Sample records for retrieval algorithms based

  1. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.

    PubMed

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-10-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

  2. A novel image retrieval algorithm based on PHOG and LSH

    NASA Astrophysics Data System (ADS)

    Wu, Hongliang; Wu, Weimin; Peng, Jiajin; Zhang, Junyuan

    2017-08-01

    PHOG can describe the local shape of the image and its relationship between the spaces. The using of PHOG algorithm to extract image features in image recognition and retrieval and other aspects have achieved good results. In recent years, locality sensitive hashing (LSH) algorithm has been superior to large-scale data in solving near-nearest neighbor problems compared with traditional algorithms. This paper presents a novel image retrieval algorithm based on PHOG and LSH. First, we use PHOG to extract the feature vector of the image, then use L different LSH hash table to reduce the dimension of PHOG texture to index values and map to different bucket, and finally extract the corresponding value of the image in the bucket for second image retrieval using Manhattan distance. This algorithm can adapt to the massive image retrieval, which ensures the high accuracy of the image retrieval and reduces the time complexity of the retrieval. This algorithm is of great significance.

  3. A New Inversion-Based Algorithm for Retrieval of Over-Water Rain Rate from SSM/I Multichannel Imagery

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Stettner, David R.

    1994-01-01

    This paper discusses certain aspects of a new inversion based algorithm for the retrieval of rain rate over the open ocean from the special sensor microwave/imager (SSM/I) multichannel imagery. This algorithm takes a more detailed physical approach to the retrieval problem than previously discussed algorithms that perform explicit forward radiative transfer calculations based on detailed model hydrometer profiles and attempt to match the observations to the predicted brightness temperature.

  4. System engineering approach to GPM retrieval algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, C. R.; Chandrasekar, V.

    2004-01-01

    System engineering principles and methods are very useful in large-scale complex systems for developing the engineering requirements from end-user needs. Integrating research into system engineering is a challenging task. The proposed Global Precipitation Mission (GPM) satellite will use a dual-wavelength precipitation radar to measure and map global precipitation with unprecedented accuracy, resolution and areal coverage. The satellite vehicle, precipitation radars, retrieval algorithms, and ground validation (GV) functions are all critical subsystems of the overall GPM system and each contributes to the success of the mission. Errors in the radar measurements and models can adversely affect the retrieved output values. Groundmore » validation (GV) systems are intended to provide timely feedback to the satellite and retrieval algorithms based on measured data. These GV sites will consist of radars and DSD measurement systems and also have intrinsic constraints. One of the retrieval algorithms being studied for use with GPM is the dual-wavelength DSD algorithm that does not use the surface reference technique (SRT). The underlying microphysics of precipitation structures and drop-size distributions (DSDs) dictate the types of models and retrieval algorithms that can be used to estimate precipitation. Many types of dual-wavelength algorithms have been studied. Meneghini (2002) analyzed the performance of single-pass dual-wavelength surface-reference-technique (SRT) based algorithms. Mardiana (2003) demonstrated that a dual-wavelength retrieval algorithm could be successfully used without the use of the SRT. It uses an iterative approach based on measured reflectivities at both wavelengths and complex microphysical models to estimate both No and Do at each range bin. More recently, Liao (2004) proposed a solution to the Do ambiguity problem in rain within the dual-wavelength algorithm and showed a possible melting layer model based on stratified spheres. With the No and Do calculated at each bin, the rain rate can then be calculated based on a suitable rain-rate model. This paper develops a system engineering interface to the retrieval algorithms while remaining cognizant of system engineering issues so that it can be used to bridge the divide between algorithm physics an d overall mission requirements. Additionally, in line with the systems approach, a methodology is developed such that the measurement requirements pass through the retrieval model and other subsystems and manifest themselves as measurement and other system constraints. A systems model has been developed for the retrieval algorithm that can be evaluated through system-analysis tools such as MATLAB/Simulink.« less

  5. A retrieval algorithm of hydrometer profile for submillimeter-wave radiometer

    NASA Astrophysics Data System (ADS)

    Liu, Yuli; Buehler, Stefan; Liu, Heguang

    2017-04-01

    Vertical profiles of particle microphysics perform vital functions for the estimation of climatic feedback. This paper proposes a new algorithm to retrieve the profile of the parameters of the hydrometeor(i.e., ice, snow, rain, liquid cloud, graupel) based on passive submillimeter-wave measurements. These parameters include water content and particle size. The first part of the algorithm builds the database and retrieves the integrated quantities. Database is built up by Atmospheric Radiative Transfer Simulator(ARTS), which uses atmosphere data to simulate the corresponding brightness temperature. Neural network, trained by the precalculated database, is developed to retrieve the water path for each type of particles. The second part of the algorithm analyses the statistical relationship between water path and vertical parameters profiles. Based on the strong dependence existing between vertical layers in the profiles, Principal Component Analysis(PCA) technique is applied. The third part of the algorithm uses the forward model explicitly to retrieve the hydrometeor profiles. Cost function is calculated in each iteration, and Differential Evolution(DE) algorithm is used to adjust the parameter values during the evolutionary process. The performance of this algorithm is planning to be verified for both simulation database and measurement data, by retrieving profiles in comparison with the initial one. Results show that this algorithm has the ability to retrieve the hydrometeor profiles efficiently. The combination of ARTS and optimization algorithm can get much better results than the commonly used database approach. Meanwhile, the concept that ARTS can be used explicitly in the retrieval process shows great potential in providing solution to other retrieval problems.

  6. Combined neural network/Phillips-Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter

    NASA Astrophysics Data System (ADS)

    Di Noia, Antonio; Hasekamp, Otto P.; Wu, Lianghai; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John E.

    2017-11-01

    In this paper, an algorithm for the retrieval of aerosol and land surface properties from airborne spectropolarimetric measurements - combining neural networks and an iterative scheme based on Phillips-Tikhonov regularization - is described. The algorithm - which is an extension of a scheme previously designed for ground-based retrievals - is applied to measurements from the Research Scanning Polarimeter (RSP) on board the NASA ER-2 aircraft. A neural network, trained on a large data set of synthetic measurements, is applied to perform aerosol retrievals from real RSP data, and the neural network retrievals are subsequently used as a first guess for the Phillips-Tikhonov retrieval. The resulting algorithm appears capable of accurately retrieving aerosol optical thickness, fine-mode effective radius and aerosol layer height from RSP data. Among the advantages of using a neural network as initial guess for an iterative algorithm are a decrease in processing time and an increase in the number of converging retrievals.

  7. Fast perceptual image hash based on cascade algorithm

    NASA Astrophysics Data System (ADS)

    Ruchay, Alexey; Kober, Vitaly; Yavtushenko, Evgeniya

    2017-09-01

    In this paper, we propose a perceptual image hash algorithm based on cascade algorithm, which can be applied in image authentication, retrieval, and indexing. Image perceptual hash uses for image retrieval in sense of human perception against distortions caused by compression, noise, common signal processing and geometrical modifications. The main disadvantage of perceptual hash is high time expenses. In the proposed cascade algorithm of image retrieval initializes with short hashes, and then a full hash is applied to the processed results. Computer simulation results show that the proposed hash algorithm yields a good performance in terms of robustness, discriminability, and time expenses.

  8. Ensembles of satellite aerosol retrievals based on three AATSR algorithms within aerosol_cci

    NASA Astrophysics Data System (ADS)

    Kosmale, Miriam; Popp, Thomas

    2016-04-01

    Ensemble techniques are widely used in the modelling community, combining different modelling results in order to reduce uncertainties. This approach could be also adapted to satellite measurements. Aerosol_cci is an ESA funded project, where most of the European aerosol retrieval groups work together. The different algorithms are homogenized as far as it makes sense, but remain essentially different. Datasets are compared with ground based measurements and between each other. Three AATSR algorithms (Swansea university aerosol retrieval, ADV aerosol retrieval by FMI and Oxford aerosol retrieval ORAC) provide within this project 17 year global aerosol records. Each of these algorithms provides also uncertainty information on pixel level. Within the presented work, an ensembles of the three AATSR algorithms is performed. The advantage over each single algorithm is the higher spatial coverage due to more measurement pixels per gridbox. A validation to ground based AERONET measurements shows still a good correlation of the ensemble, compared to the single algorithms. Annual mean maps show the global aerosol distribution, based on a combination of the three aerosol algorithms. In addition, pixel level uncertainties of each algorithm are used for weighting the contributions, in order to reduce the uncertainty of the ensemble. Results of different versions of the ensembles for aerosol optical depth will be presented and discussed. The results are validated against ground based AERONET measurements. A higher spatial coverage on daily basis allows better results in annual mean maps. The benefit of using pixel level uncertainties is analysed.

  9. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm.

    PubMed

    Yang, Mengzhao; Song, Wei; Mei, Haibin

    2017-07-23

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient.

  10. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm

    PubMed Central

    Song, Wei; Mei, Haibin

    2017-01-01

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient. PMID:28737699

  11. An integrated content and metadata based retrieval system for art.

    PubMed

    Lewis, Paul H; Martinez, Kirk; Abas, Fazly Salleh; Fauzi, Mohammad Faizal Ahmad; Chan, Stephen C Y; Addis, Matthew J; Boniface, Mike J; Grimwood, Paul; Stevenson, Alison; Lahanier, Christian; Stevenson, James

    2004-03-01

    A new approach to image retrieval is presented in the domain of museum and gallery image collections. Specialist algorithms, developed to address specific retrieval tasks, are combined with more conventional content and metadata retrieval approaches, and implemented within a distributed architecture to provide cross-collection searching and navigation in a seamless way. External systems can access the different collections using interoperability protocols and open standards, which were extended to accommodate content based as well as text based retrieval paradigms. After a brief overview of the complete system, we describe the novel design and evaluation of some of the specialist image analysis algorithms including a method for image retrieval based on sub-image queries, retrievals based on very low quality images and retrieval using canvas crack patterns. We show how effective retrieval results can be achieved by real end-users consisting of major museums and galleries, accessing the distributed but integrated digital collections.

  12. Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes.

    PubMed

    Lyu, Heng; Li, Xiaojun; Wang, Yannan; Jin, Qi; Cao, Kai; Wang, Qiao; Li, Yunmei

    2015-10-15

    Fourteen field campaigns were conducted in five inland lakes during different seasons between 2006 and 2013, and a total of 398 water samples with varying optical characteristics were collected. The characteristics were analyzed based on remote sensing reflectance, and an automatic cluster two-step method was applied for water classification. The inland waters could be clustered into three types, which we labeled water types I, II and III. From water types I to III, the effect of the phytoplankton on the optical characteristics gradually decreased. Four chlorophyll-a retrieval algorithms for Case II water, a two-band, three-band, four-band and SCI (Synthetic Chlorophyll Index) algorithm were evaluated for three water types based on the MERIS bands. Different MERIS bands were used for the three water types in each of the four algorithms. The four algorithms had different levels of retrieval accuracy for each water type, and no single algorithm could be successfully applied to all water types. For water types I and III, the three-band algorithm performed the best, while the four-band algorithm had the highest retrieval accuracy for water type II. However, the three-band algorithm is preferable to the two-band algorithm for turbid eutrophic inland waters. The SCI algorithm is recommended for highly turbid water with a higher concentration of total suspended solids. Our research indicates that the chlorophyll-a concentration retrieval by remote sensing for optically contrasted inland water requires a specific algorithm that is based on the optical characteristics of inland water bodies to obtain higher estimation accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm: theoretical basis

    NASA Astrophysics Data System (ADS)

    Loughman, Robert; Bhartia, Pawan K.; Chen, Zhong; Xu, Philippe; Nyaku, Ernest; Taha, Ghassan

    2018-05-01

    The theoretical basis of the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm is presented. The algorithm uses an assumed bimodal lognormal aerosol size distribution to retrieve aerosol extinction profiles at 675 nm from OMPS LP radiance measurements. A first-guess aerosol extinction profile is updated by iteration using the Chahine nonlinear relaxation method, based on comparisons between the measured radiance profile at 675 nm and the radiance profile calculated by the Gauss-Seidel limb-scattering (GSLS) radiative transfer model for a spherical-shell atmosphere. This algorithm is discussed in the context of previous limb-scattering aerosol extinction retrieval algorithms, and the most significant error sources are enumerated. The retrieval algorithm is limited primarily by uncertainty about the aerosol phase function. Horizontal variations in aerosol extinction, which violate the spherical-shell atmosphere assumed in the version 1 algorithm, may also limit the quality of the retrieved aerosol extinction profiles significantly.

  14. A multimedia retrieval framework based on semi-supervised ranking and relevance feedback.

    PubMed

    Yang, Yi; Nie, Feiping; Xu, Dong; Luo, Jiebo; Zhuang, Yueting; Pan, Yunhe

    2012-04-01

    We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for each data point, a local linear regression model is used to predict the ranking scores of its neighboring points. A unified objective function is then proposed to globally align the local models from all the data points so that an optimal ranking score can be assigned to each data point. Second, we propose a semi-supervised long-term Relevance Feedback (RF) algorithm to refine the multimedia data representation. The proposed long-term RF algorithm utilizes both the multimedia data distribution in multimedia feature space and the history RF information provided by users. A trace ratio optimization problem is then formulated and solved by an efficient algorithm. The algorithms have been applied to several content-based multimedia retrieval applications, including cross-media retrieval, image retrieval, and 3D motion/pose data retrieval. Comprehensive experiments on four data sets have demonstrated its advantages in precision, robustness, scalability, and computational efficiency.

  15. Cloud Retrieval Intercomparisons Between SEVIRI, MODIS and VIIRS with CHIMAERA PGE06 Data Collection 6 Products

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Riedi, Jerome; Platnick, Steven; Heidinger, Andrew

    2014-01-01

    The Cross-platform HIgh resolution Multi-instrument AtmosphEric Retrieval Algorithms (CHIMAERA) system allows us to perform MODIS-like cloud top, optical and microphysical properties retrievals on any sensor that possesses a minimum set of common spectral channels. The CHIMAERA system uses a shared-core architecture that takes retrieval method out of the equation when intercomparisons are made. Here we show an example of such retrieval and a comparison of simultaneous retrievals done using SEVIRI, MODIS and VIIRS sensors. All sensor retrievals are performed using CLAVR-x (or CLAVR-x based) cloud top properties algorithm. SEVIRI uses the SAF_NWC cloud mask. MODIS and VIIRS use the IFF-based cloud mask that is a shared algorithm between MODIS and VIIRS. The MODIS and VIIRS retrievals are performed using a VIIRS branch of CHIMAERA that limits available MODIS channel set. Even though in that mode certain MODIS products such as multilayer cloud map are not available, the cloud retrieval remains fully equivalent to operational Data Collection 6.

  16. A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers

    NASA Astrophysics Data System (ADS)

    Meng, Huan; Dong, Jun; Ferraro, Ralph; Yan, Banghua; Zhao, Limin; Kongoli, Cezar; Wang, Nai-Yu; Zavodsky, Bradley

    2017-06-01

    Snowfall rate retrieval from spaceborne passive microwave (PMW) radiometers has gained momentum in recent years. PMW can be so utilized because of its ability to sense in-cloud precipitation. A physically based, overland snowfall rate (SFR) algorithm has been developed using measurements from the Advanced Microwave Sounding Unit-A/Microwave Humidity Sounder sensor pair and the Advanced Technology Microwave Sounder. Currently, these instruments are aboard five polar-orbiting satellites, namely, NOAA-18, NOAA-19, Metop-A, Metop-B, and Suomi-NPP. The SFR algorithm relies on a separate snowfall detection algorithm that is composed of a satellite-based statistical model and a set of numerical weather prediction model-based filters. There are four components in the SFR algorithm itself: cloud properties retrieval, computation of ice particle terminal velocity, ice water content adjustment, and the determination of snowfall rate. The retrieval of cloud properties is the foundation of the algorithm and is accomplished using a one-dimensional variational (1DVAR) model. An existing model is adopted to derive ice particle terminal velocity. Since no measurement of cloud ice distribution is available when SFR is retrieved in near real time, such distribution is implicitly assumed by deriving an empirical function that adjusts retrieved SFR toward radar snowfall estimates. Finally, SFR is determined numerically from a complex integral. The algorithm has been validated against both radar and ground observations of snowfall events from the contiguous United States with satisfactory results. Currently, the SFR product is operationally generated at the National Oceanic and Atmospheric Administration and can be obtained from that organization.

  17. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  18. GOSAT CO2 retrieval results using TANSO-CAI aerosol information over East Asia

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, W.; Jung, Y.; Lee, S.; Kim, J.; Lee, H.; Boesch, H.; Goo, T. Y.

    2015-12-01

    In the satellite remote sensing of CO2, incorrect aerosol information could induce large errors as previous studies suggested. Many factors, such as, aerosol type, wavelength dependency of AOD, aerosol polarization effect and etc. have been main error sources. Due to these aerosol effects, large number of data retrieved are screened out in quality control, or retrieval errors tend to increase if not screened out, especially in East Asia where aerosol concentrations are fairly high. To reduce these aerosol induced errors, a CO2 retrieval algorithm using the simultaneous TANSO-CAI aerosol information is developed. This algorithm adopts AOD and aerosol type information as a priori information from the CAI aerosol retrieval algorithm. The CO2 retrieval algorithm based on optimal estimation method and VLIDORT, a vector discrete ordinate radiative transfer model. The CO2 algorithm, developed with various state vectors to find accurate CO2 concentration, shows reasonable results when compared with other dataset. This study concentrates on the validation of retrieved results with the ground-based TCCON measurements in East Asia and the comparison with the previous retrieval from ACOS, NIES, and UoL. Although, the retrieved CO2 concentration is lower than previous results by ppm's, it shows similar trend and high correlation with previous results. Retrieved data and TCCON measurements data are compared at three stations of Tsukuba, Saga, Anmyeondo in East Asia, with the collocation criteria of ±2°in latitude/longitude and ±1 hours of GOSAT passing time. Compared results also show similar trend with good correlation. Based on the TCCON comparison results, bias correction equation is calculated and applied to the East Asia data.

  19. Minimizing the semantic gap in biomedical content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Guan, Haiying; Antani, Sameer; Long, L. Rodney; Thoma, George R.

    2010-03-01

    A major challenge in biomedical Content-Based Image Retrieval (CBIR) is to achieve meaningful mappings that minimize the semantic gap between the high-level biomedical semantic concepts and the low-level visual features in images. This paper presents a comprehensive learning-based scheme toward meeting this challenge and improving retrieval quality. The article presents two algorithms: a learning-based feature selection and fusion algorithm and the Ranking Support Vector Machine (Ranking SVM) algorithm. The feature selection algorithm aims to select 'good' features and fuse them using different similarity measurements to provide a better representation of the high-level concepts with the low-level image features. Ranking SVM is applied to learn the retrieval rank function and associate the selected low-level features with query concepts, given the ground-truth ranking of the training samples. The proposed scheme addresses four major issues in CBIR to improve the retrieval accuracy: image feature extraction, selection and fusion, similarity measurements, the association of the low-level features with high-level concepts, and the generation of the rank function to support high-level semantic image retrieval. It models the relationship between semantic concepts and image features, and enables retrieval at the semantic level. We apply it to the problem of vertebra shape retrieval from a digitized spine x-ray image set collected by the second National Health and Nutrition Examination Survey (NHANES II). The experimental results show an improvement of up to 41.92% in the mean average precision (MAP) over conventional image similarity computation methods.

  20. Retrieval of volcanic ash height from satellite-based infrared measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Li, Jun; Zhao, Yingying; Gong, He; Li, Wenjie

    2017-05-01

    A new algorithm for retrieving volcanic ash cloud height from satellite-based measurements is presented. This algorithm, which was developed in preparation for China's next-generation meteorological satellite (FY-4), is based on volcanic ash microphysical property simulation and statistical optimal estimation theory. The MSG satellite's main payload, a 12-channel Spinning Enhanced Visible and Infrared Imager, was used as proxy data to test this new algorithm. A series of eruptions of Iceland's Eyjafjallajökull volcano during April to May 2010 and the Puyehue-Cordón Caulle volcanic complex eruption in the Chilean Andes on 16 June 2011 were selected as two typical cases for evaluating the algorithm under various meteorological backgrounds. Independent volcanic ash simulation training samples and satellite-based Cloud-Aerosol Lidar with Orthogonal Polarization data were used as validation data. It is demonstrated that the statistically based volcanic ash height algorithm is able to rapidly retrieve volcanic ash heights, globally. The retrieved ash heights show comparable accuracy with both independent training data and the lidar measurements, which is consistent with previous studies. However, under complicated background, with multilayers in vertical scale, underlying stratus clouds tend to have detrimental effects on the final retrieval accuracy. This is an unresolved problem, like many other previously published methods using passive satellite sensors. Compared with previous studies, the FY-4 ash height algorithm is independent of simultaneous atmospheric profiles, providing a flexible way to estimate volcanic ash height using passive satellite infrared measurements.

  1. A differential optical absorption spectroscopy method for retrieval from ground-based Fourier transform spectrometers measurements of the direct solar beam

    NASA Astrophysics Data System (ADS)

    Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong

    2015-08-01

    A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

  2. Broadband Phase Retrieval for Image-Based Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature wavefront sensing, and Shack-Hartmann sensing, all of which entail disadvantages in comparison with image-based methods. The main disadvantages of these non-image based methods are complexity of test equipment and the need for a wavefront reference.

  3. The validation of the Yonsei CArbon Retrieval algorithm with improved aerosol information using GOSAT measurements

    NASA Astrophysics Data System (ADS)

    Jung, Yeonjin; Kim, Jhoon; Kim, Woogyung; Boesch, Hartmut; Goo, Tae-Young; Cho, Chunho

    2017-04-01

    Although several CO2 retrieval algorithms have been developed to improve our understanding about carbon cycle, limitations in spatial coverage and uncertainties due to aerosols and thin cirrus clouds are still remained as a problem for monitoring CO2 concentration globally. Based on an optimal estimation method, the Yonsei CArbon Retrieval (YCAR) algorithm was developed to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) using the Greenhouse Gases Observing SATellite (GOSAT) measurements with optimized a priori CO2 profiles and aerosol models over East Asia. In previous studies, the aerosol optical properties (AOP) are the most important factors in CO2 retrievals since AOPs are assumed as fixed parameters during retrieval process, resulting in significant XCO2 retrieval error up to 2.5 ppm. In this study, to reduce these errors caused by inaccurate aerosol optical information, the YCAR algorithm improved with taking into account aerosol optical properties as well as aerosol vertical distribution simultaneously. The CO2 retrievals with two difference aerosol approaches have been analyzed using the GOSAT spectra and have been evaluated throughout the comparison with collocated ground-based observations at several Total Carbon Column Observing Network (TCCON) sites. The improved YCAR algorithm has biases of 0.59±0.48 ppm and 2.16±0.87 ppm at Saga and Tsukuba sites, respectively, with smaller biases and higher correlation coefficients compared to the GOSAT operational algorithm. In addition, the XCO2 retrievals will be validated at other TCCON sites and error analysis will be evaluated. These results reveal that considering better aerosol information can improve the accuracy of CO2 retrieval algorithm and provide more useful XCO2 information with reduced uncertainties. This study would be expected to provide useful information in estimating carbon sources and sinks.

  4. An incremental DPMM-based method for trajectory clustering, modeling, and retrieval.

    PubMed

    Hu, Weiming; Li, Xi; Tian, Guodong; Maybank, Stephen; Zhang, Zhongfei

    2013-05-01

    Trajectory analysis is the basis for many applications, such as indexing of motion events in videos, activity recognition, and surveillance. In this paper, the Dirichlet process mixture model (DPMM) is applied to trajectory clustering, modeling, and retrieval. We propose an incremental version of a DPMM-based clustering algorithm and apply it to cluster trajectories. An appropriate number of trajectory clusters is determined automatically. When trajectories belonging to new clusters arrive, the new clusters can be identified online and added to the model without any retraining using the previous data. A time-sensitive Dirichlet process mixture model (tDPMM) is applied to each trajectory cluster for learning the trajectory pattern which represents the time-series characteristics of the trajectories in the cluster. Then, a parameterized index is constructed for each cluster. A novel likelihood estimation algorithm for the tDPMM is proposed, and a trajectory-based video retrieval model is developed. The tDPMM-based probabilistic matching method and the DPMM-based model growing method are combined to make the retrieval model scalable and adaptable. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our algorithm.

  5. Image encryption using fingerprint as key based on phase retrieval algorithm and public key cryptography

    NASA Astrophysics Data System (ADS)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2015-09-01

    In this paper, a novel image encryption system with fingerprint used as a secret key is proposed based on the phase retrieval algorithm and RSA public key algorithm. In the system, the encryption keys include the fingerprint and the public key of RSA algorithm, while the decryption keys are the fingerprint and the private key of RSA algorithm. If the users share the fingerprint, then the system will meet the basic agreement of asymmetric cryptography. The system is also applicable for the information authentication. The fingerprint as secret key is used in both the encryption and decryption processes so that the receiver can identify the authenticity of the ciphertext by using the fingerprint in decryption process. Finally, the simulation results show the validity of the encryption scheme and the high robustness against attacks based on the phase retrieval technique.

  6. Retrieving Liquid Water Path and Precipitable Water Vapor from the Atmospheric Radiation Measurement (ARM) Microwave Radiometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, David D.; Clough, Shepard A.; Liljegren, James C.

    2007-11-01

    Ground-based two-channel microwave radiometers have been used for over 15 years by the Atmospheric Radiation Measurement (ARM) program to provide observations of downwelling emitted radiance from which precipitable water vapor (PWV) and liquid water path (LWP) – twp geophysical parameters critical for many areas of atmospheric research – are retrieved. An algorithm that utilizes two advanced retrieval techniques, a computationally expensive physical-iterative approach and an efficient statistical method, has been developed to retrieve these parameters. An important component of this Microwave Retrieval (MWRRET) algorithm is the determination of small (< 1K) offsets that are subtracted from the observed brightness temperaturesmore » before the retrievals are performed. Accounting for these offsets removes systematic biases from the observations and/or the model spectroscopy necessary for the retrieval, significantly reducing the systematic biases in the retrieved LWP. The MWRRET algorithm provides significantly more accurate retrievals than the original ARM statistical retrieval which uses monthly retrieval coefficients. By combining the two retrieval methods with the application of brightness temperature offsets to reduce the spurious LWP bias in clear skies, the MWRRET algorithm provides significantly better retrievals of PWV and LWP from the ARM 2-channel microwave radiometers compared to the original ARM product.« less

  7. Modified retrieval algorithm for three types of precipitation distribution using x-band synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Xie, Yanan; Zhou, Mingliang; Pan, Dengke

    2017-10-01

    The forward-scattering model is introduced to describe the response of normalized radar cross section (NRCS) of precipitation with synthetic aperture radar (SAR). Since the distribution of near-surface rainfall is related to the rate of near-surface rainfall and horizontal distribution factor, a retrieval algorithm called modified regression empirical and model-oriented statistical (M-M) based on the volterra integration theory is proposed. Compared with the model-oriented statistical and volterra integration (MOSVI) algorithm, the biggest difference is that the M-M algorithm is based on the modified regression empirical algorithm rather than the linear regression formula to retrieve the value of near-surface rainfall rate. Half of the empirical parameters are reduced in the weighted integral work and a smaller average relative error is received while the rainfall rate is less than 100 mm/h. Therefore, the algorithm proposed in this paper can obtain high-precision rainfall information.

  8. Development, Comparisons and Evaluation of Aerosol Retrieval Algorithms

    NASA Astrophysics Data System (ADS)

    de Leeuw, G.; Holzer-Popp, T.; Aerosol-cci Team

    2011-12-01

    The Climate Change Initiative (cci) of the European Space Agency (ESA) has brought together a team of European Aerosol retrieval groups working on the development and improvement of aerosol retrieval algorithms. The goal of this cooperation is the development of methods to provide the best possible information on climate and climate change based on satellite observations. To achieve this, algorithms are characterized in detail as regards the retrieval approaches, the aerosol models used in each algorithm, cloud detection and surface treatment. A round-robin intercomparison of results from the various participating algorithms serves to identify the best modules or combinations of modules for each sensor. Annual global datasets including their uncertainties will then be produced and validated. The project builds on 9 existing algorithms to produce spectral aerosol optical depth (AOD and Ångström exponent) as well as other aerosol information; two instruments are included to provide the absorbing aerosol index (AAI) and stratospheric aerosol information. The algorithms included are: - 3 for ATSR (ORAC developed by RAL / Oxford university, ADV developed by FMI and the SU algorithm developed by Swansea University ) - 2 for MERIS (BAER by Bremen university and the ESA standard handled by HYGEOS) - 1 for POLDER over ocean (LOA) - 1 for synergetic retrieval (SYNAER by DLR ) - 1 for OMI retreival of the absorbing aerosol index with averaging kernel information (KNMI) - 1 for GOMOS stratospheric extinction profile retrieval (BIRA) The first seven algorithms aim at the retrieval of the AOD. However, each of the algorithms used differ in their approach, even for algorithms working with the same instrument such as ATSR or MERIS. To analyse the strengths and weaknesses of each algorithm several tests are made. The starting point for comparison and measurement of improvements is a retrieval run for 1 month, September 2008. The data from the same month are subsequently used for several runs with a prescribed set of aerosol models and an a priori data set derived from the median of AEROCOM model runs. The aerosol models and a priori data can be used in several ways, i.e. fully prescribed or with some freedom to choose a combination of aerosol models, based on the a priori or not. Another test gives insight in the effect of the cloud masks used, i.e. retrievals using the same cloud mask (the AATSR APOLLO cloud mask for collocated instruments) are compared with runs using the standard cloud masks. Tests to determine the influence of surface treatment are planned as well. The results of all these tests are evaluated by an independent team which compares the retrieval results with ground-based remote sensing (in particular AERONET) and in-situ data, and by a scoring method. Results are compared with other satellites such as MODIS and MISR. Blind tests using synthetic data are part of the algorithm characterization. The presentation will summarize results of the ongoing phase 1 inter-comparison and evaluation work within the Aerosol_cci project.

  9. A cloud and radiation model-based algorithm for rainfall retrieval from SSM/I multispectral microwave measurements

    NASA Technical Reports Server (NTRS)

    Xiang, Xuwu; Smith, Eric A.; Tripoli, Gregory J.

    1992-01-01

    A hybrid statistical-physical retrieval scheme is explored which combines a statistical approach with an approach based on the development of cloud-radiation models designed to simulate precipitating atmospheres. The algorithm employs the detailed microphysical information from a cloud model as input to a radiative transfer model which generates a cloud-radiation model database. Statistical procedures are then invoked to objectively generate an initial guess composite profile data set from the database. The retrieval algorithm has been tested for a tropical typhoon case using Special Sensor Microwave/Imager (SSM/I) data and has shown satisfactory results.

  10. [The progress in retrieving land surface temperature based on thermal infrared and microwave remote sensing technologies].

    PubMed

    Zhang, Jia-Hua; Li, Xin; Yao, Feng-Mei; Li, Xian-Hua

    2009-08-01

    Land surface temperature (LST) is an important parameter in the study on the exchange of substance and energy between land surface and air for the land surface physics process at regional and global scales. Many applications of satellites remotely sensed data must provide exact and quantificational LST, such as drought, high temperature, forest fire, earthquake, hydrology and the vegetation monitor, and the models of global circulation and regional climate also need LST as input parameter. Therefore, the retrieval of LST using remote sensing technology becomes one of the key tasks in quantificational remote sensing study. Normally, in the spectrum bands, the thermal infrared (TIR, 3-15 microm) and microwave bands (1 mm-1 m) are important for retrieval of the LST. In the present paper, firstly, several methods for estimating the LST on the basis of thermal infrared (TIR) remote sensing were synthetically reviewed, i. e., the LST measured with an ground-base infrared thermometer, the LST retrieval from mono-window algorithm (MWA), single-channel algorithm (SCA), split-window techniques (SWT) and multi-channels algorithm(MCA), single-channel & multi-angle algorithm and multi-channels algorithm & multi-angle algorithm, and retrieval method of land surface component temperature using thermal infrared remotely sensed satellite observation. Secondly, the study status of land surface emissivity (epsilon) was presented. Thirdly, in order to retrieve LST for all weather conditions, microwave remotely sensed data, instead of thermal infrared data, have been developed recently, and the LST retrieval method from passive microwave remotely sensed data was also introduced. Finally, the main merits and shortcomings of different kinds of LST retrieval methods were discussed, respectively.

  11. Satellite aerosol retrieval using dark target algorithm by coupling BRDF effect over AERONET site

    NASA Astrophysics Data System (ADS)

    Yang, Leiku; Xue, Yong; Guang, Jie; Li, Chi

    2012-11-01

    For most satellite aerosol retrieval algorithms even for multi-angle instrument, the simple forward model (FM) based on Lambertian surface assumption is employed to simulate top of the atmosphere (TOA) spectral reflectance, which does not fully consider the surface bi-directional reflectance functions (BRDF) effect. The approximating forward model largely simplifies the radiative transfer model, reduces the size of the look-up tables, and creates faster algorithm. At the same time, it creates systematic biases in the aerosol optical depth (AOD) retrieval. AOD product from the Moderate Resolution Imaging Spectro-radiometer (MODIS) data based on the dark target algorithm is considered as one of accurate satellite aerosol products at present. Though it performs well at a global scale, uncertainties are still found on regional in a lot of studies. The Lambertian surface assumpiton employed in the retrieving algorithm may be one of the uncertain factors. In this study, we first use radiative transfer simulations over dark target to assess the uncertainty to what extent is introduced from the Lambertian surface assumption. The result shows that the uncertainties of AOD retrieval could reach up to ±0.3. Then the Lambertian FM (L_FM) and the BRDF FM (BRDF_FM) are respectively employed in AOD retrieval using dark target algorithm from MODARNSS (MODIS/Terra and MODIS/Aqua Atmosphere Aeronet Subsetting Product) data over Beijing AERONET site. The validation shows that accuracy in AOD retrieval has been improved by employing the BRDF_FM accounting for the surface BRDF effect, the regression slope of scatter plots with retrieved AOD against AEROENET AOD increases from 0.7163 (for L_FM) to 0.7776 (for BRDF_FM) and the intercept decreases from 0.0778 (for L_FM) to 0.0627 (for BRDF_FM).

  12. Propagation based phase retrieval of simulated intensity measurements using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Kemp, Z. D. C.

    2018-04-01

    Determining the phase of a wave from intensity measurements has many applications in fields such as electron microscopy, visible light optics, and medical imaging. Propagation based phase retrieval, where the phase is obtained from defocused images, has shown significant promise. There are, however, limitations in the accuracy of the retrieved phase arising from such methods. Sources of error include shot noise, image misalignment, and diffraction artifacts. We explore the use of artificial neural networks (ANNs) to improve the accuracy of propagation based phase retrieval algorithms applied to simulated intensity measurements. We employ a phase retrieval algorithm based on the transport-of-intensity equation to obtain the phase from simulated micrographs of procedurally generated specimens. We then train an ANN with pairs of retrieved and exact phases, and use the trained ANN to process a test set of retrieved phase maps. The total error in the phase is significantly reduced using this method. We also discuss a variety of potential extensions to this work.

  13. Total ozone column derived from GOME and SCIAMACHY using KNMI retrieval algorithms: Validation against Brewer measurements at the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Antón, M.; Kroon, M.; López, M.; Vilaplana, J. M.; Bañón, M.; van der A, R.; Veefkind, J. P.; Stammes, P.; Alados-Arboledas, L.

    2011-11-01

    This article focuses on the validation of the total ozone column (TOC) data set acquired by the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite remote sensing instruments using the Total Ozone Retrieval Scheme for the GOME Instrument Based on the Ozone Monitoring Instrument (TOGOMI) and Total Ozone Retrieval Scheme for the SCIAMACHY Instrument Based on the Ozone Monitoring Instrument (TOSOMI) retrieval algorithms developed by the Royal Netherlands Meteorological Institute. In this analysis, spatially colocated, daily averaged ground-based observations performed by five well-calibrated Brewer spectrophotometers at the Iberian Peninsula are used. The period of study runs from January 2004 to December 2009. The agreement between satellite and ground-based TOC data is excellent (R2 higher than 0.94). Nevertheless, the TOC data derived from both satellite instruments underestimate the ground-based data. On average, this underestimation is 1.1% for GOME and 1.3% for SCIAMACHY. The SCIAMACHY-Brewer TOC differences show a significant solar zenith angle (SZA) dependence which causes a systematic seasonal dependence. By contrast, GOME-Brewer TOC differences show no significant SZA dependence and hence no seasonality although processed with exactly the same algorithm. The satellite-Brewer TOC differences for the two satellite instruments show a clear and similar dependence on the viewing zenith angle under cloudy conditions. In addition, both the GOME-Brewer and SCIAMACHY-Brewer TOC differences reveal a very similar behavior with respect to the satellite cloud properties, being cloud fraction and cloud top pressure, which originate from the same cloud algorithm (Fast Retrieval Scheme for Clouds from the Oxygen A-Band (FRESCO+)) in both the TOSOMI and TOGOMI retrieval algorithms.

  14. Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi

    2006-01-01

    An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.

  15. Assessment of the Broadleaf Crops Leaf Area Index Product from the Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Hu, Jiannan; Huang, Dong; Yang, Wenze; Zhang, Ping; Shabanov, Nikolay V.; Knyazikhin, Yuri; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2005-01-01

    The first significant processing of Terra MODIS data, called Collection 3, covered the period from November 2000 to December 2002. The Collection 3 leaf area index (LAI) and fraction vegetation absorbed photosynthetically active radiation (FPAR) products for broadleaf crops exhibited three anomalies (a) high LAI values during the peak growing season, (b) differences in LAI seasonality between the radiative transfer-based main algorithm and the vegetation index based back-up algorithm, and (c) too few retrievals from the main algorithm during the summer period when the crops are at full flush. The cause of these anomalies is a mismatch between reflectances modeled by the algorithm and MODIS measurements. Therefore, the Look-Up-Tables accompanying the algorithm were revised and implemented in Collection 4 processing. The main algorithm with the revised Look-Up-Tables generated retrievals for over 80% of the pixels with valid data. Retrievals from the back-up algorithm, although few, should be used with caution as they are generated from surface reflectances with high uncertainties.

  16. Remote sensing of cirrus cloud vertical size profile using MODIS data

    NASA Astrophysics Data System (ADS)

    Wang, Xingjuan; Liou, K. N.; Ou, Steve S. C.; Mace, G. G.; Deng, M.

    2009-05-01

    This paper describes an algorithm for inferring cirrus cloud top and cloud base effective particle sizes and cloud optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS) 0.645, 1.64 and 2.13, and 3.75 μm band reflectances/radiances. This approach uses a successive minimization method based on a look-up library of precomputed reflectances/radiances from an adding-doubling radiative transfer program, subject to corrections for Rayleigh scattering at the 0.645 μm band, above-cloud water vapor absorption, and 3.75 μm thermal emission. The algorithmic accuracy and limitation of the retrieval method were investigated by synthetic retrievals subject to the instrument noise and the perturbation of input parameters. The retrieval algorithm was applied to three MODIS cirrus scenes over the Atmospheric Radiation Measurement Program's southern Great Plain site, north central China, and northeast Asia. The reliability of retrieved cloud optical thicknesses and mean effective particle sizes was evaluated by comparison with MODIS cloud products and qualitatively good correlations were obtained for all three cases, indicating that the performance of the vertical sizing algorithm is comparable with the MODIS retrieval program. Retrieved cloud top and cloud base ice crystal effective sizes were also compared with those derived from the collocated ground-based millimeter wavelength cloud radar for the first case and from the Cloud Profiling Radar onboard CloudSat for the other two cases. Differences between retrieved and radar-derived cloud properties are discussed in light of assumptions made in the collocation process and limitations in radar remote sensing characteristics.

  17. Assessment of Mars Atmospheric Temperature Retrievals from the Thermal Emission Spectrometer Radiances

    NASA Technical Reports Server (NTRS)

    Hoffman, Matthew J.; Eluszkiewicz, Janusz; Weisenstein, Deborah; Uymin, Gennady; Moncet, Jean-Luc

    2012-01-01

    Motivated by the needs of Mars data assimilation. particularly quantification of measurement errors and generation of averaging kernels. we have evaluated atmospheric temperature retrievals from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) radiances. Multiple sets of retrievals have been considered in this study; (1) retrievals available from the Planetary Data System (PDS), (2) retrievals based on variants of the retrieval algorithm used to generate the PDS retrievals, and (3) retrievals produced using the Mars 1-Dimensional Retrieval (M1R) algorithm based on the Optimal Spectral Sampling (OSS ) forward model. The retrieved temperature profiles are compared to the MGS Radio Science (RS) temperature profiles. For the samples tested, the M1R temperature profiles can be made to agree within 2 K with the RS temperature profiles, but only after tuning the prior and error statistics. Use of a global prior that does not take into account the seasonal dependence leads errors of up 6 K. In polar samples. errors relative to the RS temperature profiles are even larger. In these samples, the PDS temperature profiles also exhibit a poor fit with RS temperatures. This fit is worse than reported in previous studies, indicating that the lack of fit is due to a bias correction to TES radiances implemented after 2004. To explain the differences between the PDS and Ml R temperatures, the algorithms are compared directly, with the OSS forward model inserted into the PDS algorithm. Factors such as the filtering parameter, the use of linear versus nonlinear constrained inversion, and the choice of the forward model, are found to contribute heavily to the differences in the temperature profiles retrieved in the polar regions, resulting in uncertainties of up to 6 K. Even outside the poles, changes in the a priori statistics result in different profile shapes which all fit the radiances within the specified error. The importance of the a priori statistics prevents reliable global retrievals based a single a priori and strongly implies that a robust science analysis must instead rely on retrievals employing localized a priori information, for example from an ensemble based data assimilation system such as the Local Ensemble Transform Kalman Filter (LETKF).

  18. Retrieval of Dry Snow Parameters from Radiometric Data Using a Dense Medium Model and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.

    2005-01-01

    In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.

  19. Comparison of soil moisture retrieval algorithms based on the synergy between SMAP and SMOS-IC

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Khusfi, Mohsen; Alavipanah, Seyed Kazem; Hamzeh, Saeid; Amiraslani, Farshad; Neysani Samany, Najmeh; Wigneron, Jean-Pierre

    2018-05-01

    This study was carried out to evaluate possible improvements of the soil moisture (SM) retrievals from the SMAP observations, based on the synergy between SMAP and SMOS. We assessed the impacts of the vegetation and soil roughness parameters on SM retrievals from SMAP observations. To do so, the effects of three key input parameters including the vegetation optical depth (VOD), effective scattering albedo (ω) and soil roughness (HR) parameters were assessed with the emphasis on the synergy with the VOD product derived from SMOS-IC, a new and simpler version of the SMOS algorithm, over two years of data (April 2015 to April 2017). First, a comprehensive comparison of seven SM retrieval algorithms was made to find the best one for SM retrievals from the SMAP observations. All results were evaluated against in situ measurements over 548 stations from the International Soil Moisture Network (ISMN) in terms of four statistical metrics: correlation coefficient (R), root mean square error (RMSE), bias and unbiased RMSE (UbRMSE). The comparison of seven SM retrieval algorithms showed that the dual channel algorithm based on the additional use of the SMOS-IC VOD product (selected algorithm) led to the best results of SM retrievals over 378, 399, 330 and 271 stations (out of a total of 548 stations) in terms of R, RMSE, UbRMSE and both R & UbRMSE, respectively. Moreover, comparing the measured and retrieved SM values showed that this synergy approach led to an increase in median R value from 0.6 to 0.65 and a decrease in median UbRMSE from 0.09 m3/m3 to 0.06 m3/m3. Second, using the algorithm selected in a first step and defined above, the ω and HR parameters were calibrated over 218 rather homogenous ISMN stations. 72 combinations of various values of ω and HR were used for the calibration over different land cover classes. In this calibration process, the optimal values of ω and HR were found for the different land cover classes. The obtained results indicated that the impact of the VOD parameter on SM retrievals is more considerable than the effects of HR and ω. Overall, the inclusion of the VOD parameter in the SMAP SM retrieval algorithm was found to be a very interesting approach and showed the large potential benefit of the synergy between SMAP and SMOS.

  20. An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu

    2016-09-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.

  1. The performance of Yonsei CArbon Retrieval (YCAR) algorithm with improved aerosol information using GOSAT measurements over East Asia

    NASA Astrophysics Data System (ADS)

    Jung, Y.; Kim, J.; Kim, W.; Boesch, H.; Yoshida, Y.; Cho, C.; Lee, H.; Goo, T. Y.

    2016-12-01

    The Greenhouse Gases Observing SATellite (GOSAT) is the first satellite dedicated to measure atmospheric CO2 concentrations from space that can able to improve our knowledge about carbon cycle. Several studies have performed to develop the CO2 retrieval algorithms using GOSAT measurements, but limitations in spatial coverage and uncertainties due to aerosols and thin cirrus clouds are still remained as a problem for monitoring CO2 concentration globally. In this study, we develop the Yonsei CArbon Retrieval (YCAR) algorithm based on optimal estimation method to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) with optimized a priori CO2 profiles and aerosol models over East Asia. In previous studies, the aerosol optical properties (AOP) and the aerosol top height used to cause significant errors in retrieved XCO2 up to 2.5 ppm. Since this bias comes from a rough assumption of aerosol information in the forward model used in CO2 retrieval process, the YCAR algorithm improves the process to take into account AOPs as well as aerosol vertical distribution; total AOD and the fine mode fraction (FMF) are obtained from the ground-based measurements closely located, and other parameters are obtained from a priori information. Comparing to ground-based XCO2 measurements, the YCAR XCO2 product has a bias of 0.59±0.48 ppm and 2.16±0.87 ppm at Saga and Tsukuba sites, respectively, showing lower biases and higher correlations rather than the GOSAT standard products. These results reveal that considering better aerosol information can improve the accuracy of CO2 retrieval algorithm and provide more useful XCO2 information with reduced uncertainties.

  2. Phase retrieval based wavefront sensing experimental implementation and wavefront sensing accuracy calibration

    NASA Astrophysics Data System (ADS)

    Mao, Heng; Wang, Xiao; Zhao, Dazun

    2009-05-01

    As a wavefront sensing (WFS) tool, Baseline algorithm, which is classified as the iterative-transform algorithm of phase retrieval, estimates the phase distribution at pupil from some known PSFs at defocus planes. By using multiple phase diversities and appropriate phase unwrapping methods, this algorithm can accomplish reliable unique solution and high dynamic phase measurement. In the paper, a Baseline algorithm based wavefront sensing experiment with modification of phase unwrapping has been implemented, and corresponding Graphical User Interfaces (GUI) software has also been given. The adaptability and repeatability of Baseline algorithm have been validated in experiments. Moreover, referring to the ZYGO interferometric results, the WFS accuracy of this algorithm has been exactly calibrated.

  3. Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.

    ERIC Educational Resources Information Center

    Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand

    2003-01-01

    Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…

  4. Phase retrieval using regularization method in intensity correlation imaging

    NASA Astrophysics Data System (ADS)

    Li, Xiyu; Gao, Xin; Tang, Jia; Lu, Changming; Wang, Jianli; Wang, Bin

    2014-11-01

    Intensity correlation imaging(ICI) method can obtain high resolution image with ground-based low precision mirrors, in the imaging process, phase retrieval algorithm should be used to reconstituted the object's image. But the algorithm now used(such as hybrid input-output algorithm) is sensitive to noise and easy to stagnate. However the signal-to-noise ratio of intensity interferometry is low especially in imaging astronomical objects. In this paper, we build the mathematical model of phase retrieval and simplified it into a constrained optimization problem of a multi-dimensional function. New error function was designed by noise distribution and prior information using regularization method. The simulation results show that the regularization method can improve the performance of phase retrieval algorithm and get better image especially in low SNR condition

  5. Wind velocity profile reconstruction from intensity fluctuations of a plane wave propagating in a turbulent atmosphere.

    PubMed

    Banakh, V A; Marakasov, D A

    2007-08-01

    Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.

  6. High Resolution Imaging Using Phase Retrieval. Volume 2

    DTIC Science & Technology

    1991-10-01

    aberrations of the telescope. It will also correct aberrations due to atmospheric turbulence for a ground- based telescope, and can be used with several other...retrieval algorithm, based on the Ayers/Dainty blind deconvolution algorithm, was also developed. A new methodology for exploring the uniqueness of phase...Simulation Experiments ..................... 42 3.3.1 Initial Simulations with Noisy Modulus Data ..... 45 3.3.2 Simulations of a Space- Based Amplitude

  7. Semantic-based surveillance video retrieval.

    PubMed

    Hu, Weiming; Xie, Dan; Fu, Zhouyu; Zeng, Wenrong; Maybank, Steve

    2007-04-01

    Visual surveillance produces large amounts of video data. Effective indexing and retrieval from surveillance video databases are very important. Although there are many ways to represent the content of video clips in current video retrieval algorithms, there still exists a semantic gap between users and retrieval systems. Visual surveillance systems supply a platform for investigating semantic-based video retrieval. In this paper, a semantic-based video retrieval framework for visual surveillance is proposed. A cluster-based tracking algorithm is developed to acquire motion trajectories. The trajectories are then clustered hierarchically using the spatial and temporal information, to learn activity models. A hierarchical structure of semantic indexing and retrieval of object activities, where each individual activity automatically inherits all the semantic descriptions of the activity model to which it belongs, is proposed for accessing video clips and individual objects at the semantic level. The proposed retrieval framework supports various queries including queries by keywords, multiple object queries, and queries by sketch. For multiple object queries, succession and simultaneity restrictions, together with depth and breadth first orders, are considered. For sketch-based queries, a method for matching trajectories drawn by users to spatial trajectories is proposed. The effectiveness and efficiency of our framework are tested in a crowded traffic scene.

  8. Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.

    PubMed

    Wang, Jiao; Deng, Zhiqiang

    2017-06-01

    A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.

  9. Comparative Analysis of Aerosol Retrievals from MODIS, OMI and MISR Over Sahara Region

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Hsu, C.; Terres, O.; Leptoukh, G.; Kalashnikova, O.; Korkin, S.

    2011-01-01

    MODIS is a wide field-of-view sensor providing daily global observations of the Earth. Currently, global MODIS aerosol retrievals over land are performed with the main Dark Target algorithm complimented with the Deep Blue (DB) Algorithm over bright deserts. The Dark Target algorithm relies on surface parameterization which relates reflectance in MODIS visible bands with the 2.1 micrometer region, whereas the Deep Blue algorithm uses an ancillary angular distribution model of surface reflectance developed from the time series of clear-sky MODIS observations. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been developed for MODIS. MAIAC uses a time series and an image based processing to perform simultaneous retrievals of aerosol properties and surface bidirectional reflectance. It is a generic algorithm which works over both dark vegetative surfaces and bright deserts and performs retrievals at 1 km resolution. In this work, we will provide a comparative analysis of DB, MAIAC, MISR and OMI aerosol products over bright deserts of northern Africa.

  10. Comparison of SMOS and SMAP Soil Moisture Retrieval Approaches Using Tower-based Radiometer Data over a Vineyard Field

    NASA Technical Reports Server (NTRS)

    Miernecki, Maciej; Wigneron, Jean-Pierre; Lopez-Baeza, Ernesto; Kerr, Yann; DeJeu, Richard; DeLannoy, Gabielle J. M.; Jackson, Tom J.; O'Neill, Peggy E.; Shwank, Mike; Moran, Roberto Fernandez; hide

    2014-01-01

    The objective of this study was to compare several approaches to soil moisture (SM) retrieval using L-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30-60). Based on a three year data set (2010-2012), several SM retrieval approaches developed for spaceborne missions including AMSR-E (Advanced Microwave Scanning Radiometer for EOS), SMAP (Soil Moisture Active Passive) and SMOS were compared. The approaches include: the Single Channel Algorithm (SCA) for horizontal (SCA-H) and vertical (SCA-V) polarizations, the Dual Channel Algorithm (DCA), the Land Parameter Retrieval Model (LPRM) and two simplified approaches based on statistical regressions (referred to as 'Mattar' and 'Saleh'). Time series of vegetation indices required for three of the algorithms (SCA-H, SCA-V and Mattar) were obtained from MODIS observations. The SM retrievals were evaluated against reference SM values estimated from a multiangular 2-Parameter inversion approach. The results obtained with the current base line algorithms developed for SMAP (SCA-H and -V) are in very good agreement with the reference SM data set derived from the multi-angular observations (R2 around 0.90, RMSE varying between 0.035 and 0.056 m3m3 for several retrieval configurations). This result showed that, provided the relationship between vegetation optical depth and a remotely-sensed vegetation index can be calibrated, the SCA algorithms can provide results very close to those obtained from multi-angular observations in this study area. The approaches based on statistical regressions provided similar results and the best accuracy was obtained with the Saleh methods based on either bi-angular or bipolarization observations (R2 around 0.93, RMSE around 0.035 m3m3). The LPRM and DCA algorithms were found to be slightly less successful in retrieving the 'reference' SM time series (R2 around 0.75, RMSE around 0.055 m3m3). However, the two above approaches have the great advantage of not requiring any model calibrations previous to the SM retrievals.

  11. Generating Global Leaf Area Index from Landsat: Algorithm Formulation and Demonstration

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Nemani, Ramakrishna R.; Zhang, Gong; Hashimoto, Hirofumi; Milesi, Cristina; Michaelis, Andrew; Wang, Weile; Votava, Petr; Samanta, Arindam; Melton, Forrest; hide

    2012-01-01

    This paper summarizes the implementation of a physically based algorithm for the retrieval of vegetation green Leaf Area Index (LAI) from Landsat surface reflectance data. The algorithm is based on the canopy spectral invariants theory and provides a computationally efficient way of parameterizing the Bidirectional Reflectance Factor (BRF) as a function of spatial resolution and wavelength. LAI retrievals from the application of this algorithm to aggregated Landsat surface reflectances are consistent with those of MODIS for homogeneous sites represented by different herbaceous and forest cover types. Example results illustrating the physics and performance of the algorithm suggest three key factors that influence the LAI retrieval process: 1) the atmospheric correction procedures to estimate surface reflectances; 2) the proximity of Landsatobserved surface reflectance and corresponding reflectances as characterized by the model simulation; and 3) the quality of the input land cover type in accurately delineating pure vegetated components as opposed to mixed pixels. Accounting for these factors, a pilot implementation of the LAI retrieval algorithm was demonstrated for the state of California utilizing the Global Land Survey (GLS) 2005 Landsat data archive. In a separate exercise, the performance of the LAI algorithm over California was evaluated by using the short-wave infrared band in addition to the red and near-infrared bands. Results show that the algorithm, while ingesting the short-wave infrared band, has the ability to delineate open canopies with understory effects and may provide useful information compared to a more traditional two-band retrieval. Future research will involve implementation of this algorithm at continental scales and a validation exercise will be performed in evaluating the accuracy of the 30-m LAI products at several field sites. ©

  12. X-Ray Phase Imaging for Breast Cancer Detection

    DTIC Science & Technology

    2012-09-01

    the Gerchberg-Saxton algorithm in the Fresnel diffraction regime, and is much more robust against image noise than the TIE-based method. For details...developed efficient coding with the software modules for the image registration, flat-filed correction , and phase retrievals. In addition, we...X, Liu H. 2010. Performance analysis of the attenuation-partition based iterative phase retrieval algorithm for in-line phase-contrast imaging

  13. Assessment of the improvements in accuracy of aerosol characterization resulted from additions of polarimetric measurements to intensity-only observations using GRASP algorithm (Invited)

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Herman, M.; Fedorenko, A.; Lopatin, A.; Goloub, P.; Ducos, F.; Aspetsberger, M.; Planer, W.; Federspiel, C.

    2013-12-01

    During last few years we were developing GRASP (Generalized Retrieval of Aerosol and Surface Properties) algorithm designed for the enhanced characterization of aerosol properties from spectral, multi-angular polarimetric remote sensing observations. The concept of GRASP essentially relies on the accumulated positive research heritage from previous remote sensing aerosol retrieval developments, in particular those from the AERONET and POLDER retrieval activities. The details of the algorithm are described by Dubovik et al. (Atmos. Meas. Tech., 4, 975-1018, 2011). The GRASP retrieves properties of both aerosol and land surface reflectance in cloud-free environments. It is based on highly advanced statistically optimized fitting and deduces nearly 50 unknowns for each observed site. The algorithm derives a similar set of aerosol parameters as AERONET including detailed particle size distribution, the spectrally dependent the complex index of refraction and the fraction of non-spherical particles. The algorithm uses detailed aerosol and surface models and fully accounts for all multiple interactions of scattered solar light with aerosol, gases and the underlying surface. All calculations are done on-line without using traditional look-up tables. In addition, the algorithm uses the new multi-pixel retrieval concept - a simultaneous fitting of a large group of pixels with additional constraints limiting the time variability of surface properties and spatial variability of aerosol properties. This principle is expected to result in higher consistency and accuracy of aerosol products compare to conventional approaches especially over bright surfaces where information content of satellite observations in respect to aerosol properties is limited. The GRASP is a highly versatile algorithm that allows input from both satellite and ground-based measurements. It also has essential flexibility in measurement processing. For example, if observation data set includes spectral measurements of both total intensity and polarization, the algorithm can be easily set to use either total intensity or polarization, as well as both of them in the same retrieval. Using this feature of the algorithm design we have studied the relative importance of total intensity and polarization measurements for retrieving different parameters of aerosol. In this presentation, we present the quantitative assessment of the improvements in aerosol retrievals associated with additions of polarimetric measurements to the intensity-only observations. The study has been performed using satellite measurements by POLDER/PARASOL polarimeter and ground-based measurements by new generation AERONET sun/sky-radiometers implementing measurements of polarization at each spectral channel.

  14. Cloud cover detection combining high dynamic range sky images and ceilometer measurements

    NASA Astrophysics Data System (ADS)

    Román, R.; Cazorla, A.; Toledano, C.; Olmo, F. J.; Cachorro, V. E.; de Frutos, A.; Alados-Arboledas, L.

    2017-11-01

    This paper presents a new algorithm for cloud detection based on high dynamic range images from a sky camera and ceilometer measurements. The algorithm is also able to detect the obstruction of the sun. This algorithm, called CPC (Camera Plus Ceilometer), is based on the assumption that under cloud-free conditions the sky field must show symmetry. The symmetry criteria are applied depending on ceilometer measurements of the cloud base height. CPC algorithm is applied in two Spanish locations (Granada and Valladolid). The performance of CPC retrieving the sun conditions (obstructed or unobstructed) is analyzed in detail using as reference pyranometer measurements at Granada. CPC retrievals are in agreement with those derived from the reference pyranometer in 85% of the cases (it seems that this agreement does not depend on aerosol size or optical depth). The agreement percentage goes down to only 48% when another algorithm, based on Red-Blue Ratio (RBR), is applied to the sky camera images. The retrieved cloud cover at Granada and Valladolid is compared with that registered by trained meteorological observers. CPC cloud cover is in agreement with the reference showing a slight overestimation and a mean absolute error around 1 okta. A major advantage of the CPC algorithm with respect to the RBR method is that the determined cloud cover is independent of aerosol properties. The RBR algorithm overestimates cloud cover for coarse aerosols and high loads. Cloud cover obtained only from ceilometer shows similar results than CPC algorithm; but the horizontal distribution cannot be obtained. In addition, it has been observed that under quick and strong changes on cloud cover ceilometers retrieve a cloud cover fitting worse with the real cloud cover.

  15. The ESA Cloud CCI project: Generation of Multi Sensor consistent Cloud Properties with an Optimal Estimation Based Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Jerg, M.; Stengel, M.; Hollmann, R.; Poulsen, C.

    2012-04-01

    The ultimate objective of the ESA Climate Change Initiative (CCI) Cloud project is to provide long-term coherent cloud property data sets exploiting and improving on the synergetic capabilities of past, existing, and upcoming European and American satellite missions. The synergetic approach allows not only for improved accuracy and extended temporal and spatial sampling of retrieved cloud properties better than those provided by single instruments alone but potentially also for improved (inter-)calibration and enhanced homogeneity and stability of the derived time series. Such advances are required by the scientific community to facilitate further progress in satellite-based climate monitoring, which leads to a better understanding of climate. Some of the primary objectives of ESA Cloud CCI Cloud are (1) the development of inter-calibrated radiance data sets, so called Fundamental Climate Data Records - for ESA and non ESA instruments through an international collaboration, (2) the development of an optimal estimation based retrieval framework for cloud related essential climate variables like cloud cover, cloud top height and temperature, liquid and ice water path, and (3) the development of two multi-annual global data sets for the mentioned cloud properties including uncertainty estimates. These two data sets are characterized by different combinations of satellite systems: the AVHRR heritage product comprising (A)ATSR, AVHRR and MODIS and the novel (A)ATSR - MERIS product which is based on a synergetic retrieval using both instruments. Both datasets cover the years 2007-2009 in the first project phase. ESA Cloud CCI will also carry out a comprehensive validation of the cloud property products and provide a common data base as in the framework of the Global Energy and Water Cycle Experiment (GEWEX). The presentation will give an overview of the ESA Cloud CCI project and its goals and approaches and then continue with results from the Round Robin algorithm comparison exercise carried out at the beginning of the project which included three algorithms. The purpose of the exercise was to assess and compare existing cloud retrieval algorithms in order to chose one of them as backbone of the retrieval system and also identify areas of potential improvement and general strengths and weaknesses of the algorithm. Furthermore the presentation will elaborate on the optimal estimation algorithm subsequently chosen to derive the heritage product and which is presently further developed and will be employed for the AVHRR heritage product. The algorithm's capabilities to coherently and simultaneously process all radiative input and yield retrieval parameters together with associated uncertainty estimates will be presented together with first results for the heritage product. In the course of the project the algorithm is being developed into a freely and publicly available community retrieval system for interested scientists.

  16. Scalable Integrated Region-Based Image Retrieval Using IRM and Statistical Clustering.

    ERIC Educational Resources Information Center

    Wang, James Z.; Du, Yanping

    Statistical clustering is critical in designing scalable image retrieval systems. This paper presents a scalable algorithm for indexing and retrieving images based on region segmentation. The method uses statistical clustering on region features and IRM (Integrated Region Matching), a measure developed to evaluate overall similarity between images…

  17. A new retrieval algorithm for tropospheric temperature, humidity and pressure profiling based on GNSS radio occultation data

    NASA Astrophysics Data System (ADS)

    Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.

    2017-04-01

    The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from both WEGC systems, current OPSv5.6 and next-generation rOPS, are shown and discussed, based on both insights from individual profiles and statistical ensembles, and compared to moist air retrieval results from the UCAR Boulder and ROM-SAF Copenhagen centers. The results show that the new algorithmic scheme improves the temperature, humidity and pressure retrieval performance, in particular also the robustness including for integrated uncertainty estimation for large-scale applications, over the previous algorithms. The new rOPS-implemented algorithm will therefore be used in the first large-scale reprocessing towards a tropospheric climate data record 2001-2016 by the rOPS, including its integrated uncertainty propagation.

  18. Regarding retrievals of methane in the atmosphere from IASI/Metop spectra and their comparison with ground-based FTIR measurements data

    NASA Astrophysics Data System (ADS)

    Khamatnurova, M. Yu.; Gribanov, K. G.; Zakharov, V. I.; Rokotyan, N. V.; Imasu, R.

    2017-11-01

    The algorithm for atmospheric methane distribution retrieval in atmosphere from IASI spectra has been developed. The feasibility of Levenberg-Marquardt method for atmospheric methane total column amount retrieval from the spectra measured by IASI/METOP modified for the case of lack of a priori covariance matrices for methane vertical profiles is studied in this paper. Method and algorithm were implemented into software package together with iterative estimation of a posteriori covariance matrices and averaging kernels for each individual retrieval. This allows retrieval quality selection using the properties of both types of matrices. Methane (XCH4) retrieval by Levenberg-Marquardt method from IASI/METOP spectra is presented in this work. NCEP/NCAR reanalysis data provided by ESRL (NOAA, Boulder, USA) were taken as initial guess. Surface temperature, air temperature and humidity vertical profiles are retrieved before methane vertical profile retrieval. The data retrieved from ground-based measurements at the Ural Atmospheric Station and data of L2/IASI standard product were used for the verification of the method and results of methane retrieval from IASI/METOP spectra.

  19. Information Retrieval and Graph Analysis Approaches for Book Recommendation.

    PubMed

    Benkoussas, Chahinez; Bellot, Patrice

    2015-01-01

    A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD) a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval) Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments.

  20. Information Retrieval and Graph Analysis Approaches for Book Recommendation

    PubMed Central

    Benkoussas, Chahinez; Bellot, Patrice

    2015-01-01

    A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD) a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval) Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments. PMID:26504899

  1. Towards improving the NASA standard soil moisture retrieval algorithm and product

    NASA Astrophysics Data System (ADS)

    Mladenova, I. E.; Jackson, T. J.; Njoku, E. G.; Bindlish, R.; Cosh, M. H.; Chan, S.

    2013-12-01

    Soil moisture mapping using passive-based microwave remote sensing techniques has proven to be one of the most effective ways of acquiring reliable global soil moisture information on a routine basis. An important step in this direction was made by the launch of the Advanced Microwave Scanning Radiometer on the NASA's Earth Observing System Aqua satellite (AMSR-E). Along with the standard NASA algorithm and operational AMSR-E product, the easy access and availability of the AMSR-E data promoted the development and distribution of alternative retrieval algorithms and products. Several evaluation studies have demonstrated issues with the standard NASA AMSR-E product such as dampened temporal response and limited range of the final retrievals and noted that the available global passive-based algorithms, even though based on the same electromagnetic principles, produce different results in terms of accuracy and temporal dynamics. Our goal is to identify the theoretical causes that determine the reduced sensitivity of the NASA AMSR-E product and outline ways to improve the operational NASA algorithm, if possible. Properly identifying the underlying reasons that cause the above mentioned features of the NASA AMSR-E product and differences between the alternative algorithms requires a careful examination of the theoretical basis of each approach. Specifically, the simplifying assumptions and parametrization approaches adopted by each algorithm to reduce the dimensionality of unknowns and characterize the observing system. Statistically-based error analyses, which are useful and necessary, provide information on the relative accuracy of each product but give very little information on the theoretical causes, knowledge that is essential for algorithm improvement. Thus, we are currently examining the possibility of improving the standard NASA AMSR-E global soil moisture product by conducting a thorough theoretically-based review of and inter-comparisons between several well established global retrieval techniques. A detailed discussion focused on the theoretical basis of each approach and algorithms sensitivity to assumptions and parametrization approaches will be presented. USDA is an equal opportunity provider and employer.

  2. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements

    NASA Astrophysics Data System (ADS)

    Veselovskii, I.; Dubovik, O.; Kolgotin, A.; Lapyonok, T.; di Girolamo, P.; Summa, D.; Whiteman, D. N.; Mishchenko, M.; Tanré, D.

    2010-11-01

    Multiwavelength (MW) Raman lidars have demonstrated their potential to profile particle parameters; however, until now, the physical models used in retrieval algorithms for processing MW lidar data have been predominantly based on the Mie theory. This approach is applicable to the modeling of light scattering by spherically symmetric particles only and does not adequately reproduce the scattering by generally nonspherical desert dust particles. Here we present an algorithm based on a model of randomly oriented spheroids for the inversion of multiwavelength lidar data. The aerosols are modeled as a mixture of two aerosol components: one composed only of spherical and the second composed of nonspherical particles. The nonspherical component is an ensemble of randomly oriented spheroids with size-independent shape distribution. This approach has been integrated into an algorithm retrieving aerosol properties from the observations with a Raman lidar based on a tripled Nd:YAG laser. Such a lidar provides three backscattering coefficients, two extinction coefficients, and the particle depolarization ratio at a single or multiple wavelengths. Simulations were performed for a bimodal particle size distribution typical of desert dust particles. The uncertainty of the retrieved particle surface, volume concentration, and effective radius for 10% measurement errors is estimated to be below 30%. We show that if the effect of particle nonsphericity is not accounted for, the errors in the retrieved aerosol parameters increase notably. The algorithm was tested with experimental data from a Saharan dust outbreak episode, measured with the BASIL multiwavelength Raman lidar in August 2007. The vertical profiles of particle parameters as well as the particle size distributions at different heights were retrieved. It was shown that the algorithm developed provided substantially reasonable results consistent with the available independent information about the observed aerosol event.

  3. Dreaming of Atmospheres

    NASA Astrophysics Data System (ADS)

    Waldmann, I. P.

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  4. Using Ground-Based Measurements and Retrievals to Validate Satellite Data

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan

    2002-01-01

    The proposed research is to use the DOE ARM ground-based measurements and retrievals as the ground-truth references for validating satellite cloud results and retrieving algorithms. This validation effort includes four different ways: (1) cloud properties on different satellites, therefore different sensors, TRMM VIRS and TERRA MODIS; (2) cloud properties at different climatic regions, such as DOE ARM SGP, NSA, and TWP sites; (3) different cloud types, low and high level cloud properties; and (4) day and night retrieving algorithms. Validation of satellite-retrieved cloud properties is very difficult and a long-term effort because of significant spatial and temporal differences between the surface and satellite observing platforms. The ground-based measurements and retrievals, only carefully analyzed and validated, can provide a baseline for estimating errors in the satellite products. Even though the validation effort is so difficult, a significant progress has been made during the proposed study period, and the major accomplishments are summarized in the follow.

  5. Adaptive optics compensation of orbital angular momentum beams with a modified Gerchberg-Saxton-based phase retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Chang, Huan; Yin, Xiao-li; Cui, Xiao-zhou; Zhang, Zhi-chao; Ma, Jian-xin; Wu, Guo-hua; Zhang, Li-jia; Xin, Xiang-jun

    2017-12-01

    Practical orbital angular momentum (OAM)-based free-space optical (FSO) communications commonly experience serious performance degradation and crosstalk due to atmospheric turbulence. In this paper, we propose a wave-front sensorless adaptive optics (WSAO) system with a modified Gerchberg-Saxton (GS)-based phase retrieval algorithm to correct distorted OAM beams. We use the spatial phase perturbation (SPP) GS algorithm with a distorted probe Gaussian beam as the only input. The principle and parameter selections of the algorithm are analyzed, and the performance of the algorithm is discussed. The simulation results show that the proposed adaptive optics (AO) system can significantly compensate for distorted OAM beams in single-channel or multiplexed OAM systems, which provides new insights into adaptive correction systems using OAM beams.

  6. Automatic medical image annotation and keyword-based image retrieval using relevance feedback.

    PubMed

    Ko, Byoung Chul; Lee, JiHyeon; Nam, Jae-Yeal

    2012-08-01

    This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric-local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to each annotated keyword by combining probabilities of random forests with predefined body relation graph. To overcome the limitation of keyword-based image retrieval, we combine our image retrieval system with relevance feedback mechanism based on visual feature and pattern classifier. Compared with other annotation and relevance feedback algorithms, the proposed method shows both improved annotation performance and accurate retrieval results.

  7. An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional look-up tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OE-based estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  8. GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff

    An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less

  9. GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra

    DOE PAGES

    Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff; ...

    2016-08-02

    An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less

  10. Validation of YCAR algorithm over East Asia TCCON sites

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, J.; Jung, Y.; Lee, H.; Goo, T. Y.; Cho, C. H.; Lee, S.

    2016-12-01

    In order to reduce the retrieval error of TANSO-FTS column averaged CO2 concentration (XCO2) induced by aerosol, we develop the Yonsei university CArbon Retrieval (YCAR) algorithm using aerosol information from TANSO-Cloud and Aerosol Imager (TANSO-CAI), providing simultaneous aerosol optical depth properties for the same geometry and optical path along with the FTS. Also we validate the retrieved results using ground-based TCCON measurement. Particularly this study first utilized the measurements at Anmyeondo, the only TCCON site located in South Korea, which can improve the quality of validation in East Asia. After the post screening process, YCAR algorithms have higher data availability by 33 - 85 % than other operational algorithms (NIES, ACOS, UoL). Although the YCAR algorithm has higher data availability, regression analysis with TCCON measurements are better or similar to other algorithms; Regression line of YCAR algorithm is close to linear identity function with RMSE of 2.05, bias of - 0.86 ppm. According to error analysis, retrieval error of YCAR algorithm is 1.394 - 1.478 ppm at East Asia. In addition, spatio-temporal sampling error of 0.324 - 0.358 ppm for each single sounding retrieval is also analyzed with Carbon Tracker - Asia data. These results of error analysis reveal the reliability and accuracy of latest version of our YCAR algorithm. Both XCO2 values retrieved using YCAR algorithm on TANSO-FTS and TCCON measurements show the consistent increasing trend about 2.3 - 2.6 ppm per year. Comparing to the increasing rate of global background CO2 amount measured in Mauna Loa, Hawaii (2 ppm per year), the increasing trend in East Asia shows about 30% higher trend due to the rapid increase of CO2 emission from the source region.

  11. A new randomized Kaczmarz based kernel canonical correlation analysis algorithm with applications to information retrieval.

