chile

    NASA Astrophysics Data System (ADS)

    Tetteh, Lucy Korlekwor

    Glaciers in the North Patagonian Ice Fields are temperate glaciers and can be studied to understand the dynamics of climate change. However, the ice field has been neglected in mass balance studies. In this study, multi decadal study of glacial mass balance, glacier retreat and glacial lake expansion in the North Patagonia were studied. Landsat (TM, ETM+ and 8) and ASTER images were used. San Quintin glacier experienced the highest retreat. Demarcation of glacier lakes boundaries indicated an increase in glacial lake area an addition of 4 new glacial lakes. Nef glacier recorded the highest mass gain of 9.91 plus or minus 1.96 m.w.e.a.-1 and HPN-4 glacier recorded the highest mass loss of -8.9 plus or minus 1.96 m.w.e.a. -1. However, there is a high uncertainty in the elevation values in the DEM due to the rugged nature of the terrain and presence of the heavy snow cover.

  3. Large ensemble modeling of last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    NASA Astrophysics Data System (ADS)

    Pollard, D.; Chang, W.; Haran, M.; Applegate, P.; DeConto, R.

    2015-11-01

    A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ~ 20 000 years. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree quite well with the more advanced techniques, but only for a large ensemble with full factorial parameter sampling. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds. Each run is extended 5000 years into the "future" with idealized ramped climate warming. In the majority of runs with reasonable scores, this produces grounding-line retreat deep into the West Antarctic interior, and the analysis provides sea-level-rise envelopes with well defined parametric uncertainty bounds.

  4. Exploring the sensitivity of global ocean circulation to future ice loss from Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Condron, Alan

    The sensitivity of the global ocean circulation and climate to large increases in iceberg calving and meltwater discharges from the Antarctic Ice Sheet (AIS) are rarely studied and poorly understood. The requirement to investigate this topic is heightened by growing evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse on multidecadal-to-centennial timescales. Observations collected over the last 30 years indicate that the WAIS is now losing mass at an accelerated and that a collapse may have already begun in the Amundsen Sea sector. In addition, some recent future model simulations of the AIS showmore » the potential for rapid ice sheet retreat in the next 50 – 300 years. Such a collapse would be associated with the discharge of enormous volumes of ice and meltwater to the Southern Ocean. This project funds PI Condron to begin assessing the sensitivity of the global ocean circulation to projected increases in meltwater discharge and iceberg calving from the AIS for the next 50 – 100 years. A series of climate model simulations will determine changes in ocean circulation and temperature at the ice sheet grounding line, the role of mesoscale ocean eddies in mixing and transporting freshwater away from the continent to deep water formation regions, and the likely impact on the northward transport of heat to Europe and North America.« less

  5. Cosmogenic nuclide age estimate for Laurentide Ice Sheet recession from the terminal moraine, New Jersey, USA, and constraints on latest Pleistocene ice sheet history

    USGS Publications Warehouse

    Corbett, Lee B.; Bierman, Paul R.; Stone, Byron D.; Caffee, Marc W.; Larsen, Patrick L.

    2017-01-01

    The time at which the Laurentide Ice Sheet reached its maximum extent and subsequently retreated from its terminal moraine in New Jersey has been constrained by bracketing radiocarbon ages on preglacial and postglacial sediments. Here, we present measurements of in situ produced 10Be and 26Al in 16 quartz-bearing samples collected from bedrock outcrops and glacial erratics just north of the terminal moraine in north-central New Jersey; as such, our ages represent a minimum limit on the timing of ice recession from the moraine. The data set includes field and laboratory replicates, as well as replication of the entire data set five years after initial measurement. We find that recession of the Laurentide Ice Sheet from the terminal moraine in New Jersey began before 25.2±2.1 ka (10Be, n=16, average, 1 standard deviation). This cosmogenic nuclide exposure age is consistent with existing limiting radiocarbon ages in the study area and cosmogenic nuclide exposure ages from the terminal moraine on Martha’s Vineyard ~300 km to the northeast. The age we propose for Laurentide Ice Sheet retreat from the New Jersey terminal position is broadly consistent with regional and global climate records of the last glacial maximum termination and records of fluvial incision.

  6. Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn

    NASA Astrophysics Data System (ADS)

    Sato, K.; Inoue, J.; Kodama, Y.; Overland, J. E.