    PubMed

    Cai, Jia; Tang, Yi

    2018-02-01

    Canonical correlation analysis (CCA) is a powerful statistical tool for detecting the linear relationship between two sets of multivariate variables. Kernel generalization of it, namely, kernel CCA is proposed to describe nonlinear relationship between two variables. Although kernel CCA can achieve dimensionality reduction results for high-dimensional data feature selection problem, it also yields the so called over-fitting phenomenon. In this paper, we consider a new kernel CCA algorithm via randomized Kaczmarz method. The main contributions of the paper are: (1) A new kernel CCA algorithm is developed, (2) theoretical convergence of the proposed algorithm is addressed by means of scaled condition number, (3) a lower bound which addresses the minimum number of iterations is presented. We test on both synthetic dataset and several real-world datasets in cross-language document retrieval and content-based image retrieval to demonstrate the effectiveness of the proposed algorithm. Numerical results imply the performance and efficiency of the new algorithm, which is competitive with several state-of-the-art kernel CCA methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A New, More Physically Based Algorithm, for Retrieving Aerosol Properties over Land from MODIS

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Kaufman, Yoram J.; Remer, Lorraine A.; Mattoo, Shana

    2004-01-01

    The MOD Imaging Spectrometer (MODIS) has been successfully retrieving aerosol properties, beginning in early 2000 from Terra and from mid 2002 from Aqua. Over land, the retrieval algorithm makes use of three MODIS channels, in the blue, red and infrared wavelengths. As part of the validation exercises, retrieved spectral aerosol optical thickness (AOT) has been compared via scatterplots against spectral AOT measured by the global Aerosol Robotic NETwork (AERONET). On one hand, global and long term validation looks promising, with two-thirds (average plus and minus one standard deviation) of all points falling between published expected error bars. On the other hand, regression of these points shows a positive y-offset and a slope less than 1.0. For individual regions, such as along the U.S. East Coast, the offset and slope are even worse. Here, we introduce an overhaul of the algorithm for retrieving aerosol properties over land. Some well-known weaknesses in the current aerosol retrieval from MODIS include: a) rigid assumptions about the underlying surface reflectance, b) limited aerosol models to choose from, c) simplified (scalar) radiative transfer (RT) calculations used to simulate satellite observations, and d) assumption that aerosol is transparent in the infrared channel. The new algorithm attempts to address all four problems: a) The new algorithm will include surface type information, instead of fixed ratios of the reflectance in the visible channels to the mid-IR reflectance. b) It will include updated aerosol optical properties to reflect the growing aerosol retrieved from eight-plus years of AERONE". operation. c) The effects of polarization will be including using vector RT calculations. d) Most importantly, the new algorithm does not assume that aerosol is transparent in the infrared channel. It will be an inversion of reflectance observed in the three channels (blue, red, and infrared), rather than iterative single channel retrievals. Thus, this new formulation of the MODIS aerosol retrieval over land includes more physically based surface, aerosol and radiative transfer with fewer potentially erroneous assumptions.

  13. Retrieving handwriting by combining word spotting and manifold ranking

    NASA Astrophysics Data System (ADS)

    Peña Saldarriaga, Sebastián; Morin, Emmanuel; Viard-Gaudin, Christian

    2012-01-01

    Online handwritten data, produced with Tablet PCs or digital pens, consists in a sequence of points (x, y). As the amount of data available in this form increases, algorithms for retrieval of online data are needed. Word spotting is a common approach used for the retrieval of handwriting. However, from an information retrieval (IR) perspective, word spotting is a primitive keyword based matching and retrieval strategy. We propose a framework for handwriting retrieval where an arbitrary word spotting method is used, and then a manifold ranking algorithm is applied on the initial retrieval scores. Experimental results on a database of more than 2,000 handwritten newswires show that our method can improve the performances of a state-of-the-art word spotting system by more than 10%.

  14. SCIAMACHY and FTS CO2 Retrievals Using the OCO Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Boesch, Hartmut; Buchwitz, M.; Sen, Bhaswar; Toon, Geoffrey C.; Washenfelder, Rebecca A.; Wennberg, Paul O.

    2005-01-01

    The Orbiting Carbon Observatory (OCO) mission will make the first global, space-based measurements of atmospheric C02 with the precision and coverage needed to characterize C02 sources and sinks on regional scales. OCO will make spectrally and spatially highly resolved measurements of reflected sunlight in the 02A -band and two near-infrared C02 bands. To test the OCO retrieval algorithm, SCIAMACHY and ground-based Fourier Transform Spectrometer (FTS) measurements at Park Falls, Wisconsin have been analyzed. Good agreement between SCIAMACHY and FTS C02 columns has been found with SCIAMACHY showing a much larger scatter than FTS measurements. Both SCIAMACHY and FTS overestimate the surface pressure by a few percent which significantly impacts retrieved C02 columns.

  15. Performance of Case-Based Reasoning Retrieval Using Classification Based on Associations versus Jcolibri and FreeCBR: A Further Validation Study

    NASA Astrophysics Data System (ADS)

    Aljuboori, Ahmed S.; Coenen, Frans; Nsaif, Mohammed; Parsons, David J.

    2018-05-01

    Case-Based Reasoning (CBR) plays a major role in expert system research. However, a critical problem can be met when a CBR system retrieves incorrect cases. Class Association Rules (CARs) have been utilized to offer a potential solution in a previous work. The aim of this paper was to perform further validation of Case-Based Reasoning using a Classification based on Association Rules (CBRAR) to enhance the performance of Similarity Based Retrieval (SBR). The CBRAR strategy uses a classed frequent pattern tree algorithm (FP-CAR) in order to disambiguate wrongly retrieved cases in CBR. The research reported in this paper makes contributions to both fields of CBR and Association Rules Mining (ARM) in that full target cases can be extracted from the FP-CAR algorithm without invoking P-trees and union operations. The dataset used in this paper provided more efficient results when the SBR retrieves unrelated answers. The accuracy of the proposed CBRAR system outperforms the results obtained by existing CBR tools such as Jcolibri and FreeCBR.

  16. Combining approaches to on-line handwriting information retrieval

    NASA Astrophysics Data System (ADS)

    Peña Saldarriaga, Sebastián; Viard-Gaudin, Christian; Morin, Emmanuel

    2010-01-01

    In this work, we propose to combine two quite different approaches for retrieving handwritten documents. Our hypothesis is that different retrieval algorithms should retrieve different sets of documents for the same query. Therefore, significant improvements in retrieval performances can be expected. The first approach is based on information retrieval techniques carried out on the noisy texts obtained through handwriting recognition, while the second approach is recognition-free using a word spotting algorithm. Results shows that for texts having a word error rate (WER) lower than 23%, the performances obtained with the combined system are close to the performances obtained on clean digital texts. In addition, for poorly recognized texts (WER > 52%), an improvement of nearly 17% can be observed with respect to the best available baseline method.

  17. Characterization and error analysis of an operational retrieval algorithm for estimating column ozone and aerosol properties from ground-based ultra-violet irradiance measurements

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan; Slusser, James; Stephens, Graeme; Krotkov, Nick; Davis, John; Goering, Christian

    2005-08-01

    Extensive sensitivity and error characteristics of a recently developed optimal estimation retrieval algorithm which simultaneously determines aerosol optical depth (AOD), aerosol single scatter albedo (SSA) and total ozone column (TOC) from ultra-violet irradiances are described. The algorithm inverts measured diffuse and direct irradiances at 7 channels in the UV spectral range obtained from the United States Department of Agriculture's (USDA) UV-B Monitoring and Research Program's (UVMRP) network of 33 ground-based UV-MFRSR instruments to produce aerosol optical properties and TOC at all seven wavelengths. Sensitivity studies of the Tropospheric Ultra-violet/Visible (TUV) radiative transfer model performed for various operating modes (Delta-Eddington versus n-stream Discrete Ordinate) over domains of AOD, SSA, TOC, asymmetry parameter and surface albedo show that the solutions are well constrained. Realistic input error budgets and diagnostic and error outputs from the retrieval are analyzed to demonstrate the atmospheric conditions under which the retrieval provides useful and significant results. After optimizing the algorithm for the USDA site in Panther Junction, Texas the retrieval algorithm was run on a cloud screened set of irradiance measurements for the month of May 2003. Comparisons to independently derived AOD's are favorable with root mean square (RMS) differences of about 3% to 7% at 300nm and less than 1% at 368nm, on May 12 and 22, 2003. This retrieval method will be used to build an aerosol climatology and provide ground-truthing of satellite measurements by running it operationally on the USDA UV network database.

  18. Cross Validation of Rain Drop Size Distribution between GPM and Ground Based Polarmetric radar

    NASA Astrophysics Data System (ADS)

    Chandra, C. V.; Biswas, S.; Le, M.; Chen, H.

    2017-12-01

    Dual-frequency precipitation radar (DPR) on board the Global Precipitation Measurement (GPM) core satellite has reflectivity measurements at two independent frequencies, Ku- and Ka- band. Dual-frequency retrieval algorithms have been developed traditionally through forward, backward, and recursive approaches. However, these algorithms suffer from "dual-value" problem when they retrieve medium volume diameter from dual-frequency ratio (DFR) in rain region. To this end, a hybrid method has been proposed to perform raindrop size distribution (DSD) retrieval for GPM using a linear constraint of DSD along rain profile to avoid "dual-value" problem (Le and Chandrasekar, 2015). In the current GPM level 2 algorithm (Iguchi et al. 2017- Algorithm Theoretical Basis Document) the Solver module retrieves a vertical profile of drop size distributionn from dual-frequency observations and path integrated attenuations. The algorithm details can be found in Seto et al. (2013) . On the other hand, ground based polarimetric radars have been used for a long time to estimate drop size distributions (e.g., Gorgucci et al. 2002 ). In addition, coincident GPM and ground based observations have been cross validated using careful overpass analysis. In this paper, we perform cross validation on raindrop size distribution retrieval from three sources, namely the hybrid method, the standard products from the solver module and DSD retrievals from ground polarimetric radars. The results are presented from two NEXRAD radars located in Dallas -Fort Worth, Texas (i.e., KFWS radar) and Melbourne, Florida (i.e., KMLB radar). The results demonstrate the ability of DPR observations to produce DSD estimates, which can be used subsequently to generate global DSD maps. References: Seto, S., T. Iguchi, T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission's single/dual-frequency radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 51(12), 5239-5251. Gorgucci, E., Chandrasekar, V., Bringi, V. N., and Scarchilli, G.: Estimation of Raindrop Size Distribution Parameters from Polarimetric Radar Measurements, J. Atmos. Sci., 59, 2373-2384, doi:10.1175/1520-0469(2002)0592.0.CO;2, 2002.

  19. Optically secured information retrieval using two authenticated phase-only masks.

    PubMed

    Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong

    2015-10-23

    We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices.

  20. Optically secured information retrieval using two authenticated phase-only masks

    PubMed Central

    Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong

    2015-01-01

    We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices. PMID:26494213

  1. Optically secured information retrieval using two authenticated phase-only masks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaogang; Chen, Wen; Mei, Shengtao; Chen, Xudong

    2015-10-01

    We propose an algorithm for jointly designing two phase-only masks (POMs) that allow for the encryption and noise-free retrieval of triple images. The images required for optical retrieval are first stored in quick-response (QR) codes for noise-free retrieval and flexible readout. Two sparse POMs are respectively calculated from two different images used as references for authentication based on modified Gerchberg-Saxton algorithm (GSA) and pixel extraction, and are then used as support constraints in a modified double-phase retrieval algorithm (MPRA), together with the above-mentioned QR codes. No visible information about the target images or the reference images can be obtained from each of these authenticated POMs. This approach allows users to authenticate the two POMs used for image reconstruction without visual observation of the reference images. It also allows user to friendly access and readout with mobile devices.

  2. Assessment of Uncertainty in Cloud Radiative Effects and Heating Rates through Retrieval Algorithm Differences: Analysis using 3-years of ARM data at Darwin, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comstock, Jennifer M.; Protat, Alain; McFarlane, Sally A.

    2013-05-22

    Ground-based radar and lidar observations obtained at the Department of Energy’s Atmospheric Radiation Measurement Program’s Tropical Western Pacific site located in Darwin, Australia are used to retrieve ice cloud properties in anvil and cirrus clouds. Cloud microphysical properties derived from four different retrieval algorithms (two radar-lidar and two radar only algorithms) are compared by examining mean profiles and probability density functions of effective radius (Re), ice water content (IWC), extinction, ice number concentration, ice crystal fall speed, and vertical air velocity. Retrieval algorithm uncertainty is quantified using radiative flux closure exercises. The effect of uncertainty in retrieved quantities on themore » cloud radiative effect and radiative heating rates are presented. Our analysis shows that IWC compares well among algorithms, but Re shows significant discrepancies, which is attributed primarily to assumptions of particle shape. Uncertainty in Re and IWC translates into sometimes-large differences in cloud radiative effect (CRE) though the majority of cases have a CRE difference of roughly 10 W m-2 on average. These differences, which we believe are primarily driven by the uncertainty in Re, can cause up to 2 K/day difference in the radiative heating rates between algorithms.« less

  3. Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands.

    PubMed

    Salem, Salem Ibrahim; Higa, Hiroto; Kim, Hyungjun; Kobayashi, Hiroshi; Oki, Kazuo; Oki, Taikan

    2017-07-31

    Numerous algorithms have been proposed to retrieve chlorophyll- a concentrations in Case 2 waters; however, the retrieval accuracy is far from satisfactory. In this research, seven algorithms are assessed with different band combinations of multispectral and hyperspectral bands using linear (LN), quadratic polynomial (QP) and power (PW) regression approaches, resulting in altogether 43 algorithmic combinations. These algorithms are evaluated by using simulated and measured datasets to understand the strengths and limitations of these algorithms. Two simulated datasets comprising 500,000 reflectance spectra each, both based on wide ranges of inherent optical properties (IOPs), are generated for the calibration and validation stages. Results reveal that the regression approach (i.e., LN, QP, and PW) has more influence on the simulated dataset than on the measured one. The algorithms that incorporated linear regression provide the highest retrieval accuracy for the simulated dataset. Results from simulated datasets reveal that the 3-band (3b) algorithm that incorporate 665-nm and 680-nm bands and band tuning selection approach outperformed other algorithms with root mean square error (RMSE) of 15.87 mg·m -3 , 16.25 mg·m -3 , and 19.05 mg·m -3 , respectively. The spatial distribution of the best performing algorithms, for various combinations of chlorophyll- a (Chla) and non-algal particles (NAP) concentrations, show that the 3b_tuning_QP and 3b_680_QP outperform other algorithms in terms of minimum RMSE frequency of 33.19% and 60.52%, respectively. However, the two algorithms failed to accurately retrieve Chla for many combinations of Chla and NAP, particularly for low Chla and NAP concentrations. In addition, the spatial distribution emphasizes that no single algorithm can provide outstanding accuracy for Chla retrieval and that multi-algorithms should be included to reduce the error. Comparing the results of the measured and simulated datasets reveal that the algorithms that incorporate the 665-nm band outperform other algorithms for measured dataset (RMSE = 36.84 mg·m -3 ), while algorithms that incorporate the band tuning approach provide the highest retrieval accuracy for the simulated dataset (RMSE = 25.05 mg·m -3 ).

  4. Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands

    PubMed Central

    Higa, Hiroto; Kobayashi, Hiroshi; Oki, Kazuo

    2017-01-01

    Numerous algorithms have been proposed to retrieve chlorophyll-a concentrations in Case 2 waters; however, the retrieval accuracy is far from satisfactory. In this research, seven algorithms are assessed with different band combinations of multispectral and hyperspectral bands using linear (LN), quadratic polynomial (QP) and power (PW) regression approaches, resulting in altogether 43 algorithmic combinations. These algorithms are evaluated by using simulated and measured datasets to understand the strengths and limitations of these algorithms. Two simulated datasets comprising 500,000 reflectance spectra each, both based on wide ranges of inherent optical properties (IOPs), are generated for the calibration and validation stages. Results reveal that the regression approach (i.e., LN, QP, and PW) has more influence on the simulated dataset than on the measured one. The algorithms that incorporated linear regression provide the highest retrieval accuracy for the simulated dataset. Results from simulated datasets reveal that the 3-band (3b) algorithm that incorporate 665-nm and 680-nm bands and band tuning selection approach outperformed other algorithms with root mean square error (RMSE) of 15.87 mg·m−3, 16.25 mg·m−3, and 19.05 mg·m−3, respectively. The spatial distribution of the best performing algorithms, for various combinations of chlorophyll-a (Chla) and non-algal particles (NAP) concentrations, show that the 3b_tuning_QP and 3b_680_QP outperform other algorithms in terms of minimum RMSE frequency of 33.19% and 60.52%, respectively. However, the two algorithms failed to accurately retrieve Chla for many combinations of Chla and NAP, particularly for low Chla and NAP concentrations. In addition, the spatial distribution emphasizes that no single algorithm can provide outstanding accuracy for Chla retrieval and that multi-algorithms should be included to reduce the error. Comparing the results of the measured and simulated datasets reveal that the algorithms that incorporate the 665-nm band outperform other algorithms for measured dataset (RMSE = 36.84 mg·m−3), while algorithms that incorporate the band tuning approach provide the highest retrieval accuracy for the simulated dataset (RMSE = 25.05 mg·m−3). PMID:28758984

  5. Cross-validation of two liquid water path retrieval algorithms applied to ground-based microwave radiation measurements by RPG-HATPRO instrument

    NASA Astrophysics Data System (ADS)

    Kostsov, Vladimir; Ionov, Dmitry; Biryukov, Egor; Zaitsev, Nikita

    2017-04-01

    A built-in operational regression algorithm (REA) of liquid water path (LWP) retrieval supplied by the manufacturer of the RPG-HATPRO microwave radiometer has been compared to a so-called physical algorithm (PHA) based on the inversion of the radiative transfer equation. The comparison has been performed for different scenarios of microwave observations by the RPG-HATPRO instrument that has been operating at St.Petersburg University since June 2012. The data for the scenarios have been collected within the time period December 2012 - December 2014. The estimations of bias and random error for both REA and PHA have been obtained. Special attention has been paid to the analysis of the quality of the LWP retrievals during and after rain events that have been detected by the built-in rain sensor. The estimation has been done of the time period after a rain event when the retrieval quality has to be considered as insufficient.

  6. Theory of the amplitude-phase retrieval in any linear-transform system and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Guozhen; Gu, Ben-Yuan; Dong, Bi-Zhen

    1992-12-01

    This paper is a summary of the theory of the amplitude-phase retrieval problem in any linear transform system and its applications based on our previous works in the past decade. We describe the general statement on the amplitude-phase retrieval problem in an imaging system and derive a set of equations governing the amplitude-phase distribution in terms of the rigorous mathematical derivation. We then show that, by using these equations and an iterative algorithm, a variety of amplitude-phase problems can be successfully handled. We carry out the systematic investigations and comprehensive numerical calculations to demonstrate the utilization of this new algorithm in various transform systems. For instance, we have achieved the phase retrieval from two intensity measurements in an imaging system with diffraction loss (non-unitary transform), both theoretically and experimentally, and the recovery of model real image from its Hartley-transform modulus only in one and two dimensional cases. We discuss the achievement of the phase retrieval problem from a single intensity only based on the sampling theorem and our algorithm. We also apply this algorithm to provide an optimal design of the phase-adjusted plate for a phase-adjustment focusing laser accelerator and a design approach of single phase-only element for implementing optical interconnect. In order to closely simulate the really measured data, we examine the reconstruction of image from its spectral modulus corrupted by a random noise in detail. The results show that the convergent solution can always be obtained and the quality of the recovered image is satisfactory. We also indicated the relationship and distinction between our algorithm and the original Gerchberg- Saxton algorithm. From these studies, we conclude that our algorithm shows great capability to deal with the comprehensive phase-retrieval problems in the imaging system and the inverse problem in solid state physics. It may open a new way to solve important inverse source problems extensively appearing in physics.

  7. Aerosol Retrievals over the Ocean using Channel 1 and 2 AVHRR Data: A Sensitivity Analysis and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Geogdzhayev, Igor V.; Cairns, Brian; Rossow, William B.; Lacis, Andrew A.

    1999-01-01

    This paper outlines the methodology of interpreting channel 1 and 2 AVHRR radiance data over the oceans and describes a detailed analysis of the sensitivity of monthly averages of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. The analysis is based on using real AVHRR data and exploiting accurate numerical techniques for computing single and multiple scattering and spectral absorption of light in the vertically inhomogeneous atmosphere-ocean system. We show that two-channel algorithms can be expected to provide significantly more accurate and less biased retrievals of the aerosol optical thickness than one-channel algorithms and that imperfect cloud screening and calibration uncertainties are by far the largest sources of errors in the retrieved aerosol parameters. Both underestimating and overestimating aerosol absorption as well as the potentially strong variability of the real part of the aerosol refractive index may lead to regional and/or seasonal biases in optical thickness retrievals. The Angstrom exponent appears to be the most invariant aerosol size characteristic and should be retrieved along with optical thickness as the second aerosol parameter.

  8. A passive microwave technique for estimating rainfall and vertical structure information from space. Part 1: Algorithm description

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Giglio, Louis

    1994-01-01

    This paper describes a multichannel physical approach for retrieving rainfall and vertical structure information from satellite-based passive microwave observations. The algorithm makes use of statistical inversion techniques based upon theoretically calculated relations between rainfall rates and brightness temperatures. Potential errors introduced into the theoretical calculations by the unknown vertical distribution of hydrometeors are overcome by explicity accounting for diverse hydrometeor profiles. This is accomplished by allowing for a number of different vertical distributions in the theoretical brightness temperature calculations and requiring consistency between the observed and calculated brightness temperatures. This paper will focus primarily on the theoretical aspects of the retrieval algorithm, which includes a procedure used to account for inhomogeneities of the rainfall within the satellite field of view as well as a detailed description of the algorithm as it is applied over both ocean and land surfaces. The residual error between observed and calculated brightness temperatures is found to be an important quantity in assessing the uniqueness of the solution. It is further found that the residual error is a meaningful quantity that can be used to derive expected accuracies from this retrieval technique. Examples comparing the retrieved results as well as the detailed analysis of the algorithm performance under various circumstances are the subject of a companion paper.

  9. Performance analysis of algorithms for retrieval of magnetic resonance images for interactive teleradiology

    NASA Astrophysics Data System (ADS)

    Atkins, M. Stella; Hwang, Robert; Tang, Simon

    2001-05-01

    We have implemented a prototype system consisting of a Java- based image viewer and a web server extension component for transmitting Magnetic Resonance Images (MRI) to an image viewer, to test the performance of different image retrieval techniques. We used full-resolution images, and images compressed/decompressed using the Set Partitioning in Hierarchical Trees (SPIHT) image compression algorithm. We examined the SPIHT decompression algorithm using both non- progressive and progressive transmission, focusing on the running times of the algorithm, client memory usage and garbage collection. We also compared the Java implementation with a native C++ implementation of the non- progressive SPIHT decompression variant. Our performance measurements showed that for uncompressed image retrieval using a 10Mbps Ethernet, a film of 16 MR images can be retrieved and displayed almost within interactive times. The native C++ code implementation of the client-side decoder is twice as fast as the Java decoder. If the network bandwidth is low, the high communication time for retrieving uncompressed images may be reduced by use of SPIHT-compressed images, although the image quality is then degraded. To provide diagnostic quality images, we also investigated the retrieval of up to 3 images on a MR film at full-resolution, using progressive SPIHT decompression. The Java-based implementation of progressive decompression performed badly, mainly due to the memory requirements for maintaining the image states, and the high cost of execution of the Java garbage collector. Hence, in systems where the bandwidth is high, such as found in a hospital intranet, SPIHT image compression does not provide advantages for image retrieval performance.

  10. Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals

    NASA Astrophysics Data System (ADS)

    Meyer, Hanna; Kühnlein, Meike; Appelhans, Tim; Nauss, Thomas

    2016-03-01

    Machine learning (ML) algorithms have successfully been demonstrated to be valuable tools in satellite-based rainfall retrievals which show the practicability of using ML algorithms when faced with high dimensional and complex data. Moreover, recent developments in parallel computing with ML present new possibilities for training and prediction speed and therefore make their usage in real-time systems feasible. This study compares four ML algorithms - random forests (RF), neural networks (NNET), averaged neural networks (AVNNET) and support vector machines (SVM) - for rainfall area detection and rainfall rate assignment using MSG SEVIRI data over Germany. Satellite-based proxies for cloud top height, cloud top temperature, cloud phase and cloud water path serve as predictor variables. The results indicate an overestimation of rainfall area delineation regardless of the ML algorithm (averaged bias = 1.8) but a high probability of detection ranging from 81% (SVM) to 85% (NNET). On a 24-hour basis, the performance of the rainfall rate assignment yielded R2 values between 0.39 (SVM) and 0.44 (AVNNET). Though the differences in the algorithms' performance were rather small, NNET and AVNNET were identified as the most suitable algorithms. On average, they demonstrated the best performance in rainfall area delineation as well as in rainfall rate assignment. NNET's computational speed is an additional advantage in work with large datasets such as in remote sensing based rainfall retrievals. However, since no single algorithm performed considerably better than the others we conclude that further research in providing suitable predictors for rainfall is of greater necessity than an optimization through the choice of the ML algorithm.

  11. Global Contrast Based Salient Region Detection.

    PubMed

    Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min

    2015-03-01

    Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

  12. DREAMING OF ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldmann, I. P., E-mail: ingo@star.ucl.ac.uk

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as themore » “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.« less

  13. An Optimal-Estimation-Based Aerosol Retrieval Algorithm Using OMI Near-UV Observations

    NASA Technical Reports Server (NTRS)

    Jeong, U; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional lookup tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OEbased estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  14. Relevance feedback for CBIR: a new approach based on probabilistic feature weighting with positive and negative examples.

    PubMed

    Kherfi, Mohammed Lamine; Ziou, Djemel

    2006-04-01

    In content-based image retrieval, understanding the user's needs is a challenging task that requires integrating him in the process of retrieval. Relevance feedback (RF) has proven to be an effective tool for taking the user's judgement into account. In this paper, we present a new RF framework based on a feature selection algorithm that nicely combines the advantages of a probabilistic formulation with those of using both the positive example (PE) and the negative example (NE). Through interaction with the user, our algorithm learns the importance he assigns to image features, and then applies the results obtained to define similarity measures that correspond better to his judgement. The use of the NE allows images undesired by the user to be discarded, thereby improving retrieval accuracy. As for the probabilistic formulation of the problem, it presents a multitude of advantages and opens the door to more modeling possibilities that achieve a good feature selection. It makes it possible to cluster the query data into classes, choose the probability law that best models each class, model missing data, and support queries with multiple PE and/or NE classes. The basic principle of our algorithm is to assign more importance to features with a high likelihood and those which distinguish well between PE classes and NE classes. The proposed algorithm was validated separately and in image retrieval context, and the experiments show that it performs a good feature selection and contributes to improving retrieval effectiveness.

  15. Snowfall Rate Retrieval using NPP ATMS Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua; Zhao, Limin

    2014-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2014). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The ATMS SFR product is validated against radar and gauge snowfall data and shows that the ATMS algorithm outperforms the AMSU/MHS SFR.

  16. Estimating vertical profiles of water-cloud droplet effective radius from SWIR satellite measurements via a statistical model derived from CloudSat observations

    NASA Astrophysics Data System (ADS)

    Nagao, T. M.; Murakami, H.; Nakajima, T. Y.

    2017-12-01

    This study proposes an algorithm to estimate vertical profiles of cloud droplet effective radius (CDER-VP) for water clouds from shortwave infrared (SWIR) measurements of Himawari-8/AHI via a statistical model of CDER-VP derived from CloudSat observation. Several similar algorithms in previous studies utilize a spectral radiance matching on the assumption of simultaneous observations of CloudSat and Aqua/MODIS. However, our algorithm does not assume simultaneous observations with CloudSat. First, in advance, a database (DB) of CDER-VP is prepared by the following procedure: TOA radiances at 0.65, 2.3 and 10.4-μm bands of the AHI are simulated using CDER-VP and cloud optical depth vertical profile (COD-VP) contained in the CloudSat 2B-CWC-RVOD and 2B-TAU products. Cloud optical thickness (COT), Column-CDER and cloud top height (CTH) are retrieved from the simulated radiances using a traditional retrieval algorithm with vertically homogeneous cloud model (1-SWIR VHC method). The CDER-VP is added to the DB by using the COT and Column-CDER retrievals as a key of the DB. Then by using principal component (PC) analysis, up to three PC vectors of the CDER-VPs in the DB are extracted. Next, the algorithm retrieves CDER-VP from actual AHI measurements by the following procedure: First, COT, Column-CDER and CTH are retrieved from TOA radiances at 0.65, 2.3 and 10.4-μm bands of the AHI using by 1-SWIR VHC method. Then, the PC vectors of CDER-VP is fetched from the DB using the COT and Column-CDER retrievals as the key of the DB. Finally, using coefficients of the PC vectors of CDER-VP as variables for retrieval, CDER-VP, COT and CTH are retrieved from TOA radiances at 0.65, 1.6, 2.3, 3.9 and 10.4-μm bands of the AHI based on optimal estimation method with iterative radiative transfer calculation. The simulation result showed the CDER-VP retrieval errors were almost smaller than 3 - 4 μm. The CDER retrieval errors at the cloud base were almost larger than the others (e.g. CDER at cloud top), especially when COT and CDER was large. The tendency can be explained by less sensitivities of SWIRs to CDER at cloud base. Additionally, as a case study, this study will attempt to apply the algorithm to the AHI's high-frequency observations, and to interpret the time series of the CDER-VP retrievals in terms of temporal evolution of water clouds.

  17. [A review of atmospheric aerosol research by using polarization remote sensing].

    PubMed

    Guo, Hong; Gu, Xing-Fa; Xie, Dong-Hai; Yu, Tao; Meng, Qing-Yan

    2014-07-01

    In the present paper, aerosol research by using polarization remote sensing in last two decades (1993-2013) was reviewed, including aerosol researches based on POLDER/PARASOL, APS(Aerosol Polarimetry Sensor), Polarized Airborne camera and Ground-based measurements. We emphasize the following three aspects: (1) The retrieval algorithms developed for land and marine aerosol by using POLDER/PARASOL; The validation and application of POLDER/PARASOL AOD, and cross-comparison with AOD of other satellites, such as MODIS AOD. (2) The retrieval algorithms developed for land and marine aerosol by using MICROPOL and RSP/APS. We also introduce the new progress in aerosol research based on The Directional Polarimetric Camera (DPC), which was produced by Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS). (3) The aerosol retrieval algorithms by using measurements from ground-based instruments, such as CE318-2 and CE318-DP. The retrieval results from spaceborne sensors, airborne camera and ground-based measurements include total AOD, fine-mode AOD, coarse-mode AOD, size distribution, particle shape, complex refractive indices, single scattering albedo, scattering phase function, polarization phase function and AOD above cloud. Finally, based on the research, the authors present the problems and prospects of atmospheric aerosol research by using polarization remote sensing, and provide a valuable reference for the future studies of atmospheric aerosol.

  18. 3D model retrieval method based on mesh segmentation

    NASA Astrophysics Data System (ADS)

    Gan, Yuanchao; Tang, Yan; Zhang, Qingchen

    2012-04-01

    In the process of feature description and extraction, current 3D model retrieval algorithms focus on the global features of 3D models but ignore the combination of global and local features of the model. For this reason, they show less effective performance to the models with similar global shape and different local shape. This paper proposes a novel algorithm for 3D model retrieval based on mesh segmentation. The key idea is to exact the structure feature and the local shape feature of 3D models, and then to compares the similarities of the two characteristics and the total similarity between the models. A system that realizes this approach was built and tested on a database of 200 objects and achieves expected results. The results show that the proposed algorithm improves the precision and the recall rate effectively.

  19. Analyzing the impact of sensor characteristics on retrieval methods of solar-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Ding, Wenjuan; Zhao, Feng; Yang, Lizi

    2017-02-01

    In this study, we evaluated the influence of retrieval algorithms and sensor characteristics, such as spectral resolution (SR) and signal to noise ratio (SNR), on the retrieval accuracy of fluorescence signal (Fs). Here Fs was retrieved by four commonly used retrieval methods, namely the original Fraunhofer Line Discriminator method (FLD), the 3 bands FLD (3FLD), the improved FLD (iFLD) and the spectral fitting method (SFM). Fs was retrieved in the oxygen A band centered at around 761nm (O2-A). We analyzed the impact of sensor characteristics on four retrieval methods based on simulated data which were generated by the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), and obtained consistent conclusions when compared with experimental data. Results presented in this study indicate that both retrieval algorithms and sensor characteristics affect the retrieval accuracy of Fs. When applied to the actual measurement, we should choose the instrument with higher performance and adopt appropriate retrieval method according to measuring instruments and conditions.

  20. Comparison of snow depth retrieval algorithm in Northeastern China based on AMSR2 and FY3B-MWRI data

    NASA Astrophysics Data System (ADS)

    Fan, Xintong; Gu, Lingjia; Ren, Ruizhi; Zhou, Tingting

    2017-09-01

    Snow accumulation has a very important influence on the natural environment and human activities. Meanwhile, improving the estimation accuracy of passive microwave snow depth (SD) retrieval is a hotspot currently. Northeastern China is a typical snow study area including many different land cover types, such as forest, grassland and farmland. Especially, there is relatively stable snow accumulation in January every year. The brightness temperatures which are observed by the Advanced Microwave Scanning Radiometer 2 (AMSR2) on GCOM-W1 and FengYun3B Microwave Radiation Imager (FY3B-MWRI) in the same period in 2013 are selected as the study data in the research. The results of snow depth retrieval using AMSR2 standard algorithm and Jiang's FY operational algorithm are compared in the research. Moreover, to validate the accuracy of the two algorithms, the retrieval results are compared with the SD data observed at the national meteorological stations in Northeastern China. Furthermore, the retrieval SD is also compared with AMSR2 and FY standard SD products, respectively. The root mean square errors (RMSE) results using AMSR2 standard algorithms and FY operational algorithm are close in the forest surface, which are 6.33cm and 6.28cm, respectively. However, The FY operational algorithm shows a better result than the AMSR2 standard algorithms in the grassland and farmland surface. The RMSE results using FY operational algorithm in the grassland and farmland surface are 2.44cm and 6.13cm, respectively.

  1. Content-based cell pathology image retrieval by combining different features

    NASA Astrophysics Data System (ADS)

    Zhou, Guangquan; Jiang, Lu; Luo, Limin; Bao, Xudong; Shu, Huazhong

    2004-04-01

    Content Based Color Cell Pathology Image Retrieval is one of the newest computer image processing applications in medicine. Recently, some algorithms have been developed to achieve this goal. Because of the particularity of cell pathology images, the result of the image retrieval based on single characteristic is not satisfactory. A new method for pathology image retrieval by combining color, texture and morphologic features to search cell images is proposed. Firstly, nucleus regions of leukocytes in images are automatically segmented by K-mean clustering method. Then single leukocyte region is detected by utilizing thresholding algorithm segmentation and mathematics morphology. The features that include color, texture and morphologic features are extracted from single leukocyte to represent main attribute in the search query. The features are then normalized because the numerical value range and physical meaning of extracted features are different. Finally, the relevance feedback system is introduced. So that the system can automatically adjust the weights of different features and improve the results of retrieval system according to the feedback information. Retrieval results using the proposed method fit closely with human perception and are better than those obtained with the methods based on single feature.

  2. Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A.; Holz, R. E.

    2015-10-01

    To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångström Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March-April-May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ~ 0.025), while reducing the differences between AE. We characterize algorithm retrievability through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.

  3. Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Munchak, L. A.; Mattoo, S.; Patadia, F.; Remer, L. A.; Holz, R. E.

    2015-07-01

    To answer fundamental questions about aerosols in our changing climate, we must quantify both the current state of aerosols and how they are changing. Although NASA's Moderate resolution Imaging Spectroradiometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, this period is still too short to create an aerosol climate data record (CDR). The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on the Suomi-NPP satellite in late 2011, with additional copies planned for future satellites. Can the MODIS aerosol data record be continued with VIIRS to create a consistent CDR? When compared to ground-based AERONET data, the VIIRS Environmental Data Record (V_EDR) has similar validation statistics as the MODIS Collection 6 (M_C6) product. However, the V_EDR and M_C6 are offset in regards to global AOD magnitudes, and tend to provide different maps of 0.55 μm AOD and 0.55/0.86 μm-based Ångstrom Exponent (AE). One reason is that the retrieval algorithms are different. Using the Intermediate File Format (IFF) for both MODIS and VIIRS data, we have tested whether we can apply a single MODIS-like (ML) dark-target algorithm on both sensors that leads to product convergence. Except for catering the radiative transfer and aerosol lookup tables to each sensor's specific wavelength bands, the ML algorithm is the same for both. We run the ML algorithm on both sensors between March 2012 and May 2014, and compare monthly mean AOD time series with each other and with M_C6 and V_EDR products. Focusing on the March-April-May (MAM) 2013 period, we compared additional statistics that include global and gridded 1° × 1° AOD and AE, histograms, sampling frequencies, and collocations with ground-based AERONET. Over land, use of the ML algorithm clearly reduces the differences between the MODIS and VIIRS-based AOD. However, although global offsets are near zero, some regional biases remain, especially in cloud fields and over brighter surface targets. Over ocean, use of the ML algorithm actually increases the offset between VIIRS and MODIS-based AOD (to ∼ 0.025), while reducing the differences between AE. We characterize algorithm retrievibility through statistics of retrieval fraction. In spite of differences between retrieved AOD magnitudes, the ML algorithm will lead to similar decisions about "whether to retrieve" on each sensor. Finally, we discuss how issues of calibration, as well as instrument spatial resolution may be contributing to the statistics and the ability to create a consistent MODIS → VIIRS aerosol CDR.

  4. Space-based near-infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin

    NASA Astrophysics Data System (ADS)

    BöSch, H.; Toon, G. C.; Sen, B.; Washenfelder, R. A.; Wennberg, P. O.; Buchwitz, M.; de Beek, R.; Burrows, J. P.; Crisp, D.; Christi, M.; Connor, B. J.; Natraj, V.; Yung, Y. L.

    2006-12-01

    Space-based measurements of reflected sunlight in the near-infrared (NIR) region promise to yield accurate and precise observations of the global distribution of atmospheric CO2. The Orbiting Carbon Observatory (OCO) is a future NASA mission, which will use this technique to measure the column-averaged dry air mole fraction of CO2 ? with the precision and accuracy needed to quantify CO2 sources and sinks on regional scales (˜1000 × 1000 km2) and to characterize their variability on seasonal timescales. Here, we have used the OCO retrieval algorithm to retrieve ? and surface pressure from space-based Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) measurements and from coincident ground-based Fourier transform spectrometer (FTS) measurements of the O2 A band at 0.76 μm and the 1.58 μm CO2 band for Park Falls, Wisconsin. Even after accounting for a systematic error in our representation of the O2 absorption cross sections, we still obtained a positive bias between SCIAMACHY and FTS ? retrievals of ˜3.5%. Additionally, the retrieved surface pressures from SCIAMACHY systematically underestimate measurements of a calibrated pressure sensor at the FTS site. These findings lead us to speculate about inadequacies in the forward model of our retrieval algorithm. By assuming a 1% intensity offset in the O2 A band region for the SCIAMACHY ? retrieval, we significantly improved the spectral fit and achieved better consistency between SCIAMACHY and FTS ? retrievals. We compared the seasonal cycle of ? at Park Falls from SCIAMACHY and FTS retrievals with calculations of the Model of Atmospheric Transport and Chemistry/Carnegie-Ames-Stanford Approach (MATCH/CASA) and found a good qualitative agreement but with MATCH/CASA underestimating the measured seasonal amplitude. Furthermore, since SCIAMACHY observations are similar in viewing geometry and spectral range to those of OCO, this study represents an important test of the OCO retrieval algorithm and validation concept using NIR spectra measured from space. Finally, we argue that significant improvements in precision and accuracy could be obtained from a dedicated CO2 instrument such as OCO, which has much higher spectral and spatial resolutions than SCIAMACHY. These measurements would then provide critical data for improving our understanding of the carbon cycle and carbon sources and sinks.

  5. Retrieval and Validation of aerosol optical properties from AHI measurements: impact of surface reflectance assumption

    NASA Astrophysics Data System (ADS)

    Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.

    2017-12-01

    This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER algorithm more, particularly retrieval for the dust particle over the bright surface in East Asia.

  6. Marginal Fisher analysis and its variants for human gait recognition and content- based image retrieval.

    PubMed

    Xu, Dong; Yan, Shuicheng; Tao, Dacheng; Lin, Stephen; Zhang, Hong-Jiang

    2007-11-01

    Dimensionality reduction algorithms, which aim to select a small set of efficient and discriminant features, have attracted great attention for human gait recognition and content-based image retrieval (CBIR). In this paper, we present extensions of our recently proposed marginal Fisher analysis (MFA) to address these problems. For human gait recognition, we first present a direct application of MFA, then inspired by recent advances in matrix and tensor-based dimensionality reduction algorithms, we present matrix-based MFA for directly handling 2-D input in the form of gray-level averaged images. For CBIR, we deal with the relevance feedback problem by extending MFA to marginal biased analysis, in which within-class compactness is characterized only by the distances between each positive sample and its neighboring positive samples. In addition, we present a new technique to acquire a direct optimal solution for MFA without resorting to objective function modification as done in many previous algorithms. We conduct comprehensive experiments on the USF HumanID gait database and the Corel image retrieval database. Experimental results demonstrate that MFA and its extensions outperform related algorithms in both applications.

  7. CDRD and PNPR passive microwave precipitation retrieval algorithms: verification study over Africa and Southern Atlantic

    NASA Astrophysics Data System (ADS)

    Panegrossi, Giulia; Casella, Daniele; Cinzia Marra, Anna; Petracca, Marco; Sanò, Paolo; Dietrich, Stefano

    2015-04-01

    The ongoing NASA/JAXA Global Precipitation Measurement mission (GPM) requires the full exploitation of the complete constellation of passive microwave (PMW) radiometers orbiting around the globe for global precipitation monitoring. In this context the coherence of the estimates of precipitation using different passive microwave radiometers is a crucial need. We have developed two different passive microwave precipitation retrieval algorithms: one is the Cloud Dynamics Radiation Database algorithm (CDRD), a physically ¬based Bayesian algorithm for conically scanning radiometers (i.e., DMSP SSMIS); the other one is the Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for cross¬-track scanning radiometers (i.e., NOAA and MetOp¬A/B AMSU-¬A/MHS, and NPP Suomi ATMS). The algorithms, originally created for application over Europe and the Mediterranean basin, and used operationally within the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF, http://hsaf.meteoam.it), have been recently modified and extended to Africa and Southern Atlantic for application to the MSG full disk area. The two algorithms are based on the same physical foundation, i.e., the same cloud-radiation model simulations as a priori information in the Bayesian solver and as training dataset in the neural network approach, and they also use similar procedures for identification of frozen background surface, detection of snowfall, and determination of a pixel based quality index of the surface precipitation retrievals. In addition, similar procedures for the screening of not ¬precipitating pixels are used. A novel algorithm for the detection of precipitation in tropical/sub-tropical areas has been developed. The precipitation detection algorithm shows a small rate of false alarms (also over arid/desert regions), a superior detection capability in comparison with other widely used screening algorithms, and it is applicable to all available PMW radiometers in the GPM constellation of satellites (including NPP Suomi ATMS, and GMI). Three years of SSMIS and AMSU/MHS data have been considered to carry out a verification study over Africa of the retrievals from the CDRD and PNPR algorithms. The precipitation products from the TRMM ¬Precipitation radar (PR) (TRMM product 2A25 and 2A23) have been used as ground truth. The results of this study aimed at assessing the accuracy of the precipitation retrievals in different climatic regions and precipitation regimes will be presented. Particular emphasis will be given to the analysis of the level of coherence of the precipitation estimates and patterns between the two algorithms exploiting different radiometers. Recent developments aimed at the full exploitation of the GPM constellation of satellites for optimal precipitation/drought monitoring will be also presented.

  8. Characterizing the Vertical Distribution of Aerosols using Ground-based Multiwavelength Lidar Data

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Thorsen, T. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Burton, S. P.; Goldsmith, J.; Holz, R.; Kuehn, R.; Eloranta, E. W.; Marais, W.; Newsom, R. K.; Liu, X.; Sawamura, P.; Holben, B. N.; Hostetler, C. A.

    2016-12-01

    Observations of aerosol optical and microphysical properties are critical for developing and evaluating aerosol transport model parameterizations and assessing global aerosol-radiation impacts on climate. During the Combined HSRL And Raman lidar Measurement Study (CHARMS), we investigated the synergistic use of ground-based Raman lidar and High Spectral Resolution Lidar (HSRL) measurements to retrieve aerosol properties aloft. Continuous (24/7) operation of these co-located lidars during the ten-week CHARMS mission (mid-July through September 2015) allowed the acquisition of a unique, multiwavelength ground-based lidar dataset for studying aerosol properties above the Southern Great Plains (SGP) site. The ARM Raman lidar measured profiles of aerosol backscatter, extinction and depolarization at 355 nm as well as profiles of water vapor mixing ratio and temperature. The University of Wisconsin HSRL simultaneously measured profiles of aerosol backscatter, extinction and depolarization at 532 nm and aerosol backscatter at 1064 nm. Recent advances in both lidar retrieval theory and algorithm development demonstrate that vertically-resolved retrievals using such multiwavelength lidar measurements of aerosol backscatter and extinction can help constrain both the aerosol optical (e.g. complex refractive index, scattering, etc.) and microphysical properties (e.g. effective radius, concentrations) as well as provide qualitative aerosol classification. Based on this work, the NASA Langley Research Center (LaRC) HSRL group developed automated algorithms for classifying and retrieving aerosol optical and microphysical properties, demonstrated these retrievals using data from the unique NASA/LaRC airborne multiwavelength HSRL-2 system, and validated the results using coincident airborne in situ data. We apply these algorithms to the CHARMS multiwavelength (Raman+HSRL) lidar dataset to retrieve aerosol properties above the SGP site. We present some profiles of aerosol effective radius and concentration retrieved from the CHARMS data and compare column-average aerosol properties derived from the multiwavelength lidar aerosol retrievals to corresponding values retrieved from AERONET measurements.

  9. Aerosol Airmass Type Mapping Over the Urban Mexico City Region From Space-based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Patadia, F.; Kahn, R. A.; Limbacher, J. A.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.

    2013-01-01

    Using Multi-angle Imaging SpectroRadiometer (MISR) and sub-orbital measurements from the 2006 INTEX-B/MILAGRO field campaign, in this study we explore MISR's ability to map different aerosol air mass types over the Mexico City metropolitan area. The aerosol air mass distinctions are based on shape, size and single scattering albedo retrievals from the MISR Research Aerosol Retrieval algorithm. In this region, the research algorithm identifies dust-dominated aerosol mixtures based on non-spherical particle shape, whereas spherical biomass burning and urban pollution particles are distinguished by particle size. Two distinct aerosol air mass types based on retrieved particle microphysical properties, and four spatially distributed aerosol air masses, are identified in the MISR data on 6 March 2006. The aerosol air mass type identification results are supported by coincident, airborne high-spectral-resolution lidar (HSRL) measurements. Aerosol optical depth (AOD) gradients are also consistent between the MISR and sub-orbital measurements, but particles having single-scattering albedo of approx. 0.7 at 558 nm must be included in the retrieval algorithm to produce good absolute AOD comparisons over pollution-dominated aerosol air masses. The MISR standard V22 AOD product, at 17.6 km resolution, captures the observed AOD gradients qualitatively, but retrievals at this coarse spatial scale and with limited spherical absorbing particle options underestimate AOD and do not retrieve particle properties adequately over this complex urban region. However, we demonstrate how AOD and aerosol type mapping can be accomplished with MISR data over complex urban regions, provided the retrieval is performed at sufficiently high spatial resolution, and with a rich enough set of aerosol components and mixtures.

  10. SKL algorithm based fabric image matching and retrieval

    NASA Astrophysics Data System (ADS)

    Cao, Yichen; Zhang, Xueqin; Ma, Guojian; Sun, Rongqing; Dong, Deping

    2017-07-01

    Intelligent computer image processing technology provides convenience and possibility for designers to carry out designs. Shape analysis can be achieved by extracting SURF feature. However, high dimension of SURF feature causes to lower matching speed. To solve this problem, this paper proposed a fast fabric image matching algorithm based on SURF K-means and LSH algorithm. By constructing the bag of visual words on K-Means algorithm, and forming feature histogram of each image, the dimension of SURF feature is reduced at the first step. Then with the help of LSH algorithm, the features are encoded and the dimension is further reduced. In addition, the indexes of each image and each class of image are created, and the number of matching images is decreased by LSH hash bucket. Experiments on fabric image database show that this algorithm can speed up the matching and retrieval process, the result can satisfy the requirement of dress designers with accuracy and speed.

  11. The Error Structure of the SMAP Single and Dual Channel Soil Moisture Retrievals

    NASA Astrophysics Data System (ADS)

    Dong, Jianzhi; Crow, Wade T.; Bindlish, Rajat

    2018-01-01

    Knowledge of the temporal error structure for remotely sensed surface soil moisture retrievals can improve our ability to exploit them for hydrologic and climate studies. This study employs a triple collocation analysis to investigate both the total variance and temporal autocorrelation of errors in Soil Moisture Active and Passive (SMAP) products generated from two separate soil moisture retrieval algorithms, the vertically polarized brightness temperature-based single-channel algorithm (SCA-V, the current baseline SMAP algorithm) and the dual-channel algorithm (DCA). A key assumption made in SCA-V is that real-time vegetation opacity can be accurately captured using only a climatology for vegetation opacity. Results demonstrate that while SCA-V generally outperforms DCA, SCA-V can produce larger total errors when this assumption is significantly violated by interannual variability in vegetation health and biomass. Furthermore, larger autocorrelated errors in SCA-V retrievals are found in areas with relatively large vegetation opacity deviations from climatological expectations. This implies that a significant portion of the autocorrelated error in SCA-V is attributable to the violation of its vegetation opacity climatology assumption and suggests that utilizing a real (as opposed to climatological) vegetation opacity time series in the SCA-V algorithm would reduce the magnitude of autocorrelated soil moisture retrieval errors.

  12. Web Image Retrieval Using Self-Organizing Feature Map.

    ERIC Educational Resources Information Center

    Wu, Qishi; Iyengar, S. Sitharama; Zhu, Mengxia

    2001-01-01

    Provides an overview of current image retrieval systems. Describes the architecture of the SOFM (Self Organizing Feature Maps) based image retrieval system, discussing the system architecture and features. Introduces the Kohonen model, and describes the implementation details of SOFM computation and its learning algorithm. Presents a test example…

  13. Development of microwave rainfall retrieval algorithm for climate applications

    NASA Astrophysics Data System (ADS)

    KIM, J. H.; Shin, D. B.

    2014-12-01

    With the accumulated satellite datasets for decades, it is possible that satellite-based data could contribute to sustained climate applications. Level-3 products from microwave sensors for climate applications can be obtained from several algorithms. For examples, the Microwave Emission brightness Temperature Histogram (METH) algorithm produces level-3 rainfalls directly, whereas the Goddard profiling (GPROF) algorithm first generates instantaneous rainfalls and then temporal and spatial averaging process leads to level-3 products. The rainfall algorithm developed in this study follows a similar approach to averaging instantaneous rainfalls. However, the algorithm is designed to produce instantaneous rainfalls at an optimal resolution showing reduced non-linearity in brightness temperature (TB)-rain rate(R) relations. It is found that the resolution tends to effectively utilize emission channels whose footprints are relatively larger than those of scattering channels. This algorithm is mainly composed of a-priori databases (DBs) and a Bayesian inversion module. The DB contains massive pairs of simulated microwave TBs and rain rates, obtained by WRF (version 3.4) and RTTOV (version 11.1) simulations. To improve the accuracy and efficiency of retrieval process, data mining technique is additionally considered. The entire DB is classified into eight types based on Köppen climate classification criteria using reanalysis data. Among these sub-DBs, only one sub-DB which presents the most similar physical characteristics is selected by considering the thermodynamics of input data. When the Bayesian inversion is applied to the selected DB, instantaneous rain rate with 6 hours interval is retrieved. The retrieved monthly mean rainfalls are statistically compared with CMAP and GPCP, respectively.

  14. An efficient approach for video information retrieval

    NASA Astrophysics Data System (ADS)

    Dong, Daoguo; Xue, Xiangyang

    2005-01-01

    Today, more and more video information can be accessed through internet, satellite, etc.. Retrieving specific video information from large-scale video database has become an important and challenging research topic in the area of multimedia information retrieval. In this paper, we introduce a new and efficient index structure OVA-File, which is a variant of VA-File. In OVA-File, the approximations close to each other in data space are stored in close positions of the approximation file. The benefit is that only a part of approximations close to the query vector need to be visited to get the query result. Both shot query algorithm and video clip algorithm are proposed to support video information retrieval efficiently. The experimental results showed that the queries based on OVA-File were much faster than that based on VA-File with small loss of result quality.

  15. The US-DOE ARM/ASR Effort in Quantifying Uncertainty in Ground-Based Cloud Property Retrievals (Invited)

    NASA Astrophysics Data System (ADS)

    Xie, S.; Protat, A.; Zhao, C.

    2013-12-01

    One primary goal of the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program is to obtain and retrieve cloud microphysical properties from detailed cloud observations using ground-based active and passive remote sensors. However, there is large uncertainty in the retrieved cloud property products. Studies have shown that the uncertainty could arise from instrument limitations, measurement errors, sampling errors, retrieval algorithm deficiencies in assumptions, as well as inconsistent input data and constraints used by different algorithms. To quantify the uncertainty in cloud retrievals, a scientific focus group, Quantification of Uncertainties In Cloud Retrievals (QUICR), was recently created by the DOE Atmospheric System Research (ASR) program. This talk will provide an overview of the recent research activities conducted within QUICR and discuss its current collaborations with the European cloud retrieval community and future plans. The goal of QUICR is to develop a methodology for characterizing and quantifying uncertainties in current and future ARM cloud retrievals. The Work at LLNL was performed under the auspices of the U. S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. LLNL-ABS-641258.

  16. Improving medical record retrieval for validation studies in Medicare data.

    PubMed

    Wright, Nicole C; Delzell, Elizabeth S; Smith, Wilson K; Xue, Fei; Auroa, Tarun; Curtis, Jeffrey R

    2017-04-01

    The purpose of the study is to describe medical record retrieval for a study validating claims-based algorithms used to identify seven adverse events of special interest (AESI) in a Medicare population. We analyzed 2010-2011 Medicare claims of women with postmenopausal osteoporosis and men ≥65 years of age in the Medicare 5% national sample. The final cohorts included beneficiaries covered continuously for 12+ months by Medicare parts A, B, and D and not enrolled in Medicare Advantage before starting follow-up. We identified beneficiaries using each AESI algorithm and randomly selected 400 women and 100 men with each AESI for medical record retrieval. The Centers for Medicare and Medicaid Services provided beneficiary contact information, and we requested medical records directly from providers, without patient contact. We selected 3331 beneficiaries (women: 2272; men: 559) for whom we requested 3625 medical records. Overall, we received 1738 [47.9% (95%CI 46.3%, 49.6%)] of the requested medical records. We observed small differences in the characteristics of the total population with AESIs compared with those randomly selected for retrieval; however, no differences were seen between those selected and those retrieved. We retrieved 54.7% of records requested from hospitals compared with 26.3% of records requested from physician offices (p < 0.001). Retrieval did not differ by sex or vital status of the beneficiaries. Our national medical record validation study of claims-based algorithms produced a modest retrieval rate. The medical record procedures outlined in this paper could have led to the improved retrieval from our previous medical record retrieval study. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Review of TRMM/GPM Rainfall Algorithm Validation

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2004-01-01

    A review is presented concerning current progress on evaluation and validation of standard Tropical Rainfall Measuring Mission (TRMM) precipitation retrieval algorithms and the prospects for implementing an improved validation research program for the next generation Global Precipitation Measurement (GPM) Mission. All standard TRMM algorithms are physical in design, and are thus based on fundamental principles of microwave radiative transfer and its interaction with semi-detailed cloud microphysical constituents. They are evaluated for consistency and degree of equivalence with one another, as well as intercompared to radar-retrieved rainfall at TRMM's four main ground validation sites. Similarities and differences are interpreted in the context of the radiative and microphysical assumptions underpinning the algorithms. Results indicate that the current accuracies of the TRMM Version 6 algorithms are approximately 15% at zonal-averaged / monthly scales with precisions of approximately 25% for full resolution / instantaneous rain rate estimates (i.e., level 2 retrievals). Strengths and weaknesses of the TRMM validation approach are summarized. Because the dew of convergence of level 2 TRMM algorithms is being used as a guide for setting validation requirements for the GPM mission, it is important that the GPM algorithm validation program be improved to ensure concomitant improvement in the standard GPM retrieval algorithms. An overview of the GPM Mission's validation plan is provided including a description of a new type of physical validation model using an analytic 3-dimensional radiative transfer model.

  18. Single-intensity-recording optical encryption technique based on phase retrieval algorithm and QR code

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-peng; Zhang, Shuai; Liu, Hong-zhao; Qin, Yi

    2014-12-01

    Based on phase retrieval algorithm and QR code, a new optical encryption technology that only needs to record one intensity distribution is proposed. In this encryption process, firstly, the QR code is generated from the information to be encrypted; and then the generated QR code is placed in the input plane of 4-f system to have a double random phase encryption. For only one intensity distribution in the output plane is recorded as the ciphertext, the encryption process is greatly simplified. In the decryption process, the corresponding QR code is retrieved using phase retrieval algorithm. A priori information about QR code is used as support constraint in the input plane, which helps solve the stagnation problem. The original information can be recovered without distortion by scanning the QR code. The encryption process can be implemented either optically or digitally, and the decryption process uses digital method. In addition, the security of the proposed optical encryption technology is analyzed. Theoretical analysis and computer simulations show that this optical encryption system is invulnerable to various attacks, and suitable for harsh transmission conditions.

  19. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhlandt, Aike, E-mail: aruhlan@gwdg.de; Salditt, Tim

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resultingmore » in superior reconstruction quality.« less

  20. Performance of the Falling Snow Retrieval Algorithms for the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Munchak, Stephen J.; Ringerud, Sarah

    2016-01-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining). This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014.

  1. EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    NASA Astrophysics Data System (ADS)

    Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.

    2016-12-01

    The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.

  2. An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan S.; Slusser, James R.; Stephens, Graeme L.; Goering, Christian D.

    2008-02-01

    This paper describes a number of practical considerations concerning the optimization and operational implementation of an algorithm used to characterize the optical properties of aerosols across part of the ultraviolet (UV) spectrum. The algorithm estimates values of aerosol optical depth (AOD) and aerosol single scattering albedo (SSA) at seven wavelengths in the UV, as well as total column ozone (TOC) and wavelength-independent asymmetry factor (g) using direct and diffuse irradiances measured with a UV multifilter rotating shadowband radiometer (UV-MFRSR). A novel method for cloud screening the irradiance data set is introduced, as well as several improvements and optimizations to the retrieval scheme which yield a more realistic physical model for the inversion and increase the efficiency of the algorithm. Introduction of a wavelength-dependent retrieval error budget generated from rigorous forward model analysis as well as broadened covariances on the a priori values of AOD, SSA and g and tightened covariances of TOC allows sufficient retrieval sensitivity and resolution to obtain unique solutions of aerosol optical properties as demonstrated by synthetic retrievals. Analysis of a cloud screened data set (May 2003) from Panther Junction, Texas, demonstrates that the algorithm produces realistic values of the optical properties that compare favorably with pseudo-independent methods for AOD, TOC and calculated Ångstrom exponents. Retrieval errors of all parameters (except TOC) are shown to be negatively correlated to AOD, while the Shannon information content is positively correlated, indicating that retrieval skill improves with increasing atmospheric turbidity. When implemented operationally on more than thirty instruments in the Ultraviolet Monitoring and Research Program's (UVMRP) network, this retrieval algorithm will provide a comprehensive and internally consistent climatology of ground-based aerosol properties in the UV spectral range that can be used for both validation of satellite measurements as well as regional aerosol and ultraviolet transmission studies.

  3. Long-term analysis of aerosol optical depth over Northeast Asia using a satellite-based measurement: MI Yonsei Aerosol Retrieval Algorithm (YAER)

    NASA Astrophysics Data System (ADS)

    Kim, Mijin; Kim, Jhoon; Yoon, Jongmin; Chung, Chu-Yong; Chung, Sung-Rae

    2017-04-01

    In 2010, the Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean, and Meteorological Satellite (COMS), was launched including the Meteorological Imager (MI). The MI measures atmospheric condition over Northeast Asia (NEA) using a single visible channel centered at 0.675 μm and four IR channels at 3.75, 6.75, 10.8, 12.0 μm. The visible measurement can also be utilized for the retrieval of aerosol optical properties (AOPs). Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs, we can analyze the spatiotemporal variation of the aerosol using the MI observations over NEA. Therefore, we developed an algorithm to retrieve aerosol optical depth (AOD) using the visible observation of MI, and named as MI Yonsei Aerosol Retrieval Algorithm (YAER). In this study, we investigated the accuracy of MI YAER AOD by comparing the values with the long-term products of AERONET sun-photometer. The result showed that the MI AODs were significantly overestimated than the AERONET values over bright surface in low AOD case. Because the MI visible channel centered at red color range, contribution of aerosol signal to the measured reflectance is relatively lower than the surface contribution. Therefore, the AOD error in low AOD case over bright surface can be a fundamental limitation of the algorithm. Meanwhile, an assumption of background aerosol optical depth (BAOD) could result in the retrieval uncertainty, also. To estimate the surface reflectance by considering polluted air condition over the NEA, we estimated the BAOD from the MODIS dark target (DT) aerosol products by pixel. The satellite-based AOD retrieval, however, largely depends on the accuracy of the surface reflectance estimation especially in low AOD case, and thus, the BAOD could include the uncertainty in surface reflectance estimation of the satellite-based retrieval. Therefore, we re-estimated the BAOD using the ground-based sun-photometer measurement, and investigated the effects of the BAOD assumption. The satellite-based BAOD was significantly higher than the ground-based value over urban area, and thus, resulted in the underestimation of surface reflectance and the overestimation of AOD. The error analysis of the MI AOD also showed sensitivity to cloud contamination, clearly. Therefore, improvements of cloud masking process in the developed single channel MI algorithm as well as the modification of the surface reflectance estimation will be required for the future study.

  4. The influence of sea fog inhomogeneity on its microphysical characteristics retrieval

    NASA Astrophysics Data System (ADS)

    Hao, Zengzhou; Pan, Delu; Gong, Fang; He, Xianqiang

    2008-10-01

    A study on the effect of sea fog inhomogeneity on its microphysical parameters retrieval is presented. On the condition that the average liquid water content is linear vertically and the power spectrum spectral index sets 2.0, we generate a 3D sea fog fields by controlling the total liquid water contents greater than 0.04g/m3 based on the iterative method for generating scaling log-normal random field with an energy spectrum and a fragmentized cloud algorithm. Based on the fog field, the radiance at the wavelengths of 0.67 and 1.64 μm are simulated with 3D radiative transfer model SHDOM, and then the fog optical thickness and effective particle radius are simultaneously retrieved using the generic look-up-table AVHRR cloud algorithm. By comparing those fog optical thickness and effective particle radius, the influence of sea fog inhomogeneity on its properties retrieval is discussed. It exhibits the system bias when inferring sea fog physical properties from satellite measurements based on the assumption of plane parallel homogeneous atmosphere. And the bias depends on the solar zenith angel. The optical thickness is overrated while the effective particle radius is under-estimated at two solar zenith angle 30° and 60°. Those results show that it is necessary for sea fog true characteristics retrieval to develop a new algorithm using the 3D radiative transfer.

  5. How Do A-train Sensors Intercompare in the Retrieval of Above-cloud Aerosol Optical Depth? A Case Study-based Assessment

    NASA Technical Reports Server (NTRS)

    Jethva, Hiren; Torres, Omar; Waquet, Fabien; Chand, Duli; Hu, Yongxiang

    2014-01-01

    We intercompare the above-cloud aerosol optical depth (ACAOD) of biomass burning plumes retrieved from A-train sensors, i.e., Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Polarization and Directionality of Earth Reflectances (POLDER), and Ozone Monitoring Instrument (OMI). These sensors have shown independent capabilities to retrieve aerosol loading above marine boundary layer clouds-a kind of situation often found over the southeast Atlantic Ocean during dry burning season. A systematic comparison reveals that all passive sensors and CALIOP-based research methods derive comparable ACAOD with differences mostly within 0.2 over homogeneous cloud fields. The 532 nm ACAOD retrieved by CALIOP operational algorithm is underestimated. The retrieved 1064 nm AOD however shows closer agreement with passive sensors. Given the different types of measurements processed with different algorithms, the reported close agreement between them is encouraging. Due to unavailability of direct measurements above cloud, the validation of satellite-based ACAOD remains an open challenge. The intersatellite comparison however can be useful for the relative evaluation and consistency check

  6. Evaluation of Aerosol Pollution Determination From MODIS Satellite Retrievals for Semi-Arid Reno, NV, USA with In-Situ Measurements

    NASA Astrophysics Data System (ADS)

    Loria-Salazar, S. Marcela

    The aim of the present work is to carry out a detailed analysis of ground and columnar aerosol properties obtained by in-situ Photoacoustic and Integrated Nephelometer (PIN), Cimel CE-318 sunphotometer and MODIS instrument onboard Aqua and Terra satellites, for semi-arid Reno, Nevada, USA in the local summer months of 2012. Satellite determination of local aerosol pollution is desirable because of the potential for broad spatial and temporal coverage. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging because of the underlying surface albedo being heterogeneous in space and time. Therefore, comparisons of satellite retrievals with measurements from ground-based sun photometers are crucial for validation, testing, and further development of instruments and retrieval algorithms. Ground-based sunphotometry and in-situ ground observations show that seasonal weather changes and fire plumes have great influence on the atmosphere aerosol optics. The Apparent Optical Height (AOH) follows the shape of the development of the Convective Boundary Layer (CBL) when fire conditions were not present. However, significant fine particle optical depth was inferred beyond the CBL thereby complicating the use of remote sensing measurements for near-ground aerosol pollution measurements. A meteorological analysis was performed to help diagnose the nature of the aerosols above Reno. The calculation of a Zephyr index and back trajectory analysis demonstrated that a local circulation often induces aerosol transport from Northern CA over the Sierra Nevada Mountains that doubles the Aerosol Optical Depth (AOD) at 500 nm. Sunphotometer measurements were used as a `ground truth' for satellite retrievals to evaluate the current state of the science retrievals in this challenging location. Satellite retrieved for AOD showed the presence of wild fires in Northern CA during August. AOD retrieved using the "dark-target algorithm" may be unrealistically high over the Great Basin. Low correlation was found between AERONET AOD and dark-target algorithm AOD retrievals from Aqua and Terra during June and July. During fire conditions the dark-target algorithm AOD values correlated better with AERONET measurements in August. Use of the Deep-blue algorithm for MODIS data to retrieve AOD did not provide enough points to compare with AERONET in June and July. In August, AOD from deep-blue and AERONET retrievals exhibited low correlation. AEE from MODIS products and AERONET exhibited low correlation during every month. Apparently satellite AOD retrievals need much improvement for areas like semi-arid Reno.

  7. Intelligent fuzzy approach for fast fractal image compression

    NASA Astrophysics Data System (ADS)

    Nodehi, Ali; Sulong, Ghazali; Al-Rodhaan, Mznah; Al-Dhelaan, Abdullah; Rehman, Amjad; Saba, Tanzila

    2014-12-01

    Fractal image compression (FIC) is recognized as a NP-hard problem, and it suffers from a high number of mean square error (MSE) computations. In this paper, a two-phase algorithm was proposed to reduce the MSE computation of FIC. In the first phase, based on edge property, range and domains are arranged. In the second one, imperialist competitive algorithm (ICA) is used according to the classified blocks. For maintaining the quality of the retrieved image and accelerating algorithm operation, we divided the solutions into two groups: developed countries and undeveloped countries. Simulations were carried out to evaluate the performance of the developed approach. Promising results thus achieved exhibit performance better than genetic algorithm (GA)-based and Full-search algorithms in terms of decreasing the number of MSE computations. The number of MSE computations was reduced by the proposed algorithm for 463 times faster compared to the Full-search algorithm, although the retrieved image quality did not have a considerable change.

  8. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    NASA Technical Reports Server (NTRS)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Bailey, Sean W.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    In clear shallow waters, light that is transmitted downward through the water column can reflect off the sea floor and thereby influence the water-leaving radiance signal. This effect can confound contemporary ocean color algorithms designed for deep waters where the seafloor has little or no effect on the water-leaving radiance. Thus, inappropriate use of deep water ocean color algorithms in optically shallow regions can lead to inaccurate retrievals of inherent optical properties (IOPs) and therefore have a detrimental impact on IOP-based estimates of marine parameters, including chlorophyll-a and the diffuse attenuation coefficient. In order to improve IOP retrievals in optically shallow regions, a semi-analytical inversion algorithm, the Shallow Water Inversion Model (SWIM), has been developed. Unlike established ocean color algorithms, SWIM considers both the water column depth and the benthic albedo. A radiative transfer study was conducted that demonstrated how SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Properties algorithm (GIOP) and Quasi-Analytical Algorithm (QAA), performed in optically deep and shallow scenarios. The results showed that SWIM performed well, whilst both GIOP and QAA showed distinct positive bias in IOP retrievals in optically shallow waters. The SWIM algorithm was also applied to a test region: the Great Barrier Reef, Australia. Using a single test scene and time series data collected by NASA's MODIS-Aqua sensor (2002-2013), a comparison of IOPs retrieved by SWIM, GIOP and QAA was conducted.

  9. Analysis of Leaf Area Index and Fraction of PAR Absorbed by Vegetation Products from the Terra MODIS Sensor: 2000-2005

    NASA Technical Reports Server (NTRS)

    Yang, Wenze; Huang, Dong; Tan, Bin; Stroeve, Julienne C.; Shabanov, Nikolay V.; Knyazikhin, Yuri; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2006-01-01

    The analysis of two years of Collection 3 and five years of Collection 4 Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) data sets is presented in this article with the goal of understanding product quality with respect to version (Collection 3 versus 4), algorithm (main versus backup), snow (snow-free versus snow on the ground), and cloud (cloud-free versus cloudy) conditions. Retrievals from the main radiative transfer algorithm increased from 55% in Collection 3 to 67% in Collection 4 due to algorithm refinements and improved inputs. Anomalously high LAI/FPAR values observed in Collection 3 product in some vegetation types were corrected in Collection 4. The problem of reflectance saturation and too few main algorithm retrievals in broadleaf forests persisted in Collection 4. The spurious seasonality in needleleaf LAI/FPAR fields was traced to fewer reliable input data and retrievals during the boreal winter period. About 97% of the snow covered pixels were processed by the backup Normalized Difference Vegetation Index-based algorithm. Similarly, a majority of retrievals under cloudy conditions were obtained from the backup algorithm. For these reasons, the users are advised to consult the quality flags accompanying the LAI and FPAR product.

  10. Wind profiling based on the optical beam intensity statistics in a turbulent atmosphere.

    PubMed

    Banakh, Victor A; Marakasov, Dimitrii A

    2007-10-01

    Reconstruction of the wind profile from the statistics of intensity fluctuations of an optical beam propagating in a turbulent atmosphere is considered. The equations for the spatiotemporal correlation function and the spectrum of weak intensity fluctuations of a Gaussian beam are obtained. The algorithms of wind profile retrieval from the spatiotemporal intensity spectrum are described and the results of end-to-end computer experiments on wind profiling based on the developed algorithms are presented. It is shown that the developed algorithms allow retrieval of the wind profile from the turbulent optical beam intensity fluctuations with acceptable accuracy in many practically feasible laser measurements set up in the atmosphere.

  11. (abstract) Using an Inversion Algorithm to Retrieve Parameters and Monitor Changes over Forested Areas from SAR Data

    NASA Technical Reports Server (NTRS)

    Moghaddam, Mahta

    1995-01-01

    In this work, the application of an inversion algorithm based on a nonlinear opimization technique to retrieve forest parameters from multifrequency polarimetric SAR data is discussed. The approach discussed here allows for retrieving and monitoring changes in forest parameters in a quantative and systematic fashion using SAR data. The parameters to be inverted directly from the data are the electromagnetic scattering properties of the forest components such as their dielectric constants and size characteristics. Once these are known, attributes such as canopy moisture content can be obtained, which are useful in the ecosystem models.

  12. Extended capture range for focus-diverse phase retrieval in segmented aperture systems using geometrical optics.

    PubMed

    Jurling, Alden S; Fienup, James R

    2014-03-01

    Extending previous work by Thurman on wavefront sensing for segmented-aperture systems, we developed an algorithm for estimating segment tips and tilts from multiple point spread functions in different defocused planes. We also developed methods for overcoming two common modes for stagnation in nonlinear optimization-based phase retrieval algorithms for segmented systems. We showed that when used together, these methods largely solve the capture range problem in focus-diverse phase retrieval for segmented systems with large tips and tilts. Monte Carlo simulations produced a rate of success better than 98% for the combined approach.

  13. Sensitivity of Multiangle Imaging to the Optical and Microphysical Properties of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Kahn, Ralph A.; Nelson, David; Yau, Kevin; Seinfeld, John H.

    2008-01-01

    The treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites. Over the natural ranges of BB aerosol microphysical and optical properties observed in past field campaigns, patterns of retrieved Aerosol Optical Depth (AOD), particle size, and single scattering albedo (SSA) are evaluated. On the basis of the theoretical analysis, assuming total column AOD of 0.2, over a dark, uniform surface, MISR can distinguish two to three groups in each of size and SSA, except when the assumed atmospheric particles are significantly absorbing (mid-visible SSA approx.0.84), or of medium sizes (mean radius approx.0.13 pin); sensitivity to absorbing, medium-large size particles increases considerably when the assumed column AOD is raised to 0.5. MISR Research Aerosol Retrievals confirm the theoretical results, based on coincident AERONET inversions under BB-dominated conditions. When BB is externally mixed with dust in the atmosphere, dust optical model and surface reflection uncertainties, along with spatial variability, contribute to differences between the Research Retrievals and AERONET. These results suggest specific refinements to the MISR Standard Aerosol Algorithm complement of component particles and mixtures. They also highlight the importance for satellite aerosol retrievals of surface reflectance characterization, with accuracies that can be difficult to achieve with coupled surface-aerosol algorithms in some higher AOD situations.

  14. A rapid place name locating algorithm based on ontology qualitative retrieval, ranking and recommendation

    NASA Astrophysics Data System (ADS)

    Fan, Hong; Zhu, Anfeng; Zhang, Weixia

    2015-12-01

    In order to meet the rapid positioning of 12315 complaints, aiming at the natural language expression of telephone complaints, a semantic retrieval framework is proposed which is based on natural language parsing and geographical names ontology reasoning. Among them, a search result ranking and recommended algorithms is proposed which is regarding both geo-name conceptual similarity and spatial geometry relation similarity. The experiments show that this method can assist the operator to quickly find location of 12,315 complaints, increased industry and commerce customer satisfaction.

  15. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  16. Phase retrieval via incremental truncated amplitude flow algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Quanbing; Wang, Zhifa; Wang, Linjie; Cheng, Shichao

    2017-10-01

    This paper considers the phase retrieval problem of recovering the unknown signal from the given quadratic measurements. A phase retrieval algorithm based on Incremental Truncated Amplitude Flow (ITAF) which combines the ITWF algorithm and the TAF algorithm is proposed. The proposed ITAF algorithm enhances the initialization by performing both of the truncation methods used in ITWF and TAF respectively, and improves the performance in the gradient stage by applying the incremental method proposed in ITWF to the loop stage of TAF. Moreover, the original sampling vector and measurements are preprocessed before initialization according to the variance of the sensing matrix. Simulation experiments verified the feasibility and validity of the proposed ITAF algorithm. The experimental results show that it can obtain higher success rate and faster convergence speed compared with other algorithms. Especially, for the noiseless random Gaussian signals, ITAF can recover any real-valued signal accurately from the magnitude measurements whose number is about 2.5 times of the signal length, which is close to the theoretic limit (about 2 times of the signal length). And it usually converges to the optimal solution within 20 iterations which is much less than the state-of-the-art algorithms.

  17. GOME-2 Tropospheric Ozone Profile Retrievals from Joint UV/Visible Measurement

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zoogman, P.; Chance, K.; Cai, Z.; Nowlan, C. R.; Huang, G.; Gonzalez Abad, G.

    2016-12-01

    It has been shown from sensitivity studies that adding visible measurements in the Chappuis ozone band to UV measurements in the Hartley/Huggins ozone bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA EVI (Earth Venture Instrument) TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels ( 290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit. However, this retrieval enhancement has yet to be demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interferences from surface reflectance and aerosols and the requirement of accurate radiometric calibration across different spectral channels. We present GOME-2 retrievals from joint UV/visible measurements using the SAO ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible based on combining EOFs (Empirical Orthogonal Functions) derived from ASTER and other surface reflectance spectra with MODIS BRDF climatology into the ozone profile algorithm. The impacts of various types of aerosols and surface BRDF on the retrievals will be investigated. In addition, we will also perform empirical radiometric calibration of the GOME-2 data based on radiative transfer simulations. We will evaluate the retrieval improvement of joint UV/visible retrieval over the UV retrieval based on fitting quality and validation against ozonesonde observations.

  18. Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR

    NASA Astrophysics Data System (ADS)

    Poulsen, C. A.; Siddans, R.; Thomas, G. E.; Sayer, A. M.; Grainger, R. G.; Campmany, E.; Dean, S. M.; Arnold, C.; Watts, P. D.

    2012-08-01

    Clouds play an important role in balancing the Earth's radiation budget. Hence, it is vital that cloud climatologies are produced that quantify cloud macro and micro physical parameters and the associated uncertainty. In this paper, we present an algorithm ORAC (Oxford-RAL retrieval of Aerosol and Cloud) which is based on fitting a physically consistent cloud model to satellite observations simultaneously from the visible to the mid-infrared, thereby ensuring that the resulting cloud properties provide both a good representation of the short-wave and long-wave radiative effects of the observed cloud. The advantages of the optimal estimation method are that it enables rigorous error propagation and the inclusion of all measurements and any a priori information and associated errors in a rigorous mathematical framework. The algorithm provides a measure of the consistency between retrieval representation of cloud and satellite radiances. The cloud parameters retrieved are the cloud top pressure, cloud optical depth, cloud effective radius, cloud fraction and cloud phase. The algorithm can be applied to most visible/infrared satellite instruments. In this paper, we demonstrate the applicability to the Along-Track Scanning Radiometers ATSR-2 and AATSR. Examples of applying the algorithm to ATSR-2 flight data are presented and the sensitivity of the retrievals assessed, in particular the algorithm is evaluated for a number of simulated single-layer and multi-layer conditions. The algorithm was found to perform well for single-layer cloud except when the cloud was very thin; i.e., less than 1 optical depths. For the multi-layer cloud, the algorithm was robust except when the upper ice cloud layer is less than five optical depths. In these cases the retrieved cloud top pressure and cloud effective radius become a weighted average of the 2 layers. The sum of optical depth of multi-layer cloud is retrieved well until the cloud becomes thick, greater than 50 optical depths, where the cloud begins to saturate. The cost proved a good indicator of multi-layer scenarios. Both the retrieval cost and the error need to be considered together in order to evaluate the quality of the retrieval. This algorithm in the configuration described here has been applied to both ATSR-2 and AATSR visible and infrared measurements in the context of the GRAPE (Global Retrieval and cloud Product Evaluation) project to produce a 14 yr consistent record for climate research.

  19. Information Clustering Based on Fuzzy Multisets.

    ERIC Educational Resources Information Center

    Miyamoto, Sadaaki

    2003-01-01

    Proposes a fuzzy multiset model for information clustering with application to information retrieval on the World Wide Web. Highlights include search engines; term clustering; document clustering; algorithms for calculating cluster centers; theoretical properties concerning clustering algorithms; and examples to show how the algorithms work.…

  20. Application of the LSQR algorithm in non-parametric estimation of aerosol size distribution

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Lew, Zhongyuan; Ruan, Liming; Tan, Heping; Luo, Kun

    2016-05-01

    Based on the Least Squares QR decomposition (LSQR) algorithm, the aerosol size distribution (ASD) is retrieved in non-parametric approach. The direct problem is solved by the Anomalous Diffraction Approximation (ADA) and the Lambert-Beer Law. An optimal wavelength selection method is developed to improve the retrieval accuracy of the ASD. The proposed optimal wavelength set is selected by the method which can make the measurement signals sensitive to wavelength and decrease the degree of the ill-condition of coefficient matrix of linear systems effectively to enhance the anti-interference ability of retrieval results. Two common kinds of monomodal and bimodal ASDs, log-normal (L-N) and Gamma distributions, are estimated, respectively. Numerical tests show that the LSQR algorithm can be successfully applied to retrieve the ASD with high stability in the presence of random noise and low susceptibility to the shape of distributions. Finally, the experimental measurement ASD over Harbin in China is recovered reasonably. All the results confirm that the LSQR algorithm combined with the optimal wavelength selection method is an effective and reliable technique in non-parametric estimation of ASD.

  1. Space-Based Near-Infrared CO2 Measurements: Testing the Orbiting Carbon Observatory Retrieval Algorithm and Validation Concept Using SCIAMACHY Observations over Park Falls, Wisconsin

    NASA Technical Reports Server (NTRS)

    Bosch, H.; Toon, G. C.; Sen, B.; Washenfelder, R. A.; Wennberg, P. O.; Buchwitz, M.; deBeek, R.; Burrows, J. P.; Crisp, D.; Christi, M.; hide

    2006-01-01

    Space-based measurements of reflected sunlight in the near-infrared (NIR) region promise to yield accurate and precise observations of the global distribution of atmospheric CO2. The Orbiting Carbon Observatory (OCO) is a future NASA mission, which will use this technique to measure the column-averaged dry air mole fraction of CO2 (XCO2) with the precision and accuracy needed to quantify CO2 sources and sinks on regional scales (approx.1000 x 1000 sq km and to characterize their variability on seasonal timescales. Here, we have used the OCO retrieval algorithm to retrieve XCO2 and surface pressure from space-based Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) measurements and from coincident ground-based Fourier transform spectrometer (FTS) measurements of the O2 A band at 0.76 mm and the 1.58 mm CO2 band for Park Falls,Wisconsin. Even after accounting for a systematic error in our representation of the O2 absorption cross sections, we still obtained a positive bias between SCIAMACHY and FTS XCO2 retrievals of approx.3.5%. Additionally, the retrieved surface pressures from SCIAMACHY systematically underestimate measurements of a calibrated pressure sensor at the FTS site. These findings lead us to speculate about inadequacies in the forward model of our retrieval algorithm. By assuming a 1% intensity offset in the O2 A band region for the SCIAMACHY XCO2 retrieval, we significantly improved the spectral fit and achieved better consistency between SCIAMACHY and FTS XCO2 retrievals. We compared the seasonal cycle of XCO2 at Park Falls from SCIAMACHY and FTS retrievals with calculations of the Model of Atmospheric Transport and Chemistry/Carnegie-Ames-Stanford Approach (MATCH/CASA) and found a good qualitative agreement but with MATCH/CASA underestimating the measured seasonal amplitude. Furthermore, since SCIAMACHY observations are similar in viewing geometry and spectral range to those of OCO, this study represents an important test of the OCO retrieval algorithm and validation concept using NIR spectra measured from space. Finally, we argue that significant improvements in precision and accuracy could be obtained from a dedicated CO2 instrument such as OCO, which has much higher spectral and spatial resolutions than SCIAMACHY. These measurements would then provide critical data for improving our understanding of the carbon cycle and carbon sources and sinks.

  2. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Steincamp, James; Taylor, Jaime

    2003-01-01

    A reduced surrogate, one point crossover genetic algorithm with random rank-based selection was used successfully to estimate the multiple phases of a segmented optical system modeled on the seven-mirror Systematic Image-Based Optical Alignment testbed located at NASA's Marshall Space Flight Center.

  3. Evaluation of Improvements to the TRMM Microwave Rain Algorithm

    NASA Technical Reports Server (NTRS)

    Yang, Song; Olson, Williams S.; Smith, Eric A.; Kummerow, Christian

    2002-01-01

    Improvements made to the Version 5 TRMM passive microwave rain retrieval algorithm (2A-12) are evaluated using independent data. Surface rain rate estimates from the Version 5 TRMM TMI (2A-12), PR (2A-25) and TMI/PR Combined (2B-31) algorithms and ground-based radar estimates for selected coincident subset datasets in 1998 over Melbourne and Kwajalein show varying degrees of agreement. The surface rain rates are then classified into convective and stratiform rain types over ocean, land, and coastal areas for more detailed comparisons to the ground radar measurements. These comparisons lead to a better understanding of the relative performances of the current TRMM rain algorithms. For example, at Melbourne more than 80% of the radar-derived rainfall is classified as convective rain. Convective rain from the TRMM rain algorithms is less than that from ground radar measurements, while TRMM stratiform rain is much greater. Rain area coverage from 2A-12 is also in reasonable agreement with ground radar measurements, with about 25% more over ocean and 25% less over land and coastal areas. Retrieved rain rates from the improved (Version 6) 2A-12 algorithm will be compared to 2A-25, 2B-31, and ground-based radar measurements to evaluate the impact of improvements to 2A-12 in Version 6. An important improvement to the Version 6 2A-12 algorithm is the retrieval of Q1/Q2 (latent heating/drying) profiles in addition to the surface rain rate and hydrometeor profiles. In order to ascertain the credibility of the new products, retrieved Q1/Q2 profiles are compared to independent ground-based estimates. Analyses of dual-Doppler radar data in conjunction with coincident rawinsonde data yield estimates of the vertical distributions of diabatic heating/drying at high horizontal resolution for selected cases over the Kwajalein and LBA field sites. The estimated vertical heating/drying structures appear to be reasonable. Comparisons of Q1/Q2 profiles from Version 6 2A-12 and the ground-based estimates are in progress. Retrieved Q1/Q2 structures will also be compared to MM5 hurricane simulations for selected cases. The results of these intercomparisons will be presented at the conference.

  4. Marine Boundary Layer Cloud Property Retrievals from High-Resolution ASTER Observations: Case Studies and Comparison with Terra MODIS

    NASA Technical Reports Server (NTRS)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-01-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  5. Marine boundary layer cloud property retrievals from high-resolution ASTER observations: case studies and comparison with Terra MODIS

    NASA Astrophysics Data System (ADS)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-12-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTER-specific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in [Zhao and Di Girolamo(2006)]. To validate and evaluate the cloud optical thickness (τ) and cloud effective radius (reff) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000 m resolution as MODIS. Subsequently, τaA and reff, aA retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R > 0.970. However, for partially cloudy pixels there are significant differences between reff, aA and the MODIS results which can exceed 10 µm. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  6. Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results.

    PubMed

    Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P; Levy, Robert C; Lotz, Wolfhardt

    2017-08-01

    The MEdium Resolution Imaging Spectrometer (MERIS) instrument on board ESA Envisat made measurements from 2002 to 2012. Although MERIS was limited in spectral coverage, accurate Aerosol Optical Thickness (AOT) from MERIS data are retrieved by using appropriate additional information. We introduce a new AOT retrieval algorithm for MERIS over land surfaces, referred to as eXtensible Bremen AErosol Retrieval (XBAER). XBAER is similar to the "dark-target" (DT) retrieval algorithm used for Moderate-resolution Imaging Spectroradiometer (MODIS), in that it uses a lookup table (LUT) to match to satellite-observed reflectance and derive the AOT. Instead of a global parameterization of surface spectral reflectance, XBAER uses a set of spectral coefficients to prescribe surface properties. In this manner, XBAER is not limited to dark surfaces (vegetation) and retrieves AOT over bright surface (desert, semiarid, and urban areas). Preliminary validation of the MERIS-derived AOT and the ground-based Aerosol Robotic Network (AERONET) measurements yield good agreement, the resulting regression equation is y = (0.92 × ± 0.07) + (0.05 ± 0.01) and Pearson correlation coefficient of R = 0.78. Global monthly means of AOT have been compared from XBAER, MODIS and other satellite-derived datasets.

  7. Bayesian Retrieval of Complete Posterior PDFs of Oceanic Rain Rate From Microwave Observations

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Petty, Grant W.

    2005-01-01

    This paper presents a new Bayesian algorithm for retrieving surface rain rate from Tropical Rainfall Measurements Mission (TRMM) Microwave Imager (TMI) over the ocean, along with validations against estimates from the TRMM Precipitation Radar (PR). The Bayesian approach offers a rigorous basis for optimally combining multichannel observations with prior knowledge. While other rain rate algorithms have been published that are based at least partly on Bayesian reasoning, this is believed to be the first self-contained algorithm that fully exploits Bayes Theorem to yield not just a single rain rate, but rather a continuous posterior probability distribution of rain rate. To advance our understanding of theoretical benefits of the Bayesian approach, we have conducted sensitivity analyses based on two synthetic datasets for which the true conditional and prior distribution are known. Results demonstrate that even when the prior and conditional likelihoods are specified perfectly, biased retrievals may occur at high rain rates. This bias is not the result of a defect of the Bayesian formalism but rather represents the expected outcome when the physical constraint imposed by the radiometric observations is weak, due to saturation effects. It is also suggested that the choice of the estimators and the prior information are both crucial to the retrieval. In addition, the performance of our Bayesian algorithm is found to be comparable to that of other benchmark algorithms in real-world applications, while having the additional advantage of providing a complete continuous posterior probability distribution of surface rain rate.

  8. Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land

    NASA Astrophysics Data System (ADS)

    Lipponen, Antti; Mielonen, Tero; Pitkänen, Mikko R. A.; Levy, Robert C.; Sawyer, Virginia R.; Romakkaniemi, Sami; Kolehmainen, Ville; Arola, Antti

    2018-03-01

    We have developed a Bayesian aerosol retrieval (BAR) algorithm for the retrieval of aerosol optical depth (AOD) over land from the Moderate Resolution Imaging Spectroradiometer (MODIS). In the BAR algorithm, we simultaneously retrieve all dark land pixels in a granule, utilize spatial correlation models for the unknown aerosol parameters, use a statistical prior model for the surface reflectance, and take into account the uncertainties due to fixed aerosol models. The retrieved parameters are total AOD at 0.55 µm, fine-mode fraction (FMF), and surface reflectances at four different wavelengths (0.47, 0.55, 0.64, and 2.1 µm). The accuracy of the new algorithm is evaluated by comparing the AOD retrievals to Aerosol Robotic Network (AERONET) AOD. The results show that the BAR significantly improves the accuracy of AOD retrievals over the operational Dark Target (DT) algorithm. A reduction of about 29 % in the AOD root mean square error and decrease of about 80 % in the median bias of AOD were found globally when the BAR was used instead of the DT algorithm. Furthermore, the fraction of AOD retrievals inside the ±(0.05+15 %) expected error envelope increased from 55 to 76 %. In addition to retrieving the values of AOD, FMF, and surface reflectance, the BAR also gives pixel-level posterior uncertainty estimates for the retrieved parameters. The BAR algorithm always results in physical, non-negative AOD values, and the average computation time for a single granule was less than a minute on a modern personal computer.

  9. A new calibration of the effective scattering albedo and soil roughness parameters in the SMOS SM retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Fernandez-Moran, R.; Wigneron, J.-P.; De Lannoy, G.; Lopez-Baeza, E.; Parrens, M.; Mialon, A.; Mahmoodi, A.; Al-Yaari, A.; Bircher, S.; Al Bitar, A.; Richaume, P.; Kerr, Y.

    2017-10-01

    This study focuses on the calibration of the effective vegetation scattering albedo (ω) and surface soil roughness parameters (HR, and NRp, p = H,V) in the Soil Moisture (SM) retrieval from L-band passive microwave observations using the L-band Microwave Emission of the Biosphere (L-MEB) model. In the current Soil Moisture and Ocean Salinity (SMOS) Level 2 (L2), v620, and Level 3 (L3), v300, SM retrieval algorithms, low vegetated areas are parameterized by ω = 0 and HR = 0.1, whereas values of ω = 0.06 - 0.08 and HR = 0.3 are used for forests. Several parameterizations of the vegetation and soil roughness parameters (ω, HR and NRp, p = H,V) were tested in this study, treating SMOS SM retrievals as homogeneous over each pixel instead of retrieving SM over a representative fraction of the pixel, as implemented in the operational SMOS L2 and L3 algorithms. Globally-constant values of ω = 0.10, HR = 0.4 and NRp = -1 (p = H,V) were found to yield SM retrievals that compared best with in situ SM data measured at many sites worldwide from the International Soil Moisture Network (ISMN). The calibration was repeated for collections of in situ sites classified in different land cover categories based on the International Geosphere-Biosphere Programme (IGBP) scheme. Depending on the IGBP land cover class, values of ω and HR varied, respectively, in the range 0.08-0.12 and 0.1-0.5. A validation exercise based on in situ measurements confirmed that using either a global or an IGBP-based calibration, there was an improvement in the accuracy of the SM retrievals compared to the SMOS L3 SM product considering all statistical metrics (R = 0.61, bias = -0.019 m3 m-3, ubRMSE = 0.062 m3 m-3 for the IGBP-based calibration; against R = 0.54, bias = -0.034 m3 m-3 and ubRMSE = 0.070 m3 m-3 for the SMOS L3 SM product). This result is a key step in the calibration of the roughness and vegetation parameters in the operational SMOS retrieval algorithm. The approach presented here is the core of a new forthcoming SMOS optimized SM product.

  10. Facing the phase problem in Coherent Diffractive Imaging via Memetic Algorithms.

    PubMed

    Colombo, Alessandro; Galli, Davide Emilio; De Caro, Liberato; Scattarella, Francesco; Carlino, Elvio

    2017-02-09

    Coherent Diffractive Imaging is a lensless technique that allows imaging of matter at a spatial resolution not limited by lens aberrations. This technique exploits the measured diffraction pattern of a coherent beam scattered by periodic and non-periodic objects to retrieve spatial information. The diffracted intensity, for weak-scattering objects, is proportional to the modulus of the Fourier Transform of the object scattering function. Any phase information, needed to retrieve its scattering function, has to be retrieved by means of suitable algorithms. Here we present a new approach, based on a memetic algorithm, i.e. a hybrid genetic algorithm, to face the phase problem, which exploits the synergy of deterministic and stochastic optimization methods. The new approach has been tested on simulated data and applied to the phasing of transmission electron microscopy coherent electron diffraction data of a SrTiO 3 sample. We have been able to quantitatively retrieve the projected atomic potential, and also image the oxygen columns, which are not directly visible in the relevant high-resolution transmission electron microscopy images. Our approach proves to be a new powerful tool for the study of matter at atomic resolution and opens new perspectives in those applications in which effective phase retrieval is necessary.

  11. Optimal estimation retrieval of aerosol microphysical properties from SAGE~II satellite observations in the volcanically unperturbed lower stratosphere

    NASA Astrophysics Data System (ADS)

    Wurl, D.; Grainger, R. G.; McDonald, A. J.; Deshler, T.

    2010-05-01

    Stratospheric aerosol particles under non-volcanic conditions are typically smaller than 0.1 μm. Due to fundamental limitations of the scattering theory in the Rayleigh limit, these tiny particles are hard to measure by satellite instruments. As a consequence, current estimates of global aerosol properties retrieved from spectral aerosol extinction measurements tend to be strongly biased. Aerosol surface area densities, for instance, are observed to be about 40% smaller than those derived from correlative in situ measurements (Deshler et al., 2003). An accurate knowledge of the global distribution of aerosol properties is, however, essential to better understand and quantify the role they play in atmospheric chemistry, dynamics, radiation and climate. To address this need a new retrieval algorithm was developed, which employs a nonlinear Optimal Estimation (OE) method to iteratively solve for the monomodal size distribution parameters which are statistically most consistent with both the satellite-measured multi-wavelength aerosol extinction data and a priori information. By thus combining spectral extinction measurements (at visible to near infrared wavelengths) with prior knowledge of aerosol properties at background level, even the smallest particles are taken into account which are practically invisible to optical remote sensing instruments. The performance of the OE retrieval algorithm was assessed based on synthetic spectral extinction data generated from both monomodal and small-mode-dominant bimodal sulphuric acid aerosol size distributions. For monomodal background aerosol, the new algorithm was shown to fairly accurately retrieve the particle sizes and associated integrated properties (surface area and volume densities), even in the presence of large extinction uncertainty. The associated retrieved uncertainties are a good estimate of the true errors. In the case of bimodal background aerosol, where the retrieved (monomodal) size distributions naturally differ from the correct bimodal values, the associated surface area (A) and volume densities (V) are, nevertheless, fairly accurately retrieved, except at values larger than 1.0 μm2 cm-3 (A) and 0.05 μm3 cm-3 (V), where they tend to underestimate the true bimodal values. Due to the limited information content in the SAGE II spectral extinction measurements this kind of forward model error cannot be avoided here. Nevertheless, the retrieved uncertainties are a good estimate of the true errors in the retrieved integrated properties, except where the surface area density exceeds the 1.0 μm2 cm-3 threshold. When applied to near-global SAGE II satellite extinction measured in 1999 the retrieved OE surface area and volume densities are observed to be larger by, respectively, 20-50% and 10-40% compared to those estimates obtained by the SAGE~II operational retrieval algorithm. An examination of the OE algorithm biases with in situ data indicates that the new OE aerosol property estimates tend to be more realistic than previous estimates obtained from remotely sensed data through other retrieval techniques. Based on the results of this study we therefore suggest that the new Optimal Estimation retrieval algorithm is able to contribute to an advancement in aerosol research by considerably improving current estimates of aerosol properties in the lower stratosphere under low aerosol loading conditions.

  12. Estimates of Single Sensor Error Statistics for the MODIS Matchup Database Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Kumar, C.; Podesta, G. P.; Minnett, P. J.; Kilpatrick, K. A.

    2017-12-01

    Sea surface temperature (SST) is a fundamental quantity for understanding weather and climate dynamics. Although sensors aboard satellites provide global and repeated SST coverage, a characterization of SST precision and bias is necessary for determining the suitability of SST retrievals in various applications. Guidance on how to derive meaningful error estimates is still being developed. Previous methods estimated retrieval uncertainty based on geophysical factors, e.g. season or "wet" and "dry" atmospheres, but the discrete nature of these bins led to spatial discontinuities in SST maps. Recently, a new approach clustered retrievals based on the terms (excluding offset) in the statistical algorithm used to estimate SST. This approach resulted in over 600 clusters - too many to understand the geophysical conditions that influence retrieval error. Using MODIS and buoy SST matchups (2002 - 2016), we use machine learning algorithms (recursive and conditional trees, random forests) to gain insight into geophysical conditions leading to the different signs and magnitudes of MODIS SST residuals (satellite SSTs minus buoy SSTs). MODIS retrievals were first split into three categories: < -0.4 C, -0.4 C ≤ residual ≤ 0.4 C, and > 0.4 C. These categories are heavily unbalanced, with residuals > 0.4 C being much less frequent. Performance of classification algorithms is affected by imbalance, thus we tested various rebalancing algorithms (oversampling, undersampling, combinations of the two). We consider multiple features for the decision tree algorithms: regressors from the MODIS SST algorithm, proxies for temperature deficit, and spatial homogeneity of brightness temperatures (BTs), e.g., the range of 11 μm BTs inside a 25 km2 area centered on the buoy location. These features and a rebalancing of classes led to an 81.9% accuracy when classifying SST retrievals into the < -0.4 C and -0.4 C ≤ residual ≤ 0.4 C categories. Spatial homogeneity in BTs consistently appears as a very important variable for classification, suggesting that unidentified cloud contamination still is one of the causes leading to negative SST residuals. Precision and accuracy of error estimates from our decision tree classifier are enhanced using this knowledge.

  13. Neural Network-Based Retrieval of Surface and Root Zone Soil Moisture using Multi-Frequency Remotely-Sensed Observations

    NASA Astrophysics Data System (ADS)

    Hamed Alemohammad, Seyed; Kolassa, Jana; Prigent, Catherine; Aires, Filipe; Gentine, Pierre

    2017-04-01

    Knowledge of root zone soil moisture is essential in studying plant's response to different stress conditions since plant photosynthetic activity and transpiration rate are constrained by the water available through their roots. Current global root zone soil moisture estimates are based on either outputs from physical models constrained by observations, or assimilation of remotely-sensed microwave-based surface soil moisture estimates with physical model outputs. However, quality of these estimates are limited by the accuracy of the model representations of physical processes (such as radiative transfer, infiltration, percolation, and evapotranspiration) as well as errors in the estimates of the surface parameters. Additionally, statistical approaches provide an alternative efficient platform to develop root zone soil moisture retrieval algorithms from remotely-sensed observations. In this study, we present a new neural network based retrieval algorithm to estimate surface and root zone soil moisture from passive microwave observations of SMAP satellite (L-band) and AMSR2 instrument (X-band). SMAP early morning observations are ideal for surface soil moisture retrieval. AMSR2 mid-night observations are used here as an indicator of plant hydraulic properties that are related to root zone soil moisture. The combined observations from SMAP and AMSR2 together with other ancillary observations including the Solar-Induced Fluorescence (SIF) estimates from GOME-2 instrument provide necessary information to estimate surface and root zone soil moisture. The algorithm is applied to observations from the first 18 months of SMAP mission and retrievals are validated against in-situ observations and other global datasets.

  14. A scattering-based over-land rainfall retrieval algorithm for South Korea using GCOM-W1/AMSR-2 data

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Joo; Shin, Hayan; Ban, Hyunju; Lee, Yang-Won; Park, Kyung-Ae; Cho, Jaeil; Park, No-Wook; Hong, Sungwook

    2017-08-01

    Heavy summer rainfall is a primary natural disaster affecting lives and properties in the Korean Peninsula. This study presents a satellite-based rainfall rate retrieval algorithm for the South Korea combining polarization-corrected temperature ( PCT) and scattering index ( SI) data from the 36.5 and 89.0 GHz channels of the Advanced microwave Scanning Radiometer 2 (AMSR-2) onboard the Global Change Observation Mission (GCOM)-W1 satellite. The coefficients for the algorithm were obtained from spatial and temporal collocation data from the AMSR-2 and groundbased automatic weather station rain gauges from 1 July - 30 August during the years, 2012-2015. There were time delays of about 25 minutes between the AMSR-2 observations and the ground raingauge measurements. A new linearly-combined rainfall retrieval algorithm focused on heavy rain for the PCT and SI was validated using ground-based rainfall observations for the South Korea from 1 July - 30 August, 2016. The validation presented PCT and SI methods showed slightly improved results for rainfall > 5 mm h-1 compared to the current ASMR-2 level 2 data. The best bias and root mean square error (RMSE) for the PCT method at AMSR-2 36.5 GHz were 2.09 mm h-1 and 7.29 mm h-1, respectively, while the current official AMSR-2 rainfall rates show a larger bias and RMSE (4.80 mm h-1 and 9.35 mm h-1, respectively). This study provides a scatteringbased over-land rainfall retrieval algorithm for South Korea affected by stationary front rain and typhoons with the advantages of the previous PCT and SI methods to be applied to a variety of spaceborne passive microwave radiometers.

  15. NASA Satellite Monitoring of Water Clarity in Mobile Bay for Nutrient Criteria Development

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Holekamp, Kara; Spiering, Bruce A.

    2009-01-01

    This project has demonstrated feasibility of deriving from MODIS daily measurements time series of water clarity parameters that provide coverage of a specific location or an area of interest for 30-50% of days. Time series derived for estuarine and coastal waters display much higher variability than time series of ecological parameters (such as vegetation indices) derived for land areas. (Temporal filtering often applied in terrestrial studies cannot be used effectively in ocean color processing). IOP-based algorithms for retrieval of diffuse light attenuation coefficient and TSS concentration perform well for the Mobile Bay environment: only a minor adjustment was needed in the TSS algorithm, despite generally recognized dependence of such algorithms on local conditions. The current IOP-based algorithm for retrieval of chlorophyll a concentration has not performed as well: a more reliable algorithm is needed that may be based on IOPs at additional wavelengths or on remote sensing reflectance from multiple spectral bands. CDOM algorithm also needs improvement to provide better separation between effects of gilvin (gelbstoff) and detritus. (Identification or development of such algorithm requires more data from in situ measurements of CDOM concentration in Gulf of Mexico coastal waters (ongoing collaboration with the EPA Gulf Ecology Division))

  16. Robust information encryption diffractive-imaging-based scheme with special phase retrieval algorithm for a customized data container

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Wang, Zhipeng; Wang, Hongjuan; Gong, Qiong; Zhou, Nanrun

    2018-06-01

    The diffractive-imaging-based encryption (DIBE) scheme has aroused wide interesting due to its compact architecture and low requirement of conditions. Nevertheless, the primary information can hardly be recovered exactly in the real applications when considering the speckle noise and potential occlusion imposed on the ciphertext. To deal with this issue, the customized data container (CDC) into DIBE is introduced and a new phase retrieval algorithm (PRA) for plaintext retrieval is proposed. The PRA, designed according to the peculiarity of the CDC, combines two key techniques from previous approaches, i.e., input-support-constraint and median-filtering. The proposed scheme can guarantee totally the reconstruction of the primary information despite heavy noise or occlusion and its effectiveness and feasibility have been demonstrated with simulation results.

  17. ACMES: fast multiple-genome searches for short repeat sequences with concurrent cross-species information retrieval

    PubMed Central

    Reneker, Jeff; Shyu, Chi-Ren; Zeng, Peiyu; Polacco, Joseph C.; Gassmann, Walter

    2004-01-01

    We have developed a web server for the life sciences community to use to search for short repeats of DNA sequence of length between 3 and 10 000 bases within multiple species. This search employs a unique and fast hash function approach. Our system also applies information retrieval algorithms to discover knowledge of cross-species conservation of repeat sequences. Furthermore, we have incorporated a part of the Gene Ontology database into our information retrieval algorithms to broaden the coverage of the search. Our web server and tutorial can be found at http://acmes.rnet.missouri.edu. PMID:15215469

  18. Recommending Education Materials for Diabetic Questions Using Information Retrieval Approaches

    PubMed Central

    Wang, Yanshan; Shen, Feichen; Liu, Sijia; Rastegar-Mojarad, Majid; Wang, Liwei

    2017-01-01

    Background Self-management is crucial to diabetes care and providing expert-vetted content for answering patients’ questions is crucial in facilitating patient self-management. Objective The aim is to investigate the use of information retrieval techniques in recommending patient education materials for diabetic questions of patients. Methods We compared two retrieval algorithms, one based on Latent Dirichlet Allocation topic modeling (topic modeling-based model) and one based on semantic group (semantic group-based model), with the baseline retrieval models, vector space model (VSM), in recommending diabetic patient education materials to diabetic questions posted on the TuDiabetes forum. The evaluation was based on a gold standard dataset consisting of 50 randomly selected diabetic questions where the relevancy of diabetic education materials to the questions was manually assigned by two experts. The performance was assessed using precision of top-ranked documents. Results We retrieved 7510 diabetic questions on the forum and 144 diabetic patient educational materials from the patient education database at Mayo Clinic. The mapping rate of words in each corpus mapped to the Unified Medical Language System (UMLS) was significantly different (P<.001). The topic modeling-based model outperformed the other retrieval algorithms. For example, for the top-retrieved document, the precision of the topic modeling-based, semantic group-based, and VSM models was 67.0%, 62.8%, and 54.3%, respectively. Conclusions This study demonstrated that topic modeling can mitigate the vocabulary difference and it achieved the best performance in recommending education materials for answering patients’ questions. One direction for future work is to assess the generalizability of our findings and to extend our study to other disease areas, other patient education material resources, and online forums. PMID:29038097

  19. Calibration and Data Retrieval Algorithms for the NASA Langley/Ames Diode Laser Hygrometer for the NASA Trace-P Mission

    NASA Technical Reports Server (NTRS)

    Podolske, James R.; Sachse, Glen W.; Diskin, Glenn S.; Hipskino, R. Stephen (Technical Monitor)

    2002-01-01

    This paper describes the procedures and algorithms for the laboratory calibration and the field data retrieval of the NASA Langley / Ames Diode Laser Hygrometer as implemented during the NASA Trace-P mission during February to April 2000. The calibration is based on a NIST traceable dewpoint hygrometer using relatively high humidity and short pathlength. Two water lines of widely different strengths are used to increase the dynamic range of the instrument in the course of a flight. The laboratory results are incorporated into a numerical model of the second harmonic spectrum for each of the two spectral window regions using spectroscopic parameters from the HITRAN database and other sources, allowing water vapor retrieval at upper tropospheric and lower stratospheric temperatures and humidity levels. The data retrieval algorithm is simple, numerically stable, and accurate. A comparison with other water vapor instruments on board the NASA DC-8 and ER-2 aircraft is presented.

  20. Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain

    NASA Astrophysics Data System (ADS)

    Massaro, G.; Stiperski, I.; Pospichal, B.; Rotach, M. W.

    2015-03-01

    Within the Innsbruck Box project, a ground-based microwave radiometer (RPG-HATPRO) was operated in the Inn Valley (Austria), in very complex terrain, between September 2012 and May 2013 to obtain temperature and humidity vertical profiles of the full troposphere with a specific focus on the valley boundary layer. The profiles obtained by the radiometer with different retrieval algorithms based on different climatologies, are compared to local radiosonde data. A retrieval that is improved with respect to the one provided by the manufacturer, based on better resolved data, shows a significantly smaller root mean square error (RMSE), both for the temperature and humidity profiles. The improvement is particularly substantial at the heights close to the mountaintop level and in the upper troposphere. Lower level inversions, common in an alpine valley, are resolved to a satisfactory degree. On the other hand, upper level inversions (above 1200 m) still pose a significant challenge for retrieval. For this purpose, specialized retrieval algorithms were developed by classifying the radiosonde climatologies into specialized categories according to different criteria (seasons, daytime, nighttime) and using additional regressors (e.g., measurements from mountain stations). The training and testing on the radiosonde data for these specialized categories suggests that a classification of profiles that reproduces meaningful physical characteristics can yield improved targeted specialized retrievals. A really new and very promising method of improving the profile retrieval in a mountain region is adding further information in the retrieval, such as the surface temperature at fixed levels along a topographic slope or from nearby mountain tops.

  1. The Operational MODIS Cloud Optical and Microphysical Property Product: Overview of the Collection 6 Algorithm and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas

    2012-01-01

    Operational Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cloud optical and microphysical properties (part of the archived products MOD06 and MYD06, for MODIS Terra and Aqua, respectively) are currently being reprocessed along with other MODIS Atmosphere Team products. The latest "Collection 6" processing stream, which is expected to begin production by summer 2012, includes updates to the previous cloud retrieval algorithm along with new capabilities. The 1 km retrievals, based on well-known solar reflectance techniques, include cloud optical thickness, effective particle radius, and water path, as well as thermodynamic phase derived from a combination of solar and infrared tests. Being both global and of high spatial resolution requires an algorithm that is computationally efficient and can perform over all surface types. Collection 6 additions and enhancements include: (i) absolute effective particle radius retrievals derived separately from the 1.6 and 3.7 !-lm bands (instead of differences relative to the standard 2.1 !-lm retrieval), (ii) comprehensive look-up tables for cloud reflectance and emissivity (no asymptotic theory) with a wind-speed interpolated Cox-Munk BRDF for ocean surfaces, (iii) retrievals for both liquid water and ice phases for each pixel, and a subsequent determination of the phase based, in part, on effective radius retrieval outcomes for the two phases, (iv) new ice cloud radiative models using roughened particles with a specified habit, (v) updated spatially-complete global spectral surface albedo maps derived from MODIS Collection 5, (vi) enhanced pixel-level uncertainty calculations incorporating additional radiative error sources including the MODIS L1 B uncertainty index for assessing band and scene-dependent radiometric uncertainties, (v) and use of a new 1 km cloud top pressure/temperature algorithm (also part of MOD06) for atmospheric corrections and low cloud non-unity emissivity temperature adjustments.

  2. Development of a harmonised multi sensor retrieval scheme for HCHO within the Quality Assurance For Essential Climate Variables (QA4ECV) project

    NASA Astrophysics Data System (ADS)

    De Smedt, Isabelle; Richter, Andreas; Beirle, Steffen; Danckaert, Thomas; Van Roozendael, Michel; Yu, Huan; Bösch, Tim; Hilboll, Andreas; Peters, Enno; Doerner, Steffen; Wagner, Thomas; Wang, Yang; Lorente, Alba; Eskes, Henk; Van Geffen, Jos; Boersma, Folkert

    2016-04-01

    One of the main goals of the QA4ECV project is to define community best-practices for the generation of multi-decadal ECV data records from satellite instruments. QA4ECV will develop retrieval algorithms for the Land ECVs surface albedo, leaf area index (LAI), and fraction of active photosynthetic radiation (fAPAR), as well as for the Atmosphere ECV ozone and aerosol precursors nitrogen dioxide (NO2), formaldehyde (HCHO), and carbon monoxide (CO). Here we assess best practices and provide recommendations for the retrieval of HCHO. Best practices are established based on (1) a detailed intercomparison exercise between the QA4ECV partner's for each specific algorithm processing steps, (2) the feasibility of implementation, and (3) the requirement to generate consistent multi-sensor multi-decadal data records. We propose a fitting window covering the 328.5-346 nm spectral interval for the morning sensors (GOME, SCIAMACHY and GOME-2) and an extension to 328.5-359 nm for OMI and GOME-2, allowed by improved quality of the recorded spectra. A high level of consistency between group algorithms is found when the retrieval settings are carefully aligned. However, the retrieval of slant columns is highly sensitive to any change in the selected settings. The use of a mean background radiance as DOAS reference spectrum allows for a stabilization of the retrievals. A background correction based on the reference sector method is recommended for implementation in the QA4ECV HCHO algorithm as it further reduces retrieval uncertainties. HCHO AMFs using different radiative transfer codes show a good overall consistency when harmonized settings are used. As for NO2, it is proposed to use a priori HCHO profiles from the TM5 model. These are provided on a 1°x1° latitude-longitude grid.

  3. Skin Parameter Map Retrieval from a Dedicated Multispectral Imaging System Applied to Dermatology/Cosmetology

    PubMed Central

    2013-01-01

    In vivo quantitative assessment of skin lesions is an important step in the evaluation of skin condition. An objective measurement device can help as a valuable tool for skin analysis. We propose an explorative new multispectral camera specifically developed for dermatology/cosmetology applications. The multispectral imaging system provides images of skin reflectance at different wavebands covering visible and near-infrared domain. It is coupled with a neural network-based algorithm for the reconstruction of reflectance cube of cutaneous data. This cube contains only skin optical reflectance spectrum in each pixel of the bidimensional spatial information. The reflectance cube is analyzed by an algorithm based on a Kubelka-Munk model combined with evolutionary algorithm. The technique allows quantitative measure of cutaneous tissue and retrieves five skin parameter maps: melanin concentration, epidermis/dermis thickness, haemoglobin concentration, and the oxygenated hemoglobin. The results retrieved on healthy participants by the algorithm are in good accordance with the data from the literature. The usefulness of the developed technique was proved during two experiments: a clinical study based on vitiligo and melasma skin lesions and a skin oxygenation experiment (induced ischemia) with healthy participant where normal tissues are recorded at normal state and when temporary ischemia is induced. PMID:24159326

  4. The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for AMSU/MHS observations: description and application to European case studies

    NASA Astrophysics Data System (ADS)

    Sanò, P.; Panegrossi, G.; Casella, D.; Di Paola, F.; Milani, L.; Mugnai, A.; Petracca, M.; Dietrich, S.

    2015-02-01

    The purpose of this study is to describe a new algorithm based on a neural network approach (Passive microwave Neural network Precipitation Retrieval - PNPR) for precipitation rate estimation from AMSU/MHS observations, and to provide examples of its performance for specific case studies over the European/Mediterranean area. The algorithm optimally exploits the different characteristics of Advanced Microwave Sounding Unit-A (AMSU-A) and the Microwave Humidity Sounder (MHS) channels, and their combinations, including the brightness temperature (TB) differences of the 183.31 channels, with the goal of having a single neural network for different types of background surfaces (vegetated land, snow-covered surface, coast and ocean). The training of the neural network is based on the use of a cloud-radiation database, built from cloud-resolving model simulations coupled to a radiative transfer model, representative of the European and Mediterranean Basin precipitation climatology. The algorithm provides also the phase of the precipitation and a pixel-based confidence index for the evaluation of the reliability of the retrieval. Applied to different weather conditions in Europe, the algorithm shows good performance both in the identification of precipitation areas and in the retrieval of precipitation, which is particularly valuable over the extremely variable environmental and meteorological conditions of the region. The PNPR is particularly efficient in (1) screening and retrieval of precipitation over different background surfaces; (2) identification and retrieval of heavy rain for convective events; and (3) identification of precipitation over a cold/iced background, with increased uncertainties affecting light precipitation. In this paper, examples of good agreement of precipitation pattern and intensity with ground-based data (radar and rain gauges) are provided for four different case studies. The algorithm has been developed in order to be easily tailored to new radiometers as they become available (such as the cross-track scanning Suomi National Polar-orbiting Partnership (NPP) Advanced Technology Microwave Sounder (ATMS)), and it is suitable for operational use as it is computationally very efficient. PNPR has been recently extended for applications to the regions of Africa and the South Atlantic, and an extended validation over these regions (using 2 yr of data acquired by the Tropical Rainfall Measuring Mission precipitation radar for comparison) is the subject of a paper in preparation. The PNPR is currently used operationally within the EUMETSAT Hydrology Satellite Application Facility (H-SAF) to provide instantaneous precipitation from passive microwave cross-track scanning radiometers. It undergoes routinely thorough extensive validation over Europe carried out by the H-SAF Precipitation Products Validation Team.

  5. Evaluation of the OMI Cloud Pressures Derived from Rotational Raman Scattering by Comparisons with other Satellite Data and Radiative Transfer Simulations

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander; Joiner, Joanna; Spurr, Robert; Bhartia, Pawan K.; Levelt, Pieternel; Stephens, Graeme

    2009-01-01

    In this paper we examine differences between cloud pressures retrieved from the Ozone Monitoring Instrument (OMI) using the ultraviolet rotational Raman scattering (RRS) algorithm and those from the thermal infrared (IR) Aqua/MODIS. Several cloud data sets are currently being used in OMI trace gas retrieval algorithms including climatologies based on IR measurements and simultaneous cloud parameters derived from OMI. From a validation perspective, it is important to understand the OMI retrieved cloud parameters and how they differ with those derived from the IR. To this end, we perform radiative transfer calculations to simulate the effects of different geophysical conditions on the OMI RRS cloud pressure retrievals. We also quantify errors related to the use of the Mixed Lambert-Equivalent Reflectivity (MLER) concept as currently implemented of the OMI algorithms. Using properties from the Cloudsat radar and MODIS, we show that radiative transfer calculations support the following: (1) The MLER model is adequate for single-layer optically thick, geometrically thin clouds, but can produce significant errors in estimated cloud pressure for optically thin clouds. (2) In a two-layer cloud, the RRS algorithm may retrieve a cloud pressure that is either between the two cloud decks or even beneath the top of the lower cloud deck because of scattering between the cloud layers; the retrieved pressure depends upon the viewing geometry and the optical depth of the upper cloud deck. (3) Absorbing aerosol in and above a cloud can produce significant errors in the retrieved cloud pressure. (4) The retrieved RRS effective pressure for a deep convective cloud will be significantly higher than the physical cloud top pressure derived with thermal IR.

  6. A Simple and Universal Aerosol Retrieval Algorithm for Landsat Series Images Over Complex Surfaces

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Huang, Bo; Sun, Lin; Zhang, Zhaoyang; Wang, Lunche; Bilal, Muhammad

    2017-12-01

    Operational aerosol optical depth (AOD) products are available at coarse spatial resolutions from several to tens of kilometers. These resolutions limit the application of these products for monitoring atmospheric pollutants at the city level. Therefore, a simple, universal, and high-resolution (30 m) Landsat aerosol retrieval algorithm over complex urban surfaces is developed. The surface reflectance is estimated from a combination of top of atmosphere reflectance at short-wave infrared (2.22 μm) and Landsat 4-7 surface reflectance climate data records over densely vegetated areas and bright areas. The aerosol type is determined using the historical aerosol optical properties derived from the local urban Aerosol Robotic Network (AERONET) site (Beijing). AERONET ground-based sun photometer AOD measurements from five sites located in urban and rural areas are obtained to validate the AOD retrievals. Terra MODerate resolution Imaging Spectrometer Collection (C) 6 AOD products (MOD04) including the dark target (DT), the deep blue (DB), and the combined DT and DB (DT&DB) retrievals at 10 km spatial resolution are obtained for comparison purposes. Validation results show that the Landsat AOD retrievals at a 30 m resolution are well correlated with the AERONET AOD measurements (R2 = 0.932) and that approximately 77.46% of the retrievals fall within the expected error with a low mean absolute error of 0.090 and a root-mean-square error of 0.126. Comparison results show that Landsat AOD retrievals are overall better and less biased than MOD04 AOD products, indicating that the new algorithm is robust and performs well in AOD retrieval over complex surfaces. The new algorithm can provide continuous and detailed spatial distributions of AOD during both low and high aerosol loadings.

  7. Using background knowledge for picture organization and retrieval

    NASA Astrophysics Data System (ADS)

    Quintana, Yuri

    1997-01-01

    A picture knowledge base management system is described that is used to represent, organize and retrieve pictures from a frame knowledge base. Experiments with human test subjects were conducted to obtain further descriptions of pictures from news magazines. These descriptions were used to represent the semantic content of pictures in frame representations. A conceptual clustering algorithm is described which organizes pictures not only on the observable features, but also on implicit properties derived from the frame representations. The algorithm uses inheritance reasoning to take into account background knowledge in the clustering. The algorithm creates clusters of pictures using a group similarity function that is based on the gestalt theory of picture perception. For each cluster created, a frame is generated which describes the semantic content of pictures in the cluster. Clustering and retrieval experiments were conducted with and without background knowledge. The paper shows how the use of background knowledge and semantic similarity heuristics improves the speed, precision, and recall of queries processed. The paper concludes with a discussion of how natural language processing of can be used to assist in the development of knowledge bases and the processing of user queries.

  8. Novel Algorithm for Classification of Medical Images

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Juneja, Monika

    2010-11-01

    Content-based image retrieval (CBIR) methods in medical image databases have been designed to support specific tasks, such as retrieval of medical images. These methods cannot be transferred to other medical applications since different imaging modalities require different types of processing. To enable content-based queries in diverse collections of medical images, the retrieval system must be familiar with the current Image class prior to the query processing. Further, almost all of them deal with the DICOM imaging format. In this paper a novel algorithm based on energy information obtained from wavelet transform for the classification of medical images according to their modalities is described. For this two types of wavelets have been used and have been shown that energy obtained in either case is quite distinct for each of the body part. This technique can be successfully applied to different image formats. The results are shown for JPEG imaging format.

  9. Seasonal to Decadal-Scale Variability in Satellite Ocean Color and Sea Surface Temperature for the California Current System

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg; Kahru, Mati; Marra, John (Technical Monitor)

    2002-01-01

    Support for this project was used to develop satellite ocean color and temperature indices (SOCTI) for the California Current System (CCS) using the historic record of CZCS West Coast Time Series (WCTS), OCTS, WiFS and AVHRR SST. The ocean color satellite data have been evaluated in relation to CalCOFI data sets for chlorophyll (CZCS) and ocean spectral reflectance and chlorophyll OCTS and SeaWiFS. New algorithms for the three missions have been implemented based on in-water algorithm data sets, or in the case of CZCS, by comparing retrieved pigments with ship-based observations. New algorithms for absorption coefficients, diffuse attenuation coefficients and primary production have also been evaluated. Satellite retrievals are being evaluated based on our large data set of pigments and optics from CalCOFI.

  10. Land Surface Temperature Measurements form EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1996-01-01

    We have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NE(Delta)T) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4-0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10-12.5 micrometer IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2-3 K. Several issues related to the day/night LST algorithm (uncertainties in the day/night registration and in surface emissivity changes caused by dew occurrence, and the cloud cover) have been investigated. The LST algorithms have been validated with MODIS Airborne Simulator (MAS) dada and ground-based measurement data in two field campaigns conducted in Railroad Valley playa, NV in 1995 and 1996. The MODIS LST version 1 software has been delivered.

  11. New Features of the Collection 4 MODIS LAI and FPAR Product

    NASA Astrophysics Data System (ADS)

    Bin, T.; Yang, W.; Dong, H.; Shabanov, N.; Knyazikhin, Y.; Myneni, R.

    2003-12-01

    An algorithm based on physics of radiative transfer in vegetation canopies for the retrieval of vegetation green leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR) from MODIS surface reflectance data was developed, prototyped and is in operational production at NASA computing facilities since June 2000. This poster highlights recent changes in the operational MODIS LAI and FPAR algorithm introduced for collection 4 data reprocessing. The changes to the algorithm are targeted to improve agreement of retrieved LAI and FPAR with corresponding field measurements, improve consistency of Quality Control (QC) definitions and miscellaneous bug fixes as summarized below. * Improvement of LUTs for the main and back-up algorithms for biomes 1 and 3. Benefits: a) increase in quality of retrievals; b) non-physical peaks in the global LAI distribution have been removed; c) improved agreement with field measurements * Improved QA scheme. Benefits: a) consistency between MODLAND and SCF quality flags has been achieved; b)ambiguity in QA has been resolved * New 8-day compositing scheme. Benefits: a) compositing over best quality retrievals, instead of all retrievals; b) lowers LAI values, decreases saturation and number of pixels generated by the back-up * At-launch static IGBP land cover, input to the LAI/FPAR algorithm, was replaced with the MODIS land cover map. Benefits: a) crosswalking of 17 classes IGBP scheme to 6-biome LC has been eliminated; b) uncertainties in the MODIS LAI/FPAR product due to uncertainties in land cover map have been reduced

  12. Improved parallel data partitioning by nested dissection with applications to information retrieval.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Michael M.; Chevalier, Cedric; Boman, Erik Gunnar

    The computational work in many information retrieval and analysis algorithms is based on sparse linear algebra. Sparse matrix-vector multiplication is a common kernel in many of these computations. Thus, an important related combinatorial problem in parallel computing is how to distribute the matrix and the vectors among processors so as to minimize the communication cost. We focus on minimizing the total communication volume while keeping the computation balanced across processes. In [1], the first two authors presented a new 2D partitioning method, the nested dissection partitioning algorithm. In this paper, we improve on that algorithm and show that it ismore » a good option for data partitioning in information retrieval. We also show partitioning time can be substantially reduced by using the SCOTCH software, and quality improves in some cases, too.« less

  13. Development and application of a probability distribution retrieval scheme to the remote sensing of clouds and precipitation

    NASA Astrophysics Data System (ADS)

    McKague, Darren Shawn

    2001-12-01

    The statistical properties of clouds and precipitation on a global scale are important to our understanding of climate. Inversion methods exist to retrieve the needed cloud and precipitation properties from satellite data pixel-by-pixel that can then be summarized over large data sets to obtain the desired statistics. These methods can be quite computationally expensive, and typically don't provide errors on the statistics. A new method is developed to directly retrieve probability distributions of parameters from the distribution of measured radiances. The method also provides estimates of the errors on the retrieved distributions. The method can retrieve joint distributions of parameters that allows for the study of the connection between parameters. A forward radiative transfer model creates a mapping from retrieval parameter space to radiance space. A Monte Carlo procedure uses the mapping to transform probability density from the observed radiance histogram to a two- dimensional retrieval property probability distribution function (PDF). An estimate of the uncertainty in the retrieved PDF is calculated from random realizations of the radiance to retrieval parameter PDF transformation given the uncertainty of the observed radiances, the radiance PDF, the forward radiative transfer, the finite number of prior state vectors, and the non-unique mapping to retrieval parameter space. The retrieval method is also applied to the remote sensing of precipitation from SSM/I microwave data. A method of stochastically generating hydrometeor fields based on the fields from a numerical cloud model is used to create the precipitation parameter radiance space transformation. The impact of vertical and horizontal variability within the hydrometeor fields has a significant impact on algorithm performance. Beamfilling factors are computed from the simulated hydrometeor fields. The beamfilling factors vary quite a bit depending upon the horizontal structure of the rain. The algorithm is applied to SSM/I images from the eastern tropical Pacific and is compared to PDFs of rain rate computed using pixel-by-pixel retrievals from Wilheit and from Liu and Curry. Differences exist between the three methods, but good general agreement is seen between the PDF retrieval algorithm and the algorithm of Liu and Curry. (Abstract shortened by UMI.)

  14. Scatter-Reducing Sounding Filtration Using a Genetic Algorithm and Mean Monthly Standard Deviation

    NASA Technical Reports Server (NTRS)

    Mandrake, Lukas

    2013-01-01

    Retrieval algorithms like that used by the Orbiting Carbon Observatory (OCO)-2 mission generate massive quantities of data of varying quality and reliability. A computationally efficient, simple method of labeling problematic datapoints or predicting soundings that will fail is required for basic operation, given that only 6% of the retrieved data may be operationally processed. This method automatically obtains a filter designed to reduce scatter based on a small number of input features. Most machine-learning filter construction algorithms attempt to predict error in the CO2 value. By using a surrogate goal of Mean Monthly STDEV, the goal is to reduce the retrieved CO2 scatter rather than solving the harder problem of reducing CO2 error. This lends itself to improved interpretability and performance. This software reduces the scatter of retrieved CO2 values globally based on a minimum number of input features. It can be used as a prefilter to reduce the number of soundings requested, or as a post-filter to label data quality. The use of the MMS (Mean Monthly Standard deviation) provides a much cleaner, clearer filter than the standard ABS(CO2-truth) metrics previously employed by competitor methods. The software's main strength lies in a clearer (i.e., fewer features required) filter that more efficiently reduces scatter in retrieved CO2 rather than focusing on the more complex (and easily removed) bias issues.

  15. Evaluating the Height of Biomass Burning Smoke Aerosols Retrieved from Synergistic Use of Multiple Satellite Sensors Over Southeast Asia

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae; Tsay, Si-Chee; Welton, Ellsworth J.; Wang, Sheng-Hsiang; Chen, Wei-Nai

    2016-01-01

    This study evaluates the height of biomass burning smoke aerosols retrieved from a combined use of Visible Infrared Imaging Radiometer Suite (VIIRS), Ozone Mapping and Profiler Suite (OMPS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The retrieved heights are compared against space borne and ground-based lidar measurements during the peak biomass burning season (March and April) over Southeast Asia from 2013 to 2015. Based on the comparison against CALIOP, a quality assurance (QA) procedure is developed. It is found that 74 (8184) of the retrieved heights fall within 1 km of CALIOP observations for unfiltered (QA-filtered) data, with root-mean-square error (RMSE) of 1.1 km (0.81.0 km). Eliminating the requirement of CALIOP observations from the retrieval process significantly increases the temporal coverage with only a slight decrease in the retrieval accuracy; for best QA data, 64 of data fall within 1 km of CALIOP observations with RMSE of 1.1 km. When compared with Micro-Pulse Lidar Network (MPLNET) measurements deployed at Doi Ang Khang, Thailand, the retrieved heights show RMSE of 1.7 km (1.1 km) for unfiltered (QA-filtered) data for the complete algorithm, and 0.9 km (0.8 km) for the simplified algorithm.

  16. Satellite Retrieval of Atmospheric Water Budget over Gulf of Mexico- Caribbean Basin: Seasonal Variability

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Santos, Pablo; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5 Imager and the DMSP 7-channel passive microwave radiometer (SSM/I) have been acquired for the Gulf of Mexico-Caribbean Sea basin. Whereas the methodology is being tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the SSM/I passive microwave signals in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, we have sought to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is partly validated by first cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. More fundamental validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithm to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin. Total columnar atmospheric water budget results will be presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98, October-98, and January-1999. These results are used to emphasize the changing relationship in E-P, as well as in the varying roles of storage and advection in balancing E-P both on daily and monthly time scales and on localized and basin space scales. Results from the algorithm-to-algorithm intercomparisons will also be presented in the context of sensitivity testing to help understand the intrinsic uncertainties in the water budget terms.

  17. Annotating image ROIs with text descriptions for multimodal biomedical document retrieval

    NASA Astrophysics Data System (ADS)

    You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-01-01

    Regions of interest (ROIs) that are pointed to by overlaid markers (arrows, asterisks, etc.) in biomedical images are expected to contain more important and relevant information than other regions for biomedical article indexing and retrieval. We have developed several algorithms that localize and extract the ROIs by recognizing markers on images. Cropped ROIs then need to be annotated with contents describing them best. In most cases accurate textual descriptions of the ROIs can be found from figure captions, and these need to be combined with image ROIs for annotation. The annotated ROIs can then be used to, for example, train classifiers that separate ROIs into known categories (medical concepts), or to build visual ontologies, for indexing and retrieval of biomedical articles. We propose an algorithm that pairs visual and textual ROIs that are extracted from images and figure captions, respectively. This algorithm based on dynamic time warping (DTW) clusters recognized pointers into groups, each of which contains pointers with identical visual properties (shape, size, color, etc.). Then a rule-based matching algorithm finds the best matching group for each textual ROI mention. Our method yields a precision and recall of 96% and 79%, respectively, when ground truth textual ROI data is used.

  18. Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project

    NASA Astrophysics Data System (ADS)

    De Smedt, Isabelle; Theys, Nicolas; Yu, Huan; Danckaert, Thomas; Lerot, Christophe; Compernolle, Steven; Van Roozendael, Michel; Richter, Andreas; Hilboll, Andreas; Peters, Enno; Pedergnana, Mattia; Loyola, Diego; Beirle, Steffen; Wagner, Thomas; Eskes, Henk; van Geffen, Jos; Folkert Boersma, Klaas; Veefkind, Pepijn

    2018-04-01

    On board the Copernicus Sentinel-5 Precursor (S5P) platform, the TROPOspheric Monitoring Instrument (TROPOMI) is a double-channel, nadir-viewing grating spectrometer measuring solar back-scattered earthshine radiances in the ultraviolet, visible, near-infrared, and shortwave infrared with global daily coverage. In the ultraviolet range, its spectral resolution and radiometric performance are equivalent to those of its predecessor OMI, but its horizontal resolution at true nadir is improved by an order of magnitude. This paper introduces the formaldehyde (HCHO) tropospheric vertical column retrieval algorithm implemented in the S5P operational processor and comprehensively describes its various retrieval steps. Furthermore, algorithmic improvements developed in the framework of the EU FP7-project QA4ECV are described for future updates of the processor. Detailed error estimates are discussed in the light of Copernicus user requirements and needs for validation are highlighted. Finally, verification results based on the application of the algorithm to OMI measurements are presented, demonstrating the performances expected for TROPOMI.

  19. Conjugate gradient method for phase retrieval based on the Wirtinger derivative.

    PubMed

    Wei, Zhun; Chen, Wen; Qiu, Cheng-Wei; Chen, Xudong

    2017-05-01

    A conjugate gradient Wirtinger flow (CG-WF) algorithm for phase retrieval is proposed in this paper. It is shown that, compared with recently reported Wirtinger flow and its modified methods, the proposed CG-WF algorithm is able to dramatically accelerate the convergence rate while keeping the dominant computational cost of each iteration unchanged. We numerically illustrate the effectiveness of our method in recovering 1D Gaussian signals and 2D natural color images under both Gaussian and coded diffraction pattern models.

  20. Algorithms and sensitivity analyses for Stratospheric Aerosol and Gas Experiment II water vapor retrieval

    NASA Technical Reports Server (NTRS)

    Chu, W. P.; Chiou, E. W.; Larsen, J. C.; Thomason, L. W.; Rind, D.; Buglia, J. J.; Oltmans, S.; Mccormick, M. P.; Mcmaster, L. M.

    1993-01-01

    The operational inversion algorithm used for the retrieval of the water-vapor vertical profiles from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation data is presented. Unlike the algorithm used for the retrieval of aerosol, O3, and NO2, the water-vapor retrieval algorithm accounts for the nonlinear relationship between the concentration versus the broad-band absorption characteristics of water vapor. Problems related to the accuracy of the computational scheme, the accuracy of the removal of other interfering species, and the expected uncertainty of the retrieved profile are examined. Results are presented on the error analysis of the SAGE II water vapor retrieval, indicating that the SAGE II instrument produced good quality water vapor data.

  1. A graph-based approach for the retrieval of multi-modality medical images.

    PubMed

    Kumar, Ashnil; Kim, Jinman; Wen, Lingfeng; Fulham, Michael; Feng, Dagan

    2014-02-01

    In this paper, we address the retrieval of multi-modality medical volumes, which consist of two different imaging modalities, acquired sequentially, from the same scanner. One such example, positron emission tomography and computed tomography (PET-CT), provides physicians with complementary functional and anatomical features as well as spatial relationships and has led to improved cancer diagnosis, localisation, and staging. The challenge of multi-modality volume retrieval for cancer patients lies in representing the complementary geometric and topologic attributes between tumours and organs. These attributes and relationships, which are used for tumour staging and classification, can be formulated as a graph. It has been demonstrated that graph-based methods have high accuracy for retrieval by spatial similarity. However, naïvely representing all relationships on a complete graph obscures the structure of the tumour-anatomy relationships. We propose a new graph structure derived from complete graphs that structurally constrains the edges connected to tumour vertices based upon the spatial proximity of tumours and organs. This enables retrieval on the basis of tumour localisation. We also present a similarity matching algorithm that accounts for different feature sets for graph elements from different imaging modalities. Our method emphasises the relationships between a tumour and related organs, while still modelling patient-specific anatomical variations. Constraining tumours to related anatomical structures improves the discrimination potential of graphs, making it easier to retrieve similar images based on tumour location. We evaluated our retrieval methodology on a dataset of clinical PET-CT volumes. Our results showed that our method enabled the retrieval of multi-modality images using spatial features. Our graph-based retrieval algorithm achieved a higher precision than several other retrieval techniques: gray-level histograms as well as state-of-the-art methods such as visual words using the scale- invariant feature transform (SIFT) and relational matrices representing the spatial arrangements of objects. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Assessment of diverse algorithms applied on MODIS Aqua and Terra data over land surfaces in Europe

    NASA Astrophysics Data System (ADS)

    Glantz, P.; Tesche, M.

    2012-04-01

    Beside an increase of greenhouse gases (e.g., carbon dioxide, methane and nitrous oxide) human activities (for instance fossil fuel and biomass burning) have lead to perturbation of the atmospheric content of aerosol particles. Aerosols exhibits high spatial and temporal variability in the atmosphere. Therefore, aerosol investigation for climate research and environmental control require the identification of source regions, their strength and aerosol type, which can be retrieved based on space-borne observations. The aim of the present study is to validate and evaluate AOT (aerosol optical thickness) and Ångström exponent, obtained with the SAER (Satellite AErosol Retrieval) algorithm for MODIS (MODerate resolution Imaging Spectroradiometer) Aqua and Terra calibrated level 1 data (1 km horizontal resolution at ground), against AERONET (AErosol RObotic NETwork) observations and MODIS Collection 5 (c005) standard product retrievals (10 km), respectively, over land surfaces in Europe for the seasons; early spring (period 1), mid spring (period 2) and summer (period 3). For several of the cases analyzed here the Aqua and Terra satellites passed the investigation area twice during a day. Thus, beside a variation in the sun elevation the satellite aerosol retrievals have also on a daily basis been performed with a significant variation in the satellite-viewing geometry. An inter-comparison of the two algorithms has also been performed. The validation with AERONET shows that the MODIS c005 retrieved AOT is, for the wavelengths 0.469 and 0.500 nm, on the whole within the expected uncertainty for one standard deviation of the MODIS retrievals over Europe (Δτ = ±0.05 ± 0.15τ). The SAER estimated AOT for the wavelength 0.443 nm also agree reasonable well with AERONET. Thus, the majority of the SAER AOT values are within the MODIS expected uncertainty range, although somewhat larger RMSD (root mean square deviation) occurs compared to the results obtained with the MODIS c005 algorithm. The discrepancy between SAERand AERONET AOT is, however, substantially larger for the wavelength 488 nm, which means that several of the AOT values are without the MODIS expected uncertainty range. Both algorithms are unable to estimate Ångström exponent accurately, although the MODIS c005 algorithm performs a better job. Based on the inter-comparison of the SAER and MODIS c005 algorithms it was found here that the former estimation of AOT is for values up to 1on the whole within the expected uncertainties for one standard deviation of the MODIS retrievals, considering both Aqua and Terra and periods 1 and 3. The latter also occurs for Aqua and period 2, while then for AOT values lower than 0.5. The present algorithms were, beside aerosols emitted from clean sources and continental sources in Europe, also applied with favor on aerosol particles transported from agricultural fires in Russia and Ukraine. The latter events were associated with high aerosol loadings, although probably with similar single scattering albedo as the days classified as clean. We also present observations performed with space borne and ground-based lidars in the area investigated. From the latter platforms the vertical distribution of aerosol extinction in the atmosphere can be measured. This study suggests that the present satellite retrievals of AOT, particularly obtained with the MODIS c005 algorithm, will, in combination with the lidar measurements, be very useful in validation of regional and climate models over Europe.

  3. Retrieval of NO2 stratospheric profiles from ground-based zenith-sky uv-visible measurements at 60°N

    NASA Astrophysics Data System (ADS)

    Hendrick, F.; van Roozendael, M.; Lambert, J.-C.; Fayt, C.; Hermans, C.; de Mazière, M.

    2003-04-01

    Nitrogen dioxide (NO_2) plays an important role in controlling ozone abundances in the stratosphere, either directly through the NOx (NO+NO_2) catalytic cycle, either indirectly by reaction with the radical ClO to form the reservoir species ClONO_2. In this presentation, NO_2 stratospheric profiles are retrieved from ground-based UV-visible NO_2 slant column abundances measured since 1998 at the complementary NDSC station of Harestua (Norway, 60^oN). The retrieval algorithm is based on the Rodgers optimal estimation inversion method and a forward model consisting in the IASB-BIRA stacked box photochemical model PSCBOX coupled to the radiative transfer package UVspec/DISORT. This algorithm has been applied to a set of about 50 sunrises and sunsets for which spatially and temporally coincident NO_2 measurements made by the HALOE (Halogen Occultation Experiment) instrument on board the Upper Atmosphere Research Satellite (UARS) are available. The consistency between retrieved and HALOE profiles is discussed in term of the different seasonal conditions investigated which are spring with and without chlorine activation, summer, and fall.

  4. Comparative Results of AIRS AMSU and CrIS/ATMS Retrievals Using a Scientifically Equivalent Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2016-01-01

    The AIRS Science Team Version 6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRSAMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrISATMS is the only scheduled follow on to AIRSAMSU. The objective of this research is to prepare for generation of a long term CrISATMS level-3 data using a finalized retrieval algorithm that is scientifically equivalent to AIRSAMSU Version-7.

  5. Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

    NASA Technical Reports Server (NTRS)

    Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.

    2011-01-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

  6. CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations

    NASA Astrophysics Data System (ADS)

    Mugnai, A.; Smith, E. A.; Tripoli, G. J.; Bizzarri, B.; Casella, D.; Dietrich, S.; Di Paola, F.; Panegrossi, G.; Sanò, P.

    2013-04-01

    Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters) over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW) radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome), and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD) algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR) algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale), and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are provided including a few examples of their performance. This aspect of the development of the two algorithms is placed in the context of what we refer to as the TRMM era, which is the era denoting the active and ongoing period of the Tropical Rainfall Measuring Mission (TRMM) that helped inspire their original development. In 2015, the ISAC-Rome precipitation algorithms will undergo a transformation beginning with the upcoming Global Precipitation Measurement (GPM) mission, particularly the GPM Core Satellite technologies. A few years afterward, the first pair of imaging and sounding Meteosat Third Generation (MTG) satellites will be launched, providing additional technological advances. Various of the opportunities presented by the GPM Core and MTG satellites for improving the current CDRD and PNPR precipitation retrieval algorithms, as well as extending their product capability, are discussed.

  7. Investigating the Use of a Simplified Aerosol Parameterization in Space-Based XCO2 Retrievals from OCO-2

    NASA Astrophysics Data System (ADS)

    Nelson, R. R.; O'Dell, C.

    2017-12-01

    The primary goal of OCO-2 is to use hyperspectral measurements of reflected near-infrared sunlight to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) with high accuracy. This is only possible for measurements of scenes nearly free of optically thick clouds and aerosols. As some cloud or aerosol contamination will always be present, the OCO-2 retrieval algorithm includes clouds and aerosols as retrieved properties in its state vector. Information content analyses demonstrate that there are only 2-6 pieces of information about aerosols in the OCO-2 radiances. However, the upcoming OCO-2 algorithm (B8) attempts to retrieve 9 aerosol parameters; this over-fitting can hinder convergence and produce multiple solutions. In this work, we develop a simplified cloud and aerosol parameterization that intelligently reduces the number of retrieved parameters to 5 by only retrieving information about two aerosol layers: a lower tropospheric layer and an upper tropospheric / stratospheric layer. We retrieve the optical depth of each layer and the height of the lower tropospheric layer. Each of these layers contains a mixture of fine and coarse mode aerosol. In comparisons between OCO-2 XCO2 estimates and validation sources including TCCON, this scheme performs about as well as the more complicated OCO-2 retrieval algorithm, but has the potential benefits of more interpretable aerosol results, faster convergence, less nonlinearity, and greater throughput. We also investigate the dependence of our results on the optical properties of the fine and coarse mode aerosol types, such as their effective radii and the environmental relative humidity.