    2012-12-01

    Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999-2010 cruises of the Japanese R/V Mirai. To understand the recent change in cloud base height over the Arctic Ocean, these cloud-base height data were compared with the observation data under ice-covered situation during SHEBA (the Surface Heat Budget of the Arctic Ocean project in 1998). Our ice-free results showed a 30 % decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. This suggests that stratus cloud over the sea ice has been replaced as stratocumulus clouds with low cloud fraction due to the decrease in static stability induced by the sea-ice retreat. The relationship between cloud-base height and air-sea temperature difference (SST-Ts) was analyzed in detail using special section data during 2010 cruise data. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere. Frequency distribution of the cloud-base height (km) detected by a ceilometer/lidar (black bars) and radiosondes (gray bars), and profiles of potential temperature (K) for (a) ice-free cases (R/V Mirai during September) and (b) ice-covered case (SHEBA during September 1998). (c) Vertical profiles of air temperature from 1000 hPa to 150 hPa (solid lines: observations north of 75°N, and dashed lines: the ERA-Interim reanalysis over 75-82.5°N, 150-170°W). Green, blue, and red lines denote profiles derived from observations by NP stations (the 1980s), SHEBA (1998), and the R/V Mirai (the 2000s), respectively. (d) Temperature trend calculated by the ERA-Interim reanalysis over the area.

  7. Changes in Greenland's peripheral glaciers linked to the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Bjørk, A. A.; Aagaard, S.; Lütt, A.; Khan, S. A.; Box, J. E.; Kjeldsen, K. K.; Larsen, N. K.; Korsgaard, N. J.; Cappelen, J.; Colgan, W. T.; Machguth, H.; Andresen, C. S.; Peings, Y.; Kjær, K. H.

    2018-01-01

    Glaciers and ice caps peripheral to the main Greenland Ice Sheet contribute markedly to sea-level rise1-3. Their changes and variability, however, have been difficult to quantify on multi-decadal timescales due to an absence of long-term data4. Here, using historical aerial surveys, expedition photographs, spy satellite imagery and new remote-sensing products, we map glacier length fluctuations of approximately 350 peripheral glaciers and ice caps in East and West Greenland since 1890. Peripheral glaciers are found to have recently undergone a widespread and significant retreat at rates of 12.2 m per year and 16.6 m per year in East and West Greenland, respectively; these changes are exceeded in severity only by the early twentieth century post-Little-Ice-Age retreat. Regional changes in ice volume, as reflected by glacier length, are further shown to be related to changes in precipitation associated with the North Atlantic Oscillation (NAO), with a distinct east-west asymmetry; positive phases of the NAO increase accumulation, and thereby glacier growth, in the eastern periphery, whereas opposite effects are observed in the western periphery. Thus, with projected trends towards positive NAO in the future5,6, eastern peripheral glaciers may remain relatively stable, while western peripheral glaciers will continue to diminish.

  8. Ice-Shelf Melt Response to Changing Winds and Glacier Dynamics in the Amundsen Sea Sector, Antarctica

    NASA Astrophysics Data System (ADS)

    Donat-Magnin, Marion; Jourdain, Nicolas C.; Spence, Paul; Le Sommer, Julien; Gallée, Hubert; Durand, Gaël.

    2017-12-01

    It has been suggested that the coastal Southern Ocean subsurface may warm over the 21st century in response to strengthening and poleward shifting winds, with potential adverse effects on West Antarctic glaciers. However, using a 1/12° ocean regional model that includes ice-shelf cavities, we find a more complex response to changing winds in the Amundsen Sea. Simulated offshore subsurface waters get colder under strengthened and poleward shifted winds representative of the SAM projected trend. The buoyancy-driven circulation induced by ice-shelf melt transports this cold offshore anomaly onto the continental shelf, leading to cooling and decreased melt below 450 m. In the vicinity of ice-shelf fronts, Ekman pumping contributes to raise the isotherms in response to changing winds. This effect overwhelms the horizontal transport of colder offshore waters at intermediate depths (between 200 and 450 m), and therefore increases melt rates in the upper part of the ice-shelf cavities, which reinforces the buoyancy-driven circulation and further contributes to raise the isotherms. Then, prescribing an extreme grounding line retreat projected for 2100, the total melt rates simulated underneath Thwaites and Pine Island are multiplied by 2.5. Such increase is explained by a larger ocean/ice interface exposed to CDW, which is then amplified by a stronger melt-induced circulation along the ice draft. Our main conclusions are that (1) outputs from ocean models that do not represent ice shelf cavities (e.g., CMIP5 models) should not be directly used to predict the thermal forcing of future ice shelf cavities; (2) coupled ocean/ice sheet models with a velocity-dependent melt formulation are needed for future projections of glaciers experiencing a significant grounding line retreat.