  8. Design of Content Based Image Retrieval Scheme for Diabetic Retinopathy Images using Harmony Search Algorithm.

    PubMed

    Sivakamasundari, J; Natarajan, V

    2015-01-01

    Diabetic Retinopathy (DR) is a disorder that affects the structure of retinal blood vessels due to long-standing diabetes mellitus. Automated segmentation of blood vessel is vital for periodic screening and timely diagnosis. An attempt has been made to generate continuous retinal vasculature for the design of Content Based Image Retrieval (CBIR) application. The typical normal and abnormal retinal images are preprocessed to improve the vessel contrast. The blood vessels are segmented using evolutionary based Harmony Search Algorithm (HSA) combined with Otsu Multilevel Thresholding (MLT) method by best objective functions. The segmentation results are validated with corresponding ground truth images using binary similarity measures. The statistical, textural and structural features are obtained from the segmented images of normal and DR affected retina and are analyzed. CBIR in medical image retrieval applications are used to assist physicians in clinical decision-support techniques and research fields. A CBIR system is developed using HSA based Otsu MLT segmentation technique and the features obtained from the segmented images. Similarity matching is carried out between the features of query and database images using Euclidean Distance measure. Similar images are ranked and retrieved. The retrieval performance of CBIR system is evaluated in terms of precision and recall. The CBIR systems developed using HSA based Otsu MLT and conventional Otsu MLT methods are compared. The retrieval performance such as precision and recall are found to be 96% and 58% for CBIR system using HSA based Otsu MLT segmentation. This automated CBIR system could be recommended for use in computer assisted diagnosis for diabetic retinopathy screening.

  9. Retrieval of Aerosol Microphysical Properties from AERONET Photo-Polarimetric Measurements. 2: A New Research Algorithm and Case Demonstration

    NASA Technical Reports Server (NTRS)

    Xu, Xiaoguang; Wang, Jun; Zeng, Jing; Spurr, Robert; Liu, Xiong; Dubovik, Oleg; Li, Li; Li, Zhengqiang; Mishchenko, Michael I.; Siniuk, Aliaksandr; hide

    2015-01-01

    A new research algorithm is presented here as the second part of a two-part study to retrieve aerosol microphysical properties from the multispectral and multiangular photopolarimetric measurements taken by Aerosol Robotic Network's (AERONET's) new-generation Sun photometer. The algorithm uses an advanced UNified and Linearized Vector Radiative Transfer Model and incorporates a statistical optimization approach.While the new algorithmhas heritage from AERONET operational inversion algorithm in constraining a priori and retrieval smoothness, it has two new features. First, the new algorithmretrieves the effective radius, effective variance, and total volume of aerosols associated with a continuous bimodal particle size distribution (PSD) function, while the AERONET operational algorithm retrieves aerosol volume over 22 size bins. Second, our algorithm retrieves complex refractive indices for both fine and coarsemodes,while the AERONET operational algorithm assumes a size-independent aerosol refractive index. Mode-resolved refractive indices can improve the estimate of the single-scattering albedo (SSA) for each aerosol mode and thus facilitate the validation of satellite products and chemistry transport models. We applied the algorithm to a suite of real cases over Beijing_RADI site and found that our retrievals are overall consistent with AERONET operational inversions but can offer mode-resolved refractive index and SSA with acceptable accuracy for the aerosol composed by spherical particles. Along with the retrieval using both radiance and polarization, we also performed radiance-only retrieval to demonstrate the improvements by adding polarization in the inversion. Contrast analysis indicates that with polarization, retrieval error can be reduced by over 50% in PSD parameters, 10-30% in the refractive index, and 10-40% in SSA, which is consistent with theoretical analysis presented in the companion paper of this two-part study.

  10. Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain

    NASA Astrophysics Data System (ADS)

    Massaro, G.; Stiperski, I.; Pospichal, B.; Rotach, M. W.

    2015-08-01

    Within the Innsbruck Box project, a ground-based microwave radiometer (RPG-HATPRO) was operated in the Inn Valley (Austria), in very complex terrain, between September 2012 and May 2013 to obtain temperature and humidity vertical profiles of the full troposphere with a specific focus on the valley boundary layer. In order to assess its performance in a deep alpine valley, the profiles obtained by the radiometer with different retrieval algorithms based on different climatologies are compared to local radiosonde data. A retrieval that is improved with respect to the one provided by the manufacturer, based on better resolved data, shows a significantly smaller root mean square error (RMSE), both for the temperature and humidity profiles. The improvement is particularly substantial at the heights close to the mountaintop level and in the upper troposphere. Lower-level inversions, common in an alpine valley, are resolved to a satisfactory degree. On the other hand, upper-level inversions (above 1200 m) still pose a significant challenge for retrieval. For this purpose, specialized retrieval algorithms were developed by classifying the radiosonde climatologies into specialized categories according to different criteria (seasons, daytime, nighttime) and using additional regressors (e.g., measurements from mountain stations). The training and testing on the radiosonde data for these specialized categories suggests that a classification of profiles that reproduces meaningful physical characteristics can yield improved targeted specialized retrievals. A novel and very promising method of improving the profile retrieval in a mountainous region is adding further information in the retrieval, such as the surface temperature at fixed levels along a topographic slope or from nearby mountaintops.

  11. Phase Reconstruction from FROG Using Genetic Algorithms[Frequency-Resolved Optical Gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omenetto, F.G.; Nicholson, J.W.; Funk, D.J.

    1999-04-12

    The authors describe a new technique for obtaining the phase and electric field from FROG measurements using genetic algorithms. Frequency-Resolved Optical Gating (FROG) has gained prominence as a technique for characterizing ultrashort pulses. FROG consists of a spectrally resolved autocorrelation of the pulse to be measured. Typically a combination of iterative algorithms is used, applying constraints from experimental data, and alternating between the time and frequency domain, in order to retrieve an optical pulse. The authors have developed a new approach to retrieving the intensity and phase from FROG data using a genetic algorithm (GA). A GA is a generalmore » parallel search technique that operates on a population of potential solutions simultaneously. Operators in a genetic algorithm, such as crossover, selection, and mutation are based on ideas taken from evolution.« less

  12. Development of GK-2A cloud optical and microphysical properties retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Yum, S. S.; Um, J.

    2017-12-01

    Cloud and aerosol radiative forcing is known to be one of the the largest uncertainties in climate change prediction. To reduce this uncertainty, remote sensing observation of cloud radiative and microphysical properties have been used since 1970s and the corresponding remote sensing techniques and instruments have been developed. As a part of such effort, Geo-KOMPSAT-2A (Geostationary Korea Multi-Purpose Satellite-2A, GK-2A) will be launched in 2018. On the GK-2A, the Advanced Meteorological Imager (AMI) is primary instrument which have 3 visible, 3 near-infrared, and 10 infrared channels. To retrieve optical and microphysical properties of clouds using AMI measurements, the preliminary version of new cloud retrieval algorithm for GK-2A was developed and several validation tests were conducted. This algorithm retrieves cloud optical thickness (COT), cloud effective radius (CER), liquid water path (LWP), and ice water path (IWP), so we named this algorithm as Daytime Cloud Optical thickness, Effective radius and liquid and ice Water path (DCOEW). The DCOEW uses cloud reflectance at visible and near-infrared channels as input data. An optimal estimation (OE) approach that requires appropriate a-priori values and measurement error information is used to retrieve COT and CER. LWP and IWP are calculated using empirical relationships between COT/CER and cloud water path that were determined previously. To validate retrieved cloud properties, we compared DCOEW output data with other operational satellite data. For COT and CER validation, we used two different data sets. To compare algorithms that use cloud reflectance at visible and near-IR channels as input data, MODIS MYD06 cloud product was selected. For the validation with cloud products that are based on microwave measurements, COT(2B-TAU)/CER(2C-ICE) data retrieved from CloudSat cloud profiling radar (W-band, 94 GHz) was used. For cloud water path validation, AMSR-2 Level-3 Cloud liquid water data was used. Detailed results will be shown at the conference.

  13. SSM/I Rain Retrievals Within a Unified All-Weather Ocean Algorithm

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Spencer, Roy W.

    1996-01-01

    A new method for the physical retrieval of rain rates from satellite microwave radiometers is presented and compared to two other rainfall climatologies derived from satellites. The method is part of a unified ocean parameter retrieval algorithm that is based on the fundamental principles of radiative transfer. The algorithm simultaneously finds near-surface wind speed W, columnar water vapor V, columnar cloud liquid water L, rain rate R, and effective radiating temperature T(sub U) for the upwelling radiation. The performance of the algorithm in the absence of rain is discussed in Wentz, and this paper focuses on the rain component of the algorithm. A particular strength of the unified algorithm is its ability to 'orthogonalize' the retrievals so that there is minimum cross-talk between the retrieved parameters. For example, comparisons of the retrieved water vapor with radiosonde observations show that there is very little correlation between the water vapor retrieval error and rain rate. For rain rates from 1 to 15 mm/h, the rms difference between the retrieved water vapor and the radiosonde value is 5 mm. A novel feature of the rain retrieval method is a beamfilling correction that is based upon the ratio of the retrieved liquid water absorption coefficients at 37 GHz and 19.35 GHz. This ratio decreases by about 40% when heavy and light rain co-exist within the SSM/I footprint as compared to the case of uniform rain. This correction has the effect of increasing the rain rate when the spectral ratio of the absorption coefficients is small. Even with this beamfilling correction, tropical rainfall is still unrealistically low when the freezing level in the tropics (approx. 5 km) is used to specify the rain layer thickness. We restore realism by reducing the assumed averaged tropical rain layer thickness to 3 km, thereby accounting for the existence of warm rain processes in which the rain layer does not extend to the freezing level. Global rain rates are produced for the 1991 through 1994 period from observations taken by microwave radiometers (SSM/I) that are aboard two polar-orbiting satellites. We find that approximately 6% of the SSM/I observations detect measurable rain rates (R greater than 0.2 mm/h). Zonal averages of the rain rates show the peak at the intertropical convergence zone (ITCZ) is quite narrow in meridional extent and varies from about 7 mm/day in the winter to a maximum 11 mm/day in the summer. Very low precipitation rates (less than 0.3 mm/day) are observed in those areas of subsidence influenced by the large semipermanent anticyclones. In general, these features are similar to those reported in previously published rain climatologies. However, significant differences do exists between our rain rates and those produced by Spencer. These differences seem to be related to non-precipitating cloud water.

  14. Comparative Results of AIRS/AMSU and CrIS/ATMS Retrievals Using a Scientifically Equivalent Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2016-01-01

    The AIRS Science Team Version-6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRS/AMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrIS/ATMS is the only scheduled follow on to AIRS/AMSU. The objective of this research is to prepare for generation of long term CrIS/ATMS CDRs using a retrieval algorithm that is scientifically equivalent to AIRS/AMSU Version-7.

  15. Passive Microwave Precipitation Retrieval Uncertainty Characterized based on Field Campaign Data over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Derin, Y.; Anagnostou, E. N.; Anagnostou, M.; Kalogiros, J. A.; Casella, D.; Marra, A. C.; Panegrossi, G.; Sanò, P.

    2017-12-01

    Difficulties in representation of high rainfall variability over mountainous areas using ground based sensors make satellite remote sensing techniques attractive for hydrologic studies over these regions. Even though satellite-based rainfall measurements are quasi global and available at high spatial resolution, these products have uncertainties that necessitate use of error characterization and correction procedures based upon more accurate in situ rainfall measurements. Such measurements can be obtained from field campaigns facilitated by research quality sensors such as locally deployed weather radar and in situ weather stations. This study uses such high quality and resolution rainfall estimates derived from dual-polarization X-band radar (XPOL) observations from three field experiments in Mid-Atlantic US East Coast (NASA IPHEX experiment), the Olympic Peninsula of Washington State (NASA OLYMPEX experiment), and the Mediterranean to characterize the error characteristics of multiple passive microwave (PMW) sensor retrievals. The study first conducts an independent error analysis of the XPOL radar reference rainfall fields against in situ rain gauges and disdrometer observations available by the field experiments. Then the study evaluates different PMW precipitation products using the XPOL datasets (GR) over the three aforementioned complex terrain study areas. We extracted matchups of PMW/GR rainfall based on a matching methodology that identifies GR volume scans coincident with PMW field-of-view sampling volumes, and scaled GR parameters to the satellite products' nominal spatial resolution. The following PMW precipitation retrieval algorithms are evaluated: the NASA Goddard PROFiling algorithm (GPROF), standard and climatology-based products (V 3, 4 and 5) from four PMW sensors (SSMIS, MHS, GMI, and AMSR2), and the precipitation products based on the algorithms Cloud Dynamics and Radiation Database (CDRD) for SSMIS and Passive microwave Neural network Precipitation Retrieval (PNPR) for AMSU/MHS, developed at ISAC-CNR within the EUMETSAT H-SAF. We will present error analysis results for the different PMW rainfall retrievals and discuss dependences on precipitation type, elevation and precipitation microphysics (derived from XPOL).

  16. Phase retrieval and 3D imaging in gold nanoparticles based fluorescence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh M.; Meir, Rinat; Zalevsky, Zeev

    2017-02-01

    Optical sectioning microscopy can provide highly detailed three dimensional (3D) images of biological samples. However, it requires acquisition of many images per volume, and is therefore time consuming, and may not be suitable for live cell 3D imaging. We propose the use of the modified Gerchberg-Saxton phase retrieval algorithm to enable full 3D imaging of gold nanoparticles tagged sample using only two images. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. The proposed concept is then further enhanced also for tracking of single fluorescent particles within a three dimensional (3D) cellular environment based on image processing algorithms that can significantly increases localization accuracy of the 3D point spread function in respect to regular Gaussian fitting. All proposed concepts are validated both on simulated data as well as experimentally.

  17. APOLLO_NG - a probabilistic interpretation of the APOLLO legacy for AVHRR heritage channels

    NASA Astrophysics Data System (ADS)

    Klüser, L.; Killius, N.; Gesell, G.

    2015-10-01

    The cloud processing scheme APOLLO (AVHRR Processing scheme Over cLouds, Land and Ocean) has been in use for cloud detection and cloud property retrieval since the late 1980s. The physics of the APOLLO scheme still build the backbone of a range of cloud detection algorithms for AVHRR (Advanced Very High Resolution Radiometer) heritage instruments. The APOLLO_NG (APOLLO_NextGeneration) cloud processing scheme is a probabilistic interpretation of the original APOLLO method. It builds upon the physical principles that have served well in the original APOLLO scheme. Nevertheless, a couple of additional variables have been introduced in APOLLO_NG. Cloud detection is no longer performed as a binary yes/no decision based on these physical principles. It is rather expressed as cloud probability for each satellite pixel. Consequently, the outcome of the algorithm can be tuned from being sure to reliably identify clear pixels to conditions of reliably identifying definitely cloudy pixels, depending on the purpose. The probabilistic approach allows retrieving not only the cloud properties (optical depth, effective radius, cloud top temperature and cloud water path) but also their uncertainties. APOLLO_NG is designed as a standalone cloud retrieval method robust enough for operational near-realtime use and for application to large amounts of historical satellite data. The radiative transfer solution is approximated by the same two-stream approach which also had been used for the original APOLLO. This allows the algorithm to be applied to a wide range of sensors without the necessity of sensor-specific tuning. Moreover it allows for online calculation of the radiative transfer (i.e., within the retrieval algorithm) giving rise to a detailed probabilistic treatment of cloud variables. This study presents the algorithm for cloud detection and cloud property retrieval together with the physical principles from the APOLLO legacy it is based on. Furthermore a couple of example results from NOAA-18 are presented.

  18. APOLLO_NG - a probabilistic interpretation of the APOLLO legacy for AVHRR heritage channels

    NASA Astrophysics Data System (ADS)

    Klüser, L.; Killius, N.; Gesell, G.

    2015-04-01

    The cloud processing scheme APOLLO (Avhrr Processing scheme Over cLouds, Land and Ocean) has been in use for cloud detection and cloud property retrieval since the late 1980s. The physics of the APOLLO scheme still build the backbone of a range of cloud detection algorithms for AVHRR (Advanced Very High Resolution Radiometer) heritage instruments. The APOLLO_NG (APOLLO_NextGeneration) cloud processing scheme is a probabilistic interpretation of the original APOLLO method. While building upon the physical principles having served well in the original APOLLO a couple of additional variables have been introduced in APOLLO_NG. Cloud detection is not performed as a binary yes/no decision based on these physical principals but is expressed as cloud probability for each satellite pixel. Consequently the outcome of the algorithm can be tuned from clear confident to cloud confident depending on the purpose. The probabilistic approach allows to retrieving not only the cloud properties (optical depth, effective radius, cloud top temperature and cloud water path) but also their uncertainties. APOLLO_NG is designed as a standalone cloud retrieval method robust enough for operational near-realtime use and for the application with large amounts of historical satellite data. Thus the radiative transfer solution is approximated by the same two stream approach which also had been used for the original APOLLO. This allows the algorithm to be robust enough for being applied to a wide range of sensors without the necessity of sensor-specific tuning. Moreover it allows for online calculation of the radiative transfer (i.e. within the retrieval algorithm) giving rise to a detailed probabilistic treatment of cloud variables. This study presents the algorithm for cloud detection and cloud property retrieval together with the physical principles from the APOLLO legacy it is based on. Furthermore a couple of example results from on NOAA-18 are presented.

  19. On the synergy of SMAP, AMSR2 AND SENTINEL-1 for retrieving soil moisture

    NASA Astrophysics Data System (ADS)

    Santi, E.; Paloscia, S.; Pettinato, S.; Brocca, L.; Ciabatta, L.; Entekhabi, D.

    2018-03-01

    An algorithm for retrieving soil moisture content (SMC) from synergic use of both active and passive microwave acquisitions is presented. The algorithm takes advantage of the integration of microwave data from SMAP, Sentinel-1 and AMSR2 for overcoming the SMAP radar failure and obtaining a SMC product at enhanced resolution (0.1° × 0.1°) and improved accuracy with respect to the original SMAP radiometric SMC product. A disaggregation technique based on the Smoothing filter based intensity modulation (SFIM) allows combining the radiometric and SAR data. Disaggregated microwave data are used as inputs of an Artificial Neural Networks (ANN) based algorithm, which is able to exploit the synergy between active and passive acquisitions. The algorithm is defined, trained and tested using the SMEX02 experimental dataset and data simulated by forward electromagnetic models based on the Radiative Transfer Theory. Then the algorithm is adapted to satellite data and tested using one year of SMAP, AMSR2 and Sentinel-1 co-located data on a flat agricultural area located in the Po Valley, in northern Italy. Spatially distributed SMC values at 0.1° × 0.1° resolution generated by the Soil Water Balance Model (SWBM) are considered as reference for this purpose. The synergy of SMAP, Sentinel-1 and AMSR2 allowed increasing the correlation between estimated and reference SMC from R ≅ 0.68 of the SMAP based retrieval up to R ≅ 0.86 of the combination SMAP + Sentinel-1 + AMSR2. The corresponding Root Mean Square Error (RMSE) decreased from RMSE ≅ 0.04 m3/m3 to RMSE ≅ 0.024 m3/m3.

  20. The Complexity of Bit Retrieval

    DOE PAGES

    Elser, Veit

    2018-09-20

    Bit retrieval is the problem of reconstructing a periodic binary sequence from its periodic autocorrelation, with applications in cryptography and x-ray crystallography. After defining the problem, with and without noise, we describe and compare various algorithms for solving it. A geometrical constraint satisfaction algorithm, relaxed-reflect-reflect, is currently the best algorithm for noisy bit retrieval.

  1. The Complexity of Bit Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elser, Veit

    Bit retrieval is the problem of reconstructing a periodic binary sequence from its periodic autocorrelation, with applications in cryptography and x-ray crystallography. After defining the problem, with and without noise, we describe and compare various algorithms for solving it. A geometrical constraint satisfaction algorithm, relaxed-reflect-reflect, is currently the best algorithm for noisy bit retrieval.

  2. OMI Global Tropospheric Bromine Oxide (BrO) Column Densities: Algorithm, Retrieval and Initial Validation

    NASA Astrophysics Data System (ADS)

    Suleiman, R. M.; Chance, K.; Liu, X.; Kurosu, T. P.; Gonzalez Abad, G.

    2014-12-01

    We present and discuss a detailed description of the retrieval algorithms for the OMI BrO product. The BrO algorithms are based on direct fitting of radiances from 319.0-347.5 nm. Radiances are modeled from the solar irradiance, attenuated and adjusted by contributions from the target gas and interfering gases, rotational Raman scattering, undersampling, additive and multiplicative closure polynomials and a common mode spectrum. The version of the algorithm used for both BrO includes relevant changes with respect to the operational code, including the fit of the O2-O2 collisional complex, updates in the high resolution solar reference spectrum, updates in spectroscopy, an updated Air Mass Factor (AMF) calculation scheme, and the inclusion of scattering weights and vertical profiles in the level 2 products. Updates to the algorithms include accurate scattering weights and air mass factor calculations, scattering weights and profiles in outputs and available cross sections. We include retrieval parameter and window optimization to reduce the interference from O3, HCHO, O2-O2, SO2, improve fitting accuracy and uncertainty, reduce striping, and improve the long-term stability. We validate OMI BrO with ground-based measurements from Harestua and with chemical transport model simulations. We analyze the global distribution and seasonal variation of BrO and investigate BrO emissions from volcanoes and salt lakes.

  3. Validation and Comparison of AATRS AOD L2 Products over China

    NASA Astrophysics Data System (ADS)

    Che, Yahui; Xue, Yong; Guang, Jie; Guo, Jianping; Li, Ying

    2016-04-01

    The Advanced Along-Track Scanning Radiometer (AATSR) aboard on ENVISAT has been used to observe the Earth for more than 10 years since than 2002. One of main applications of AATSR instrument is to observe atmospheric aerosol, especially in retrieval of aerosol optical depth (AOD), taking advantage of its dual-view that helps to separate the contribution of aerosol from top of atmosphere reflectance (A. A. Kokhanovsky and de Leeuw, 2009). The project of Aerosol_CCI, as part of European Space Agency's Climate Change Initiative (CCI), has released new AATSR aerosol AOD products by the of 2015, including the SU v4.21 product from Swansea algorithm, ADV v2.3 product from the ATSR-2/AATSR dual view aerosol retrieval algorithm (ADV) and ORAC v03.04 product from the Oxford-RAL Retrieval of Aerosol and Cloud algorithm. The previous versions of these three AOD level 2 (L2) products in 2008 have been validated over mainland China (Che and Xue, 2015). In this paper, we validated these AATSR AOD products with latest versions in mainland China in 2007, 2008 and 2010 by the means of comparison with the AErosol RObotic NETwork (AERONET) and the China Aerosol Remote Sensing Network (CARSNET). The combination of AERONET and CARSNET helps to make up for the disadvantages of small number and uneven distribution of AEROENT cites. The validation results show different performance of these AOD products over China. The performances of SU and ADV products seem to be the same with close correlation coefficient (CC) about 08~0.9 and root mean square (RMS) within 0.15 in all three years, and sensitive to high AOD values (AOD >1): more AODs and more underestimated. However, these two products do exist difference, which is that the SU algorithm retrieves more high AODs, leading to more space-time validation matches with ground-based data. The ORAC algorithm is different from the others, it can be not only used to retrieve low AODs but also high AODs over different landcover types. Even though ORAC algorithm has ability in retrieving AODs in different values, it shows largest uncertainty in retrieving different AODs.

  4. Aerosol retrieval experiments in the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.; de Leeuw, G.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-03-01

    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010-2013) algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components and their mixing ratios. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data qualitatively by visible analysis of monthly mean AOD maps and quantitatively by comparing global daily gridded satellite data against daily average AERONET sun photometer observations for the different versions of each algorithm. The analysis allowed an assessment of sensitivities of all algorithms which helped define the best algorithm version for the subsequent round robin exercise; all algorithms (except for MERIS) showed some, in parts significant, improvement. In particular, using common aerosol components and partly also a priori aerosol type climatology is beneficial. On the other hand the use of an AATSR-based common cloud mask meant a clear improvement (though with significant reduction of coverage) for the MERIS standard product, but not for the algorithms using AATSR.

  5. Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Kwok, Ron; Kurtz, Nathan T.; Brucker, Ludovic; Ivanoff, Alvaro; Newman, Thomas; Farrell, Sinead L.; King, Joshua; Howell, Stephen; Webster, Melinda A.; Paden, John; Leuschen, Carl; MacGregor, Joseph A.; Richter-Menge, Jacqueline; Harbeck, Jeremy; Tschudi, Mark

    2017-11-01

    Since 2009, the ultra-wideband snow radar on Operation IceBridge (OIB; a NASA airborne mission to survey the polar ice covers) has acquired data in annual campaigns conducted during the Arctic and Antarctic springs. Progressive improvements in radar hardware and data processing methodologies have led to improved data quality for subsequent retrieval of snow depth. Existing retrieval algorithms differ in the way the air-snow (a-s) and snow-ice (s-i) interfaces are detected and localized in the radar returns and in how the system limitations are addressed (e.g., noise, resolution). In 2014, the Snow Thickness On Sea Ice Working Group (STOSIWG) was formed and tasked with investigating how radar data quality affects snow depth retrievals and how retrievals from the various algorithms differ. The goal is to understand the limitations of the estimates and to produce a well-documented, long-term record that can be used for understanding broader changes in the Arctic climate system. Here, we assess five retrieval algorithms by comparisons with field measurements from two ground-based campaigns, including the BRomine, Ozone, and Mercury EXperiment (BROMEX) at Barrow, Alaska; a field program by Environment and Climate Change Canada at Eureka, Nunavut; and available climatology and snowfall from ERA-Interim reanalysis. The aim is to examine available algorithms and to use the assessment results to inform the development of future approaches. We present results from these assessments and highlight key considerations for the production of a long-term, calibrated geophysical record of springtime snow thickness over Arctic sea ice.

  6. [A retrieval method of drug molecules based on graph collapsing].

    PubMed

    Qu, J W; Lv, X Q; Liu, Z M; Liao, Y; Sun, P H; Wang, B; Tang, Z

    2018-04-18

    To establish a compact and efficient hypergraph representation and a graph-similarity-based retrieval method of molecules to achieve effective and efficient medicine information retrieval. Chemical structural formula (CSF) was a primary search target as a unique and precise identifier for each compound at the molecular level in the research field of medicine information retrieval. To retrieve medicine information effectively and efficiently, a complete workflow of the graph-based CSF retrieval system was introduced. This system accepted the photos taken from smartphones and the sketches drawn on tablet personal computers as CSF inputs, and formalized the CSFs with the corresponding graphs. Then this paper proposed a compact and efficient hypergraph representation for molecules on the basis of analyzing factors that directly affected the efficiency of graph matching. According to the characteristics of CSFs, a hierarchical collapsing method combining graph isomorphism and frequent subgraph mining was adopted. There was yet a fundamental challenge, subgraph overlapping during the collapsing procedure, which hindered the method from establishing the correct compact hypergraph of an original CSF graph. Therefore, a graph-isomorphism-based algorithm was proposed to select dominant acyclic subgraphs on the basis of overlapping analysis. Finally, the spatial similarity among graphical CSFs was evaluated by multi-dimensional measures of similarity. To evaluate the performance of the proposed method, the proposed system was firstly compared with Wikipedia Chemical Structure Explorer (WCSE), the state-of-the-art system that allowed CSF similarity searching within Wikipedia molecules dataset, on retrieval accuracy. The system achieved higher values on mean average precision, discounted cumulative gain, rank-biased precision, and expected reciprocal rank than WCSE from the top-2 to the top-10 retrieved results. Specifically, the system achieved 10%, 1.41, 6.42%, and 1.32% higher than WCSE on these metrics for top-10 retrieval results, respectively. Moreover, several retrieval cases were presented to intuitively compare with WCSE. The results of the above comparative study demonstrated that the proposed method outperformed the existing method with regard to accuracy and effectiveness. This paper proposes a graph-similarity-based retrieval approach for medicine information. To obtain satisfactory retrieval results, an isomorphism-based algorithm is proposed for dominant subgraph selection based on the subgraph overlapping analysis, as well as an effective and efficient hypergraph representation of molecules. Experiment results demonstrate the effectiveness of the proposed approach.

  7. The Time Series Technique for Aerosol Retrievals over Land from MODIS: Algorithm MAIAC

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Wang, Yujie

    2008-01-01

    Atmospheric aerosols interact with sun light by scattering and absorbing radiation. By changing irradiance of the Earth surface, modifying cloud fractional cover and microphysical properties and a number of other mechanisms, they affect the energy balance, hydrological cycle, and planetary climate [IPCC, 2007]. In many world regions there is a growing impact of aerosols on air quality and human health. The Earth Observing System [NASA, 1999] initiated high quality global Earth observations and operational aerosol retrievals over land. With the wide swath (2300 km) of MODIS instrument, the MODIS Dark Target algorithm [Kaufman et al., 1997; Remer et al., 2005; Levy et al., 2007] currently complemented with the Deep Blue method [Hsu et al., 2004] provides daily global view of planetary atmospheric aerosol. The MISR algorithm [Martonchik et al., 1998; Diner et al., 2005] makes high quality aerosol retrievals in 300 km swaths covering the globe in 8 days. With MODIS aerosol program being very successful, there are still several unresolved issues in the retrieval algorithms. The current processing is pixel-based and relies on a single-orbit data. Such an approach produces a single measurement for every pixel characterized by two main unknowns, aerosol optical thickness (AOT) and surface reflectance (SR). This lack of information constitutes a fundamental problem of the remote sensing which cannot be resolved without a priori information. For example, MODIS Dark Target algorithm makes spectral assumptions about surface reflectance, whereas the Deep Blue method uses ancillary global database of surface reflectance composed from minimal monthly measurements with Rayleigh correction. Both algorithms use Lambertian surface model. The surface-related assumptions in the aerosol retrievals may affect subsequent atmospheric correction in unintended way. For example, the Dark Target algorithm uses an empirical relationship to predict SR in the Blue (B3) and Red (B1) bands from the 2.1 m channel (B7) for the purpose of aerosol retrieval. Obviously, the subsequent atmospheric correction will produce the same SR in the red and blue bands as predicted, i.e. an empirical function of 2.1. In other words, the spectral, spatial and temporal variability of surface reflectance in the Blue and Red bands appears borrowed from band B7. This may have certain implications for the vegetation and global carbon analysis because the chlorophyll-sensing bands B1, B3 are effectively substituted in terms of variability by band B7, which is sensitive to the plant liquid water. This chapter describes a new recently developed generic aerosol-surface retrieval algorithm for MODIS. The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm simultaneously retrieves AOT and surface bi-directional reflection factor (BRF) using the time series of MODIS measurements.

  8. The Influence of Aerosol Hygroscopicity on Retrieving the Aerosol Extincting Coefficient from MPL Data

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Zhao, C.

    2016-12-01

    Micro-pulse Lidar (MPL) measurements have been widely used to profile the ambient aerosol extincting coefficient(). Lidar Ratio (LR) ,which highly depends on the particle number size distribution (PNSD) and aerosol hygroscopicity, is the most important factor to retrieve the profile. A constant AOD constrained LR is usually used in current algorithms, which would lead to large bias when the relative humidity (RH) in the mixed layer is high. In this research, the influences of PNSD, aerosol hygroscopicity and RH profiles on the vertical variation of LR were investigated based on the datasets from field measurements in the North China Plain (NCP). Results show that LR can have an enhancement factor of more than 120% when the RH reaches to 92%. A new algorithm of retrieving the profile is proposed based on the variation of LR due to aerosol hygroscopicity. The magnitude and vertical structures of retrieved using this method can be significantly different to that of the fiexed LR method. The relative difference can reach up to 40% when the RH in the mixed layer is higher than 90% . Sensitivity studies show that RH profile and PNSD affect most on the retrieved by fiexed LR method. In view of this, a scheme of LR enhancement factor by RH is proposed in the NCP. The relative differnce of the calculated between using this scheme and the new algorithm with the variable LR can be less than 10%.

  9. Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes - Part 1: Algorithm validation

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.

    2015-10-01

    The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical ozone concentrations and ozone layers aloft, especially during air quality episodes. For these reasons, this paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and confirm that it is properly representing ozone concentrations. This paper is focused on ensuring the TROPOZ algorithm is properly quantifying ozone concentrations, and a following paper will focus on a systematic uncertainty analysis. This methodology begins by simulating synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile. This was then systematically performed to identify any areas that need refinement for a new operational version of the TROPOZ retrieval algorithm. One immediate outcome of this exercise was that a bin registration error in the correction for detector saturation within the original retrieval was discovered and was subsequently corrected for. Another noticeable outcome was that the vertical smoothing in the retrieval algorithm was upgraded from a constant vertical resolution to a variable vertical resolution to yield a statistical uncertainty of <10 %. This new and optimized vertical-resolution scheme retains the ability to resolve fluctuations in the known ozone profile, but it now allows near-field signals to be more appropriately smoothed. With these revisions to the previous TROPOZ retrieval, the optimized TROPOZ retrieval algorithm (TROPOZopt) has been effective in retrieving nearly 200 m lower to the surface. Also, as compared to the previous version of the retrieval, the TROPOZopt had an overall mean improvement of 3.5 %, and large improvements (upwards of 10-15 % as compared to the previous algorithm) were apparent between 4.5 and 9 km. Finally, to ensure the TROPOZopt retrieval algorithm is robust enough to handle actual lidar return signals, a comparison is shown between four nearby ozonesonde measurements. The ozonesondes are mostly within the TROPOZopt retrieval uncertainty bars, which implies that this exercise was quite successful.

  10. Hyperspectral retrieval of surface reflectances: A new scheme

    NASA Astrophysics Data System (ADS)

    Thelen, Jean-Claude; Havemann, Stephan

    2013-05-01

    Here, we present a new prototype algorithm for the simultaneous retrieval of the atmospheric profiles (temperature, humidity, ozone and aerosol) and the surface reflectance from hyperspectral radiance measurements obtained from air/space borne, hyperspectral imagers. The new scheme, proposed here, consists of a fast radiative transfer code, based on empirical orthogonal functions (EOFs), in conjunction with a 1D-Var retrieval scheme. The inclusion of an 'exact' scattering code based on spherical harmonics, allows for an accurate treatment of Rayleigh scattering and scattering by aerosols, water droplets and ice-crystals, thus making it possible to also retrieve cloud and aerosol optical properties, although here we will concentrate on non-cloudy scenes.

  11. Qualification of a Null Lens Using Image-Based Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.

    2012-01-01

    In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.

  12. Iterative-Transform Phase Retrieval Using Adaptive Diversity

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A phase-diverse iterative-transform phase-retrieval algorithm enables high spatial-frequency, high-dynamic-range, image-based wavefront sensing. [The terms phase-diverse, phase retrieval, image-based, and wavefront sensing are defined in the first of the two immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] As described below, no prior phase-retrieval algorithm has offered both high dynamic range and the capability to recover high spatial-frequency components. Each of the previously developed image-based phase-retrieval techniques can be classified into one of two categories: iterative transform or parametric. Among the modifications of the original iterative-transform approach has been the introduction of a defocus diversity function (also defined in the cited companion article). Modifications of the original parametric approach have included minimizing alternative objective functions as well as implementing a variety of nonlinear optimization methods. The iterative-transform approach offers the advantage of ability to recover low, middle, and high spatial frequencies, but has disadvantage of having a limited dynamic range to one wavelength or less. In contrast, parametric phase retrieval offers the advantage of high dynamic range, but is poorly suited for recovering higher spatial frequency aberrations. The present phase-diverse iterative transform phase-retrieval algorithm offers both the high-spatial-frequency capability of the iterative-transform approach and the high dynamic range of parametric phase-recovery techniques. In implementation, this is a focus-diverse iterative-transform phaseretrieval algorithm that incorporates an adaptive diversity function, which makes it possible to avoid phase unwrapping while preserving high-spatial-frequency recovery. The algorithm includes an inner and an outer loop (see figure). An initial estimate of phase is used to start the algorithm on the inner loop, wherein multiple intensity images are processed, each using a different defocus value. The processing is done by an iterative-transform method, yielding individual phase estimates corresponding to each image of the defocus-diversity data set. These individual phase estimates are combined in a weighted average to form a new phase estimate, which serves as the initial phase estimate for either the next iteration of the iterative-transform method or, if the maximum number of iterations has been reached, for the next several steps, which constitute the outerloop portion of the algorithm. The details of the next several steps must be omitted here for the sake of brevity. The overall effect of these steps is to adaptively update the diversity defocus values according to recovery of global defocus in the phase estimate. Aberration recovery varies with differing amounts as the amount of diversity defocus is updated in each image; thus, feedback is incorporated into the recovery process. This process is iterated until the global defocus error is driven to zero during the recovery process. The amplitude of aberration may far exceed one wavelength after completion of the inner-loop portion of the algorithm, and the classical iterative transform method does not, by itself, enable recovery of multi-wavelength aberrations. Hence, in the absence of a means of off-loading the multi-wavelength portion of the aberration, the algorithm would produce a wrapped phase map. However, a special aberration-fitting procedure can be applied to the wrapped phase data to transfer at least some portion of the multi-wavelength aberration to the diversity function, wherein the data are treated as known phase values. In this way, a multiwavelength aberration can be recovered incrementally by successively applying the aberration-fitting procedure to intermediate wrapped phase maps. During recovery, as more of the aberration is transferred to the diversity function following successive iterations around the ter loop, the estimated phase ceases to wrap in places where the aberration values become incorporated as part of the diversity function. As a result, as the aberration content is transferred to the diversity function, the phase estimate resembles that of a reference flat.

  13. The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor

    NASA Astrophysics Data System (ADS)

    Loyola, Diego G.; Gimeno García, Sebastián; Lutz, Ronny; Argyrouli, Athina; Romahn, Fabian; Spurr, Robert J. D.; Pedergnana, Mattia; Doicu, Adrian; Molina García, Víctor; Schüssler, Olena

    2018-01-01

    This paper presents the operational cloud retrieval algorithms for the TROPOspheric Monitoring Instrument (TROPOMI) on board the European Space Agency Sentinel-5 Precursor (S5P) mission scheduled for launch in 2017. Two algorithms working in tandem are used for retrieving cloud properties: OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks). OCRA retrieves the cloud fraction using TROPOMI measurements in the ultraviolet (UV) and visible (VIS) spectral regions, and ROCINN retrieves the cloud top height (pressure) and optical thickness (albedo) using TROPOMI measurements in and around the oxygen A-band in the near infrared (NIR). Cloud parameters from TROPOMI/S5P will be used not only for enhancing the accuracy of trace gas retrievals but also for extending the satellite data record of cloud information derived from oxygen A-band measurements, a record initiated with the Global Ozone Monitoring Experiment (GOME) on board the second European Remote-Sensing Satellite (ERS-2) over 20 years ago. The OCRA and ROCINN algorithms are integrated in the S5P operational processor UPAS (Universal Processor for UV/VIS/NIR Atmospheric Spectrometers), and we present here UPAS cloud results using the Ozone Monitoring Instrument (OMI) and GOME-2 measurements. In addition, we examine anticipated challenges for the TROPOMI/S5P cloud retrieval algorithms, and we discuss the future validation needs for OCRA and ROCINN.

  14. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  15. Pre-launch Performance Assessment of the VIIRS Ice Surface Temperature Algorithm

    NASA Astrophysics Data System (ADS)

    Ip, J.; Hauss, B.

    2008-12-01

    The VIIRS Ice Surface Temperature (IST) environmental data product provides the surface temperature of sea-ice at VIIRS moderate resolution (750m) during both day and night. To predict the IST, the retrieval algorithm utilizes a split-window approach with Long-wave Infrared (LWIR) channels at 10.76 μm (M15) and 12.01 μm (M16) to correct for atmospheric water vapor. The split-window approach using these LWIR channels is AVHRR and MODIS heritage, where the MODIS formulation has a slightly modified functional form. The algorithm relies on the VIIRS Cloud Mask IP for identifying cloudy and ocean pixels, the VIIRS Ice Concentration IP for identifying ice pixels, and the VIIRS Aerosol Optical Thickness (AOT) IP for excluding pixels with AOT greater than 1.0. In this paper, we will report the pre-launch performance assessment of the IST retrieval. We have taken two separate approaches to perform this assessment, one based on global synthetic data and the other based on proxy data from Terra MODIS. Results of the split- window algorithm have been assessed by comparison either to synthetic "truth" or results of the MODIS retrieval. We will also show that the results of the assessment with proxy data are consistent with those obtained using the global synthetic data.

  16. Simultaneous retrieval of sea ice thickness and snow depth using concurrent active altimetry and passive L-band remote sensing data

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xu, S.; Liu, J.

    2017-12-01

    The retrieval of sea ice thickness mainly relies on satellite altimetry, and the freeboard measurements are converted to sea ice thickness (hi) under certain assumptions over snow loading. The uncertain in snow depth (hs) is a major source of uncertainty in the retrieved sea ice thickness and total volume for both radar and laser altimetry. In this study, novel algorithms for the simultaneous retrieval of hi and hs are proposed for the data synergy of L-band (1.4 GHz) passive remote sensing and both types of active altimetry: (1) L-band (1.4GHz) brightness temperature (TB) from Soil Moisture Ocean Salinity (SMOS) satellite and sea ice freeboard (FBice) from radar altimetry, (2) L-band TB data and snow freeboard (FBsnow) from laser altimetry. Two physical models serve as the forward models for the retrieval: L-band radiation model, and the hydrostatic equilibrium model. Verification with SMOS and Operational IceBridge (OIB) data is carried out, showing overall good retrieval accuracy for both sea ice parameters. Specifically, we show that the covariability between hs and FBsnow is crucial for the synergy between TB and FBsnow. Comparison with existing algorithms shows lower uncertainty in both sea ice parameters, and that the uncertainty in the retrieved sea ice thickness as caused by that of snow depth is spatially uncorrelated, with the potential reduction of the volume uncertainty through spatial sampling. The proposed algorithms can be applied to the retrieval of sea ice parameters at basin-scale, using concurrent active and passive remote sensing data based on satellites.

  17. Evaluation of MODIS columnar aerosol retrievals using AERONET in semi-arid Nevada and California, U.S.A., during the summer of 2012

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Holmes, Heather A.; Patrick Arnott, W.; Barnard, James C.; Moosmüller, Hans

    2016-11-01

    Satellite characterization of local aerosol pollution is desirable because of the potential for broad spatial coverage, enabling transport studies of pollution from major sources, such as biomass burning events. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging over land because the underlying surface albedo may be heterogeneous in space and time. Ground-based sunphotometer measurements of AOD are unaffected by surface albedo and are crucial in enabling evaluation, testing, and further development of satellite instruments and retrieval algorithms. Columnar aerosol optical properties from ground-based sunphotometers (Cimel CE-318) as part of AERONET and MODIS aerosol retrievals from Aqua and Terra satellites were compared over semi-arid California and Nevada during the summer season of 2012. Sunphotometer measurements were used as a 'ground truth' to evaluate the current state of satellite retrievals in this spatiotemporal domain. Satellite retrieved (MODIS Collection 6) AOD showed the presence of wildfires in northern California during August. During the study period, the dark-target (DT) retrieval algorithm appears to overestimate AERONET AOD by an average factor of 3.85 in the entire study domain. AOD from the deep-blue (DB) algorithm overestimates AERONET AOD by an average factor of 1.64. Low AOD correlation was also found between AERONET, DT, and DB retrievals. Smoke from fires strengthened the aerosol signal, but MODIS versus AERONET AOD correlation hardly increased during fire events (r2∼0.1-0.2 during non-fire periods and r2∼0-0.31 during fire periods). Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD (NMB∼23%-154% for non-fire periods and NMB∼77%-196% for fire periods). Ångström Extinction Exponent (AEE) from DB for both Terra and Aqua did not correlate with AERONET observations. High surface reflectance and incorrect aerosol physical parametrizations may still be affecting the DT and DB MODIS AOD retrievals in the semi-arid western U.S.

  18. Content-based video retrieval by example video clip

    NASA Astrophysics Data System (ADS)

    Dimitrova, Nevenka; Abdel-Mottaleb, Mohamed

    1997-01-01

    This paper presents a novel approach for video retrieval from a large archive of MPEG or Motion JPEG compressed video clips. We introduce a retrieval algorithm that takes a video clip as a query and searches the database for clips with similar contents. Video clips are characterized by a sequence of representative frame signatures, which are constructed from DC coefficients and motion information (`DC+M' signatures). The similarity between two video clips is determined by using their respective signatures. This method facilitates retrieval of clips for the purpose of video editing, broadcast news retrieval, or copyright violation detection.

  19. Recommending Education Materials for Diabetic Questions Using Information Retrieval Approaches.

    PubMed

    Zeng, Yuqun; Liu, Xusheng; Wang, Yanshan; Shen, Feichen; Liu, Sijia; Rastegar-Mojarad, Majid; Wang, Liwei; Liu, Hongfang

    2017-10-16

    Self-management is crucial to diabetes care and providing expert-vetted content for answering patients' questions is crucial in facilitating patient self-management. The aim is to investigate the use of information retrieval techniques in recommending patient education materials for diabetic questions of patients. We compared two retrieval algorithms, one based on Latent Dirichlet Allocation topic modeling (topic modeling-based model) and one based on semantic group (semantic group-based model), with the baseline retrieval models, vector space model (VSM), in recommending diabetic patient education materials to diabetic questions posted on the TuDiabetes forum. The evaluation was based on a gold standard dataset consisting of 50 randomly selected diabetic questions where the relevancy of diabetic education materials to the questions was manually assigned by two experts. The performance was assessed using precision of top-ranked documents. We retrieved 7510 diabetic questions on the forum and 144 diabetic patient educational materials from the patient education database at Mayo Clinic. The mapping rate of words in each corpus mapped to the Unified Medical Language System (UMLS) was significantly different (P<.001). The topic modeling-based model outperformed the other retrieval algorithms. For example, for the top-retrieved document, the precision of the topic modeling-based, semantic group-based, and VSM models was 67.0%, 62.8%, and 54.3%, respectively. This study demonstrated that topic modeling can mitigate the vocabulary difference and it achieved the best performance in recommending education materials for answering patients' questions. One direction for future work is to assess the generalizability of our findings and to extend our study to other disease areas, other patient education material resources, and online forums. ©Yuqun Zeng, Xusheng Liu, Yanshan Wang, Feichen Shen, Sijia Liu, Majid Rastegar Mojarad, Liwei Wang, Hongfang Liu. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 16.10.2017.

  20. 2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance.

    PubMed

    Beltran, M A; Paganin, D M; Uesugi, K; Kitchen, M J

    2010-03-29

    A method of tomographic phase retrieval is developed for multi-material objects whose components each has a distinct complex refractive index. The phase-retrieval algorithm, based on the Transport-of-Intensity equation, utilizes propagation-based X-ray phase contrast images acquired at a single defocus distance for each tomographic projection. The method requires a priori knowledge of the complex refractive index for each material present in the sample, together with the total projected thickness of the object at each orientation. The requirement of only a single defocus distance per projection simplifies the experimental setup and imposes no additional dose compared to conventional tomography. The algorithm was implemented using phase contrast data acquired at the SPring-8 Synchrotron facility in Japan. The three-dimensional (3D) complex refractive index distribution of a multi-material test object was quantitatively reconstructed using a single X-ray phase-contrast image per projection. The technique is robust in the presence of noise, compared to conventional absorption based tomography.

  1. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Retrievals for Tropical and Extra-tropical Environments

    NASA Astrophysics Data System (ADS)

    Lang, S. E.; Tao, W. K.; Iguchi, T.

    2017-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm has been used to estimate cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. However, with the launch of GPM in 2014, the range over which such algorithms can be applied has been extended from the Tropics into higher latitudes, including cold season and synoptic weather systems. In response, the CSH algorithm and its LUTs have been revised both to improve the retrievals in the Tropics as well as expand retrievals to higher latitudes. For the Tropics, the GCE simulations used to build the LUTs were upgraded using larger 2D model domains (512 vs 256 km) and a new, improved Goddard 4-ice scheme as well as expanded with additional cases (4 land and 6 ocean in total). The new tropical LUTs are also re-built using additional metrics. Besides surface type, conditional rain intensity and stratiform fraction, the new LUTs incorporate echo top heights and low-level (0-2 km) vertical reflectivity gradients. CSH retrievals in the Tropics based on the new LUTs show significant differences from previous iterations using TRMM data or the old LUT metrics. For the Extra-tropics, 6 NU-WRF simulations of synoptic events (3 East Coast and 3 West Coast), including snow, were used to build new extra-tropical CSH LUTs. The LUT metrics for the extra-tropics are based on radar characteristics and freezing level height. The extra-tropical retrievals are evaluated with a self-consistency check approach using the model heating as `truth,' and freezing level height is used to transition CSH retrievals from the Tropics to Extra-tropics. Retrieved zonal average heating structures in the Extra-tropics are presented and show distinct differences from those in the Tropics.

  2. Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.; Sullivan, John T.; Liu, Xiong; Newchurch, Mike; Kuang, Shi; McGee, Thomas J.; Langford, Andrew O'Neil; Senff, Christoph J.; Leblanc, Thierry; Berkoff, Timothy; hide

    2016-01-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  3. Evaluating a Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.; Sullivan, John; Liu, Xiong; Newchurch, Mike; Kuang, Shi; McGee, Thomas; Langford, Andrew; Senff, Chris; Leblanc, Thierry; Berkoff, Timothy; hide

    2016-01-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product.TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  4. Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Sullivan, J. T.; Liu, X.; Newchurch, M.; Kuang, S.; McGee, T. J.; Langford, A. O.; Senff, C. J.; Leblanc, T.; Berkoff, T.; Gronoff, G.; Chen, G.; Strawbridge, K. B.

    2016-12-01

    Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.

  5. Retrieval of Ice Cloud Properties Using an Optimal Estimation Algorithm and MODIS Infrared Observations: 2. Retrieval Evaluation

    NASA Technical Reports Server (NTRS)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Wind, Galina; Yang, Ping

    2016-01-01

    An infrared-based optimal estimation (OE-IR) algorithm for retrieving ice cloud properties is evaluated. Specifically, the implementation of the algorithm with MODerate resolution Imaging Spectroradiometer (MODIS) observations is assessed in comparison with the operational retrieval products from MODIS on the Aqua satellite (MYD06), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and the Imaging Infrared Radiometer (IIR); the latter two instruments fly on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the Afternoon Constellation (A-Train) with Aqua. The results show that OE-IR cloud optical thickness (tau) and effective radius (r(sub eff)) retrievals perform best for ice clouds having 0.5 < tau< 7 and r(sub eff) < 50microns. For global ice clouds, the averaged retrieval uncertainties of tau and r(sub eff) are 19% and 33%, respectively. For optically thick ice clouds with tau larger than 10, however, the tau and r(sub eff) retrieval uncertainties can exceed 30% and 50%, respectively. For ice cloud top height (h), the averaged global uncertainty is 0.48km. Relatively large h uncertainty (e.g., > 1km) occurs for tau < 0.5. Analysis of 1month of the OE-IR retrievals shows large tau and r(sub eff) uncertainties in storm track regions and the southern oceans where convective clouds are frequently observed, as well as in high-latitude regions where temperature differences between the surface and cloud top are more ambiguous. Generally, comparisons between the OE-IR and the operational products show consistent tau and h retrievals. However, obvious differences between the OE-IR and the MODIS Collection 6 r(sub eff) are found.

  6. Sensitivity of Marine Warm Cloud Retrieval Statistics to Algorithm Choices: Examples from MODIS Collection 6

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Wind, Galina; Zhang, Zhibo; Ackerman, Steven A.; Maddux, Brent

    2012-01-01

    The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the l.6, 2.1, and 3.7 m spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "notclear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud'edges as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the ID cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.

  7. Multiangle Imaging Spectroradiometer (MISR) Global Aerosol Optical Depth Validation Based on 2 Years of Coincident Aerosol Robotic Network (AERONET) Observations

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Gaitley, Barbara J.; Martonchik, John V.; Diner, David J.; Crean, Kathleen A.; Holben, Brent

    2005-01-01

    Performance of the Multiangle Imaging Spectroradiometer (MISR) early postlaunch aerosol optical thickness (AOT) retrieval algorithm is assessed quantitatively over land and ocean by comparison with a 2-year measurement record of globally distributed AERONET Sun photometers. There are sufficient coincident observations to stratify the data set by season and expected aerosol type. In addition to reporting uncertainty envelopes, we identify trends and outliers, and investigate their likely causes, with the aim of refining algorithm performance. Overall, about 2/3 of the MISR-retrieved AOT values fall within [0.05 or 20% x AOT] of Aerosol Robotic Network (AERONET). More than a third are within [0.03 or 10% x AOT]. Correlation coefficients are highest for maritime stations (approx.0.9), and lowest for dusty sites (more than approx.0.7). Retrieved spectral slopes closely match Sun photometer values for Biomass burning and continental aerosol types. Detailed comparisons suggest that adding to the algorithm climatology more absorbing spherical particles, more realistic dust analogs, and a richer selection of multimodal aerosol mixtures would reduce the remaining discrepancies for MISR retrievals over land; in addition, refining instrument low-light-level calibration could reduce or eliminate a small but systematic offset in maritime AOT values. On the basis of cases for which current particle models are representative, a second-generation MISR aerosol retrieval algorithm incorporating these improvements could provide AOT accuracy unprecedented for a spaceborne technique.

  8. Precipitation Retrievals in typhoon domain combining of FY3C MWHTS Observations and WRF Predicted Models

    NASA Astrophysics Data System (ADS)

    Jieying, HE; Shengwei, ZHANG; Na, LI

    2017-02-01

    A passive sub-millimeter precipitation retrievals algorithm is provided based on Microwave Humidity and Temperature Sounder (MWHTS) onboard the Chinese Feng Yun 3C (FY-3C) satellite. Using the validated global reference physical model NCEP/WRF/VDISORT), NCEP data per 6 hours are downloaded to run the Weather Research and Forecast model WRF, and derive the typical precipitation data from the whole world. The precipitation retrieval algorithm can operate either on land or on seawater for global. To simply the calculation procedure and save the training time, principle component analysis (PCA) was adapted to filter out the redundancy caused by scanning angle and surface effects, as well as system noise. According to the comparison and validation combing with other precipitation sources, it is demonstrated that the retrievals are reliable for surface precipitation rate higher than 0.1 mm/h at 15km resolution.

  9. Use of GOES, SSM/I, TRMM Satellite Measurements Estimating Water Budget Variations in Gulf of Mexico - Caribbean Sea Basins

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2004-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of 3ourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple- algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective m identifying problems in estimating vapor transports from a leaky operational radiosonde network than in verifying the transport estimates determined from the satellite algorithm system Total columnar atmospheric water budget results are presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98,October-98, and January 1999. These results are used to emphasize the changing relationship in E-P, as well as in the varying roles of storage and advection in balancing E-P both on daily and monthly time scales and on localized and basin space scales. Results from the algorithm-to-algorithm intercomparisons are also presented in the context of sensitivity testing to help understand the intrinsic uncertainties in evaluating the water budget terms by an all-satellite algorithm approach.

  10. Monthly-Diurnal Water Budget Variability Over Gulf of Mexico-Caribbean Sea Basin from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Smith, E. A.; Santos, P.

    2006-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system design d to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective in identifying problems in estimating vapor transports from a "leaky" operational radiosonde network than in verifying the transport estimates determined from the satellite algorithm system. Total columnar atmospheric water budget results are presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98,October-98, and January- 1999. These results are used to emphasize the changing relationship in E-P, as well as in the varying roles of storage and advection in balancing E-P both on daily and monthly time scales and on localized and basin space scales. Results from the algorithm-to-algorithm intercomparisons are also presented in the context of sensitivity testing to help understand the intrinsic uncertainties in evaluating the water budget terms by an all-satellite algorithm approach.

  11. New-Generation NASA Aura Ozone Monitoring Instrument (OMI) Volcanic SO2 Dataset: Algorithm Description, Initial Results, and Continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS)

    NASA Technical Reports Server (NTRS)

    Li, Can; Krotkov, Nickolay A.; Carn, Simon; Zhang, Yan; Spurr, Robert J. D.; Joiner, Joanna

    2017-01-01

    Since the fall of 2004, the Ozone Monitoring Instrument (OMI) has been providing global monitoring of volcanic SO2 emissions, helping to understand their climate impacts and to mitigate aviation hazards. Here we introduce a new-generation OMI volcanic SO2 dataset based on a principal component analysis (PCA) retrieval technique. To reduce retrieval noise and artifacts as seen in the current operational linear fit (LF) algorithm, the new algorithm, OMSO2VOLCANO, uses characteristic features extracted directly from OMI radiances in the spectral fitting, thereby helping to minimize interferences from various geophysical processes (e.g., O3 absorption) and measurement details (e.g., wavelength shift). To solve the problem of low bias for large SO2 total columns in the LF product, the OMSO2VOLCANO algorithm employs a table lookup approach to estimate SO2 Jacobians (i.e., the instrument sensitivity to a perturbation in the SO2 column amount) and iteratively adjusts the spectral fitting window to exclude shorter wavelengths where the SO2 absorption signals are saturated. To first order, the effects of clouds and aerosols are accounted for using a simple Lambertian equivalent reflectivity approach. As with the LF algorithm, OMSO2VOLCANO provides total column retrievals based on a set of predefined SO2 profiles from the lower troposphere to the lower stratosphere, including a new profile peaked at 13 km for plumes in the upper troposphere. Examples given in this study indicate that the new dataset shows significant improvement over the LF product, with at least 50% reduction in retrieval noise over the remote Pacific. For large eruptions such as Kasatochi in 2008 (approximately 1700 kt total SO2/ and Sierra Negra in 2005 (greater than 1100DU maximum SO2), OMSO2VOLCANO generally agrees well with other algorithms that also utilize the full spectral content of satellite measurements, while the LF algorithm tends to underestimate SO2. We also demonstrate that, despite the coarser spatial and spectral resolution of the Suomi National Polar-orbiting Partnership (Suomi-NPP) Ozone Mapping and Profiler Suite (OMPS) instrument, application of the new PCA algorithm to OMPS data produces highly consistent retrievals between OMI and OMPS. The new PCA algorithm is therefore capable of continuing the volcanic SO2 data record well into the future using current and future hyperspectral UV satellite instruments.

  12. A MODIS-based vegetation index climatology

    USDA-ARS?s Scientific Manuscript database

    Our motivation here is to provide information for the NASA Soil Moisture Active Passive (SMAP) satellite soil moisture retrieval algorithms (launch in 2014). Vegetation attenuates the signal and the algorithms must correct for this effect. One approach is to use data that describes the canopy water ...

  13. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE PAGES

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    2014-12-01

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  14. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  15. An Uncertainty Quantification Framework for Remote Sensing Retrievals

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.; Hobbs, J.

    2017-12-01

    Remote sensing data sets produced by NASA and other space agencies are the result of complex algorithms that infer geophysical state from observed radiances using retrieval algorithms. The processing must keep up with the downlinked data flow, and this necessitates computational compromises that affect the accuracies of retrieved estimates. The algorithms are also limited by imperfect knowledge of physics and of ancillary inputs that are required. All of this contributes to uncertainties that are generally not rigorously quantified by stepping outside the assumptions that underlie the retrieval methodology. In this talk we discuss a practical framework for uncertainty quantification that can be applied to a variety of remote sensing retrieval algorithms. Ours is a statistical approach that uses Monte Carlo simulation to approximate the sampling distribution of the retrieved estimates. We will discuss the strengths and weaknesses of this approach, and provide a case-study example from the Orbiting Carbon Observatory 2 mission.

  16. Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brendel, Bernhard, E-mail: bernhard.brendel@philips.com; Teuffenbach, Maximilian von; Noël, Peter B.

    2016-01-15

    Purpose: The purpose of this work is to propose a cost function with regularization to iteratively reconstruct attenuation, phase, and scatter images simultaneously from differential phase contrast (DPC) acquisitions, without the need of phase retrieval, and examine its properties. Furthermore this reconstruction method is applied to an acquisition pattern that is suitable for a DPC tomographic system with continuously rotating gantry (sliding window acquisition), overcoming the severe smearing in noniterative reconstruction. Methods: We derive a penalized maximum likelihood reconstruction algorithm to directly reconstruct attenuation, phase, and scatter image from the measured detector values of a DPC acquisition. The proposed penaltymore » comprises, for each of the three images, an independent smoothing prior. Image quality of the proposed reconstruction is compared to images generated with FBP and iterative reconstruction after phase retrieval. Furthermore, the influence between the priors is analyzed. Finally, the proposed reconstruction algorithm is applied to experimental sliding window data acquired at a synchrotron and results are compared to reconstructions based on phase retrieval. Results: The results show that the proposed algorithm significantly increases image quality in comparison to reconstructions based on phase retrieval. No significant mutual influence between the proposed independent priors could be observed. Further it could be illustrated that the iterative reconstruction of a sliding window acquisition results in images with substantially reduced smearing artifacts. Conclusions: Although the proposed cost function is inherently nonconvex, it can be used to reconstruct images with less aliasing artifacts and less streak artifacts than reconstruction methods based on phase retrieval. Furthermore, the proposed method can be used to reconstruct images of sliding window acquisitions with negligible smearing artifacts.« less

  17. Thin ice clouds in the Arctic: cloud optical depth and particle size retrieved from ground-based thermal infrared radiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, Yann; Royer, Alain; O'Neill, Norman T.

    Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less

  18. Thin ice clouds in the Arctic: cloud optical depth and particle size retrieved from ground-based thermal infrared radiometry

    NASA Astrophysics Data System (ADS)

    Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; Turner, David D.; Eloranta, Edwin W.

    2017-06-01

    Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookup table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21 µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.

  19. Thin ice clouds in the Arctic: cloud optical depth and particle size retrieved from ground-based thermal infrared radiometry

    DOE PAGES

    Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; ...

    2017-06-09

    Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less

  20. Evaluation of MERIS products from Baltic Sea coastal waters rich in CDOM

    NASA Astrophysics Data System (ADS)

    Beltrán-Abaunza, J. M.; Kratzer, S.; Brockmann, C.

    2013-11-01

    In this study, retrievals of the medium resolution imaging spectrometer (MERIS) reflectances and water quality products using 4 different coastal processing algorithms freely available are assessed by comparison against sea-truthing data. The study is based on a pair-wise comparison using processor-dependent quality flags for the retrieval of valid common macro-pixels. This assessment is required in order to ensure the reliability of monitoring systems based on MERIS data, such as the Swedish coastal and lake monitoring system (http.vattenkvalitet.se). The results show that the pre-processing with the Improved Contrast between Ocean and Land (ICOL) processor, correcting for adjacency effects, improve the retrieval of spectral reflectance for all processors, Therefore, it is recommended that the ICOL processor should be applied when Baltic coastal waters are investigated. Chlorophyll was retrieved best using the FUB (Free University of Berlin) processing algorithm, although overestimations in the range 18-26.5%, dependent on the compared pairs, were obtained. At low chlorophyll concentrations (< 2.5 mg m-3), random errors dominated in the retrievals with the MEGS (MERIS ground segment processor) processor. The lowest bias and random errors were obtained with MEGS for suspended particulate matter, for which overestimations in te range of 8-16% were found. Only the FUB retrieved CDOM (Coloured Dissolved Organic Matter) correlate with in situ values. However, a large systematic underestimation appears in the estimates that nevertheless may be corrected for by using a~local correction factor. The MEGS has the potential to be used as an operational processing algorithm for the Himmerfjärden bay and adjacent areas, but it requires further improvement of the atmospheric correction for the blue bands and better definition at relatively low chlorophyll concentrations in presence of high CDOM attenuation.

  1. Evaluation of MERIS products from Baltic Sea coastal waters rich in CDOM

    NASA Astrophysics Data System (ADS)

    Beltrán-Abaunza, J. M.; Kratzer, S.; Brockmann, C.

    2014-05-01

    In this study, retrievals of the medium resolution imaging spectrometer (MERIS) reflectances and water quality products using four different coastal processing algorithms freely available are assessed by comparison against sea-truthing data. The study is based on a pair-wise comparison using processor-dependent quality flags for the retrieval of valid common macro-pixels. This assessment is required in order to ensure the reliability of monitoring systems based on MERIS data, such as the Swedish coastal and lake monitoring system (http://vattenkvalitet.se). The results show that the pre-processing with the Improved Contrast between Ocean and Land (ICOL) processor, correcting for adjacency effects, improves the retrieval of spectral reflectance for all processors. Therefore, it is recommended that the ICOL processor should be applied when Baltic coastal waters are investigated. Chlorophyll was retrieved best using the FUB (Free University of Berlin) processing algorithm, although overestimations in the range 18-26.5%, dependent on the compared pairs, were obtained. At low chlorophyll concentrations (< 2.5 mg m-3), data dispersion dominated in the retrievals with the MEGS (MERIS ground segment processor) processor. The lowest bias and data dispersion were obtained with MEGS for suspended particulate matter, for which overestimations in the range of 8-16% were found. Only the FUB retrieved CDOM (coloured dissolved organic matter) correlate with in situ values. However, a large systematic underestimation appears in the estimates that nevertheless may be corrected for by using a local correction factor. The MEGS has the potential to be used as an operational processing algorithm for the Himmerfjärden bay and adjacent areas, but it requires further improvement of the atmospheric correction for the blue bands and better definition at relatively low chlorophyll concentrations in the presence of high CDOM attenuation.

  2. Exploiting the synergy between SMAP and SMOS to improve brightness temperature simulations and soil moisture retrievals in arid regions

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mohsen; Alavipanah, Seyed Kazem; Hamzeh, Saeid; Amiraslani, Farshad; Neysani Samany, Najmeh; Wigneron, Jean-Pierre

    2018-02-01

    The objective of this study was to exploit the synergy between SMOS and SMAP based on vegetation optical depth (VOD) to improve brightness temperature (TB) simulations and land surface soil moisture (SM) retrievals in arid regions of the world. In the current operational algorithm of SMAP (level 2), vegetation water content (VWC) is considered as a proxy to compute VOD which is calculated by an empirical conversion function of NDVI. Avoiding the empirical estimation of VOD, the SMOS algorithm is used to retrieve simultaneously SM and VOD from TB observations. The present study attempted to improve SMAP TB simulations and SM retrievals by benefiting from the advantages of the SMOS (L-MEB) algorithm. This was achieved by using a synergy method based on replacing the default value of SMAP VOD with the retrieved value of VOD from the SMOS multi angular and bi-polarization observations of TB. The insitu SM measurements, used as reference SM in this study, were obtained from the International Soil Moisture Network (ISMN) over 180 stations located in arid regions of the world. Furthermore, four stations were randomly selected to analyze the temporal variations in VOD and SM. Results of the synergy method showed that the accuracy of the TB simulations and SM retrievals was respectively improved at 144 and 124 stations (out of a total of 180 stations) in terms of coefficient of determination (R2) and unbiased root mean squared error (UbRMSE). Analyzing the temporal variations in VOD showed that the SMOS VOD, conversely to the SMAP VOD, can better illustrate the presence of herbaceous plants and may be a better indicator of the seasonal changes in the vegetation density and biomass over the year.

  3. A General Uncertainty Quantification Methodology for Cloud Microphysical Property Retrievals

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Xie, S.; Chen, X.; Zhao, C.

    2014-12-01

    The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program provides long-term (~20 years) ground-based cloud remote sensing observations. However, there are large uncertainties in the retrieval products of cloud microphysical properties based on the active and/or passive remote-sensing measurements. To address this uncertainty issue, a DOE Atmospheric System Research scientific focus study, Quantification of Uncertainties in Cloud Retrievals (QUICR), has been formed. In addition to an overview of recent progress of QUICR, we will demonstrate the capacity of an observation-based general uncertainty quantification (UQ) methodology via the ARM Climate Research Facility baseline cloud microphysical properties (MICROBASE) product. This UQ method utilizes the Karhunen-Loéve expansion (KLE) and Central Limit Theorems (CLT) to quantify the retrieval uncertainties from observations and algorithm parameters. The input perturbations are imposed on major modes to take into account the cross correlations between input data, which greatly reduces the dimension of random variables (up to a factor of 50) and quantifies vertically resolved full probability distribution functions of retrieved quantities. Moreover, this KLE/CLT approach has the capability of attributing the uncertainties in the retrieval output to individual uncertainty source and thus sheds light on improving the retrieval algorithm and observations. We will present the results of a case study for the ice water content at the Southern Great Plains during an intensive observing period on March 9, 2000. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica

    NASA Astrophysics Data System (ADS)

    Carlsen, Tim; Birnbaum, Gerit; Ehrlich, André; Freitag, Johannes; Heygster, Georg; Istomina, Larysa; Kipfstuhl, Sepp; Orsi, Anaïs; Schäfer, Michael; Wendisch, Manfred

    2017-11-01

    The optical-equivalent snow grain size affects the reflectivity of snow surfaces and, thus, the local surface energy budget in particular in polar regions. Therefore, the specific surface area (SSA), from which the optical snow grain size is derived, was observed for a 2-month period in central Antarctica (Kohnen research station) during austral summer 2013/14. The data were retrieved on the basis of ground-based spectral surface albedo measurements collected by the COmpact RAdiation measurement System (CORAS) and airborne observations with the Spectral Modular Airborne Radiation measurement sysTem (SMART). The snow grain size and pollution amount (SGSP) algorithm, originally developed to analyze spaceborne reflectance measurements by the MODerate Resolution Imaging Spectroradiometer (MODIS), was modified in order to reduce the impact of the solar zenith angle on the retrieval results and to cover measurements in overcast conditions. Spectral ratios of surface albedo at 1280 and 1100 nm wavelength were used to reduce the retrieval uncertainty. The retrieval was applied to the ground-based and airborne observations and validated against optical in situ observations of SSA utilizing an IceCube device. The SSA retrieved from CORAS observations varied between 27 and 89 m2 kg-1. Snowfall events caused distinct relative maxima of the SSA which were followed by a gradual decrease in SSA due to snow metamorphism and wind-induced transport of freshly fallen ice crystals. The ability of the modified algorithm to include measurements in overcast conditions improved the data coverage, in particular at times when precipitation events occurred and the SSA changed quickly. SSA retrieved from measurements with CORAS and MODIS agree with the in situ observations within the ranges given by the measurement uncertainties. However, SSA retrieved from the airborne SMART data slightly underestimated the ground-based results.

  5. Collection Fusion Using Bayesian Estimation of a Linear Regression Model in Image Databases on the Web.

    ERIC Educational Resources Information Center

    Kim, Deok-Hwan; Chung, Chin-Wan

    2003-01-01

    Discusses the collection fusion problem of image databases, concerned with retrieving relevant images by content based retrieval from image databases distributed on the Web. Focuses on a metaserver which selects image databases supporting similarity measures and proposes a new algorithm which exploits a probabilistic technique using Bayesian…

  6. Development of a remote sensing algorithm to retrieve atmospheric aerosol properties using multiwavelength and multipixel information

    NASA Astrophysics Data System (ADS)

    Hashimoto, Makiko; Nakajima, Teruyuki

    2017-06-01

    We developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using satellite-received radiances for multiple wavelengths and pixels. Our algorithm utilizes spatial inhomogeneity of surface reflectance to retrieve aerosol properties, and the main target is urban aerosols. This algorithm can simultaneously retrieve aerosol optical thicknesses (AOT) for fine- and coarse-mode aerosols, soot volume fraction in fine-mode aerosols (SF), and surface reflectance over heterogeneous surfaces such as urban areas that are difficult to obtain by conventional pixel-by-pixel methods. We applied this algorithm to radiances measured by the Greenhouse Gases Observing Satellite/Thermal and Near Infrared Sensor for Carbon Observations-Cloud and Aerosol Image (GOSAT/TANSO-CAI) at four wavelengths and were able to retrieve the aerosol parameters in several urban regions and other surface types. A comparison of the retrieved AOTs with those from the Aerosol Robotic Network (AERONET) indicated retrieval accuracy within ±0.077 on average. It was also found that the column-averaged SF and the aerosol single scattering albedo (SSA) underwent seasonal changes as consistent with the ground surface measurements of SSA and black carbon at Beijing, China.

  7. Bias correction for rainrate retrievals from satellite passive microwave sensors

    NASA Technical Reports Server (NTRS)

    Short, David A.

    1990-01-01

    Rainrates retrieved from past and present satellite-borne microwave sensors are affected by a fundamental remote sensing problem. Sensor fields-of-view are typically large enough to encompass substantial rainrate variability, whereas the retrieval algorithms, based on radiative transfer calculations, show a non-linear relationship between rainrate and microwave brightness temperature. Retrieved rainrates are systematically too low. A statistical model of the bias problem shows that bias correction factors depend on the probability distribution of instantaneous rainrate and on the average thickness of the rain layer.

  8. Ground-Based Remote Retrievals of Cumulus Entrainment Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Timothy J.; Turner, David D.; Berg, Larry K.

    2013-07-26

    While fractional entrainment rates for cumulus clouds have typically been derived from airborne observations, this limits the size and scope of available data sets. To increase the number of continental cumulus entrainment rate observations available for study, an algorithm for retrieving them from ground-based remote sensing observations has been developed. This algorithm, called the Entrainment Rate In Cumulus Algorithm (ERICA), uses the suite of instruments at the Southern Great Plains (SGP) site of the United States Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility as inputs into a Gauss-Newton optimal estimation scheme, in which an assumed guess ofmore » the entrainment rate is iteratively adjusted through intercomparison of modeled liquid water path and cloud droplet effective radius to their observed counterparts. The forward model in this algorithm is the Explicit Mixing Parcel Model (EMPM), a cloud parcel model that treats entrainment as a series of discrete entrainment events. A quantified value for measurement uncertainty is also returned as part of the retrieval. Sensitivity testing and information content analysis demonstrate the robust nature of this method for retrieving accurate observations of the entrainment rate without the drawbacks of airborne sampling. Results from a test of ERICA on three months of shallow cumulus cloud events show significant variability of the entrainment rate of clouds in a single day and from one day to the next. The mean value of 1.06 km-¹ for the entrainment rate in this dataset corresponds well with prior observations and simulations of the entrainment rate in cumulus clouds.« less

  9. Improvement and further development of SSM/I overland parameter algorithms using the WetNet workstation

    NASA Technical Reports Server (NTRS)

    Neale, Christopher M. U.; Mcdonnell, Jeffrey J.; Ramsey, Douglas; Hipps, Lawrence; Tarboton, David

    1993-01-01

    Since the launch of the DMSP Special Sensor Microwave/Imager (SSM/I), several algorithms have been developed to retrieve overland parameters. These include the present operational algorithms resulting from the Navy calibration/validation effort such as land surface type (Neale et al. 1990), land surface temperature (McFarland et al. 1990), surface moisture (McFarland and Neale, 1991) and snow parameters (McFarland and Neale, 1991). In addition, other work has been done including the classification of snow cover and precipitation using the SSM/I (Grody, 1991). Due to the empirical nature of most of the above mentioned algorithms, further research is warranted and improvements can probably be obtained through a combination of radiative transfer modelling to study the physical processes governing the microwave emissions at the SSM/I frequencies, and the incorporation of additional ground truth data and special cases into the regression data sets. We have proposed specifically to improve the retrieval of surface moisture and snow parameters using the WetNet SSM/I data sets along with ground truth information namely climatic variables from the NOAA cooperative network of weather stations as well as imagery from other satellite sensors such as the AVHRR and Thematic Mapper. In the case of surface moisture retrievals the characterization of vegetation density is of primary concern. The higher spatial resolution satellite imagery collected at concurrent periods will be used to characterize vegetation types and amounts which, along with radiative transfer modelling should lead to more physically based retrievals. Snow parameter retrieval algorithm improvement will initially concentrate on the classification of snowpacks (dry snow, wet snow, refrozen snow) and later on specific products such as snow water equivalent. Significant accomplishments in the past year are presented.

  10. Characterization and assessment of different algorithms for retrieval of mean square slopes from GNSS-R measurements

    NASA Astrophysics Data System (ADS)

    Clarizia, Maria Paola; Ruf, Christopher; Gommenginger, Christine

    2013-04-01

    Global Navigation Satellite System-Reflectometry (GNSS-R) exploits signals of opportunity from navigation constellations (e.g. GPS, GLONASS, Galileo), scattered by the surface of the ocean, to retrieve the surface wind and wave fields. GNSS-R represents a true innovation in remote sensing, and it is receiving a growing interest from the scientific community. Its main advantages lie in the dense space-time sampling capabilities, the ability of L-band signals to penetrate well through rain, and the possibility of simple, low-cost/low-power GNSS receivers. These recognized strengths of GNSS-R recently led to the approval of the NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS), a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS attempts to resolve the problem of inadequate observations and modeling of the inner core, which represents the principal deficiency with current TC intensity forecasts, and which can be overcome with GNSS-R. The present study focuses on the information content about the sea surface roughness and wind speed, that is contained in spaceborne GNSS-R Delay-Doppler Maps (DDMs). A number of algorithms for the retrieval of Mean Square Slopes (MSS) - representative of the surface roughness - are analyzed. These include existing algorithms based on least-square fitting procedures (e.g. 2D least-square fitting of DDMs, using the Zavorotny-Voronovich DDM theoretical model), or based on direct observables (e.g. DDM volume), as well as "new" algorithms, which make use of waveforms derived from the DDM, which have thusfar been unexploited (e.g. integrated delay and Doppler waveforms). The analysis is carried out using simulated DDMs generated by the mature forward model end-to-end simulator developed for CYGNSS. A comparison of the results obtained for different retrieval algorithms will be presented. In particular, the performance of the algorithms considered is investigated and characterized for the case of significant non-uniform wind field across the scattering area, such as will be encountered in and near tropical cyclones. The impact of each algorithm, as well as of other parameters (e.g. the extent of the DDM), on the sensitivity of the results to non-uniform winds will be presented. The results are directly relevant to CYGNSS, where the ultimate objective is to produce standard gridded maps of retrieved wind fields from raw DDM measurements. The value of this research is twofold, in that it addresses the choice of the best algorithms to retrieve MSS and ultimately wind speed in extreme and non-uniform wind conditions, and also provides a first assessment of the data compression requirements and strategies that will be applied to DDMs for the CYGNSS mission.

  11. New approaches to removing cloud shadows and evaluating the 380 nm surface reflectance for improved aerosol optical thickness retrievals from the GOSAT/TANSO-Cloud and Aerosol Imager

    NASA Astrophysics Data System (ADS)

    Fukuda, Satoru; Nakajima, Teruyuki; Takenaka, Hideaki; Higurashi, Akiko; Kikuchi, Nobuyuki; Nakajima, Takashi Y.; Ishida, Haruma

    2013-12-01

    satellite aerosol retrieval algorithm was developed to utilize a near-ultraviolet band of the Greenhouse gases Observing SATellite/Thermal And Near infrared Sensor for carbon Observation (GOSAT/TANSO)-Cloud and Aerosol Imager (CAI). At near-ultraviolet wavelengths, the surface reflectance over land is smaller than that at visible wavelengths. Therefore, it is thought possible to reduce retrieval error by using the near-ultraviolet spectral region. In the present study, we first developed a cloud shadow detection algorithm that uses first and second minimum reflectances of 380 nm and 680 nm based on the difference in Rayleigh scattering contribution for these two bands. Then, we developed a new surface reflectance correction algorithm, the modified Kaufman method, which uses minimum reflectance data at 680 nm and the NDVI to estimate the surface reflectance at 380 nm. This algorithm was found to be particularly effective at reducing the aerosol effect remaining in the 380 nm minimum reflectance; this effect has previously proven difficult to remove owing to the infrequent sampling rate associated with the three-day recursion period of GOSAT and the narrow CAI swath of 1000 km. Finally, we applied these two algorithms to retrieve aerosol optical thicknesses over a land area. Our results exhibited better agreement with sun-sky radiometer observations than results obtained using a simple surface reflectance correction technique using minimum radiances.

  12. BIRAM: a content-based image retrieval framework for medical images

    NASA Astrophysics Data System (ADS)

    Moreno, Ramon A.; Furuie, Sergio S.

    2006-03-01

    In the medical field, digital images are becoming more and more important for diagnostics and therapy of the patients. At the same time, the development of new technologies has increased the amount of image data produced in a hospital. This creates a demand for access methods that offer more than text-based queries for retrieval of the information. In this paper is proposed a framework for the retrieval of medical images that allows the use of different algorithms for the search of medical images by similarity. The framework also enables the search for textual information from an associated medical report and DICOM header information. The proposed system can be used for support of clinical decision making and is intended to be integrated with an open source picture, archiving and communication systems (PACS). The BIRAM has the following advantages: (i) Can receive several types of algorithms for image similarity search; (ii) Allows the codification of the report according to a medical dictionary, improving the indexing of the information and retrieval; (iii) The algorithms can be selectively applied to images with the appropriated characteristics, for instance, only in magnetic resonance images. The framework was implemented in Java language using a MS Access 97 database. The proposed framework can still be improved, by the use of regions of interest (ROI), indexing with slim-trees and integration with a PACS Server.

  13. Added Value of Far-Infrared Radiometry for Ice Cloud Remote Sensing

    NASA Astrophysics Data System (ADS)

    Libois, Q.; Blanchet, J. P.; Ivanescu, L.; S Pelletier, L.; Laurence, C.

    2017-12-01

    Several cloud retrieval algorithms based on satellite observations in the infrared have been developed in the last decades. However, most of these observations only cover the midinfrared (MIR, λ < 15 μm) part of the spectrum, and none are available in the far-infrared (FIR, λ ≥ 15 μm). Recent developments in FIR sensors technology, though, now make it possible to consider spaceborne remote sensing in the FIR. Here we show that adding a few FIR channels with realistic radiometric performances to existing spaceborne narrowband radiometers would significantly improve their ability to retrieve ice cloud radiative properties. For clouds encountered in the polar regions and the upper troposphere, where the atmosphere above clouds is sufficiently transparent in the FIR, using FIR channels would reduce by more than 50% the uncertainties on retrieved values of optical thickness, effective particle diameter, and cloud top altitude. This would somehow extend the range of applicability of current infrared retrieval methods to the polar regions and to clouds with large optical thickness, where MIR algorithms perform poorly. The high performance of solar reflection-based algorithms would thus be reached in nighttime conditions. Using FIR observations is a promising venue for studying ice cloud microphysics and precipitation processes, which is highly relevant for cirrus clouds and convective towers, and for investigating the water cycle in the driest regions of the atmosphere.

  14. Assessment of SMOS Soil Moisture Retrieval Parameters Using Tau-Omega Algorithms for Soil Moisture Deficit Estimation

    NASA Technical Reports Server (NTRS)

    Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; O'Neill, Peggy; Islam, Tanvir; Gupta, Manika

    2014-01-01

    Soil Moisture and Ocean Salinity (SMOS) is the latest mission which provides flow of coarse resolution soil moisture data for land applications. However, the efficient retrieval of soil moisture for hydrological applications depends on optimally choosing the soil and vegetation parameters. The first stage of this work involves the evaluation of SMOS Level 2 products and then several approaches for soil moisture retrieval from SMOS brightness temperature are performed to estimate Soil Moisture Deficit (SMD). The most widely applied algorithm i.e. Single channel algorithm (SCA), based on tau-omega is used in this study for the soil moisture retrieval. In tau-omega, the soil moisture is retrieved using the Horizontal (H) polarisation following Hallikainen dielectric model, roughness parameters, Fresnel's equation and estimated Vegetation Optical Depth (tau). The roughness parameters are empirically calibrated using the numerical optimization techniques. Further to explore the improvement in retrieval models, modifications have been incorporated in the algorithms with respect to the sources of the parameters, which include effective temperatures derived from the European Center for Medium-Range Weather Forecasts (ECMWF) downscaled using the Weather Research and Forecasting (WRF)-NOAH Land Surface Model and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) while the s is derived from MODIS Leaf Area Index (LAI). All the evaluations are performed against SMD, which is estimated using the Probability Distributed Model following a careful calibration and validation integrated with sensitivity and uncertainty analysis. The performance obtained after all those changes indicate that SCA-H using WRF-NOAH LSM downscaled ECMWF LST produces an improved performance for SMD estimation at a catchment scale.

  15. [Semi-analysis algorithm to retrieve pigment concentrations in the red tide area of the East China Sea].

    PubMed

    Qiu, Zhong-Feng; Xi, Hong-Yan; He, Yi-Jun; Chen, Jay-Chung; Jian, Wei-Jun

    2006-08-01

    For the purpose of detecting and forecasting research of red tides to reduce the loss, a semi-analytic algorithm to retrieve chlorophyll-a concentrations was established in the area where red tides often brought out, according to the data collected during the red tides cruise in the East China Sea in April 2002. In the algorithm, empirical equations were made based on the coefficients from the in-situ data, including the optical properties of the research area. The in-situ data were used to validate the algorithm. The discrepancy of chlorophyll-a absorption coefficients and concentrations are mainly located in the region of 30%. The root mean deviation of the chlorophyll-a concentrations between the observed and the calculated is 0.24, the maximum relative deviation 40.93%, the mean relative deviation 18.83% and the correlation coefficient 0.83. The results show that the precision of the algorithm is high and the algorithm is fit for the research area.

  16. Explicit and Observation-based Aerosol Treatment in Tropospheric NO2 Retrieval over China from the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Liu, M.; Lin, J.; Boersma, F.; Pinardi, G.; Wang, Y.; Chimot, J.; Wagner, T.; Xie, P.; Eskes, H.; Van Roozendael, M.; Hendrick, F.

    2017-12-01

    Satellite retrieval of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) is influenced by aerosols substantially. Aerosols affect the retrieval of "effective cloud fraction (CF)" and "effective cloud top pressure (CP)" that are used in the subsequent NO2 retrieval to account for the presentence of clouds. And aerosol properties and vertical distributions directly affect the NO2 air mass factor (AMF) calculations. Our published POMINO algorithm uses a parallelized LIDORT-driven AMFv6 code to derive CF, CP and NO2 VCD. Daily information on aerosol optical properties are taken from GEOS-Chem simulations, with aerosol optical depth (AOD) further constrained by monthly MODIS AOD. However, the published algorithm does not include an observation-based constraint of aerosol vertical distribution. Here we construct a monthly climatological observation dataset of aerosol extinction profiles, based on Level-2 CALIOP data over 2007-2015, to further constrain aerosol vertical distributions. GEOS-Chem captures the temporal variations of CALIOP aerosol layer heights (ALH) but has an overall underestimate by about 0.3 km. It tends to overestimate the aerosol extinction by 10% below 2 km but with an underestimate by 30% above 2 km, leading to a low bias by 10-30% in the retrieved tropospheric NO2 VCD. After adjusting GEOS-Chem aerosol extinction profiles by the CALIOP monthly ALH climatology, the retrieved NO2 VCDs increase by 4-16% over China on a monthly basis in 2012. The improved NO2 VCDs are better correlated to independent MAX-DOAS observations at three sites than POMINO and DOMINO are - especially for the polluted cases, R2 reaches 0.76 for the adjusted POMINO, much higher than that for the published POMINO (0.68) and DOMINO (0.38). The newly retrieved CP increases by 60 hPa on average, because of a stronger aerosol screening effect. Compared to the CF used in DOMINO, which implicitly includes aerosol information, our improved CF is much lower and can reach a value of zero on actual cloud-free days. Overall, constraining aerosol vertical profiles greatly improves the retrievals of clouds and NO2 VCDs from satellite remote sensing. Our algorithm can be applied, with minimum modifications, to formaldehyde, sulfur dioxide and other species with similar retrieval methodologies.

  17. Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.

    2009-01-01

    A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.

  18. On the VHF Source Retrieval Errors Associated with Lightning Mapping Arrays (LMAs)

    NASA Technical Reports Server (NTRS)

    Koshak, W.

    2016-01-01

    This presentation examines in detail the standard retrieval method: that of retrieving the (x, y, z, t) parameters of a lightning VHF point source from multiple ground-based Lightning Mapping Array (LMA) time-of-arrival (TOA) observations. The solution is found by minimizing a chi-squared function via the Levenberg-Marquardt algorithm. The associated forward problem is examined to illustrate the importance of signal-to-noise ratio (SNR). Monte Carlo simulated retrievals are used to assess the benefits of changing various LMA network properties. A generalized retrieval method is also introduced that, in addition to TOA data, uses LMA electric field amplitude measurements to retrieve a transient VHF dipole moment source.

  19. The MIGHTI Wind Retrieval Algorithm: Description and Verification

    NASA Astrophysics Data System (ADS)

    Harding, Brian J.; Makela, Jonathan J.; Englert, Christoph R.; Marr, Kenneth D.; Harlander, John M.; England, Scott L.; Immel, Thomas J.

    2017-10-01

    We present an algorithm to retrieve thermospheric wind profiles from measurements by the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument on NASA's Ionospheric Connection Explorer (ICON) mission. MIGHTI measures interferometric limb images of the green and red atomic oxygen emissions at 557.7 nm and 630.0 nm, spanning 90-300 km. The Doppler shift of these emissions represents a remote measurement of the wind at the tangent point of the line of sight. Here we describe the algorithm which uses these images to retrieve altitude profiles of the line-of-sight wind. By combining the measurements from two MIGHTI sensors with perpendicular lines of sight, both components of the vector horizontal wind are retrieved. A comprehensive truth model simulation that is based on TIME-GCM winds and various airglow models is used to determine the accuracy and precision of the MIGHTI data product. Accuracy is limited primarily by spherical asymmetry of the atmosphere over the spatial scale of the limb observation, a fundamental limitation of space-based wind measurements. For 80% of the retrieved wind samples, the accuracy is found to be better than 5.8 m/s (green) and 3.5 m/s (red). As expected, significant errors are found near the day/night boundary and occasionally near the equatorial ionization anomaly, due to significant variations of wind and emission rate along the line of sight. The precision calculation includes pointing uncertainty and shot, read, and dark noise. For average solar minimum conditions, the expected precision meets requirements, ranging from 1.2 to 4.7 m/s.

  20. Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data.

    PubMed

    Durairaj, Poornima; Sarangi, Ranjit Kumar; Ramalingam, Shanthi; Thirunavukarassu, Thangaradjou; Chauhan, Prakash

    2015-04-01

    In situ datasets of nitrate, sea surface temperature (SST), and chlorophyll a (chl a) collected during the monthly coastal samplings and organized cruises along the Tamilnadu and Andhra Pradesh coast between 2009 and 2013 were used to develop seasonal nitrate algorithms. The nitrate algorithms have been built up based on the three-dimensional regressions between SST, chl a, and nitrate in situ data using linear, Gaussian, Lorentzian, and paraboloid function fittings. Among these four functions, paraboloid was found to be better with the highest co-efficient of determination (postmonsoon: R2=0.711, n=357; summer: R2=0.635, n=302; premonsoon: R2=0.829, n=249; and monsoon: R2=0.692, n=272) for all seasons. Based on these fittings, seasonal nitrate images were generated using the concurrent satellite data of SST from Moderate Resolution Imaging Spectroradiometer (MODIS) and chlorophyll (chl) from Ocean Color Monitor (OCM-2) and MODIS. The best retrieval of modeled nitrate (R2=0.527, root mean square error (RMSE)=3.72, and mean normalized bias (MNB)=0.821) was observed for the postmonsoon season due to the better retrieval of both SST MODIS (28 February 2012, R2=0.651, RMSE=2.037, and MNB=0.068) and chl OCM-2 (R2=0.534, RMSE=0.317, and MNB=0.27). Present results confirm that the chl OCM-2 and SST MODIS retrieve nitrate well than the MODIS-derived chl and SST largely due to the better retrieval of chl by OCM-2 than MODIS.

  1. Kalman filters for assimilating near-surface observations in the Richards equation - Part 2: A dual filter approach for simultaneous retrieval of states and parameters

    NASA Astrophysics Data System (ADS)

    Medina, H.; Romano, N.; Chirico, G. B.

    2012-12-01

    We present a dual Kalman Filter (KF) approach for retrieving states and parameters controlling soil water dynamics in a homogenous soil column by using near-surface state observations. The dual Kalman filter couples a standard KF algorithm for retrieving the states and an unscented KF algorithm for retrieving the parameters. We examine the performance of the dual Kalman Filter applied to two alternative state-space formulations of the Richards equation, respectively differentiated by the type of variable employed for representing the states: either the soil water content (θ) or the soil matric pressure head (h). We use a synthetic time-series series of true states and noise corrupted observations and a synthetic time-series of meteorological forcing. The performance analyses account for the effect of the input parameters, the observation depth and the assimilation frequency as well as the relationship between the retrieved states and the assimilated variables. We show that the identifiability of the parameters is strongly conditioned by several factors, such as the initial guess of the unknown parameters, the wet or dry range of the retrieved states, the boundary conditions, as well as the form (h-based or θ-based) of the state-space formulation. State identifiability is instead efficient even with a relatively coarse time-resolution of the assimilated observation. The accuracy of the retrieved states exhibits limited sensitivity to the observation depth and the assimilation frequency.

  2. Results from CrIS-ATMS Obtained Using the AIRS Science Team Retrieval Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2013-01-01

    AIRS was launched on EOS Aqua in May 2002, together with AMSU-A and HSB (which subsequently failed early in the mission), to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS/AMSU had two primary objectives. The first objective was to provide real-time data products available for use by the operational Numerical Weather Prediction Centers in a data assimilation mode to improve the skill of their subsequent forecasts. The second objective was to provide accurate unbiased sounding products with good spatial coverage that are used to generate stable multi-year climate data sets to study the earth's interannual variability, climate processes, and possibly long-term trends. AIRS/AMSU data for all time periods are now being processed using the state of the art AIRS Science Team Version-6 retrieval methodology. The Suomi-NPP mission was launched in October 2011 as part of a sequence of Low Earth Orbiting satellite missions under the "Joint Polar Satellite System" (JPSS). NPP carries CrIS and ATMS, which are advanced infra-red and microwave atmospheric sounders that were designed as follow-ons to the AIRS and AMSU instruments. The main objective of this work is to assess whether CrIS/ATMS will be an adequate replacement for AIRS/AMSU from the perspective of the generation of accurate and consistent long term climate data records, or if improved instruments should be developed for future flight. It is critical for CrIS/ATMS to be processed using an algorithm similar to, or at least comparable to, AIRS Version-6 before such an assessment can be made. We have been conducting research to optimize products derived from CrIS/ATMS observations using a scientific approach analogous to the AIRS Version-6 retrieval algorithm. Our latest research uses Version-5.70 of the CrIS/ATMS retrieval algorithm, which is otherwise analogous to AIRS Version-6, but does not yet contain the benefit of use of a Neural-Net first guess start-up system which significantly improved results of AIRS Version-6. Version-5.70 CrIS/ATMS temperature profile and surface skin temperature retrievals are of very good quality, and are better than AIRS Version-5 retrievals, but are still significantly poorer than those of AIRS Version-6. CrIS/ATMS retrievals should improve when a Neural-Net start-up system is ready for use. We also examined CrIS/ATMS retrievals generated by NOAA using their NUCAPS retrieval algorithm, which is based on earlier versions of the AIRS Science Team retrieval algorithms. We show that the NUCAPS algorithm as currently configured is not well suited for climate monitoring purposes.

  3. Validation of ERS-1 environmental data products

    NASA Technical Reports Server (NTRS)

    Goodberlet, Mark A.; Swift, Calvin T.; Wilkerson, John C.

    1994-01-01

    Evaluation of the launch-version algorithms used by the European Space Agency (ESA) to derive wind field and ocean wave estimates from measurements of sensors aboard the European Remote Sensing satellite, ERS-1, has been accomplished through comparison of the derived parameters with coincident measurements made by 24 open ocean buoys maintained by the National Oceanic and Atmospheric Administration). During the period from November 1, 1991 through February 28, 1992, data bases with 577 and 485 pairs of coincident sensor/buoy wind and wave measurements were collected for the Active Microwave Instrument (AMI) and Radar Altimeter (RA) respectively. Based on these data, algorithm retrieval accuracy is estimated to be plus or minus 4 m/s for AMI wind speed, plus or minus 3 m/s for RA wind speed and plus or minus 0.6 m for RA wave height. After removing 180 degree ambiguity errors, the AMI wind direction retrieval accuracy was estimated at plus or minus 28 degrees. All of the ERS-1 wind and wave retrievals are relatively unbiased. These results should be viewed as interim since improved algorithms are under development. As final versions are implemented, additional assessments should be conducted to complete the validation.

  4. TRMM Version 7 Level 3 Gridded Monthly Accumulations of GPROF Precipitation Retrievals

    NASA Technical Reports Server (NTRS)

    Stocker, E. F.; Kelley, O. A.

    2012-01-01

    In July 2011, improved versions of the retrieval algorithms were approved for TRMM. All data starting with June 2011 are produced only with the version 7 code. At the same time, version 7 reprocessing of all TRMM mission data was started. By the end of August 2011, the 14+ years of the reprocessed mission data became available online to users. This reprocessing provided the opportunity to redo and enhance upon an analysis of V7 impacts on L3 data accumulations that was presented at the 2010 EGU General Assembly. This paper will discuss the impact of algorithm changes made in th GPROF retrieval on the Level 2 swath products. Perhaps the most important change in that retrieval was to replacement of a model based a priori database with one created from Precipitation Radar (PR) and TMI brightness temperature (Tb) data. The radar pays a major role in the V7 GPROF (GPROF2010) in determining existence of rain. The level 2 retrieval algorithm also introduced a field providing the probability of rain. This combined use of the PR has some impact on the retrievals and created areas, particularly over ocean, where many areas of low-probability precipitation are retrieved whereas in version 6, these areas contained zero rain rates. This paper will discuss how these impacts get translated to the space/time averaged monthly products that use the GPROF retrievals. The level 3 products discussed are the gridded text product 3G68 and the standard 3A12 and 3B31 products. The paper provides an overview of the changes and explanation of how the level 3 products dealt with the change in the retrieval approach. Using the .25 deg x .25 degree grid, the paper will show that agreement between the swath product and the level 3 remains very high. It will also present comparisons of V6 and V7 GPROF retrievals as seen both at the swath level and the level 3 time/space gridded accumulations. It will show that the various L3 products based on GPROF level 2 retrievals are in close agreement. The paper concludes by outlining some of the challenges of the TRMM version 7 level 3 products.

  5. Retrieval Accuracy Assessment with Gap Detection for Case 2 Waters Chla Algorithms

    NASA Astrophysics Data System (ADS)

    Salem, S. I.; Higa, H.; Kim, H.; Oki, K.; Oki, T.

    2016-12-01

    Inland lakes and coastal regions types of Case 2 Waters should be continuously and accurately monitored as the former contain 90% of the global liquid freshwater storage, while the latter provide most of the dissolved organic carbon (DOC) which is an important link in the global carbon cycle. The optical properties of Case 2 Waters are dominated by three optically active components: phytoplankton, non-algal particles (NAP) and color dissolved organic matter (CDOM). During the last three decades, researchers have proposed several algorithms to retrieve Chla concentration from the remote sensing reflectance. In this study, seven algorithms are assessed with various band combinations from multi and hyper-spectral data with linear, polynomial and power regression approaches. To evaluate the performance of the 43 algorithm combination sets, 500,000 remote sensing reflectance spectra are simulated with a wide range of concentrations for Chla, NAP and CDOM. The concentrations of Chla and NAP vary from 1-200 (mg m-3) and 1-200 (gm m-3), respectively, and the absorption of CDOM at 440 nm has the range of 0.1-10 (m-1). It is found that the three-band algorithm (665, 709 and 754 nm) with the quadratic polynomial (3b_665_QP) indicates the best overall performance. 3b_665_QP has the least error with a root mean square error (RMSE) of 0.2 (mg m-3) and a mean absolute relative error (MARE) of 0.7 %. The less accurate retrieval of Chla was obtained by the synthetic chlorophyll index algorithm with RMSE and MARE of 35.8 mg m-3 and 160.4 %, respectively. In general, Chla algorithms which incorporates 665 nm band or band tuning technique performs better than those with 680 nm. In addition, the retrieval accuracy of Chla algorithms with quadratic polynomial and power regression approaches are consistently better than the linear ones. By analyzing Chla versus NAP concentrations, the 3b_665_QP outperforms the other algorithms for all Chla concentrations and NAP concentrations above 40 gm m-3which accounts for 81.3 % of the total combinations of NAP and Chla. In conclusion, these findings provide a reference for algorithm selection based on constituents' concentrations and open the door for developing a classification scheme to retrieve Chla with higher accuracy.

  6. Multiscale comparison of GPM radar and passive microwave precipitation fields over oceans and land: effective resolution and global/regional/local diagnostics for improving retrieval algorithms

    NASA Astrophysics Data System (ADS)

    Guilloteau, C.; Foufoula-Georgiou, E.; Kummerow, C.; Kirstetter, P. E.

    2017-12-01

    A multiscale approach is used to compare precipitation fields retrieved from GMI using the last version of the GPROF algorithm (GPROF-2017) to the DPR fields all over the globe. Using a wavelet-based spectral analysis, which renders the multi-scale decompositions of the original fields independent of each other spatially and across scales, we quantitatively assess the various scales of variability of the retrieved fields, and thus define the spatially-variable "effective resolution" (ER) of the retrievals. Globally, a strong agreement is found between passive microwave and radar patterns at scales coarser than 80km. Over oceans the patterns match down to the 20km scale. Over land, comparison statistics are spatially heterogeneous. In most areas a strong discrepancy is observed between passive microwave and radar patterns at scales finer than 40-80km. The comparison is also supported by ground-based observations over the continental US derived from the NOAA/NSSL MRMS suite of products. While larger discrepancies over land than over oceans are classically explained by land complex surface emissivity perturbing the passive microwave retrieval, other factors are investigated here, such as intricate differences in the storm structure over oceans and land. Differences in term of statistical properties (PDF of intensities and spatial organization) of precipitation fields over land and oceans are assessed from radar data, as well as differences in the relation between the 89GHz brightness temperature and precipitation. Moreover, the multiscale approach allows quantifying the part of discrepancies caused by miss-match of the location of intense cells and instrument-related geometric effects. The objective is to diagnose shortcomings of current retrieval algorithms such that targeted improvements can be made to achieve over land the same retrieval performance as over oceans.

  7. Retrieving Atmospheric Profiles Data in the Presence of Clouds from Hyperspectral Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Larar, Allen M.; Zhou, Daniel K.; Kizer, Susan H.; Wu, Wan; Barnet, Christopher; Divakarla, Murty; Guo, Guang; Blackwell, Bill; Smith, William L.; hide

    2011-01-01

    Different methods for retrieving atmospheric profiles in the presence of clouds from hyperspectral satellite remote sensing data will be described. We will present results from the JPSS cloud-clearing algorithm and NASA Langley cloud retrieval algorithm.

  8. Triple-frequency radar retrievals of snowfall properties from the OLYMPEX field campaign

    NASA Astrophysics Data System (ADS)

    Leinonen, J. S.; Lebsock, M. D.; Sy, O. O.; Tanelli, S.

    2017-12-01

    Retrieval of snowfall properties with radar is subject to significant errors arising from the uncertainties in the size and structure of snowflakes. Recent modeling and theoretical studies have shown that multi-frequency radars can potentially constrain the microphysical properties and thus reduce the uncertainties in the retrieved snow water content. So far, there have only been limited efforts to leverage the theoretical advances in actual snowfall retrievals. In this study, we have implemented an algorithm that retrieves the snowfall properties from triple-frequency radar data using the radar scattering properties from a combination of snowflake scattering databases, which were derived using numerical scattering methods. Snowflake number concentration, characteristic size and density are derived using a combination of optimal estimation and Kalman smoothing; the snow water content and other bulk properties are then derived from these. The retrieval framework is probabilistic and thus naturally provides error estimates for the retrieved quantities. We tested the retrieval algorithm using data from the APR3 airborne radar flown onboard the NASA DC-8 aircraft during the Olympic Mountain Experiment (OLYMPEX) in late 2015. We demonstrated consistent retrieval of snow properties and smooth transition from single- and dual-frequency retrievals to using all three frequencies simultaneously. The error analysis shows that the retrieval accuracy is improved when additional frequencies are introduced. We also compare the findings to in situ measurements of snow properties as well as measurements by polarimetric ground-based radar.

  9. Multimodal medical information retrieval with unsupervised rank fusion.

    PubMed

    Mourão, André; Martins, Flávio; Magalhães, João

    2015-01-01

    Modern medical information retrieval systems are paramount to manage the insurmountable quantities of clinical data. These systems empower health care experts in the diagnosis of patients and play an important role in the clinical decision process. However, the ever-growing heterogeneous information generated in medical environments poses several challenges for retrieval systems. We propose a medical information retrieval system with support for multimodal medical case-based retrieval. The system supports medical information discovery by providing multimodal search, through a novel data fusion algorithm, and term suggestions from a medical thesaurus. Our search system compared favorably to other systems in 2013 ImageCLEFMedical. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. WATCHMAN: A Data Warehouse Intelligent Cache Manager

    NASA Technical Reports Server (NTRS)

    Scheuermann, Peter; Shim, Junho; Vingralek, Radek

    1996-01-01

    Data warehouses store large volumes of data which are used frequently by decision support applications. Such applications involve complex queries. Query performance in such an environment is critical because decision support applications often require interactive query response time. Because data warehouses are updated infrequently, it becomes possible to improve query performance by caching sets retrieved by queries in addition to query execution plans. In this paper we report on the design of an intelligent cache manager for sets retrieved by queries called WATCHMAN, which is particularly well suited for data warehousing environment. Our cache manager employs two novel, complementary algorithms for cache replacement and for cache admission. WATCHMAN aims at minimizing query response time and its cache replacement policy swaps out entire retrieved sets of queries instead of individual pages. The cache replacement and admission algorithms make use of a profit metric, which considers for each retrieved set its average rate of reference, its size, and execution cost of the associated query. We report on a performance evaluation based on the TPC-D and Set Query benchmarks. These experiments show that WATCHMAN achieves a substantial performance improvement in a decision support environment when compared to a traditional LRU replacement algorithm.

  11. Interferogram conditioning for improved Fourier analysis and application to X-ray phase imaging by grating interferometry.

    PubMed

    Montaux-Lambert, Antoine; Mercère, Pascal; Primot, Jérôme

    2015-11-02

    An interferogram conditioning procedure, for subsequent phase retrieval by Fourier demodulation, is presented here as a fast iterative approach aiming at fulfilling the classical boundary conditions imposed by Fourier transform techniques. Interference fringe patterns with typical edge discontinuities were simulated in order to reveal the edge artifacts that classically appear in traditional Fourier analysis, and were consecutively used to demonstrate the correction efficiency of the proposed conditioning technique. Optimization of the algorithm parameters is also presented and discussed. Finally, the procedure was applied to grating-based interferometric measurements performed in the hard X-ray regime. The proposed algorithm enables nearly edge-artifact-free retrieval of the phase derivatives. A similar enhancement of the retrieved absorption and fringe visibility images is also achieved.

  12. A 3D model retrieval approach based on Bayesian networks lightfield descriptor

    NASA Astrophysics Data System (ADS)

    Xiao, Qinhan; Li, Yanjun

    2009-12-01

    A new 3D model retrieval methodology is proposed by exploiting a novel Bayesian networks lightfield descriptor (BNLD). There are two key novelties in our approach: (1) a BN-based method for building lightfield descriptor; and (2) a 3D model retrieval scheme based on the proposed BNLD. To overcome the disadvantages of the existing 3D model retrieval methods, we explore BN for building a new lightfield descriptor. Firstly, 3D model is put into lightfield, about 300 binary-views can be obtained along a sphere, then Fourier descriptors and Zernike moments descriptors can be calculated out from binaryviews. Then shape feature sequence would be learned into a BN model based on BN learning algorithm; Secondly, we propose a new 3D model retrieval method by calculating Kullback-Leibler Divergence (KLD) between BNLDs. Beneficial from the statistical learning, our BNLD is noise robustness as compared to the existing methods. The comparison between our method and the lightfield descriptor-based approach is conducted to demonstrate the effectiveness of our proposed methodology.

  13. Surface retrievals from Hyperion EO1 using a new, fast, 1D-Var based retrieval code

    NASA Astrophysics Data System (ADS)

    Thelen, Jean-Claude; Havemann, Stephan; Wong, Gerald

    2015-05-01

    We have developed a new algorithm for the simultaneous retrieval of the atmospheric profiles (temperature, humidity, ozone and aerosol) and the surface reflectance from hyperspectral radiance measurements obtained from air/space-borne, hyperspectral imagers such as Hyperion EO-1. The new scheme, proposed here, consists of a fast radiative transfer code, based on empirical orthogonal functions (EOFs), in conjunction with a 1D-Var retrieval scheme. The inclusion of an 'exact' scattering code based on spherical harmonics, allows for an accurate treatment of Rayleigh scattering and scattering by aerosols, water droplets and ice-crystals, thus making it possible to also retrieve cloud and aerosol optical properties, although here we will concentrate on non-cloudy scenes. We successfully tested this new approach using hyperspectral images taken by Hyperion EO-1, an experimental pushbroom imaging spectrometer operated by NASA.

  14. Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models

    NASA Astrophysics Data System (ADS)

    Hsieh, Feng-Ju; Wang, Wei-Chih

    2012-09-01

    This paper discusses two improved methods in retrieving effective refractive indices, impedances, and material properties, such as permittivity (ɛ) and permeability (μ), of metamaterials. The first method modified from Kong's retrieval method allows effective constitutive parameters over all frequencies including the anti-resonant band, where imaginary parts of ɛ or μ are negative, to be solved. The second method is based on genetic algorithms and optimization of properly defined goal functions to retrieve parameters of the Drude and Lorentz dispersion models. Equations of effective refractive index and impedance at any reference planes are derived. Split ring resonator-rod based metamaterials operating in terahertz frequencies are designed and investigated with proposed methods. Retrieved material properties and parameters are used to regenerate S-parameters and compared with simulation results generated by cst microwave studio software.

  15. A Well-Calibrated Ocean Algorithm for Special Sensor Microwave/Imager

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.

    1997-01-01

    I describe an algorithm for retrieving geophysical parameters over the ocean from special sensor microwave/imager (SSM/I) observations. This algorithm is based on a model for the brightness temperature T(sub B) of the ocean and intervening atmosphere. The retrieved parameters are the near-surface wind speed W, the columnar water vapor V, the columnar cloud liquid water L, and the line-of-sight wind W(sub LS). I restrict my analysis to ocean scenes free of rain, and when the algorithm detects rain, the retrievals are discarded. The model and algorithm are precisely calibrated using a very large in situ database containing 37,650 SSM/I overpasses of buoys and 35,108 overpasses of radiosonde sites. A detailed error analysis indicates that the T(sub B) model rms accuracy is between 0.5 and 1 K and that the rms retrieval accuracies for wind, vapor, and cloud are 0.9 m/s, 1.2 mm, and 0.025 mm, respectively. The error in specifying the cloud temperature will introduce an additional 10% error in the cloud water retrieval. The spatial resolution for these accuracies is 50 km. The systematic errors in the retrievals are smaller than the rms errors, being about 0.3 m/s, 0.6 mm, and 0.005 mm for W, V, and L, respectively. The one exception is the systematic error in wind speed of -1.0 m/s that occurs for observations within +/-20 deg of upwind. The inclusion of the line-of-sight wind W(sub LS) in the retrieval significantly reduces the error in wind speed due to wind direction variations. The wind error for upwind observations is reduced from -3.0 to -1.0 m/s. Finally, I find a small signal in the 19-GHz, horizontal polarization (h(sub pol) T(sub B) residual DeltaT(sub BH) that is related to the effective air pressure of the water vapor profile. This information may be of some use in specifying the vertical distribution of water vapor.

  16. Technical note: Intercomparison of three AATSR Level 2 (L2) AOD products over China

    NASA Astrophysics Data System (ADS)

    Che, Yahui; Xue, Yong; Mei, Linlu; Guang, Jie; She, Lu; Guo, Jianping; Hu, Yincui; Xu, Hui; He, Xingwei; Di, Aojie; Fan, Cheng

    2016-08-01

    One of four main focus areas of the PEEX initiative is to establish and sustain long-term, continuous, and comprehensive ground-based, airborne, and seaborne observation infrastructure together with satellite data. The Advanced Along-Track Scanning Radiometer (AATSR) aboard ENVISAT is used to observe the Earth in dual view. The AATSR data can be used to retrieve aerosol optical depth (AOD) over both land and ocean, which is an important parameter in the characterization of aerosol properties. In recent years, aerosol retrieval algorithms have been developed both over land and ocean, taking advantage of the features of dual view, which can help eliminate the contribution of Earth's surface to top-of-atmosphere (TOA) reflectance. The Aerosol_cci project, as a part of the Climate Change Initiative (CCI), provides users with three AOD retrieval algorithms for AATSR data, including the Swansea algorithm (SU), the ATSR-2ATSR dual-view aerosol retrieval algorithm (ADV), and the Oxford-RAL Retrieval of Aerosol and Cloud algorithm (ORAC). The validation team of the Aerosol-CCI project has validated AOD (both Level 2 and Level 3 products) and AE (Ångström Exponent) (Level 2 product only) against the AERONET data in a round-robin evaluation using the validation tool of the AeroCOM (Aerosol Comparison between Observations and Models) project. For the purpose of evaluating different performances of these three algorithms in calculating AODs over mainland China, we introduce ground-based data from CARSNET (China Aerosol Remote Sensing Network), which was designed for aerosol observations in China. Because China is vast in territory and has great differences in terms of land surfaces, the combination of the AERONET and CARSNET data can validate the L2 AOD products more comprehensively. The validation results show different performances of these products in 2007, 2008, and 2010. The SU algorithm performs very well over sites with different surface conditions in mainland China from March to October, but it slightly underestimates AOD over barren or sparsely vegetated surfaces in western China, with mean bias error (MBE) ranging from 0.05 to 0.10. The ADV product has the same precision with a low root mean square error (RMSE) smaller than 0.2 over most sites and the same error distribution as the SU product. The main limits of the ADV algorithm are underestimation and applicability; underestimation is particularly obvious over the sites of Datong, Lanzhou, and Urumchi, where the dominant land cover is grassland, with an MBE larger than 0.2, and the main aerosol sources are coal combustion and dust. The ORAC algorithm has the ability to retrieve AOD at different ranges, including high AOD (larger than 1.0); however, the stability deceases significantly with increasing AOD, especially when AOD > 1.0. In addition, the ORAC product is consistent with the CARSNET product in winter (December, January, and February), whereas other validation results lack matches during winter.

  17. Round Robin evaluation of soil moisture retrieval models for the MetOp-A ASCAT Instrument

    NASA Astrophysics Data System (ADS)

    Gruber, Alexander; Paloscia, Simonetta; Santi, Emanuele; Notarnicola, Claudia; Pasolli, Luca; Smolander, Tuomo; Pulliainen, Jouni; Mittelbach, Heidi; Dorigo, Wouter; Wagner, Wolfgang

    2014-05-01

    Global soil moisture observations are crucial to understand hydrologic processes, earth-atmosphere interactions and climate variability. ESA's Climate Change Initiative (CCI) project aims to create a global consistent long-term soil moisture data set based on the merging of the best available active and passive satellite-based microwave sensors and retrieval algorithms. Within the CCI, a Round Robin evaluation of existing retrieval algorithms for both active and passive instruments was carried out. In this study we present the comparison of five different retrieval algorithms covering three different modelling principles applied to active MetOp-A ASCAT L1 backscatter data. These models include statistical models (Bayesian Regression and Support Vector Regression, provided by the Institute for Applied Remote Sensing, Eurac Research Viale Druso, Italy, and an Artificial Neural Network, provided by the Institute of Applied Physics, CNR-IFAC, Italy), a semi-empirical model (provided by the Finnish Meteorological Institute), and a change detection model (provided by the Vienna University of Technology). The algorithms were applied on L1 backscatter data within the period of 2007-2011, resampled to a 12.5 km grid. The evaluation was performed over 75 globally distributed, quality controlled in situ stations drawn from the International Soil Moisture Network (ISMN) using surface soil moisture data from the Global Land Data Assimilation System (GLDAS-) Noah land surface model as second independent reference. The temporal correlation between the data sets was analyzed and random errors of the the different algorithms were estimated using the triple collocation method. Absolute soil moisture values as well as soil moisture anomalies were considered including both long-term anomalies from the mean seasonal cycle and short-term anomalies from a five weeks moving average window. Results show a very high agreement between all five algorithms for most stations. A slight vegetation dependency of the errors and a spatial decorrelation of the performance patterns of the different algorithms was found. We conclude that future research should focus on understanding, combining and exploiting the advantages of all available modelling approaches rather than trying to optimize one approach to fit every possible condition.

  18. An advanced retrieval algorithm for greenhouse gases using polarization information measured by GOSAT TANSO-FTS SWIR I: Simulation study

    NASA Astrophysics Data System (ADS)

    Kikuchi, N.; Yoshida, Y.; Uchino, O.; Morino, I.; Yokota, T.

    2016-11-01

    We present an algorithm for retrieving column-averaged dry air mole fraction of carbon dioxide (XCO2) and methane (XCH4) from reflected spectra in the shortwave infrared (SWIR) measured by the TANSO-FTS (Thermal And Near infrared Sensor for carbon Observation Fourier Transform Spectrometer) sensor on board the Greenhouse gases Observing SATellite (GOSAT). The algorithm uses the two linear polarizations observed by TANSO-FTS to improve corrections to the interference effects of atmospheric aerosols, which degrade the accuracy in the retrieved greenhouse gas concentrations. To account for polarization by the land surface reflection in the forward model, we introduced a bidirectional reflection matrix model that has two parameters to be retrieved simultaneously with other state parameters. The accuracy in XCO2 and XCH4 values retrieved with the algorithm was evaluated by using simulated retrievals over both land and ocean, focusing on the capability of the algorithm to correct imperfect prior knowledge of aerosols. To do this, we first generated simulated TANSO-FTS spectra using a global distribution of aerosols computed by the aerosol transport model SPRINTARS. Then the simulated spectra were submitted to the algorithms as measurements both with and without polarization information, adopting a priori profiles of aerosols that differ from the true profiles. We found that the accuracy of XCO2 and XCH4, as well as profiles of aerosols, retrieved with polarization information was considerably improved over values retrieved without polarization information, for simulated observations over land with aerosol optical thickness greater than 0.1 at 1.6 μm.

  19. Development of a generalized algorithm of satellite remote sensing using multi-wavelength and multi-pixel information (MWP method) for aerosol properties by satellite-borne imager

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Nakajima, T.; Morimoto, S.; Takenaka, H.

    2014-12-01

    We have developed a new satellite remote sensing algorithm to retrieve the aerosol optical characteristics using multi-wavelength and multi-pixel information of satellite imagers (MWP method). In this algorithm, the inversion method is a combination of maximum a posteriori (MAP) method (Rodgers, 2000) and the Phillips-Twomey method (Phillips, 1962; Twomey, 1963) as a smoothing constraint for the state vector. Furthermore, with the progress of computing technique, this method has being combined with the direct radiation transfer calculation numerically solved by each iteration step of the non-linear inverse problem, without using LUT (Look Up Table) with several constraints.Retrieved parameters in our algorithm are aerosol optical properties, such as aerosol optical thickness (AOT) of fine and coarse mode particles, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength. We simultaneously retrieve all the parameters that characterize pixels in each of horizontal sub-domains consisting the target area. Then we successively apply the retrieval method to all the sub-domains in the target area.We conducted numerical tests for the retrieval of aerosol properties and ground surface albedo for GOSAT/CAI imager data to test the algorithm for the land area. The result of the experiment showed that AOTs of fine mode and coarse mode, soot fraction and ground surface albedo are successfully retrieved within expected accuracy. We discuss the accuracy of the algorithm for various land surface types. Then, we applied this algorithm to GOSAT/CAI imager data, and we compared retrieved and surface-observed AOTs at the CAI pixel closest to an AERONET (Aerosol Robotic Network) or SKYNET site in each region. Comparison at several sites in urban area indicated that AOTs retrieved by our method are in agreement with surface-observed AOT within ±0.066.Our future work is to extend the algorithm for analysis of AGEOS-II/GLI and GCOM/C-SGLI data.

  20. Is searching full text more effective than searching abstracts?

    PubMed Central

    Lin, Jimmy

    2009-01-01

    Background With the growing availability of full-text articles online, scientists and other consumers of the life sciences literature now have the ability to go beyond searching bibliographic records (title, abstract, metadata) to directly access full-text content. Motivated by this emerging trend, I posed the following question: is searching full text more effective than searching abstracts? This question is answered by comparing text retrieval algorithms on MEDLINE® abstracts, full-text articles, and spans (paragraphs) within full-text articles using data from the TREC 2007 genomics track evaluation. Two retrieval models are examined: bm25 and the ranking algorithm implemented in the open-source Lucene search engine. Results Experiments show that treating an entire article as an indexing unit does not consistently yield higher effectiveness compared to abstract-only search. However, retrieval based on spans, or paragraphs-sized segments of full-text articles, consistently outperforms abstract-only search. Results suggest that highest overall effectiveness may be achieved by combining evidence from spans and full articles. Conclusion Users searching full text are more likely to find relevant articles than searching only abstracts. This finding affirms the value of full text collections for text retrieval and provides a starting point for future work in exploring algorithms that take advantage of rapidly-growing digital archives. Experimental results also highlight the need to develop distributed text retrieval algorithms, since full-text articles are significantly longer than abstracts and may require the computational resources of multiple machines in a cluster. The MapReduce programming model provides a convenient framework for organizing such computations. PMID:19192280

  1. Development and comparisons of wind retrieval algorithms for small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.

    2012-12-01

    Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.

  2. Comparison and application of wind retrieval algorithms for small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.

    2013-07-01

    Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well-aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.

  3. Exploring context and content links in social media: a latent space method.

    PubMed

    Qi, Guo-Jun; Aggarwal, Charu; Tian, Qi; Ji, Heng; Huang, Thomas S

    2012-05-01

    Social media networks contain both content and context-specific information. Most existing methods work with either of the two for the purpose of multimedia mining and retrieval. In reality, both content and context information are rich sources of information for mining, and the full power of mining and processing algorithms can be realized only with the use of a combination of the two. This paper proposes a new algorithm which mines both context and content links in social media networks to discover the underlying latent semantic space. This mapping of the multimedia objects into latent feature vectors enables the use of any off-the-shelf multimedia retrieval algorithms. Compared to the state-of-the-art latent methods in multimedia analysis, this algorithm effectively solves the problem of sparse context links by mining the geometric structure underlying the content links between multimedia objects. Specifically for multimedia annotation, we show that an effective algorithm can be developed to directly construct annotation models by simultaneously leveraging both context and content information based on latent structure between correlated semantic concepts. We conduct experiments on the Flickr data set, which contains user tags linked with images. We illustrate the advantages of our approach over the state-of-the-art multimedia retrieval techniques.

  4. Consistent satellite XCO 2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm

    DOE PAGES

    Heymann, J.; Reuter, M.; Hilker, M.; ...

    2015-02-13

    Consistent and accurate long-term data sets of global atmospheric concentrations of carbon dioxide (CO 2) are required for carbon cycle and climate related research. However, global data sets based on satellite observations may suffer from inconsistencies originating from the use of products derived from different satellites as needed to cover a long enough time period. One reason for inconsistencies can be the use of different retrieval algorithms. We address this potential issue by applying the same algorithm, the Bremen Optimal Estimation DOAS (BESD) algorithm, to different satellite instruments, SCIAMACHY on-board ENVISAT (March 2002–April 2012) and TANSO-FTS on-board GOSAT (launched inmore » January 2009), to retrieve XCO 2, the column-averaged dry-air mole fraction of CO 2. BESD has been initially developed for SCIAMACHY XCO 2 retrievals. Here, we present the first detailed assessment of the new GOSAT BESD XCO 2 product. GOSAT BESD XCO 2 is a product generated and delivered to the MACC project for assimilation into ECMWF's Integrated Forecasting System (IFS). We describe the modifications of the BESD algorithm needed in order to retrieve XCO 2 from GOSAT and present detailed comparisons with ground-based observations of XCO 2 from the Total Carbon Column Observing Network (TCCON). We discuss detailed comparison results between all three XCO 2 data sets (SCIAMACHY, GOSAT and TCCON). The comparison results demonstrate the good consistency between the SCIAMACHY and the GOSAT XCO 2. For example, we found a mean difference for daily averages of −0.60 ± 1.56 ppm (mean difference ± standard deviation) for GOSAT-SCIAMACHY (linear correlation coefficient r = 0.82), −0.34 ± 1.37 ppm ( r = 0.86) for GOSAT-TCCON and 0.10 ± 1.79 ppm ( r = 0.75) for SCIAMACHY-TCCON. The remaining differences between GOSAT and SCIAMACHY are likely due to non-perfect collocation (±2 h, 10° × 10° around TCCON sites), i.e., the observed air masses are not exactly identical, but likely also due to a still non-perfect BESD retrieval algorithm, which will be continuously improved in the future. Our overarching goal is to generate a satellite-derived XCO 2 data set appropriate for climate and carbon cycle research covering the longest possible time period. We therefore also plan to extend the existing SCIAMACHY and GOSAT data set discussed here by using also data from other missions (e.g., OCO-2, GOSAT-2, CarbonSat) in the future.« less

  5. Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements: Convective Cloud Microphysical Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Jingjing; Dong, Xiquan; Xi, Baike

    This study presents new algorithms for retrieving ice cloud microphysical properties (ice water content (IWC) and median mass diameter (Dm)) for the stratiform and thick anvil regions of Deep Convective Systems (DCSs) using Next-Generation Radar (NEXRAD) reflectivity and recently developed empirical relationships from aircraft in situ measurements during the Midlatitude Continental Convective Clouds Experiment (MC3E). A classic DCS case on 20 May 2011 is used to compare the retrieved IWC profiles with other retrieval and cloud-resolving model simulations. The mean values of each retrieved and simulated IWC fall within one standard derivation of the other two. The statistical results frommore » six selected cases during MC3E show that the aircraft in situ derived IWC and Dm are 0.47 ± 0.29 g m-3 and 2.02 ± 1.3 mm, while the mean values of retrievals have a positive bias of 0.16 g m-3 (34%) and a negative bias of 0.39 mm (19%). To validate the newly developed retrieval algorithms from this study, IWC and Dm are performed with other DCS cases during Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) field campaign using composite gridded NEXRAD reflectivity and compared with in situ IWC and Dm from aircraft. A total of 64 1-min collocated aircraft and radar samples are available for comparisons, and the averages of radar retrieved and aircraft in situ measured IWCs are 1.22 g m-3 and 1.26 g m-3 with a correlation of 0.5, and their averaged Dm values are 2.15 and 1.80 mm. These comparisons have shown that the retrieval algorithms 45 developed during MC3E can retrieve similar ice cloud microphysical properties of DCS to aircraft in situ measurements during BAMEX with median errors of ~40% and ~25% for IWC and Dm retrievals, respectively. This is indicating our retrieval algorithms are suitable for other midlatitude continental DCS ice clouds, especially at stratiform rain and thick anvil regions. In addition, based on the averaged IWC and Dm values during MC3E and BAMEX, the DCS IWC values over midlatitude are significantly different, while their Dm values are close to each other. On the other hand, these DCS IWC and Dm values are 1-2 orders of magnitude larger than those of single-layered cirrus clouds over midlatitudes.« less

  6. NPP ATMS Snowfall Rate Product

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua

    2015-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.

  7. Development, Validation, and Potential Enhancements to the Second-Generation Operational Aerosol Product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration

    NASA Technical Reports Server (NTRS)

    Stowe, Larry L.; Ignatov, Alexander M.; Singh, Ramdas R.

    1997-01-01

    A revised (phase 2) single-channel algorithm for aerosol optical thickness, tau(sup A)(sub SAT), retrieval over oceans from radiances in channel 1 (0.63 microns) of the Advanced Very High Resolution Radiometer (AVHRR) has been implemented at the National Oceanic and Atmospheric Administration's National Environmental Satellite Data and Information Service for the NOAA 14 satellite launched December 30, 1994. It is based on careful validation of its operational predecessor (phase 1 algorithm), implemented for NOAA 14 in 1989. Both algorithms scale the upward satellite radiances in cloud-free conditions to aerosol optical thickness using an updated radiative transfer model of the ocean and atmosphere. Application of the phase 2 algorithm to three matchup Sun-photometer and satellite data sets, one with NOAA 9 in 1988 and two with NOAA 11 in 1989 and 1991, respectively, show systematic error is less than 10%, with a random error of sigma(sub tau) approx. equal 0.04. First results of tau(sup A)(sub SAT) retrievals from NOAA 14 using the phase 2 algorithm, and from checking its internal consistency, are presented. The potential two-channel (phase 3) algorithm for the retrieval of an aerosol size parameter, such as the Junge size distribution exponent, by adding either channel 2 (0.83 microns) from the current AVHRR instrument, or a 1.6-microns channel to be available on the Tropical Rainfall Measurement Mission and the NOAA-KLM satellites by 1997 is under investigation. The possibility of using this additional information in the retrieval of a more accurate estimate of aerosol optical thickness is being explored.

  8. Simple-random-sampling-based multiclass text classification algorithm.

    PubMed

    Liu, Wuying; Wang, Lin; Yi, Mianzhu

    2014-01-01

    Multiclass text classification (MTC) is a challenging issue and the corresponding MTC algorithms can be used in many applications. The space-time overhead of the algorithms must be concerned about the era of big data. Through the investigation of the token frequency distribution in a Chinese web document collection, this paper reexamines the power law and proposes a simple-random-sampling-based MTC (SRSMTC) algorithm. Supported by a token level memory to store labeled documents, the SRSMTC algorithm uses a text retrieval approach to solve text classification problems. The experimental results on the TanCorp data set show that SRSMTC algorithm can achieve the state-of-the-art performance at greatly reduced space-time requirements.

  9. SMOS first results over land

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Waldteufel, Philippe; Cabot, François; Richaume, Philippe; Jacquette, Elsa; Bitar, Ahmad Al; Mamhoodi, Ali; Delwart, Steven; Wigneron, Jean-Pierre

    2010-05-01

    The Soil Moisture and Ocean Salinity (SMOS) mission is ESA's (European Space Agency ) second Earth Explorer Opportunity mission, launched in November 2009. It is a joint programme between ESA CNES (Centre National d'Etudes Spatiales) and CDTI (Centro para el Desarrollo Tecnologico Industrial). SMOS carries a single payload, an L-band 2D interferometric radiometer in the 1400-1427 MHz protected band. This wavelength penetrates well through the atmosphere and hence the instrument probes the Earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil, and, after some surface roughness and temperature corrections, to the sea surface salinity over ocean. In order to prepare the data use and dissemination, the ground segment will produce level 1 and 2 data. Level 1 consists mainly of angular brightness temperatures while level 2 consists of geophysical products. In this context, a group of institutes prepared the soil moisture and ocean salinity Algorithm Theoretical Basis documents (ATBD) to be used to produce the operational algorithm. The principle of the soil moisture retrieval algorithm is based on an iterative approach which aims at minimizing a cost function given by the sum of the squared weighted differences between measured and modelled brightness temperature (TB) data, for a variety of incidence angles. This is achieved by finding the best suited set of the parameters which drive the direct TB model, e.g. soil moisture (SM) and vegetation characteristics. Despite the simplicity of this principle, the main reason for the complexity of the algorithm is that SMOS "pixels" can correspond to rather large, inhomogeneous surface areas whose contribution to the radiometric signal is difficult to model. Moreover, the exact description of pixels, given by a weighting function which expresses the directional pattern of the SMOS interferometric radiometer, depends on the incidence angle. The goal is to retrieve soil moisture over fairly large and thus inhomogeneous areas. The retrieval is carried out at nodes of a fixed Earth surface grid. To achieve this purpose, after checking input data quality and ingesting auxiliary data, the retrieval process per se can be initiated. This cannot be done blindly as the direct model will be dependent upon surface characteristics. It is thus necessary to first assess what is the dominant land use of a node. For this, an average weighing function (MEAN_WEF) which takes into account the "antenna"pattern is run over the high resolution land use map to assess the dominant cover type. This is used to drive the decision tree which, step by step, selects the type of model to be used as per surface conditions. All this being said and done the retrieval procedure starts if all the conditions are satisfied, ideally to retrieve 3 parameters over the dominant class (the so-called rich retrieval). If the algorithm does not converge satisfactorily, a new trial is made with less floating parameters ("poorer retrieval") until either results are satisfactory or the algorithm is considered to fail. The retrieval algorithm also delivers whenever possible a dielectric constant parameter (using the-so called cardioid approach). Finally, once the retrieval converged, it is possible to compute the brightness temperature at a given fixed angle (42.5°) using the selected forward models applied to the set of parameters obtained at the end of the retrieval process. So the output product of the level 2 soil moisture algorithm should be node position, soil moisture, dielectric constants, computed brightness temperature at 42.5°, flags and quality indices. During the presentation we will describe in more details the algorithm and accompanying work in particular decision tree principle and characteristics, the auxiliary data used and the special and "exotic"cases. We will also be more explicit on the algorithm validation and verification through the data collected during the commissioning phase. The main hurdle being working in spite of spurious signals (RFI) on some areas of the globe.

  10. Aerosol optical properties retrieved from the future space lidar mission ADM-aeolus

    NASA Astrophysics Data System (ADS)

    Martinet, Pauline; Flament, Thomas; Dabas, Alain

    2018-04-01

    The ADM-Aeolus mission, to be launched by end of 2017, will enable the retrieval of aerosol optical properties (extinction and backscatter coefficients essentially) for different atmospheric conditions. A newly developed feature finder (FF) algorithm enabling the detection of aerosol and cloud targets in the atmospheric scene has been implemented. Retrievals of aerosol properties at a better horizontal resolution based on the feature finder groups have shown an improvement mainly on the backscatter coefficient compared to the common 90 km product.

  11. FPGA implementation of sparse matrix algorithm for information retrieval

    NASA Astrophysics Data System (ADS)

    Bojanic, Slobodan; Jevtic, Ruzica; Nieto-Taladriz, Octavio

    2005-06-01

    Information text data retrieval requires a tremendous amount of processing time because of the size of the data and the complexity of information retrieval algorithms. In this paper the solution to this problem is proposed via hardware supported information retrieval algorithms. Reconfigurable computing may adopt frequent hardware modifications through its tailorable hardware and exploits parallelism for a given application through reconfigurable and flexible hardware units. The degree of the parallelism can be tuned for data. In this work we implemented standard BLAS (basic linear algebra subprogram) sparse matrix algorithm named Compressed Sparse Row (CSR) that is showed to be more efficient in terms of storage space requirement and query-processing timing over the other sparse matrix algorithms for information retrieval application. Although inverted index algorithm is treated as the de facto standard for information retrieval for years, an alternative approach to store the index of text collection in a sparse matrix structure gains more attention. This approach performs query processing using sparse matrix-vector multiplication and due to parallelization achieves a substantial efficiency over the sequential inverted index. The parallel implementations of information retrieval kernel are presented in this work targeting the Virtex II Field Programmable Gate Arrays (FPGAs) board from Xilinx. A recent development in scientific applications is the use of FPGA to achieve high performance results. Computational results are compared to implementations on other platforms. The design achieves a high level of parallelism for the overall function while retaining highly optimised hardware within processing unit.

  12. HECLIB. Volume 2: HECDSS Subroutines Programmer’s Manual

    DTIC Science & Technology

    1991-05-01

    algorithm and hierarchical design for database accesses. This algorithm provides quick access to data sets and an efficient means of adding new data set...Description of How DSS Works DSS version 6 utilizes a modified hash algorithm based upon the pathname to store and retrieve data. This structure allows...balancing disk space and record access times. A variation in this algorithm is for "stable" files. In a stable file, a hash table is not utilized

  13. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

    NASA Astrophysics Data System (ADS)

    Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing

    2018-02-01

    Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.

  14. Evaluation of Aerosol Optical Depth and Aerosol Models from VIIRS Retrieval Algorithms over North China Plain

    NASA Technical Reports Server (NTRS)

    Zhu, Jun; Xia, Xiangao; Wang, Jun; Che, Huizheng; Chen, Hongbin; Zhang, Jinqiang; Xu, Xiaoguang; Levy, Robert; Oo, Min; Holz, Robert; hide

    2017-01-01

    The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on Suomi National Polar-orbiting Partnership (S-NPP) satellite in late 2011. Similar to the Moderate resolution Imaging Spectroradiometer (MODIS), VIIRS observes top-of-atmosphere spectral reflectance and is potentially suitable for retrieval of the aerosol optical depth (AOD). The VIIRS Environmental Data Record data (VIIRS_EDR) is produced operationally by NOAA, and is based on the MODIS atmospheric correction algorithm. The MODIS-like VIIRS data (VIIRS_ML) are being produced experimentally at NASA, from a version of the dark-target algorithm that is applied to MODIS. In this study, the AOD and aerosol model types from these two VIIRS retrieval algorithms over the North China Plain (NCP) are evaluated using the ground-based CE318 Sunphotometer (CE318) measurements during 2 May 2012-31 March 2014 at three sites. These sites represent three different surface types: urban (Beijing), suburban (XiangHe) and rural (Xinglong). Firstly, we evaluate the retrieved spectral AOD. For the three sites, VIIRS_EDR AOD at 550 nm shows a positive mean bias (MB) of 0.04-0.06 and the correlation of 0.83-0.86, with the largest MB (0.10-0.15) observed in Beijing. In contrast, VIIRS_ML AOD at 550 nm has overall higher positive MB of 0.13-0.14 and a higher correlation (0.93-0.94) with CE318 AOD. Secondly, we evaluate the aerosol model types assumed by each algorithm, as well as the aerosol optical properties used in the AOD retrievals. The aerosol model used in VIIRS_EDR algorithm shows that dust and clean urban models were the dominant model types during the evaluation period. The overall accuracy rate of the aerosol model used in VIIRS_ML over NCP three sites (0.48) is higher than that of VIIRS_EDR (0.27). The differences in Single Scattering Albedo (SSA) at 670 nm between VIIRS_ML and CE318 are mostly less than 0.015, but high seasonal differences are found especially over the Xinglong site. The values of SSA from VIIRS_EDR are higher than that observed by CE318 over all sites and all assumed aerosol modes, with a positive bias of 0.02-0.04 for fine mode, 0.06-0.12 for coarse mode and 0.03-0.05 for bi-mode at 440nm. The overestimation of SSA but positive AOD MB of VIIRS_EDR indicate that other factors (e.g. surface reflectance characterization or cloud contamination) are important sources of error in the VIIRS_EDR algorithm, and their effects on aerosol retrievals may override the effects from non-ideality in these aerosol models.

  15. Evaluation of aerosol optical depth and aerosol models from VIIRS retrieval algorithms over North China Plain.

    PubMed

    Zhu, Jun; Xia, Xiangao; Wang, Jun; Che, Huizheng; Chen, Hongbin; Zhang, Jinqiang; Xu, Xiaoguang; Levy, Robert; Oo, Min; Holz, Robert; Ayoub, Mohammed

    2017-01-01

    The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on Suomi National Polar-orbiting Partnership (S-NPP) satellite in late 2011. Similar to the Moderate resolution Imaging Spectroradiometer (MODIS), VIIRS observes top-of-atmosphere spectral reflectance and is potentially suitable for retrieval of the aerosol optical depth (AOD). The VIIRS Environmental Data Record data (VIIRS_EDR) is produced operationally by NOAA, and is based on the MODIS atmospheric correction algorithm. The "MODIS-like" VIIRS data (VIIRS_ML) are being produced experimentally at NASA, from a version of the "dark-target" algorithm that is applied to MODIS. In this study, the AOD and aerosol model types from these two VIIRS retrieval algorithms over the North China Plain (NCP) are evaluated using the ground-based CE318 Sunphotometer (CE318) measurements during 2 May 2012 - 31 March 2014 at three sites. These sites represent three different surface types: urban (Beijing), suburban (XiangHe) and rural (Xinglong). Firstly, we evaluate the retrieved spectral AOD. For the three sites, VIIRS_EDR AOD at 550 nm shows a positive mean bias (MB) of 0.04-0.06 and the correlation of 0.83-0.86, with the largest MB (0.10-0.15) observed in Beijing. In contrast, VIIRS_ML AOD at 550 nm has overall higher positive MB of 0.13-0.14 and a higher correlation (0.93-0.94) with CE318 AOD. Secondly, we evaluate the aerosol model types assumed by each algorithm, as well as the aerosol optical properties used in the AOD retrievals. The aerosol model used in VIIRS_EDR algorithm shows that dust and clean urban models were the dominant model types during the evaluation period. The overall accuracy rate of the aerosol model used in VIIRS_ML over NCP three sites (0.48) is higher than that of VIIRS_EDR (0.27). The differences in Single Scattering Albedo (SSA) at 670 nm between VIIRS_ML and CE318 are mostly less than 0.015, but high seasonal differences are found especially over the Xinglong site. The values of SSA from VIIRS_EDR are higher than that observed by CE318 over all sites and all assumed aerosol modes, with a positive bias of 0.02-0.04 for fine mode, 0.06-0.12 for coarse mode and 0.03-0.05 for bi-mode at 440nm. The overestimation of SSA but positive AOD MB of VIIRS_EDR indicate that other factors (e.g. surface reflectance characterization or cloud contamination) are important sources of error in the VIIRS_EDR algorithm, and their effects on aerosol retrievals may override the effects from non-ideality in these aerosol models.

  16. Identifying Defects with Guided Algorithms in Bragg Coherent Diffractive Imaging

    DOE PAGES

    Ulvestad, A.; Nashed, Y.; Beutier, G.; ...

    2017-08-30

    In this study, crystallographic defects such as dislocations can significantly alter material properties and functionality. However, imaging these imperfections during operation remains challenging due to the short length scales involved and the reactive environments of interest. Bragg coherent diffractive imaging (BCDI) has emerged as a powerful tool capable of identifying dislocations, twin domains, and other defects in 3D detail with nanometer spatial resolution within nanocrystals and grains in reactive environments. However, BCDI relies on phase retrieval algorithms that can fail to accurately reconstruct the defect network. Here, we use numerical simulations to explore different guided phase retrieval algorithms for imagingmore » defective crystals using BCDI. We explore different defect types, defect densities, Bragg peaks, and guided algorithm fitness metrics as a function of signal-to-noise ratio. Based on these results, we offer a general prescription for phasing of defective crystals with no a prior knowledge.« less

  17. Limb-Nadir Matching for Tropospheric NO2: A New Algorithm in the SCIAMACHY Operational Level 2 Processor

    NASA Astrophysics Data System (ADS)

    Meringer, Markus; Gretschany, Sergei; Lichtenberg, Gunter; Hilboll, Andreas; Richter, Andreas; Burrows, John P.

    2015-11-01

    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric ChartographY) aboard ESA's environmental satellite ENVISAT observed the Earth's atmosphere in limb, nadir, and solar/lunar occultation geometries covering the UV-Visible to NIR spectral range. Limb and nadir geometries were the main operation modes for the retrieval of scientific data. The new version 6 of ESA's level 2 processor now provides for the first time an operational algorithm to combine measurements of these two geometries in order to generate new products. As a first instance the retrieval of tropospheric NO2 has been implemented based on IUP-Bremen's reference algorithm. We will detail the single processing steps performed by the operational limb-nadir matching algorithm and report the results of comparisons with the scientific tropospheric NO2 products of IUP and the Tropospheric Emission Monitoring Internet Service (TEMIS).

  18. Identifying Defects with Guided Algorithms in Bragg Coherent Diffractive Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulvestad, A.; Nashed, Y.; Beutier, G.

    In this study, crystallographic defects such as dislocations can significantly alter material properties and functionality. However, imaging these imperfections during operation remains challenging due to the short length scales involved and the reactive environments of interest. Bragg coherent diffractive imaging (BCDI) has emerged as a powerful tool capable of identifying dislocations, twin domains, and other defects in 3D detail with nanometer spatial resolution within nanocrystals and grains in reactive environments. However, BCDI relies on phase retrieval algorithms that can fail to accurately reconstruct the defect network. Here, we use numerical simulations to explore different guided phase retrieval algorithms for imagingmore » defective crystals using BCDI. We explore different defect types, defect densities, Bragg peaks, and guided algorithm fitness metrics as a function of signal-to-noise ratio. Based on these results, we offer a general prescription for phasing of defective crystals with no a prior knowledge.« less

  19. GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia

    NASA Astrophysics Data System (ADS)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Holben, Brent; Eck, Thomas F.; Li, Zhengqiang; Song, Chul H.

    2018-01-01

    The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed to retrieve hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD had accuracy comparable to ground-based and other satellite-based observations but still had errors because of uncertainties in surface reflectance and simple cloud masking. In addition, near-real-time (NRT) processing was not possible because a monthly database for each year encompassing the day of retrieval was required for the determination of surface reflectance. This study describes the improved GOCI YAER algorithm version 2 (V2) for NRT processing with improved accuracy based on updates to the cloud-masking and surface-reflectance calculations using a multi-year Rayleigh-corrected reflectance and wind speed database, and inversion channels for surface conditions. The improved GOCI AOD τG is closer to that of the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD than was the case for AOD from the YAER V1 algorithm. The V2 τG has a lower median bias and higher ratio within the MODIS expected error range (0.60 for land and 0.71 for ocean) compared with V1 (0.49 for land and 0.62 for ocean) in a validation test against Aerosol Robotic Network (AERONET) AOD τA from 2011 to 2016. A validation using the Sun-Sky Radiometer Observation Network (SONET) over China shows similar results. The bias of error (τG - τA) is within -0.1 and 0.1, and it is a function of AERONET AOD and Ångström exponent (AE), scattering angle, normalized difference vegetation index (NDVI), cloud fraction and homogeneity of retrieved AOD, and observation time, month, and year. In addition, the diagnostic and prognostic expected error (PEE) of τG are estimated. The estimated PEE of GOCI V2 AOD is well correlated with the actual error over East Asia, and the GOCI V2 AOD over South Korea has a higher ratio within PEE than that over China and Japan.