  9. Eastern Hudson Bay, Canada

    NASA Image and Video Library

    2017-12-08

    Each winter sea ice forms over the salty waters of frigid northeastern Canada's Hudson Bay. As sunlight lengthens and weather warms, ice begins to break up and melt, with retreat typically starting in May and melt-out completed sometime in July. Since the 1970s, the timing of sea ice breakup in Hudson Bay has changed, with melting beginning earlier in the spring. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this a true-color image of Hudson Bay on March 26, 2013. Although snow still covers the surrounding land, ice has already begun to retreat from much of the eastern shore of the Bay visible in the image. A ring of bright white ice remains solidly frozen around the Belcher Islands in the southeast section of the Bay, but this ring is surrounded by blue waters and large chunks of ice. In the southwest, a similar situation is seen at Akimiski Island. The shelf of bright white ice gives way to open water in the south, as well as fractured, blue-tinted ice. The blue tint generally indicates water logging as ice begins to soften. The Aqua satellite captured a similar image of early ice melt on Hudson Bay on April 6, 2012. That image can be viewed at: modis.gsfc.nasa.gov/gallery/individual.php?db_date=2012-0... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Matusevich Glacier

    NASA Image and Video Library

    2017-12-08

    NASA image acquired September 6, 2010 The Matusevich Glacier flows toward the coast of East Antarctica, pushing through a channel between the Lazarev Mountains and the northwestern tip of the Wilson Hills. Constrained by surrounding rocks, the river of ice holds together. But stresses resulting from the glacier’s movement make deep crevasses, or cracks, in the ice. After passing through the channel, the glacier has room to spread out as it floats on the ocean. The expanded area and the jostling of ocean waves prompts the ice to break apart, which it often does along existing crevasses. On September 6, 2010, the Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite captured this natural-color image of the margin of Matusevich Glacier. Shown here just past the rock-lined channel, the glacier is calving large icebergs. Low-angled sunlight illuminates north-facing surfaces and casts long shadows to the south. Fast ice anchored to the shore surrounds both the glacier tongue and the icebergs it has calved. Compared to the glacier and icebergs, the fast ice is thinner with a smoother surface. Out to sea (image left), the sea ice is even thinner and moves with winds and currents. Matusevich Glacier does not drain a significant amount of ice off of the Antarctic continent, so the glacier’s advances and retreats lack global significance. Like other Antarctic glaciers, however, Matusevich helps glaciologists form a larger picture of Antarctica’s glacial health and ice sheet volume. NASA Earth Observatory image created by Jesse Allen and Robert Simmon, using EO-1 ALI data provided courtesy of the NASA EO-1 team. Caption by Michon Scott based on image interpretation by Robert Bindschadler, NASA Goddard Space Flight Center, and Walt Meier, National Snow and Ice Data Center. Instrument: EO-1 - ALI Credit: NASA Earth Observatory NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook To download the full resolution image go to: earthobservatory.nasa.gov/IOTD/view.php?id=46840

  11. Wave attenuation in the marginal ice zone during LIMEX

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chih Y.; Vachon, Paris W.

    1991-01-01

    During LIMEX'87 and '89, the CCRS CV-580 aircraft collected SAR (synthetic aperture radar) data over the marginal ice zone off the coast of Newfoundland. Based upon the wavenumber spectra from SAR data, the wave attenuation rate is estimated and compared with a model. The model-data comparisons are reasonably good for the ice conditions during LIMEX (Labrador Ice Margin Experiment). Both model and SAR-derived wave attenuation rates show a roll-over at high wavenumbers.

  12. Evolution of a highly vulnerable ice-cored moraine: Col des Gentianes, Swiss Alps

    NASA Astrophysics Data System (ADS)

    Ravanel, L.; Lambiel, C.; Oppikofer, T.; Mazotti, B.; Jaboyedoff, M.