  20. V2.1.4 L2AS Detailed Release Description September 27, 2001

    Atmospheric Science Data Center

    2013-03-14

    ... 27, 2001 Algorithm Changes Change method of selecting radiance pixels to use in aerosol retrieval over ... het. surface retrieval algorithm over areas of 100% dark water. Modify algorithm for selecting a default aerosol model to use in ...

  1. An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data

    USGS Publications Warehouse

    Tan, B.; Morisette, J.T.; Wolfe, R.E.; Gao, F.; Ederer, G.A.; Nightingale, J.; Pedelty, J.A.

    2011-01-01

    An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates. ?? 2010 IEEE.

  2. An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Morisette, Jeffrey T.; Wolfe, Robert E.; Gao, Feng; Ederer, Gregory A.; Nightingale, Joanne; Pedelty, Jeffrey A.

    2012-01-01

    An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates.

  3. A Parallel Relational Database Management System Approach to Relevance Feedback in Information Retrieval.

    ERIC Educational Resources Information Center

    Lundquist, Carol; Frieder, Ophir; Holmes, David O.; Grossman, David

    1999-01-01

    Describes a scalable, parallel, relational database-drive information retrieval engine. To support portability across a wide range of execution environments, all algorithms adhere to the SQL-92 standard. By incorporating relevance feedback algorithms, accuracy is enhanced over prior database-driven information retrieval efforts. Presents…

  4. Evaluation and application of an algorithm for atmospheric profiling continuity from Aqua to Suomi-NPP

    NASA Astrophysics Data System (ADS)

    Lipton, A.; Moncet, J. L.; Lynch, R.; Payne, V.; Alvarado, M. J.

    2016-12-01

    We will present results from an algorithm that is being developed to produce climate-quality atmospheric profiling earth system data records (ESDRs) for application to data from hyperspectral sounding instruments, including the Atmospheric InfraRed Sounder (AIRS) on EOS Aqua and the Cross-track Infrared Sounder (CrIS) on Suomi-NPP, along with their companion microwave sounders, AMSU and ATMS, respectively. The ESDR algorithm uses an optimal estimation approach and the implementation has a flexible, modular software structure to support experimentation and collaboration. Data record continuity benefits from the fact that the same algorithm can be applied to different sensors, simply by providing suitable configuration and data files. For analysis of satellite profiles over multi-decade periods, a concern is that the algorithm could respond inadequately to climate change if it uses a static background as a retrieval constraint, leading to retrievals that underestimate secular changes over extended periods of time and become biased toward an outdated climatology. We assessed the ability of our algorithm to respond appropriately to changes in temperature and water vapor profiles associated with climate change and, in particular, on the impact of using a climatological background in retrievals when the climatology is not static. We simulated a scenario wherein our algorithm processes 30 years of data from CrIS and ATMS (CrIMSS) with a static background based on data from the start of the 30-year period. We performed simulations using products from Coupled Model Intercomparison Project 5 (CMIP5), and in particular the "representative concentration pathways" midrange emissions (RCP4.5) scenario from the GISS-E2-R model. We will present results indicating that regularization using empirical orthogonal functions (EOFs) from a 30-year outdated covariance had a negligible effect on results. For temperature, the secular change is represented with high fidelity with the CrIMSS retrievals. For water vapor, an outdated background adds distortion to the secular moistening trend in the troposphere only above 300 mb, where the sensor information content is less than at lower levels. We will also present results illustrating the consistency between retrievals from near-simultaneous AIRS and CrIMSS measurements.

  5. Neural Network (NN) retrievals of Stratocumulus cloud properties using multi-angle polarimetric observations during ORACLES

    NASA Astrophysics Data System (ADS)

    Segal-Rosenhaimer, M.; Knobelspiesse, K. D.; Redemann, J.; Cairns, B.; Alexandrov, M. D.

    2016-12-01

    The ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign is taking place in the South-East Atlantic during the Austral Spring for three consecutive years from 2016-2018. The study area encompasses one of the Earth's three semi-permanent subtropical Stratocumulus (Sc) cloud decks, and experiences very large aerosol optical depths, mainly biomass burning, originating from Africa. Over time, cloud optical depth (COD), lifetime and cloud microphysics (number concentration, effective radii Reff and precipitation) are expected to be influenced by indirect aerosol effects. These changes play a key role in the energetic balance of the region, and are part of the core investigation objectives of the ORACLES campaign, which acquires measurements of clean and polluted scenes of above cloud aerosols (ACA). Simultaneous retrievals of aerosol and cloud optical properties are being developed (e.g. MODIS, OMI), but still challenging, especially for passive, single viewing angle instruments. By comparison, multiangle polarimetric instruments like RSP (Research Scanning Polarimeter) show promise for detection and quantification of ACA, however, there are no operational retrieval algorithms available yet. Here we describe a new algorithm to retrieve cloud and aerosol optical properties from observations by RSP flown on the ER-2 and P-3 during the 2016 ORACLES campaign. The algorithm is based on training a NN, and is intended to retrieve aerosol and cloud properties simultaneously. However, the first step was to establish the retrieval scheme for low level Sc cloud optical properties. The NN training was based on simulated RSP total and polarized radiances for a range of COD, Reff, and effective variances, spanning 7 wavelength bands and 152 viewing zenith angles. Random and correlated noise were added to the simulations to achieve a more realistic representation of the signals. Before introducing the input variables to the network, the signals are projected on a principle component plane that retains the maximal signal information but minimizes the noise contribution. We will discuss parameter choices for the network and present preliminary results of cloud retrievals from ORACLES, compared with standard RSP low-level cloud retrieval method that has been validated against in situ observations.

  6. Direct Retrieval of Sulfur Dioxide Amount and Altitude from Spaceborne Hyperspectral UV Measurements: Theory and Application

    NASA Technical Reports Server (NTRS)

    Yang, Kau; Liu, Xiong; Bhartia, Pawan K.; Krotkov, Nickolay A.; Carn, Simon A.; Hughes, Eric J.; Krueger, Arlin J.; Spurr, Robert D.; Trahan, Samuel G.

    2010-01-01

    We describe the physical processes by which a vertically localized absorber perturbs the top-of-atmosphere solar backscattered ultraviolet (UV) radiance. The distinct spectral responses to perturbations of an absorber in its column amount and layer altitude provide the basis for a practical satellite retrieval technique, the Extended Iterative Spectral Fitting (EISF) algorithm, for the simultaneous retrieval of these quantities of a SO2 plume. In addition, the EISF retrieval provides an improved UV aerosol index for quantifying the spectral contrast of apparent scene reflectance at the bottom of atmosphere bounded by the surface and/or cloud; hence it can be used for detection of the presence or absence of UV absorbing aerosols. We study the performance and characterize the uncertainties of the EISF algorithm using synthetic backscattered UV radiances, retrievals from which can be compared with those used in the simulation. Our findings indicate that the presence of aerosols (both absorbing and nonabsorbing) does not cause large errors in EISF retrievals under most observing conditions when they are located below the SO2 plume. The EISF retrievals assuming a homogeneous field of view can provide accurate column amounts for inhomogeneous scenes, but they always underestimate the plume altitudes. The EISF algorithm reduces systematic errors present in existing linear retrieval algorithms that use prescribed SO2 plume heights. Applying the EISF algorithm to Ozone Monitoring Instrument satellite observations of the recent Kasatochi volcanic eruption, we demonstrate the successful retrieval of effective plume altitude of volcanic SO2, and we also show the improvement in accuracy in the corresponding SO2 columns.

  7. Phase retrieval from intensity-only data by relative entropy minimization.

    PubMed

    Deming, Ross W

    2007-11-01

    A recursive algorithm, which appears to be new, is presented for estimating the amplitude and phase of a wave field from intensity-only measurements on two or more scan planes at different axial positions. The problem is framed as a nonlinear optimization, in which the angular spectrum of the complex field model is adjusted in order to minimize the relative entropy, or Kullback-Leibler divergence, between the measured and reconstructed intensities. The most common approach to this so-called phase retrieval problem is a variation of the well-known Gerchberg-Saxton algorithm devised by Misell (J. Phys. D6, L6, 1973), which is efficient and extremely simple to implement. The new algorithm has a computational structure that is very similar to Misell's approach, despite the fundamental difference in the optimization criteria used for each. Based upon results from noisy simulated data, the new algorithm appears to be more robust than Misell's approach and to produce better results from low signal-to-noise ratio data. The convergence of the new algorithm is examined.

  8. A New Satellite Aerosol Retrieval Using High Spectral Resolution Oxygen A-Band Measurements

    NASA Astrophysics Data System (ADS)

    Winker, D. M.; Zhai, P.

    2014-12-01

    Efforts to advance current satellite aerosol retrieval capabilities have mostly focused on polarimetric techniques. While there has been much interest in recent decades in the use of the oxygen A-band for retrievals of cloud height or surface pressure, these techniques are mostly based on A-band measurements with relatively low spectral resolution. We report here on a new aerosol retrieval technique based on high-resolution A-band spectra. Our goal is the development of a technique to retrieve aerosol absorption, one of the critical parameters affecting the global radiation budget and one which is currently poorly constrained by satellite measurements. Our approach relies on two key factors: 1) the use of high spectral resolution measurements which resolve the A-band line structure, and 2) the use of co-located lidar profile measurements to constrain the vertical distribution of scatterers. The OCO-2 satellite, launched in July this year and now flying in formation with the CALIPSO satellite, carries an oxygen A-band spectrometer with a spectral resolution of 21,000:1. This is sufficient to resolve the A-band line structure, which contains information on atmospheric photon path lengths. Combining channels with oxygen absorption ranging from weak to strong allows the separation of atmospheric and surface scattering. An optimal estimation algorithm for simultaneous retrieval of aerosol optical depth, aerosol absorption, and surface albedo has been developed. Lidar profile data is used for scene identification and to provide constraints on the vertical distribution of scatterers. As calibrated OCO-2 data is not expected until the end of this year, the algorithm has been developed and tested using simulated OCO-2 spectra. The simulations show that AOD and surface albedo can be retrieved with high accuracy. Retrievals of aerosol single scatter albedo are encouraging, showing good performance when AOD is larger than about 0.15. Retrieval performance improves as the albedo of the underlying surface increases. Thus, the technique shows great promise for retrieving the absorption optical depth of aerosols located above clouds. This presentation will discuss the basis of the approach and results of the A-band/lidar retrievals based on simulated data.

  9. Active sensor synergy for arctic cloud microphysics

    NASA Astrophysics Data System (ADS)

    Sato, Kaori; Okamoto, Hajime; Katagiri, Shuichiro; Shiobara, Masataka; Yabuki, Masanori; Takano, Toshiaki

    2018-04-01

    In this study, we focus on the retrieval of liquid and ice-phase cloud microphysics from spaceborne and ground-based lidar-cloud radar synergy. As an application of the cloud retrieval algorithm developed for the EarthCARE satellite mission (JAXA-ESA) [1], the derived statistics of cloud microphysical properties in high latitudes and their relation to the Arctic climate are investigated.

  10. A New Retrieval Algorithm for OMI NO2: Tropospheric Results and Comparisons with Measurements and Models

    NASA Technical Reports Server (NTRS)

    Swartz, W. H.; Bucesla, E. J.; Lamsal, L. N.; Celarier, E. A.; Krotkov, N. A.; Bhartia, P, K,; Strahan, S. E.; Gleason, J. F.; Herman, J.; Pickering, K.

    2012-01-01

    Nitrogen oxides (NOx =NO+NO2) are important atmospheric trace constituents that impact tropospheric air pollution chemistry and air quality. We have developed a new NASA algorithm for the retrieval of stratospheric and tropospheric NO2 vertical column densities using measurements from the nadir-viewing Ozone Monitoring Instrument (OMI) on NASA's Aura satellite. The new products rely on an improved approach to stratospheric NO2 column estimation and stratosphere-troposphere separation and a new monthly NO2 climatology based on the NASA Global Modeling Initiative chemistry-transport model. The retrieval does not rely on daily model profiles, minimizing the influence of a priori information. We evaluate the retrieved tropospheric NO2 columns using surface in situ (e.g., AQS/EPA), ground-based (e.g., DOAS), and airborne measurements (e.g., DISCOVER-AQ). The new, improved OMI tropospheric NO2 product is available at high spatial resolution for the years 200S-present. We believe that this product is valuable for the evaluation of chemistry-transport models, examining the spatial and temporal patterns of NOx emissions, constraining top-down NOx inventories, and for the estimation of NOx lifetimes.

  11. The Passive Microwave Neural Network Precipitation Retrieval (PNPR) for AMSU/MHS and ATMS cross-track scanning radiometers

    NASA Astrophysics Data System (ADS)

    Sano', Paolo; Casella, Daniele; Panegrossi, Giulia; Cinzia Marra, Anna; Dietrich, Stefano

    2016-04-01

    Spaceborne microwave cross-track scanning radiometers, originally developed for temperature and humidity sounding, have shown great capabilities to provide a significant contribution in precipitation monitoring both in terms of measurement quality and spatial/temporal coverage. The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for cross-track scanning radiometers, originally developed for the Advanced Microwave Sounding Unit/Microwave Humidity Sounder (AMSU-A/MHS) radiometers (on board the European MetOp and U.S. NOAA satellites), was recently newly designed to exploit the Advanced Technology Microwave Sounder (ATMS) on board the Suomi-NPP satellite and the future JPSS satellites. The PNPR algorithm is based on the Artificial Neural Network (ANN) approach. The main PNPR-ATMS algorithm changes with respect to PNPR-AMSU/MHS are the design and implementation of a new ANN able to manage the information derived from the additional ATMS channels (respect to the AMSU-A/MHS radiometer) and a new screening procedure for not-precipitating pixels. In order to achieve maximum consistency of the retrieved surface precipitation, both PNPR algorithms are based on the same physical foundation. The PNPR is optimized for the European and the African area. The neural network was trained using a cloud-radiation database built upon 94 cloud-resolving simulations over Europe and the Mediterranean and over the African area and radiative transfer model simulations of TB vectors consistent with the AMSU-A/MHS and ATMS channel frequencies, viewing angles, and view-angle dependent IFOV sizes along the scan projections. As opposed to other ANN precipitation retrieval algorithms, PNPR uses a unique ANN that retrieves the surface precipitation rate for all types of surface backgrounds represented in the training database, i.e., land (vegetated or arid), ocean, snow/ice or coast. This approach prevents different precipitation estimates from being inconsistent with one another when an observed precipitation system extends over two or more types of surfaces. As input data, the PNPR algorithm incorporates the TBs from selected channels, and various additional TBs-derived variables. Ancillary geographical/geophysical inputs (i.e., latitude, terrain height, surface type, season) are also considered during the training phase. The PNPR algorithm outputs consist of both the surface precipitation rate (along with the information on precipitation phase: liquid, mixed, solid) and a pixel-based quality index. We will illustrate the main features of the PNPR algorithm and will show results of a verification study over Europe and Africa. The study is based on the available ground-based radar and/or rain gauge network observations over the European area. In addition, results of the comparison with rainfall products available from the NASA/JAXA Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) (over the African area) and Global Precipitation Measurement (GPM) Dual frequency Precipitation Radar (DPR) will be shown. The analysis is built upon a two-years coincidence dataset of AMSU/MHS and ATMS observations with PR (2013-2014) and DPR (2014-2015). The PNPR is developed within the EUMETSAT H/SAF program (Satellite Application Facility for Operational Hydrology and Water Management), where it is used operationally towards the full exploitation of all microwave radiometers available in the GPM era. The algorithm will be tailored to the future European Microwave Sounder (MWS) onboard the MetOp-Second Generation (MetOp-SG) satellites.

  12. Kalman filters for assimilating near-surface observations into the Richards equation - Part 1: Retrieving state profiles with linear and nonlinear numerical schemes

    NASA Astrophysics Data System (ADS)

    Chirico, G. B.; Medina, H.; Romano, N.

    2014-07-01

    This paper examines the potential of different algorithms, based on the Kalman filtering approach, for assimilating near-surface observations into a one-dimensional Richards equation governing soil water flow in soil. Our specific objectives are: (i) to compare the efficiency of different Kalman filter algorithms in retrieving matric pressure head profiles when they are implemented with different numerical schemes of the Richards equation; (ii) to evaluate the performance of these algorithms when nonlinearities arise from the nonlinearity of the observation equation, i.e. when surface soil water content observations are assimilated to retrieve matric pressure head values. The study is based on a synthetic simulation of an evaporation process from a homogeneous soil column. Our first objective is achieved by implementing a Standard Kalman Filter (SKF) algorithm with both an explicit finite difference scheme (EX) and a Crank-Nicolson (CN) linear finite difference scheme of the Richards equation. The Unscented (UKF) and Ensemble Kalman Filters (EnKF) are applied to handle the nonlinearity of a backward Euler finite difference scheme. To accomplish the second objective, an analogous framework is applied, with the exception of replacing SKF with the Extended Kalman Filter (EKF) in combination with a CN numerical scheme, so as to handle the nonlinearity of the observation equation. While the EX scheme is computationally too inefficient to be implemented in an operational assimilation scheme, the retrieval algorithm implemented with a CN scheme is found to be computationally more feasible and accurate than those implemented with the backward Euler scheme, at least for the examined one-dimensional problem. The UKF appears to be as feasible as the EnKF when one has to handle nonlinear numerical schemes or additional nonlinearities arising from the observation equation, at least for systems of small dimensionality as the one examined in this study.

  13. Phase retrieval of images using Gaussian radial bases.

    PubMed

    Trahan, Russell; Hyland, David

    2013-12-20

    Here, the possibility of a noniterative solution to the phase retrieval problem is explored. A new look is taken at the phase retrieval problem that reveals that knowledge of a diffraction pattern's frequency components is enough to recover the image without projective iterations. This occurs when the image is formed using Gaussian bases that give the convenience of a continuous Fourier transform existing in a compact form where square pixels do not. The Gaussian bases are appropriate when circular apertures are used to detect the diffraction pattern because of their optical transfer functions, as discussed briefly. An algorithm is derived that is capable of recovering an image formed by Gaussian bases from only the Fourier transform's modulus, without background constraints. A practical example is shown.

  14. Algorithm Development and Validation of CDOM Properties for Estuarine and Continental Shelf Waters Along the Northeastern U.S. Coast

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Novak, Michael G.; Hooker, Stanford B.; Hyde, Kimberly; Aurin, Dick

    2014-01-01

    An extensive set of field measurements have been collected throughout the continental margin of the northeastern U.S. from 2004 to 2011 to develop and validate ocean color satellite algorithms for the retrieval of the absorption coefficient of chromophoric dissolved organic matter (aCDOM) and CDOM spectral slopes for the 275:295 nm and 300:600 nm spectral range (S275:295 and S300:600). Remote sensing reflectance (Rrs) measurements computed from in-water radiometry profiles along with aCDOM() data are applied to develop several types of algorithms for the SeaWiFS and MODIS-Aqua ocean color satellite sensors, which involve least squares linear regression of aCDOM() with (1) Rrs band ratios, (2) quasi-analytical algorithm-based (QAA based) products of total absorption coefficients, (3) multiple Rrs bands within a multiple linear regression (MLR) analysis, and (4) diffuse attenuation coefficient (Kd). The relative error (mean absolute percent difference; MAPD) for the MLR retrievals of aCDOM(275), aCDOM(355), aCDOM(380), aCDOM(412) and aCDOM(443) for our study region range from 20.4-23.9 for MODIS-Aqua and 27.3-30 for SeaWiFS. Because of the narrower range of CDOM spectral slope values, the MAPD for the MLR S275:295 and QAA-based S300:600 algorithms are much lower ranging from 9.9 and 8.3 for SeaWiFS, respectively, and 8.7 and 6.3 for MODIS, respectively. Seasonal and spatial MODIS-Aqua and SeaWiFS distributions of aCDOM, S275:295 and S300:600 processed with these algorithms are consistent with field measurements and the processes that impact CDOM levels along the continental shelf of the northeastern U.S. Several satellite data processing factors correlate with higher uncertainty in satellite retrievals of aCDOM, S275:295 and S300:600 within the coastal ocean, including solar zenith angle, sensor viewing angle, and atmospheric products applied for atmospheric corrections. Algorithms that include ultraviolet Rrs bands provide a better fit to field measurements than algorithms without the ultraviolet Rrs bands. This suggests that satellite sensors with ultraviolet capability could provide better retrievals of CDOM. Because of the strong correlations between CDOM parameters and DOM constituents in the coastal ocean, satellite observations of CDOM parameters can be applied to study the distributions, sources and sinks of DOM, which are relevant for understanding the carbon cycle, modeling the Earth system, and to discern how the Earth is changing.

  15. 1984-1995 Evolution of Stratospheric Aerosol Size, Surface Area, and Volume Derived by Combining SAGE II and CLAES Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Bauman, Jill J.

    2000-01-01

    This SAGE II Science Team task focuses on the development of a multi-wavelength, multi- sensor Look-Up-Table (LUT) algorithm for retrieving information about stratospheric aerosols from global satellite-based observations of particulate extinction. The LUT algorithm combines the 4-wavelength SAGE II extinction measurements (0.385 <= lambda <= 1.02 microns) with the 7.96 micron and 12.82 micron extinction measurements from the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument, thus increasing the information content available from either sensor alone. The algorithm uses the SAGE II/CLAES composite spectra in month-latitude-altitude bins to retrieve values and uncertainties of particle effective radius R(sub eff), surface area S, volume V and size distribution width sigma(sub g).

  16. Improvements to the swath-level near-surface atmospheric state parameter retrievals within the NRL Ocean Surface Flux System (NFLUX)

    NASA Astrophysics Data System (ADS)

    May, J. C.; Rowley, C. D.; Meyer, H.

    2017-12-01

    The Naval Research Laboratory (NRL) Ocean Surface Flux System (NFLUX) is an end-to-end data processing and assimilation system used to provide near-real-time satellite-based surface heat flux fields over the global ocean. The first component of NFLUX produces near-real-time swath-level estimates of surface state parameters and downwelling radiative fluxes. The focus here will be on the satellite swath-level state parameter retrievals, namely surface air temperature, surface specific humidity, and surface scalar wind speed over the ocean. Swath-level state parameter retrievals are produced from satellite sensor data records (SDRs) from four passive microwave sensors onboard 10 platforms: the Special Sensor Microwave Imager/Sounder (SSMIS) sensor onboard the DMSP F16, F17, and F18 platforms; the Advanced Microwave Sounding Unit-A (AMSU-A) sensor onboard the NOAA-15, NOAA-18, NOAA-19, Metop-A, and Metop-B platforms; the Advanced Technology Microwave Sounder (ATMS) sensor onboard the S-NPP platform; and the Advanced Microwave Scannin Radiometer 2 (AMSR2) sensor onboard the GCOM-W1 platform. The satellite SDRs are translated into state parameter estimates using multiple polynomial regression algorithms. The coefficients to the algorithms are obtained using a bootstrapping technique with all available brightness temperature channels for a given sensor, in addition to a SST field. For each retrieved parameter for each sensor-platform combination, unique algorithms are developed for ascending and descending orbits, as well as clear vs cloudy conditions. Each of the sensors produces surface air temperature and surface specific humidity retrievals. The SSMIS and AMSR2 sensors also produce surface scalar wind speed retrievals. Improvement is seen in the SSMIS retrievals when separate algorithms are used for the even and odd scans, with the odd scans performing better than the even scans. Currently, NFLUX treats all SSMIS scans as even scans. Additional improvement in all of the surface retrievals comes from using a 3-hourly SST field, as opposed to a daily SST field.

  17. Variable Sampling Mapping

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey, S.; Aronstein, David L.; Dean, Bruce H.; Lyon, Richard G.

    2012-01-01

    The performance of an optical system (for example, a telescope) is limited by the misalignments and manufacturing imperfections of the optical elements in the system. The impact of these misalignments and imperfections can be quantified by the phase variations imparted on light traveling through the system. Phase retrieval is a methodology for determining these variations. Phase retrieval uses images taken with the optical system and using a light source of known shape and characteristics. Unlike interferometric methods, which require an optical reference for comparison, and unlike Shack-Hartmann wavefront sensors that require special optical hardware at the optical system's exit pupil, phase retrieval is an in situ, image-based method for determining the phase variations of light at the system s exit pupil. Phase retrieval can be used both as an optical metrology tool (during fabrication of optical surfaces and assembly of optical systems) and as a sensor used in active, closed-loop control of an optical system, to optimize performance. One class of phase-retrieval algorithms is the iterative transform algorithm (ITA). ITAs estimate the phase variations by iteratively enforcing known constraints in the exit pupil and at the detector, determined from modeled or measured data. The Variable Sampling Mapping (VSM) technique is a new method for enforcing these constraints in ITAs. VSM is an open framework for addressing a wide range of issues that have previously been considered detrimental to high-accuracy phase retrieval, including undersampled images, broadband illumination, images taken at or near best focus, chromatic aberrations, jitter or vibration of the optical system or detector, and dead or noisy detector pixels. The VSM is a model-to-data mapping procedure. In VSM, fully sampled electric fields at multiple wavelengths are modeled inside the phase-retrieval algorithm, and then these fields are mapped to intensities on the light detector, using the properties of the detector and optical system, for comparison with measured data. Ultimately, this model-to-data mapping procedure enables a more robust and accurate way of incorporating the exit-pupil and image detector constraints, which are fundamental to the general class of ITA phase retrieval algorithms.

  18. A Case-Based Reasoning Method with Rank Aggregation

    NASA Astrophysics Data System (ADS)

    Sun, Jinhua; Du, Jiao; Hu, Jian

    2018-03-01

    In order to improve the accuracy of case-based reasoning (CBR), this paper addresses a new CBR framework with the basic principle of rank aggregation. First, the ranking methods are put forward in each attribute subspace of case. The ordering relation between cases on each attribute is got between cases. Then, a sorting matrix is got. Second, the similar case retrieval process from ranking matrix is transformed into a rank aggregation optimal problem, which uses the Kemeny optimal. On the basis, a rank aggregation case-based reasoning algorithm, named RA-CBR, is designed. The experiment result on UCI data sets shows that case retrieval accuracy of RA-CBR algorithm is higher than euclidean distance CBR and mahalanobis distance CBR testing.So we can get the conclusion that RA-CBR method can increase the performance and efficiency of CBR.

  19. Sensor Calibration and Ocean Products for TRMM Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Lawrence, Richard J. (Technical Monitor)

    2003-01-01

    During the three years of finding, we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.

  20. Sensor Calibration and Ocean Products for TRMM Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Lawrence, Richard J. (Technical Monitor); Wentz, Frank J.

    2003-01-01

    During the three years of fundin& we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.

  1. Sensitivity of Marine Warm Cloud Retrieval Statistics to Algorithm Choices: Examples from MODIS Collection 6

    NASA Astrophysics Data System (ADS)

    Platnick, S.; Wind, G.; Zhang, Z.; Ackerman, S. A.; Maddux, B. C.

    2012-12-01

    The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the 1.6, 2.1, and 3.7 μm spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "not-clear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud edges (defined by immediate adjacency to "clear" MOD/MYD35 pixels) as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the 1D cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.

  2. Methods for coherent lensless imaging and X-ray wavefront measurements

    NASA Astrophysics Data System (ADS)

    Guizar Sicairos, Manuel

    X-ray diffractive imaging is set apart from other high-resolution imaging techniques (e.g. scanning electron or atomic force microscopy) for its high penetration depth, which enables tomographic 3D imaging of thick samples and buried structures. Furthermore, using short x-ray pulses, it enables the capability to take ultrafast snapshots, giving a unique opportunity to probe nanoscale dynamics at femtosecond time scales. In this thesis we present improvements to phase retrieval algorithms, assess their performance through numerical simulations, and develop new methods for both imaging and wavefront measurement. Building on the original work by Faulkner and Rodenburg, we developed an improved reconstruction algorithm for phase retrieval with transverse translations of the object relative to the illumination beam. Based on gradient-based nonlinear optimization, this algorithm is capable of estimating the object, and at the same time refining the initial knowledge of the incident illumination and the object translations. The advantages of this algorithm over the original iterative transform approach are shown through numerical simulations. Phase retrieval has already shown substantial success in wavefront sensing at optical wavelengths. Although in principle the algorithms can be used at any wavelength, in practice the focus-diversity mechanism that makes optical phase retrieval robust is not practical to implement for x-rays. In this thesis we also describe the novel application of phase retrieval with transverse translations to the problem of x-ray wavefront sensing. This approach allows the characterization of the complex-valued x-ray field in-situ and at-wavelength and has several practical and algorithmic advantages over conventional focused beam measurement techniques. A few of these advantages include improved robustness through diverse measurements, reconstruction from far-field intensity measurements only, and significant relaxation of experimental requirements over other beam characterization approaches. Furthermore, we show that a one-dimensional version of this technique can be used to characterize an x-ray line focus produced by a cylindrical focusing element. We provide experimental demonstrations of the latter at hard x-ray wavelengths, where we have characterized the beams focused by a kinoform lens and an elliptical mirror. In both experiments the reconstructions exhibited good agreement with independent measurements, and in the latter a small mirror misalignment was inferred from the phase retrieval reconstruction. These experiments pave the way for the application of robust phase retrieval algorithms for in-situ alignment and performance characterization of x-ray optics for nanofocusing. We also present a study on how transverse translations help with the well-known uniqueness problem of one-dimensional phase retrieval. We also present a novel method for x-ray holography that is capable of reconstructing an image using an off-axis extended reference in a non-iterative computation, greatly generalizing an earlier approach by Podorov et al. The approach, based on the numerical application of derivatives on the field autocorrelation, was developed from first mathematical principles. We conducted a thorough theoretical study to develop technical and intuitive understanding of this technique and derived sufficient separation conditions required for an artifact-free reconstruction. We studied the effects of missing information in the Fourier domain, and of an imperfect reference, and we provide a signal-to-noise ratio comparison with the more traditional approach of Fourier transform holography. We demonstrated this new holographic approach through proof-of-principle optical experiments and later experimentally at soft x-ray wavelengths, where we compared its performance to Fourier transform holography, iterative phase retrieval and state-of-the-art zone-plate x-ray imaging techniques (scanning and full-field). Finally, we present a demonstration of the technique using a single 20 fs pulse from a high-harmonic table-top source. Holography with an extended reference is shown to provide fast, good quality images that are robust to noise and artifacts that arise from missing information due to a beam stop. (Abstract shortened by UMI.)

  3. Ice surface temperature retrieval from AVHRR, ATSR, and passive microwave satellite data: Algorithm development and application

    NASA Technical Reports Server (NTRS)

    Key, Jeff; Maslanik, James; Steffen, Konrad

    1995-01-01

    During the second phase project year we have made progress in the development and refinement of surface temperature retrieval algorithms and in product generation. More specifically, we have accomplished the following: (1) acquired a new advanced very high resolution radiometer (AVHRR) data set for the Beaufort Sea area spanning an entire year; (2) acquired additional along-track scanning radiometer(ATSR) data for the Arctic and Antarctic now totalling over eight months; (3) refined our AVHRR Arctic and Antarctic ice surface temperature (IST) retrieval algorithm, including work specific to Greenland; (4) developed ATSR retrieval algorithms for the Arctic and Antarctic, including work specific to Greenland; (5) developed cloud masking procedures for both AVHRR and ATSR; (6) generated a two-week bi-polar global area coverage (GAC) set of composite images from which IST is being estimated; (7) investigated the effects of clouds and the atmosphere on passive microwave 'surface' temperature retrieval algorithms; and (8) generated surface temperatures for the Beaufort Sea data set, both from AVHRR and special sensor microwave imager (SSM/I).

  4. Accounting for the effects of surface BRDF on satellite cloud and trace-gas retrievals: a new approach based on geometry-dependent Lambertian equivalent reflectivity applied to OMI algorithms

    NASA Astrophysics Data System (ADS)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun-sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the Moderate Resolution Imaging Spectroradiometer (MODIS) over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with geometry-dependent LERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  5. Accounting for the Effects of Surface BRDF on Satellite Cloud and Trace-Gas Retrievals: A New Approach Based on Geometry-Dependent Lambertian-Equivalent Reflectivity Applied to OMI Algorithms

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun-sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the Moderate Resolution Imaging Spectroradiometer (MODIS) over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with geometry-dependent LERs can increase NO2 vertical columns by up to 50% in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  6. Improving chlorophyll-a retrievals and cross-sensor consistency through the OCI algorithm concept

    NASA Astrophysics Data System (ADS)

    Feng, L.; Hu, C.; Lee, Z.; Franz, B. A.

    2016-02-01

    Abstract: The recently developed band-subtraction based OCI chlorophyll-a algorithm is more tolerant than the band-ratio OCx algorithms to errors from atmospheric correction and other sources in oligotrophic oceans (Chl ≤ 0.25 mg m-3), and it has been implemented by NASA as the default algorithm to produce global Chl data from all ocean color missions. However, two areas still require improvements in its current implementation. Firstly, the originally proposed algorithm switch between oligotrophic and more productive waters has been changed from 0.25 - 0.3 mg m-3 to 0.15 - 0.2 mg m-3 to account for the observed discontinuity in data statistics. Additionally, the algorithm does not account for variable proportions of colored dissolved organic matter (CDOM) in different ocean basins. Here, new step-wise regression equations with fine-tuned regression coefficients are used to improve raise the algorithm switch zone and to improve data statistics as well as retrieval accuracy. A new CDOM index (CDI) based on three spectral bands (412, 443 and 490 nm) is used as a weighting factor to adjust the algorithm for the optical disparities between different oceans. The updated Chl OCI algorithm is then evaluated for its overall accuracy using field observations through the SeaBASS data archive, and for its cross-sensor consistency using multi-sensor observations over the global oceans. Keywords: Chlorophyll-a, Remote sensing, Ocean color, OCI, OCx, CDOM, MODIS, SeaWiFS, VIIRS

  7. Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.

    2015-01-01

    We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the Differential Optical Absorption Spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS dataset acquired with a Multi-AXis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from the 10 June to the 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data from a co-located Système d'Analyse par Observations Zénithales (SAOZ) spectrometer. The retrieved tropospheric VCDs are in good agreement with the different datasets with correlation coefficients and slopes close to or larger than 0.9. The potential of the presented ZS retrieval algorithm is further demonstrated by its successful application on a 2 year dataset, acquired at the NDACC (Network for the Detection of Atmospheric Composition Change) station Observatoire de Haute Provence (OHP; Southern France).

  8. Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.

    2015-06-01

    We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the differential optical absorption spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS data set acquired with a multi-axis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from 10 June to 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In the case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data from a co-located Système d'Analyse par Observations Zénithales (SAOZ) spectrometer. The retrieved tropospheric VCDs are in good agreement with the different data sets with correlation coefficients and slopes close to or larger than 0.9. The potential of the presented ZS retrieval algorithm is further demonstrated by its successful application on a 2-year data set, acquired at the NDACC (Network for the Detection of Atmospheric Composition Change) station Observatoire de Haute Provence (OHP; Southern France).

  9. Polarimetric Signatures of Initiating Convection During MC3E

    NASA Technical Reports Server (NTRS)

    Emory, Amber

    2012-01-01

    One of the goals of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was to provide constraints for space-based rainfall retrieval algorithms over land. This study used datasets collected during the 2011 field campaign to combine radiometer and ground-based radar polarimetric retrievals in order to better understand hydrometeor type, habit and distribution for initiating continental convection. Cross-track and conically scanning nadir views from the Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) were compared with ground-based polarimetric radar retrievals along the ER-2 flight track. Polarimetric signatures for both airborne radiometers and ground-based radars were well co-located with deep convection to relate radiometric signatures with low-level polarimetric radar data for hydrometeor identification and diameter estimation. For the time period of study, Z(sub DR) values indicated no presence of hail at the surface. However, the Z(sub DR) column extended well above the melting level into the mixed phase region, suggesting a possible source of frozen drop embryos for the future formation of hail. The results shown from this study contribute ground truth datasets for GPM PR algorithm development for convective events, which is an improvement upon previous stratiform precipitation centered framework.

  10. An Alternative Retrieval Algorithm for the Ozone Mapping and Profiler Suite Limb Profiler

    DTIC Science & Technology

    2012-05-01

    behavior of aerosol extinction from the upper troposphere through the stratosphere is critical for retrieving ozone in this region. Aerosol scattering is......include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT An Alternative Retrieval Algorithm for the Ozone Mapping and

  11. Assessment of the NPOESS/VIIRS Nighttime Infrared Cloud Optical Properties Algorithms

    NASA Astrophysics Data System (ADS)

    Wong, E.; Ou, S. C.

    2008-12-01

    In this paper we will describe two NPOESS VIIRS IR algorithms used to retrieve microphysical properties for water and ice clouds during nighttime conditions. Both algorithms employ four VIIRS IR channels: M12 (3.7 μm), M14 (8.55 μm), M15 (10.7 μm) and M16 (12 μm). The physical basis for the two algorithms is similar in that while the Cloud Top Temperature (CTT) is derived from M14 and M16 for ice clouds the Cloud Optical Thickness (COT) and Cloud Effective Particle Size (CEPS) are derived from M12 and M15. The two algorithms depart in the different radiative transfer parameterization equations used for ice and water clouds. Both the VIIRS nighttime IR algorithms and the CERES split-window method employ the 3.7 μm and 10.7 μm bands for cloud optical properties retrievals, apparently based on similar physical principles but with different implementations. It is reasonable to expect that the VIIRS and CERES IR algorithms produce comparable performance and similar limitations. To demonstrate the VIIRS nighttime IR algorithm performance, we will select a number of test cases using NASA MODIS L1b radiance products as proxy input data for VIIRS. The VIIRS retrieved COT and CEPS will then be compared to cloud products available from the MODIS, NASA CALIPSO, CloudSat and CERES sensors. For the MODIS product, the nighttime cloud emissivity will serve as an indirect comparison to VIIRS COT. For the CALIPSO and CloudSat products, the layered COT will be used for direct comparison. Finally, the CERES products will provide direct comparison with COT as well as CEPS. This study can only provide a qualitative assessment of the VIIRS IR algorithms due to the large uncertainties in these cloud products.

  12. Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to S-NPP VIIRS as Part of the "Deep Blue" Aerosol Project

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Lee, J.; Bettenhausen, C.; Kim, W. V.; Smirnov, A.

    2018-01-01

    The Suomi National Polar-Orbiting Partnership (S-NPP) satellite, launched in late 2011, carries the Visible Infrared Imaging Radiometer Suite (VIIRS) and several other instruments. VIIRS has similar characteristics to prior satellite sensors used for aerosol optical depth (AOD) retrieval, allowing the continuation of space-based aerosol data records. The Deep Blue algorithm has previously been applied to retrieve AOD from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements over land. The SeaWiFS Deep Blue data set also included a SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm to cover water surfaces. As part of NASA's VIIRS data processing, Deep Blue is being applied to VIIRS data over land, and SOAR has been adapted from SeaWiFS to VIIRS for use over water surfaces. This study describes SOAR as applied in version 1 of NASA's S-NPP VIIRS Deep Blue data product suite. Several advances have been made since the SeaWiFS application, as well as changes to make use of the broader spectral range of VIIRS. A preliminary validation against Maritime Aerosol Network (MAN) measurements suggests a typical uncertainty on retrieved 550 nm AOD of order ±(0.03+10%), comparable to existing SeaWiFS/MODIS aerosol data products. Retrieved Ångström exponent and fine-mode AOD fraction are also well correlated with MAN data, with small biases and uncertainty similar to or better than SeaWiFS/MODIS products.

  13. An algorithm for estimating aerosol optical depth from HIMAWARI-8 data over Ocean

    NASA Astrophysics Data System (ADS)

    Lee, Kwon Ho

    2016-04-01

    The paper presents currently developing algorithm for aerosol detection and retrieval over ocean for the next generation geostationary satellite, HIMAWARI-8. Enhanced geostationary remote sensing observations are now enables for aerosol retrieval of dust, smoke, and ash, which began a new era of geostationary aerosol observations. Sixteen channels of the Advanced HIMAWARI Imager (AHI) onboard HIMAWARI-8 offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS). Aerosols were estimated in detection processing from visible and infrared channel radiances, and in retrieval processing using the inversion-optimization of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every ten minutes for pixel sizes of ~8 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously. The instantaneous retrieved AOD is evaluated by the MODIS level 2 operational aerosol products (C006), and the daily retrieved AOD was compared with ground-based measurements from the AERONET databases. The results show that the detection of aerosol and estimated AOD are in good agreement with the MODIS data and ground measurements with a correlation coefficient of ˜0.90 and a bias of 4%. These results suggest that the proposed method applied to the HIMAWARI-8 satellite data can accurately estimate continuous AOD. Acknowledgments This work was supported by "Development of Geostationary Meteorological Satellite Ground Segment(NMSC-2014-01)" program funded by National Meteorological Satellite Centre(NMSC) of Korea Meteorological Administration(KMA).

  14. Visualizing and improving the robustness of phase retrieval algorithms

    DOE PAGES

    Tripathi, Ashish; Leyffer, Sven; Munson, Todd; ...

    2015-06-01

    Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.

  15. Visualizing and improving the robustness of phase retrieval algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Ashish; Leyffer, Sven; Munson, Todd

    Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.

  16. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR retrievals was compared with pyranometer measurement. The results showed good agreements: the columnar values of the SKYLIDAR retrievals agreed with reliable SKYRAD.PACK retrievals, and the SKYLIDAR retrievals were sufficiently accurate to evaluate the surface solar irradiance.

  17. An Algorithm for the Retrieval of Droplet Number Concentration and Geometrical Thickness of Stratiform Marine Boundary Layer Clouds Applied to MODIS Radiometric Observations.

    NASA Astrophysics Data System (ADS)

    Schüller, Lothar; Bennartz, Ralf; Fischer, Jürgen; Brenguier, Jean-Louis

    2005-01-01

    Algorithms are now currently used for the retrieval of cloud optical thickness and droplet effective radius from multispectral radiance measurements. This paper extends their application to the retrieval of cloud droplet number concentration, cloud geometrical thickness, and liquid water path in shallow convective clouds, using an algorithm that was previously tested with airborne measurements of cloud radiances and validated against in situ measurements of the same clouds. The retrieval is based on a stratified cloud model of liquid water content and droplet spectrum. Radiance measurements in visible and near-infrared channels of the Moderate Resolution Imaging Spectroradiometer (MODIS), which is operated from the NASA platforms Terra and Aqua, are analyzed. Because of uncertainties in the simulation of the continental surface reflectance, the algorithm is presently limited to the monitoring of the microphysical structure of boundary layer clouds over the ocean. Two MODIS scenes of extended cloud fields over the North Atlantic Ocean trade wind region are processed. A transport and dispersion model (the Hybrid Single-Particle Lagrangian Integrated Trajectory Model, HYSPLIT4) is also used to characterize the origin of the air masses and hence their aerosol regimes. One cloud field formed in an air mass that was advected from southern Europe and North Africa. It shows high values of the droplet concentration when compared with the second cloud system, which developed in a more pristine environment. The more pristine case also exhibits a higher geometrical thickness and, thus, liquid water path, which counterbalances the expected cloud albedo increase of the polluted case. Estimates of cloud liquid water path are then compared with retrievals from the Special Sensor Microwave Imager (SSM/I). SSM/I-derived liquid water paths are in good agreement with the MODIS-derived values.

  18. Least Square Approach for Estimating of Land Surface Temperature from LANDSAT-8 Satellite Data Using Radiative Transfer Equation

    NASA Astrophysics Data System (ADS)

    Jouybari-Moghaddam, Y.; Saradjian, M. R.; Forati, A. M.

    2017-09-01

    Land Surface Temperature (LST) is one of the significant variables measured by remotely sensed data, and it is applied in many environmental and Geoscience studies. The main aim of this study is to develop an algorithm to retrieve the LST from Landsat-8 satellite data using Radiative Transfer Equation (RTE). However, LST can be retrieved from RTE, but, since the RTE has two unknown parameters including LST and surface emissivity, estimating LST from RTE is an under the determined problem. In this study, in order to solve this problem, an approach is proposed an equation set includes two RTE based on Landsat-8 thermal bands (i.e.: band 10 and 11) and two additional equations based on the relation between the Normalized Difference Vegetation Index (NDVI) and emissivity of Landsat-8 thermal bands by using simulated data for Landsat-8 bands. The iterative least square approach was used for solving the equation set. The LST derived from proposed algorithm is evaluated by the simulated dataset, built up by MODTRAN. The result shows the Root Mean Squared Error (RMSE) is less than 1.18°K. Therefore; the proposed algorithm can be a suitable and robust method to retrieve the LST from Landsat-8 satellite data.

  19. True colour classification of natural waters with medium-spectral resolution satellites: SeaWiFS, MODIS, MERIS and OLCI.

    PubMed

    Woerd, Hendrik J van der; Wernand, Marcel R

    2015-10-09

    The colours from natural waters differ markedly over the globe, depending on the water composition and illumination conditions. The space-borne "ocean colour" instruments are operational instruments designed to retrieve important water-quality indicators, based on the measurement of water leaving radiance in a limited number (5 to 10) of narrow (≈10 nm) bands. Surprisingly, the analysis of the satellite data has not yet paid attention to colour as an integral optical property that can also be retrieved from multispectral satellite data. In this paper we re-introduce colour as a valuable parameter that can be expressed mainly by the hue angle (α). Based on a set of 500 synthetic spectra covering a broad range of natural waters a simple algorithm is developed to derive the hue angle from SeaWiFS, MODIS, MERIS and OLCI data. The algorithm consists of a weighted linear sum of the remote sensing reflectance in all visual bands plus a correction term for the specific band-setting of each instrument. The algorithm is validated by a set of 603 hyperspectral measurements from inland-, coastal- and near-ocean waters. We conclude that the hue angle is a simple objective parameter of natural waters that can be retrieved uniformly for all space-borne ocean colour instruments.

  20. The Aquarius Salinity Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank; Hilburn, Kyle; Lagerloef, Gary; Le Vine, David

    2012-01-01

    The first part of this presentation gives an overview over the Aquarius salinity retrieval algorithm. The instrument calibration [2] converts Aquarius radiometer counts into antenna temperatures (TA). The salinity retrieval algorithm converts those TA into brightness temperatures (TB) at a flat ocean surface. As a first step, contributions arising from the intrusion of solar, lunar and galactic radiation are subtracted. The antenna pattern correction (APC) removes the effects of cross-polarization contamination and spillover. The Aquarius radiometer measures the 3rd Stokes parameter in addition to vertical (v) and horizontal (h) polarizations, which allows for an easy removal of ionospheric Faraday rotation. The atmospheric absorption at L-band is almost entirely due to molecular oxygen, which can be calculated based on auxiliary input fields from numerical weather prediction models and then successively removed from the TB. The final step in the TA to TB conversion is the correction for the roughness of the sea surface due to wind, which is addressed in more detail in section 3. The TB of the flat ocean surface can now be matched to a salinity value using a surface emission model that is based on a model for the dielectric constant of sea water [3], [4] and an auxiliary field for the sea surface temperature. In the current processing only v-pol TB are used for this last step.

  1. Aerosol retrieval experiments in the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.; de Leeuw, G.; Griesfeller, J.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-08-01

    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010-2013), algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun photometer observations for the different versions of each algorithm globally (land and coastal) and for three regions with different aerosol regimes. The analysis allowed for an assessment of sensitivities of all algorithms, which helped define the best algorithm versions for the subsequent round robin exercise; all algorithms (except for MERIS) showed some, in parts significant, improvement. In particular, using common aerosol components and partly also a priori aerosol-type climatology is beneficial. On the other hand the use of an AATSR-based common cloud mask meant a clear improvement (though with significant reduction of coverage) for the MERIS standard product, but not for the algorithms using AATSR. It is noted that all these observations are mostly consistent for all five analyses (global land, global coastal, three regional), which can be understood well, since the set of aerosol components defined in Sect. 3.1 was explicitly designed to cover different global aerosol regimes (with low and high absorption fine mode, sea salt and dust).

  2. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ⪢1 and |m-1|⪡1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  3. The GRAPE aerosol retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Poulsen, C. A.; Sayer, A. M.; Marsh, S. H.; Dean, S. M.; Carboni, E.; Siddans, R.; Grainger, R. G.; Lawrence, B. N.

    2009-11-01

    The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations - this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  4. The GRAPE aerosol retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Poulsen, C. A.; Sayer, A. M.; Marsh, S. H.; Dean, S. M.; Carboni, E.; Siddans, R.; Grainger, R. G.; Lawrence, B. N.

    2009-04-01

    The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations - this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  5. A Firefly Algorithm-based Approach for Pseudo-Relevance Feedback: Application to Medical Database.

    PubMed

    Khennak, Ilyes; Drias, Habiba

    2016-11-01

    The difficulty of disambiguating the sense of the incomplete and imprecise keywords that are extensively used in the search queries has caused the failure of search systems to retrieve the desired information. One of the most powerful and promising method to overcome this shortcoming and improve the performance of search engines is Query Expansion, whereby the user's original query is augmented by new keywords that best characterize the user's information needs and produce more useful query. In this paper, a new Firefly Algorithm-based approach is proposed to enhance the retrieval effectiveness of query expansion while maintaining low computational complexity. In contrast to the existing literature, the proposed approach uses a Firefly Algorithm to find the best expanded query among a set of expanded query candidates. Moreover, this new approach allows the determination of the length of the expanded query empirically. Experimental results on MEDLINE, the on-line medical information database, show that our proposed approach is more effective and efficient compared to the state-of-the-art.

  6. Information content of ozone retrieval algorithms

    NASA Technical Reports Server (NTRS)

    Rodgers, C.; Bhartia, P. K.; Chu, W. P.; Curran, R.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mateer, C.; Rusch, D.; Thomas, R. J.

    1989-01-01

    The algorithms are characterized that were used for production processing by the major suppliers of ozone data to show quantitatively: how the retrieved profile is related to the actual profile (This characterizes the altitude range and vertical resolution of the data); the nature of systematic errors in the retrieved profiles, including their vertical structure and relation to uncertain instrumental parameters; how trends in the real ozone are reflected in trends in the retrieved ozone profile; and how trends in other quantities (both instrumental and atmospheric) might appear as trends in the ozone profile. No serious deficiencies were found in the algorithms used in generating the major available ozone data sets. As the measurements are all indirect in someway, and the retrieved profiles have different characteristics, data from different instruments are not directly comparable.

  7. Updated MISR Dark Water Research Aerosol Retrieval Algorithm - Part 1: Coupled 1.1 km Ocean Surface Chlorophyll a Retrievals with Empirical Calibration Corrections

    NASA Technical Reports Server (NTRS)

    Limbacher, James A.; Kahn, Ralph A.

    2017-01-01

    As aerosol amount and type are key factors in the 'atmospheric correction' required for remote-sensing chlorophyll alpha concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chl(sub in situ) less than 1.5 mg m(exp -3), the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov- Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p greater than 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl less than 1.5 mg m(exp -3), MISR and MODIS show very good agreement: r = 0.96, MAE = 0.09, and RMSE = 0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS-Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.

  8. Updated MISR dark water research aerosol retrieval algorithm - Part 1: Coupled 1.1 km ocean surface chlorophyll a retrievals with empirical calibration corrections

    NASA Astrophysics Data System (ADS)

    Limbacher, James A.; Kahn, Ralph A.

    2017-04-01

    As aerosol amount and type are key factors in the atmospheric correction required for remote-sensing chlorophyll a concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chlin situ < 1.5 mg m-3, the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov-Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p > 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl < 1.5 mg m-3, MISR and MODIS show very good agreement: r = 0. 96, MAE = 0.09, and RMSE = 0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS-Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.

  9. Profiling atmospheric water vapor by microwave radiometry

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Wilheit, T. T.; Szejwach, G.; Gesell, L. H.; Nieman, R. A.; Niver, D. S.; Krupp, B. M.; Gagliano, J. A.; King, J. L.

    1983-01-01

    High-altitude microwave radiometric observations at frequencies near 92 and 183.3 GHz were used to study the potential of retrieving atmospheric water vapor profiles over both land and water. An algorithm based on an extended kalman-Bucy filter was implemented and applied for the water vapor retrieval. The results show great promise in atmospheric water vapor profiling by microwave radiometry heretofore not attainable at lower frequencies.

  10. Content-aware network storage system supporting metadata retrieval

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Qin, Leihua; Zhou, Jingli; Nie, Xuejun

    2008-12-01

    Nowadays, content-based network storage has become the hot research spot of academy and corporation[1]. In order to solve the problem of hit rate decline causing by migration and achieve the content-based query, we exploit a new content-aware storage system which supports metadata retrieval to improve the query performance. Firstly, we extend the SCSI command descriptor block to enable system understand those self-defined query requests. Secondly, the extracted metadata is encoded by extensible markup language to improve the universality. Thirdly, according to the demand of information lifecycle management (ILM), we store those data in different storage level and use corresponding query strategy to retrieval them. Fourthly, as the file content identifier plays an important role in locating data and calculating block correlation, we use it to fetch files and sort query results through friendly user interface. Finally, the experiments indicate that the retrieval strategy and sort algorithm have enhanced the retrieval efficiency and precision.

  11. Optimal Aerosol Parameterization for Remote Sensing Retrievals

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.

    2004-01-01

    We have developed a new algorithm for the retrieval of aerosol and gases from SAGE It1 solar transmission measurements. This algorithm improves upon the NASA operational algorithm in several key aspects, including solving the problem non-linearly and incorporating a new methodology for separating the contribution of aerosols and gases. In order to extract aerosol information we have built a huge database of aerosol models for both stratospheric and tropospheric aerosols, and polar stratospheric cloud particles. This set of models allows us to calculate a vast range of possible extinction spectra for aerosols. and from these, derive a set of eigenvectors which then provide the basis set used in our inversion algorithm. Our aerosol algorithm and retrievals are described in several articles (listed in References Section) published under this grant. In particular they allow us to analyze the spectral properties of aerosols and PSCs and ultimately derive their microphysical properties. We have found some considerable differences between our spectra and the ones derived from the SAGE III operational algorithm. These are interesting as they provide an independent check on the validity of published aerosol data and, in particular, on their associated uncertainties. In order to understand these differences, we are assembling independent aerosol data from other sources with which to make comparisons. We have carried out extensive comparisons of our ozone retrievals with both SAGE III and independent lidar, ozonesonde, and satellite measurements (Polyakov et al., 2004). These show very good agreement throughout the stratosphere and help to quantify differences which can be attributed to natural variation in ozone versus that produced by algorithmic differences. In the mid - upper stratosphere, agreement with independent data was generally within 5 - 20%. but in the lower stratosphere the differences were considerably larger. We believe that a large proportion of this discrepancy in the lower stratosphere is attributable to natural variation, and is also seen in comparisons between lidar and ozonesonde measurements. NO2 profiles obtained with our algorithm were compared to those obtained through the SAGE III operational algorithm and exhibited differences of 20 - 40%. Our retrieved profiles agree with the HALOE NO2 measurements significantly better than those of the operational retrieval. In other work (described below), we are extending our aerosol retrievals into the infrared regime and plan to perform retrievals from combined uv-visible-infrared spectra. This work will allow us to use the spectra to derive the size and composition of aerosols, and we plan to employ our algorithms in the analysis of PSC spectra. We are presently also developing a limb-scattering algorithm to retrieve aerosol data from limb measurements of solar scattered radiation.

  12. Application of stochastic particle swarm optimization algorithm to determine the graded refractive index distribution in participating media

    NASA Astrophysics Data System (ADS)

    Wei, Lin-Yang; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming

    2016-11-01

    Inverse estimation of the refractive index distribution in one-dimensional participating media with graded refractive index (GRI) is investigated. The forward radiative transfer problem is solved by the Chebyshev collocation spectral method. The stochastic particle swarm optimization (SPSO) algorithm is employed to retrieve three kinds of GRI distribution, i.e. the linear, sinusoidal and quadratic GRI distribution. The retrieval accuracy of GRI distribution with different wall emissivity, optical thickness, absorption coefficients and scattering coefficients are discussed thoroughly. To improve the retrieval accuracy of quadratic GRI distribution, a double-layer model is proposed to supply more measurement information. The influence of measurement errors upon the precision of estimated results is also investigated. Considering the GRI distribution is unknown beforehand in practice, a quadratic function is employed to retrieve the linear GRI by SPSO algorithm. All the results show that the SPSO algorithm is applicable to retrieve different GRI distributions in participating media accurately even with noisy data.

  13. Visual Semantic Based 3D Video Retrieval System Using HDFS.

    PubMed

    Kumar, C Ranjith; Suguna, S

    2016-08-01

    This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose, we intent to hitch on BOVW and Mapreduce in 3D framework. Instead of conventional shape based local descriptors, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook and histogram is produced. Further, matching is performed using soft weighting scheme with L 2 distance function. As a final step, retrieved results are ranked according to the Index value and acknowledged to the user as a feedback .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we future the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.

  14. Does the Acquisition of Spatial Skill Involve a Shift from Algorithm to Memory Retrieval?

    ERIC Educational Resources Information Center

    Frank, David J.; Macnamara, Brooke N.

    2017-01-01

    Performance on verbal and mathematical tasks is enhanced when participants shift from using algorithms to retrieving information directly from memory (Siegler, 1988a). However, it is unknown whether a shift to retrieval is involved in dynamic spatial skill acquisition. For example, do athletes mentally extrapolate the trajectory of the ball, or do…

  15. Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo

    2004-01-01

    In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression of random errors requires averaging to at least half-degree resolution. Analysis of mesoscale and larger space-time scale phenomena based upon passive and passive/active microwave heating estimates from TRMM, SSMI, and AMSR data will be presented at the conference.

  16. Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes - Part 1: Algorithm validation

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.

    2015-04-01

    The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical and aloft ozone concentrations, especially during air quality episodes. To better characterize tropospheric ozone, the Tropospheric Ozone Lidar Network (TOLNet) has recently been developed, which currently consists of five different ozone DIAL instruments, including the TROPOZ. This paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and develops a primary standard for retrieval consistency and optimization within TOLNet. This paper is focused on ensuring the TROPOZ and future TOLNet algorithms are properly quantifying ozone concentrations and the following paper will focus on defining a systematic uncertainty analysis standard for all TOLNet instruments. Although this paper is used to optimize the TROPOZ retrieval, the methodology presented may be extended and applied to most other DIAL instruments, even if the atmospheric product of interest is not tropospheric ozone (e.g. temperature or water vapor). The analysis begins by computing synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile, thereby identifying any areas that may need refinement for a new operational version of the TROPOZ retrieval algorithm. A new vertical resolution scheme is presented, which was upgraded from a constant vertical resolution to a variable vertical resolution, in order to yield a statistical uncertainty of <10%. The optimized vertical resolution scheme retains the ability to resolve fluctuations in the known ozone profile and now allows near field signals to be more appropriately smoothed. With these revisions, the optimized TROPOZ retrieval algorithm (TROPOZopt) has been effective in retrieving nearly 200 m lower to the surface. Also, as compared to the previous version of the retrieval, the TROPOZopt has reduced the mean profile bias by 3.5% and large reductions in bias (near 15 %) were apparent above 4.5 km. Finally, to ensure the TROPOZopt retrieval algorithm is robust enough to handle actual lidar return signals, a comparison is shown between four nearby ozonesonde measurements. The ozonesondes agree well with the retrieval and are mostly within the TROPOZopt retrieval uncertainty bars (which implies that this exercise was quite successful). A final mean percent difference plot is shown between the TROPOZopt and ozonesondes, which indicates that the new operational retrieval is mostly within 10% of the ozonesonde measurement and no systematic biases are present. The authors believe that this analysis has significantly added to the confidence in the TROPOZ instrument and provides a standard for current and future TOLNet algorithms.

  17. Dreaming of Atmospheres

    NASA Astrophysics Data System (ADS)

    Waldmann, Ingo

    2016-10-01

    Radiative transfer retrievals have become the standard in modelling of exoplanetary transmission and emission spectra. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain.To address these issues, we have developed the Tau-REx (tau-retrieval of exoplanets) retrieval and the RobERt spectral recognition algorithms. Tau-REx is a bayesian atmospheric retrieval framework using Nested Sampling and cluster computing to fully map these large correlated parameter spaces. Nonetheless, data volumes can become prohibitively large and we must often select a subset of potential molecular/atomic absorbers in an atmosphere.In the era of open-source, automated and self-sufficient retrieval algorithms, such manual input should be avoided. User dependent input could, in worst case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is build to address these issues. RobERt is a deep belief neural (DBN) networks trained to accurately recognise molecular signatures for a wide range of planets, atmospheric thermal profiles and compositions. Using these deep neural networks, we work towards retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.In this talk I will discuss how neural networks and Bayesian Nested Sampling can be used to solve highly degenerate spectral retrieval problems and what 'dreaming' neural networks can tell us about atmospheric characteristics.

  18. A simplified computational memory model from information processing.

    PubMed

    Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang

    2016-11-23

    This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view.

  19. Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. I - Brightness-temperature properties of a time-dependent cloud-radiation model

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Mugnai, Alberto; Cooper, Harry J.; Tripoli, Gregory J.; Xiang, Xuwu

    1992-01-01

    The relationship between emerging microwave brightness temperatures (T(B)s) and vertically distributed mixtures of liquid and frozen hydrometeors was investigated, using a cloud-radiation model, in order to establish the framework for a hybrid statistical-physical rainfall retrieval algorithm. Although strong relationships were found between the T(B) values and various rain parameters, these correlations are misleading in that the T(B)s are largely controlled by fluctuations in the ice-particle mixing ratios, which in turn are highly correlated to fluctuations in liquid-particle mixing ratios. However, the empirically based T(B)-rain-rate (T(B)-RR) algorithms can still be used as tools for estimating precipitation if the hydrometeor profiles used for T(B)-RR algorithms are not specified in an ad hoc fashion.

  20. Retinex enhancement of infrared images.

    PubMed

    Li, Ying; He, Renjie; Xu, Guizhi; Hou, Changzhi; Sun, Yunyan; Guo, Lei; Rao, Liyun; Yan, Weili

    2008-01-01

    With the ability of imaging the temperature distribution of body, infrared imaging is promising in diagnostication and prognostication of diseases. However the poor quality of the raw original infrared images prevented applications and one of the essential problems is the low contrast appearance of the imagined object. In this paper, the image enhancement technique based on the Retinex theory is studied, which is a process that automatically retrieve the visual realism to images. The algorithms, including Frackle-McCann algorithm, McCann99 algorithm, single-scale Retinex algorithm, multi-scale Retinex algorithm and multi-scale Retinex algorithm with color restoration, are experienced to the enhancement of infrared images. The entropy measurements along with the visual inspection were compared and results shown the algorithms based on Retinex theory have the ability in enhancing the infrared image. Out of the algorithms compared, MSRCR demonstrated the best performance.

  1. Three-dimensional imaging using phase retrieval with two focus planes

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh; Meir, Rinat; Zalevsky, Zeev

    2016-03-01

    This work presents a technique for a full 3D imaging of biological samples tagged with gold-nanoparticles (GNPs) using only two images, rather than many images per volume as is currently needed for 3D optical sectioning microscopy. The proposed approach is based on the Gerchberg-Saxton (GS) phase retrieval algorithm. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. In addition, since the method requires the capturing of two images only, it can be suitable for 3D live cell imaging. The proposed concept is presented and validated both on simulated data as well as experimentally.

  2. Using OMI Observations to Measure Aerosol Absorption of Biomass Burning Aerosols Above Clouds

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Jethva, Hiren

    2011-01-01

    The presence of absorbing aerosol layers above clouds is unambiguously detected by the TOMS/OMI UV Aerosol Index (AI) that uses satellite observations at two near-UV channels. A sensitivity study using radiative transfer calculations shows that the AI signal of resulting from the presence of aerosols above clouds is mainly driven by the aerosol absorption optical depth and the optical depth of the underlying cloud. Based on these results, an inversion algorithm has been developed to retrieve the aerosol optical depth (AOD) of aerosol layers above clouds. In this presentation we will discuss the sensitivity analysis, describe the retrieval approach, and present results of applications of the retrieval method to OMI observations over the South Atlantic Ocean. Preliminary error analyses, to be discussed, indicate that the AOD can be underestimated (up to -30%) or overestimated (up to 60%) depending on algorithmic assumptions.

  3. Separating vegetation and soil temperature using airborne multiangular remote sensing image data

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Yan, Chunyan; Xiao, Qing; Yan, Guangjian; Fang, Li

    2012-07-01

    Land surface temperature (LST) is a key parameter in land process research. Many research efforts have been devoted to increase the accuracy of LST retrieval from remote sensing. However, because natural land surface is non-isothermal, component temperature is also required in applications such as evapo-transpiration (ET) modeling. This paper proposes a new algorithm to separately retrieve vegetation temperature and soil background temperature from multiangular thermal infrared (TIR) remote sensing data. The algorithm is based on the localized correlation between the visible/near-infrared (VNIR) bands and the TIR band. This method was tested on the airborne image data acquired during the Watershed Allied Telemetry Experimental Research (WATER) campaign. Preliminary validation indicates that the remote sensing-retrieved results can reflect the spatial and temporal trend of component temperatures. The accuracy is within three degrees while the difference between vegetation and soil temperature can be as large as twenty degrees.

  4. Development of a generalized multi-pixel and multi-parameter satellite remote sensing algorithm for aerosol properties

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Nakajima, T.; Takenaka, H.; Higurashi, A.

    2013-12-01

    We develop a new satellite remote sensing algorithm to retrieve the properties of aerosol particles in the atmosphere. In late years, high resolution and multi-wavelength, and multiple-angle observation data have been obtained by grand-based spectral radiometers and imaging sensors on board the satellite. With this development, optimized multi-parameter remote sensing methods based on the Bayesian theory have become popularly used (Turchin and Nozik, 1969; Rodgers, 2000; Dubovik et al., 2000). Additionally, a direct use of radiation transfer calculation has been employed for non-linear remote sensing problems taking place of look up table methods supported by the progress of computing technology (Dubovik et al., 2011; Yoshida et al., 2011). We are developing a flexible multi-pixel and multi-parameter remote sensing algorithm for aerosol optical properties. In this algorithm, the inversion method is a combination of the MAP method (Maximum a posteriori method, Rodgers, 2000) and the Phillips-Twomey method (Phillips, 1962; Twomey, 1963) as a smoothing constraint for the state vector. Furthermore, we include a radiation transfer calculation code, Rstar (Nakajima and Tanaka, 1986, 1988), numerically solved each time in iteration for solution search. The Rstar-code has been directly used in the AERONET operational processing system (Dubovik and King, 2000). Retrieved parameters in our algorithm are aerosol optical properties, such as aerosol optical thickness (AOT) of fine mode, sea salt, and dust particles, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength. We simultaneously retrieve all the parameters that characterize pixels in each of horizontal sub-domains consisting the target area. Then we successively apply the retrieval method to all the sub-domains in the target area. We conducted numerical tests for the retrieval of aerosol properties and ground surface albedo for GOSAT/CAI imager data to test the algorithm for the land area. In this test, we simulated satellite-observed radiances for a sub-domain consisting of 5 by 5 pixels by the Rstar code assuming wavelengths of 380, 674, 870 and 1600 [nm], atmospheric condition of the US standard atmosphere, and the several aerosol and ground surface conditions. The result of the experiment showed that AOTs of fine mode and dust particles, soot fraction and ground surface albedo at the wavelength of 674 [nm] are retrieved within absolute value differences of 0.04, 0.01, 0.06 and 0.006 from the true value, respectively, for the case of dark surface, and also, for the case of blight surface, 0.06, 0.03, 0.04 and 0.10 from the true value, respectively. We will conduct more tests to study the information contents of parameters needed for aerosol and land surface remote sensing with different boundary conditions among sub-domains.

  5. Hyperspectral remote sensing image retrieval system using spectral and texture features.

    PubMed

    Zhang, Jing; Geng, Wenhao; Liang, Xi; Li, Jiafeng; Zhuo, Li; Zhou, Qianlan

    2017-06-01

    Although many content-based image retrieval systems have been developed, few studies have focused on hyperspectral remote sensing images. In this paper, a hyperspectral remote sensing image retrieval system based on spectral and texture features is proposed. The main contributions are fourfold: (1) considering the "mixed pixel" in the hyperspectral image, endmembers as spectral features are extracted by an improved automatic pixel purity index algorithm, then the texture features are extracted with the gray level co-occurrence matrix; (2) similarity measurement is designed for the hyperspectral remote sensing image retrieval system, in which the similarity of spectral features is measured with the spectral information divergence and spectral angle match mixed measurement and in which the similarity of textural features is measured with Euclidean distance; (3) considering the limited ability of the human visual system, the retrieval results are returned after synthesizing true color images based on the hyperspectral image characteristics; (4) the retrieval results are optimized by adjusting the feature weights of similarity measurements according to the user's relevance feedback. The experimental results on NASA data sets can show that our system can achieve comparable superior retrieval performance to existing hyperspectral analysis schemes.

  6. An Integrated Retrieval Framework for AMSR2: Implications for Light Precipitation and Sea Ice Edge Detectability

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Kummerow, C. D.; Meier, W.

    2016-12-01

    Over the lifetime of AMSR-E, operational retrieval algorithms were developed and run for precipitation, ocean suite (SST, wind speed, cloud liquid water path, and column water vapor over ocean), sea ice, snow water equivalent, and soil moisture. With a separate algorithm for each group, the retrievals were never interactive or integrated in any way despite many co-sensitivities. AMSR2, the follow-on mission to AMSR-E, retrieves the same parameters at a slightly higher spatial resolution. We have combined the operational algorithms for AMSR2 in a way that facilitates sharing information between the retrievals. Difficulties that arose were mainly related to calibration, spatial resolution, coastlines, and order of processing. The integration of all algorithms for AMSR2 has numerous benefits, including better detection of light precipitation and sea ice, fewer screened out pixels, and better quality flags. Integrating the algorithms opens up avenues for investigating the limits of detectability for precipitation from a passive microwave radiometer and the impact of spatial resolution on sea ice edge detection; these are investigated using CloudSat and MODIS coincident observations from the A-Train constellation.

  7. Compression and fast retrieval of SNP data.

    PubMed

    Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2014-11-01

    The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Compression and fast retrieval of SNP data

    PubMed Central

    Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2014-01-01

    Motivation: The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. Results: We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Availability and implementation: Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. Contact: sambofra@dei.unipd.it or cobelli@dei.unipd.it. PMID:25064564

  9. A method to combine spaceborne radar and radiometric observations of precipitation

    NASA Astrophysics Data System (ADS)

    Munchak, Stephen Joseph

    This dissertation describes the development and application of a combined radar-radiometer rainfall retrieval algorithm for the Tropical Rainfall Measuring Mission (TRMM) satellite. A retrieval framework based upon optimal estimation theory is proposed wherein three parameters describing the raindrop size distribution (DSD), ice particle size distribution (PSD), and cloud water path (cLWP) are retrieved for each radar profile. The retrieved rainfall rate is found to be strongly sensitive to the a priori constraints in DSD and cLWP; thus, these parameters are tuned to match polarimetric radar estimates of rainfall near Kwajalein, Republic of Marshall Islands. An independent validation against gauge-tuned radar rainfall estimates at Melbourne, FL shows agreement within 2% which exceeds previous algorithms' ability to match rainfall at these two sites. The algorithm is then applied to two years of TRMM data over oceans to determine the sources of DSD variability. Three correlated sets of variables representing storm dynamics, background environment, and cloud microphysics are found to account for approximately 50% of the variability in the absolute and reflectivity-normalized median drop size. Structures of radar reflectivity are also identified and related to drop size, with these relationships being confirmed by ground-based polarimetric radar data from the North American Monsoon Experiment (NAME). Regional patterns of DSD and the sources of variability identified herein are also shown to be consistent with previous work documenting regional DSD properties. In particular, mid-latitude regions and tropical regions near land tend to have larger drops for a given reflectivity, whereas the smallest drops are found in the eastern Pacific Intertropical Convergence Zone. Due to properties of the DSD and rain water/cloud water partitioning that change with column water vapor, it is shown that increases in water vapor in a global warming scenario could lead to slight (1%) underestimates of a rainfall trends by radar but larger overestimates (5%) by radiometer algorithms. Further analyses are performed to compare tropical oceanic mean rainfall rates between the combined algorithm and other sources. The combined algorithm is 15% higher than the version 6 of the 2A25 radar-only algorithm and 6.6% higher than the Global Precipitation Climatology Project (GPCP) estimate for the same time-space domain. Despite being higher than these two sources, the combined total is not inconsistent with estimates of the other components of the energy budget given their uncertainties.

  10. Impact of spatial resolution on cirrus infrared satellite retrievals in the presence of cloud heterogeneity

    NASA Astrophysics Data System (ADS)

    Fauchez, T.; Platnick, S. E.; Meyer, K.; Zhang, Z.; Cornet, C.; Szczap, F.; Dubuisson, P.

    2015-12-01

    Cirrus clouds are an important part of the Earth radiation budget but an accurate assessment of their role remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better accuracy for thin cirrus effective radius retrievals with small effective radii. However, current global operational algorithms for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel Approximation (PPA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on ice cloud retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects in the TIR spectrum are mainly dominated by the PPA bias that primarily depends on the COT subpixel heterogeneity; for solar reflectance channels, in addition to the PPA bias, the IPA can lead to significant retrieval errors due to a significant photon horizontal transport between cloudy columns, as well as brightening and shadowing effects that are more difficult to quantify. Furthermore TIR retrievals techniques have demonstrated better retrieval accuracy for thin cirrus having small effective radii over solar reflectance techniques. The TIR range is thus particularly relevant in order to characterize, as accurately as possible, thin cirrus clouds. Heterogeneity effects in the TIR are evaluated as a function of spatial resolution in order to estimate the optimal spatial resolution for TIR retrieval applications. These investigations are performed using a cirrus 3D cloud generator (3DCloud), a 3D radiative transfer code (3DMCPOL), and two retrieval algorithms, namely the operational MODIS retrieval algorithm (MOD06) and a research-level SWT algorithm.

  11. A neural network for real-time retrievals of PWV and LWP from Arctic millimeter-wave ground-based observations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadeddu, M. P.; Turner, D. D.; Liljegren, J. C.

    2009-07-01

    This paper presents a new neural network (NN) algorithm for real-time retrievals of low amounts of precipitable water vapor (PWV) and integrated liquid water from millimeter-wave ground-based observations. Measurements are collected by the 183.3-GHz G-band vapor radiometer (GVR) operating at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility, Barrow, AK. The NN provides the means to explore the nonlinear regime of the measurements and investigate the physical boundaries of the operability of the instrument. A methodology to compute individual error bars associated with the NN output is developed, and a detailed error analysis of the network output is provided.more » Through the error analysis, it is possible to isolate several components contributing to the overall retrieval errors and to analyze the dependence of the errors on the inputs. The network outputs and associated errors are then compared with results from a physical retrieval and with the ARM two-channel microwave radiometer (MWR) statistical retrieval. When the NN is trained with a seasonal training data set, the retrievals of water vapor yield results that are comparable to those obtained from a traditional physical retrieval, with a retrieval error percentage of {approx}5% when the PWV is between 2 and 10 mm, but with the advantages that the NN algorithm does not require vertical profiles of temperature and humidity as input and is significantly faster computationally. Liquid water path (LWP) retrievals from the NN have a significantly improved clear-sky bias (mean of {approx}2.4 g/m{sup 2}) and a retrieval error varying from 1 to about 10 g/m{sup 2} when the PWV amount is between 1 and 10 mm. As an independent validation of the LWP retrieval, the longwave downwelling surface flux was computed and compared with observations. The comparison shows a significant improvement with respect to the MWR statistical retrievals, particularly for LWP amounts of less than 60 g/m{sup 2}.« less

  12. Snowfall Rate Retrieval Using Passive Microwave Measurements and Its Applications in Weather Forecast and Hydrology

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Yan, Banghua; Zavodsky, Bradley; Zhao, Limin; Dong, Jun; Wang, Nai-Yu

    2015-01-01

    (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has also been developed. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. It employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derives the probability of snowfall. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model. A method adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The SFR products are being used mainly in two communities: hydrology and weather forecast. Global blended precipitation products traditionally do not include snowfall derived from satellites because such products were not available operationally in the past. The ATMS and AMSU/MHS SFR now provide the winter precipitation information for these blended precipitation products. Weather forecasters mainly rely on radar and station observations for snowfall forecast. The SFR products can fill in gaps where no conventional snowfall data are available to forecasters. The products can also be used to confirm radar and gauge snowfall data and increase forecasters' confidence in their prediction.

  13. Added value of far-infrared radiometry for remote sensing of ice clouds

    NASA Astrophysics Data System (ADS)

    Libois, Quentin; Blanchet, Jean-Pierre

    2017-06-01

    Several cloud retrieval algorithms based on satellite observations in the infrared have been developed in the last decades. However, these observations only cover the midinfrared (MIR, λ < 15 μm) part of the spectrum, and none are available in the far-infrared (FIR, λ≥ 15 μm). Using the optimal estimation method, we show that adding a few FIR channels to existing spaceborne radiometers would significantly improve their ability to retrieve ice cloud radiative properties. For clouds encountered in the polar regions and the upper troposphere, where the atmosphere is sufficiently transparent in the FIR, using FIR channels would reduce by more than 50% the uncertainties on retrieved values of optical thickness, effective particle diameter, and cloud top altitude. Notably, this would extend the range of applicability of current retrieval methods to the polar regions and to clouds with large optical thickness, where MIR algorithms perform poorly. The high performance of solar reflection-based algorithms would thus be reached in nighttime conditions. Since the sensitivity of ice cloud thermal emission to effective particle diameter is approximately 5 times larger in the FIR than in the MIR, using FIR observations is a promising venue for studying ice cloud microphysics and precipitation processes. This is highly relevant for cirrus clouds and convective towers. This is also essential to study precipitation in the driest regions of the atmosphere, where strong feedbacks are at play between clouds and water vapor. The deployment in the near future of a FIR spaceborne radiometer is technologically feasible and should be strongly supported.

  14. Transfer and distortion of atmospheric information in the satellite temperature retrieval problem

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1981-01-01

    A systematic approach to investigating the transfer of basic ambient temperature information and its distortion by satellite systems and subsequent analysis algorithms is discussed. The retrieval analysis cycle is derived, the variance spectrum of information is examined as it takes different forms in that process, and the quality and quantity of information existing at each stop is compared with the initial ambient temperature information. Temperature retrieval algorithms can smooth, add, or further distort information, depending on how stable the algorithm is, and how heavily influenced by a priori data.

  15. Experiments at SRT Using the NOAA CrIS/ATMS Proxy Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2011-01-01

    The objectives of the talk are: (1) Assess the performance of NGAS Version-1.5.03.00 CrIS/ATMS retrieval algorithm as delivered by LaRC, modified to include the MW and IR tuning coefficients and new CrIS noise model (a) Percent acceptance (b) RMS and mean differences of T(p) vs. ECMWF truth as a function of % yield (2) Compare performance of NGAS retrieval algorithm with an AIRS Science Team Version-6 like retrieval algorithm modified at Sounder Research Team (SRT) for CrIS/ATMS

  16. The Validation of Cloud Retrieval Algorithms Using Synthetic Datasets

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander; Fischer, Jurgen; Linstrot, Rasmus; Meirink, Jan Fokke; Poulsen, Caroline; Preusker, Rene; Siddans, Richard; Thomas, Gareth; Arnold, Chris; Grainger, Roy; Lilli, Luca; Rozanov, Vladimir

    2012-11-01

    We have performed the inter-comparison study of cloud property retrievals using algorithms initially developed for AATSR (ORAC, RAL-Oxford University), AVHRR and SEVIRI (CPP, KNMI), SCIAMACHY/GOME (SACURA, University of Bremen), and MERIS (ANNA, Free University of Berlin). The accuracy of retrievals of cloud optical thickness (COT), effective radius (ER) of droplets, and cloud top height (CTH) is discussed.

  17. Mobile Visual Search Based on Histogram Matching and Zone Weight Learning

    NASA Astrophysics Data System (ADS)

    Zhu, Chuang; Tao, Li; Yang, Fan; Lu, Tao; Jia, Huizhu; Xie, Xiaodong

    2018-01-01

    In this paper, we propose a novel image retrieval algorithm for mobile visual search. At first, a short visual codebook is generated based on the descriptor database to represent the statistical information of the dataset. Then, an accurate local descriptor similarity score is computed by merging the tf-idf weighted histogram matching and the weighting strategy in compact descriptors for visual search (CDVS). At last, both the global descriptor matching score and the local descriptor similarity score are summed up to rerank the retrieval results according to the learned zone weights. The results show that the proposed approach outperforms the state-of-the-art image retrieval method in CDVS.

  18. Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain

    NASA Astrophysics Data System (ADS)

    Li, Xianye; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2017-09-01

    A multiple-image encryption method is proposed that is based on row scanning compressive ghost imaging, (t, n) threshold secret sharing, and phase retrieval in the Fresnel domain. In the encryption process, after wavelet transform and Arnold transform of the target image, the ciphertext matrix can be first detected using a bucket detector. Based on a (t, n) threshold secret sharing algorithm, the measurement key used in the row scanning compressive ghost imaging can be decomposed and shared into two pairs of sub-keys, which are then reconstructed using two phase-only mask (POM) keys with fixed pixel values, placed in the input plane and transform plane 2 of the phase retrieval scheme, respectively; and the other POM key in the transform plane 1 can be generated and updated by the iterative encoding of each plaintext image. In each iteration, the target image acts as the input amplitude constraint in the input plane. During decryption, each plaintext image possessing all the correct keys can be successfully decrypted by measurement key regeneration, compression algorithm reconstruction, inverse wavelet transformation, and Fresnel transformation. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.

  19. Automatic Detection of Galaxy Type From Datasets of Galaxies Image Based on Image Retrieval Approach.

    PubMed

    Abd El Aziz, Mohamed; Selim, I M; Xiong, Shengwu

    2017-06-30

    This paper presents a new approach for the automatic detection of galaxy morphology from datasets based on an image-retrieval approach. Currently, there are several classification methods proposed to detect galaxy types within an image. However, in some situations, the aim is not only to determine the type of galaxy within the queried image, but also to determine the most similar images for query image. Therefore, this paper proposes an image-retrieval method to detect the type of galaxies within an image and return with the most similar image. The proposed method consists of two stages, in the first stage, a set of features is extracted based on shape, color and texture descriptors, then a binary sine cosine algorithm selects the most relevant features. In the second stage, the similarity between the features of the queried galaxy image and the features of other galaxy images is computed. Our experiments were performed using the EFIGI catalogue, which contains about 5000 galaxies images with different types (edge-on spiral, spiral, elliptical and irregular). We demonstrate that our proposed approach has better performance compared with the particle swarm optimization (PSO) and genetic algorithm (GA) methods.

  20. A new method of content based medical image retrieval and its applications to CT imaging sign retrieval.

    PubMed

    Ma, Ling; Liu, Xiabi; Gao, Yan; Zhao, Yanfeng; Zhao, Xinming; Zhou, Chunwu

    2017-02-01

    This paper proposes a new method of content based medical image retrieval through considering fused, context-sensitive similarity. Firstly, we fuse the semantic and visual similarities between the query image and each image in the database as their pairwise similarities. Then, we construct a weighted graph whose nodes represent the images and edges measure their pairwise similarities. By using the shortest path algorithm over the weighted graph, we obtain a new similarity measure, context-sensitive similarity measure, between the query image and each database image to complete the retrieval process. Actually, we use the fused pairwise similarity to narrow down the semantic gap for obtaining a more accurate pairwise similarity measure, and spread it on the intrinsic data manifold to achieve the context-sensitive similarity for a better retrieval performance. The proposed method has been evaluated on the retrieval of the Common CT Imaging Signs of Lung Diseases (CISLs) and achieved not only better retrieval results but also the satisfactory computation efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Solar Occultation Retrieval Algorithm Development

    NASA Technical Reports Server (NTRS)

    Lumpe, Jerry D.

    2004-01-01

    This effort addresses the comparison and validation of currently operational solar occultation retrieval algorithms, and the development of generalized algorithms for future application to multiple platforms. initial development of generalized forward model algorithms capable of simulating transmission data from of the POAM II/III and SAGE II/III instruments. Work in the 2" quarter will focus on: completion of forward model algorithms, including accurate spectral characteristics for all instruments, and comparison of simulated transmission data with actual level 1 instrument data for specific occultation events.

  2. Hybrid ontology for semantic information retrieval model using keyword matching indexing system.

    PubMed

    Uthayan, K R; Mala, G S Anandha

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology.

  3. Music to knowledge: A visual programming environment for the development and evaluation of music information retrieval techniques

    NASA Astrophysics Data System (ADS)

    Ehmann, Andreas F.; Downie, J. Stephen

    2005-09-01

    The objective of the International Music Information Retrieval Systems Evaluation Laboratory (IMIRSEL) project is the creation of a large, secure corpus of audio and symbolic music data accessible to the music information retrieval (MIR) community for the testing and evaluation of various MIR techniques. As part of the IMIRSEL project, a cross-platform JAVA based visual programming environment called Music to Knowledge (M2K) is being developed for a variety of music information retrieval related tasks. The primary objective of M2K is to supply the MIR community with a toolset that provides the ability to rapidly prototype algorithms, as well as foster the sharing of techniques within the MIR community through the use of a standardized set of tools. Due to the relatively large size of audio data and the computational costs associated with some digital signal processing and machine learning techniques, M2K is also designed to support distributed computing across computing clusters. In addition, facilities to allow the integration of non-JAVA based (e.g., C/C++, MATLAB, etc.) algorithms and programs are provided within M2K. [Work supported by the Andrew W. Mellon Foundation and NSF Grants No. IIS-0340597 and No. IIS-0327371.

  4. Hybrid Ontology for Semantic Information Retrieval Model Using Keyword Matching Indexing System

    PubMed Central

    Uthayan, K. R.; Anandha Mala, G. S.

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology. PMID:25922851

  5. GPM Mission Gridded Text Products Providing Surface Precipitation Retrievals

    NASA Astrophysics Data System (ADS)

    Stocker, Erich Franz; Kelley, Owen; Huffman, George; Kummerow, Christian

    2015-04-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar), and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMI/DPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for reseachers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations. This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments - GMI, DPR, and combined GMI/DPR (2) surface precipitation retrievals for the partner constellation satellites. Both of these gridded products are generated for a .25 degree x .25 degree hourly grid, which are packaged into daily ASCII files that can downloaded from the PPS FTP site. To reduce the download size, the files are compressed using the gzip utility. This paper will focus on presenting high-level details about the gridded text product being generated from the instruments on the GPM core satellite. But summary information will also be presented about the partner radiometer gridded product. All retrievals for the partner radiometer are done using the GPROF2014 algorithm using as input the PPS generated inter-calibrated 1C product for the radiometer.

  6. Extending "Deep Blue" aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Schmid, B.; Shinozuka, Y.

    2016-05-01

    Cases of absorbing aerosols above clouds (AACs), such as smoke or mineral dust, are omitted from most routinely processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar sensors, for incorporation into a future version of the "Deep Blue" AOD data product. Detailed retrieval simulations suggest that these sensors should be able to determine AAC AOD with a typical level of uncertainty ˜25-50% (with lower uncertainties for more strongly absorbing aerosol types) and COD with an uncertainty ˜10-20%, if an appropriate aerosol optical model is known beforehand. Errors are larger, particularly if the aerosols are only weakly absorbing, if the aerosol optical properties are not known, and the appropriate model to use must also be retrieved. Actual retrieval errors are also compared to uncertainty envelopes obtained through the optimal estimation (OE) technique; OE-based uncertainties are found to be generally reasonable for COD but larger than actual retrieval errors for AOD, due in part to difficulties in quantifying the degree of spectral correlation of forward model error. The algorithm is also applied to two MODIS scenes (one smoke and one dust) for which near-coincident NASA Ames Airborne Tracking Sun photometer (AATS) data were available to use as a ground truth AOD data source, and found to be in good agreement, demonstrating the validity of the technique with real observations.

  7. Scalable ranked retrieval using document images

    NASA Astrophysics Data System (ADS)

    Jain, Rajiv; Oard, Douglas W.; Doermann, David

    2013-12-01

    Despite the explosion of text on the Internet, hard copy documents that have been scanned as images still play a significant role for some tasks. The best method to perform ranked retrieval on a large corpus of document images, however, remains an open research question. The most common approach has been to perform text retrieval using terms generated by optical character recognition. This paper, by contrast, examines whether a scalable segmentation-free image retrieval algorithm, which matches sub-images containing text or graphical objects, can provide additional benefit in satisfying a user's information needs on a large, real world dataset. Results on 7 million scanned pages from the CDIP v1.0 test collection show that content based image retrieval finds a substantial number of documents that text retrieval misses, and that when used as a basis for relevance feedback can yield improvements in retrieval effectiveness.

  8. Enhanced Deep Blue Aerosol Retrieval Algorithm: The Second Generation

    NASA Technical Reports Server (NTRS)

    Hsu, N. C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A. M.; Hansell, R.; Seftor, C. S.; Huang, J.; Tsay, S.-C.

    2013-01-01

    The aerosol products retrieved using the MODIS collection 5.1 Deep Blue algorithm have provided useful information about aerosol properties over bright-reflecting land surfaces, such as desert, semi-arid, and urban regions. However, many components of the C5.1 retrieval algorithm needed to be improved; for example, the use of a static surface database to estimate surface reflectances. This is particularly important over regions of mixed vegetated and non- vegetated surfaces, which may undergo strong seasonal changes in land cover. In order to address this issue, we develop a hybrid approach, which takes advantage of the combination of pre-calculated surface reflectance database and normalized difference vegetation index in determining the surface reflectance for aerosol retrievals. As a result, the spatial coverage of aerosol data generated by the enhanced Deep Blue algorithm has been extended from the arid and semi-arid regions to the entire land areas.

  9. MISR Aerosol Product Attributes and Statistical Comparisons with MODIS

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Nelson, David L.; Garay, Michael J.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Paradise, Susan R.; Hansen, Earl G.; Remer, Lorraine A.

    2009-01-01

    In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements.

  10. A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval.

    PubMed

    Yang, Liu; Jin, Rong; Mummert, Lily; Sukthankar, Rahul; Goode, Adam; Zheng, Bin; Hoi, Steven C H; Satyanarayanan, Mahadev

    2010-01-01

    Similarity measurement is a critical component in content-based image retrieval systems, and learning a good distance metric can significantly improve retrieval performance. However, despite extensive study, there are several major shortcomings with the existing approaches for distance metric learning that can significantly affect their application to medical image retrieval. In particular, "similarity" can mean very different things in image retrieval: resemblance in visual appearance (e.g., two images that look like one another) or similarity in semantic annotation (e.g., two images of tumors that look quite different yet are both malignant). Current approaches for distance metric learning typically address only one goal without consideration of the other. This is problematic for medical image retrieval where the goal is to assist doctors in decision making. In these applications, given a query image, the goal is to retrieve similar images from a reference library whose semantic annotations could provide the medical professional with greater insight into the possible interpretations of the query image. If the system were to retrieve images that did not look like the query, then users would be less likely to trust the system; on the other hand, retrieving images that appear superficially similar to the query but are semantically unrelated is undesirable because that could lead users toward an incorrect diagnosis. Hence, learning a distance metric that preserves both visual resemblance and semantic similarity is important. We emphasize that, although our study is focused on medical image retrieval, the problem addressed in this work is critical to many image retrieval systems. We present a boosting framework for distance metric learning that aims to preserve both visual and semantic similarities. The boosting framework first learns a binary representation using side information, in the form of labeled pairs, and then computes the distance as a weighted Hamming distance using the learned binary representation. A boosting algorithm is presented to efficiently learn the distance function. We evaluate the proposed algorithm on a mammographic image reference library with an Interactive Search-Assisted Decision Support (ISADS) system and on the medical image data set from ImageCLEF. Our results show that the boosting framework compares favorably to state-of-the-art approaches for distance metric learning in retrieval accuracy, with much lower computational cost. Additional evaluation with the COREL collection shows that our algorithm works well for regular image data sets.

  11. A grammar-based semantic similarity algorithm for natural language sentences.

    PubMed

    Lee, Ming Che; Chang, Jia Wei; Hsieh, Tung Cheng

    2014-01-01

    This paper presents a grammar and semantic corpus based similarity algorithm for natural language sentences. Natural language, in opposition to "artificial language", such as computer programming languages, is the language used by the general public for daily communication. Traditional information retrieval approaches, such as vector models, LSA, HAL, or even the ontology-based approaches that extend to include concept similarity comparison instead of cooccurrence terms/words, may not always determine the perfect matching while there is no obvious relation or concept overlap between two natural language sentences. This paper proposes a sentence similarity algorithm that takes advantage of corpus-based ontology and grammatical rules to overcome the addressed problems. Experiments on two famous benchmarks demonstrate that the proposed algorithm has a significant performance improvement in sentences/short-texts with arbitrary syntax and structure.

  12. Experiments on sparsity assisted phase retrieval of phase objects

    NASA Astrophysics Data System (ADS)

    Gaur, Charu; Lochab, Priyanka; Khare, Kedar

    2017-05-01

    Iterative phase retrieval algorithms such as the Gerchberg-Saxton method and the Fienup hybrid input-output method are known to suffer from the twin image stagnation problem, particularly when the solution to be recovered is complex valued and has centrosymmetric support. Recently we showed that the twin image stagnation problem can be addressed using image sparsity ideas (Gaur et al 2015 J. Opt. Soc. Am. A 32 1922). In this work we test this sparsity assisted phase retrieval method with experimental single shot Fourier transform intensity data frames corresponding to phase objects displayed on a spatial light modulator. The standard iterative phase retrieval algorithms are combined with an image sparsity based penalty in an adaptive manner. Illustrations for both binary and continuous phase objects are provided. It is observed that image sparsity constraint has an important role to play in obtaining meaningful phase recovery without encountering the well-known stagnation problems. The results are valuable for enabling single shot coherent diffraction imaging of phase objects for applications involving illumination wavelengths over a wide range of electromagnetic spectrum.

  13. A circular median filter approach for resolving directional ambiguities in wind fields retrieved from spaceborne scatterometer data

    NASA Technical Reports Server (NTRS)

    Schultz, Howard

    1990-01-01

    The retrieval algorithm for spaceborne scatterometry proposed by Schultz (1985) is extended. A circular median filter (CMF) method is presented, which operates on wind directions independently of wind speed, removing any implicit wind speed dependence. A cell weighting scheme is included in the algorithm, permitting greater weights to be assigned to more reliable data. The mathematical properties of the ambiguous solutions to the wind retrieval problem are reviewed. The CMF algorithm is tested on twelve simulated data sets. The effects of spatially correlated likelihood assignment errors on the performance of the CMF algorithm are examined. Also, consideration is given to a wind field smoothing technique that uses a CMF.

  14. North Alabama Lightning Mapping Array (LMA): VHF Source Retrieval Algorithm and Error Analyses

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solakiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J.; Bailey, J.; Krider, E. P.; Bateman, M. G.; Boccippio, D.

    2003-01-01

    Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA Marshall Space Flight Center (MSFC) and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix Theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50 ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results. However, for many source locations, the Curvature Matrix Theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.

  15. GOCI Yonsei aerosol retrieval version 2 aerosol products: improved algorithm description and error analysis with uncertainty estimation from 5-year validation over East Asia

    NASA Astrophysics Data System (ADS)

    Choi, M.; Kim, J.; Lee, J.; KIM, M.; Park, Y. J.; Holben, B. N.; Eck, T. F.; Li, Z.; Song, C. H.

    2017-12-01

    The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed for retrieving hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD showed comparable accuracy compared to ground-based and other satellite-based observations, but still had errors due to uncertainties in surface reflectance and simple cloud masking. Also, it was not capable of near-real-time (NRT) processing because it required a monthly database of each year encompassing the day of retrieval for the determination of surface reflectance. This study describes the improvement of GOCI YAER algorithm to the version 2 (V2) for NRT processing with improved accuracy from the modification of cloud masking, surface reflectance determination using multi-year Rayleigh corrected reflectance and wind speed database, and inversion channels per surface conditions. Therefore, the improved GOCI AOD ( ) is similar with those of Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD compared to V1 of the YAER algorithm. The shows reduced median bias and increased ratio within range (i.e. absolute expected error range of MODIS AOD) compared to V1 in the validation results using Aerosol Robotic Network (AERONET) AOD ( ) from 2011 to 2016. The validation using the Sun-Sky Radiometer Observation Network (SONET) over China also shows similar results. The bias of error ( is within -0.1 and 0.1 range as a function of AERONET AOD and AE, scattering angle, NDVI, cloud fraction and homogeneity of retrieved AOD, observation time, month, and year. Also, the diagnostic and prognostic expected error (DEE and PEE, respectively) of are estimated. The estimated multiple PEE of GOCI V2 AOD is well matched with actual error over East Asia, and the GOCI V2 AOD over Korea shows higher ratio within PEE compared to over China and Japan. Hourly AOD products based on the improved GOCI YAER AOD could contribute to better understandings of aerosols in terms of long-term climate changes and short-term air quality monitoring and forecasting perspectives over East Asia, especially rapid diurnal variation and transboundary transport.

  16. NASA GPM GV Science Implementation

    NASA Technical Reports Server (NTRS)

    Petersen, W. A.

    2009-01-01

    Pre-launch algorithm development & post-launch product evaluation: The GPM GV paradigm moves beyond traditional direct validation/comparison activities by incorporating improved algorithm physics & model applications (end-to-end validation) in the validation process. Three approaches: 1) National Network (surface): Operational networks to identify and resolve first order discrepancies (e.g., bias) between satellite and ground-based precipitation estimates. 2) Physical Process (vertical column): Cloud system and microphysical studies geared toward testing and refinement of physically-based retrieval algorithms. 3) Integrated (4-dimensional): Integration of satellite precipitation products into coupled prediction models to evaluate strengths/limitations of satellite precipitation producers.

  17. Millimeter-wave Imaging Radiometer (MIR) data processing and development of water vapor retrieval algorithms

    NASA Technical Reports Server (NTRS)

    Chang, L. Aron

    1995-01-01

    This document describes the progress of the task of the Millimeter-wave Imaging Radiometer (MIR) data processing and the development of water vapor retrieval algorithms, for the second six-month performing period. Aircraft MIR data from two 1995 field experiments were collected and processed with a revised data processing software. Two revised versions of water vapor retrieval algorithm were developed, one for the execution of retrieval on a supercomputer platform, and one for using pressure as the vertical coordinate. Two implementations of incorporating products from other sensors into the water vapor retrieval system, one from the Special Sensor Microwave Imager (SSM/I), the other from the High-resolution Interferometer Sounder (HIS). Water vapor retrievals were performed for both airborne MIR data and spaceborne SSM/T-2 data, during field experiments of TOGA/COARE, CAMEX-1, and CAMEX-2. The climatology of water vapor during TOGA/COARE was examined by SSM/T-2 soundings and conventional rawinsonde.

  18. Ten Years of Cloud Optical and Microphysical Retrievals from MODIS

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; King, Michael D.; Wind, Galina; Hubanks, Paul; Arnold, G. Thomas; Amarasinghe, Nandana

    2010-01-01

    The MODIS cloud optical properties algorithm (MOD06/MYD06 for Terra and Aqua MODIS, respectively) has undergone extensive improvements and enhancements since the launch of Terra. These changes have included: improvements in the cloud thermodynamic phase algorithm; substantial changes in the ice cloud light scattering look up tables (LUTs); a clear-sky restoral algorithm for flagging heavy aerosol and sunglint; greatly improved spectral surface albedo maps, including the spectral albedo of snow by ecosystem; inclusion of pixel-level uncertainty estimates for cloud optical thickness, effective radius, and water path derived for three error sources that includes the sensitivity of the retrievals to solar and viewing geometries. To improve overall retrieval quality, we have also implemented cloud edge removal and partly cloudy detection (using MOD35 cloud mask 250m tests), added a supplementary cloud optical thickness and effective radius algorithm over snow and sea ice surfaces and over the ocean, which enables comparison with the "standard" 2.1 11m effective radius retrieval, and added a multi-layer cloud detection algorithm. We will discuss the status of the MOD06 algorithm and show examples of pixellevel (Level-2) cloud retrievals for selected data granules, as well as gridded (Level-3) statistics, notably monthly means and histograms (lD and 2D, with the latter giving correlations between cloud optical thickness and effective radius, and other cloud product pairs).

  19. Passive microwave algorithm development and evaluation

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.

    1995-01-01

    The scientific objectives of this grant are: (1) thoroughly evaluate, both theoretically and empirically, all available Special Sensor Microwave Imager (SSM/I) retrieval algorithms for column water vapor, column liquid water, and surface wind speed; (2) where both appropriate and feasible, develop, validate, and document satellite passive microwave retrieval algorithms that offer significantly improved performance compared with currently available algorithms; and (3) refine and validate a novel physical inversion scheme for retrieving rain rate over the ocean. This report summarizes work accomplished or in progress during the first year of a three year grant. The emphasis during the first year has been on the validation and refinement of the rain rate algorithm published by Petty and on the analysis of independent data sets that can be used to help evaluate the performance of rain rate algorithms over remote areas of the ocean. Two articles in the area of global oceanic precipitation are attached.

  20. Detection and characterization of small hot fires: Comparing FireBird, BIRD, S-NPP VIIRS and MODIS capacities over gas flares

    NASA Astrophysics Data System (ADS)

    Ruecker, Gernot; Schroeder, Wilfrid; Lorenz, Eckehard; Kaiser, Johannes; Caseiro, Alexandre

    2016-04-01

    According to recent research, black carbon has the second strongest effect on the earth climate system after carbon dioxide. In high Northern latitudes, industrial gas flares are an important source of black carbon, especially in winter. This fact is particularly relevant for the relatively fast observed climate change in the Arctic since deposition of black carbon changes the albedo of snow and ice, thus leading to a positive feedback cycle. Here we explore gas flare detection and Fire Radiative Power (FRP) retrievals of the German FireBird TET-1 and BIRD Hotspot Recognition Systems (HSRS), the VIIRS sensor on board of the S-NPP satellite, and the MODIS sensor using temporally close to near coincident data acquisitions. Comparison is based on level 2 products developed for fire detection for the different sensors; in the case of S-NPP VIIRS we use two products: the new VIIRS 750m algorithm based on MODIS collection 6, and the 350 m algorithm based on the VIIRS mid-infrared I (Imaging) band, which offers high resolution, but no FRP retrievals. Results indicate that the highest resolution FireBird sensors offer the best detection capacities, though the level two product shows false alarms, followed by the VIIRS 350 m and 750 m algorithms. MODIS has the lowest detection rate. Preliminary results of FRP retrievals show that FireBird and VIIRS algorithms have a good agreement. Given the fact that most gas flaring is at the detection limit for medium to coarse resolution space borne sensors - and hence measurement errors may be high - our results indicates that a quantitative evaluation of gas flaring using these sensors is feasible. Results shall be used to develop a gas flare detection algorithm for Sentinel-3, and a similar methodology will be employed to validate the capacity of Sentinel 3 to detect and characterize small high temperature sources such as gas flares.

  1. MODIS 3km Aerosol Product: Algorithm and Global Perspective

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Mattoo, S.; Levy, R. C.; Munchak, L.

    2013-01-01

    After more than a decade of producing a nominal 10 km aerosol product based on the dark target method, the MODIS aerosol team will be releasing a nominal 3 km product as part of their Collection 6 release. The new product differs from the original 10 km product only in the manner in which reflectance pixels are ingested, organized and selected by the aerosol algorithm. Overall, the 3 km product closely mirrors the 10 km product. However, the finer resolution product is able to retrieve over ocean closer to islands and coastlines, and is better able to resolve fine aerosol features such as smoke plumes over both ocean and land. In some situations, it provides retrievals over entire regions that the 10 km product barely samples. In situations traditionally difficult for the dark target algorithm, such as over bright or urban surfaces the 3 km product introduces isolated spikes of artificially high aerosol optical depth (AOD) that the 10 km algorithm avoids. Over land, globally, the 3 km product appears to be 0.01 to 0.02 higher than the 10 km product, while over ocean, the 3 km algorithm is retrieving a proportionally greater number of very low aerosol loading situations. Based on collocations with ground-based observations for only six months, expected errors associated with the 3 km land product are determined to be greater than for the 10 km product: 0.05 0.25 AOD. Over ocean, the suggestion is for expected errors to be the same as the 10 km product: 0.03 0.05 AOD. The advantage of the product is on the local scale, which will require continued evaluation not addressed here. Nevertheless, the new 3 km product is expected to provide important information complementary to existing satellite-derived products and become an important tool for the aerosol community.

  2. An Improved Algorithm for Retrieving Surface Downwelling Longwave Radiation from Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Kratz, David P.; Wilber, Anne C.; Gupta, Shashi K.; Cess, Robert D.

    2006-01-01

    Retrieving surface longwave radiation from space has been a difficult task since the surface downwelling longwave radiation (SDLW) are integrations from radiation emitted by the entire atmosphere, while those emitted from the upper atmosphere are absorbed before reaching the surface. It is particularly problematic when thick clouds are present since thick clouds will virtually block all the longwave radiation from above, while satellites observe atmosphere emissions mostly from above the clouds. Zhou and Cess developed an algorithm for retrieving SDLW based upon detailed studies using radiative transfer model calculations and surface radiometric measurements. Their algorithm linked clear sky SDLW with surface upwelling longwave flux and column precipitable water vapor. For cloudy sky cases, they used cloud liquid water path as an additional parameter to account for the effects of clouds. Despite the simplicity of their algorithm, it performed very well for most geographical regions except for those regions where the atmospheric conditions near the surface tend to be extremely cold and dry. Systematic errors were also found for areas that were covered with ice clouds. An improved version of the algorithm was developed that prevents the large errors in the SDLW at low water vapor amounts. The new algorithm also utilizes cloud fraction and cloud liquid and ice water paths measured from the Cloud and the Earth's Radiant Energy System (CERES) satellites to separately compute the clear and cloudy portions of the fluxes. The new algorithm has been validated against surface measurements at 29 stations around the globe for the Terra and Aqua satellites. The results show significant improvement over the original version. The revised Zhou-Cess algorithm is also slightly better or comparable to more sophisticated algorithms currently implemented in the CERES processing. It will be incorporated in the CERES project as one of the empirical surface radiation algorithms.

  3. Information retrieval algorithms: A survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan, P.

    We give an overview of some algorithmic problems arising in the representation of text/image/multimedia objects in a form amenable to automated searching, and in conducting these searches efficiently. These operations are central to information retrieval and digital library systems.

  4. Significant Advances in the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Molnar, Gyula

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. The Goddard DISC has analyzed AIRS/AMSU observations, covering the period September 2002 until the present, using the AIRS Science Team Version-S retrieval algorithm. These products have been used by many researchers to make significant advances in both climate and weather applications. The AIRS Science Team Version-6 Retrieval, which will become operation in mid-20l2, contains many significant theoretical and practical improvements compared to Version-5 which should further enhance the utility of AIRS products for both climate and weather applications. In particular, major changes have been made with regard to the algOrithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the retrieval procedure; 3) compute Outgoing Longwave Radiation; and 4) determine Quality Control. This paper will describe these advances found in the AIRS Version-6 retrieval algorithm and demonstrate the improvement of AIRS Version-6 products compared to those obtained using Version-5,

  5. Passive Microwave Soil Moisture Retrieval through Combined Radar/Radiometer Ground Based Simulator with Special Reference to Dielectric Schemes

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K., ,, Dr.; O'Neill, Peggy, ,, Dr.

    2014-05-01

    Soil moisture is an important element for weather and climate prediction, hydrological sciences, and applications. Hence, measurements of this hydrologic variable are required to improve our understanding of hydrological processes, ecosystem functions, and the linkages between the Earth's water, energy, and carbon cycles (Srivastava et al. 2013). The retrieval of soil moisture depends not only on parameterizations in the retrieval algorithm but also on the soil dielectric mixing models used (Behari 2005). Although a number of soil dielectric mixing models have been developed, testing these models for soil moisture retrieval has still not been fully explored, especially with SMAP-like simulators. The main objective of this work focuses on testing different dielectric models for soil moisture retrieval using the Combined Radar/Radiometer (ComRAD) ground-based L-band simulator developed jointly by NASA/GSFC and George Washington University (O'Neill et al., 2006). The ComRAD system was deployed during a field experiment in 2012 in order to provide long active/passive measurements of two crops under controlled conditions during an entire growing season. L-band passive data were acquired at a look angle of 40 degree from nadir at both horizontal & vertical polarization. Currently, there are many dielectric models available for soil moisture retrieval; however, four dielectric models (Mironov, Dobson, Wang & Schmugge and Hallikainen) were tested here and found to be promising for soil moisture retrieval (some with higher performances). All the above-mentioned dielectric models were integrated with Single Channel Algorithms using H (SCA-H) and V (SCA-V) polarizations for the soil moisture retrievals. All the ground-based observations were collected from test site-United States Department of Agriculture (USDA) OPE3, located a few miles away from NASA GSFC. Ground truth data were collected using a theta probe and in situ sensors which were then used for validation. Analysis indicated a higher performance in terms of soil moisture retrieval accuracy for the Mironov dielectric model (RMSE of 0.035 m3/m3), followed by Dobson, Wang & Schmugge, and Hallikainen. This analysis indicates that Mironov dielectric model is promising for passive-only microwave soil moisture retrieval and could be a useful choice for SMAP satellite soil moisture retrieval. Keywords: Dielectric models; Single Channel Algorithm, Combined Radar/Radiometer, Soil moisture; L band References: Behari, J. (2005). Dielectric Behavior of Soil (pp. 22-40). Springer Netherlands O'Neill, P. E., Lang, R. H., Kurum, M., Utku, C., & Carver, K. R. (2006), Multi-Sensor Microwave Soil Moisture Remote Sensing: NASA's Combined Radar/Radiometer (ComRAD) System. In IEEE MicroRad, 2006 (pp. 50-54). IEEE. Srivastava, P. K., Han, D., Rico Ramirez, M. A., & Islam, T. (2013), Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. Journal of Hydrology, 498, 292-304. USDA OPE3 web site at http://www.ars.usda.gov/Research/.

  6. Projections for fast protein structure retrieval

    PubMed Central

    Bhattacharya, Sourangshu; Bhattacharyya, Chiranjib; Chandra, Nagasuma R

    2006-01-01

    Background In recent times, there has been an exponential rise in the number of protein structures in databases e.g. PDB. So, design of fast algorithms capable of querying such databases is becoming an increasingly important research issue. This paper reports an algorithm, motivated from spectral graph matching techniques, for retrieving protein structures similar to a query structure from a large protein structure database. Each protein structure is specified by the 3D coordinates of residues of the protein. The algorithm is based on a novel characterization of the residues, called projections, leading to a similarity measure between the residues of the two proteins. This measure is exploited to efficiently compute the optimal equivalences. Results Experimental results show that, the current algorithm outperforms the state of the art on benchmark datasets in terms of speed without losing accuracy. Search results on SCOP 95% nonredundant database, for fold similarity with 5 proteins from different SCOP classes show that the current method performs competitively with the standard algorithm CE. The algorithm is also capable of detecting non-topological similarities between two proteins which is not possible with most of the state of the art tools like Dali. PMID:17254310

  7. SMOS and AMSR-2 soil moisture evaluation using representative monitoring sites in southern Australia

    NASA Astrophysics Data System (ADS)

    Walker, J. P.; Mei Sun, M. S.; Rudiger, C.; Parinussa, R.; Koike, T.; Kerr, Y. H.

    2016-12-01

    The performance of soil moisture products from AMSR-2 and SMOS were evaluated against representative surface soil moisture stations within the Yanco study area in the Murrumbidgee Catchment, in southeast Australia. AMSR-2 Level 3 (L3) soil moisture products retrieved from two sets of brightness temperatures using the Japanese Aerospace exploration Agency (JAXA) and the Land Parameter Retrieval Model (LPRM) algorithms were included. For the LPRM algorithm, two different parameterization methods were applied. In the case of SMOS, two versions of the SMOS L3 soil moisture product were assessed. Results based on using "random" and representative stations to evaluate the products were contrasted. The latest versions of the JAXA (JX2) and LPRM (LP3) products were found to perform better than the earlier versions (JX1, LP1 and LP2). Moreover, soil moisture retrieval based on the latter version of brightness temperature and parameterization scheme improved when C-band observations were used, as opposed to the X-band data. Yet, X-band retrievals were found to perform better than C-band. Inter-comparing AMSR-2 X-band products from different acquisition times showed a better performance for 1:30 pm overpasses whereas SMOS 6:00 am retrievals were found to perform the best. The mean average error (MAE) goal accuracy of the AMSR-2 mission (MAE < 0.08 m3/m3) was met by both versions of the JAXA products, the LPRM X-band products retrieved from the reprocessed version of brightness temperatures, and both versions of SMOS products. Nevertheless, none of the products achieved the SMOS target accuracy of 0.04 m3/m3. Finally, the product performance depended on the statistics used in their evaluation; based on temporal and absolute accuracy JX2 is recommended, whereas LP3 X-band 1:30 pm and SMOS2 6:00 am are recommended based on temporal accuracy alone.

  8. Global Assessment of OMI Aerosol Single-scattering Albedo Using Ground-based AERONET and SKYNET Inversions

    NASA Technical Reports Server (NTRS)

    Jethva, Hiren; Torres, Omar; Ahn, Changwoo

    2014-01-01

    We compare the aerosol single-scattering albedo (SSA) retrieved by the near-UV two-channel algorithm (OMAERUV) applied to the Aura-Ozone Monitoring Instrument (OMI) measurements with an equivalent inversion made by the ground-based Aerosol Robotic Network (AERONET). This work is the first comprehensive effort to globally compare the OMI-retrieved SSA with that of AERONET using all available sites spanning the regions of biomass burning, dust, and urban pollution. An analysis of the co-located retrievals over 269 sites reveals that about 46 percent (69 percent) of OMI-AERONET matchups agree within the absolute difference of plus or minus 0.03 (plus or minus 0.05) for all aerosol types. The comparison improves to 52 percent (77 percent) when only 'smoke' and 'dust' aerosol types were identified by the OMAERUV algorithm. Regionally, the agreement between the two inversions was robust over the biomass burning sites of South America, Sahel, Indian subcontinent, and oceanic-coastal sites followed by a reasonable agreement over north-east Asia. Over the desert regions, OMI tends to retrieve higher SSA, particularly over the Arabian Peninsula. Globally, the OMI-AERONET matchups agree mostly within plus or minus 0.03 for the aerosol optical depth (440 nanometers) and UV-aerosol index larger than 0.4 and 1.0, respectively. We also compare the OMAERUV SSA against the inversion made by an independent network of ground-based radiometer called SKYNET with its operating sites in Japan, China, South-East Asia, India, and Europe. The advantage of the SKYNET database over AERONET is that it performs retrieval at near-UV wavelengths which facilitate the direct comparison of OMI retrievals with the equivalent ground-based inversion. Comparison of OMI and SKYNET over currently available sites reveals a good agreement between the two where more than 70 percent of matchups agree within the absolute difference of 0.05.

  9. Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy.

    PubMed

    Tian, Yuling; Zhang, Hongxian

    2016-01-01

    For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic-there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions.

  10. Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy

    PubMed Central

    Tian, Yuling; Zhang, Hongxian

    2016-01-01

    For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic–there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions. PMID:27487242

  11. Probabilistic and machine learning-based retrieval approaches for biomedical dataset retrieval

    PubMed Central

    Karisani, Payam; Qin, Zhaohui S; Agichtein, Eugene

    2018-01-01

    Abstract The bioCADDIE dataset retrieval challenge brought together different approaches to retrieval of biomedical datasets relevant to a user’s query, expressed as a text description of a needed dataset. We describe experiments in applying a data-driven, machine learning-based approach to biomedical dataset retrieval as part of this challenge. We report on a series of experiments carried out to evaluate the performance of both probabilistic and machine learning-driven techniques from information retrieval, as applied to this challenge. Our experiments with probabilistic information retrieval methods, such as query term weight optimization, automatic query expansion and simulated user relevance feedback, demonstrate that automatically boosting the weights of important keywords in a verbose query is more effective than other methods. We also show that although there is a rich space of potential representations and features available in this domain, machine learning-based re-ranking models are not able to improve on probabilistic information retrieval techniques with the currently available training data. The models and algorithms presented in this paper can serve as a viable implementation of a search engine to provide access to biomedical datasets. The retrieval performance is expected to be further improved by using additional training data that is created by expert annotation, or gathered through usage logs, clicks and other processes during natural operation of the system. Database URL: https://github.com/emory-irlab/biocaddie PMID:29688379

  12. Evaluating the Assumptions of Surface Reflectance and Aerosol Type Selection Within the MODIS Aerosol Retrieval Over Land: The Problem of Dust Type Selection

    NASA Technical Reports Server (NTRS)

    Mielonen, T.; Levy, R. C.; Aaltonen, V.; Komppula, M.; de Leeuw, G.; Huttunen, J.; Lihavainen, H.; Kolmonen, P.; Lehtinen, K. E. J.; Arola, A.

    2011-01-01

    Aerosol Optical Depth (AOD) and Angstrom exponent (AE) values derived with the MODIS retrieval algorithm over land (Collection 5) are compared with ground based sun photometer measurements at eleven sites spanning the globe. Although, in general, total AOD compares well at these sites (R2 values generally over 0.8), there are cases (from 2 to 67% of the measurements depending on the site) where MODIS clearly retrieves the wrong spectral dependence, and hence, an unrealistic AE value. Some of these poor AE retrievals are due to the aerosol signal being too small (total AOD<0.3) but in other cases the AOD should have been high enough to derive accurate AE. However, in these cases, MODIS indicates AE values close to 0.6 and zero fine model weighting (FMW), i.e. dust model provides the best fitting to the MODIS observed reflectance. Yet, according to evidence from the collocated sun photometer measurements and back-trajectory analyses, there should be no dust present. This indicates that the assumptions about aerosol model and surface properties made by the MODIS algorithm may have been incorrect. Here we focus on problems related to parameterization of the land-surface optical properties in the algorithm, in particular the relationship between the surface reflectance at 660 and 2130 nm.

  13. Applications of Land Surface Temperature from Microwave Observations

    USDA-ARS?s Scientific Manuscript database

    Land surface temperature (LST) is a key input for physically-based retrieval algorithms of hydrological states and fluxes. Yet, it remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observation...

  14. Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme.

    PubMed

    Ogawa, Takahiro; Haseyama, Miki

    2013-03-01

    A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.

  15. Validating precision estimates in horizontal wind measurements from a Doppler lidar

    DOE PAGES

    Newsom, Rob K.; Brewer, W. Alan; Wilczak, James M.; ...

    2017-03-30

    Results from a recent field campaign are used to assess the accuracy of wind speed and direction precision estimates produced by a Doppler lidar wind retrieval algorithm. The algorithm, which is based on the traditional velocity-azimuth-display (VAD) technique, estimates the wind speed and direction measurement precision using standard error propagation techniques, assuming the input data (i.e., radial velocities) to be contaminated by random, zero-mean, errors. For this study, the lidar was configured to execute an 8-beam plan-position-indicator (PPI) scan once every 12 min during the 6-week deployment period. Several wind retrieval trials were conducted using different schemes for estimating themore » precision in the radial velocity measurements. Here, the resulting wind speed and direction precision estimates were compared to differences in wind speed and direction between the VAD algorithm and sonic anemometer measurements taken on a nearby 300 m tower.« less

  16. A simplified computational memory model from information processing

    PubMed Central

    Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang

    2016-01-01

    This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view. PMID:27876847

  17. Bat-Inspired Algorithm Based Query Expansion for Medical Web Information Retrieval.

    PubMed

    Khennak, Ilyes; Drias, Habiba

    2017-02-01

    With the increasing amount of medical data available on the Web, looking for health information has become one of the most widely searched topics on the Internet. Patients and people of several backgrounds are now using Web search engines to acquire medical information, including information about a specific disease, medical treatment or professional advice. Nonetheless, due to a lack of medical knowledge, many laypeople have difficulties in forming appropriate queries to articulate their inquiries, which deem their search queries to be imprecise due the use of unclear keywords. The use of these ambiguous and vague queries to describe the patients' needs has resulted in a failure of Web search engines to retrieve accurate and relevant information. One of the most natural and promising method to overcome this drawback is Query Expansion. In this paper, an original approach based on Bat Algorithm is proposed to improve the retrieval effectiveness of query expansion in medical field. In contrast to the existing literature, the proposed approach uses Bat Algorithm to find the best expanded query among a set of expanded query candidates, while maintaining low computational complexity. Moreover, this new approach allows the determination of the length of the expanded query empirically. Numerical results on MEDLINE, the on-line medical information database, show that the proposed approach is more effective and efficient compared to the baseline.

  18. Aerosol Retrievals Over Land and Water using Deep Blue Algorithm from SeaWiFS and MODIS during UAE2 Field Campaign

    NASA Astrophysics Data System (ADS)

    Hsu, N.

    2005-12-01

    The environment in Southwest Asia exhibits one of the most complex situations for aerosol remote sensing from space. Several air masses with different aerosol characteristics commonly converge in this region. In particular, there are often fine mode pollution particles generated from oil industry activities in the Persian Gulf colliding with coarse mode dust particles lifted from desert sources in the surrounding areas. During the course of the UAE field campaign (August-October, 2004), we provided near-real time information, calculated using the Deep Blue algorithm, of satellite aerosol optical thickness and Angstrom exponent over the Southwest Asia region, including the Arabian Peninsula, Iran, Afghanistan, Pakistan, and part of north Africa. In this paper, we will present results of aerosol characteristics retrieved from SeaWiFS and MODIS over the Arabian Peninsula, Persian Gulf, and the Arabian Sea during the UAE experiment. The spectral surface reflectance data base constructed using satellite reflectance from MODIS and SeaWiFS employed in our algorithm will be discussed. We will also compare the resulting satellite retrieved aerosol optical thickness and Angstrom exponent with those obtained from the ground based sun photometers from AERONET in the region. Finally, we will discuss the changes in shortwave and longwave fluxes at the top of atmosphere in response to changes in aerosol optical thickness (i.e. aerosol forcing).

  19. True Colour Classification of Natural Waters with Medium-Spectral Resolution Satellites: SeaWiFS, MODIS, MERIS and OLCI

    PubMed Central

    van der Woerd, Hendrik J.; Wernand, Marcel R.

    2015-01-01

    The colours from natural waters differ markedly over the globe, depending on the water composition and illumination conditions. The space-borne “ocean colour” instruments are operational instruments designed to retrieve important water-quality indicators, based on the measurement of water leaving radiance in a limited number (5 to 10) of narrow (≈10 nm) bands. Surprisingly, the analysis of the satellite data has not yet paid attention to colour as an integral optical property that can also be retrieved from multispectral satellite data. In this paper we re-introduce colour as a valuable parameter that can be expressed mainly by the hue angle (α). Based on a set of 500 synthetic spectra covering a broad range of natural waters a simple algorithm is developed to derive the hue angle from SeaWiFS, MODIS, MERIS and OLCI data. The algorithm consists of a weighted linear sum of the remote sensing reflectance in all visual bands plus a correction term for the specific band-setting of each instrument. The algorithm is validated by a set of 603 hyperspectral measurements from inland-, coastal- and near-ocean waters. We conclude that the hue angle is a simple objective parameter of natural waters that can be retrieved uniformly for all space-borne ocean colour instruments. PMID:26473859

  20. Retrieval of Polar Stratospheric Cloud Microphysical Properties from Lidar Measurements: Dependence on Particle Shape Assumptions

    NASA Technical Reports Server (NTRS)

    Reichardt, J.; Reichardt, S.; Yang, P.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    A retrieval algorithm has been developed for the microphysical analysis of polar stratospheric cloud (PSC) optical data obtained using lidar instrumentation. The parameterization scheme of the PSC microphysical properties allows for coexistence of up to three different particle types with size-dependent shapes. The finite difference time domain (FDTD) method has been used to calculate optical properties of particles with maximum dimensions equal to or less than 2 mu m and with shapes that can be considered more representative of PSCs on the scale of individual crystals than the commonly assumed spheroids. Specifically. these are irregular and hexagonal crystals. Selection of the optical parameters that are input to the inversion algorithm is based on a potential data set such as that gathered by two of the lidars on board the NASA DC-8 during the Stratospheric Aerosol and Gas Experiment 0 p (SAGE) Ozone Loss Validation experiment (SOLVE) campaign in winter 1999/2000: the Airborne Raman Ozone and Temperature Lidar (AROTEL) and the NASA Langley Differential Absorption Lidar (DIAL). The 0 microphysical retrieval algorithm has been applied to study how particle shape assumptions affect the inversion of lidar data measured in leewave PSCs. The model simulations show that under the assumption of spheroidal particle shapes, PSC surface and volume density are systematically smaller than the FDTD-based values by, respectively, approximately 10-30% and approximately 5-23%.

  1. Derivation of cloud-free-region atmospheric motion vectors from FY-2E thermal infrared imagery

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhui; Sui, Xinxiu; Zhang, Qing; Yang, Lu; Zhao, Hang; Tang, Min; Zhan, Yizhe; Zhang, Zhiguo

    2017-02-01

    The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split window (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.

  2. Retrieval of Atmospheric Water Vapor Profiles from the Special Sensor Microwave TEMPERATURE-2

    NASA Astrophysics Data System (ADS)

    Al-Khalaf, Abdulrahman Khal

    1995-01-01

    Radiometric measurements from the Special Sensor Microwave/Temperature-2 (SSM/T-2) instrument are used to retrieve atmospheric water vapor profiles over ocean, land, coast, and ice/snow backgrounds. These measurements are used to retrieve vertical distribution of integrated water vapor (IWV) and total integrated water vapor (TIWV) using a physical algorithm. The algorithm infers the presence of cloud at a given height from super-saturation of the retrieved humidity at that height then the algorithm estimate the cloud liquid water content. Retrievals of IWV over five different layers are validated against available ground truth such as global radiosondes and ECMWF analyses. Over ocean, the retrieved total integrated water vapor (TIWV) and IWV close to the surface compare quite well, with those from radiosonde observations and the European Center for Medium Range Weather Forecasts (ECMWF) analyses. However, comparisons to radiosonde results are better than (ECMWF) analyses. TIWV root mean square (RMS) difference was 5.95 mm and TWV RMS difference for the lowest layer (SFC-850 mb) was 2.8 mm for radiosonde comparisons. Water vapor retrieval over land is less accurate than over ocean due to the low contrast between the surface and the atmosphere near the surface; therefore, land retrievals are more reliable at layers above 700 mb. However, TIWV and IWV at all layers compare appropriately with ground truth. Over coastal areas the agreement between retrieved water vapor profiles and ground truth is quite good for both TIWV and IWV for the five layers. The natural variability and large variations in the surface emissivity over ice and snow fields leads toward poor results. Clouds degrade retrievals over land and coast, improve the retrievals a little over ocean, and improve dramatically over snow/ice. Examples of retrieved relative humidity profiles were shown to illustrate the algorithm performance for the actual profile retrieval. The overall features of the retrieved profiles compared well with those from radiosonde data and ECMWF analyses. However, due to the limited number of channels, the retrieved profiles generally do not reproduce the fine details when a rapid change in relative humidity versus height was observed.

  3. The performance of the new enhanced-resolution satellite passive microwave dataset applied for snow water equivalent estimation

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Jiang, L.; Liu, D.

    2017-12-01

    The newly-processed NASA MEaSures Calibrated Enhanced-Resolution Brightness Temperature (CETB) reconstructed using antenna measurement response function (MRF) is considered to have significantly improved fine-resolution measurements with better georegistration for time-series observations and equivalent field of view (FOV) for frequencies with the same monomial spatial resolution. We are looking forward to its potential for the global snow observing purposes, and therefore aim to test its performance for characterizing snow properties, especially the snow water equivalent (SWE) in large areas. In this research, two candidate SWE algorithms will be tested in China for the years between 2005 to 2010 using the reprocessed TB from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), with the results to be evaluated using the daily snow depth measurements at over 700 national synoptic stations. One of the algorithms is the SWE retrieval algorithm used for the FengYun (FY) - 3 Microwave Radiation Imager. This algorithm uses the multi-channel TB to calculate SWE for three major snow regions in China, with the coefficients adapted for different land cover types. The second algorithm is the newly-established Bayesian Algorithm for SWE Estimation with Passive Microwave measurements (BASE-PM). This algorithm uses the physically-based snow radiative transfer model to find the histogram of most-likely snow property that matches the multi-frequency TB from 10.65 to 90 GHz. It provides a rough estimation of snow depth and grain size at the same time and showed a 30 mm SWE RMS error using the ground radiometer measurements at Sodankyla. This study will be the first attempt to test it spatially for satellite. The use of this algorithm benefits from the high resolution and the spatial consistency between frequencies embedded in the new dataset. This research will answer three questions. First, to what extent can CETB increase the heterogeneity in the mapped SWE? Second, will the SWE estimation error statistics be improved using this high-resolution dataset? Third, how will the SWE retrieval accuracy be improved using CETB and the new SWE retrieval techniques?

  4. The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument

    NASA Astrophysics Data System (ADS)

    Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.

    2015-12-01

    Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.

  5. Extending 'Deep Blue' aerosol retrieval coverage to cases of absorbing aerosols above clouds: sensitivity analysis and first case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayer, Andrew M.; Hsu, C.; Bettenhausen, Corey

    Cases of absorbing aerosols above clouds (AAC), such as smoke or mineral dust, are omitted from most routinely-processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar

  6. The new Cloud Dynamics and Radiation Database algorithms for AMSR2 and GMI: exploitation of the GPM observational database for operational applications

    NASA Astrophysics Data System (ADS)

    Cinzia Marra, Anna; Casella, Daniele; Martins Costa do Amaral, Lia; Sanò, Paolo; Dietrich, Stefano; Panegrossi, Giulia

    2017-04-01

    Two new precipitation retrieval algorithms for the Advanced Microwave Scanning Radiometer 2 (AMSR2) and for the GPM Microwave Imager (GMI) are presented. The algorithms are based on the Cloud Dynamics and Radiation Database (CDRD) Bayesian approach and represent an evolution of the previous version applied to Special Sensor Microwave Imager/Sounder (SSMIS) observations, and used operationally within the EUMETSAT Satellite Application Facility on support to Operational Hydrology and Water Management (H-SAF). These new products present as main innovation the use of an extended database entirely empirical, derived from coincident radar and radiometer observations from the NASA/JAXA Global Precipitation Measurement Core Observatory (GPM-CO) (Dual-frequency Precipitation Radar-DPR and GMI). The other new aspects are: 1) a new rain-no-rain screening approach; 2) the use of Empirical Orthogonal Functions (EOF) and Canonical Correlation Analysis (CCA) both in the screening approach, and in the Bayesian algorithm; 2) the use of new meteorological and environmental ancillary variables to categorize the database and mitigate the problem of non-uniqueness of the retrieval solution; 3) the development and implementations of specific modules for computational time minimization. The CDRD algorithms for AMSR2 and GMI are able to handle an extremely large observational database available from GPM-CO and provide the rainfall estimate with minimum latency, making them suitable for near-real time hydrological and operational applications. As far as CDRD for AMSR2, a verification study over Italy using ground-based radar data and over the MSG full disk area using coincident GPM-CO/AMSR2 observations has been carried out. Results show remarkable AMSR2 capabilities for rainfall rate (RR) retrieval over ocean (for RR > 0.25 mm/h), good capabilities over vegetated land (for RR > 1 mm/h), while for coastal areas the results are less certain. Comparisons with NASA GPM products, and with ground-based radar data, show that CDRD for AMSR2 is able to depict very well the areas of high precipitation over all surface types. Similarly, preliminary results of the application of CDRD for GMI are also shown and discussed, highlighting the advantage of the availability of high frequency channels (> 90 GHz) for precipitation retrieval over land and coastal areas.

  7. Surface Soil Moisture Retrieval Using SSM/I and Its Comparison with ESTAR: A Case Study Over a Grassland Region

    NASA Technical Reports Server (NTRS)

    Jackson, T.; Hsu, A. Y.; ONeill, P. E.

    1999-01-01

    This study extends a previous investigation on estimating surface soil moisture using the Special Sensor Microwave/Imager (SSM/I) over a grassland region. Although SSM/I is not optimal for soil moisture retrieval, it can under some conditions provide information. Rigorous analyses over land have been difficult due to the lack of good validation data sets. A scientific objective of the Southern Great Plains 1997 (SGP97) Hydrology Experiment was to investigate whether the retrieval algorithms for surface soil moisture developed at higher spatial resolution using truck-and aircraft-based passive microwave sensors can be extended to the coarser resolutions expected from satellite platform. With the data collected for the SGP97, the objective of this study is to compare the surface soil moisture estimated from the SSM/I data with those retrieved from the L-band Electronically Scanned Thinned Array Radiometer (ESTAR) data, the core sensor for the experiment, using the same retrieval algorithm. The results indicated that an error of estimate of 7.81% could be achieved with SSM/I data as contrasted to 2.82% with ESTAR data over three intensive sampling areas of different vegetation regimes. It confirms the results of previous study that SSM/I data can be used to retrieve surface soil moisture information at a regional scale under certain conditions.

  8. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data.

    PubMed

    Chemyakin, Eduard; Müller, Detlef; Burton, Sharon; Kolgotin, Alexei; Hostetler, Chris; Ferrare, Richard

    2014-11-01

    We present the results of a feasibility study in which a simple, automated, and unsupervised algorithm, which we call the arrange and average algorithm, is used to infer microphysical parameters (complex refractive index, effective radius, total number, surface area, and volume concentrations) of atmospheric aerosol particles. The algorithm uses backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm as input information. Testing of the algorithm is based on synthetic optical data that are computed from prescribed monomodal particle size distributions and complex refractive indices that describe spherical, primarily fine mode pollution particles. We tested the performance of the algorithm for the "3 backscatter (β)+2 extinction (α)" configuration of a multiwavelength aerosol high-spectral-resolution lidar (HSRL) or Raman lidar. We investigated the degree to which the microphysical results retrieved by this algorithm depends on the number of input backscatter and extinction coefficients. For example, we tested "3β+1α," "2β+1α," and "3β" lidar configurations. This arrange and average algorithm can be used in two ways. First, it can be applied for quick data processing of experimental data acquired with lidar. Fast automated retrievals of microphysical particle properties are needed in view of the enormous amount of data that can be acquired by the NASA Langley Research Center's airborne "3β+2α" High-Spectral-Resolution Lidar (HSRL-2). It would prove useful for the growing number of ground-based multiwavelength lidar networks, and it would provide an option for analyzing the vast amount of optical data acquired with a future spaceborne multiwavelength lidar. The second potential application is to improve the microphysical particle characterization with our existing inversion algorithm that uses Tikhonov's inversion with regularization. This advanced algorithm has recently undergone development to allow automated and unsupervised processing; the arrange and average algorithm can be used as a preclassifier to further improve its speed and precision. First tests of the performance of arrange and average algorithm are encouraging. We used a set of 48 different monomodal particle size distributions, 4 real parts and 15 imaginary parts of the complex refractive index. All in all we tested 2880 different optical data sets for 0%, 10%, and 20% Gaussian measurement noise (one-standard deviation). In the case of the "3β+2α" configuration with 10% measurement noise, we retrieve the particle effective radius to within 27% for 1964 (68.2%) of the test optical data sets. The number concentration is obtained to 76%, the surface area concentration to 16%, and the volume concentration to 30% precision. The "3β" configuration performs significantly poorer. The performance of the "3β+1α" and "2β+1α" configurations is intermediate between the "3β+2α" and the "3β."

  9. Use of Multiangle Satellite Observations to Retrieve Aerosol Properties and Ocean Color

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.; Diner, David; Khan, Ralph

    2005-01-01

    A new technique is described for retrieving aerosol over ocean water and the associated ocean color using multiangle satellite observations. Unlike current satellite aerosol retrieval algorithms which only utilize observations at red wavelengths and longer, with the assumption that these wavelengths have a negligible ocean (water-leaving radiance), this new algorithm uses all available spectral bands and simultaneously retrieves both aerosol properties and the spectral ocean color. We show some results of case studies using MISR data, performed over different water conditions (coastal water, blooms, and open water).

  10. A multi-stage heuristic algorithm for matching problem in the modified miniload automated storage and retrieval system of e-commerce

    NASA Astrophysics Data System (ADS)

    Wang, Wenrui; Wu, Yaohua; Wu, Yingying

    2016-05-01

    E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking demands of e-commerce sufficiently. In this paper, a modified miniload automated storage/retrieval system is designed to fit these new characteristics of e-commerce in logistics. Meanwhile, a matching problem, concerning with the improvement of picking efficiency in new system, is studied in this paper. The problem is how to reduce the travelling distance of totes between aisles and picking stations. A multi-stage heuristic algorithm is proposed based on statement and model of this problem. The main idea of this algorithm is, with some heuristic strategies based on similarity coefficients, minimizing the transportations of items which can not arrive in the destination picking stations just through direct conveyors. The experimental results based on the cases generated by computers show that the average reduced rate of indirect transport times can reach 14.36% with the application of multi-stage heuristic algorithm. For the cases from a real e-commerce distribution center, the order processing time can be reduced from 11.20 h to 10.06 h with the help of the modified system and the proposed algorithm. In summary, this research proposed a modified system and a multi-stage heuristic algorithm that can reduce the travelling distance of totes effectively and improve the whole performance of e-commerce distribution center.

  11. Improved OSIRIS NO2 retrieval algorithm: description and validation

    NASA Astrophysics Data System (ADS)

    Sioris, Christopher E.; Rieger, Landon A.; Lloyd, Nicholas D.; Bourassa, Adam E.; Roth, Chris Z.; Degenstein, Douglas A.; Camy-Peyret, Claude; Pfeilsticker, Klaus; Berthet, Gwenaël; Catoire, Valéry; Goutail, Florence; Pommereau, Jean-Pierre; McLinden, Chris A.

    2017-03-01

    A new retrieval algorithm for OSIRIS (Optical Spectrograph and Infrared Imager System) nitrogen dioxide (NO2) profiles is described and validated. The algorithm relies on spectral fitting to obtain slant column densities of NO2, followed by inversion using an algebraic reconstruction technique and the SaskTran spherical radiative transfer model (RTM) to obtain vertical profiles of local number density. The validation covers different latitudes (tropical to polar), years (2002-2012), all seasons (winter, spring, summer, and autumn), different concentrations of nitrogen dioxide (from denoxified polar vortex to polar summer), a range of solar zenith angles (68.6-90.5°), and altitudes between 10.5 and 39 km, thereby covering the full retrieval range of a typical OSIRIS NO2 profile. The use of a larger spectral fitting window than used in previous retrievals reduces retrieval uncertainties and the scatter in the retrieved profiles due to noisy radiances. Improvements are also demonstrated through the validation in terms of bias reduction at 15-17 km relative to the OSIRIS operational v3.0 algorithm. The diurnal variation of NO2 along the line of sight is included in a fully spherical multiple scattering RTM for the first time. Using this forward model with built-in photochemistry, the scatter of the differences relative to the correlative balloon NO2 profile data is reduced.

  12. Illustration Watermarking for Digital Images: An Investigation of Hierarchical Signal Inheritances for Nested Object-based Embedding

    DTIC Science & Technology

    2007-02-23

    approach for signal-level watermark inheritance. 15. SUBJECT TERMS EOARD, Steganography , Image Fusion, Data Mining, Image ...in watermarking algorithms , a program interface and protocol has been de - veloped, which allows control of the embedding and retrieval processes by the...watermarks in an image . Watermarking algorithm (DLL) Watermarking editor (Delphi) - User marks all objects: ci - class information oi - object instance

  13. Content-based histopathology image retrieval using CometCloud.

    PubMed

    Qi, Xin; Wang, Daihou; Rodero, Ivan; Diaz-Montes, Javier; Gensure, Rebekah H; Xing, Fuyong; Zhong, Hua; Goodell, Lauri; Parashar, Manish; Foran, David J; Yang, Lin

    2014-08-26

    The development of digital imaging technology is creating extraordinary levels of accuracy that provide support for improved reliability in different aspects of the image analysis, such as content-based image retrieval, image segmentation, and classification. This has dramatically increased the volume and rate at which data are generated. Together these facts make querying and sharing non-trivial and render centralized solutions unfeasible. Moreover, in many cases this data is often distributed and must be shared across multiple institutions requiring decentralized solutions. In this context, a new generation of data/information driven applications must be developed to take advantage of the national advanced cyber-infrastructure (ACI) which enable investigators to seamlessly and securely interact with information/data which is distributed across geographically disparate resources. This paper presents the development and evaluation of a novel content-based image retrieval (CBIR) framework. The methods were tested extensively using both peripheral blood smears and renal glomeruli specimens. The datasets and performance were evaluated by two pathologists to determine the concordance. The CBIR algorithms that were developed can reliably retrieve the candidate image patches exhibiting intensity and morphological characteristics that are most similar to a given query image. The methods described in this paper are able to reliably discriminate among subtle staining differences and spatial pattern distributions. By integrating a newly developed dual-similarity relevance feedback module into the CBIR framework, the CBIR results were improved substantially. By aggregating the computational power of high performance computing (HPC) and cloud resources, we demonstrated that the method can be successfully executed in minutes on the Cloud compared to weeks using standard computers. In this paper, we present a set of newly developed CBIR algorithms and validate them using two different pathology applications, which are regularly evaluated in the practice of pathology. Comparative experimental results demonstrate excellent performance throughout the course of a set of systematic studies. Additionally, we present and evaluate a framework to enable the execution of these algorithms across distributed resources. We show how parallel searching of content-wise similar images in the dataset significantly reduces the overall computational time to ensure the practical utility of the proposed CBIR algorithms.

  14. Using microwave observations to estimate land surface temperature during cloudy conditions

    USDA-ARS?s Scientific Manuscript database

    Land surface temperature (LST), a key ingredient for physically-based retrieval algorithms of hydrological states and fluxes, remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observations and...

  15. Temperature Crosstalk Sensitivity of the Kummerow Rainfall Algorithm

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Petrenko, Boris

    1999-01-01

    Even though the signal source for passive microwave retrievals is thermal emission, retrievals of non-temperature geophysical parameters typically do not explicitly take into account the effects of temperature change on the retrievals. For global change research, changes in geophysical parameters (e.g. water vapor, rainfall, etc.) are referenced to the accompanying changes in temperature. If the retrieval of a certain parameter has a cross-talk response from temperature change alone, the retrievals might not be very useful for climate research. We investigated the sensitivity of the Kummerow rainfall retrieval algorithm to changes in air temperature. It was found that there was little net change in total rainfall with air temperature change. However, there were non-negligible changes within individual rain rate categories.

  16. Retrieval and Validation of Aerosol Optical Depth by using the GF-1 Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Xu, S.; Wang, L.; Cai, K.; Ge, Q.

    2017-05-01

    Based on the characteristics of GF-1 remote sensing data, the method and data processing procedure to retrieve the Aerosol Optical Depth (AOD) are developed in this study. The surface contribution over dense vegetation and urban bright target areas are respectively removed by using the dark target and deep blue algorithms. Our method is applied for the three serious polluted Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions. The retrieved AOD are validated by ground-based AERONET data from Beijing, Hangzhou, Hong Kong sites. Our results show that, 1) the heavy aerosol loadings are usually distributed in high industrial emission and dense populated cities, with the AOD value near 1. 2) There is a good agreement between satellite-retrievals and in-site observations, with the coefficient factors of 0.71 (BTH), 0.55 (YRD) and 0.54(PRD). 3) The GF-1 retrieval uncertainties are mainly from the impact of cloud contamination, high surface reflectance and assumed aerosol model.

  17. Effect of black carbon on dust property retrievals from satellite observations

    NASA Astrophysics Data System (ADS)

    Lin, Tang-Huang; Yang, Ping; Yi, Bingqi

    2013-01-01

    The effect of black carbon on the optical properties of polluted mineral dust is studied from a satellite remote-sensing perspective. By including the auxiliary data of surface reflectivity and aerosol mixing weight, the optical properties of mineral dust, or more specifically, the aerosol optical depth (AOD) and single-scattering albedo (SSA), can be retrieved with improved accuracy. Precomputed look-up tables based on the principle of the Deep Blue algorithm are utilized in the retrieval. The mean differences between the retrieved results and the corresponding ground-based measurements are smaller than 1% for both AOD and SSA in the case of pure dust. However, the retrievals can be underestimated by as much as 11.9% for AOD and overestimated by up to 4.1% for SSA in the case of polluted dust with an estimated 10% (in terms of the number-density mixing ratio) of soot aggregates if the black carbon effect on dust aerosols is neglected.

  18. The effects of cloud inhomogeneities upon radiative fluxes, and the supply of a cloud truth validation dataset

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.

    1993-01-01

    A series of cloud and sea ice retrieval algorithms are being developed in support of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team objectives. These retrievals include the following: cloud fractional area, cloud optical thickness, cloud phase (water or ice), cloud particle effective radius, cloud top heights, cloud base height, cloud top temperature, cloud emissivity, cloud 3-D structure, cloud field scales of organization, sea ice fractional area, sea ice temperature, sea ice albedo, and sea surface temperature. Due to the problems of accurately retrieving cloud properties over bright surfaces, an advanced cloud classification method was developed which is based upon spectral and textural features and artificial intelligence classifiers.