    2012-04-01

    Rock mass movements are dominant in the morphodynamics of high mountain rock slopes and are at the origin of significant risks for people who attend these areas and for infrastructures that are built on (mountain huts, cable cars, etc.). These risks are becoming greater because of permafrost degradation and glacier retreat, two consequences of the global warming. These two commonly associated factors may affect slope stability by changing mechanical properties of the interstitial ice and modifying the mechanical constraints in these rock slopes. Between 1977 and 1979, significant works were carried out on the Little Ice Age moraine of the Tortin glacier at the Col des Gentianes (2894 m), in the Mont Fort area (Verbier, Switzerland), for the construction of a cable car station and a restaurant. Since the early 1980s, the glacier drastically retreated and the moraine became unstable: its inner slope has retreated for several meters. Various observations and geoelectric measurements indicate that significant volume of massive ice mass is still present within the moraine (ice-cored moraine). Its melting could therefore increase the instability of the moraine. Since 2007, the moraine is surveyed by terrestrial laser scanning (TLS) in order to characterize its evolution: 8 campaigns were conducted between July 2007 and October 2011. The comparison of the high resolution 3D models so obtained allowed the detection and quantification of mass movements that have affected the moraine over this period, essentially by calculating difference maps (shortest oblique distances between two models). Between July 2007 and October 2011, 7 landslides were measured, involving volumes between 87 and 1138 m3. The most important of these occurred during the summers 2009 and 2011. TLS data also allowed identifying: (i) two main areas affected by slower but sometimes substantial movements (displacements of blocks on more than 2 m during a summer period); (ii) significant deposits of anthropogenic materials and their mechanical readjustments; and (iii) a loss of thickness of the glacier approaching 10 m at the foot of the moraine. Except for the morphological changes related to the landscaping of ski-runs, mass movements identified by TLS since 2007 are mainly resulting from glacier retreat and, to a lesser extent, to permafrost creep and degradation.

  13. Potential sources of bacteria colonizing the cryoconite of an Alpine glacier

    PubMed Central

    Franzetti, Andrea; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio

    2017-01-01

    We investigated the potential contribution of ice-marginal environments to the microbial communities of cryoconite holes, small depressions filled with meltwater that form on the surface of Forni Glacier (Italian Alps). Cryoconite holes are considered the most biologically active environments on glaciers. Bacteria can colonize these environments by short-range transport from ice-marginal environments or by long-range transport from distant areas. We used high throughput DNA sequencing to identify Operational Taxonomic Units (OTUs) present in cryoconite holes and three ice-marginal environments, the moraines, the glacier forefield, and a large (> 3 m high) ice-cored dirt cone occurring on the glacier surface. Bacterial communities of cryoconite holes were different from those of ice-marginal environments and hosted fewer OTUs. However, a network analysis revealed that the cryoconite holes shared more OTUs with the moraines and the dirt cone than with the glacier forefield. Ice-marginal environments may therefore act as sources of bacteria for cryoconite holes, but differences in environmental conditions limit the number of bacterial strains that may survive in them. At the same time, cryoconite holes host a few OTUs that were not found in any ice-marginal environment we sampled, thus suggesting that some bacterial populations are positively selected by the specific environmental conditions of the cryoconite holes. PMID:28358872

  14. Potential sources of bacteria colonizing the cryoconite of an Alpine glacier.

    PubMed

    Franzetti, Andrea; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio; Ambrosini, Roberto

    2017-01-01

    We investigated the potential contribution of ice-marginal environments to the microbial communities of cryoconite holes, small depressions filled with meltwater that form on the surface of Forni Glacier (Italian Alps). Cryoconite holes are considered the most biologically active environments on glaciers. Bacteria can colonize these environments by short-range transport from ice-marginal environments or by long-range transport from distant areas. We used high throughput DNA sequencing to identify Operational Taxonomic Units (OTUs) present in cryoconite holes and three ice-marginal environments, the moraines, the glacier forefield, and a large (> 3 m high) ice-cored dirt cone occurring on the glacier surface. Bacterial communities of cryoconite holes were different from those of ice-marginal environments and hosted fewer OTUs. However, a network analysis revealed that the cryoconite holes shared more OTUs with the moraines and the dirt cone than with the glacier forefield. Ice-marginal environments may therefore act as sources of bacteria for cryoconite holes, but differences in environmental conditions limit the number of bacterial strains that may survive in them. At the same time, cryoconite holes host a few OTUs that were not found in any ice-marginal environment we sampled, thus suggesting that some bacterial populations are positively selected by the specific environmental conditions of the cryoconite holes.

  15. Wave evolution in the marginal ice zone - Model predictions and comparisons with on-site and remote data

    NASA Technical Reports Server (NTRS)

    Liu, A. K.; Holt, B.; Vachon, P. W.

    1989-01-01

    The ocean-wave dispersion relation and viscous attenuation by a sea ice cover were studied for waves in the marginal ice zone (MIZ). The Labrador ice margin experiment (Limex), conducted off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR, wave buoy, and ice property data. Based on the wave number spectrum from SAR data, the concurrent wave frequency spectrum from ocean buoy data, and accelerometer data on the ice during Limex '87, the dispersion relation has been derived and compared with the model. Accelerometers were deployed at the ice edge and into the ice pack. Data from the accelerometers were used to estimate wave energy attenuation rates and compared with the model. The model-data comparisons are reasonably good for the ice conditions observed during Limex' 87.

  16. A comparison of radiation budgets in the Fram Strait marginal ice zone

    NASA Technical Reports Server (NTRS)

    Francis, Jennifer A.; Katsaros, Kristina B.; Ackerman, Thomas P.; Lind, Richard J.; Davidson, Kenneth L.

    1991-01-01

    Results are presented from calculations of radiation budgets for the sea-ice and the open-water regimes in the marginal ice zone (MIZ) of the Fram Strait, from measurements of surface irradiances and meteorological conditions made during the 1984 Marginal Ice Zone Experiment. Simultaneous measurements on either side of the ice edge allowed a comparison of the open-water and the sea-ice environments. The results show significant differences between the radiation budgets of the two regimes in the MIZ. The open water absorbed twice as much radiation as did the ice, and the mean cooling rate of the atmosphere over water was approximately 15 percent larger than that over ice. Calculated fluxes and atmospheric cooling rates were found to compare well with available literature data.

  17. Variations of mesoscale and large-scale sea ice morphology in the 1984 Marginal Ice Zone Experiment as observed by microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Josberger, E. G.; Gloersen, P.; Johannessen, O. M.; Guest, P. S.

    1987-01-01

    The data acquired during the summer 1984 Marginal Ice Zone Experiment in the Fram Strait-Greenland Sea marginal ice zone, using airborne active and passive microwave sensors and the Nimbus 7 SMMR, were analyzed to compile a sequential description of the mesoscale and large-scale ice morphology variations during the period of June 6 - July 16, 1984. Throughout the experiment, the long ice edge between northwest Svalbard and central Greenland meandered; eddies were repeatedly formed, moved, and disappeared but the ice edge remained within a 100-km-wide zone. The ice pack behind this alternately diffuse and compact edge underwent rapid and pronounced variations in ice concentration over a 200-km-wide zone. The high-resolution ice concentration distributions obtained in the aircraft images agree well with the low-resolution distributions of SMMR images.

  18. Sediment connectivity evolution on an alpine catchment undergoing glacier retreat

    NASA Astrophysics Data System (ADS)

    Goldin, Beatrice; Rudaz, Benjamin; Bardou, Eric

    2014-05-01

    Climate changes can result in a wide range of variations of natural environment including retreating glaciers. Melting from glaciers will have a significant impact on the sediment transport characteristics of glacierized alpine catchments that can affect downstream channel network. Sediment connectivity assessment, i.e. the degree of connections that controls sediment fluxes between different segments of a landscape, can be useful in order to address management activity on sediment fluxes changes of alpine streams. Through the spatial characterization of the connectivity patterns of a catchment and its potential evolution it is possible to both define sediment transport pathways and estimate different contributions of the sub-catchment as sediment sources. In this study, a topography based index (Cavalli et al., 2013) has been applied to assess spatial sediment connectivity in the Navisence catchment (35 km2), an alpine basin located in the southern Walliser Alps (Switzerland) characterized by a complex glacier system with well-developed lateral moraines on glacier margins already crossed by several lateral channels. Glacier retreat of the main glacial edifice will provide a new connectivity pattern. At present the glacier disconnects lateral slopes from the main talweg: it is expected that its retreat will experience an increased connectivity. In order to study this evolution, two high resolution (2 m) digital terrain models (DTMs) describing respectively the terrain before and after glacier retreat have been analyzed. The current DTM was obtained from high resolution photogrammetry (2 m resolution). The future DTM was derived from application of the sloping local base level (SLBL) routine (Jaboyedoff et al., 2004) on the current glacier system, allowing to remove the ice body by reconstituting a U-shaped polynomial bedrock surface. From this new surface a coherent river network was drawn and slight random noise was added. Finally the river network was burned into the rough surface of the SLBL results. The impact of sediment dynamic changes on the study catchment due to glacier retreat has been assessed by comparing predictions deriving from model application on different scenarios. Simulations allowed the analysis of sediment connectivity evolution over decade scales suggesting an increase of potential sediment transfer and connections in areas close to the main channel network. References: Cavalli, M., Trevisani, S., Comiti, F., Marchi, L., 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188, 31-41. Jaboyedoff M., Bardou E., Derron M.-H. 2004. Sloping local base level: a tool to estimate potential erodible volume and infilling alluvial sediment of glacial valleys. Swiss Geo-Scientists meeting, November 2004, Lausanne.