  19. Fuzzy Classification of Ocean Color Satellite Data for Bio-optical Algorithm Constituent Retrievals

    NASA Technical Reports Server (NTRS)

    Campbell, Janet W.

    1998-01-01

    The ocean has been traditionally viewed as a 2 class system. Morel and Prieur (1977) classified ocean water according to the dominant absorbent particle suspended in the water column. Case 1 is described as having a high concentration of phytoplankton (and detritus) relative to other particles. Conversely, case 2 is described as having inorganic particles such as suspended sediments in high concentrations. Little work has gone into the problem of mixing bio-optical models for these different water types. An approach is put forth here to blend bio-optical algorithms based on a fuzzy classification scheme. This scheme involves two procedures. First, a clustering procedure identifies classes and builds class statistics from in-situ optical measurements. Next, a classification procedure assigns satellite pixels partial memberships to these classes based on their ocean color reflectance signature. These membership assignments can be used as the basis for a weighting retrievals from class-specific bio-optical algorithms. This technique is demonstrated with in-situ optical measurements and an image from the SeaWiFS ocean color satellite.

  20. Flash-Type Discrimination

    NASA Technical Reports Server (NTRS)

    Koshak, William J.

    2010-01-01

    This viewgraph presentation describes the significant progress made in the flash-type discrimination algorithm development. The contents include: 1) Highlights of Progress for GLM-R3 Flash-Type discrimination Algorithm Development; 2) Maximum Group Area (MGA) Data; 3) Retrieval Errors from Simulations; and 4) Preliminary Global-scale Retrieval.

  1. Over 20 years of reaction access systems from MDL: a novel reaction substructure search algorithm.

    PubMed

    Chen, Lingran; Nourse, James G; Christie, Bradley D; Leland, Burton A; Grier, David L

    2002-01-01

    From REACCS, to MDL ISIS/Host Reaction Gateway, and most recently to MDL Relational Chemistry Server, a new product based on Oracle data cartridge technology, MDL's reaction database management and retrieval systems have undergone great changes. The evolution of the system architecture is briefly discussed. The evolution of MDL reaction substructure search (RSS) algorithms is detailed. This article mainly describes a novel RSS algorithm. This algorithm is based on a depth-first search approach and is able to fully and prospectively use reaction specific information, such as reacting center and atom-atom mapping (AAM) information. The new algorithm has been used in the recently released MDL Relational Chemistry Server and allows the user to precisely find reaction instances in databases while minimizing unrelated hits. Finally, the existing and new RSS algorithms are compared with several examples.

  2. Developments in the Aerosol Layer Height Retrieval Algorithm for the Copernicus Sentinel-4/UVN Instrument

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; Sanders, Abram; Veefkind, Pepijn

    2016-04-01

    The Sentinel-4 mission is a part of the European Commission's Copernicus programme, the goal of which is to provide geo-information to manage environmental assets, and to observe, understand and mitigate the effects of the changing climate. The Sentinel-4/UVN instrument design is motivated by the need to monitor trace gas concentrations and aerosols in the atmosphere from a geostationary orbit. The on-board instrument is a high resolution UV-VIS-NIR (UVN) spectrometer system that provides hourly radiance measurements over Europe and northern Africa with a spatial sampling of 8 km. The main application area of Sentinel-4/UVN is air quality. One of the data products that is being developed for Sentinel-4/UVN is the Aerosol Layer Height (ALH). The goal is to determine the height of aerosol plumes with a resolution of better than 0.5 - 1 km. The ALH product thus targets aerosol layers in the free troposphere, such as desert dust, volcanic ash and biomass during plumes. KNMI is assigned with the development of the Aerosol Layer Height (ALH) algorithm. Its heritage is the ALH algorithm developed by Sanders and De Haan (ATBD, 2016) for the TROPOMI instrument on board the Sentinel-5 Precursor mission that is to be launched in June or July 2016 (tentative date). The retrieval algorithm designed so far for the aerosol height product is based on the absorption characteristics of the oxygen-A band (759-770 nm). The algorithm has heritage to the ALH algorithm developed for TROPOMI on the Sentinel 5 precursor satellite. New aspects for Sentinel-4/UVN include the higher resolution (0.116 nm compared to 0.4 for TROPOMI) and hourly observation from the geostationary orbit. The algorithm uses optimal estimation to obtain a spectral fit of the reflectance across absorption band, while assuming a single uniform layer with fixed width to represent the aerosol vertical distribution. The state vector includes amongst other elements the height of this layer and its aerosol optical thickness. We will present the development work around the ALH retrieval algorithm in the framework of the Sentinel-4/UVN instrument. The main challenges are highlighted and retrieval simulation results are provided. Also, an outlook towards application of the S4 bread board algorithm to Sentinel-5 Precursor data later this year will be discussed.

  3. PALS (Passive Active L-band System) Radiometer-Based Soil Moisture Retrieval for the SMAP Validation Experiment 2012 (SMAPVEX12)

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Chan, S.; Bindlish, R.; O'Neill, P. E.; Chazanoff, S. L.; McNairn, H.; Bullock, P.; Powers, J.; Wiseman, G.; Berg, A. A.; Magagi, R.; Njoku, E. G.

    2014-12-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) mission is scheduled for launch in early January 2015. For pre-launch soil moisture algorithm development and validation, the SMAP project and NASA coordinated a SMAP Validation Experiment 2012 (SMAPVEX12) together with Agriculture and Agri-Food Canada in the vicinity of Winnipeg, Canada in June 7-July 19, 2012. Coincident active and passive airborne L-band data were acquired using the Passive Active L-band System (PALS) on 17 days during the experiment. Simultaneously with the PALS measurements, soil moisture ground truth data were collected manually. The vegetation and surface roughness were sampled on non-flight days. The SMAP mission will produce surface (top 5 cm) soil moisture products a) using a combination of its L-band radiometer and SAR (Synthetic Aperture Radar) measurements, b) using the radiometer measurement only, and c) using the SAR measurements only. The SMAPVEX12 data are being utilized for the development and testing of the algorithms applied for generating these soil moisture products. This talk will focus on presenting results of retrieving surface soil moisture using the PALS radiometer. The issues that this retrieval faces are very similar to those faced by the global algorithm using the SMAP radiometer. However, the different spatial resolution of the two observations has to be accounted for in the analysis. The PALS 3 dB footprint in the experiment was on the order of 1 km, whereas the SMAP radiometer has a footprint of about 40 km. In this talk forward modeled brightness temperature over the manually sampled fields and the retrieved soil moisture over the entire experiment domain are presented and discussed. In order to provide a retrieval product similar to that of the SMAP passive algorithm, various ancillary information had to be obtained for the SMAPVEX12 domain. In many cases there are multiple options on how to choose and reprocess these data. The derivation of these data elements and their impact on the retrieval and the spatial scales of the different observations are also discussed. In particular, land cover and soil type heterogeneity have a dramatic impact on parameterization of the algorithm when going from finer to coarser spatial resolutions.

  4. The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON

    NASA Astrophysics Data System (ADS)

    Dils, B.; Buchwitz, M.; Reuter, M.; Schneising, O.; Boesch, H.; Parker, R.; Guerlet, S.; Aben, I.; Blumenstock, T.; Burrows, J. P.; Butz, A.; Deutscher, N. M.; Frankenberg, C.; Hase, F.; Hasekamp, O. P.; Heymann, J.; De Mazière, M.; Notholt, J.; Sussmann, R.; Warneke, T.; Griffith, D.; Sherlock, V.; Wunch, D.

    2014-06-01

    Column-averaged dry-air mole fractions of carbon dioxide and methane have been retrieved from spectra acquired by the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observations-Fourier Transform Spectrometer) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) instruments on board GOSAT (Greenhouse gases Observing SATellite) and ENVISAT (ENVIronmental SATellite), respectively, using a range of European retrieval algorithms. These retrievals have been compared with data from ground-based high-resolution Fourier transform spectrometers (FTSs) from the Total Carbon Column Observing Network (TCCON). The participating algorithms are the weighting function modified differential optical absorption spectroscopy (DOAS) algorithm (WFMD, University of Bremen), the Bremen optimal estimation DOAS algorithm (BESD, University of Bremen), the iterative maximum a posteriori DOAS (IMAP, Jet Propulsion Laboratory (JPL) and Netherlands Institute for Space Research algorithm (SRON)), the proxy and full-physics versions of SRON's RemoTeC algorithm (SRPR and SRFP, respectively) and the proxy and full-physics versions of the University of Leicester's adaptation of the OCO (Orbiting Carbon Observatory) algorithm (OCPR and OCFP, respectively). The goal of this algorithm inter-comparison was to identify strengths and weaknesses of the various so-called round- robin data sets generated with the various algorithms so as to determine which of the competing algorithms would proceed to the next round of the European Space Agency's (ESA) Greenhouse Gas Climate Change Initiative (GHG-CCI) project, which is the generation of the so-called Climate Research Data Package (CRDP), which is the first version of the Essential Climate Variable (ECV) "greenhouse gases" (GHGs). For XCO2, all algorithms reach the precision requirements for inverse modelling (< 8 ppm), with only WFMD having a lower precision (4.7 ppm) than the other algorithm products (2.4-2.5 ppm). When looking at the seasonal relative accuracy (SRA, variability of the bias in space and time), none of the algorithms have reached the demanding < 0.5 ppm threshold. For XCH4, the precision for both SCIAMACHY products (50.2 ppb for IMAP and 76.4 ppb for WFMD) fails to meet the < 34 ppb threshold for inverse modelling, but note that this work focusses on the period after the 2005 SCIAMACHY detector degradation. The GOSAT XCH4 precision ranges between 18.1 and 14.0 ppb. Looking at the SRA, all GOSAT algorithm products reach the < 10 ppm threshold (values ranging between 5.4 and 6.2 ppb). For SCIAMACHY, IMAP and WFMD have a SRA of 17.2 and 10.5 ppb, respectively.

  5. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 1. Forward model, error analysis, and information content

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-05-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  6. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations. Part I: Forward model, error analysis, and information content.

    PubMed

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-05-27

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness ( τ ), effective radius ( r eff ), and cloud-top height ( h ). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  7. Lidar-Radiometer Inversion Code (LIRIC) for the Retrieval of Vertical Aerosol Properties from Combined Lidar Radiometer Data: Development and Distribution in EARLINET

    NASA Technical Reports Server (NTRS)

    Chaikovsky, A.; Dubovik, O.; Holben, Brent N.; Bril, A.; Goloub, P.; Tanre, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.; hide

    2015-01-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code)algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar radiometric input data we use measurements from European Aerosol Re-search Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Inter-comparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  8. Overview of the EarthCARE simulator and its applications

    NASA Astrophysics Data System (ADS)

    van Zadelhoff, G.; Donovan, D. P.; Lajas, D.

    2011-12-01

    The EarthCARE Simulator (ECSIM) was initially developed in 2004 as a scientific tool to simulate atmospheric scenes, radiative transfer and instrument models for the four instruments of the EarthCARE mission. ECSIM has subsequently been significantly further enhanced and is evolving into a tool for both mission performance assessment and L2 retrieval development. It is an ESA requirement that all L2 retrieval algorithms foreseen for the ground segment will be integrated and tested in ECSIM. It is furthermore envisaged, that the (retrieval part of) ECSIM will be the tool for scientists to work with on updates and new L2 algorithms during the EarthCARE Commissioning phase and beyond. ECSIM is capable of performing 'end to end' simulations of single, or any combination of the EarthCARE instruments. That is, ECSIM starts with an input atmospheric ``scene'', then uses various radiative transfer and instrument models in order to generate synthetic observations which can be subsequently inverted. The results of the inversions may then be compared to the input "truth". ECSIM consists of a modular general framework populated by various models. The models within ECSIM are grouped according to the following scheme: 1) Scene creation models (3D atmospheric scene definition) 2) Orbit models (orbit and orientation of the platform as it overflies the scene) 3) Forward models (calculate the signal impinging on the telescope/antenna of the instrument(s) in question) 4) Instrument models (calculate the instrument response to the signals calculated by the Forward models) 5) Retrieval models (invert the instrument signals to recover relevant geophysical information) Within the default ECSIM models crude instrument specific parameterizations (i.e. empirically based radar reflectivity vs. IWC relationships) are avoided. Instead, the radiative transfer forward models are kept separate (as possible) from the instrument models. In order to accomplish this, the atmospheric scenes are specified in high detail (i.e. bin resolved [cloud] size distributions) and the relevant wavelength dependent optical properties are specified in a separate database. This helps insure that all the instruments involved in the simulation are treated consistently and that the physical relationships between the various measurements are realistically captured. ECSIM is mainly used as an algorithm development platform for EarthCARE. However, it has also been used for simulating Calipso, CloudSAT, future multi-wavelength HSRL satellite missions and airborne HSRL data, showing the versatility of the tool. Validating L2 retrieval algorithms require the creation of atmospheric scenes ranging in complexity from very simple (blocky) to 'realistic' (high resolution) scenes. Recent work on the evaluation of aerosol retrieval algorithms from satellite lidar data (e.g. ATLID) required these latter scenes, which were created based on HSRL and in-situ measurements from the DLR FALCON aircraft. The synthetic signals were subsequently evaluated by comparing to the original measured signals. In this presentation an overview of the EarthCARE Simulator, its philosophy and the construction of realistic "scenes'' based on actual campaign observations is presented.

  9. A Grammar-Based Semantic Similarity Algorithm for Natural Language Sentences

    PubMed Central

    Chang, Jia Wei; Hsieh, Tung Cheng

    2014-01-01

    This paper presents a grammar and semantic corpus based similarity algorithm for natural language sentences. Natural language, in opposition to “artificial language”, such as computer programming languages, is the language used by the general public for daily communication. Traditional information retrieval approaches, such as vector models, LSA, HAL, or even the ontology-based approaches that extend to include concept similarity comparison instead of cooccurrence terms/words, may not always determine the perfect matching while there is no obvious relation or concept overlap between two natural language sentences. This paper proposes a sentence similarity algorithm that takes advantage of corpus-based ontology and grammatical rules to overcome the addressed problems. Experiments on two famous benchmarks demonstrate that the proposed algorithm has a significant performance improvement in sentences/short-texts with arbitrary syntax and structure. PMID:24982952

  10. Assimilation of MODIS Dark Target and Deep Blue Observations in the Dust Aerosol Component of NMMB-MONARCH version 1.0

    NASA Technical Reports Server (NTRS)

    Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Perez Garcia-Pando, Carlos

    2017-01-01

    A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets.The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.

  11. Validation of Cloud Parameters Derived from Geostationary Satellites, AVHRR, MODIS, and VIIRS Using SatCORPS Algorithms

    NASA Technical Reports Server (NTRS)

    Minnis, P.; Sun-Mack, S.; Bedka, K. M.; Yost, C. R.; Trepte, Q. Z.; Smith, W. L., Jr.; Painemal, D.; Chen, Y.; Palikonda, R.; Dong, X.; hide

    2016-01-01

    Validation is a key component of remote sensing that can take many different forms. The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) is applied to many different imager datasets including those from the geostationary satellites, Meteosat, Himiwari-8, INSAT-3D, GOES, and MTSAT, as well as from the low-Earth orbiting satellite imagers, MODIS, AVHRR, and VIIRS. While each of these imagers have similar sets of channels with wavelengths near 0.65, 3.7, 11, and 12 micrometers, many differences among them can lead to discrepancies in the retrievals. These differences include spatial resolution, spectral response functions, viewing conditions, and calibrations, among others. Even when analyzed with nearly identical algorithms, it is necessary, because of those discrepancies, to validate the results from each imager separately in order to assess the uncertainties in the individual parameters. This paper presents comparisons of various SatCORPS-retrieved cloud parameters with independent measurements and retrievals from a variety of instruments. These include surface and space-based lidar and radar data from CALIPSO and CloudSat, respectively, to assess the cloud fraction, height, base, optical depth, and ice water path; satellite and surface microwave radiometers to evaluate cloud liquid water path; surface-based radiometers to evaluate optical depth and effective particle size; and airborne in-situ data to evaluate ice water content, effective particle size, and other parameters. The results of comparisons are compared and contrasted and the factors influencing the differences are discussed.

  12. Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0

    NASA Astrophysics Data System (ADS)

    Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Pérez García-Pando, Carlos

    2017-03-01

    A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets. The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.

  13. Validation of MODIS Aerosol Retrieval Over Ocean

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Mattoo, Shana; Levy, Robert; Chu, D. Allen; Holben, Brent N.; Dubovik, Oleg; Ahmad, Ziauddin; hide

    2001-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) algorithm for determining aerosol characteristics over ocean is performing with remarkable accuracy. A two-month data set of MODIS retrievals co-located with observations from the AErosol RObotic NETwork (AERONET) ground-based sunphotometer network provides the necessary validation. Spectral radiation measured by MODIS (in the range 550 - 2100 nm) is used to retrieve the aerosol optical thickness, effective particle radius and ratio between the submicron and micron size particles. MODIS-retrieved aerosol optical thickness at 660 nm and 870 nm fall within the expected uncertainty, with the ensemble average at 660 nm differing by only 2% from the AERONET observations and having virtually no offset. MODIS retrievals of aerosol effective radius agree with AERONET retrievals to within +/- 0.10 micrometers, while MODIS-derived ratios between large and small mode aerosol show definite correlation with ratios derived from AERONET data.

  14. Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances

    NASA Technical Reports Server (NTRS)

    Li, Jun; Weisz, Elisabeth; Zhou, Daniel K.

    2007-01-01

    Retrieval of temperature, moisture profiles and surface skin temperature from hyperspectral infrared (IR) radiances requires spectral information about the surface emissivity. Using constant or inaccurate surface emissivities typically results in large retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity spectrum is large both spectrally and spatially. In this study, a physically based algorithm has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously with the temperature and moisture profiles, as well as the surface skin temperature. To make the solution stable and efficient, the hyperspectral emissivity spectrum is represented by eigenvectors, derived from the laboratory measured hyperspectral emissivity database, in the retrieval process. Experience with AIRS (Atmospheric InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity spectrum and the sounding improves the surface skin temperature as well as temperature and moisture profiles, particularly in the near surface layer.

  15. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  16. Where to search top-K biomedical ontologies?

    PubMed

    Oliveira, Daniela; Butt, Anila Sahar; Haller, Armin; Rebholz-Schuhmann, Dietrich; Sahay, Ratnesh

    2018-03-20

    Searching for precise terms and terminological definitions in the biomedical data space is problematic, as researchers find overlapping, closely related and even equivalent concepts in a single or multiple ontologies. Search engines that retrieve ontological resources often suggest an extensive list of search results for a given input term, which leads to the tedious task of selecting the best-fit ontological resource (class or property) for the input term and reduces user confidence in the retrieval engines. A systematic evaluation of these search engines is necessary to understand their strengths and weaknesses in different search requirements. We have implemented seven comparable Information Retrieval ranking algorithms to search through ontologies and compared them against four search engines for ontologies. Free-text queries have been performed, the outcomes have been judged by experts and the ranking algorithms and search engines have been evaluated against the expert-based ground truth (GT). In addition, we propose a probabilistic GT that is developed automatically to provide deeper insights and confidence to the expert-based GT as well as evaluating a broader range of search queries. The main outcome of this work is the identification of key search factors for biomedical ontologies together with search requirements and a set of recommendations that will help biomedical experts and ontology engineers to select the best-suited retrieval mechanism in their search scenarios. We expect that this evaluation will allow researchers and practitioners to apply the current search techniques more reliably and that it will help them to select the right solution for their daily work. The source code (of seven ranking algorithms), ground truths and experimental results are available at https://github.com/danielapoliveira/bioont-search-benchmark.

  17. [New Retrieval Algorithms for Geophysical Products from GLI and MODIS Data

    NASA Technical Reports Server (NTRS)

    Dodge, James C.; Simpson, James J.

    2004-01-01

    Below is the 1st year progress report for NAG5-13435 "New Retrieval Algorithms for Geophysical Products from GLI and MODIS Data". Activity on this project has been coordinated with our NASA DB project NAG5-9604. For your convenience, this report has six sections and an Appendix. Sections I - III discuss specific activities undertaken during the past year to analyze/use MODIS data. Section IV formally states our intention to no longer pursue any research using JAXA's (formerly NASDA's) GLI instrument which catastrophically failed very early after launch (also see the Appendix). Section V provides some indications of directions for second year activities based on our January 2004 telephone discussions and email exchanges. A brief summary is given in Section VI.

  18. Recent Theoretical Advances in Analysis of AIRS/AMSU Sounding Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2007-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. This paper describes the AIRS Science Team Version 5.0 retrieval algorithm. Starting in early 2007, the Goddard DAAC will use this algorithm to analyze near real time AIRS/AMSU observations. These products are then made available to the scientific community for research purposes. The products include twice daily measurements of the Earth's three dimensional global temperature, water vapor, and ozone distribution as well as cloud cover. In addition, accurate twice daily measurements of the earth's land and ocean temperatures are derived and reported. Scientists use this important set of observations for two major applications. They provide important information for climate studies of global and regional variability and trends of different aspects of the earth's atmosphere. They also provide information for researchers to improve the skill of weather forecasting. A very important new product of the AIRS Version 5 algorithm is accurate case-by-case error estimates of the retrieved products. This heightens their utility for use in both weather and climate applications. These error estimates are also used directly for quality control of the retrieved products. Version 5 also allows for accurate quality controlled AIRS only retrievals, called "Version 5 AO retrievals" which can be used as a backup methodology if AMSU fails. Examples of the accuracy of error estimates and quality controlled retrieval products of the AIRS/AMSU Version 5 and Version 5 AO algorithms are given, and shown to be significantly better than the previously used Version 4 algorithm. Assimilation of Version 5 retrievals are also shown to significantly improve forecast skill, especially when the case-by-case error estimates are utilized in the data assimilation process.

  19. Using Induction to Refine Information Retrieval Strategies

    NASA Technical Reports Server (NTRS)

    Baudin, Catherine; Pell, Barney; Kedar, Smadar

    1994-01-01

    Conceptual information retrieval systems use structured document indices, domain knowledge and a set of heuristic retrieval strategies to match user queries with a set of indices describing the document's content. Such retrieval strategies increase the set of relevant documents retrieved (increase recall), but at the expense of returning additional irrelevant documents (decrease precision). Usually in conceptual information retrieval systems this tradeoff is managed by hand and with difficulty. This paper discusses ways of managing this tradeoff by the application of standard induction algorithms to refine the retrieval strategies in an engineering design domain. We gathered examples of query/retrieval pairs during the system's operation using feedback from a user on the retrieved information. We then fed these examples to the induction algorithm and generated decision trees that refine the existing set of retrieval strategies. We found that (1) induction improved the precision on a set of queries generated by another user, without a significant loss in recall, and (2) in an interactive mode, the decision trees pointed out flaws in the retrieval and indexing knowledge and suggested ways to refine the retrieval strategies.

  20. Status of the NPP and J1 NOAA Unique Combined Atmospheric Processing System (NUCAPS): recent algorithm enhancements geared toward validation and near real time users applications.

    NASA Astrophysics Data System (ADS)

    Gambacorta, A.; Nalli, N. R.; Tan, C.; Iturbide-Sanchez, F.; Wilson, M.; Zhang, K.; Xiong, X.; Barnet, C. D.; Sun, B.; Zhou, L.; Wheeler, A.; Reale, A.; Goldberg, M.

    2017-12-01

    The NOAA Unique Combined Atmospheric Processing System (NUCAPS) is the NOAA operational algorithm to retrieve thermodynamic and composition variables from hyper spectral thermal sounders such as CrIS, IASI and AIRS. The combined use of microwave sounders, such as ATMS, AMSU and MHS, enables full atmospheric sounding of the atmospheric column under all-sky conditions. NUCAPS retrieval products are accessible in near real time (about 1.5 hour delay) through the NOAA Comprehensive Large Array-data Stewardship System (CLASS). Since February 2015, NUCAPS retrievals have been also accessible via Direct Broadcast, with unprecedented low latency of less than 0.5 hours. NUCAPS builds on a long-term, multi-agency investment on algorithm research and development. The uniqueness of this algorithm consists in a number of features that are key in providing highly accurate and stable atmospheric retrievals, suitable for real time weather and air quality applications. Firstly, maximizing the use of the information content present in hyper spectral thermal measurements forms the foundation of the NUCAPS retrieval algorithm. Secondly, NUCAPS is a modular, name-list driven design. It can process multiple hyper spectral infrared sounders (on Aqua, NPP, MetOp and JPSS series) by mean of the same exact retrieval software executable and underlying spectroscopy. Finally, a cloud-clearing algorithm and a synergetic use of microwave radiance measurements enable full vertical sounding of the atmosphere, under all-sky regimes. As we transition toward improved hyper spectral missions, assessing retrieval skill and consistency across multiple platforms becomes a priority for real time users applications. Focus of this presentation is a general introduction on the recent improvements in the delivery of the NUCAPS full spectral resolution upgrade and an overview of the lessons learned from the 2017 Hazardous Weather Test bed Spring Experiment. Test cases will be shown on the use of NPP and MetOp NUCAPS under pre-convective, capping inversion and dry layer intrusion events.

  1. Error analysis of the greenhouse-gases monitor instrument short wave infrared XCO2 retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Wang, Xianhua; Ye, Hanhan; Jiang, Yun; Duan, Fenghua

    2018-01-01

    We developed an algorithm (named GMI_XCO2) to retrieve the global column-averaged dry air mole fraction of atmospheric carbon dioxide (XCO2) for greenhouse-gases monitor instrument (GMI) and directional polarized camera (DPC) on the GF-5 satellite. This algorithm is designed to work in cloudless atmospheric conditions with aerosol optical thickness (AOT)<0.3. To quantify the uncertainty level of the retrieved XCO2 when the aerosols and cirrus clouds occurred in retrieving XCO2 with the GMI short wave infrared (SWIR) data, we analyzed the errors rate caused by the six types of aerosols and cirrus clouds. The results indicated that in AOT range of 0.05 to 0.3 (550 nm), the uncertainties of aerosols could lead to errors of -0.27% to 0.59%, -0.32% to 1.43%, -0.10% to 0.49%, -0.12% to 1.17%, -0.35% to 0.49%, and -0.02% to -0.24% for rural, dust, clean continental, maritime, urban, and soot aerosols, respectively. The retrieval results presented a large error due to cirrus clouds. In the cirrus optical thickness range of 0.05 to 0.8 (500 nm), the most underestimation is up to 26.25% when the surface albedo is 0.05. The most overestimation is 8.1% when the surface albedo is 0.65. The retrieval results of GMI simulation data demonstrated that the accuracy of our algorithm is within 4 ppm (˜1%) using the simultaneous measurement of aerosols and clouds from DPC. Moreover, the speed of our algorithm is faster than full-physics (FP) methods. We verified our algorithm with Greenhouse-gases Observing Satellite (GOSAT) data in Beijing area during 2016. The retrieval errors of most observations are within 4 ppm except for summer. Compared with the results of GOSAT, the correlation coefficient is 0.55 for the whole year data, increasing to 0.62 after excluding the summer data.

  2. Retrieval of aerosol properties and water leaving radiance from multi-angle spectro-polarimetric measurement over coastal waters

    NASA Astrophysics Data System (ADS)

    Gao, M.; Zhai, P.; Franz, B. A.; Hu, Y.; Knobelspiesse, K. D.; Xu, F.; Ibrahim, A.

    2017-12-01

    Ocean color remote sensing in coastal waters remains a challenging task due to the complex optical properties of aerosols and ocean water properties. It is highly desirable to develop an advanced ocean color and aerosol retrieval algorithm for coastal waters, to advance our capabilities in monitoring water quality, improve our understanding of coastal carbon cycle dynamics, and allow for the development of more accurate circulation models. However, distinguishing the dissolved and suspended material from absorbing aerosols over coastal waters is challenging as they share similar absorption spectrum within the deep blue to UV range. In this paper we report a research algorithm on aerosol and ocean color retrieval with emphasis on coastal waters. The main features of our algorithm include: 1) combining co-located measurements from a hyperspectral ocean color instrument (OCI) and a multi-angle polarimeter (MAP); 2) using the radiative transfer model for coupled atmosphere and ocean system (CAOS), which is based on the highly accurate and efficient successive order of scattering method; and 3) incorporating a generalized bio-optical model with direct accounting of the total absorption of phytoplankton, CDOM and non-algal particles(NAP), and the total scattering of phytoplankton and NAP for improved description of ocean light scattering. The non-linear least square fitting algorithm is used to optimize the bio-optical model parameters and the aerosol optical and microphysical properties including refractive indices and size distributions for both fine and coarse modes. The retrieved aerosol information is used to calculate the atmospheric path radiance, which is then subtracted from the OCI observations to obtain the water leaving radiance contribution. Our work aims to maximize the use of available information from the co-located dataset and conduct the atmospheric correction with minimal assumptions. The algorithm will contribute to the success of current MAP instruments, such as the Research Scanning Polarimeter (RSP), and future ocean color missions, such as the Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) mission, by enabling retrieval of ocean biogeochemical properties under optically-complex atmospheric and oceanic conditions.

  3. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Jeong, Ukkyo; Kim, Woogyung; Hong, Hyunkee; Holben, Brent; Eck, Thomas F.; Song, Chul H.; Lim, Jae-Hyun; Song, Chang-Keun

    2016-04-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGON-NE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Ångström exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 × AERONET AOD - 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement with MODIS DB than MODIS DT. The other GOCI YAER products (AE, FMF, and SSA) show lower correlation with AERONET than AOD, but still show some skills for qualitative use.

  4. GOCI Yonsei Aerosol Retrieval (YAER) Algorithm and Validation During the DRAGON-NE Asia 2012 Campaign

    NASA Technical Reports Server (NTRS)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Jeong, Ukkyo; Kim, Woogyung; Hong, Hyunkee; Holben, Brent; Eck, Thomas F.; hide

    2016-01-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGONNE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 x AERONET AOD - 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement with MODIS DB than MODIS DT. The other GOCI YAER products (AE, FMF, and SSA) show lower correlation with AERONET than AOD, but still show some skills for qualitative use.

  5. Adaptation of an aerosol retrieval algorithm using multi-wavelength and multi-pixel information of satellites (MWPM) to GOSAT/TANSO-CAI

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Takenaka, H.; Higurashi, A.; Nakajima, T.

    2017-12-01

    Aerosol in the atmosphere is an important constituent for determining the earth's radiation budget, so the accurate aerosol retrievals from satellite is useful. We have developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using multi-wavelength and multi-pixel information of satellite imagers (MWPM). The method simultaneously derives aerosol optical properties, such as aerosol optical thickness (AOT), single scattering albedo (SSA) and aerosol size information, by using spatial difference of wavelegths (multi-wavelength) and surface reflectances (multi-pixel). The method is useful for aerosol retrieval over spatially heterogeneous surface like an urban region. In this algorithm, the inversion method is a combination of an optimal method and smoothing constraint for the state vector. Furthermore, this method has been combined with the direct radiation transfer calculation (RTM) numerically solved by each iteration step of the non-linear inverse problem, without using look up table (LUT) with several constraints. However, it takes too much computation time. To accelerate the calculation time, we replaced the RTM with an accelerated RTM solver learned by neural network-based method, EXAM (Takenaka et al., 2011), using Rster code. And then, the calculation time was shorternd to about one thouthandth. We applyed MWPM combined with EXAM to GOSAT/TANSO-CAI (Cloud and Aerosol Imager). CAI is a supplement sensor of TANSO-FTS, dedicated to measure cloud and aerosol properties. CAI has four bands, 380, 674, 870 and 1600 nm, and observes in 500 meters resolution for band1, band2 and band3, and 1.5 km for band4. Retrieved parameters are aerosol optical properties, such as aerosol optical thickness (AOT) of fine and coarse mode particles at a wavelenth of 500nm, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength by combining a minimum reflectance method and Fukuda et al. (2013). We will show the results and discuss the accuracy of the algorithm for various surface types. Our future work is to extend the algorithm for analysis of GOSAT-2/TANSO-CAI-2 and GCOM/C-SGLI data.

  6. Aquarius Salinity Retrieval Algorithm: Final Pre-Launch Version

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Le Vine, David M.

    2011-01-01

    This document provides the theoretical basis for the Aquarius salinity retrieval algorithm. The inputs to the algorithm are the Aquarius antenna temperature (T(sub A)) measurements along with a number of NCEP operational products and pre-computed tables of space radiation coming from the galaxy and sun. The output is sea-surface salinity and many intermediate variables required for the salinity calculation. This revision of the Algorithm Theoretical Basis Document (ATBD) is intended to be the final pre-launch version.

  7. The SAPHIRE server: a new algorithm and implementation.

    PubMed Central

    Hersh, W.; Leone, T. J.

    1995-01-01

    SAPHIRE is an experimental information retrieval system implemented to test new approaches to automated indexing and retrieval of medical documents. Due to limitations in its original concept-matching algorithm, a modified algorithm has been implemented which allows greater flexibility in partial matching and different word order within concepts. With the concomitant growth in client-server applications and the Internet in general, the new algorithm has been implemented as a server that can be accessed via other applications on the Internet. PMID:8563413

  8. Developing a comprehensive system for content-based retrieval of image and text data from a national survey

    NASA Astrophysics Data System (ADS)

    Antani, Sameer K.; Natarajan, Mukil; Long, Jonathan L.; Long, L. Rodney; Thoma, George R.

    2005-04-01

    The article describes the status of our ongoing R&D at the U.S. National Library of Medicine (NLM) towards the development of an advanced multimedia database biomedical information system that supports content-based image retrieval (CBIR). NLM maintains a collection of 17,000 digitized spinal X-rays along with text survey data from the Second National Health and Nutritional Examination Survey (NHANES II). These data serve as a rich data source for epidemiologists and researchers of osteoarthritis and musculoskeletal diseases. It is currently possible to access these through text keyword queries using our Web-based Medical Information Retrieval System (WebMIRS). CBIR methods developed specifically for biomedical images could offer direct visual searching of these images by means of example image or user sketch. We are building a system which supports hybrid queries that have text and image-content components. R&D goals include developing algorithms for robust image segmentation for localizing and identifying relevant anatomy, labeling the segmented anatomy based on its pathology, developing suitable indexing and similarity matching methods for images and image features, and associating the survey text information for query and retrieval along with the image data. Some highlights of the system developed in MATLAB and Java are: use of a networked or local centralized database for text and image data; flexibility to incorporate new research work; provides a means to control access to system components under development; and use of XML for structured reporting. The article details the design, features, and algorithms in this third revision of this prototype system, CBIR3.

  9. Extending "Deep Blue" Aerosol Retrieval Coverage to Cases of Absorbing Aerosols Above Clouds: Sensitivity Analysis and First Case Studies

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Schmid, B.; Shinozuka, Y.

    2016-01-01

    Cases of absorbing aerosols above clouds (AACs), such as smoke or mineral dust, are omitted from most routinely processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar sensors, for incorporation into a future version of the "Deep Blue" AOD data product. Detailed retrieval simulations suggest that these sensors should be able to determine AAC AOD with a typical level of uncertainty approximately 25-50 percent (with lower uncertainties for more strongly absorbing aerosol types) and COD with an uncertainty approximately10-20 percent, if an appropriate aerosol optical model is known beforehand. Errors are larger, particularly if the aerosols are only weakly absorbing, if the aerosol optical properties are not known, and the appropriate model to use must also be retrieved. Actual retrieval errors are also compared to uncertainty envelopes obtained through the optimal estimation (OE) technique; OE-based uncertainties are found to be generally reasonable for COD but larger than actual retrieval errors for AOD, due in part to difficulties in quantifying the degree of spectral correlation of forward model error. The algorithm is also applied to two MODIS scenes (one smoke and one dust) for which near-coincident NASA Ames Airborne Tracking Sun photometer (AATS) data were available to use as a ground truth AOD data source, and found to be in good agreement, demonstrating the validity of the technique with real observations.

  10. Tomographic retrievals of ozone with the OMPS Limb Profiler: algorithm description and preliminary results

    NASA Astrophysics Data System (ADS)

    Zawada, Daniel J.; Rieger, Landon A.; Bourassa, Adam E.; Degenstein, Douglas A.

    2018-04-01

    Measurements of limb-scattered sunlight from the Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) can be used to obtain vertical profiles of ozone in the stratosphere. In this paper we describe a two-dimensional, or tomographic, retrieval algorithm for OMPS-LP where variations are retrieved simultaneously in altitude and the along-orbital-track dimension. The algorithm has been applied to measurements from the center slit for the full OMPS-LP mission to create the publicly available University of Saskatchewan (USask) OMPS-LP 2D v1.0.2 dataset. Tropical ozone anomalies are compared with measurements from the Microwave Limb Sounder (MLS), where differences are less than 5 % of the mean ozone value for the majority of the stratosphere. Examples of near-coincident measurements with MLS are also shown, and agreement at the 5 % level is observed for the majority of the stratosphere. Both simulated retrievals and coincident comparisons with MLS are shown at the edge of the polar vortex, comparing the results to a traditional one-dimensional retrieval. The one-dimensional retrieval is shown to consistently overestimate the amount of ozone in areas of large horizontal gradients relative to both MLS and the two-dimensional retrieval.

  11. Mapping Snow Grain Size over Greenland from MODIS

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Tedesco, Marco; Wang, Yujie; Kokhanovsky, Alexander

    2008-01-01

    This paper presents a new automatic algorithm to derive optical snow grain size (SGS) at 1 km resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Differently from previous approaches, snow grains are not assumed to be spherical but a fractal approach is used to account for their irregular shape. The retrieval is conceptually based on an analytical asymptotic radiative transfer model which predicts spectral bidirectional snow reflectance as a function of the grain size and ice absorption. The analytical form of solution leads to an explicit and fast retrieval algorithm. The time series analysis of derived SGS shows a good sensitivity to snow metamorphism, including melting and snow precipitation events. Preprocessing is performed by a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which includes gridding MODIS data to 1 km resolution, water vapor retrieval, cloud masking and an atmospheric correction. MAIAC cloud mask (CM) is a new algorithm based on a time series of gridded MODIS measurements and an image-based rather than pixel-based processing. Extensive processing of MODIS TERRA data over Greenland shows a robust performance of CM algorithm in discrimination of clouds over bright snow and ice. As part of the validation analysis, SGS derived from MODIS over selected sites in 2004 was compared to the microwave brightness temperature measurements of SSM\\I radiometer, which is sensitive to the amount of liquid water in the snowpack. The comparison showed a good qualitative agreement, with both datasets detecting two main periods of snowmelt. Additionally, MODIS SGS was compared with predictions of the snow model CROCUS driven by measurements of the automatic whether stations of the Greenland Climate Network. We found that CROCUS grain size is on average a factor of two larger than MODIS-derived SGS. Overall, the agreement between CROCUS and MODIS results was satisfactory, in particular before and during the first melting period in mid-June. Following detailed time series analysis of SGS for four permanent sites, the paper presents SGS maps over the Greenland ice sheet for the March-September period of 2004.

  12. MERIS Retrieval of Water Quality Components in the Turbid Albemarle-Pamlico Sound Estuary, USA

    EPA Science Inventory

    Two remote-sensing optical algorithms for the retrieval of the water quality components (WQCs) in the Albemarle-Pamlico Estuarine System (APES) have been developed and validated for chlorophyll a (Chl) concentration. Both algorithms are semiempirical because they incorporate some...

  13. Compressed domain indexing of losslessly compressed images

    NASA Astrophysics Data System (ADS)

    Schaefer, Gerald

    2001-12-01

    Image retrieval and image compression have been pursued separately in the past. Only little research has been done on a synthesis of the two by allowing image retrieval to be performed directly in the compressed domain of images without the need to uncompress them first. In this paper methods for image retrieval in the compressed domain of losslessly compressed images are introduced. While most image compression techniques are lossy, i.e. discard visually less significant information, lossless techniques are still required in fields like medical imaging or in situations where images must not be changed due to legal reasons. The algorithms in this paper are based on predictive coding methods where a pixel is encoded based on the pixel values of its (already encoded) neighborhood. The first method is based on an understanding that predictively coded data is itself indexable and represents a textural description of the image. The second method operates directly on the entropy encoded data by comparing codebooks of images. Experiments show good image retrieval results for both approaches.

  14. Ground-based FTIR retrievals of SF6 on Reunion Island

    NASA Astrophysics Data System (ADS)

    Zhou, Minqiang; Langerock, Bavo; Vigouroux, Corinne; Wang, Pucai; Hermans, Christian; Stiller, Gabriele; Walker, Kaley A.; Dutton, Geoff; Mahieu, Emmanuel; De Mazière, Martine

    2018-02-01

    SF6 total columns were successfully retrieved from FTIR (Fourier transform infrared) measurements (Saint Denis and Maïdo) on Reunion Island (21° S, 55° E) between 2004 and 2016 using the SFIT4 algorithm: the retrieval strategy and the error budget were presented. The FTIR SF6 retrieval has independent information in only one individual layer, covering the whole of the troposphere and the lower stratosphere. The trend in SF6 was analysed based on the FTIR-retrieved dry-air column-averaged mole fractions (XSF6) on Reunion Island, the in situ measurements at America Samoa (SMO) and the collocated satellite measurements (Michelson Interferometer for Passive Atmospheric Sounding, MIPAS, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer, ACE-FTS) in the southern tropics. The SF6 annual growth rate from FTIR retrievals is 0.265 ± 0.013 pptv year-1 for 2004-2016, which is slightly weaker than that from the SMO in situ measurements (0.285 ± 0.002 pptv year-1) for the same time period. The SF6 trend in the troposphere from MIPAS and ACE-FTS observations is also close to the ones from the FTIR retrievals and the SMO in situ measurements.

  15. Cotton growth modeling and assessment using UAS visual-band imagery

    USDA-ARS?s Scientific Manuscript database

    This paper explores the potential of using unmanned aircraft system (UAS)-based visible-band images to assess cotton growth. By applying the structure-from-motion algorithm, cotton plant height (ph) and canopy cover (cc) were retrieved from the point cloud-based digital surface models (DSMs) and ort...

  16. Reflectivity retrieval in a networked radar environment

    NASA Astrophysics Data System (ADS)

    Lim, Sanghun

    Monitoring of precipitation using a high-frequency radar system such as X-band is becoming increasingly popular due to its lower cost compared to its counterpart at S-band. Networks of meteorological radar systems at higher frequencies are being pursued for targeted applications such as coverage over a city or a small basin. However, at higher frequencies, the impact of attenuation due to precipitation needs to be resolved for successful implementation. In this research, new attenuation correction algorithms are introduced to compensate the attenuation impact due to rain medium. In order to design X-band radar systems as well as evaluate algorithm development, it is useful to have simultaneous X-band observation with and without the impact of path attenuation. One way to obtain that data set is through theoretical models. Methodologies for generating realistic range profiles of radar variables at attenuating frequencies such as X-band for rain medium are presented here. Fundamental microphysical properties of precipitation, namely size and shape distribution information, are used to generate realistic profiles of X-band starting with S-band observations. Conditioning the simulation from S-band radar measurements maintains the natural distribution of microphysical parameters associated with rainfall. In this research, data taken by the CSU-CHILL radar and the National Center for Atmospheric Research S-POL radar are used to simulate X-band radar variables. Three procedures to simulate the radar variables at X-band and sample applications are presented. A new attenuation correction algorithm based on profiles of reflectivity, differential reflectivity, and differential propagation phase shift is presented. A solution for specific attenuation retrieval in rain medium is proposed that solves the integral equations for reflectivity and differential reflectivity with cumulative differential propagation phase shift constraint. The conventional rain profiling algorithms that connect reflectivity and specific attenuation can retrieve specific attenuation values along the radar path assuming a constant intercept parameter of the normalized drop size distribution. However, in convective storms, the drop size distribution parameters can have significant variation along the path. In this research, a dual-polarization rain profiling algorithm for horizontal-looking radars incorporating reflectivity as well as differential reflectivity profiles is developed. The dual-polarization rain profiling algorithm has been evaluated with X-band radar observations simulated from drop size distribution derived from high-resolution S-band measurements collected by the CSU-CHILL radar. The analysis shows that the dual-polarization rain profiling algorithm provides significant improvement over the current algorithms. A methodology for reflectivity and attenuation retrieval for rain medium in a networked radar environment is described. Electromagnetic waves backscattered from a common volume in networked radar systems are attenuated differently along the different paths. A solution for the specific attenuation distribution is proposed by solving the integral equation for reflectivity. The set of governing integral equations describing the backscatter and propagation of common resolution volume are solved simultaneously with constraints on total path attenuation. The proposed algorithm is evaluated based on simulated X-band radar observations synthesized from S-band measurements collected by the CSU-CHILL radar. Retrieved reflectivity and specific attenuation using the proposed method show good agreement with simulated reflectivity and specific attenuation.

  17. Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing.

    PubMed

    Sha, Bei; Liu, Xuan; Ge, Xiao-Lu; Guo, Cheng-Shan

    2014-09-22

    A method for fast reconstruction of off-axis digital holograms based on digital multiplexing algorithm is proposed. Instead of the existed angular multiplexing (AM), the new method utilizes a spatial multiplexing (SM) algorithm, in which four off-axis holograms recorded in sequence are synthesized into one SM function through multiplying each hologram with a tilted plane wave and then adding them up. In comparison with the conventional methods, the SM algorithm simplifies two-dimensional (2-D) Fourier transforms (FTs) of four N*N arrays into a 1.25-D FTs of one N*N arrays. Experimental results demonstrate that, using the SM algorithm, the computational efficiency can be improved and the reconstructed wavefronts keep the same quality as those retrieved based on the existed AM method. This algorithm may be useful in design of a fast preview system of dynamic wavefront imaging in digital holography.

  18. Description and Sensitivity Analysis of the SOLSE/LORE-2 and SAGE III Limb Scattering Ozone Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Loughman, R.; Flittner, D.; Herman, B.; Bhartia, P.; Hilsenrath, E.; McPeters, R.; Rault, D.

    2002-01-01

    The SOLSE (Shuttle Ozone Limb Sounding Experiment) and LORE (Limb Ozone Retrieval Experiment) instruments are scheduled for reflight on Space Shuttle flight STS-107 in July 2002. In addition, the SAGE III (Stratospheric Aerosol and Gas Experiment) instrument will begin to make limb scattering measurements during Spring 2002. The optimal estimation technique is used to analyze visible and ultraviolet limb scattered radiances and produce a retrieved ozone profile. The algorithm used to analyze data from the initial flight of the SOLSE/LORE instruments (on Space Shuttle flight STS-87 in November 1997) forms the basis of the current algorithms, with expansion to take advantage of the increased multispectral information provided by SOLSE/LORE-2 and SAGE III. We also present detailed sensitivity analysis for these ozone retrieval algorithms. The primary source of ozone retrieval error is tangent height misregistration (i.e., instrument pointing error), which is relevant throughout the altitude range of interest, and can produce retrieval errors on the order of 10-20 percent due to a tangent height registration error of 0.5 km at the tangent point. Other significant sources of error are sensitivity to stratospheric aerosol and sensitivity to error in the a priori ozone estimate (given assumed instrument signal-to-noise = 200). These can produce errors up to 10 percent for the ozone retrieval at altitudes less than 20 km, but produce little error above that level.

  19. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.

    PubMed

    Yang, Shengxiang

    2008-01-01

    In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.

  20. Ice surface temperature retrieval from AVHRR, ATSR, and passive microwave satellite data: Algorithm development and application

    NASA Technical Reports Server (NTRS)

    Key, Jeff; Maslanik, James; Steffen, Konrad

    1994-01-01

    During the first half of our second project year we have accomplished the following: (1) acquired a new AVHRR data set for the Beaufort Sea area spanning an entire year; (2) acquired additional ATSR data for the Arctic and Antarctic now totaling over seven months; (3) refined our AVHRR Arctic and Antarctic ice surface temperature (IST) retrieval algorithm, including work specific to Greenland; (4) developed ATSR retrieval algorithms for the Arctic and Antarctic, including work specific to Greenland; (5) investigated the effects of clouds and the atmosphere on passive microwave 'surface' temperature retrieval algorithms; (6) generated surface temperatures for the Beaufort Sea data set, both from AVHRR and SSM/I; and (7) continued work on compositing GAC data for coverage of the entire Arctic and Antarctic. During the second half of the year we will continue along these same lines, and will undertake a detailed validation study of the AVHRR and ATSR retrievals using LEADEX and the Beaufort Sea year-long data. Cloud masking methods used for the AVHRR will be modified for use with the ATSR. Methods of blending in situ and satellite-derived surface temperature data sets will be investigated.

  1. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  2. Improved Methodology for Surface and Atmospheric Soundings, Error Estimates, and Quality Control Procedures: the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2014-01-01

    The AIRS Science Team Version-6 AIRS/AMSU retrieval algorithm is now operational at the Goddard DISC. AIRS Version-6 level-2 products are generated near real-time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. This paper describes some of the significant improvements in retrieval methodology contained in the Version-6 retrieval algorithm compared to that previously used in Version-5. In particular, the AIRS Science Team made major improvements with regard to the algorithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the cloud clearing and retrieval procedures; and 3) derive error estimates and use them for Quality Control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, Version-6 also operates in an AIRS Only (AO) mode which produces results almost as good as those of the full AIRS/AMSU mode. This paper also demonstrates the improvements of some AIRS Version-6 and Version-6 AO products compared to those obtained using Version-5.

  3. Simultaneous aerosol/ocean products retrieved during the 2014 SABOR campaign using the NASA Research Scanning Polarimeter (RSP)

    NASA Astrophysics Data System (ADS)

    Stamnes, S.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Burton, S. P.; Liu, X.; Hu, Y.; Stamnes, K. H.; Chowdhary, J.; Brian, C.

    2017-12-01

    The SABOR (Ship-Aircraft Bio-Optical Research) campaign was conducted during the summer of 2014, in the Atlantic Ocean, over the Chesapeake Bay and the eastern coastal region of the United States. The NASA GISS Research Scanning Polarimeter, a multi-angle, multi-spectral polarimeter measured the upwelling polarized radiances from a B200 aircraft. We present results from the new "MAPP" algorithm for RSP that is based on optimal estimation and that can retrieve simultaneous aerosol microphysical properties (including effective radius, single-scattering albedo, and real refractive index) and ocean color products using accurate radiative transfer and Mie calculations. The algorithm was applied to data collected during SABOR to retrieve aerosol microphysics and ocean products for all Aerosols-Above-Ocean (AAO) scenes. The RSP MAPP products are compared against collocated aerosol extinction and backscatter profiles collected by the NASA LaRC airborne High Spectral Resolution Lidar (HSRL-1), including lidar depth profiles of the ocean diffuse attenuation coefficient and the hemispherical backscatter coefficient.

  4. Modeling and analysis of LWIR signature variability associated with 3D and BRDF effects

    NASA Astrophysics Data System (ADS)

    Adler-Golden, Steven; Less, David; Jin, Xuemin; Rynes, Peter

    2016-05-01

    Algorithms for retrieval of surface reflectance, emissivity or temperature from a spectral image almost always assume uniform illumination across the scene and horizontal surfaces with Lambertian reflectance. When these algorithms are used to process real 3-D scenes, the retrieved "apparent" values contain the strong, spatially dependent variations in illumination as well as surface bidirectional reflectance distribution function (BRDF) effects. This is especially problematic with horizontal or near-horizontal viewing, where many observed surfaces are vertical, and where horizontal surfaces can show strong specularity. The goals of this study are to characterize long-wavelength infrared (LWIR) signature variability in a HSI 3-D scene and develop practical methods for estimating the true surface values. We take advantage of synthetic near-horizontal imagery generated with the high-fidelity MultiService Electro-optic Signature (MuSES) model, and compare retrievals of temperature and directional-hemispherical reflectance using standard sky downwelling illumination and MuSES-based non-uniform environmental illumination.

  5. Accuracy Assessments of Cloud Droplet Size Retrievals from Polarized Reflectance Measurements by the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail Dmitrievic; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; vanDiedenhove, Bastiaan

    2012-01-01

    We present an algorithm for the retrieval of cloud droplet size distribution parameters (effective radius and variance) from the Research Scanning Polarimeter (RSP) measurements. The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS), which was on-board of the NASA Glory satellite. This instrument measures both polarized and total reflectance in 9 spectral channels with central wavelengths ranging from 410 to 2260 nm. The cloud droplet size retrievals use the polarized reflectance in the scattering angle range between 135deg and 165deg, where they exhibit the sharply defined structure known as the rain- or cloud-bow. The shape of the rainbow is determined mainly by the single scattering properties of cloud particles. This significantly simplifies both forward modeling and inversions, while also substantially reducing uncertainties caused by the aerosol loading and possible presence of undetected clouds nearby. In this study we present the accuracy evaluation of our algorithm based on the results of sensitivity tests performed using realistic simulated cloud radiation fields.

  6. The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.

    2012-01-01

    Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.

  7. Phase-Retrieval Uncertainty Estimation and Algorithm Comparison for the JWST-ISIM Test Campaign

    NASA Technical Reports Server (NTRS)

    Aronstein, David L.; Smith, J. Scott

    2016-01-01

    Phase retrieval, the process of determining the exitpupil wavefront of an optical instrument from image-plane intensity measurements, is the baseline methodology for characterizing the wavefront for the suite of science instruments (SIs) in the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST). JWST is a large, infrared space telescope with a 6.5-meter diameter primary mirror. JWST is currently NASA's flagship mission and will be the premier space observatory of the next decade. ISIM contains four optical benches with nine unique instruments, including redundancies. ISIM was characterized at the Goddard Space Flight Center (GSFC) in Greenbelt, MD in a series of cryogenic vacuum tests using a telescope simulator. During these tests, phase-retrieval algorithms were used to characterize the instruments. The objective of this paper is to describe the Monte-Carlo simulations that were used to establish uncertainties (i.e., error bars) for the wavefronts of the various instruments in ISIM. Multiple retrieval algorithms were used in the analysis of ISIM phase-retrieval focus-sweep data, including an iterativetransform algorithm and a nonlinear optimization algorithm. These algorithms emphasize the recovery of numerous optical parameters, including low-order wavefront composition described by Zernike polynomial terms and high-order wavefront described by a point-by-point map, location of instrument best focus, focal ratio, exit-pupil amplitude, the morphology of any extended object, and optical jitter. The secondary objective of this paper is to report on the relative accuracies of these algorithms for the ISIM instrument tests, and a comparison of their computational complexity and their performance on central and graphical processing unit clusters. From a phase-retrieval perspective, the ISIM test campaign includes a variety of source illumination bandwidths, various image-plane sampling criteria above and below the Nyquist- Shannon critical sampling value, various extended object sizes, and several other impactful effects.

  8. Phase retrieval algorithm for JWST Flight and Testbed Telescope

    NASA Astrophysics Data System (ADS)

    Dean, Bruce H.; Aronstein, David L.; Smith, J. Scott; Shiri, Ron; Acton, D. Scott

    2006-06-01

    An image-based wavefront sensing and control algorithm for the James Webb Space Telescope (JWST) is presented. The algorithm heritage is discussed in addition to implications for algorithm performance dictated by NASA's Technology Readiness Level (TRL) 6. The algorithm uses feedback through an adaptive diversity function to avoid the need for phase-unwrapping post-processing steps. Algorithm results are demonstrated using JWST Testbed Telescope (TBT) commissioning data and the accuracy is assessed by comparison with interferometer results on a multi-wave phase aberration. Strategies for minimizing aliasing artifacts in the recovered phase are presented and orthogonal basis functions are implemented for representing wavefronts in irregular hexagonal apertures. Algorithm implementation on a parallel cluster of high-speed digital signal processors (DSPs) is also discussed.

  9. LibKiSAO: a Java library for Querying KiSAO.

    PubMed

    Zhukova, Anna; Adams, Richard; Laibe, Camille; Le Novère, Nicolas

    2012-09-24

    The Kinetic Simulation Algorithm Ontology (KiSAO) supplies information about existing algorithms available for the simulation of Systems Biology models, their characteristics, parameters and inter-relationships. KiSAO enables the unambiguous identification of algorithms from simulation descriptions. Information about analogous methods having similar characteristics and about algorithm parameters incorporated into KiSAO is desirable for simulation tools. To retrieve this information programmatically an application programming interface (API) for KiSAO is needed. We developed libKiSAO, a Java library to enable querying of the KiSA Ontology. It implements methods to retrieve information about simulation algorithms stored in KiSAO, their characteristics and parameters, and methods to query the algorithm hierarchy and search for similar algorithms providing comparable results for the same simulation set-up. Using libKiSAO, simulation tools can make logical inferences based on this knowledge and choose the most appropriate algorithm to perform a simulation. LibKiSAO also enables simulation tools to handle a wider range of simulation descriptions by determining which of the available methods are similar and can be used instead of the one indicated in the simulation description if that one is not implemented. LibKiSAO enables Java applications to easily access information about simulation algorithms, their characteristics and parameters stored in the OWL-encoded Kinetic Simulation Algorithm Ontology. LibKiSAO can be used by simulation description editors and simulation tools to improve reproducibility of computational simulation tasks and facilitate model re-use.

  10. An Improved Algorithm for Retrieving Surface Downwelling Longwave Radiation from Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Kratz, David P.; Wilber, Anne C.; Gupta, Shashi K.; Cess, Robert D.

    2007-01-01

    Zhou and Cess [2001] developed an algorithm for retrieving surface downwelling longwave radiation (SDLW) based upon detailed studies using radiative transfer model calculations and surface radiometric measurements. Their algorithm linked clear sky SDLW with surface upwelling longwave flux and column precipitable water vapor. For cloudy sky cases, they used cloud liquid water path as an additional parameter to account for the effects of clouds. Despite the simplicity of their algorithm, it performed very well for most geographical regions except for those regions where the atmospheric conditions near the surface tend to be extremely cold and dry. Systematic errors were also found for scenes that were covered with ice clouds. An improved version of the algorithm prevents the large errors in the SDLW at low water vapor amounts by taking into account that under such conditions the SDLW and water vapor amount are nearly linear in their relationship. The new algorithm also utilizes cloud fraction and cloud liquid and ice water paths available from the Cloud and the Earth's Radiant Energy System (CERES) single scanner footprint (SSF) product to separately compute the clear and cloudy portions of the fluxes. The new algorithm has been validated against surface measurements at 29 stations around the globe for Terra and Aqua satellites. The results show significant improvement over the original version. The revised Zhou-Cess algorithm is also slightly better or comparable to more sophisticated algorithms currently implemented in the CERES processing and will be incorporated as one of the CERES empirical surface radiation algorithms.

  11. Bias adjustment of infrared-based rainfall estimation using Passive Microwave satellite rainfall data

    NASA Astrophysics Data System (ADS)

    Karbalaee, Negar; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan

    2017-04-01

    This study explores using Passive Microwave (PMW) rainfall estimation for spatial and temporal adjustment of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The PERSIANN-CCS algorithm collects information from infrared images to estimate rainfall. PERSIANN-CCS is one of the algorithms used in the Integrated Multisatellite Retrievals for GPM (Global Precipitation Mission) estimation for the time period PMW rainfall estimations are limited or not available. Continued improvement of PERSIANN-CCS will support Integrated Multisatellite Retrievals for GPM for current as well as retrospective estimations of global precipitation. This study takes advantage of the high spatial and temporal resolution of GEO-based PERSIANN-CCS estimation and the more effective, but lower sample frequency, PMW estimation. The Probability Matching Method (PMM) was used to adjust the rainfall distribution of GEO-based PERSIANN-CCS toward that of PMW rainfall estimation. The results show that a significant improvement of global PERSIANN-CCS rainfall estimation is obtained.

  12. Accelerating Information Retrieval from Profile Hidden Markov Model Databases.

    PubMed

    Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem

    2016-01-01

    Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.

  13. Effects of Surface BRDF on the OMI Cloud and NO2 Retrievals: A New Approach Based on Geometry-Dependent Lambertian Equivalent Reflectivity (GLER) Derived from MODIS

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    The Ozone Monitoring Instrument (OMI) cloud and NO2 algorithms use a monthly gridded surface reflectivity climatology that does not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (GLER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. GLER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from MODIS over land and the Cox Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare GLER and climatological LER at 466 nm, which is used in the OMI O2-O2cloud algorithm to derive effective cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and GLERs is carried out. GLER and corresponding retrieved cloud products are then used as input to the OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with GLERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  14. Supervised learning of tools for content-based search of image databases

    NASA Astrophysics Data System (ADS)

    Delanoy, Richard L.

    1996-03-01

    A computer environment, called the Toolkit for Image Mining (TIM), is being developed with the goal of enabling users with diverse interests and varied computer skills to create search tools for content-based image retrieval and other pattern matching tasks. Search tools are generated using a simple paradigm of supervised learning that is based on the user pointing at mistakes of classification made by the current search tool. As mistakes are identified, a learning algorithm uses the identified mistakes to build up a model of the user's intentions, construct a new search tool, apply the search tool to a test image, display the match results as feedback to the user, and accept new inputs from the user. Search tools are constructed in the form of functional templates, which are generalized matched filters capable of knowledge- based image processing. The ability of this system to learn the user's intentions from experience contrasts with other existing approaches to content-based image retrieval that base searches on the characteristics of a single input example or on a predefined and semantically- constrained textual query. Currently, TIM is capable of learning spectral and textural patterns, but should be adaptable to the learning of shapes, as well. Possible applications of TIM include not only content-based image retrieval, but also quantitative image analysis, the generation of metadata for annotating images, data prioritization or data reduction in bandwidth-limited situations, and the construction of components for larger, more complex computer vision algorithms.

  15. Global Soil Moisture from the Aquarius/SAC-D Satellite: Description and Initial Assessment

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas; Cosh, Michael; Zhao, Tianjie; O'Neil, Peggy

    2015-01-01

    Aquarius satellite observations over land offer a new resource for measuring soil moisture from space. Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scope to include the retrieval of surface soil moisture. The soil moisture retrieval algorithm development focused on using only the radiometer data because of the extensive heritage of passive microwave retrieval of soil moisture. The single channel algorithm (SCA) was implemented using the Aquarius observations to estimate surface soil moisture. Aquarius radiometer observations from three beams (after bias/gain modification) along with the National Centers for Environmental Prediction model forecast surface temperatures were then used to retrieve soil moisture. Ancillary data inputs required for using the SCA are vegetation water content, land surface temperature, and several soil and vegetation parameters based on land cover classes. The resulting global spatial patterns of soil moisture were consistent with the precipitation climatology and with soil moisture from other satellite missions (Advanced Microwave Scanning Radiometer for the Earth Observing System and Soil Moisture Ocean Salinity). Initial assessments were performed using in situ observations from the U.S. Department of Agriculture Little Washita and Little River watershed soil moisture networks. Results showed good performance by the algorithm for these land surface conditions for the period of August 2011-June 2013 (rmse = 0.031 m(exp 3)/m(exp 3), Bias = -0.007 m(exp 3)/m(exp 3), and R = 0.855). This radiometer-only soil moisture product will serve as a baseline for continuing research on both active and combined passive-active soil moisture algorithms. The products are routinely available through the National Aeronautics and Space Administration data archive at the National Snow and Ice Data Center.

  16. Retrieval of radiative and microphysical properties of clouds from multispectral infrared measurements

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Hironobu; Saito, Masanori; Tokoro, Yuka; Putri, Nurfiena Sagita; Sekiguchi, Miho

    2016-12-01

    Satellite remote sensing of the macroscopic, microphysical, and optical properties of clouds are useful for studying spatial and temporal variations of clouds at various scales and constraining cloud physical processes in climate and weather prediction models. Instead of using separate independent algorithms for different cloud properties, a unified, optimal estimation-based cloud retrieval algorithm is developed and applied to moderate resolution imaging spectroradiometer (MODIS) observations using ten thermal infrared bands. The model considers sensor configurations, background surface and atmospheric profile, and microphysical and optical models of ice and liquid cloud particles and radiative transfer in a plane-parallel, multilayered atmosphere. Measurement and model errors are thoroughly quantified from direct comparisons of clear-sky observations over the ocean with model calculations. Performance tests by retrieval simulations show that ice cloud properties are retrieved with high accuracy when cloud optical thickness (COT) is between 0.1 and 10. Cloud-top pressure is inferred with uncertainty lower than 10 % when COT is larger than 0.3. Applying the method to a tropical cloud system and comparing the results with the MODIS Collection 6 cloud product shows good agreement for ice cloud optical thickness when COT is less than about 5. Cloud-top height agrees well with estimates obtained by the CO2 slicing method used in the MODIS product. The present algorithm can detect optically thin parts at the edges of high clouds well in comparison with the MODIS product, in which these parts are recognized as low clouds by the infrared window method. The cloud thermodynamic phase in the present algorithm is constrained by cloud-top temperature, which tends not to produce results with an ice cloud that is too warm and liquid cloud that is too cold.

  17. The Collection 6 'dark-target' MODIS Aerosol Products

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Mattoo, Shana; Munchak, Leigh A.; Kleidman, Richard G.; Patadia, Falguni; Gupta, Pawan; Remer, Lorraine

    2013-01-01

    Aerosol retrieval algorithms are applied to Moderate resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua, creating two streams of decade-plus aerosol information. Products of aerosol optical depth (AOD) and aerosol size are used for many applications, but the primary concern is that these global products are comprehensive and consistent enough for use in climate studies. One of our major customers is the international modeling comparison study known as AEROCOM, which relies on the MODIS data as a benchmark. In order to keep up with the needs of AEROCOM and other MODIS data users, while utilizing new science and tools, we have improved the algorithms and products. The code, and the associated products, will be known as Collection 6 (C6). While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there are significant impacts to the products and their interpretation. In its entirety, the C6 algorithm is comprised of three sub-algorithms for retrieving aerosol properties over different surfaces: These include the dark-target DT algorithms to retrieve over (1) ocean and (2) vegetated-dark-soiled land, plus the (3) Deep Blue (DB) algorithm, originally developed to retrieve over desert-arid land. Focusing on the two DT algorithms, we have updated assumptions for central wavelengths, Rayleigh optical depths and gas (H2O, O3, CO2, etc.) absorption corrections, while relaxing the solar zenith angle limit (up to 84) to increase pole-ward coverage. For DT-land, we have updated the cloud mask to allow heavy smoke retrievals, fine-tuned the assignments for aerosol type as function of season location, corrected bugs in the Quality Assurance (QA) logic, and added diagnostic parameters such as topographic altitude. For DT-ocean, improvements include a revised cloud mask for thin-cirrus detection, inclusion of wind speed dependence in the retrieval, updates to logic of QA Confidence flag (QAC) assignment, and additions of important diagnostic information. At the same time as we have introduced algorithm changes, we have also accounted for upstream changes including: new instrument calibration, revised land-sea masking, and changed cloud masking. Upstream changes also impact the coverage and global statistics of the retrieved AOD. Although our responsibility is to the DT code and products, we have also added a product that merges DT and DB product over semi-arid land surfaces to provide a more gap-free dataset, primarily for visualization purposes. Preliminary validation shows that compared to surface-based sunphotometer data, the C6, Level 2 (along swath) DT-products compare at least as well as those from C5. C6 will include new diagnostic information about clouds in the aerosol field, including an aerosol cloud mask at 500 m resolution, and calculations of the distance to the nearest cloud from clear pixels. Finally, we have revised the strategy for aggregating and averaging the Level 2 (swath) data to become Level 3 (gridded) data. All together, the changes to the DT algorithms will result in reduced global AOD (by 0.02) over ocean and increased AOD (by 0.02) over land, along with changes in spatial coverage. Changes in calibration will have more impact to Terras time series, especially over land. This will result in a significant reduction in artificial differences in the Terra and Aqua datasets, and will stabilize the MODIS data as a target for AEROCOM studie

  18. Information recovery in propagation-based imaging with decoherence effects

    NASA Astrophysics Data System (ADS)

    Froese, Heinrich; Lötgering, Lars; Wilhein, Thomas

    2017-05-01

    During the past decades the optical imaging community witnessed a rapid emergence of novel imaging modalities such as coherent diffraction imaging (CDI), propagation-based imaging and ptychography. These methods have been demonstrated to recover complex-valued scalar wave fields from redundant data without the need for refractive or diffractive optical elements. This renders these techniques suitable for imaging experiments with EUV and x-ray radiation, where the use of lenses is complicated by fabrication, photon efficiency and cost. However, decoherence effects can have detrimental effects on the reconstruction quality of the numerical algorithms involved. Here we demonstrate propagation-based optical phase retrieval from multiple near-field intensities with decoherence effects such as partially coherent illumination, detector point spread, binning and position uncertainties of the detector. Methods for overcoming these systematic experimental errors - based on the decomposition of the data into mutually incoherent modes - are proposed and numerically tested. We believe that the results presented here open up novel algorithmic methods to accelerate detector readout rates and enable subpixel resolution in propagation-based phase retrieval. Further the techniques are straightforward to be extended to methods such as CDI, ptychography and holography.

  19. How Can TOLNet Help to Better Understand Tropospheric Ozone? A Satellite Perspective

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.

    2018-01-01

    Potential sources of a priori ozone (O3) profiles for use in Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite tropospheric O3 retrievals are evaluated with observations from multiple Tropospheric Ozone Lidar Network (TOLNet) systems in North America. An O3 profile climatology (tropopause-based O3 climatology (TB-Clim), currently proposed for use in the TEMPO O3 retrieval algorithm) derived from ozonesonde observations and O3 profiles from three separate models (operational Goddard Earth Observing System (GEOS-5) Forward Processing (FP) product, reanalysis product from Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2), and the GEOS-Chem chemical transport model (CTM)) were: 1) evaluated with TOLNet measurements on various temporal scales (seasonally, daily, hourly) and 2) implemented as a priori information in theoretical TEMPO tropospheric O3 retrievals in order to determine how each a priori impacts the accuracy of retrieved tropospheric (0-10 km) and lowermost tropospheric (LMT, 0-2 km) O3 columns. We found that all sources of a priori O3 profiles evaluated in this study generally reproduced the vertical structure of summer-averaged observations. However, larger differences between the a priori profiles and lidar observations were observed when evaluating inter-daily and diurnal variability of tropospheric O3. The TB-Clim O3 profile climatology was unable to replicate observed inter-daily and diurnal variability of O3 while model products, in particular GEOS-Chem simulations, displayed more skill in reproducing these features. Due to the ability of models, primarily the CTM used in this study, on average to capture the inter-daily and diurnal variability of tropospheric and LMT O3 columns, using a priori profiles from CTM simulations resulted in TEMPO retrievals with the best statistical comparison with lidar observations. Furthermore, important from an air quality perspective, when high LMT O3 values were observed, using CTM a priori profiles resulted in TEMPO LMT O3 retrievals with the least bias. The application of time-specific (non-climatological) hourly/daily model predictions as the a priori profile in TEMPO O3 retrievals will be best suited when applying this data to study air quality or event-based processes as the standard retrieval algorithm will still need to use a climatology product. Follow-on studies to this work are currently being conducted to investigate the application of different CTM-predicted O3 climatology products in the standard TEMPO retrieval algorithm. Finally, similar methods to those used in this study can be easily applied by TEMPO data users to recalculate tropospheric O3 profiles provided from the standard retrieval using a different source of a priori.

  20. A novel biomedical image indexing and retrieval system via deep preference learning.

    PubMed

    Pang, Shuchao; Orgun, Mehmet A; Yu, Zhezhou

    2018-05-01

    The traditional biomedical image retrieval methods as well as content-based image retrieval (CBIR) methods originally designed for non-biomedical images either only consider using pixel and low-level features to describe an image or use deep features to describe images but still leave a lot of room for improving both accuracy and efficiency. In this work, we propose a new approach, which exploits deep learning technology to extract the high-level and compact features from biomedical images. The deep feature extraction process leverages multiple hidden layers to capture substantial feature structures of high-resolution images and represent them at different levels of abstraction, leading to an improved performance for indexing and retrieval of biomedical images. We exploit the current popular and multi-layered deep neural networks, namely, stacked denoising autoencoders (SDAE) and convolutional neural networks (CNN) to represent the discriminative features of biomedical images by transferring the feature representations and parameters of pre-trained deep neural networks from another domain. Moreover, in order to index all the images for finding the similarly referenced images, we also introduce preference learning technology to train and learn a kind of a preference model for the query image, which can output the similarity ranking list of images from a biomedical image database. To the best of our knowledge, this paper introduces preference learning technology for the first time into biomedical image retrieval. We evaluate the performance of two powerful algorithms based on our proposed system and compare them with those of popular biomedical image indexing approaches and existing regular image retrieval methods with detailed experiments over several well-known public biomedical image databases. Based on different criteria for the evaluation of retrieval performance, experimental results demonstrate that our proposed algorithms outperform the state-of-the-art techniques in indexing biomedical images. We propose a novel and automated indexing system based on deep preference learning to characterize biomedical images for developing computer aided diagnosis (CAD) systems in healthcare. Our proposed system shows an outstanding indexing ability and high efficiency for biomedical image retrieval applications and it can be used to collect and annotate the high-resolution images in a biomedical database for further biomedical image research and applications. Copyright © 2018 Elsevier B.V. All rights reserved.

Top