  19. Climate of the Arctic marine environment.

    PubMed

    Walsh, John E

    2008-03-01

    The climate of the Arctic marine environment is characterized by strong seasonality in the incoming solar radiation and by tremendous spatial variations arising from a variety of surface types, including open ocean, sea ice, large islands, and proximity to major landmasses. Interannual and decadal-scale variations are prominent features of Arctic climate, complicating the distinction between natural and anthropogenically driven variations. Nevertheless, climate models consistently indicate that the Arctic is the most climatically sensitive region of the Northern Hemisphere, especially near the sea ice margins. The Arctic marine environment has shown changes over the past several decades, and these changes are part of a broader global warming that exceeds the range of natural variability over the past 1000 years. Record minima of sea ice coverage during the past few summers and increased melt from Greenland have important implications for the hydrographic regime of the Arctic marine environment. The recent changes in the atmosphere (temperature, precipitation, pressure), sea ice, and ocean appear to be a coordinated response to systematic variations of the large-scale atmospheric circulation, superimposed on a general warming that is likely associated with increasing greenhouse gases. The changes have been sufficiently large in some sectors (e.g., the Bering/Chukchi Seas) that consequences for marine ecosystems appear to be underway. Global climate models indicate an additional warming of several degrees Celsius in much of the Arctic marine environment by 2050. However, the warming is seasonal (largest in autumn and winter), spatially variable, and closely associated with further retreat of sea ice. Additional changes predicted for 2050 are a general decrease of sea level pressure (largest in the Bering sector) and an increase of precipitation. While predictions of changes in storminess cannot be made with confidence, the predicted reduction of sea ice cover will almost certainly lead to increased oceanic mixing, ocean wave generation, and coastal flooding.

  20. Recent Increases in Snow Accumulation and Decreases in Sea-Ice Concentration Recorded in a Coastal NW Greenland Ice Core

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Thompson, J. T.; Wong, G. J.; Hawley, R. L.; Kelly, M. A.; Lutz, E.; Howley, J.; Ferris, D. G.

    2013-12-01

    A significant rise in summer temperatures over the past several decades has led to widespread retreat of the Greenland Ice Sheet (GIS) margin and surrounding sea ice. Recent observations from geodetic stations and GRACE show that ice mass loss progressed from South Greenland up to Northwest Greenland by 2005 (Khan et al., 2010). Observations from meteorological stations at the U.S. Thule Air Force Base, remote sensing platforms, and climate reanalyses indicate a 3.5C mean annual warming in the Thule region and a 44% decrease in summer (JJAS) sea-ice concentrations in Baffin Bay from 1980-2010. Mean annual precipitation near Thule increased by 12% over this interval, with the majority of the increase occurring in fall (SON). To improve projections of future ice loss and sea-level rise in a warming climate, we are currently developing multi-proxy records (lake sediment cores, ice cores, glacial geologic data, glaciological models) of Holocene climate variability and cryospheric response in NW Greenland, with a focus on past warm periods. As part of our efforts to develop a millennial-length ice core paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn cores (up to 20 m) from the coastal region of the GIS (2Barrel site; 76.9317 N, 63.1467 W) and the summit of North Ice Cap (76.938 N, 67.671 W) in 2011 and 2012, respectively. The 2Barrel ice core was sampled using a continuous ice core melting system at Dartmouth, and subsequently analyzed for major anion and trace element concentrations and stable water isotope ratios. Here we show that the 2Barrel ice core spanning 1990-2010 records a 25% increase in mean annual snow accumulation, and is positively correlated (r = 0.52, p<0.01) with ERA-Interim precipitation. The 2Barrel annual sea-salt Na concentration is strongly correlated (r = 0.5-0.8, p<0.05) with summer and fall sea-ice concentrations in northern Baffin Bay near Thule (Figure 1). We hypothesize that the positive correlation represents a significant Na contribution from frost flowers growing on fall frazil ice. Ongoing analyses will evaluate the relationship between MSA concentrations and sea ice extent. Our results show that a deep ice core collected from this dynamic and climate-sensitive region of NW Greenland would produce a valuable record of late Holocene climate and sea ice extent.

Top